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Abstract—IEEE 802.15.4-based industrial wireless sensor-
actuator networks (WSANs) have been widely deployed to
connect sensors, actuators, and controllers in industrial facili-
ties. Configuring an industrial WSAN to meet the application-
specified quality of service (QoS) requirements is a complex
process, which involves theoretical computation, simulation,
and field testing, among other tasks. Since industrial wireless
networks become increasingly hierarchical, heterogeneous, and
complex, many research efforts have been made to apply wire-
less simulations and advanced machine learning techniques for
network configuration. Unfortunately, our study shows that the
network configuration model generated by the state-of-the-art
method decays quickly over time. To address this issue, we
develop a MEta-learning based Runtime Adaptation (MERA)
method that efficiently adapts network configuration models for
industrial WSANs at runtime. Under MERA, the parameters of
the network configuration model are explicitly trained such that
a small number of optimization steps with only a few new mea-
surements will produce good generalization performance after
the network condition changes. Experimental results show that
MERA achieves higher prediction accuracy with less physical
measurements, less computation time, and longer adaptation
intervals compared to a state-of-the-art baseline.

Index Terms—IEEE 802.15.4, Industrial Wireless Sensor-
Actuator Networks, Runtime Adaptation, Meta-Learning

I. INTRODUCTION

Industrial wireless sensor-actuator networks (WSANs) typ-
ically connect sensors, actuators, and controllers in industrial
facilities, such as manufacturing plants, steel mills, and oil
refineries. IEEE 802.15.4-based wireless networks operate at
low-power and can be manufactured inexpensively, which
makes them ideal for industrial applications where energy
consumption and costs are important. Today a large number
of networks that implement IEEE 802.15.4-based industrial
WSAN standards, such as WirelessHART [1], ISA100 [2], and
6TiSCH [3], have been deployed in industrial facilities. For
instance, Emerson Process Management, one of the leading
WirelessHART network suppliers, has deployed more than
54,835 WirelessHART networks globally and gathered 19.7
billion operating hours [4]. A decade of real-world deploy-
ments has demonstrated the feasibility of using IEEE 802.15.4-
based WSANs to support various industrial applications. How-
ever, configuring an industrial WSAN to meet the application-
specified quality of service (QoS) requirements is a daunting
task, which involves theoretical computation, simulation, and
field testing, among other work.

In the literature, significant research efforts have been made
to model the characteristics of low-power wireless networks
and optimize their configurations by adapting a few physical
layer or medium access control (MAC) layer parameters. For
instance, Zimmerling et al. [5] developed a framework that
helps wireless sensor networks (WSNs) achieve high packet
delivery rates by selecting good radio on and off timings in X-
MAC [6] and LPP [7] protocols. Peng et al. [8] and Wang et
al. [9] proposed to reduce energy consumption by selecting
optimal sleep intervals in duty-cycled MAC protocols. As
wireless deployments become increasingly hierarchical, het-
erogeneous, and complex, a breadth of recent research has re-
ported that resorting to advanced machine learning techniques
for wireless networking presents significant performance im-
provements compared to traditional methods. For instance,
deep learning is employed to handle a set of parameters
for the optimal configurations [10], [11] and reinforcement
learning (RL) is used to help the network configure itself [12],
[13]. The key behind the performance of those methods
is the capability of optimizing a set of free parameters to
capture uncertainties, variations, and dynamics in real-world
environments. However, it is usually difficult and costly to
collect sufficient training data for those data-driven methods
in harsh industrial environments. In such scenarios, the benefits
of employing the methods that rely on a large amount of
physical data are outweighed by the costs. Recently there
have been increasing interests in using wireless simulations
to identify good configurations for industrial WSANs, because
simulations can be set up in less time, introduce less overhead,
and allow for different configurations to be tested under the
same conditions. However, a recent study showed that the
network configurations selected by simulations cannot always
help the physical network meet the QoS requirements due
to the simulation-to-reality gap [14]. Shi et al. developed a
deep learning based domain adaptation method (denoted as
DA in this paper) to close the gap. Unfortunately, our study
shows that the network configuration model generated by DA
works well at the beginning but decays quickly over time and
periodically running DA to update the model introduces too
much overhead.

To address this issue, we develop a MEta-learning based
Runtime Adaptation (MERA) method that efficiently adapts
network configuration models for industrial WSANs at run-
time. Under MERA, the parameters of the network configu-



ration model are explicitly trained such that a small number
of optimization steps with a small amount of new measure-
ments will produce good generalization performance after the
network condition changes. To our knowledge, this paper
represents the first study that explores the use of meta-learning
for runtime adaptations in industrial WSANs. Specifically, we
make the following contributions:

• We present an empirical study to identify the limitations
of the state-of-the-art method;

• We formulate the runtime adaptation for industrial
WSANs as a machine learning problem and develop a
meta-learning based solution, namely MERA;

• We develop a hybrid learning policy (HLP) that helps
MERA consistently provide good prediction performance
since the physical network starts to operate;

• We implement MERA and evaluate its performance on a
testbed that consists of 50 devices. Experimental results
show that MERA provides higher prediction accuracy
with less physical measurements, less computation time,
and longer adaptation intervals compared to our baseline.

The remainder of this paper is organized as follows. Sec-
tion II presents the background of WirelessHART networks
and DA. Section III introduces our empirical study. Section IV
presents our design of MERA. Section V describes our ex-
perimental evaluation. Section VI reviews the related work.
Section VII concludes the paper.

II. BACKGROUND

In this paper, we use the configuration of WirelessHART
networks [1] as an example to present our empirical study
and MERA. A WirelessHART network consists of a gateway,
multiple access points, and a set of field devices (sensors and
actuators). The network manager, a software module running
on the gateway, is responsible for the network management
including collecting network statistics, generating routes, and
scheduling transmissions. To meet the energy efficiency, real-
time, and reliability requirements posed by industrial appli-
cations, WirelessHART employs the IEEE 802.15.4 physical
layer, adopts the time slotted channel hopping (TSCH) tech-
nique in the MAC layer, and uses the graph routing in the
network layer. Under TSCH, time is split into slices of fixed
length that are grouped into a slotframe. All devices are time
synchronized and share the notion of a slotframe that repeats
over time. Each time slot is long enough to transmit a packet
and an acknowledgement between a pair of communicating
devices. The network uses up to 16 physical channels in the
2.4GHz ISM band and performs channel hopping in each
time slot to combat narrow band interference. WirelessHART
networks have three tunable network parameters (the packet
reception ratio threshold for link selection R, the number of
available physical channels C, and the number of maximum
transmission attempts per packet A), which make significant
impacts on network performance quantified by three key
performance metrics: the end-to-end latency L, the battery
lifetime B, and the end-to-end reliability E [14]. The primary

goal of network configuration is to select good network pa-
rameters (R, C, and A) based on the given QoS requirements
(L, B, and E).

It is costly to collect sufficient physical data for data-driven
methods in many industrial environments. DA is designed
to leverage a large amount of simulation data and a small
number of physical measurements to generate good network
configuration models for industrial WSANs. Specifically, DA
employs deep learning based domain adaptation and leverages
a teacher-student neural network to close the simulation-to-
reality gap in network configuration. The teacher model is first
trained with the simulation data and generates soft labels [15]
for the knowledge transfer to the student model. Then the stu-
dent model is trained with the physical measurements and its
parameters are optimized by minimizing the classification loss,
domain-consistent loss, and distillation loss simultaneously. To
make use of the knowledge learned by the teacher model, the
distillation loss is computed with the help of the soft labels.

III. EMPIRICAL STUDY

We have performed an empirical study to investigate the
effectiveness and efficiency of DA in identifying good network
configurations for WirelessHART networks.

A. Experimental Setup and Data Collection

We adopt the publicly accessible WirelessHART implemen-
tation [16] and run experiments on our testbed that consists of
50 TelosB devices placed throughout 22 office and lab areas
on the second floor of an office building [17]. We configure
the network to have two access points and 48 field devices
and set up six data flows with different sources, destinations,
data periods, and priorities. There exist 88 distinct network
configurations after removing the redundant combinations that
lead to the same routes and transmission schedule when
considering R ∈ {0.60, 0.61, ..., 0.90}, C ∈ {1, 2, ..., 8}, and
A ∈ {1, 2, 3}.

We measure the network performance (L, B, and E) under
each of 88 network configurations and save the measurements
as a data sample. We define 88 data samples (one data sample
under each network configuration) as one shot of data. We
collect 15 shots of data (1,320 data samples in total) in each
run of experiments. Each run of experiments lasts about four
days. We repeat the experiments on our testbed once in every
month from August 2021 to March 2022. The measurement
collected from our testbed is named as the physical data in this
paper. We also implement the same WirelessHART network
in the ns-3 simulator [18] and simulate network performance
under each of 88 network configurations. We collect 75 shots
of simulation data in total.

The physical data collected from each experimental run
is split into two disjoint datasets: five shots of data as the
training set and 10 shots of data as the testing set. In each
experiment, we use 15 shots of physical data and all 75 shots
of simulation data. Specifically, we run DA to generate the
network configuration model using a training set and 75 shots
of simulation data, and then evaluate the model with a testing



Fig. 1. Prediction accuracy in different months. Fig. 2. Accuracy degrades over time. Fig. 3. Accuracy changes over 28 days

set. If the network configuration predicted by the network
configuration model based on the application-specified QoS
requirements (L, B, and E) is equal to its corresponding
label, we define the prediction as a correct prediction. The
prediction accuracy is computed by dividing the number of
correct predictions by the number of the total testing samples.

B. Performance of DA

We first run DA to generate a network configuration model
using the training data collected in each month and measure
the prediction accuracy when we use that model to predict
network configurations on the testing data collected in that
month. Figure 1 plots the prediction accuracy of those eight
network configuration models. As Figure 1 shows, the predic-
tion accuracy ranges from 65.65% to 69.59%, which is close
to the performance reported by Shi et al. [14].

Observation 1: DA can successfully close the simulation-to-
reality gap in network configuration and the model generated
by DA can achieve high prediction accuracy.

We further examine whether the performance of DA changes
over time. Figure 2 plots the prediction accuracy of the
network configuration model generated by DA when it is used
for predictions in the following months. As Figure 2 shows, the
prediction accuracy provided by the model trained in August
decreases from 66.24% to 45.72% when it is tested with
the data collected in September and further drops to 40.97%
when it is used in October. The model only provides 39.86%
accuracy when it is used in March of the following year.
Similarly, the network configuration model generated by DA
in September provides 65.81% prediction accuracy in the same
month, 42.89% accuracy in October, and 32.58% accuracy in
November.

To investigate how fast the model decays, we reduce the
intervals between our experimental runs and measure the
changes on prediction accuracy every four days. As Figure 3
shows, the prediction accuracy begins to decrease after four
days and drops significantly from 66.97% to 49.55%. The
accuracy further decreases to 43.51% after eight days and
drops to 36.81% after 28 days.

Observation 2: The network configuration model produced by
DA does not generalize well on new data and decays quickly
over time.

Fig. 4. Prediction accuracy when the network configuration model is updated
with different time intervals.

Fig. 5. Overhead over four weeks when the network configuration model is
updated with different time intervals.

C. Effectiveness of Runtime Model Updates

Finally, we investigate the feasibility of maintaining high
prediction accuracy by periodically running DA to update
network configuration model. Figure 4 plots the boxplot of
the prediction accuracy when we run DA to generate a new
model with different time intervals. As Figure 4 shows, the
median accuracy is 66.05% when the model is updated every
four days. As a comparison, the median accuracy is 49.47%
or 43.53% when the model is updated every 12 or 28 days.
The results show that periodically running DA to update the
network configuration model can maintain high prediction
accuracy.

Please note that the physical network only provides perfor-
mance measurements under one or more selected configura-
tions. To train a new model, DA must configure the network
to operate under other configurations, resulting in undesirable
network performance. For example, the end-to-end reliability
of the network is 0.3 and the end-to-end latency is 1.44s,
when it uses the configuration (R = 0.87, C = 1, A = 2).
Figure 5 plots the time consumed for data collection over
four weeks when DA updates the model with different time
intervals. As Figure 5 shows, the time consumed by data



collection increases sharply when the model is updated more
frequently. To provide 66.05% model prediction accuracy, DA
generates seven models during four weeks and spends 85.56
hours to collect sufficient training data from the physical
network. The performance degradation during such a long time
is unacceptable for most industrial applications.
Observation 3: The amount of the training data required by
DA to generate new network configuration models is too large.

Our observations motivate us to develop a new method,
which can adapt the network configuration model with less
measurements from the physical network.

IV. DESIGN OF MERA

In this section, we first formulate the runtime adaptation for
industrial WSANs as a machine learning problem and then
present our design of MERA.

A. Problem Formulation

The primary goal of runtime adaptation is to help the
network meet the application-specified QoS requirements by
adapting its configuration at runtime. We assume that u shots
of simulation data are gathered from a simulated network
before the physical network starts to operate. The simulation
data DS is evenly divided into m datasets: DS1 ,DS2 , ...,DSm .
After the physical network starts to operate, the network
manager periodically measures the network performance under
all configurations and creates the dataset DPj

, where j denotes
the j-th time period since the network starts. DPj includes v
shots of physical data. Our goal is to predict the network con-
figuration, which can help the physical network meet the QoS
requirements in the j-th time period, based on the measured
physical datasets DP1

,DP2
, ...,DPj

and the simulated datasets
DS1

,DS2
, ...,DSm

. Therefore, the runtime adaptation for an
industrial WSAN can be formulated as a machine learning
problem with the goal of learning a nonlinear mapping model
fθ(·) : x→ y from DP1

,DP2
, ...,DPj

and DS1
,DS1

, ...,DSm
,

where θ denotes the parameters of f , x denotes an input vector
of the QoS requirements, and y denotes a vector of network
configuration parameters, which can help the network meet the
QoS requirements x. The network configuration parameters y
can be discretized without losing generality. Therefore, fθ can
be further restricted as a classifier, which predicts the label of
the network configuration y with the QoS requirements x. As
Figure 5 shows, the creation of the physical data DP is very
costly. Therefore, our goal is to learn a classifier that is robust
and can be adapted with the smallest possible DPj .

B. Overview of MERA

To achieve our goal, we turn our attention to meta-learning,
also known as learning to learn, which aims to learn a prior
over model parameters that is only a few gradient descent
steps away from optimum, enabling fast adaptation to new
data using few-shot measurements. The key idea of meta-
learning is to train a good model over a variety of learning
tasks, each of which is to solve a learning problem (e.g.,

Fig. 6. Overview of MERA.

classification and regression) on a specific dataset, containing
both input vectors and true labels. We apply the meta-learning
concept into the runtime adaptation for industrial WSANs.
Figure 6 shows our design of MERA that consists of four
processes: Offline-Training, Online-Training, Fine-Tuning,
and Hybrid Learning Policy (HLP). The tasks associated
with DS for Offline-Training, the tasks associated with DP

for Online-Training, and the tasks associated with DP for
Fine-Tuning, are named as simulation tasks, training tasks,
and testing tasks, respectively. Before the physical network
starts to operate, Offline-Training trains the classifier over m
simulation tasks T s

1 , T s
2 , ..., T s

m. After the physical network
starts to operate, Online-Training begins to receive the physical
datasets from the network manager, initializes the classifier
with the parameters θ0 provided by Offline-Training, and then
optimizes the classifier over n training tasks T1, T2, ..., Tn to
learn a set of good parameters θ1, which enables the fast
adaptation in Fine-Tuning. Fine-Tuning periodically tunes the
parameters θ1 provided by Online-Training based on the latest
dataset DPj and then predicts the network configuration. The
same neural network architecture is used for the classifier in
those three learning processes. The finely optimized parame-
ters for predictions are learned by such processes as:

θ∗ = Learn(Tj ;MetaLearn(T1, T2, ..., Tn);
PreLearn(T s

1 , T s
2 , ..., T s

m))
(1)

where PreLearn, MetaLearn, and Learn indicate the pa-
rameter optimizations performed by Offline-Training, Online-
Training, and Fine-Tuning, respectively.

Meta-learning has proven to be a powerful paradigm for
transferring the knowledge from previous tasks to facilitate the
learning of a new task, but it may not perform well with insuf-
ficient learning tasks [19]. The predicted configurations may
lead to poor network performance before the network manager
gathers sufficient physical datasets for Online-Training to train
a good network configuration model through meta-learning.
HLP is designed to address this issue by integrating DA in
MERA. We will present the four processes of MERA in detail
next.

C. Offline-Training

Offline-Training is designed to speed up Online-Training
by training the classifier with the simulation data before the
physical network starts to operate. The simulation data shares
the same input and label space with the physical data and
provides the preliminary knowledge on the features of the



physical data. Specifically, the classifier is optimized over a
variety of simulation tasks T s

1 , T s
2 , ..., T s

m that are associated
with the datasets DS1 ,DS2 , ...,DSm and the optimized param-
eters are computed through:

PreLearn(T s
1 , T s

2 , ..., T s
m) = argmin

θ

m∑
i=1

LT s
i
(fθ) (2)

where m is the number of the simulation tasks and LT s
i

is the
loss function for the simulation task T s

i .

Algorithm 1: Offline-Training
Input : s, Dsp

S1
,Dsp

S2
, ...,Dsp

Sm
, Dqe

S1
,Dqe

S2
, ...,Dqe

Sm

Output: θ0
1 Initialize the classifier randomly;
2 for i = 1; i ≤ m; i++ do
3 for p = 1; p ≤ s; p++ do
4 Compute LT s

i
(fθp−1

) by using Dsp
Si

and Eq. 3;
5 Compute updated parameters with gradient

descent: θp = θp−1 − α∇θLT s
i
(fθp−1

);
6 end
7 end
8 Update θ ← θ − β∇θ

∑m
i=1 LT s

i
(fθs) by using Dqe

Si

and Eq. 3 (Dsp
Si

replaced with Dqe
Si

);
9 Output θ as θ0;

As meta-learning aims at learning to learn, the classifier is
designed to be capable of tackling the unseen tasks through
meta-training. To achieve this goal, the simulation data in DSi

is split into two disjoint parts: support set Dsp
Si

and query set
Dqe

Si
. The support set includes l shots of simulation data, while

the query set contains k shots of simulation data. The size of
Dsp

Si
is usually smaller than the size of Dqe

Si
(l < k), because

the classifier is first evaluated on the support set to achieve
a set of updated parameters and then the updated classifier is
tested with the query set and optimized. Specifically, the loss
on the support set of each task T s

i takes the following form:
LT s

i
(fθ) = − E

(x,y)∈Dsp
Si

ylogfθ(x). (3)

Finn et al. [20] showed that there are some internal repre-
sentations that are more transferable than others and can be
discovered by making good use of the training data. Based
on this essential idea, the updated parameters θ′ is computed
by using one or more gradient descent updates on task T s

i to
quickly adapt to the data samples. For example, when using
s gradient descent updates, θ′ is denoted as θs and computed
by using the following functions:

θ0 = θinit

θ1 = θ0 − α∇θL(0)
T s
i
(θ0)

· · ·
θs = θs−1 − α∇θL(0)

T s
i
(θs−1)

(4)

where α is used to control the updating rate and the superscript
in L(0)

T s
i

indicates the dataset Dsp
Si

. After computing θ′ on each
simulation task via s updating steps using Dsp

Si
, the loss on

the query set is computed by using a function, which adopts
the form of Eq. 3 but uses Dqe

Si
and the updated parameters

θ′. Then, the optimization across different simulation tasks is
performed via gradient descent using Dqe

Si
:

θ ← θ − β∇θ

m∑
i=1

L(1)
T s
i
(fθs) (5)

where β is the meta-learning rate and the superscript in L(1)
T s
i

indicates the dataset Dqe
Si

. Compared to the standard gradient
updating in Eq. 4, the gradient term used in Eq. 5 resorts
to a gradient through a gradient that can be named as meta-
gradient.

Algorithm 1 shows the detailed procedure of Offline-
Training. It first initializes the classifier randomly (line 1) and
then performs optimization to update θ (line 2–8). Finally, the
parameters θ0 are provided to Online-Training (line 9).

D. Online-Training

After the network starts to operate, Online-Training ini-
tializes the classifier with the parameters θ0, optimizes the
classifier over a variety of training tasks T1, T2, ..., Tn that are
associated with the physical datasets DP1

,DP2
, ...,DPn

, and
produces a set of good parameters θ1 for Fine-Tuning. Specif-
ically, the optimized parameters are learned by executing:

MetaLearn(T1, T2, ..., Tn) = argmin
θ

n∑
i=1

LTi(fθ) (6)

where n is the number of the training tasks and LTi
is

the loss computed for the training task Ti. Being consistent
with Offline-Training, Online-Training reuses Eq. 3-5 for
optimization but replaces the simulation tasks T s

1 , T s
2 , ..., T s

m

that are associated with DS1 ,DS2 , ...,DSm with the training
tasks T1, T2, ..., Tn associated with DP1 ,DP2 , ...,DPn . The
physical measurements in DPi

are also split into two disjoint
parts: support set Dsp

Pi
(l shots) and query set Dqe

Pi
(k shots),

to perform meta-training.

Algorithm 2: Online-Training

Input : θ0, t, Dsp
P1
,Dsp

P2
, ...,Dsp

Pn
, Dqe

P1
,Dqe

P2
, ...,Dqe

Pn

Output: θ1
1 Initialize the classifier with the parameters θ ← θ0;
2 for i = 1; i ≤ n; i++ do
3 for p = 1; p ≤ t; p++ do
4 Compute LTi

(fθp−1
) by using Dsp

Pi
and Eq. 3

(Dsp
Si

replaced with Dsp
Pi

);
5 Compute updated parameters with gradient

descent: θp = θp−1 − α∇θLTi
(fθp−1

);
6 end
7 end
8 Update θ ← θ− β∇θ

∑n
i=1 LTi

(fθt) by using Dqe
Pi

and
Eq. 3 (Dsp

Si
replaced with Dqe

Pi
);

9 Output θ as θ1;

Algorithm 2 shows the detailed procedure of Online-
Training. Instead of using random values, it first initializes the



parameters of the classifier with θ0 generated by Algorithm 1
(line 1), which speeds up the learning process. It then performs
optimization to update θ. Within the nested loop (line 2–
7), it iteratively optimizes the parameters learned from the
support set through t gradient descent updates. Then, it further
optimizes the parameters through meta-gradient by using the
query set based on θt and updates the classifier with the
optimized parameters (line 8). This step (line 2–8) can be
executed more than once to make good use of the physi-
cal measurements. After multiple iterations of optimization,
Online-Training provides the updated parameters θ1 to Fine-
Tuning for its the network configuration predictions.

E. Fine-Tuning

Fine-Tuning is designed to quickly adapt the network con-
figuration model with a few newly collected physical data
samples based on a set of good parameters θ1 and perform
well on the genuine testing data. Fine-Tuning only processes
one task Tj at each time. The dataset DPj

is divided into two
parts: support set and query set. The support set Dsp

Pj
contains

the training data used for fine optimization and the query set
Dqe

Pj
contains the genuine QoS requirements x used to evaluate

the performance of the fast adapted classifier. Therefore, the
corresponding labels y are unknown to the classifier.

Algorithm 3: Fine-Tuning

Input : θ1, r, Dsp
Pj

, Dqe
Pj

Output: fθ(x)
1 Initialize the classifier with the parameters θ ← θ1;
2 for p = 1; p ≤ r; p++ do
3 Compute LTj

(fθp−1
) by using Dsp

Pj
and Eq. 3 (Dsp

Si

replaced with Dsp
Pj

);
4 Compute updated parameters with gradient

descent: θp = θp−1 − α∇θLTj
(fθp−1

);
5 end
6 Predict the network configuration for the input x from
Dqe

Pj
using updated parameters θr;

Algorithm 3 presents how the classifier is finely tuned with
the support set to adapt to each testing task. The classifier is
initialized with the parameters θ1 (line 1). Within the loop,
the classifier finishes fast adaptation to a new task with a few
new physical data samples through r gradient descent updates
(line 2-5). As the query set is used for the actual evaluations,
there is no gradient update performed on Dqe

Pj
. Finally, the

classifier predicts the corresponding network configuration for
each input x (line 6) and outputs such predictions.

F. HLP

Although meta-learning is known for its high performance
on adapting to a new task with few-shot examples, it does not
perform well with insufficient training tasks [19]. Therefore,
Fine-Tuning may not provide high prediction accuracy when
Online-Training fails to identify good parameters because the
network manager has not gathered sufficient training datasets

since the network starts. HLP is designed to address such
an issue by monitoring the network configuration prediction
generated by Fine-Tuning and replacing it with the one pro-
vided by DA when the latter provides a better prediction. Our
implementation of DA adopts the method trained with DPj

and all simulation datasets.
To minimize the computation overhead introduced by DA

(see Section V-B), HLP stops running it after the classifier
optimized by Fine-Tuning is capable of helping the network
achieve desirable performance at runtime. Specifically, HLP
decides whether to run DA based on the increase of the
prediction accuracy provided by the classifier generated by
Fine-Tuning. The increase of the prediction accuracy becomes
very small when the classifier produced by Fine-Tuning is
good enough. We define the prediction accuracy increase ∆dj
as:

∆dj = pj − pj−1 (7)

where pj and pj−1 denote the prediction accuracy achieved by
Fine-Tuning on Dqe

Pj
and Dqe

Pj−1
, respectively. The prediction

accuracy increase averaged among a sliding window (w testing
tasks) is computed as:

Vj =
1

w

j∑
j−w

∆di. (8)

When the averaged increase Vj exceeds the threshold Rj , HLP
runs DA and outputs its prediction. To accommodate network
heterogeneity and dynamics, we define Rj as:

Rj = Rj−1 + η(|Vj | −Rj−1) (9)
where η is a coefficient to determine the change rate of
Rj . Rj decreases when the averaged increase of prediction
accuracy Vj experiences a gradually decreasing trend. When
Vj is smaller than Rj , HLP stops running DA. At the same
time, MERA notifies the network manager to suspend the
periodical performance measurements (k shots) for Online-
Training until Vj exceeds the threshold. Only l shots of
physical measurements need to be gathered in each time
period for Fine-Tuning to adapt the classifier. This significantly
reduces the data collection overhead because l≪ l + k.

V. EVALUATION

We have performed a series of experiments to evaluate
MERA. We first perform a six-month experiment that exam-
ines the effectiveness and efficiency of MERA in predicting
good network configurations at runtime and compares its
performance against the one provided by our baseline DA [14]
(see Section V-A). We then study the effects of HLP (see
Section V-B), the support set size (see Section V-C), and
different learning processes (see Section V-D) on MERA’s per-
formance. Finally, we evaluate the robustness of the network
configuration model generated by MERA (see Section V-E).

We implement MERA and DA under the PyTorch frame-
work [21]. Our implementation employs a deep neural network
(DNN) that consists of three fully connected layers for the
classifier of MERA. The DNN uses the vector (L,B,E) as the
QoS requirements x and employs 120 neurons and 84 neurons



(a) Prediction accuracy.

(b) Computation overhead.

Fig. 7. Performance of MERA and DA over six months.

in the two hidden layers. The number of neurons in its output
layer is set to 88, which is equal to the number of distinct
network configurations. In addition, the rectified linear unit
(ReLU) function and the softmax function are employed to ac-
tivate the two hidden layers and the output layer, respectively.
We use the datasets collected from our testbed (introduced
in Section III-A) to create various support and query sets.
Each support set includes three shots of data and each query
set contains 10 shots of data. Our implementation employs
Adam [22] as the optimizer for gradient descent optimization.
We empirically set both α and β to 0.01 and the learning rate
used in Adam to 0.1 in our experiments. We run MERA and
DA on a computer equipped with a 2.6GHz 64-bit hexa-core
CPU and an AMD Radeon Pro 5300M GPU.

A. Performance over Six Months

We first examine the effectiveness and efficiency of MERA
in predicting good network configurations at runtime over six
months and compare its performance against the one provided
by DA. The model generated by MERA adapts to a few
new measurements (three shots of data) before evaluating
with the testing data (10 shots of data) in each month, while
DA trains its model with five shots of physical data and
the simulation data using its default setting. Figure 7 plots
the prediction accuracy and computation overhead when the
network runs MERA and DA over six months. As Figure 7(a)
shows, the prediction accuracy provided by MERA is around
70%, which is consistently higher than the one provided by
DA. For example, the model trained by MERA offers 70.47%
prediction accuracy in October, while the model trained by DA
provides 69.42% accuracy. Similarly, MERA achieves 69.65%
prediction accuracy in January, while the accuracy provided by
DA is 69.15%.

Figure 7(b) plots the computation overhead introduced by
MERA and DA. As Figure 7(b) shows, the computation time
of MERA is about two orders of magnitude less than the

(a) Prediction accuracy.

(b) Computation overhead.

Fig. 8. Effect of HLP.

execution time of DA. For instance, it takes only 6.31s and
6.26s to run MERA in October and January, respectively.
As a comparison, it takes 429.17s and 432.61s to run DA
in the same months. This is because the training process of
DA requires the cross-entropy loss that is optimized many
times on a large amount of simulation data together with the
physical data, while MERA finely tunes the parameters of the
model using only a few iterations with a small number of
measurements. The results demonstrate that the model trained
by MERA adapts to new observations more efficiently, intro-
ducing much less computation overhead. More importantly, it
takes 7.33 hours to collect three shots of physical data from
the testbed for MERA to achieve such performance, while it
consumes 12.22 hours to collect sufficient data for DA to train
a model. The results clearly show that MERA provides higher
prediction accuracy with significantly less overhead.

B. Effect of HLP

To validate the effectiveness of HLP, we compare the
performance of MERA when it enables or disables HLP. As
Figure 8(a) shows, the accuracy achieved by MERA without
HLP is much lower than the one provided by MERA with HLP
during the first few days since the network starts to operate.
For example, the accuracy provided by MERA without HLP is
27.50% during the first four days and MERA achieves 65.96%
accuracy with the help of HLP. This is because the amount of
physical data gathered by the network manager at that time is
insufficient for MERA to train a good model. The difference
becomes smaller when more physical data is available.

We also measure the training time of MERA when it
enables or disables HLP. As Figure 8(b) shows, MERA spends
more time during the first 20 days when HLP runs DA. For
example, it takes 419.09s to run MERA with HLP enabled
after 16 days. As a comparison, the time consumption is
only 4.08s when MERA disables HLP. After HLP observes



(a) Prediction accuracy. (b) Computation overhead.

Fig. 9. Effect of support set size. Fig. 10. Effects of different processes in MERA.

that the increase of the prediction accuracy (Vj in Eq. 8) is
2.18%, less than the threshold 2.39% (Rj in Eq. 9), it stops
running DA. The computation time then drops significantly.
The results emphasize the importance of stopping running DA
when possible.

C. Effect of Support Set Size

The data collection overhead increases with the amount
of measurements in the support set used for training. To
understand the effect of the support set size on MERA’s
performance, we vary the amount of measurements in the
support set from one shot to five shots and measure the
prediction accuracy. Figure 9(a) plots the prediction accuracy
provided by MERA and DA when they use different numbers
of shots of physical data for training. As Figure 9(a) shows,
the prediction accuracy provided by MERA increases from
62.12% to 69.19% when the amount of network measurements
increases from one shot to three shots. As a comparison, the
model trained by DA achieves 35.56% accuracy when it uses
one shot of data and provides 52.49% accuracy when using
three shots of data. This is because meta-learning enhances the
generalization of the model and helps it achieve fast adaptation
with fewer measurements collected from the physical network.

We also measure the time consumed to run MERA and
DA when they use different amounts of physical measure-
ments. As Figure 9(b) shows, the computation time of MERA
increases when the amount of measurements increases and
the time consumed by MERA is always much less than the
one used by DA. For instance, MERA spends 4.99s, 5.84s,
and 7.33s when it uses one shot, three shots, and five shots
for training, respectively. As a comparison, it takes 72.02s,
157.08s, and 447.71s to run DA when it uses one shot,
three shots, and five shots for training, respectively. This is
because the model trained by MERA that learns through meta-
learning can quickly adapt to new measurements with a few
iterations, rather than running hundreds of iterations to fit
exactly to new observations. The results show that MERA
provides high prediction accuracy in a more efficient way,
introducing significantly less communication and computation
overhead than DA.

D. Effects of Different Learning Processes

To investigate the contributions of MERA’s different learn-
ing processes to its performance, we run MERA to train

Fig. 11. Prediction accuracy changes over time with Fine-Tuning enabled.

a model and measure the prediction accuracy when it dis-
ables one or two of its learning processes. As Figure 10
shows, the prediction accuracy decreases to 62.92% without
Offline-Training. This clearly shows that valuable network
configuration knowledge can be learned from the simulation
data even when the simulation-to-reality gap exists. However,
only relying on the model generated by Offline-Training for
predictions provides 10.16% accuracy, which highlights the
importance of closing the simulation-to-reality gap. Online-
Training plays the most important role in providing high
prediction accuracy. Without Online-Training, the accuracy
drops significantly from 71.47% to 27.18%. As a comparison,
the model trained by MERA achieves 42.60% accuracy when
Online-Training is the only process enabled. When Fine-
Tuning is disabled, the accuracy drops to 37.43%. When Fine-
Tuning is the only process enabled, MERA provides 3.31%
prediction accuracy. The results show that Fine-Tuning also
plays an important role in improving the accuracy and relies
heavily on other learning processes.

E. Model Robustness

To examine the robustness of the network configuration
model trained by MERA, we measure the prediction accuracy
after four, eight, 16, 32, 64, and 128 days. As Figure 11 shows,
the accuracy values achieved by the network configuration
model are 71.03%, 70.21%, and 70.87% after four, eight,
and 16 days, respectively. The prediction accuracy degrades
slowly over time. The reason behind this is that the model
is always finely optimized by Fine-Tuning with a few new
measurements.

We repeat the experiments when MERA disables Fine-
Tuning. Figure 12 plots the performance achieved by MERA
and DA. As Figure 12 shows, the performance degrades under
both MERA and DA when the interval increases. However, the
performance of the model trained by MERA degrades much



Fig. 12. Prediction accuracy changes over time.

slower. For example, the accuracy values provided by MERA
are 68.39%, 65.05%, and 50.08% after four, 16, and 128 days,
respectively. As a comparison, the model generated by DA
achieves 49.18%, 37.38%, and 27.66% after four, 16, and 128
days. The results demonstrate the robustness of the model
generated by MERA. The results also show that this network
configuration model does not require frequent adaptations to
maintain high accuracy at runtime, which is an important
feature of MERA.

VI. RELATED WORK

Early efforts have been made to model the characteristics of
low-power wireless networks and optimize their configurations
by selecting a few physical layer or MAC layer parameters.
For example, Zimmerling et al. [5] developed a framework that
automatically optimizes the parameter selections in response
to runtime dynamics. Dong et al. proposed to adjust the
packet length dynamically to improve energy efficiency [23],
[24]. Recently there has been growing interest in leveraging
machine learning to configure wireless networks as they be-
come increasingly hierarchical, heterogeneous, and complex.
For instance, deep learning based methods are employed to
handle a large number of tunable parameters and seek optimal
configurations [10], [11] and RL algorithms are adopted to
enable network self-configurations [12], [13]. The key behind
the success of such methods is the capability of optimizing
free parameters to capture extensive uncertainties, variations,
and dynamics in real-world environments. However, data col-
lection from industrial facilities that are not easily accessible is
very costly. Therefore, it is usually difficult to obtain sufficient
physical data to train a good network configuration model by
using those data-driven methods. In such scenarios, the ben-
efits of employing those methods that require much physical
data are outweighed by the costs. In recent years, online RL
solutions [25], [26] have been developed to configure networks
at runtime, which introduces less data collection overhead
compared to offline RL methods. However, such solutions
still follow the trial-and-error principle resulting in undesirable
network performance during the learning process.

Recently, there have been increasing interests in using wire-
less simulations to select the good configurations for industrial
WSANs, because simulations can be set up in less time
and introduce less overhead. Moreover, various configurations
can be tested under the same conditions. However, a recent
study showed that a straightforward deployment of the model
learned from simulations may result in poor performance in the

physical network because of the simulation-to-reality gap [14].
Shi et al. developed a deep learning based domain adaptation
method DA to close the gap. Unfortunately, our study shows
that the learning model generated by DA works well at the be-
ginning but decays quickly over time and periodically running
DA to update the model introduces significant overhead.

Meta-learning [27], [28], aims to solve new learning prob-
lems using only a few training samples by leveraging the
knowledge learned from a set of related problems. Therefore,
it is appealing to few-shot classification problem [29], [30],
which evaluates the capability of the system to adapt to
new classification tasks with a few examples. Recently, meta-
learning algorithms have been widely applied in many areas
including computer vision [31], [32], natural language pro-
cessing [33], [34], and unmanned aerial vehicle (UAV) [35],
[36]. In addition, meta-learning algorithms have been explored
on other machine learning topics such as reinforcement learn-
ing [20], [37]–[39] and federated learning [40], [41]. There are
mainly three common approaches to meta-learning: (1) Metric-
based methods aim to learn a metric or distance function
over objects [29], [42]–[44]; (2) Model-based methods update
the parameters with a few steps, which can be achieved by
the internal architecture or controlled by another meta-learner
model [45], [46]; (3) Optimization-based methods learn an
optimized initialization across a set of tasks, allowing fast
adaptation to new tasks through one or more updates of
gradient descent [20], [30], [47]. Meanwhile, there are a few
hybrid studies over these three categories [48], [49]. Among
optimization-based methods, MAML [20] has enjoyed the at-
tention for its simplicity and generation performance and been
applied in many areas such as clinical risk prediction [50],
computer vision [51], frequency division duplexing commu-
nication [52]. As MAML is model-agnostic, it is compatible
with any model trained with a gradient descent procedure and
applicable to a variety of machine learning problems including
classification and regression. In this paper, we leverage MAML
to develop MERA for industrial WSAN configuration. To our
knowledge, this is the first study that explores the use of meta-
learning for runtime adaptations in industrial WSANs.

VII. CONCLUSIONS

In this paper, we formulate the runtime adaptation for
industrial WSANs as a machine learning problem and present
MERA to solve the problem. Under MERA, the parameters
of the network configuration model are explicitly trained such
that a small number of optimization steps with a few new
measurements will produce good generalization performance
after the network condition changes. We implement MERA
and evaluate it on a testbed that consists of 50 devices. Exper-
imental results show that MERA achieves higher accuracy with
less physical measurements, less computation time, and longer
adaptation intervals compared to a state-of-the-art baseline.
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