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Multilayer diffractive optical neural networks (DONNs)
can perform machine learning (ML) tasks at the speed of
light with low energy consumption. Decreasing the num-
ber of diffractive layers can reduce inevitable material
and diffraction losses to improve system performance, and
incorporating compact devices can reduce the system foot-
print. However, current analytical DONN models cannot
accurately describe such physical systems. Here we show
the ever-ignored effects of interlayer reflection and inter-
pixel interaction on the deployment performance of DONNs
through full-wave electromagnetic simulations and tera-
hertz (THz) experiments. We demonstrate that the drop of
handwritten digit classification accuracy due to reflection is
negligible with conventional low-index THz polymer mate-
rials, while it can be substantial with high-index materials.
We further show that one- and few-layer DONN systems can
achieve high classification accuracy, but there is a trade-off
between accuracy and model-system matching rate because
of the fast-varying spatial distribution of optical responses
in diffractive masks. Deep DONNSs can break down such a
trade-off because of reduced mask spatial complexity. Our
results suggest that new accurate and trainable DONN mod-
els are needed to advance the development and deployment
of compact DONN systems for sophisticated ML tasks. ©
2023 Optica Publishing Group

https://doi.org/10.1364/0OL.477605

Machine learning (ML) algorithms have been widely employed
in diverse applications, such as computer vision and scien-
tific computing [1,2]. A recent discovery by Lin et al. offers
new opportunities of manipulating the wavefront of terahertz
(THz) beams in diffractive optical components to perform ML
tasks in a high-throughput and energy-efficient manner [3]. The
cascaded multiple diffractive masks, which are coined as diffrac-
tive optical neural networks (DONNSs), can accurately classify
handwritten digits in the MNIST dataset. Since then, exten-
sive numerical and experimental studies of DONNs [4] have
extended their ML capability, such as the classification of more
complex datasets [5] and multi-task classification [6,7], and have

0146-9592/23/020219-04 Journal © 2023 Optica Publishing Group

enabled new hardware implementation with compact metasur-
faces in readily accessible visible and near-infrared wavelengths
[8—12] and reconfigurable diffractive masks using spatial light
modulators [13-15].

The first demonstrated diffractive masks were prototyped
through 3D printing in a low-index polymer [3] in the THz range.
Furthermore, in the visible ranges, advanced nanophotonic and
deep subwavelength structures with high-index materials have
been employed for compact integration [7,16]. However, the
assumption of treating each diffraction pixel as an infinitely
large slab for calculating the optical response in current analyt-
ical DONN models breaks down when the pixel size becomes
comparable to the wavelength and efficient diffraction creates
a fast-varying incident field in the subwavelength scale [17].
The resulting discrepancy between models and experiments
has been reported in the design of subwavelength structures
[18,19]. Furthermore, in previous experimental demonstrations
of free-space DONNs for 10-label MNIST classification, there
are an observable accuracy drop and field distribution mismatch
between experimental results and model calculations, which are
not explained or generally attributed to experimental imperfec-
tion [3,9,20]. The interpixel interaction in diffractive masks
have been proposed as one contributing factor to the model-
experiment mismatch in an on-chip 2-label DONN classifier
[10], while there is no consensus in the other free-space 2-label
DONN classifier [7]. Moreover, the effects of multiple reflection
between diffractive masks have not been considered in DONN
models before.

Here, we demonstrate an analysis of the effects of inter-
layer reflection and interpixel interaction in THz DONNs on
the observed discrepancy between experiments and model cal-
culations. We show that the reflection effect is negligible with
low-index materials and is substantial with high-index materi-
als, which are beneficial for DONNs. For example, silicon with
THz index ~ 3.4 can reduce the diffractive mask thickness and
enable small-volume resonant meta-atoms for compact DONNs.
In addition, emerging chalcogenide phase-change materials
with THz indices >10 [21] can enable reconfigurable DONNSs.
Moreover, we employ full-wave finite-domain time-difference
(FDTD) numerical simulations to obtain the classification accu-
racy, which agrees better with experiments than the analytical
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Fig. 1. Overview of a two-layer THz DONN system, model, and
components. (a) Diagram of the two-layer THz DONN system. (b)
A number mask (digit 7), two phase masks, and a THz camera used
in experimental setup. (c) A close look at one printed mask. The
height map of (d) the first and (e) the second layer of trained masks.

model. We discover that the fast spatial variation of complex-
valued transmission coefficients in diffractive masks of the
two-layer DONN system is needed to obtain high classifica-
tion accuracy, which leads to the substantial mismatch between
FDTD simulations and analytical models. Increasing the DONN
depth reduces the mask spatial variation for high classification
accuracy and is advantageous in precisely deploying trained
analytical DONN models to experimental systems. Our results
suggest that the development of accurate trainable DONN simu-
lators will be crucial for the design and deployment of compact
DONN systems to tackle complex ML tasks.

Figure 1(a) shows the diagram of a two-layer THz DONN
setup. A 0.3-THz (1-mm wavelength) beam generated from a
Virginia Diodes TX267 transmitter with a power ~ 25 mW is
incident onto a number mask, which is followed by two diffrac-
tive masks. Diffractive masks are fabricated using an ELEGOO
Saturn Resin 3D printer and their edges are covered by an alu-
minum film. The mask size is 3.6 cm X 3.6 cm with a step
resolution of 0.5 mm, which means 72 x 72 pixels. The refrac-
tive index of the 3D printing resin polymer is estimated to be
1.7 4+ 0.03;. The number mask is fabricated by first 3D printing
the digit template and then transferring the digit patten onto
an aluminum film. Specifically, the dark region of the digit is
covered by the aluminum film and the bright region is open by
cutting the aluminum film with a razor blade. For the digit with
disconnected areas, such as 0, the bright area in the 3D-printed
template is a thin film. A Tera-1024 THz camera from Terasense
Group is used to capture the output images of the DONN sys-
tem. Ten pre-defined regions in the THz camera represent ten
digits in the MNIST dataset. The distance between the number
mask, diffractive masks, and the camera is the same as 3 cm,
which is selected for good DONN performance and manageable
simulation memory. Figure 1(b) displays the experimental setup,
where two diffractive masks are printed as a whole to minimize
misalignment. Figure 1(c) shows a close-look of a 3D-printed
diffractive mask. Figures 1(d) and 1(e) show the spatial height
mapping of two trained diffractive masks to perform 10-label
MNIST classification.

In the analytical DONN model for training, each diffractive
pixel in diffractive masks is treated as a cuboid with a square
base. The lateral length of the square base is fixed and defined
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Fig. 2. Experimental and simulation results of the two-layer
DONN:S system. (a) Power ratio in each detector region obtained
from experiments, FDTD simulation, and the analytical models with
and without reflection effect, as well as (b) experimentally meas-
ured, (c) FDTD calculated, (d) analytical model (without reflection)
calculated camera output images for an input digit 3.

as the pixel size, and the cuboid height is a trainable parameter.
The transmission electric field is a product of the incident field
and the field transmission coefficient at each pixel location. The
input and output planes for calculating transmission coefficients
are defined as two wavefront planes with a 27 phase difference.
For the approximation, the field transmission coefficient at a
specific pixel location is calculated as the transmission coeffi-
cient of an infinitely extended slab with thickness equal to the
cuboid height at that location. Thus, based on the transfer matrix
method (see Supplement 1, Note 1), the electric field transmis-
sion coefficient #;,, on ith pixel in the nth diffractive mask is a
function of the height 4;, and refractive index n,, of that pixel,
which is calculated as

fo= 4nm exp(]’(nm - 1)k0hi,n)
(1 4 np)? = (1= )% exp(72nnkohin)”

The Rayleigh—Sommerfeld scalar free-space diffraction func-
tion and fast Fourier transform are used to calculate the electric
field propagation between diffractive masks [3,6,14]. To meet
the Nyquist sampling criterion of the Rayleigh—Sommerfeld
diffraction [22] and balance memory resource requirement, each
physical diffractive pixel is divided into a group of 4 X 4 sub-
pixels that have the same optical response but different incident
field. Thus, the calculation pixel size is 0.125 mm.

Since it is challenging to fabricate grays-level number masks
in experiment, input images from the MNIST dataset are bina-
rized with a threshold at 0.5 and scaled up to match the size of
diffractive masks. To account for the input Gaussian THz beam,
the input field to the DONN system is a product of a binarized
number mask and a normalized 2D Gaussian distribution. On
the camera plane, the softmax activation function is employed
to calculate the loss function based on the camera reading.

Figure 2 shows a substantial discrepancy between the light
power in pre-defined detector regions obtained from analytical
model calculations and that in the experiment. For an exam-
ple input digit 3 in Fig. 2(a), the power ratio at target region 3
drops significantly from 26.2% in the analytical model without
incorporating the reflection effect to a value of 10.8% in the
experiment. The power ratio at non-target region 2 increases
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Fig. 3. Interlayer reflection effect. (a) Schematic of incorporating
interlayer reflection effect. (b) Accuracy drop as a function of aver-
age round trip power ratio agr, e for multiple trained diffractive
masks with different refractive indices.

from 25.8% to 28.7%. As the result, the experimental classifica-
tion becomes wrong as digit 2; see Fig. 2(b). The experimental
results agree well with FDTD simulations (see Supplement 1,
Note 2) in Fig. 2(c), and both show brighter spots in region 2 than
region 3. In contrast, these results deviate from the analytical
model without considering the reflection effect, which displays
a brighter spot at the region 3, as shown in Fig. 2(d). Further-
more, for a correctly classified digit, the power ratio at the target
region in the experiment and FDTD simulations is substantially
smaller than that in the analytical mode (see Supplement 1,
Note 3).

We first evaluate the effect of interlayer reflection on the
observed discrepancy between the analytical model and exper-
iments. Figure 3(a) illustrates the reflection between layers and
the diffraction of the reflected field. Here, D represents the
diffraction operation on the field, and R7 represents the round
trip operation that consists of the reflection on both diffractive
masks and two diffraction operations. The field reflection coef-
ficients can also be calculated using the transfer matrix method.
The field associated with multiple reflection—diffraction round
trips can be iteratively included in calculating the steady-state
incident field onto the second diffractive mask (see Supplement
1, Note 4). The DONN system is first trained and validated using
the analytical model without reflection effect. The classification
accuracy of the obtained trained system is then evaluated on ran-
domly shuffled 10,000 images from the MNIST dataset using the
analytical model incorporating interlayer reflection. The drop of
classification accuracy is used to evaluate the reflection effect.
A few materials with the real parts of refractive indices 1.7, 2.5,
3.4, and 5 are selected for analysis. The imaginary part is fixed as
0.03. Since the power of the reflected and following diffracted
light is not only dependent on the material index but also on
diffractive masks, we train multiple diffractive masks for a given
material index. For a given input image, we define a round trip
power ratio arr based on described fields in Fig. 3(a) as

JJIRT(Es,y (x, y)* dx dy
[ Eoi ey dxdy

Qgrr =

Since agr is also dependent on the incident field distribu-
tion, we then take the average of agr over 10,000 input images,
which is denoted as agr, ... Each digit has 1000 input images.
Figure 3(b) displays the accuracy drop as a function of agr, ae
for different trained diffractive masks with different material
indices. A clear correlation between increasing agr ., and
increasing accuracy drop is observed. In the THz DONN sys-
tem, the 3D printing polymer has a refractive index 1.7 and the
overall accuracy drop is negligible [<0.1%, dashed rectangle
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Fig. 4. Interpixel interaction effect. Confusion matrices of classi-
fying 200 MNIST images calculated using (a) the analytical model
and (b) FDTD simulation. (c) Matching rate between the analytical
model and FDTD simulation for images of each digit. (d) Classi-
fication accuracy obtained from analytical and FDTD approaches
and their matching rate as a function of the complexity of diffractive
masks.

in Fig. 3(b)]. Furthermore, there is no noticeable difference in
the light power distribution on output images calculated from
the analytical models with and without the reflection effect; see
Fig. 2(a). In contrast, the diffractive masks fabricated on the
material of refractive index 5 can lead to ~ 30% accuracy drop
because of a large arr ~ 18%. These results suggest that for
high-index materials, the reflection effect needs to be incorpo-
rated in the trainable DONN system model for accurate hardware
deployment.

Instead of the interlayer reflection effect, the interpixel inter-
action effect can lead to the observed discrepancy between
experiments and analytical model. We evaluate such an effect by
comparing the classification accuracy obtained from the analyti-
cal model with that from FDTD, which can capture all near-field
and far-field interactions and precisely describe experiments
[18]. We randomly choose 200 input images with 20 images
for each digit to simulate the output images of a trained DONN
system using cascaded FDTD calculations. For example, a given
set of trained diffractive masks using the analytical model has a
classification accuracy of 81.0% for the 200 input images; see
the confusion matrix in Fig. 4(a). The FDTD calculation of the
same set of diffractive masks and input images yields a classifi-
cation accuracy of 77.5%; see the confusion matrix in Fig. 4(b).
In addition to the accuracy drop, the classification results of
each digit label from two calculation approaches show various
degrees of discrepancy. For example, both correct and wrong
classification of digits 1 and 6 demonstrate a perfect match while
the matching rate for digit 9 is low. Despite the lack of accuracy
drop for digits 2 and 5, some wrong and correct classifications
of input images become flipped in FDTD simulations and thus
the match rate is also low. In contrast, digit 8 even shows an
increased accuracy. Figure 4(c) displays the matching rate for
all digits.

We further train multiple diffractive masks with different clas-
sification accuracies. The best accuracy we can obtain with two
72 x 72 diffractive masks is 93.5%, which is already better than
the first demonstration with five 200 x 200 diffractive masks
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and 91.8% accuracy [3]. We discover that trained diffractive
masks have to be quite complex for high-accuracy classifica-
tion; see the solid blue line in Fig. 4(d) and Supplement 1, Note
5. Quantitatively, we define the average pixel complexity C for a
DONN system with L layers of N X M masks with pixel length
of p as

LN oMo
C= Z Z Z ITan,m,l’ where Cynt = |t = to-tanil’

+ [n.m.l - [n+1,m,l|2 + |tn,m,l - tn,m—l,llz + |tn,m,l - tn,m+l,l|21

Vo tomi = tvetms = taoy = tapery = 0.

Here, t, A are the field transmission coefficient and the vacuum
wavelength, respectively. The maximum value of C is 32 for
A =1 mm and p = 0.5 mm. However, the diffractive masks with
large C lead to a substantial accuracy drop when the trained
model is calculated using FDTD simulations, because the optical
response of a pixel is considerably affected by neighboring pixels
and deviates from infinitely extended slab assumption in the
analytical model. Thus, Fig. 4(d) shows a trade-off between the
classification accuracy and the matching rate.

Finally, we compare the influence of interlayer pixels on the
performance of DONN systems with different depth and fixed
component distance of 3 cm. Specifically, we train one-layer,
three-layer, and five-layer DONNs all with classification accu-
racy ~95% (see Supplement 1, Note 6). Strikingly, as shown
in Fig. 5(a), a single diffractive mask can achieve ~95% accu-
racy, although at the expense of large complexity C and low
matching rate of 79%. However, the increasing depth of DONNs
helps to reduce the complexity of diffractive masks, so that the
obtained accuracy from FDTD calculations is closer to that from
the analytical model with a larger matching rate; see Fig. 5(b).
Specifically, for the five-layer DONNS, the classification accu-
racy from the analytical model is 96.5% and that from FDTD
calculation is 94.0% thanks to the low diffractive mask complex-
ity of 2.26; see confusion matrices in Figs. 5(c) and 5(d). The
overall matching rate is as high as 96%. The required complexity
to achieve the diffraction capability to direct beams into different
detector regions based on input images can be distributed into
multiple diffractive masks in deep DONNS, so that each mask
complexity is reduced. In addition, gray-level input images with
smoother profiles than binary images could also help to reduce
mask complexity (see Supplement 1, Note 7).

In summary, we demonstrate that the interlayer reflection
effect is substantial when diffractive masks are made of high-
index materials. Furthermore, we demonstrate that one- and
few-layer DONNSs can achieve high-accuracy classification
under the analytical model, while the required large spa-
tial complexity in diffractive masks leads to the degraded
performance in practical system deployment. Deep DONNs
are advantageous to achieve both high accuracy and accu-
rate deployment. Since DONNs are linear systems, our results
are also applicable to DONNs in other wavelengths. Thus,
fast-computed, trainable, and physics-accurate DONN simu-
lators will be needed for designing and deploying compact
DONN:S.
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Fig. 5. Advantage of deep DONN:S. (a) Classification accuracy
obtained from the analytical model and FDTD simulations, diffrac-
tive mask complexity, (b) accuracy drop, and matching rate as
a function of depth. Confusion matrices for a five-layer DONNs
system calculated using (c) the analytical model and (d) FDTD
simulations.
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