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Abstract. Network-based modeling of complex systems and data using the language of graphs has
become an essential topic across a range of different disciplines. Arguably, this graph-based
perspective derives its success from the relative simplicity of graphs: A graph consists of
nothing more than a set of vertices and a set of edges, describing relationships between
pairs of such vertices. This simple combinatorial structure makes graphs interpretable
and flexible modeling tools. The simplicity of graphs as system models, however, has
been scrutinized in the literature recently. Specifically, it has been argued from a variety
of different angles that there is a need for higher-order networks, which go beyond the
paradigm of modeling pairwise relationships, as encapsulated by graphs. In this survey
article we take stock of these recent developments. Our goals are to clarify (i) what higher-
order networks are, (ii) why these are interesting objects of study, and (iii) how they can
be used in applications.
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I. Introduction. In recent decades, there has been a surge of interest in net-
works and network dynamical systems, which consist of interconnected entities, to
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understand a variety of complex systems. Examples range from biological systems,
such as gene regulatory networks, to infrastructure systems, such as transportation
networks [283, 20, 225].

The term network often refers to a graph, which is a combinatorial structure that
consists of vertices (or nodes) and edges (or links). In this abstraction the nodes
represent the entities in a system and the edges denote which entities interact. Repre-
senting systems as graphs has been instrumental to gain insights about the structural
and dynamical features of a system: Graph properties can be used to determine im-
portant nodes [118,; 232, 129], reveal the modular structure of a system [114, 261],
or—if each node is a dynamical unit—elucidate collective network dynamics such as
synchronization [282]. These ideas have been extended to weighted graphs, signed
graphs, directed graphs, and graphs with multiple edge or node types such as mul-
tilayer or multiplex graphs. However, a limitation of any graph-based approach is
that all relationships are by definition dyadic or pairwise relationships, since edges
in a graph are pairwise relations. For instance, in network dynamics, dyadic interac-
tions are typically reflected in the equation of motion by the fact that the interaction
between two given nodes is independent of any other node in the network.

In many real-world systems, however, network interactions and relations are
nondyadic, and involve the joint nonlinear interaction of more than two nodes. For
instance, in socio-economic systems, where group-based interactions are common-
place, activity is often jointly coordinated between multiple agents (e.g., buyer, seller,
broker) [49]. Reactions in biochemical systems often involve more than two species
(A+B — C+D) [178], or two reagents might interact only in the presence of an
enzyme. The importance of nonlinear interactions among three or more nodes has
also been long debated in the social sciences [98]. For instance, structural balance
theory implies that triadic relations in social networks will evolve according to the
colloquial rules “the friend of a friend is my friend” and “the enemy of my enemy
is my friend” [202]. Recent analyses of large online social networks verify that these
networks are indeed extremely balanced [106]. Similarly, peer pressure, the formation
of coalitions and alliances, and brokerage activities are examples for common social
phenomena, which do involve the intertwined activity of multiple people, rather than
pairs; see [26] for discussions on further examples and references. It has also been
argued that joint interactions are crucial to see competition patterns in multiple in-
teracting species [1, 192].

To adequately capture the properties of any such network, it is then crucial to go
beyond graphs, which only capture dyadic relationships, and to elucidate the effect of
polyadic network interactions [30, 290, 26]. Polyadic interactions and relations have
been discussed under a variety of names in the literature, including supra-dyadic,
nonpairwise, higher-order, or simplicial. In the following, we will collectively refer
to networks with such interactions as higher-order networks. But what exactly are
higher-order networks? How can they be represented mathematically? And what are
the tools available to analyze them?

One reason underlying the differences in nomenclature is that higher-order net-
works arise in various contexts throughout different research areas, which have often
somewhat different motivations, research questions, and mathematical tools. The
main aim of this article is to provide an integrated perspective on higher-order net-
works and their mathematical representations, and review recent progress in this very
active field of research, focusing on the underlying questions and mathematical tools.
Consequently, our review complements other recent surveys, including a more physics-
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centered perspective in [26] that features an extensive list of references, a discussion of
relationships between different higher-order models and dependency modeling [290],
and a survey on signal-processing on higher-order networks [264]. Specifically, we
will discuss higher-order networks in three contexts, where they have found particular
application:

e Topology and geometry of data (section 3): How do higher-order networks
help in understanding the “shape” of datasets?

e Analyzing and modeling relational data (section 4): How can higher-order
relations be modeled statistically and what are the advantages of using such
statistical models?

e Higher-order network dynamical systems (section 5): How can higher-
order interactions affect the collective dynamics of coupled dynamical units?

We believe that this overview of higher-order networks can provide a common language
for a number of research areas that have predominantly been considered separately.
We highlight differences and similarities between those areas and formulate long term
research perspectives.

I.1. Beyond Dyadic Interactions: From Graphs to Higher-Order Networks.
Before diving into a more detailed discussion, we will preview the three topics outlined
above. To this end, we need to fix some terminology that will be used throughout
the paper. Mathematically more precise definitions of these objects will be given
in section 2. An (undirected) graph G consists of a finite set of vertices V and edges €.
An edge e = {vg,v;} € € indicates a relationship between the vertices vy, v; € V. A
hypergraph H on the set of vertices V is a generalization of a graph: The hyperedges
e € & are arbitrary nonempty subsets e C V. An abstract simplicial complex K is
a hypergraph H such that the set of hyperedges is closed under inclusion, that is, if
dCee&andd#0, then d € £ Abstract simplicial complexes are combinatorial
objects that relate to their geometric counterparts in classical algebraic topology [144].
Hypergraphs and simplicial complexes will play a main role as we discuss higher-order
networks in this review.

I.1.1. Topology and Geometry: Understanding the “Shape” of Data. High-
dimensional point cloud data commonly contains some geometric or topological infor-
mation. Topological tools enable the classification of topological or geometric struc-
ture, for instance, the detection of possible clusters in the data. As an example,
consider the Isomap algorithm [287] illustrated in Figure 1A, which aims to learn a
low-dimensional representation of point cloud data. The central idea of Isomap is that
if the observed data is assumed to be a noisy sample from a low-dimensional man-
ifold embedded in a larger sample space, we can construct a graph that serves as a
discrete proxy for this continuous object: The vertices correspond to the data points,
and two vertices are connected by an edge if the distance between the corresponding
data points is smaller than some predefined parameter €. The resulting (family of)
graphs G, provides a low-dimensional representation of the data. A number of popular
algorithms follow a variation of this paradigm: (i) map each data point to a vertex in
a graph, (ii) define edges according to some criteria based on pairwise similarity or
distance of the original data points, and (iii) analyze the constructed graph to extract
a low-dimensional representation of the nodes, thereby providing an embedding of the
original data points associated to those nodes. For instance, diffusion maps [82], or
Laplacian eigenmaps [27], define embedding coordinates based on the (scaled) eigen-
vectors of a Laplacian matrix that is derived from a graph G. constructed in the way
outlined above. For an overview of these kinds of manifold learning algorithms, see
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Fig. | Schematic: Higher-order networks to describe geometry and topology of data. (A) The Isomap
algorithm [287] is an instance of a manifold learning algorithm [201], operating as follows.
We associate each point to a vertex of a graph. Two such vertices are connected by an edge
if the corresponding nodes are within a certain distance € from each other. By analyzing the
resulting graph, we can define a new set of distances between the points which can be used to
assign a new set of (low-dimensional) coordinates to each point, which reveal the underlying
geometric “shape” of the data. (B) Persistent homology avoids selecting a specific threshold
value for € by analyzing data at multiple scales [101, 315]. The persistent homology algorithm
first builds a nested sequence of spaces on data, called a filtered simplicial complex, which is
indexed by a scale parameter (e.g., €). An invariant in algebraic topology, homology, gives
a way to measure topological information, such as the number of connected components,
loops, or voids. Persistent homology of the filtration outputs a multiset of intervals, where
the left end points correspond to the scale value at which a specific feature topological feature
appears, the right end point corresponds to the value at which it disappears, and the length of
the interval is the persistence of such a feature. This topological summary can be visualised
as a persistence diagram or barcode [101, 315]. In this way various higher-order connectivity
aspects of the dataset can be assessed (see section 3).

also the book [201] and references therein.

The idea of approximating the global geometric structure of high-dimensional
data using graphs naturally generalizes beyond local pairwise geometric relationships
to local n-wise geometric relationships (cf. section 3). For instance, analogous to the
graph construction based on a distance threshold e, we may construct a Cech com-
plex K. as a family of simplicial complexes: Place a ball of radius € around each data
point and declare that there is an (n — 1)-simplex between any n points if the inter-
section of the corresponding e-balls is nonempty. Clearly such a simplicial complex
based description encapsulates more information on the geometry of the data com-
pared to a graph (see Figure 1B). Consequently, the higher-order network given by a
simplicial complex contains more information about the data: For instance, simplicial
complexes can be used to reveal certain aspects of topology of the data by means of a
technique called persistent homology [101, 315]. Simplicial complexes also give rise to
a hierarchy of Hodge Laplacians [194, 260], which include the graph Laplacian matrix
as a special case, and can be used to extract geometric and topological information
about the data.

1.1.2. Modeling Relational Data via Higher-Order Networks. The statistical
analysis of networks, such as friendship relationships in a social network, has been
a mainstay topic of network analysis. The data we would like to understand in
this context is typically relational data, i.e., data about how sets of entities are re-
lated (see Figure 2). Further examples include the modeling and description of co-
authorship networks, ecological relationships (predator-prey or mutualistic), or hy-
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Fig. 2 Schematic: Higher-order networks to describe relational data. Given some empirically observed
relationships between sets of entities (top), e.g., co-authorship relations between scientists,
a typical approach to analyze such data is to abstract these relationships as the union of
pairwise relationships, representing the edges in a graph. In other words, we decompose the
observed relationships into pairwise relations and define a graph based on those pairwise
relations. Our task is typically to analyze this graph by means of specifying a generative
model for the observed data (bottom left). Rather than settling on a graph representation,
we can alternatively try to keep all those (potentially) higher-order relationships intact and
represent and analyze them directly in terms of a hypergraph or simplicial complex (bottom
right). For instance, we again try to specify a probabilistic model for the empirically observed
data.

perlink graphs describing the World Wide Web, to name a few. In contrast to the
topological /geometrical or the dynamical perspective discussed in subsections 1.1.1
and 1.1.3, when adopting this perspective we are primarily concerned with statistical
modeling of the relations themselves, rather than analyzing those relations to learn
about some topological and geometrical shape of the network. Put differently, our
goal is to provide a statistical model that specifies a probability of observing a set of
given relations.

In many applications, relationships are recorded between exactly two entities—
such as hyperlinks from one webpage to another, or a friendship connection between
two people—naturally giving rise to edges in a (dyadic) graph linking the two entities,
where the entities are represented as vertices. Typical models for relational data
thus define probability distributions over a set of graphs. A simple example is the
Erdés—Rényi model that posits that for a given a set of vertices V of cardinality IV,
there exists a pairwise relation between any two objects with a fixed probability p.
Other examples include configuration models, stochastic block models, or exponential
random graph models.

However, as the example of co-authorships mentioned above illustrates, relational
data may comprise sets with more than two entities: A paper may have more than two
authors that appear jointly. Rather than breaking such a relation between multiple
entities up into a number of dyadic relationships, we may try to keep those relation-
ship sets intact, and directly take them into account in our statistical models. It then
becomes necessary to develop probabilistic models over spaces of hypergraphs or sim-
plicial complexes. We discuss and review such statistical models, and the questions
that arise in their development and analysis, in section 4.

1.1.3. Higher-Order Network Dynamical Systems. Network dynamical sys-
tems provide a natural abstraction for many real-world systems that consist of in-
teracting dynamical entities. These include networks of coupled neurons, power grid
networks, ecological networks of interacting species, and epidemic processes on net-
works [46]. A network dynamical system typically consists of (i) a number of dy-
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Fig. 3 Schematic: Higher-order networks to describe couplings between dynamical units. Dynamics
on graphs determined by ordinary differential equations are examples of network dynamical
systems: FEach node has intrinsic dynamics, and nodes interact if they are adjacent (top
left). A natural extension dynamics on a hypergraph, which allows for multiway interactions
between more than two nodes, such as triplets of nodes, etc. (bottom left). However, care is
needed as a change of coordinates of the original dyadic network dynamical system may also
result in an “apparent” higher-order dynamical system, depending on the type of coordinate
transformation used (top right versus bottom right).

namical nodes with state variables that evolve according to differential equations and
(ii) a network structure that captures which nodes interact and how they interact
(the functional form). The principal question is, How does the collective network
dynamics—the joint dynamics of all nodes, such as synchronization—relate to the
network structure?

In traditional network dynamical systems, the interactions between nodes are cap-
tured by a graph; cf. Figure 3. The graph may be based on actual physical connections
(e.g., a physical power line between two nodes), imposed as a modeling choice (e.g.,
a dynamical system on a graph), inferred from data (e.g., an edge is placed between
two nodes when the time series are correlated), or given as a formal description of de-
pendencies between node states (e.g., in coupled cell systems). Moreover, the network
interactions are often additive: For a network of Kuramoto oscillators [183, 2, 254]—
one of the most prominent examples of network dynamical system—the joint effect
of two oscillators on a third oscillator is the sum of the two individual (nonlinear)
effects. Synchronization occurs when different nodes (eventually) behave in unison
as time evolves. Such dynamical properties are influenced by the properties of the
graph that represents the network. For example, classical results relate the spectrum
of the underlying graph to the synchronization properties of the network dynamical
system [238].

A natural generalization of network dynamical systems is to allow joint nonlinear
interactions between three or more oscillators—this results in a higher-order network
dynamical system. Such a generalization, however, raises the following questions:
What is an appropriate combinatorial structure to capture such interactions? How
do dynamical properties, such as synchronization, relate to the properties of this
structure? One approach is to define a dynamical system on a hypergraph or simplicial
complex, which has certain caveats. As we will discuss in section 5, for coupled
oscillator networks, a coordinate transformation may also yield “effective” nondyadic
interactions for systems that are additively coupled; see Figure 3. Indeed, a (higher-
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order) network representation of a dynamical system is not necessarily invariant under
coordinate transformations. More importantly, however, if a higher-order network
dynamical system is related to a dyadic network dynamical system by a coordinate
transformation, it will exhibit the same dynamical properties. Stated differently,
if there exists such a transformation, then the overall system can equivalently be
described by an effective (dyadic) network and no higher-order network representation
is necessary. We will discuss these aspects and their implications for modeling in more
detail in section 5.

1.1.4. An Example: The Many Facets of Higher-Order Interactions. Let us
highlight the difference in the above discussed perspectives by considering the exam-
ple of Caenorhabditis elegans, a roundworm whose complete connectome—the physical
connections between neurons—has been mapped out. Importantly, the connectome is
the same for each of these worms and thus there is hope that analyzing the connec-
tome in the form of a (higher-order) network may tell us about important features
of the neural information processing within the worm. Now, there are several types
of questions we can ask. First, we may be interested in the topological features of
this connectome by using the techniques in section 3 to analyze the “shape” of this
network [270]. For instance, persistent homology gives insights into the topological
features of this specific connectome. Second, we may be interested in specifying a
probabilistic network model of the connectomic data (section 4). Even though the
connectome of every worm is the same and there is thus nothing stochastic about
the connectome of C. elegans, treating the connections as relational data to which we
want to fit a probabilistic model may provide us with certain insights, e.g., whether
or not certain connection patterns are expressed more or less often than would be
expected. For instance, by comparing to a random null model, we can assess how
likely it is that certain features of the connectome have arisen by chance [304, 138].
Third, network properties can lead to an understanding of the collective dynamics of
C. elegans’ neuronal network [293, 18, 304]. While one may intuitively think of the
connectome as a graph, both nonadditive network coupling and effective (or indirect)
interactions can give rise to a higher-order network dynamical system (section 5).

1.2. Missing Links: Topics Not Covered. There are some other topics that can
intuitively be considered from the perspective of higher-order networks but are beyond
the scope of this review. We give a brief overview and provide references for further
reading.

Multiplex Networks. Multiplex, multilayer, and networks of networks have been
proposed as modeling paradigms for systems where there are different types of inter-
actions [177]. These aim to account for links of different types, for example, different
modalities (phone, text, e-mail) in a communication network. In most cases, however,
the interactions are dyadic and can thus be presented by traditional networks.

Higher-Order Markov Models for Sequential Data. Markov models defined on networks
have become a popular way to describe and model flows of information, energy, mass,
money, etc., between different entities. If the evolution is given by a (first-order)
Markov process, the process can be seen as a random walk on a graph [203]. However,
many empirically observed flows on networks do have some path dependency. Thus
higher-order Markov chain models are required [185].

Higher-Order Graphical Models and Markov Random Fields. Markov random fields such as
the Ising model and more general graphical models have also been extended to higher-
order models that account for interactions between multiple entities. For instance, for
the Ising model, extensions have been sought that include interactions of third order
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to model social interactions in mice [267]. Other works about incorporating higher-
order interactions in graphical models include [313, 242, 180]. Note that a graphical
model can of course be used to describe probability distributions over various types
of objects, including graphs and the generalizations of graphs discussed in section 4.
However, the emphasis in section 4 lies on statistical models for dyadic and nondyadic
relational data, rather than on higher-order dependencies built into a statistical model,
e.g., in terms of third-order interactions in an extended Ising model [267].

Graph Signal Processing and Simplicial Signal Processing. Graph signal processing is a
relatively new area of signal processing that deals with the processing of signals sup-
ported on the nodes of a graph, and it aims to translate and extend signal processing
techniques such as interpolation, signal smoothing, sampling, and filtering to the do-
main of graphs [268, 230]. Recently, there have been propositions to extend these
ideas to simplicial complexes and hypergraphs; see, e.g., [311, 21, 264, 262].

Tensor Based Models, Tensor Based Algorithms, and Applications. As (dyadic) networks
can be described by matrices such as the adjacency matrix or the Laplacian, tensors
provide another possible direction in which network models can be extended. For
instance, we may consider generative processes of higher-order networks that are
based on tensor quantities. Alternatively, we may use tensor-based algorithms such
as tensor decompositions to analyze higher-order network data. Examples include
the application of tensor decompositions for the detection of communities in time-
dependent networks [119], or spectral clustering of motifs [31], as well as centrality
analysis based on tensors [130].

1.3. Outline of This Article. The remainder of the article is structured as fol-
lows. In section 2, we collect the mathematical concepts that will be used throughout
this paper. In section 3, we discuss how to analyze topology and geometry of data,
and we highlight how higher-order networks can help in understanding the structural
features of datasets. In section 4, we discuss models of higher-order relations and
how they can be useful in describing and understanding relational data. In section 5,
we discuss higher-order network dynamical systems and their relationship with tradi-
tional network dynamical systems. We conclude with a discussion and an outline of
questions for further research in section 6.

2. A Brief Review of Graphs, Hypergraphs, and Simplicial Complexes. Hy-
pergraphs and simplicial complexes are mathematical objects that can encode higher-
order interactions. Building on the informal introduction in subsection 1.1, here we
collect the definitions of these objects.

2.1. Graphs. An undirected graph G = (V,&) consists of (i) a finite set V =
{v1,...,un} of N vertices and (ii) a set € C {{vi,v;}| vs,v; € V} of edges, corre-
sponding to unordered pairs of elements of V. In contrast, a directed graph G is a
pair G = (V,€) of a finite set of vertices V = {v1,...,vn} and a set of edges (or
arrows) £ C V x V consisting of ordered pairs of vertices. For ease of notation, we
will typically fix a numbering of the vertices and set V = {1,...,N}.

A graph is called simple if it does not have self-loops, i.e., in a simple graph a
vertex cannot be connected to itself by an edge. There are notions of graphs more
general than (simple) graphs. For example, in a multigraph we can have multiple
different edges between the same nodes, rather than just one.

For a directed edge (t,h) € £ we say that it has head h and tail t; edge e is a
self-loop if h = t. Any graph G with vertices V = {1,..., N} can be identified with
an N x N adjacency matrix A = (Ag;) with A; = 1if (k,j) € £(G) and Ag; =0
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Fig. 4 A 3-uniform hypergraph with 9 vertices and 6 edges.

otherwise. For an undirected graph G, the matrix A is symmetric, i.e., AT = A,
where T denotes the transpose.

In many applications, it is useful to consider graphs with weighted edges. A
weighted graph is a graph with G = (V, ) together with weights wy; # 0 for each
edge {vk,v;} € €. A weighted, directed graph is defined analogously. For a weighted
graph G we define the weighted adjacency matriz with Ag; = wy; if (v, v;) € £(G)
and Ay; = 0 otherwise.

2.1.1. Hypergraphs. An undirected hypergraph generalizes an undirected graph.
Let &2(X) denote the power set of a set X, consisting of all subsets of X.

DEFINITION 2.1 (hypergraph [32]). Let V = {1,...,N} be a finite set and & C
P (V) a finite collection of nonempty subsets of V. The tuple H = (V,E) is called a
hypergraph. A k-uniform hypergraph is a hypergraph such that all hyperedges e € £
have cardinality |e| = k.

EXAMPLE 2.2. Let V = {1,...,9} and €& = {{1,2,3},{4,5,6},{7,8,9},{1,4,7},
{2,5,8},{1,5,9}}. The hypergraph H = (V,E) is a 3-uniform hypergraph and is
tllustrated in Figure 4.

Hypergraphs, like graphs, can be extended to incorporate directionality and
weights; see, for example, [16] and references therein. In the context of higher-order
networks in statistics, we can think of integer weights in terms of hypergraphs in
which certain edges appear multiple times.

2.1.2. Simplicial Complexes. An abstract simplicial complex is a hypergraph
where the set of hyperedges is closed under inclusion. Specifically, we require that
every nonempty subset d of an hyperedge e € £ is also part of the set of hyperedges.

DEFINITION 2.3 (abstract simplicial complex). Consider a finite set of vertices
V=A{1,...,N}. An n-simplex o = {vg,...,v,} is a nonempty set of n+ 1 elements
of V and its dimension is defined to be n. Given an abstract n-simplex o, we call a
subset T C o a face of . An abstract simplicial complex K is a finite collection of
such simplices such that

e TCoandoe K implyT e,

o {v} €K forallveV.
The dimension of an abstract simplicial complex K is defined as the largest dimension
of any simplex in KC. The n-skeleton K, of the abstract simplicial complex KC is the
union of the simplices of dimensions 0,1,...,n. The 0-skeleton Ko = V are the
vertices of IC, and the 1-skeleton is the graph associated to the simplicial complex.

REMARK 2.4. Different communities of researchers use different conventions for

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/08/23 to 192.5.85.180 . Redistribution subject to CCBY license

696 C. BICK, E. GROSS, H. A. HARRINGTON, AND M. T. SCHAUB

vertex numbering. For graphs and hypergraphs, vertices are often indexed starting
with 1, whereas in algebraic topology, they start with 0. As mentioned above, here
we number the vertices and set V = {1,..., N} so that the mazimal possible simplex
dimension is N — 1; while not standard in computational algebraic topology, it eases
notation. Note that we use n to refer to a generic n-simplex of arbitrary dimension n
(n + 1 vertices), whereas we use N as a fized constant describing the total number of
vertices.

REMARK 2.5. To emphasize that simplicial complezes are a special type of hyper-
graph, one can use the notation K = (V,&) = (Ko, &), with V the elements of Ko
and & the set of all simplices contained in IC.

EXAMPLE 2.6. Given V ={1,..., N}, consider the abstract simplicial complex

K= {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {2, 3},
{2,4},{3,4},{3,5},{4,5},{1,2,3}}.

The simplicial complex KC has dimension 2 as {1,2,3} is the largest simplex in K.
There are five vertices, called 0-simplices: {1},{2},{3},{4},{5}; seven l-simplices:
{1,2},{1,3},{2,3},{2,4},{3,4},{3,5},{4,5}; and a single 2-simplex: {1,2,3}. This
abstract simplicial complex can be visualized as follows:

(2.1)

To facilitate computations with simplicial complexes,® refer to simplices and their
faces, or study directionality of simplices, we introduce an orientation for each simplex
in K. Consider an n-simplex {vg,...,v,} that consists of an arbitrary set of n + 1
vertices v; € V. An oriented simplex associated to this n-simplex is denoted by an
ordered tuple o = [vg,...,v,]. There are two possible orientations: Two oriented
simplices associated to the same underlying simplex are equivalent if they differ sim-
ply by an even permutation of the tuple. If two oriented simplices differ by an odd
permutation they have an opposite orientation. For instance, the oriented 1-simplex
(edge) [v;,v;] from v; to v; has an opposite orientation to [v;,v;]. One can think
of oriented simplices as higher-order directed networks, which have gained increasing
attention in the growing field of directed topology [107, 200, 134, 78, 68] (note, how-
ever, that oriented graphs and directed (hyper)graphs are different, in general). An
oriented 1-simplex has a direction attached to it whereas an oriented 2-simplex has
a sense of rotation attached to it. To fix a reference orientation in this paper, we
say that the oriented n-simplex [vg,...,v,] has a positive orientation if the tuple is
ordered equivalently to the standard ordering according to increasing vertex labels.

3. Geometry and Topology of Data with (Higher-Order) Networks. As out-
lined in subsection 1.1.1, a central idea of topological data analysis (TDA) is to
describe empirically observed data, such as point clouds, by a topological object such
as a simplicial complex. The properties of the topological object then yield a way
to describe the data. The Euler characteristic y is an example of such a property,

INote that this is particularly relevant when performing computations over the field R; for binary
coefficients this is not required.
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which gives a measure of size [259] in an appropriate sense. Similarly, homology,
which we will describe in the next sections, gives a way to measure properties of sim-
plicial complexes, such as the number of components and loops. In fact, homology
is closely related to the Euler characteristic but provides a more detailed account of
the topology of a simplicial complex. In the following, we first focus on homology
as an important topological property of simplicial complexes, before we discuss how
these concepts can be used to describe the higher-order structure of data. For more
information on these topological concepts, see [144, 219, 6, 126, 205, 206, 125, 265].

3.1. Simplicial Homology. Topological properties of a simplicial complex K can
be studied using (simplicial) homology. An n-chain is a finite formal sum of ori-
ented n-simplices o; € K, written ¢ = Zi a;o0;. Here o; is an ordered n-simplex in K
and a; € F is a coefficient? in a field F. Note that there are only finitely many o; and
thus only finitely many of the coefficients a; are nonzero. Two n-chains are added com-
ponentwise, like polynomials, which depends on the field. Changing the orientation
of any simplex o; corresponds to a change in sign of the corresponding coefficient.

DEFINITION 3.1 (nth chain group). The nth-chain group C,(K,F) is a finitely
generated vector space that is spanned by its oriented n-simplices with coefficients in
a field F.

The chain groups are finite vector spaces generated by the set of n-simplices
of K. The linear maps 9,, between vector spaces Cy,(K,F) and C,_1(K,F) are called
boundary operators or differentials, which map an n-simplex o = [vy, ..., v,], spanned
by vertices v, ..., v, to an alternating sum of its (n — 1)-dimensional faces obtained
by omitting the jth vertex:

On:  CoulK,F) = Coy(K,F),
(31) ['Uo, . ,’Un] — Z(—l)j ['Uo, ey Vi1, V41, J)n}.
j=0

EXAMPLE 3.2. For a 1-simplex, we compute the boundary:

O ( v.o—>_v.1 ) = 7;1 —;10
A ([vo, v1]) = [v1] — [wo].

For a 2-simplex, we compute

o vy v
(AN s
Vo Vg vo v v Vo
D2([vo, v1,v2]) = [v1, v2] — [v0, V2] + [vo,v1] = [v1,v2] + [v2, V0] + [vo, 1],
since [vg, v1] = —[v1, o).

An n-chain ¢ with empty boundary dc = 0 is called an n-cycle. The n-cycles form
a subgroup Z, := ker d,, of the nth chain group. An n-boundary is an n-chain that

2Changing the coefficients can highlight specific features, and typical fields to consider are F =
Z/27Z for persistent homology computations (cf. subsection 3.2 below) or F = R for Hodge Laplacians
(ct. subsection 3.4 below).
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is the boundary of an (n + 1)-chain ¢ = dd with d € C,,11(K,F); the n-boundaries
B,, :=imJ,41 are a subgroup of the nth chain group. The chain groups and linear
maps {Cn(K,F),0,} = -+ -2 Co(K,F) 2 C1(K,F) 25 Co(K,F) 2= 0 form a
chain complex if the image of each map is included in the kernel of the next.

ExaMPLE 3.3 (Example 2.6 continued). Consider the simplicial complez from
Ezample 2.6. The collection of vertices Ko = [1,2,3,4,5] is a basis for Co(K,F)
so the elements take the form of linear combinations of the vertices with coefficients
in the field. We follow convention to write the chain complex with the field we are
working over: Fo~ where au, is the number of n-simplices and n indexes the nth chain
group. Since K is a simplicial complex of dimension 2, then for all p > n, we have
Ky empty and F,, = 0. In Example 2.6, we can write the chain complex:

02

0 -2 FL(K) -2 FI(K) -2 2 (k) 2=

0.

It can be proven that the composition of any two consecutive boundary maps is
the zero map, that is, 0,, 0 9,11 = 0 for all n, which means that B,, = im 0,41 C
ker 9, = Z,. This result is known as the Fundamental Lemma of Homology, and
shows that the chain groups C,(K,F) together with the boundary maps 9,, form a
chain complex [144].

EXAMPLE 3.4. It is easy to see in Example 3.2 that the composition of two bound-
ary maps yields zero, i.e.,

91 (02([vo, v1,v2])) = O ([v1, v2] + [v2,v0] + [vo, v1])
= [va] — [v1] + [vo] — [va] + [v1] — [v0] = 0.

Simplicial homology now quantifies the n-cycles that are not boundaries. Intuitively
speaking, these special n-cycles represent n-dimensional “holes.” For instance, in Ex-
ample 2.6, the 1-chain [3,4] +[4, 5] — [3, 5] is clearly a cycle, but it is not the boundary
of any 2-dimensional chain.

DEFINITION 3.5 (nth simplicial homology group). Let K be a simplicial complex.
For n >0, the nth homology group 1is

H,(K,F):=Z,/B, =kerd, /im0y, +1.

The dimensions of the homology groups, which are the ranks of the corresponding
vector spaces, describe different topological features. Specifically, the elements of
the homology groups Hy, Hi, and Hs describe connected components, loops, and
voids of IC, respectively. Two elements in H, are different if they differ by more
than a boundary. Then these two elements belong to different homology classes and
these different classes represent two distinct n-dimensional holes. For example, 1-
dimensional loops in the same homology class all surround the same 1-dimensional
hole. The number of n-dimensional holes is called the nth Betti number:

B = dim H,, (K, F) = dimker 9,, — dimim 9y, 1.

The first three Betti numbers By, 51, and (2 represent, respectively, the number of
connected components, the number of 1-dimensional holes, and the number of 2-
dimensional holes (i.e., voids) in a simplicial complex. The Betti numbers also relate
to the Euler characteristic through the Euler—Poincaré theorem [144, Theorem 2.44].
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REMARK 3.6. Simplicial homology can also be defined with coefficients in a Ting
instead of a field; indeed, simplicial homology is defined with integer coefficients in
[144, 219]. In this case, the definitions above generalize to modules and homomor-
phisms. Changing the coefficient field can affect the Betti numbers. For example, the
homology of the Klein bottle with coefficients in Z/2Z has 1 = 2 and Py = 1, but
the homology of the Klein bottle for all other coefficients in Z,R, or Z/pZ where p is
prime is 1 = 1 and B2 = 0.

To calculate homology in practice, there are computer packages available such
as SimplicialComplexes.m2 package in Macaulay2 [133] to compute homology with
different coeflicients; the simcomp toolbox in GAP [103]; and the topology application
‘topaz’ in polymake [120]. Persistent homology computations use other packages
described in the next section.

3.2. Persistent Homology. Persistent homology (PH) is one of the prominent
tools in TDA. PH enables the quantification of meaningful topological and geometric
features in data by studying homology across multiple scales of data.

DEFINITION 3.7 (see [59, 101, 124]). A filtration of a simplicial complex K is a
sequence of nested simplicial complexes,

P=KoCKiCK2C - CKena=K,

starting with the empty compler and ending with the entire simplicial complex K.

For a given filtration, for example, the Cech complex K. outlined in subsec-
tion 1.1.1, one can track when homology groups appear and disappear throughout
the filtration. For instance, we can keep track of the number of connected compo-
nents while varying the parameter: If the number of components persists over a large
range of the scale parameter, this may be indicative of a clustered dataset.

One of the key properties that allows the PH pipeline to take in a filtration and
output a topological summary is functoriality. Homology is functorial: Any map
between simplicial complexes f; ; : K; — K; induces a map between their n-chains
fZ"] : Cp(Ki,F) — C,(K,;,F), which then induces a map between their homology
groups f'; : Hn(K;, F) — H,(K;,F). Since the simplicial complexes in a filtration are
related by inclusion, there exist maps between the homology groups of every simplicial
complex in a filtration. This enables one to track when topological features appear and
disappear throughout the filtration: A topological feature of dimension n in H,,(KCp, F)
is born in H, (K, F) if it is not in the image of fi'1 p» and a feature from H, (K;) dies
in H,(K4,TF), where i < d, if d is the smallest index such that the feature is mapped
to zero by f';. Thus, such a topological feature can be associated to a half-open
interval [b, d), and the lifetime of a topological feature, i.e., its length d — b, is called
its persistence. A multiset of such intervals is called a topological barcode. Thus, for an
appropriate choice of basis [315] of the homology groups H,,, a barcode summarizes the
information carried by the homology groups and the maps f;; [59, 124], its persistent
homology.

Persistent homology benefits from theoretical underpinnings that prove a barcode
is robust to small perturbations to input data [81]. Persistent homology is computable,
with many software implementations available, and we refer the reader to the tutorials
and “user guides” [231, 244, 218, 70, 236] for more information.

REMARK 3.8. [t is also possible to define simplicial cohomology and compute bar-
codes for the cohomology groups for a given filtration of a simplicial complex IC. In
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general, cohomology is more powerful than homology. But for coefficients in a field F,
cohomology groups are dual to homology groups, and more generally, they are related
by the Universal Coefficient Theorem. In the setting we consider here, homology and
cohomology yield identical barcodes [94, Proposition 2.3, which is why one usually
does not distinguish persistent homology and persistent cohomology.

Mathematical theory extending persistent homology is still an active area of re-
search. For example, when data cannot be encoded as a filtration (i.e., a nested
sequence of spaces), or if the dataset is better analyzed with two parameters (i.e.,
a bi-filtration), then zig-zag persistence [61, 60] or multiparameter persistent homol-
ogy [64, 63], respectively, may be more suitable. The computation of these and other
homological objects is actively developed and implemented to be accessible for ap-
plications [148, 62, 213, 258, 142, 172, 191]. An active area of research for studying
higher-order analogues of directed networks is the mathematical field of directed alge-
braic topology, which aims to capture periodicity in data [107]. In recent years, persis-
tent homology of certain directed complexes [200], persistent path homology [78, 96],
and weighted path homology have also been proposed [195].

Ultimately, to analyze data, we need to compare outputs of persistence computa-
tions. The most common approach to achieve this is to transform the barcodes into a
vector-format, which can take various forms, such as persistence images or persistence
landscapes, or can be based on kernel methods, which can then be interpreted with
tools from statistics and machine learning [3, 184, 69, 52]. Developing such statistical
tools for topology, including hypothesis testing, bootstrapping, and defining shape
statistics, is another important, related research area [250, 110, 301, 111, 245].

3.3. Applications of Persistent Homology. Persistent homology has found wide-
spread application to real-world complex systems.? For example, persistent homology
has also been used to describe 3-dimensional structures in material science [255, 152]
as well as to analyze sensor networks (see two accessible introductions [93, 251]).
Different applications have different types of input data, such as point clouds in a
high-dimensional space, network data (nodes and relations), images (grayscale pixel
data in a square grid), or data as a given hypergraph.

When data is given as a point cloud, one needs to determine what is the appropri-
ate filtration parameter and corresponding complex to build [125, 59, 102, 101]. For
persistent homology, the chosen filtration is highly dependent on the application (see,
for example, [278, 281]), and the filtration may limit the user to a particular software.
While the homology or persistent homology of hypergraph data is possible [50, 248],
this requires a suitable filtration. The applications discussed in this section focus on
simplicial complexes or its 1-skeleton (a graph), which are both types of hypergraphs.

Using topological methods to study problems in neuroscience was first proposed
in the 1960s [310]. The availability of neuroscience data as well as advances in math-
ematical theory and computation have enabled this field to flourish. Computational
topology and higher-order networks have proven successful for analyzing the full spec-
trum of brain data ranging from functional networks [270], to morphology of branching
neurons [167], to structural (synaptic) connectivity [246], to place cells [127], to the
C. elegans connectome [147], to imaging of brain disease [90, 51]. Rather than an
exhaustive list of research in topological neuroscience, we refer the reader to a few
recent survey articles [91, 149, 43].

3A collection of TDA applications is also available at https://www.zotero.org/groups/2425412/

tda-applications
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Higher-order networks have also proven useful in genomics and evolutionary bi-
ology [243, 65], structural biology [302], as well as for the analysis of structures such
as vascular networks [28, 280, 54]. References overviewing the potential of topological
techniques (e.g., to biology) include [43, 9, 243, 281]. Recent studies suggest that
higher-order network structures and computational topology can be helpful for an-
alyzing complicated mathematical models of biological systems [289, 175, 221, 207].
Using higher-order networks to analyze diseases such as cancer [15, 226, 280, 131]
offers possibilities for combining data and mathematical models [279, 297]. While
the structure of some chemical reaction models can be distinguished using persistent
homology [298], others are better encoded as a hypergraph and analyzed with discrete
Ricci curvature [104].

More generally, many biological processes, including those in neuroscience, can be
modeled as dynamical systems, which we can also try to understand using topological
tools. Indeed studying relations between topology and dynamics has deep roots, going
back to Morse-Smale dynamical systems. Tools for analyzing time series data and
dynamical systems using topological methods have been developed by Harer, Perea,
Robins, Mischaikow, and Mukherjee, among others (see [240, 249, 141, 161, 214] and
references within). Memoli, Munch, and colleagues have been extending persistent ho-
mology theory and methods to analyze time varying systems, ranging from collective
behavior in the form of dynamic point clouds, dynamic graphs, and Hopf bifurcation
detection [217, 174, 176, 292]. Growing graphs have also been analyzed with node-
filtered order complexes [42]. Time varying data has been analyzed with topological
summaries, such as vineyards, crocker plots, and multiparameter rank functions [303],
whereas temporal networks have been analyzed with persistent path homology [77].
Contagion dynamics on different network structures (e.g., ring lattice and tori) as well
as simplicial complexes have been analyzed with persistent homology [286, 157]. Dy-
namics also occur on more general hypergraphs, which motivates approaches beyond
persistent homology [58].

3.4. Hodge Laplacians and Hodge Theory. Persistent homology is one of the
workhorses of topological data analysis. As discussed, persistent homology reveals
homological information in a given dataset by analyzing the sequence of boundary
maps 0, when scanning through a filtration. An interesting alternative way to use
the boundary maps 0,, to extract information about a simplicial complex is by con-
structing Hodge Laplacians [194, 144, 100, 132, 154]

(3.2) L, = Wn-s-lBIW;an + Bn+1wn+2B;|L—+1W;Jlr13

where B,, are the matrix representations of the boundary operators 0,,, and W,, are
(diagonal) weight matrices.

EXAMPLE 3.9. Consider the simplicial complex shown below.

[3, 4] [4, 5]

In this case, the boundary maps By (rows indexed by nodes, columns indexed by
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edges) and Bo (rows indezed by edges, columns indexed by 2-simplices) are

[1,2,3]
[1,2] [1,3] [2,3] [2,4] [2,6] [3,4] [4,5] [5,6] 1,2 1
i1-1t -1 0 0 0 0 0 0 [1,3]] -1
201 0 -1 -1 -1 0 0 0 2,3]] 1
Bi=3 0 1 1 0 0 -1 0 0, Bx=I[24] 0
40 0o 0o 1 0 1 -1 0 2,6]] 0
550 o 0o 0o o0 0 1 -1 3,4]] 0
660 0o 0o 0 1 0 0 1 [4,5]] 0
[5,6]] 0

Note that for graphs we can recover the standard graph Laplacian [79] as Lo =
BB, where B is simply the signed node-edge incidence matrix known from graph
theory, By := 0, and Wy = W; = I. As a second example, the random walk
Laplacian [203] can be also be recovered via Ly, = BlBIWfl, where W5 = I and W,
is set to the diagonal matrix of node degrees. We remark that the weight matrices W
can often be estimated from data as well, as has been done, e.g., in [72] in the context
of estimating the L; Hodge Laplacian (Helmholtzian). We finally remark that we can
define a symmetric variant via the similarity transform W;}r/lQLnWi/fl [154, 260,
132], from which it is easy to see that the Hodge Laplacian L, is positive semidefinite
for any n.

Based on the Hodge Laplacians, as defined in (3.2), we can compute most infor-
mation about the homology of a (simplicial) complex: For instance, we may compute
Betti numbers [118] by assessing the null space of the Hodge Laplacian. To understand
why this is the case, it is insightful to introduce the Hodge-decomposition [194, 132,
264]. For simplicity we concentrate here on the unweighted case where W,, =1 for
all n, though weighted Hodge decompositions are also available [260]. In this case the
Hodge decomposition states that the space of n-chains (cochains) can be decomposed
into three orthogonal subspaces, that is,

(3.3) Co(K,F) = im(B]) @ im(B,,41) ® ker(L,,),

where @ represents the direct sum of orthogonal subspaces. The three subspaces of
the Hodge decomposition are generally spanned by certain subsets of eigenvectors
of L,, [21, 260, 264]. Importantly, we have [194]

(3.4) ker(Ly,) = ker(B,,) Nker(B] ;) = ker(B,,)/ im(B41),

and hence the kernel of the nth Hodge Laplacian ker(L,,) is isomorphic to the nth
homology vector space H,, as given in Definition 3.5.

Moreover, Hodge Laplacians enable the rigorous definition of local dynamical
processes, such as diffusion and consensus dynamics in the domain of edges (node-
pairs) and higher-order entities [215, 194, 154, 260, 233, 234]. These ideas are also
closely connected to signal processing on a (simplicial) complex [132, 22, 21, 23, 24,
264, 305, 306, 262, 252], where one can define operations such as convolutions based
on such Hodge Laplacian operators, or even define analogues of graph-neural networks
for simplicial complexes [253, 47, 99, 128, 53, 41, 139]. Based on related ideas, one
can moreover construct decentralized protocols to solve coverage problems in sensor
networks [284], rank nodes within a network [160], or decompose games [56].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/08/23 to 192.5.85.180 . Redistribution subject to CCBY license

WHAT ARE HIGHER-ORDER NETWORKS? 703

4. Understanding Relational Data with Higher-Order Network Models. In
this section, we describe how (higher-order) networks are used to study relational
data. Before embarking on a more extended discussion, we emphasize in subsection 4.1
differences with the perspective on higher-order models discussed so far, before giving
a more detailed discussion on what we mean mathematically with higher-order data
in subsection 4.2. We then discuss various probabilistic models of such data based
on simplicial complexes and hypergraphs in subsection 4.3, and point out several
application scenarios in subsection 4.4.

4.1. Relational Data versus Relations Created from Data. Modeling relations
among data is of course a theme of this review, discussed with respect to topology and
geometry in section 3 and dynamics in section 5. However, when we turn our focus
towards relational data itself, there are differences as to what we aim to understand
as well as what mathematical tools are typically used. Accordingly, the role (higher-
order) networks play in the analysis is somewhat different.

Sections 3 and 5 are effectively concerned with understanding how data (e.g.,
time-series) associated to nodes in a network is organized topologically, geometrically,
or dynamically, and how we can use relations between those nodes to understand
that data better. Observe that at the core of the “geometry and topology” scenario
described in subsection 1.1.1 is the idea of constructing appropriate graphs and higher-
order objects to understand certain topological and geometric questions about data
(often point cloud data). For instance, a graph in which each data point becomes
a node is constructed according to a nearest neighbor rule from measured point-
cloud data. Then the eigenvectors of the resulting graph Laplacian are used as a
new coordinate system to describe the data. Similarly, the essential question when
considering dynamical networks (subsection 1.1.3) is how we can comprehend the
(global) dynamics of the system by analyzing the underlying higher-order network.

In contrast, when modeling relational data we are typically not interested in un-
derstanding data associated to nodes, but the data we measure and aim to model
comes (directly) in the form of relations, such as friendship links or collaborations.
For instance, we may want to model a collaboration network by specifying how likely
it is for each collaboration to occur. Stated differently, the data to model is the set
of (hyper)edges or faces of a (higher-order) network or complex. While it is also pos-
sible to try to infer such relations from nodal observations only, e.g., by measuring
correlations between node variables, in the following, we will be primarily concerned
with scenarios in which the relations of interest can directly be measured. This en-
capsulates a broad set of data, including co-occurrence relationships, collaborations,
affiliations, or flows of mass, energy, money, etc.

4.2. Describing Higher-Order Relational Data. Let us assume we are given a
finite set of data D = {X;} consisting of some measured relations X; between a finite
number of entities vy, ...,vy, which we will represent as vertices. For concreteness,
let us use an example in which D is the set of all collaboration relationships within
a large number of scientific papers. In this example, the vertices v; will correspond
to authors and the relations X; will be finite collections of co-authors, where we have
one measured relation for each paper in our data D.

When modeling such data as a dyadic network, we typically preprocess the data
by first splitting all sets X; into their subsets of size two, if required (cf. Figure 2).
In contrast, higher-order models avoid such preprocessing and explicitly account for
the nondyadic relationships. Even though we thus keep all measured relationships in
the data intact, some modeling choices have to be made as to how we represent the
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higher-order relations. The most prominent choices here are to either use a hypergraph
model, or think of the data as defining an (abstract) simplicial complex. Depending
on the data and the question under consideration, one representation may be more
useful than the other.

Specifically, in the simplicial complex model we assume that for every relation X;
all subsets Y; C X; are part of the complex as well. This may or may not be a rea-
sonable modeling assumption, depending on the context. In our author-collaboration
example, the subset inclusion assumption inherent to a simplicial complex can be
appropriate: If authors A, B, and C collaborated on a paper X;, this implies that A
and B collaborated in the context of X;, too. However, if the relation to be modeled
is simply a joint paper, then the simplicial abstraction may be misleading: A joint
three-author paper does not imply that there are (at least) three papers between all
possible pairs of authors. There are also other contexts in which a simplicial complex
may not be applicable as a model. For instance, assume we want to model a set of
chemical reactions X;, comprising different chemical species, as a higher-order net-
work. The fact that species A, B, and C' are part of a joint reaction to form some
new compound D does not imply that A and B will react with each other in the
absence of C. For instance, C could be an enzyme that mediates the reaction, and in
its absence no reaction between A and B takes place.

Notably, the choice of the modeling abstraction of the data has strong conse-
quences for the tools available for downstream analysis. If the system can be aptly
represented by a simplicial complex, then we have a large array of tools from applied
topology and TDA available with which we can investigate various characteristics of
the data, such as questions about homology (e.g., are there gaps in the space of author
collaborations?). In contrast, comparably fewer tools are available for hypergraphs,
even though they provide a more flexible abstraction of the data, in principle. We
refer the reader to the recent overview [290] for a more in-depth discussion about
relevant (higher-order) representation for modeling data.

4.3. Probabilistic Models for Higher-Order Networks. Unless our goal is only
to perform a descriptive analysis, once we have chosen an appropriate framework to
represent the higher-order data, we typically need to define an appropriate probabilis-
tic, or statistical, model for such data for further statistical analysis. In the following
we discuss some directions in the study of probabilistic models for higher-order net-
works. Rather than provide a complete discussion, our goal here is to highlight some
models that have prompted further mathematical inquiries. For a more exhaustive
overview, one can refer to [26].

As a starting point, and to set up the language of this section, in Example 4.2
we explore the Erdos-Rényi random graph model and introduce generalizations of
this model to higher-order networks that we will describe in more detail later in the
section. To begin, we formally define a statistical model. In this section, when we use
the term model or probabilistic model, we are often referring formally to statistical
models and have this definition in mind.

DEFINITION 4.1. A statistical model M is a collection of probability distributions
on the same sample space. In the discrete setting, a statistical model M on a sample
space of size D is a subset of the (D — 1)-dimensional probability simplex Ap_1, i.e.,

D
MCAD11:{QERD’Z(]¢:1, qi>0f0ralli}.

=1
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0.15

(xy.2) = (f(¢). F(CD)- ((ED))

Fig. 5 A projection of the 1-dimensional random hypergraph model H3(4,p) onto three of its coor-
dinates. Each point in the model is a discrete distribution (probability mass function) f over
the set of all 16 possible 3-uniform hypergraphs on 4 wvertices. In this projection, we follow
three of the coordinates as the parameter p varies from 0 to 1.

EXAMPLE 4.2. Let Gy be the space of all simple graphs on N vertices. The Erdds—
Rényi random graph model My = G(N,p), where each edge on N vertices is chosen
with probability p, is a statistical model as in Definition 4.1 parameterized by a single
parameter p.

Let N = 3. In this case, M3 C A7, where 7 = 2(3) — 1. Given p, the probability
distribution of observing each of the 8 graphs in Gn is given by the vector

((t=p) p(L=p?% p(1=p? p(-p)? p(1-p), P’(1-p), PP(1—p), 1’

TN N T VY Y

Generalizations of the random graph model G(N,p) for simplicial complexes and
hypergraphs are discussed in subsections 4.3.1 and 4.3.2, respectively. For hypergraphs,
one generalization of G(N,p) is the HY(N,p) model, a statistical model on the set of
all d-uniform hypergraphs on N wvertices where each d-uniform hyperedge is selected
with probability p. When d = 3 and N = 4 the sample space corresponding to the

4

model has size 2(3) = 16. A projection of the 1-dimensional model H?(4,p) onto three
of the 16 coordinates is displayed in Figure 5.

4.3.1. Probabilistic Models for Simplicial Complexes and Cell Complexes.
The study of random simplicial and cell complexes is still a relatively nascent area
of research. Two main lines of inquiry can be distinguished here. First, there are
random models for complexes that may be seen as generalizations of random graph
models such as the famous Erdés—Rényi (ER) random graph model discussed above.
We refer to [165, 88, 166] for early surveys over some of these generalizations and
results. Second, there are a number of models for random geometric complexes. In
contrast to the first models, which may also be seen as models for random abstract
(simplicial) complexes, the construction of these geometric models is often much closer
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to the setup considered in TDA (see section 3) and thus of particular relevance as null
models for this class of applications.

Random Abstract Simplicial Complexes. One of the earliest models in this direction was
proposed by Linial and Meshulam [196]. Their model starts with a complete graph
(a complete 1-skeleton) and then adds 2-simplices independently at random with a
probability p. They show that just like there is a threshold phenomenon with respect
to the zeroth homology group (i.e., connected components) of any sampled graph in
the ER model (i.e., the emergence of a giant connected component and an almost
surely connected graph, once certain connection probabilities are exceeded), there
exists a corresponding threshold phenomenon with respect to the first homology group
in their random 2-complex model. These results got refined and extended later [17,
153, 198]; for instance, [210] presents analogous results for random n-dimensional
complexes.

In a series of studies, Kahle and collaborators [162, 165, 164] investigate another
construction of complexes based on the ER model, called random clique complexes.
In random clique complexes, a sample from an ER graph is drawn and all complete
subgraphs are identified with a face of a simplicial complex. Kahle characterized
the higher-homology groups of random clique complexes [162] (also called flag com-
plexes [164]). Costa and Farber [85, 84, 87, 86] as well as Fowler [116, 117] then
studied a multiparameter model, first introduced in [165], that interpolates between
the Linial-Meshulam model and the random flag complex model. The model uses an
inductive process that starts with an ER graph with N nodes and edge-connection
(1-simplices) probability p;. Random 2-simplices are then added to the resulting
1-skeleton with probability ps. Inductively, random 3-simplices are then added to
the resulting 2-skeleton, etc. The above-mentioned models can then be recovered for
particular settings of p; [85, 84, 87, 86, 116, 117]; for instance, the original Linial—
Meshulam model [196] can be recovered for p; = 1 (all edges are present) and py = p
(2-simplices are added to the full graph with probability p). It can be shown that
the multiparameter model has a dual model [109, 108] in which one starts with N
vertices, selects subsets of size k with probability py (i.e., one constructs a general
hypergraph), and then adds all their faces to obtain a random complex. A model
based on such a downward closure of a hypergraph is also analyzed in [83], where the
vanishing of the cohomology groups is characterized in more detail.

Random Geometric Simplicial Complexes. Similar to how the random abstract simpli-
cial complex models can be seen as extensions to well-known random graph models,
there exist extensions of random geometric random graph models to simplicial com-
plexes. Rather than providing an exhaustive discussion, our goal here is again to
provide pointers to a few key papers and ideas. For a more comprehensive recent
review the interested reader may consult the surveys by Kahle [163] and Bobrowski
and Kahle [44] (see also [26]).

Random geometric models for complexes are in particular relevant as null models
for TDA (see section 3). In particular, such models enable us to understand various
statistics arising in the construction of simplicial complexes from random geometric
data such as Euler characteristics [113], homology [45], or other statistics of persistence
diagrams that arise in applying persistent homology to random geometric data [111].

Maximum Entropy and Latent Variable Models for Simplicial Complexes. The above de-
scribed models are highly stylized models that allow for theoretical explorations. For
null-model hypothesis testing of simplicial data, however, we may find a model that
fixes certain observed statistics, while randomizing all other features of the data. For-
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mally, this idea can be implemented via maximum entropy models for simplicial com-
plexes, such as the configuration model [89, 309] (that keeps the observed (simplicial)
degree sequence of the observed data) or exponential random simplex models [316]
(see the following section for a definition of exponential random graph and hyper-
graph models). So far these models have been explored mostly computationally and
far less is known about their theoretical properties. Apart from maximum entropy
models, another important class of random simplicial complex models are latent vari-
able models. For instance, in the case of random geometric complexes, given some
observed simplicial data, we may want to infer a compatible latent geometry for this
data. The resulting geometry may then be interpreted as a form of hidden cause for
the observed simplicial data. Outside the realm of geometric models, the study of
latent variable models has received little attention for modeling simplicial complexes
(see also [26]), but has been mostly restricted to general hypergraphs.

4.3.2. Probabilistic Models for Hypergraphs. In line with the study of random
simplicial and cell-complexes, the study of probabilistic models for general random
hypergraphs is still quite young. While in theory several classes of models are flexible
enough to model a wide variety of effects, in practice, only a few specific probabilistic
models for hypergraphs have been studied in detail. Most developed statistical models
for hypergraphs are simple in some way, and thus, tend to be used as null models,
as with the random simplicial complex models described in the previous section. It
should be noted, however, that several models for hypergraphs, especially those that
are extensions of exponential random graph models (ERGMs), have their roots in
categorical data analysis, an area of statistics dealing with discrete datasets, and
thus benefit from some existing methods for parameter estimation and goodness-of-fit
testing. This gives us some tools for handling higher-order relational data. Here we
describe several probabilistic models for hypergraphs, starting with generalizations
of ER random graphs, moving to configuration models that were alluded to in the
previous section. Finally we discuss ERGMs, a family that includes the 5 model for
hypergraphs, and latent variable models such as hypergraph stochastic block models.

Erdés—Rényi Hypergraphs. Similar to simplicial complexes, it is natural to gener-
alize ER random graphs to uniform hypergraphs. ER random graphs come in two
main forms: the G(N, M) model, where M edges are chosen uniformly from the set
of all possible (g] ) edges on N vertices, and the G(N,p) model, where each edge
on N vertices is chosen with probability p, which is also described in subsection 4.3.1.
Both generalizations of the G(N, M) and G(N,p) models, referred to as H¢(N, M)
and H?(N,p) models, respectively, have been suggested and explored. For the model
HY(N, M), the hypergraph generalization of G(N, M), a hypergraph is constructed
by choosing m hyperedges from the set of all (Y]) d-uniform hyperedges on N vertices.
Just as asymptotics for ER graphs as N — oo have been studied, similar studies have
appeared for the H?(N, M) model. For example, in the mid-80s, Schmidt-Pruzan
and Shamir showed that if b > 2 and M = ¢N with ¢ < 1/b(b — 1), then asymp-
totically almost surely the largest component is of order log N [266]. Following up
on [266], Karonski and Luczak showed that phase transition from many small com-
ponents to a single large component occurs when M = N/d(d — 1) + O(N?/3) [168].
Meanwhile, for the H%(N, p) model, the hypergraph generalization of G(N,p) where
each d-uniform hyperedge on N vertices is selected with probability p, thresholds for
different Hamiltonian properties have been investigated [19, 80, 97, 222]. The ER
hypergraph model H¢(N, p) is an ERGM model, and we will say more about tools for
goodness-of-fit and hypothesis testing below.
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Configuration Models. ER hypergraph models give rise to distributions over the
space of all d uniform hypergraphs with N vertices. Configuration models give
rise to distributions over the set of hypergraphs with a fixed edge size sequence
k = (ke | e € £) and degree sequence d = (d,, | v € V). As a concrete example, in a
stub-labeled configuration model, as described in [121] and [75], a graph or hypergraph
is constructed by associating d, “stubs” to the vertex v and then connecting k. stubs
to form each edge in £. We remark that this process may result in hypergraphs with
degenerate edges, i.e., edges that contain multiple copies of a single vertex, as well
as multiedges, i.e., multiple edges connecting the same nodes. However, conditioning
on nondegeneracy and simplicity (no multiedges), every nondegenerate stub-labeled
hypergraph with edge sizes k = (k. | e € £) and degree sequence d = (d,, | v € V)
is equally likely to be produced under the stub-matching algorithm. Similar consid-
erations can be applied to configuration models which allow for multiedges and/or
self-loops [75]. Rather than applying the above-mentioned stub-matching process to
draw samples from a configuration model, in practice, Markov chain Monte Carlo
(MCMC) techniques are typically used to create samples. These MCMC techniques
can be easily adjusted to work for both stub-labeled configuration models as exem-
plified above, and vertex-labeled configuration models (see [75, 115] for more detailed
discussions).

Both [121] and [75] illustrate the usefulness of configuration models as null models
for hypergraphs, the former focusing on tripartite hypergraphs describing data from an
online photo-sharing website and the latter focusing on a variety of collaboration and
communication networks. Recently, Chodrow and Mellor [74] extended configuration
models to annotated hypergraphs, generalizations of directed hypergraphs where each
vertex has a “role” in each edge.

Exponential Random Graph Models. Perhaps the most flexible family of probabilistic
models for hypergraphs are exponential families and can be described as extensions of
exponential random graph models. This framework is especially helpful for analysis,
since if the model is log-linear, then tools from categorical data analysis can be used.

An exponential random graph model (ERGM) is a collection of probability dis-
tributions on the space of all graphs & with NV vertices such that the probability for
ge Gy is

(4.1) Py(G) = Z(0)e? 19,

where G is represented as a vector in R * obtained by flattening the adjacency matrix
of G, 6 is a row vector of parameters of length ¢, the map ¢ : RV * L RY computes the
sufficient statistic, and Z(0) is a normalizing constant. The image of the sufficient
statistic map t is a vector in which each entry is a network statistic used to specify
the model, such as edge count, degree of a given vertex, triangle count, etc.

ERGMs have been extended to hypergraphs in two ways. The first method con-
siders a hypergraph as a two-mode network or incidence graph.* More specifically,
any hypergraph H with N vertices and M hyperedges can be identified with a bipar-
tite graph By with N + M vertices of two types: The vertices vy,...,vy correspond
to the vertices of H, the vertices eq,...,ep correspond to the hyperedges of H, and
there is an edge in Dy between vertices v; and e; of By if and only if vertex v; of H
is contained in hyperedge e; of H. Several ERGMs for two-mode networks have been
suggested and explored in [273, 237, 300], and the ergm package for R [156] has some

4Gee, for example, [299]. The incidence digraph is also called the Levi digraph or Kénig digraph.
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functionalities for handling two-mode networks.

The second type of extension builds on the observation that an ERGM can easily
be enlarged to collections of probability distributions on the space of all hypergraphs
with N vertices. This can be done by using an appropriate vector representation of a
hypergraph and a meaningful sufficient statistic ¢, such as the degree sequence. The
ER hypergraph model H?(N,p) is an ERGM model when ¢ is the edge count.

Although we can describe an ERGM for any set of sufficient statistics of a hy-
pergraph dataset, only a few specific ERGMs have been studied in detail and are
thus suitable for practical use. One example is the § model for hypergraphs, an
ERGM for nonuniform hypergraphs where the sufficient statistic is the degree se-
quence. Algorithms for fitting parameters and problems related to the existence of
MLE are described in [276]. In [276], the authors give three hypergraph variations for
the 8 model: one for uniform hypergraphs, one for layered hypergraphs, and one for
general hypergraphs. We would call each of these log-linear along the lines of [136,
Definition 3.1]. The log-linear designation signifies that the sufficient statistic is a lin-
ear function on a reasonable contingency table representation of the hypergraph with
possible structural zeros. Indeed, we can always represent a k-uniform hypergraph
on N vertices as an N X - -- X N dimensional k-way table with structural zeros on the
(i1,...,4x) entry whenever i; = i, for one pair j # ¢. Thus, we can view a hypergraph
as a 0-1 contingency table with structural zeros. This viewpoint opens up the field of
categorical data analysis and all log-linear models to hypergraph data and allows the
use of algebraic statistics for goodness-of-fit testing as in [137, 169, 138].

Latent Variable Models and Extensions of Stochastic Blockmodels. Finally, another log-
linear ERGM extension for hypergraphs are hypergraph stochastic block models [122,
190, 173], which are generalizations of stochastic block models for graphs. In the sim-
plest hypergraph stochastic block model variant, vertices are partitioned into &k clus-
ters and d-uniform hypergraphs are constructed by choosing each size d edge with
vertices all contained in a single cluster with some fixed probability p and choosing
every other size d hyperedge with fixed probability ¢, generally with p > ¢g. The suf-
ficient statistic for this model is a pair of two numbers: the number of within-cluster
hyperedges and the number of in-between-cluster hyperedges.

While hypergraph stochastic block models can be used to test for homophily
effects in a hypergraph dataset when the cluster membership of each vertex is known,
one of their main applications, as described in the next section, is for community
detection and clustering when the cluster membership of each vertex is unknown. In
this case, the models become latent variable models and the goal becomes trying to
determine the most likely membership assignment of each node. For graphs, inference
is usually done using coordinate ascent methods, such as variants of the expectation-
maximization algorithm, MCMC methods, and variational methods (an overview of
such methods can be found in [187]); these methods are just now starting to be
developed for hypergraphs [171].

The simplest forms of hypergraph stochastic block models tend to generate graphs
where all the nodes in the same community have similar degrees, however, for applica-
tions, it is desirable to have a model where the node degrees can display some hetero-
geneity. In the graph setting, stochastic block models that also allow for degree hetero-
geneity are referred to as degree-corrected stochastic block models. In the exponential
family setting, the sufficient statistics of these models are obtained by taking the suf-
ficient statistic of the corresponding stochastic block model and appending the degree
sequence of the vertices [307]. Moving from graphs to hypergraphs, similar variants
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of hypergraph stochastic block models that allow for degree heterogeneity have been
proposed. For example, in [171], Ke, Shi, and Xia define degree-corrected hypergraph
stochastic block models, and develop a method for community detection using tensor
decomposition. Furthermore, degree-corrected hypergraph stochastic block models
form the basis of the algorithms for clustering described by Chodrow, Veldt, and
Benson in [76], where they illustrate their usefulness for detecting ground truth com-
munities through several datasets. It should be noted that the models described in [76]
allow for heterogeneity in the edge size as well, meaning that in this case, the models
are collections of probability distributions over hypergraphs with varying edge size.

4.4. Analyzing Higher-Order Relational Data: Application Examples. Let us
now consider some example applications, which are based on the analysis of relational
data (from a statistical point of view).

Applications in which hypergraph-based techniques have been considered to an-
alyze relational data include anomaly detection [269], population stratification [294],
as well as the analysis of folksonomies [312, 121]. We mention again the work of
Chodrow et al. [75, 74] on hypergraph configuration models, which can serve as null
models for various statistical applications.

One of the most popular analyses of relational data in the network setting is
community detection (or network clustering), in which one aims to partition the set
of vertices in the system into groups such that these groups are more similar to each
other than to rest of the network. A large number of methods for community detection
exist for networks [114] based on various notions of what constitutes a good commu-
nity [261]. Unsurprisingly, the problem of community detection has been considered as
well for higher-order relational data. For instance, Vazquez [295] presented some early
work on detecting hypergraph communities using a Bayesian framework. Some more
theoretical work includes Ghoshdastidar and Dukkipati [123, 122], who analyzed spec-
tral clustering and its consistency for hypergraphs under a planted partition model, a
specific type of stochastic block model. Kim, Bandeira, and Goemans [173] considered
sum-of-squares approaches for similar hypergraph stochastic block models, and Chien,
Lin, and Wang [73] have analyzed the optimal rates of community detection for d-wise
hypergraph stochastic block models, where the probability of a hyperedge is depen-
dent on the distribution of the vertex block assignments of the vertices contained in
the hyperedge. Moreover, community detection for higher-order relational data has
motivated much work in spectral hypergraph theory [10, 67, 66, 193, 291, 314] and
hypergraph cuts and splitting functions [146, 296, 308].

As higher-order relational data may also be abstracted via simplicial complexes,
there are also a number of works that use such a modeling perspective, often blending
tools from TDA (section 3) with statistical tools. In particular, there has been work
on generalizing the idea of triadic closure in networks—the tendency of two nodes to
connect if they have a mutual neighbor—to higher-order networks [29, 235]. While
these works have been concerned with how the topology of (higher-)order networks
evolve, there are also higher-order models for analyzing edge-data on networks that
utilize the Hodge decomposition for the purpose of extracting aggregating rankings in
a consistent way [160] or for smoothing and filtering flows and trajectories on networks
and simplicial complexes [24, 263, 23, 159, 260].

5. Network Dynamical Systems with Higher-Order Interactions. Network
dynamical systems describe the joint evolution of interacting dynamical nodes. The
coupling between the nodes can lead to intriguing collective network dynamics such
as synchronization, where nodes evolve in unison. A key question is how the net-
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work interactions—both the network structure as well as the functional form of the
coupling—shape such collective dynamics. While graphs have traditionally been used
to encode network structure, we focus on more general, “higher-order” approaches
to capture the coupling structure. Naturally, this yields questions such as, What
higher-order structures are appropriate for network dynamical systems? And how do
higher-order interactions shape the dynamics? Here we focus on network dynamical
systems where the nodes/vertices are dynamical units, even though (higher-order)
networks with dynamical (hyper)edges have also recently been discussed [212, 227].

Of course, network dynamical systems can yield data (e.g., by sampling from
the trajectory) to which methods outlined in the previous sections can be applied.
However, here we will take a more general dynamical systems approach to elucidate
general properties of interacting dynamical systems.

5.1. Network Dynamical Systems with Pairwise Interactions. Traditionally
network interactions between nodes are encoded in a directed, weighted graph G =
(V,€) on N vertices V = {1,..., N} with weighted adjacency matrix A. For sim-
plicity, let us suppose that we have NN identical nodes with dynamics of the form
i = F(xy), where 2, € R? is the state vector (or simply state) of node k € V and
F : R? - R% is a function that describes the intrinsic node evolution depending on
its state. Suppose further that any interaction between nodes can be described by
a pairwise coupling function G : R? x R? — R?, which describes how the states of
two connected nodes in G interact. The tuple (G, F, G) defines a network dynamical
system through the set of differential equations

N
(5.1) iy = Flay) + Y AjpGlak, 7))
j=1
for k =1,..., N. While discrete time network dynamics of a similar form are certainly

also of interest [71], for simplicity, we will consider primarily continuous time dynamics
in the following exposition.

The collective network dynamics are now determined by the evolution of the joint
state of all nodes © = (x1,...,xy) through (5.1). Specifically, the collective network
dynamics are determined by (i) the structure of the graph G, as encoded in the
adjacency matrix A, (ii) the intrinsic dynamics F' of each node, and (iii) the pairwise
coupling function G [275]. This setup gives rise to many classical problems in network
dynamical systems. On the one hand, how do the collective network dynamics x(t)
depend on (G, F, G) that determine the network dynamical system? For example, how
are these dynamics perturbed as edges are added or removed? How do properties of
the network structure (e.g., modularity [39, 186]) influence a dynamical process on
a network? On the other hand, how can the network structure and interactions be
inferred from measurements of the dynamics x(¢t)? This last problem is commonly
known as inference of network dynamical systems [288].

It is important to note that network dynamical systems described via (5.1) have
additive interactions [38]. Specifically the interactions are in general nonlinear in
the state variables zj, but linear in the coupling weights Ay;. Hence, changes in
the interaction graph G can be naturally incorporated by adjusting the value of Ay;.
While this setup (5.1) is arguably one of the most commonly considered models for
network dynamical systems, in general this linearity in the coupling weights might
not hold. Accordingly, we may need to go beyond pairwise couplings.
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5.2. Network Dynamical Systems with Higher-Order Interactions. For gen-
eral network dynamical systems, the state evolution of each node may not be express-
ible as a superposition of pairwise interactions as in (5.1). For instance, suppose that
the dynamics evolve according to

(5.2) Ty = F(zy) + Hi(z)
for k = 1,...,N, where each Hj, : RN — R? determines the influence of the joint
state of the network z = (21, ...,zy) on node k. Clearly, the function Hj, may depend

not only on two node states, but may involve multiple nodes concurrently.

Network dynamical systems of the form (5.2) have been considered as coupled cell
systems [277]. Fix a directed graph Gogs with N vertices that encodes the node depen-
dencies. Consider now all functions H = (Hi, ..., Hy) that are compatible with Geogg
in the sense that Hj depends nontrivially on x; if there is an edge from node j to
node k in the edge set £(Gcss). Note that despite node dependencies being captured
by a graph, this does not exclude the possibility of nonlinear interactions involving
three or more nodes as in network dynamical systems of the form (5.1). However, the
main goal of the coupled cell system formalism is to elucidate the properties of all
dynamical systems (5.2) that are compatible with the network structure Gogs simul-
taneously (rather than considering (5.2) for a specific H): This yields insights into
how the generic dynamical behavior, such as bifurcation and synchrony, depends on
the imposed network structure (encoded by Gegs); see, for example, [5, 228].

However, rather than looking at generic properties, one is often interested in the
dynamics for specific (classes of) coupling functions H. To this end, we may expand
the general dynamics (5.2) formally as

N N
(5.3) T = F(l‘k) + ZAjka(.'L‘k, xj Z ﬁ])CG(S) xk,xj,xl) + -

j=1 =1

where the (formal) adjacency matrix A = (A;z) together with the coupling func-
tions Gy, characterize the pairwise network interactions (cf. (5.1)), and the coefficients

of A®) and coupling functions G,(CS) (with s > 3) the nonpairwise interactions.> With
respect to the formal expansion (5.3) the terms G,(f) with coefficients A;f) ;. may thus

be called higher-order network interactions. For example, Aﬁ,z and G,(f) (g, xj, xy) de-
scribe the joint influence of nodes [, j on node k in the expansion (5.3).

Analogously to how we associate a graph G to the pairwise dynamics (5.1) by
interpreting A as an adjacency matrix, we may want to associate an appropriate
(combinatorial) mathematical structure to the higher-order interaction terms. Similar
to the graph case, we could then analyze this mathematical object and hopefully
elucidate some interesting dynamical properties of higher-order system (5.3). This
reasoning motivates a number of questions:

(Ql) What are dynamical consequences of higher-order network interactions?
(Q2) Are higher-order interactions crucial to understand dynamics of real-world
systems?
(Q3) Is there an appropriate structure (hypergraph, simplicial complex, etc.) to
represent a generically coupled network dynamical system such as (5.2)?
Intuitively, as (5.3) exhibits a more general class of vector fields on the right-hand

5We assume that the G(g)7 s > 2, depend nontrivially on all of their arguments.
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side compared to (5.1), we may expect that there will be a number of new phenomena
higher-order networks can exhibit. Accordingly, we may argue that these higher-order
interactions can indeed be crucial, if a real-world system can be represented only in
terms of higher-order interactions (5.3). A somewhat more careful inspection of our
above example shows, however, that the issue is somewhat more subtle. For instance,
for the coupled cell systems (5.1), there is a meaningful graph-based description in
terms of Ggoss associated to the system, despite the fact that generally the system
will be a network dynamical system with higher-order interactions. Furthermore,
the expansion (5.3) will in general not be unique, and we can associate many pos-
sible higher-order networks to a system of the form (5.2). Indeed, we believe that
questions (Q2) and (Q3) do not have well-defined answers, and we will discuss in sub-
section 5.4.1 how choosing an appropriate structure can be a matter of perspective.
Before returning to these conceptual matters, we will first explore question (Q1) and
some aspects of (Q2) more concretely and outline some partial answers that have
been given so far in the literature.

5.3. Effects of Higher-Order Interactions in Network Dynamical Systems. In
the following, we will discuss some consequences of higher-order network interactions
on the dynamics and why it may be crucial to account for these (cf. (Q1) and (Q2) in
the previous section). We focus on specific examples relevant in a variety of real-world
dynamical systems rather than attempting to give a comprehensive overview; see [26]
for a far more extensive list of references.

5.3.1. Phase Oscillator Networks. Networks of simple phase oscillators have
received tremendous attention in recent years. These networks yield insights into a
range of synchronization phenomena, a prominent form of collective dynamics in which
distinct nodes in a network evolve in unison. Reviews on synchronization phenomena
include [2, 254, 39, 229]. Probably the most famous example of a phase oscillator
network is the Kuramoto model [183, 282] and its variations, where the state of the
oscillator at node k is given by a phase 0y, € T := R/27Z. For the Kuramoto model on
an arbitrary graph G with weighted adjacency matrix A = (A;x), the phase variable
of node k evolves according to

. K&
(5.4) 0 = wy + N Z Ajk Sin(ej — 919),

j=1

where wy, € R are the intrinsic frequencies of the oscillators and interactions are
pairwise along edges (the equations are of the form (5.1)). If G is the complete graph
and the wy are independently sampled from a unimodal probability distribution, we
recover Kuramoto’s original equations that can be analyzed explicitly [39].

This setup has been recently generalized by adding higher-order interaction terms
to the standard Kuramoto model. For instance, Skardal and Arenas [271] consider
networks of N phase oscillators with “simplicial” coupling, where oscillator k evolves
according to

. K . .
O = wi + e Z (2sin(0; — Oy) + sin(20; — 26;))
i
(5.5) JK
+ ﬁ Z Sin(aj + 91 — 29k),
kA
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where the last sum is over pairwise distinct indices j,l,k. Note that already the
pairwise interactions in this model are all-to-all but distinct from the Kuramoto model.
Specifically, the first sum in (5.5) (over the pairwise couplings) includes first and
second harmonics and, moreover, the second sum incorporates nonlinear higher-order
terms (i.e., A;?l)C # 0 for some 7,1,k in (5.3)). We remark that such interaction terms
had been previously considered in the context of nonlinear interactions [179].

These and other higher-order terms in the Kuramoto model can have a range
of dynamical effects and are directly relevant to understanding the dynamics of os-
cillations since they arise in a number of physical systems. Examples include oscil-
latory dynamics in electronic circuits [145], the dynamics of coupled nanomechani-
cal oscillators [204], and optical devices [239]. Apart from an impact on synchro-
nization [179, 271, 197], higher-order interactions can stabilize splay/twisted solu-
tions [36] and lead to multistability [285], heteroclinic cycles [40, 34, 33], and chaotic
dynamics [35, 189]. Other generalizations of the Kuramoto model to simplicial com-
plexes [212] are possible that lead to “explosive” synchronization phenomena—an
effect that one may expect generically when generalizing a classical model [182].

5.3.2. Ecological Networks. Lotka—Volterra-type equations provide a classical
model for the dynamics of species populations. Interactions between species in these
equations are pairwise. It has been argued that incorporating higher-order interac-
tions is essential for the mechanisms that lead to coexistence of species that emerge
in diverse competitive networks [1, 192]. For example, Allesina and Levine [7] con-
sider networks of multiple competitively interacting species, where the relative abun-
dance py of species k evolves according to

N N
(5.6) Pe = Z Kjrpjpe — Z Kijpipjpr
i=1 ji=1

subject to Z;\f:l p; = 1. This is a network dynamical system with interactions of order
two and three in terms of the expansion (5.3). Including higher-order interactions can
make species coexistence robust to the perturbation of both population abundance as
well as parameter values [135].

5.3.3. Neuroscience. Nonadditive higher-order interactions also play a func-
tional role in the dynamics of neural networks (see, e.g., [11, 158] and references
therein). To understand the implications of higher-order interactions for the collec-
tive network dynamics, Memmesheimer and Timme [209] consider neural networks
with nonlinear amplification and saturation in the input (the dendrites) of each neu-
ron. Specifically, they consider leaky integrate-and-fire neurons with a nonadditive
input function o. If the input for a given neuron is low, then the inputs add linearly.
Somewhat larger inputs are amplified superlinearly, before saturating to an overall
maximal excitation of each neuron. While the coupling considered in [209] describes
noncontinuous dynamics, the coupling is nonadditive as in (5.3) and the input to
each neuron depends nonlinearly on the joint state of all its input neurons that emit
a spike. In addition to propagation of synchronous activity [209], these nonadditive
interactions allow for the emergence of high-frequency oscillations [208] and memory
processes [158].

5.3.4. Contagion, Diffusion, and Other Network Dynamics with Higher-
Order Interactions. While we only consider network dynamical systems determined
by ordinary differential equations, higher-order interactions also arise in discrete time
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dynamical system or systems with a discrete state space. This includes, for exam-
ple, contagion dynamics on a simplex [157, 92, 48, 151], where the contagion of one
node depends on the joint state of two or more nodes, or adaptive voter models with
nonpairwise interactions and rewiring [155]. One possible approach to gain analytical
insights into these dynamics are mean-field approaches that capture the higher-order
interactions: For example, these can uncover how critical transitions in such systems
change from subcritical to supercritical, and vice versa [182]. Other examples of
higher-order dynamical processes include opinion formation and consensus processes
on hypergraphs [95, 223, 224, 150], diffusion processes [58, 57, 260, 247, 211] (see
also subsection 3.4), and replicator dynamics [8].

5.4. Algebraic Structures for Network Dynamics with Higher-Order Inter-
actions. Within this section we have thus far considered higher-order interactions
from the perspective of a (formal) expansion of the vector field of a network dynami-
cal system. As we discussed in regards to standard network dynamical systems with
pairwise interactions, the network structure can be seen as a graph whose vertices
correspond to the individual dynamical units and the edges encode interactions. By
extension, this suggests that network dynamics with higher-order interactions should
be interpreted as an appropriate extension of a graph such as a simplicial complex or
a hypergraph: Specifically, whereas the interactions in (5.3) that are mediated by the
adjacency matrix A are typically interpreted as edges (1-simplices) of a graph, the
coupling terms A®®) in (5.3) would then correspond to higher-dimensional simplices
and/or hyperedges. In the following we will discuss the relationship between net-
work dynamical systems with higher-order interactions (5.3) and their mathematical
representations discussed in section 2.

5.4.1. Network Dynamics on Hypergraphs and Simplicial Complexes. Given
a simplicial complex or hypergraph, there are many ways to define a dynamical system
on it. As mentioned above, Skardal and Arenas consider a generalization of the
Kuramoto model on a simplicial complex (containing all possible 2-simplices) by (5.5).
Other generalizations of the Kuramoto model are possible [212]. For a hypergraph H
write & := {e € E(H) | k € e} for the set of edges that are incident to node k. For a
point z € R and a hyperedge e = {ji < -+ < jo} write z¢ = (},,...,zj,) for the
projection of z on the coordinates contained in e. In this more general setting, Mulas,
Kuehn, and Jost [216] derive a master stability approach for dynamical systems on a
hypergraph H with identical nodes whose state evolves according to

(5.7) T = F(a)‘k) + Z Gk;e(l’e)~
eegk(H)

In their setup, few assumptions are made on the coupling functions Gy..: While they
have to be invariant under permutations of the arguments, they could be linear in
the arguments x; and explicitly depend on the node k. Related work includes the
analysis of more elaborate synchrony patterns [257, 256, 4].

While one can write down a network dynamical system for a given hypergraph H,
the converse—associating an algebraic structure with a given dynamical system—is
not as straightforward; cf. question (Q3) in subsection 5.2. In particular, this depends
not only on the coefficients A®) but also on the assumptions one wants to make on the
interaction functions G. The answer to this question depends on the perspective one
takes: First, consider the hypergraph H on N nodes with a single edge e = {1,..., N}.
The hypergraph is invariant under any permutations of the vertices. By contrast, the
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dynamical system (5.7) is not necessarily symmetric (equivariant) with respect to this
symmetry operation (unless Gi,. = G, for all k). Second, if G.c(z.) = Z(?:l xj,,
then for (5.7) written as a formal expansion (5.3) we have A(®) =0, s > 3, for any H.
In other words, the interactions are additive despite the underlying algebraic structure
being a hypergraph.

Finally, note that any hypergraph can be identified with its bipartite incidence
graph that captures pairwise incidence relations between nodes and hyperedges (see
subsection 4.3.2). In the context of a recent generalization of the coupled cell frame-
work to higher-order network dynamics [4], for patterns of cluster synchrony one gives
information about the other, but the perspectives are not equivalent.

5.4.2. Hypergraphs and Simplicial Complexes for Network Dynamics. From
the perspective of asymptotic expansions, the name higher-order interactions suggests
that the vector field determining the network dynamics can be expanded in some
small parameter. Indeed, we considered (5.3) as a formal expansion of the generic
interactions in (5.2). Higher-order network interactions can also arise in asymptotic
expansions in a small parameter. We will illustrate this by considering phase oscillator
dynamics as (higher-order) expansions of weakly coupled oscillators. Specifically,
consider (5.2) with H = eH. As in subsection 5.2, the function H (or its rescaled
version H ) captures the network interactions: Node j influences node & if Hy depends
nontrivially on x;. Now consider nodes with intrinsic oscillatory dynamics, that is,
node k has state z;, € R? and &y, = F(z}) gives rise to an asymptotically stable limit
cycle. This implies that

has a normally hyperbolic attracting N-dimensional torus for e = 0, which persists
for sufficiently small € > 0 [112, 14]; write (61,...,0y) € TV for a point on this torus.
This means that if the coupling is sufficiently weak, the network dynamics can be
solely described by the evolution of the phases 6, (as the amplitudes are tied to these
phase variables). A phase reduction is an approximation of the dynamics of 8 on the
invariant torus obtained through an asymptotic expansion in the small parameter ¢;
we refer to [220, 12, 241] for an introduction to phase reductions, how to compute
them, and how they can help understand network dynamics. For generic interac-
tion function Hj, one would expect higher-order interactions in the phase reduction:
Ashwin and Rodrigues [13] calculated these explicitly for a fully symmetric network
of units close to a supercritical Hopf bifurcation to find nonpairwise phase coupling
terms already to first order in €.

Important is that even if the nonlinear oscillators are additively coupled—a net-
work dynamical system (5.1) without higher-order interactions—its phase dynamics
can have nonadditive coupling—a network dynamical system (5.3) with higher-order
interactions. Such phase dynamics were termed effective coupling in [181]. Here, we
illustrate this using the example by Ledén and Pazé [188], who calculated this phase
reduction explicitly for a network of globally coupled complex Ginzburg—Landau oscil-
lators [140]; the underlying network is the complete graph on N vertices. Specifically,
the state of oscillator k is given by z; € C and evolves according to

N
. . . 1
(5.9) Zr=z,— (1+ 102)\zk|2zk +e(l+4icy) N Zl(zj —zr) |,
i=
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where the coupling is diffusive and pairwise, c1, co are real parameters, and i := /—1—
this is a network dynamical system (5.1) without higher-order interactions. The phase
dynamics of (5.9) up to second order in ¢ are given by

N 2 N
) n . 21 (1 .
O = w+eﬁ§sm(ﬁj — 0 +a)+e 4<N;Sm(9j — 0+ 5)
(5.10) 1J‘ N 1 .
+ N2 Z Sin(29j —0; — 0) — N2 Z Sin(ej — 0, — 20, + ﬁ)),
gl=1 gl=1

where w = —ca + e(ca — ¢1), B = arg(l — ¢ + 2c1i), n = /(1 +c2)(1 + c2) yield
the relationship between the parameters of the phase equations and the parameters
in (5.9). Note that the first-order phase dynamics are described by the Kuramoto
equations (5.4) for identical oscillators on a complete graph with an additional phase-
shift parameter a. The second-order terms now yield higher harmonics in the pair-
wise interactions as well as nonadditive triplet interactions. That means that the
phase-reduced system (5.10) has higher-order interactions in terms of the formal ex-
pansion (5.3), while the original system (5.9) did not. In this example, the oscillator
coupling was all-to-all, but the same observation is expected if interaction was along
a noncomplete graph: While the phase evolution of a given node is directly influenced
by its neighbors, it is also influenced by its neighbors’ neighbors. Indeed, higher-
order phase reductions of (non-all-to-all coupled) oscillator networks lead to effective
pairwise as well as higher-order interactions between oscillator phases that are not
directly coupled in the original network [37].

This further highlights that any question about the importance of higher-order
interactions in network dynamical systems—and thus answers to questions (Q2) and
(Q3) in subsection 5.2—is subtle. Even oscillator networks with additive interactions
(i.e., connections can simply be encoded by a graph) yield nonadditive effective inter-
actions in the (higher-order) phase reduction. In other words, reducing the dynamics
of a network dynamical system on a graph to an attracting lower-dimensional invariant
manifold such as a torus—a reduction in system dimension—comes at a cost of a more
complicated coupling structure which encodes the nonlinearity of the vector field in a
neighborhood of the invariant torus. From this perspective it is not surprising that the
same dynamical effect, such as discontinuous synchronization transitions [182], can be
observed in coupled nonlinear oscillators without higher-order interactions [55] and
phase oscillators with higher-order interactions [272]: The network dynamical sys-
tems may just be related to each other through a coordinate change. This provides
an opportunity to relate network dynamics with higher-order interactions (dynamical
systems with specific network structure) to results from general dynamical systems
theory.

6. Discussion. The development of a variety of tools to model and analyze high-
order networks brings new opportunities to think critically and be discriminating in
the types of tools that we use in different applications. It is often the case that when
data is in the form of a matrix, this matrix is interpreted as the adjacency matrix or
the weighted adjacency matrix of a graph. In many cases, such an interpretation is
reasonable and leads to exciting new insights in the field of application. For example,
a graph, such as a connectome or interactome, is the natural mathematical structure
for pairwise relational data. Other times, though, a graphical interpretation is used
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out of necessity—there have not been the tools to analyze higher-order structures and
so projecting onto the set of graphs has been the one of the few ways to perform inter-
esting analyses. The cost of such methods, however, is that higher-order relationships
and structure are lost, as well as some meaning. For example, analyzing collaboration
networks as graphs versus hypergraphs has been compared and contrasted in several
papers with each of these articles illustrating new insights that can be gained when
thinking about a collaboration network as a hypergraph [105, 170, 199, 274]. Having
tools for higher-order networks, such as those discussed in this review, allow such
analysis to be possible, and, importantly, invites us to be more conscious about the
choices that we are making when analyzing data. In terms of modeling and analysis,
the development of new tools leads us to the following questions: How can we think
about the trade-offs being made when making decisions about modeling? How can we
balance interpretability and convenience? And, most importantly to the quantitatively
minded, is there a way to develop a guiding framework to help answer these questions?

While often studied separately (and by separate communities), the three aspects
of higher-order networks discussed here are interlinked. One example is the structure-
function relationship in neuroscience: How do the properties of the structural networks
of neural cells and their connection relate to the dynamical properties of the network
dynamical system? On the one hand, one can analyze the structural features of
the connectivity in their own right: Whether it is extracted explicitly for small scale
networks such as the stomatogastric ganglion [143] or C. elegans (see subsection 1.1.4)
or using techniques such as diffusion tensor imaging on the large scale, this data has
been analyzed from a (higher-order) network perspective. Of course, these neural
systems give rise to the dynamics where nonadditive higher-order effects come into
play (see subsection 5.3.3). These dynamics eventually determine the function of
the neural system. The dynamics themselves—whether empirical data from neural
recordings or synthetic data from a neural model network dynamical system—can be
seen as data that has been analyzed using correlation based techniques by projecting
them on (higher-order) networks [25].

The emerging field of higher-order networks opens up exciting new directions.
While it may sometimes appear as a patchwork of results in multiple fields, we believe
there is much to be gained by cross-fertilization; this integrated review and perspective
is a step in this direction. We are looking forward to seeing the outcomes of these
research directions in the future.
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