
Mini-Batch Learning Strategies for modeling long term temporal dependencies:
A study in environmental applications

Shaoming Xu ∗ Ankush Khandelwal ∗ Xiang Li ∗ Xiaowei Jia† Licheng Liu ∗

Jared Willard ∗ Rahul Ghosh ∗ Kelly Cutler ∗ Michael Steinbach ∗

Christopher Duffy‡ John Nieber∗ Vipin Kumar ∗

Abstract

In many environmental applications, recurrent neural net-

works (RNNs) are often used to model physical variables

with long temporal dependencies. However, due to mini-

batch training, temporal relationships between training seg-

ments within the batch (intra-batch) as well as between

batches (inter-batch) are not considered, which can lead to

limited performance. Stateful RNNs aim to address this is-

sue by passing hidden states between batches. Since Stateful

RNNs ignore intra-batch temporal dependency, there exists

a trade-off between training stability and capturing tempo-

ral dependency. In this paper, we provide a quantitative

comparison of different Stateful RNN modeling strategies,

and propose two strategies to enforce both intra- and inter-

batch temporal dependency. First, we extend Stateful RNNs

by defining a batch as a temporally ordered set of training

segments, which enables intra-batch sharing of temporal in-

formation. While this approach significantly improves the

performance, it leads to much larger training times due to

highly sequential training. To address this issue, we fur-

ther propose a new strategy which augments a training seg-

ment with an initial value of the target variable from the

timestep right before the starting of the training segment.

In other words, we provide an initial value of the target

variable as additional input so that the network can focus

on learning changes relative to that initial value. By using

this strategy, samples can be passed in any order (mini-batch

training) which significantly reduces the training time while

maintaining the performance. In demonstrating the utility

of our approach in hydrological modeling, we observe that

the most significant gains in predictive accuracy occur when

these methods are applied to state variables whose values

change more slowly, such as soil water and snowpack, rather

than continuously moving flux variables such as streamflow.

∗University of Minnesota. {xu000114, khand035,
lixx5000, lichengl, willa099, ghosh128, lind0436, stei0062,

nieber,kumar001}@umn.edu
†University of Pittsburgh. xiaowei@pitt.edu
‡Pennsylvania State University. cxd11@psu.edu

1 Introduction

RNNs have been widely used in many time series ap-
plications such as healthcare [1], finance [2], hydrol-
ogy [3], and weather [4]. The key innovation behind
the success of RNNs is the joint use of Back Propaga-
tion Through Time (BPTT) [5] and mini-batch train-
ing (MB) [6]. Specifically, by breaking very long time-
series datasets into small training segments (samples),
we can efficiently train RNNs on large datasets. RNNs
can also be enhanced with architectures such as LSTM
[7] and GRU [8] to address the issue of vanishing gradi-
ents [9]. While BPTT and MB enable the practical use
of RNNs, they diminish the use of long temporal depen-
dencies during model training. BPTT on smaller seg-
ments and the independent and identically distributed
assumption on samples in traditional mini-batch train-
ing ignore the temporal relationship between training
segments and reduce the access to longer history to train
models. This leads to reduced performance in certain
applications such as soilwater, the amount of water in
the soil, whose temporal dependency structure can span
multiple years.

Stateful RNNs [10] were proposed to address this
problem partially. Specifically, Stateful RNNs pass
hidden states from one batch to another. While
this introduces temporal dependency across batches
(inter-batch), Stateful RNNs still consider each segment
within the batch to be independent. Consequently, re-
searchers have to reduce the batch size and set more
batches for long-term temporal information, leading to
training instability. For example, by setting the batch
size as one like stochastic gradient descent, Stateful
RNNs can use complete temporal information at the
expense of highly unstable training and lower conver-
gence rate[11]. In this paper, we propose two new ap-
proaches to prepare mini-batches that incorporate both
intra- and inter-batch dependencies for improving the
performance of RNNs while leveraging the computa-
tional benefits of mini-batch training and BPTT.

First, we extend Stateful RNNs to enable the intra-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

batch sharing of temporal information by defining a
batch as a temporally ordered set of training segments.
During the forward pass for a batch, we pass the de-
tached hidden states between segments, and we back-
propagate the average loss of the batch to update the
models’ weights. We show that this extension can
achieve significant performance improvements.

Despite the achieved performance improvement,
this strategy has two key issues. First, if the last
few batches are anomalous compared to the rest of the
dataset, the models can overfit the batches and thus get
optimized in the wrong direction. Second, the training
time of this method is much longer than traditional
MB. This is because the strategy cannot fully leverage
the matrix acceleration of modern GPUs due to its
sequential nature.

To address these drawbacks, we propose a new
strategy to prepare mini-batches, and this strategy is
inspired by the modeling of bio-physical systems. In
scientific simulations, the initial state of the physical
system is provided as input and the simulation changes
these states based on the observed inputs. In other
words, the simulation does not infer the state directly
but simulates the changes to the state from a given
starting point. We propose to use the same strategy
by providing an initial value as an additional input for
each training segment. For an RNN training segment,
the initial value will be the value of the target variable
from the timestep before the starting timestep of the
segment. From a machine learning perspective, this can
be seen as a variation of the teacher forcing strategy
[12]. In traditional teacher forcing, each timestep uses
the ground truth from the previous timestep. While
this has shown improvement in certain applications, it
introduces a serious issue in modeling physical systems.
Passing the previous timestep’s ground truth at every
timestep, the model only needs to learn the change
in the state for that step and hence cannot learn to
accumulate these changes correctly over time. While
this shows good improvement during training, it leads
to significant error propagation during inference. Hence,
we propose to use the teacher forcing concept only for
the first timestep of each sample to allow the model to
capture state changes over time.

While the concept of passing hidden states can be
applied to any application of RNNs, the idea of using
an initial target value as input can only be used where
the target variable represents cumulative effects on
inputs on the target variable. As a counterexample, in
language translation applications, passing hidden states
can communicate more about the previous sentence
than just passing the last word as input for the next
RNN segment. Hence, using target values as inputs

is better suited for quantitative applications such as
hydrology, weather, and finance.

We show the efficacy of the proposed strategies on
three physical variables related to Earth’s hydrologi-
cal cycle, including soil moisture (soilwater), snowpack,
and streamflow. Among these three variables, soilwater
and snowpack are state variables whose temporal de-
pendency spans multiple years and seasons respectively.
Streamflow is a flux variable that can largely be ex-
plained by weather inputs for a given day. Hence, these
three variables provide a good framework for analyzing
different training strategies.

The contributions of this paper are summarized as
follows:

• We propose two new training algorithms to pre-
pare mini-batches for improving the performance of
RNNs on tasks with long temporal dependencies.

• We pair the training algorithms with three infer-
ence algorithms to get five learning strategies and
assess the impact of temporal dependency choice
on their performance.

• We demonstrate the efficacy of our proposed strate-
gies on the societally important and challenging
problem of modeling hydrological variables using
RNNs.

• We share the data and the proposed algorithms in
the GitHub repository1.

2 Problem Formulation

We design learning algorithms that help sequential
models (e.g., RNNs) to learn a function that maps the
ith input segment Xi = (Xi

1, . . . , X
i
T) to the ith target

segment Y i = (Y i
1 , . . . , Y

i
T) of the same length. Table 1

summarizes the notation used in this paper.

Table 1: notation used in this paper.
Xi The i-th input segment of length T , Xi = (Xi

1, . . . , X
i
T)

Y i The i-th target segment of length T , Y i = (Y i
1 , . . . , Y

i
T)

Ŷ i The i-th predicted target segment of length T , Ŷ i = (Ŷ i
1 , . . . , Ŷ

i
T)

Y i
0 The initial target of ith segment.

Ŷ i
0 The predicted initial target of ith segment.

Yi
t A vector with value Y i

t in each entry.
T Length of a segment.
Hi

t The hidden states of ith segment at tth time step.
hs hidden states size
bs The number of segments in a batch

3 Baseline Mini-Batch algorithms

3.1 Random Mini-Batches (RMB). In RMB
training algorithm (figure 1, plot A), the training seg-
ments are randomly sampled without replacement and

1https://github.com/XuShaoming/MiniBatch_Learning_

Strategies

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/XuShaoming/MiniBatch_Learning_Strategies
https://github.com/XuShaoming/MiniBatch_Learning_Strategies

Figure 1: This figure shows the learning strategies. CMB-SCIF learning can overlap the segments where the tth
step of the ith segment matches the 0th step of the i+ 1th segment. We set bs = 2 to make figure easy to read.
Losses can not backpropagate over dash lines.

Table 2: The learning strategies as the combination of
training (TR) and inference (IF) algorithms.

TR
IF

IIF SSIF SCIF

RMB RMB-IIF RMB-SSIF
SMB SMB-SSIF
SSMB SSMB-SSIF
CMB CMB-SCIF

assigned to each batch; the model is trained on each
batch until all batches are used; then, RMB starts a
new epoch and trains the model over and over again
until the model reaches the stopping criteria (e.g., the
validation loss does not decrease over a certain number
of epochs).

RMB algorithm prevails in deep learning (DL) for
several reasons. First, random sampling creates dif-
ferent training batches in each epoch, which helps the
model escape from the local minima. Second, the mean
loss in every batch can reduce noisy gradient signals and
stabilize the training process. Third, the RMB algo-
rithm can leverage the vectorized implementation pro-
vided by the CUDA Toolkit to accelerate computation.

Lastly, RMB can control the batch size to train models
on big data using limited computational resources (e.g.,
GPU and main memory).

Although RMB has these advantages, it diminishes
the use of temporal dependencies during training since it
assumes each segment to be independent. Specifically,
RMB initializes each RNN segment with zero hidden
states, which ignores the valuable longer history and
the fact that the consecutive segments in the time
series are highly dependent. Thus, RMB can lead
to poor performance for variables with long temporal
dependencies.

3.2 Stateful Mini-Batches (SMB). SMB training
algorithm (figure 1, plot B) passes RNN hidden states
between batches, which makes the segments temporally
dependent and respects the nature of time series data.
In TensorFlow [13] and Keras [10], we can activate SMB
by setting the RNNs’ parameter stateful = True; then,
the algorithm will use the last hidden states of each
RNN segment from a batch to initialize each segment
at the same position in the next batch.

Since SMB passes hidden states between batches,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

models are trained by only a limited amount of historical
information. When the number of batches is small, each
batch contains more ”independent” segments, and fewer
hidden states pass between batches. When the number
of batches is large, more hidden states pass between
batches. In the extreme case, when each batch only
contains one segment, the number of batches equals the
number of segments, and all historical information is
used to train models. Though this one-at-a-time SMB
training gains practical popularity [14, 15, 16], it is can
lead to unstable optimization and increased training
time.

4 Proposed Mini-Batch algorithms

4.1 Sequential Stateful Mini-Batches (SSMB).
We design the SSMB algorithm (figure 1, plot D)
to train models using all historical information while
maintaining more segments in each batch to stabilize
the optimization. Strictly forcing the order of temporal
segments to use during training, SSMB initializes the
current RNN segment by the last hidden states of the
previous RNN segment to enable the intra-batch sharing
of temporal information. Moreover, we detach the
last hidden states and only use their values to prevent
passing errors between segments, which follows the
Truncated Backpropagation Through Time algorithm
[17] to control the optimization complexity.

Though SSMB can stabilize the optimization by
using the averaged gradients to update model weights,
it requires a longer training time since it has to predict
each segment individually to generate and pass hidden
states sequentially. In addition, since both SMB and
SSMB have to fix the order of segments to train models,
they can overfit the models, optimize the models in the
wrong direction, or even lead to convergence issues when
the last few batches are anomalous or the data has a
significant domain shift over time.

4.2 Conditional Mini-Batches (CMB). In the
CMB algorithm (figure 1, plot E), the initial target value
Y i
0 , observed one step before the first time step of i-th

RNN segment, is copied at every time step and concate-
nated with ith input segment Xi to get a new input seg-
ment X

′i; a new dataset is created. By providing the
initial value, we made the training segments condition-
ally independent of each other because the initial value
can be seen as a summary of the temporal effects of all
previous timesteps. This conditional independence en-
ables random shuffling of training segments and hence
reduces training time significantly while maintaining
good performance.

CMB can be seen as a special variation of the
teacher forcing strategy [12]. For variables that rep-

resent the state of a system, adjacent timesteps are of-
ten correlated. Traditional teacher forcing uses the ob-
served target values from the previous timestep as the
additional inputs of the current timestep, which makes
the model unable to learn accumulated changes in the
state over time during training and leads the model to
significant error propagation during inference. CMB is
designed to use only the initial target values to avoid
these issues.

5 Inference algorithms

Temporal dependency during inference can also lead to
changes in performance for any trained model. In this
section, we describe three different inference algorithms
and couple them with the training algorithms to form
the learning strategies in table 2.

5.1 Independent inference (IIF). In IIF (figure 1,
plot A), the trained model predicts each testing segment
independently. IIF often serves as the default inference
method of the RMB algorithm in practice, named RMB-
IIF. Since this combination does not enforce temporal
dependency during training as well as inference, it often
leads to limited performance for long memory variables.

5.2 Sequential stateful inference (SSIF). In
SSIF (figure 1, plots B, C, D), the trained model of the
current segment is initialized by the hidden states from
the previous segment to get all predictions in one pass.
Since SSIF passes hidden states between every consec-
utive segment, the trained models can use all historical
information to make predictions. The SSIF serves as
the default inference method of SMB and SSMB train-
ing methods to get SMB-SSIF and SSMB-SSIF learning
strategies respectively.

Moreover, we can apply SSIF on RMB-trained
models to get the RMB-SSIF strategy. The RMB-SSIF
works since RNN units share the same learned weights
and can treat the previous segment’s hidden states
equally to the ones from the previous time step. Since
RMB-SSIF not only leverages the long-term history but
also avoids models’ reconstruction of hidden states from
scratch for each segment, RMB-SSIF can often provide
superior prediction accuracy than RMB-IIF.

5.3 Sequential conditional inference (SCIF).
The SCIF (figure 1, plot E) is designed as the inference
algorithm of CMB to get the CMB-SCIF learning strat-
egy. In SCIF, we can provide a random initial target
value (e.g., Y 1

0 = 0) as the state input to get the first
prediction. Then the initial target value, as the state
input of the current segment, is predicted from the pre-
vious segment until we get all predictions in temporal

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

order.
Since the target values are already observed in

the training and predicted in the inference, CMB-
SCIF requires no additional observation and can be
easily adapted to train existing models for diverse
applications.

6 Experiments

6.1 Dataset. We demonstrate the effectiveness of
different learning strategies on a hydrology dataset sim-
ulated by The Soil & Water Assessment Tool (SWAT)
[18]. The dataset contains six input weather variables:
precipitation, minimum daily temperature, maximum
daily temperature, solar radiation, wind speed, and
relative humidity. To include the seasonal informa-
tion, we select the day of year (DOY), transformed
by 183 − |doy − 183| to reflect the distance between
days, as an additional input. To evaluate the perfor-
mance of our proposed methods, we use three differ-
ent yet important hydrological system output variables,
namely Soilwater (SW), Snowpack (SNO), Streamflow
(SF), with varying levels of temporal dependency struc-
ture. SW represents the amount of water in the soil that
changes due to evaporation, plant intake, etc. Among
these three variables, SW has the longest temporal de-
pendency structure spanning multiple years. SNO rep-
resents the amount of water available in the form of
snow. SNO temporal dependency is seasonal because
snow completely melts by the end of summer in many
locations. In other words, unlike SW, SNO state resets
to zero every year. Finally, SF is a flux variable whose
temporal dependency can largely be removed due to ma-
jor weather events like precipitation and snowmelt. In
addition, SF also depends on the value of state variables
and weather drivers. For example, wet soil will lead to
more SF for the same amount of rainfall or snowmelt
compared to dry soil. Hence, these three variables pro-
vide a good framework for analyzing different training
strategies. Figure 2 shows the timeseries of weather in-
puts and these three target variables. This paper shows
results using a SWAT simulation for a watershed in
Southwest Minnesota. We share the data of the ad-
ditional six watersheds and their experiment results in
the same GitHub repository.

Table 3: The settings of base models.
Model Settings
GRU 1-layer, 32 hidden state size
LSTM 1-layer, 32 hidden state size

Transformer
1-layer, 21 embedding size,7 head numbers,
masked multi-head attention, encoder-only

Figure 2: The blue time series represent 7 input features
and the black time series represent 3 target features.

6.2 Experimental Setup. The time series data
ranges from 1902-01-01 to 2902-01-01 with a total of
365244 days. We use the first 182622 days (50% se-
ries) as the training set, the middle 36524 days (10%
series) as the validation set, and the last 146098 days
(40% series) as the testing set. We apply gaussian nor-
malization on the training set, then use the calculated
sample means and variances to normalize the validation
and testing sets. We compare GRU, LSTM, and Trans-
former (Table 3) and decide to use GRU as the base
model to make many-to-many predictions. We slice the
normalized training, validation, and testing time series
into segments of length 366. Every consecutive seg-
ment does overlap with 183 days in RMB-IIF and CMB-
SCIF strategies and does not overlap in SMB-SSIF and
SSMB-SSIF strategies.

The learning methods train models on the mean
square error (MSE) loss function using the Adam algo-
rithm [19] in the default PyTorch setting except for the
0.01 learning rate. In each epoch of RMB and CMB,
we shuffle the segments in the training set and assign
64 segments in each batch to train the models. In SMB
and SSMB algorithms, we organize segments in specific
orders to allow hidden states to pass between batches
or segments. We train models 500 epochs in maximum
and stop the training if the models can not get a smaller
MSE within consecutive 50 epochs, called early stop-
ping. Finally, we use the pre-calculated mean and vari-
ance of the target variable to transform the predictions
back to the original scale before evaluation. We exam-
ine the learning strategies 5 times to train models with
different initial weights to quantify the stability of the
strategies.

6.3 Performance metrics

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

6.3.1 Mean square error (MSE). We use MSE as
the loss function to train models. MSE is the sum of the
squares of residuals to measure the discrepancy between
the predictions and observations, widely used in ML and
statistics. MSE ranges from 0 to +∞; a smaller MSE
indicates the model fits the data better.

6.3.2 Root mean square error (RMSE). RMSE
is simply the square root of the MSE. The square root
keeps RMSE on the same scale as the observations, mak-
ing RMSE more interpretable for the domain scientists.
RMSE ranges from 0 to +∞, and the smaller RMSE
means better predictions.

RMSE(Y, Ŷ) =

√√√√ 1

N

N∑
i=1

(Ŷ i − Y i)2(6.1)

6.3.3 Nash–Sutcliffe model efficiency coeffi-
cient (NSE). NSE is widely used to measure the pre-
dictive skill of hydrologic models. Equation (6.2) shows
the NSE equals one minus the ratio of error variance
(MSE) divided by the variance of the observations.
When the error variance is larger than the variance of
the observations, NSE becomes negative. As a result,
NSE ranges from −∞ to 1. The higher NSE indicates
better prediction skills of the models.

NSE(Y, Ŷ) = 1−
∑N

i=1(Ŷ
i − Y i)2∑N

i=1(Y
i − Ȳ)2

(6.2)

7 Results

Table 4: The RMSEs of base models on RMB-IIF.
SW SNO SF

GRU 32.796± 0.229 2.588± 0.06 0.663± 0.013
LSTM 33.487± 0.406 2.483± 0.067 0.685± 0.011

Transformer 35.400± 0.174 6.818± 0.555 1.301± 0.014

7.1 Base models selection. Table 4 shows that
GRU performs similarly to the LSTM and better than
the Transformer. Since GRU has simpler architecture,
we use GRU as the base model to measure the perfor-
mance of the learning strategies.

7.2 Performance of strategies. Table 5 summa-
rizes the RMSE and NSE values of predictions on the
testing set for all three variables. We can see the trends
in performance vary depending on the temporal de-
pendency on variables. For SW and SNO, both pro-
posed strategies outperform existing baselines. How-
ever, CMB-SCIF performs similarly to RMB-IIF for SF.
Since SF is a flux variable whose values and temporal
dependencies can be largely reset by weather inputs like
precipitation and snowmelt, access to the initial value

Figure 3: The left plot explains how we compute the
average RMSE at each timestep of RNN segments. The
right plot explains how we compute average RMSE at
each day across years.

does not provide additional information. SSMB-SSIF
can slightly improve SF because SSMB-SSIF uses hid-
den states which contain information in addition to the
target values that help SF modeling. Since the dataset
is based upon the hydrology system whose state vari-
ables accumulate historical temporal information, these
results show that the CMB-SCIF approach is suitable
for processes whose initial values contain rich informa-
tion about the system’s state and might be limited in
other processes, which merits further research to verify.
The table also shows the impact of sharing information
between segments during inference. Specifically, we ob-
serve that SSIF significantly improves performance com-
pared to IIF when they both use the same RMB-trained
models in inference.

Figure 4: This figure shows the average RMSE at each
RNN timestep, explained in fig 3, on testing set.

7.3 Average RMSE at each timestep of RNN
segments. In this study, the learning strategies train
GRUs to make predictions at every timestep. As the left

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Table 5: The table shows the overall performance of models from different learning methods.
SW SNO SF

Strategy RMSE NSE RMSE NSE RMSE NSE
RMB-IIF 32.796± 0.229 0.627± 0.005 2.588± 0.06 0.952± 0.002 0.663± 0.013 0.948± 0.002
RMB-SSIF 18.92± 0.857 0.876± 0.011 1.645± 0.153 0.98± 0.004 0.522± 0.044 0.968± 0.006
SMB-SSIF 17.875± 1.203 0.889± 0.015 1.556± 0.281 0.982± 0.007 0.525± 0.033 0.968± 0.004
SSMB-SSIF 15.055± 1.282 0.921± 0.013 1.364± 0.059 0.987± 0.001 0.492± 0.029 0.971± 0.003
CMB-SCIF 16.272± 0.367 0.908± 0.004 1.099± 0.104 0.991± 0.002 0.678± 0.02 0.946± 0.003

plot of figure 3 explains, we compute the average RMSE
at each timestep (AvgStepRMSE) on the testing set to
compare the learning strategies at different timesteps
within the segments. We can use AvgStepRMSE to
measure how many timesteps different strategies require
before they can generate reasonable predictions.

As figure 4 shows, RMB-IIF learning gets a very
high AvgStepRMSE at the early steps, then slowly
decreases AvgStepRMSE, which reveals that RMB-IIF
learning needs longer timesteps to build informative
hidden states. On the contrary, RMB-SSIF, SMB-SSIF,
and SSMB-SSIF get flat AvgStepRMSE traces because
they do not reset the hidden states between segments.
The same reason explains why RMB-SSIF, which uses
SSIF inference, can perform much better than RMB-IIF
learning though they use the same trained model.

CMB-SCIF learning has a distinct AvgStepRMSE
pattern. In the SF task, CMB-SCIF performs no dif-
ferently than RMB-IIF. In SW and SNO tasks, CMB-
SCIF gets intermediate AvgStepRMSE at early time
steps, quickly decreases AvgStepRMSE within a few
timesteps, and keeps reducing the AvgStepRMSE to
even lower values until the last timestep. For both
SW and SNO tasks, proposed mini-batch strategies im-
prove performance even on the last timestep compared
to RMB. This highlights the utility of incorporating
temporal dependency to improve performance on all
timesteps and not just earlier timesteps.

7.4 Average RMSE at each day across years.
We analyze the average RMSE each day across years
(AvgDailyRMSE), as right plot of figure 3 explains. We
can use AvgDailyRMSE to reveal seasonal patterns in
the loss of trained models on SW, SNO, and SF tasks.
As shown in Figure 5, our proposed learning strategies
perform better than baselines on all days of the year
for the SW and SNO tasks. For SNO, AvgDailyRMSE
traces of the baselines, RMB-IIF, RMB-SSIF, and SMB-
SSIF’s AvgDailyRMSE, are primarily overlapped since
RMB-IIF provides as good SNO predictions as other
baselines after 100 timesteps as shown in Figure 4.

The simulated watershed is a snow-dominated wa-
tershed that exhibits a strong seasonal pattern of snow
accumulation. The SNO variable is zero in summer but

Figure 5: This figure shows the traces of average daily
RMSE across years, explained in fig 3, on the testing set.
The shaded regions, muted in the SF plot for clarity,
cover one standard deviation from five runs on models
with different initial weights.

is more active and dynamic in other seasons when ei-
ther snow falls or melts. This seasonal pattern can be
observed in our prediction results in Figure 5. The Avg-
DailyRMSE traces of SNO get lower values in summer
since snow only happens when the temperature is below
the freezing point.

Snow is a type of precipitation that has delayed ef-
fects on SW and SF. Figure 5 shows higher AvgDai-
lyRMSEs for both SW and SF around days 50 to 150
when the snow starts melting in spring. Except RMB-
IIF learning, all other learning strategies get relatively
low AvgDailyRMSE in spring on SW prediction, show-
ing that passing information between segments helps
models capture snow effects better.

On SF prediction, although all strategies get sim-
ilar AvgDailyRMSE in winter and spring, RMB-SSIF,
SMB-SSIF, and SSMB-SSIF get lower AvgDailyRMSE
in summer, showing that hidden states could carry help-
ful information about SW and capture the effect of snow
melting on SF prediction in summer.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Table 6: This table records how many seconds the
learning methods need to train a model in an epoch.

RMB SMB SSMB CMB
sec/epoch 0.0172 0.0211 0.5390 0.0151

7.5 Time efficiency. Table 6 shows that SSMB
takes 0.5390 seconds to finish an epoch on an NVIDIA
A100 GPU since SSMB has to process segments one by
one and wait for hidden states from the previous to ini-
tialize the current segment. RMB, SMB, and CMB algo-
rithms only use around 0.017 seconds since they process
segments within a batch independently while leveraging
the GRUs’ matrix acceleration to reach higher time ef-
ficiency. This shows that CMB can achieve good per-
formance improvements with minimal effect on training
times compared to SSMB.

7.6 Data efficiency. To evaluate the methods’ gen-
eralizability, we assess how much training data the
learning methods require to train models on SW pre-
diction. As Figure 6 shows, the relative position of
the traces is consistent with the previous results where
the proposed SSMB-SSIF and CMB-SCIF strategies
perform better than baseline across all training data
sizes. The SSMB-SSIF and CMB-SCIF get close RMSE
traces, showing that both initial target values and hid-
den states can help simulate SW.

Figure 6: We vary the training data sizes (5, 10, 20,
40, 80, 160, and 500 years) and use different learning
methods to train models on SW modeling. We use the
trained models to predict the same testing set and get
RMSE traces in this figure.

7.7 Impact of inference initialization on SCIF.
Figure 7 shows the predicted SW and SNO time se-
ries from SCIF inference initialized by varying initial
targets. We provide 7 SW initial values, including the
observed value (137.9), the mean values (214.8) from
training data, and five extrapolated values (0, 100, 200,
300, 400) from the range of SW. Figure 7 shows that
all seven SW predictions keep merging and finally over-
lapping each other within 600 time steps. We initialize

the SCIF inference using 6 SNO values, including the
mean values (4.1) from training data and the five ex-
trapolated values (0, 40, 80, 129, 160) from the range of
SNO (0 happens to be the observed initial value). Fig-
ure 7 shows all six SNO predictions merge within 100
time steps.

These predicted SNO time series merge faster be-
cause SNO resets to 0 in summer. These results prove
that SCIF inference is sensitive to initial memory sta-
tus during early-stage simulations but will ultimately
converge to reflect the dominant impacts from weather
drivers.

Figure 7: This figure shows the predicted segments from
SCIF inference algorithm initialized by different initial
target values.

7.8 Comparisons with teacher forcing. As dis-
cussed earlier, CMB-SCIF is a special case of teacher
forcing strategy. Table 7 shows CMB-SCIF performs
consistently better than teacher forcing on SW, SNO,
and SF tasks. Since SNO completely melts by the end
of summer and SF is strongly influenced by precipita-
tions, the error propagation can be largely reset and be
under controlled; hence, teacher forcing performs only
slightly worse than CMB-SCIF. However, teacher forc-
ing, although having to use an observed initial value to
start inference, performs much worse on SW since the
error propagation issue is out of control due to the long-
term temporal dependency of SW, as Figure 8 reveals.

Table 7: The table compares the testing RMSEs.
Strategy SW SNO SF

Teacher forcing 34.31± 11.27 1.23± 0.52 0.8± 0.29
CMB-SCIF 16.272± 0.367 1.099± 0.104 0.678± 0.02

8 Conclusion

In this paper, we proposed to use hidden states and
initial target values to incorporate temporal dependence
between training segments for timeseries prediction
tasks. Specifically, we introduce RMB-SSIF learning

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 8: Predicted timeseries of teacher forcing and
CMB-SCIF on SW task.

to allow RMB-trained models to pass hidden states
in the testing phase, preventing models from building
up informative hidden states from scratch for each
segment. We further show that RMB-SSIF learning
performs similarly to SMB-SSIF learning. To deal
with the weakness of SMB-SSIF learning, we design the
SSMB-SSIF learning to train models using all historical
information while maintaining more segments in each
batch to stabilize the optimization. We show that
SSMB-SSIF learning performs consistently better than
SMB-SSIF learning on SW, SNO, and SF predictions.
We further show that CMB-SCIF can provide similar
improvements while maintaining faster training times
similar to traditional mini-batch learning. For future
work, we aim to test these strategies on other timeseries
applications such as finance and healthcare.

9 Acknowledgments

The work is being funded by NSF HDR grant 1934721,
1934548, NSF FAI grant 2147195, NASA award
80NSSC22K1164, the USGS awards G21AC10207,
G21AC10564, and G22AC00266. Access to computing
facilities was provided by Minnesota Supercomputing
Institute.

References

[1] Benjamin Shickel et al. Deep ehr: a survey of re-
cent advances in deep learning techniques for elec-
tronic health record (ehr) analysis. IEEE journal
of biomedical and health informatics, 22(5):1589–
1604, 2017.

[2] Omer Berat Sezer et al. Financial time series fore-
casting with deep learning: A systematic litera-
ture review: 2005–2019. Applied soft computing,
90:106181, 2020.

[3] Muhammed Sit et al. A comprehensive review
of deep learning applications in hydrology and
water resources. Water Science and Technology,
82(12):2635–2670, 2020.

[4] Davide Mauro Ferrario et al. Harnessing machine
learning and deep learning applications for climate
change risk assessment: a survey. In EGU General
Assembly Conference Abstracts, pages EGU22–

6568, 2022.
[5] Paul J Werbos. Backpropagation through time:

what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

[6] Geoffrey Hinton et al. Neural networks for machine
learning lecture 6a overview of mini-batch gradient
descent. Cited on, 14(8):2, 2012.

[7] Sepp Hochreiter et al. Long short-term memory.
Neural computation, 1997.

[8] Kyunghyun Cho et al. Learning phrase representa-
tions using rnn encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078,
2014.

[9] Razvan Pascanu et al. On the difficulty of train-
ing recurrent neural networks. In International
conference on machine learning, pages 1310–1318.
PMLR, 2013.

[10] Antonio Gulli et al. Deep learning with Keras.
Packt Publishing Ltd, 2017.

[11] Léon Bottou et al. The tradeoffs of large scale
learning. Advances in neural information process-
ing systems, 20, 2007.

[12] Ronald J Williams et al. A learning algorithm
for continually running fully recurrent neural net-
works. Neural computation, 1989.

[13] Mart́ın Abadi et al. {TensorFlow}: a system for
{Large-Scale} machine learning. In 12th USENIX
symposium on operating systems design and imple-
mentation (OSDI 16), 2016.

[14] M Akin Yilmaz et al. Effect of architectures and
training methods on the performance of learned
video frame prediction. In 2019 IEEE International
Conference on Image Processing (ICIP). IEEE,
2019.

[15] Steven Elsworth et al. Time series forecasting
using lstm networks: A symbolic approach. arXiv
preprint arXiv:2003.05672, 2020.

[16] Alexander Katrompas et al. Enhancing lstm mod-
els with self-attention and stateful training. In
Proceedings of SAI Intelligent Systems Conference.
Springer, 2021.

[17] Ronald JWilliams et al. An efficient gradient-based
algorithm for on-line training of recurrent network
trajectories. Neural computation, 1990.

[18] Jeffrey G Arnold et al. Swat: Model use, calibra-
tion, and validation. Transactions of the ASABE,
2012.

[19] Diederik P Kingma et al. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Problem Formulation
	Baseline Mini-Batch algorithms
	Random Mini-Batches (RMB).
	Stateful Mini-Batches (SMB).

	Proposed Mini-Batch algorithms
	Sequential Stateful Mini-Batches (SSMB).
	Conditional Mini-Batches (CMB).

	Inference algorithms
	Independent inference (IIF).
	Sequential stateful inference (SSIF).
	Sequential conditional inference (SCIF).

	Experiments
	Dataset.
	Experimental Setup.
	Performance metrics
	Mean square error (MSE).
	Root mean square error (RMSE).
	Nash–Sutcliffe model efficiency coefficient (NSE).

	Results
	Base models selection.
	Performance of strategies.
	Average RMSE at each timestep of RNN segments.
	Average RMSE at each day across years.
	Time efficiency.
	Data efficiency.
	Impact of inference initialization on SCIF.
	Comparisons with teacher forcing.

	Conclusion
	Acknowledgments

