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ABSTRACT

We propose a simple yet effective solution to tackle the often-
competing goals of fairness and utility in classification tasks. While
fairness ensures that the model’s predictions are unbiased and do
not discriminate against any particular group or individual, util-
ity focuses on maximizing the model’s predictive performance.
This work introduces the idea of leveraging aleatoric uncertainty
(e.g., data ambiguity) to improve the fairness-utility trade-off. Our
central hypothesis is that aleatoric uncertainty is a key factor for
algorithmic fairness and samples with low aleatoric uncertainty are
modeled more accurately and fairly than those with high aleatoric
uncertainty. We then propose a principled model to improve fair-
ness when aleatoric uncertainty is high and improve utility else-
where. Our approach first intervenes in the data distribution to
better decouple aleatoric uncertainty and epistemic uncertainty. It
then introduces a fairness-utility bi-objective loss defined based on
the estimated aleatoric uncertainty. Our approach is theoretically
guaranteed to improve the fairness-utility trade-off. Experimental
results on both tabular and image datasets show that the proposed
approach outperforms state-of-the-art methods w.r.t. the fairness-
utility trade-off and w.r.t. both group and individual fairness metrics.
This work presents a fresh perspective on the trade-off between
utility and algorithmic fairness and opens a key avenue for the
potential of using prediction uncertainty in fair machine learning.
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1 INTRODUCTION

Machine learning (ML) algorithms have been widely used in vari-
ous applications and are becoming increasingly popular in domains
such as computer vision, speech recognition, natural language pro-
cessing, and bioinformatics [33]. Despite their superior performance
in terms of prediction accuracy, they have often faced criticism for
lacking fairness and discriminating against marginalized groups [53,
23]. Fair ML aims to improve algorithmic fairness. Due to the often
competing relation between fairness and utility, a primary chal-
lenge in fair ML has been improving the fairness-utility trade-off
[23, 37]. Finding a solution that alleviates the trade-off and improves
both goals is often deemed impossible yet crucial to ensure that
ML algorithms are not only functional but also trustworthy when
making predictions [15, 14].

Prior work in fair ML improves training procedures based on
certain heuristics (e.g., using an adversary [54]) to achieve a better
trade-off [21, 9, 31] (see more works discussed in depth in Section 5).
In essence, doing so is analogous to finding a better hypothesis
to reduce uncertainty in areas where there is a lack of data or
knowledge [34, 18]. This kind of uncertainty is known as epistemic
or model uncertainty [1]. By contrast, this work proposes to explore
the connection between fairness and the other kind of predictive
uncertainty, known as aleatoric [1] or data uncertainty, arising from
the inherent ambiguity in the data.

Aleatoric uncertainty naturally relates to both algorithmic fair-
ness and utility. When data is ambiguous due to e.g., inherent noise
or entangled causal features, we humans tend to make decisions
relying on past experience and ambiguous information that might
reflect historical inequalities. Similarly, ML models are more likely
to make wrong predictions under high aleatoric uncertainty, and
even if we train on an infinite amount of data, the model would still
be uncertain about the prediction [26]. Therefore, our central hy-
pothesis is that aleatoric uncertainty is a crucial cause of algorithmic
unfairness, and samples with low aleatoric uncertainty are modeled
more accurately and fairly than those with high aleatoric uncertainty.
The relation between aleatoric uncertainty and fairness has evaded
investigation in the past since aleatoric uncertainty is associated
with the impossibility of improvement.

To bridge the gap, this work introduces a simple yet effective ap-
proach that leverages aleatoric uncertainty to improve the fairness-
utility trade-off with theoretical guarantees. In particular, given the
potential confounding effects related to the protected attribute, we
first propose effective distributional interventions to prevent noise
leakage in uncertainty estimation to enable the disentanglement of
aleatoric and epistemic uncertainties. Predictions with low uncer-
tainty tend to be fair while those with high uncertainty tend to be
unfair (Section 3.3). Thus, we explicitly model aleatoric uncertainty
in the training process: considering heteroscedastic uncertainty
(i.e., the uncertainty varies across samples), we prioritize utility
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Figure 1: After the distributional intervention, GAIA improves the fairness-utility trade-off by balancing the utility (Lcg) and
fairness (Ly,;y) loss using aleatoric uncertainty estimated by BNNs.

over fairness when dealing with samples that have low aleatoric
uncertainty, and prioritize fairness over utility for samples with
high aleatoric uncertainty. The representation of various protected
groups is heterogeneous in real-world data. Conventionally, the
ground truth labels provided are assumed to be correct. However,
ML models learn spurious correlations since subgroups of the pop-
ulation achieve different distributions of favorable or unfavorable
outcomes. This results in algorithmic bias. For our approach, we
draw a dichotomy between the solution space; (i) where our model
is likely to make the correct prediction, resulting in lower algo-
rithmic bias, and (ii) where it is likely to be uncertain, resulting in
higher algorithmic bias. By utilizing this knowledge during model
training, we can reduce the trade-off between utility and fairness
objectives. We evaluate our approach on well-established datasets
and compare it to the state-of-the-art baselines that include pre-,
in-, and post-processing methods [4, 53]. Experimental results indi-
cate that the proposed approach achieves the best fairness-utility
trade-off in terms of both group fairness metrics [19, 53], and shows
potential for individual fairness.

In summary, we introduce several important contributions to

the field of fairness in ML:

(i) we provide the first empirical results regarding the relation-
ship among fairness, utility, and aleatoric uncertainty in clas-
sification tasks;

(if) we propose a simple yet effective approach that leverages
aleatoric uncertainty to improve the fairness-utility trade-off
with a theoretical guarantee; and

(iii) we provide empirical evidence of its efficacy on real-world
datasets. Experimental results also highlight the importance
of distributional intervention for uncertainty estimation that
would otherwise lead to algorithmic unfairness.

2 METHODOLOGY

Problem Setting. We consider the standard fair binary classifica-
tion setting where the samples X € X c R", labels Y € Y = {0, 1},
and protected attribute A € {0, 1} are provided as the input. Our
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objective is to train a classifier g : R™ — [0, 1] such that its predic-
tions ¥ € [0, 1] are accurate i.e., P(Y|X) = P(Y|X), and fair across
different demographic groups. The proposed approach, Guided
Algorithm for Integrating Aleatory (GAIA), draws from the inher-
ent relation between fairness and aleatoric uncertainty due to data
ambiguity which leads a model to rely on biased priors. With high
aleatoric uncertainty, it becomes infeasible to improve the utility;
however, we can still improve fairness since it does not necessarily
rely on utility. We empirically and theoretically prove that GAIA
improves the fairness-utility trade-off. GAIA consists of three major
steps highlighted in the following subsections.

2.1 Distributional Intervention

Traditional ML algorithms use Empirical Risk Minimization (ERM) [17]
and rely on the independent and identically distributed (i.i.d.) as-
sumption. Prior work shows that distribution shift exacerbates both
fairness and predictive performance [48, 43]. In addition, due to
the skewed distributions for different protected groups, standard
uncertainty estimation methods such as BNNs cannot be directly
applied to estimating the model uncertainty given its sensitivity
to data imbalance [42]. To assuage this issue, we intervene in the
data distribution and identify two instances of data bias that can be
controlled: the label distribution is skewed resulting in the model
relying on (i) the prior distribution of the label (Label Shift), and (ii)
the spurious correlation between the protected attribute and the la-
bel (Attribute Label Shift). An example for (i) is when the majority of
the data has a specific label (e.g., non-fraud transactions in fraud de-
tection). Here, a trained model may rely on shortcut learning [22]
to predict the majority label. Similarly, for (ii), a trained model
may rely on the protected attribute for prediction if it displays a
significant correlation with the label. If the protected attribute is
correlated with the label, the non-protected covariates affected by
the protected attribute also resonate with the correlation. Thus, if
we intervene in the correlation between the protected attribute and
the label, it also results in the intervention of the factors resonating
with the protected attributes in the non-protected covariates.
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Distribution intervention can mitigate unfairness and lead to
better uncertainty disentanglement. Note that this step can be re-
placed with other heuristics for achieving better utility and fairness
as highlighted in Section. 5. This is because using a good heuris-
tic reduces epistemic uncertainty, leading to better estimation of
aleatoric uncertainty.

2.1.1 Label Shift. Label shift aims to change the distribution of
the labels in every mini-batch during training. This will result in
a model that does not favor the majority label in the original data
distribution. Formally, let (X, Y) € D be instances in the dataset
D, where X denotes the feature matrix and Y € {0, 1} denotes the
binary label vector. We define the sets of indices M; = {i € D |
Y; =1} and My = {i € D | Y; = 0}, corresponding to samples
with favorable (e.g., low credit risk) and unfavorable outcomes,
respectively. |[M;| = n; and |[My]| = no.

A random percentage of favored samples, p, is determined by
sampling randomly from the uniform distribution 2/ (0, 1). We then
define the scaled sets of indices M; ={ie M | p} and M(') =
{i € My | 1 — p}. These sets are used to calculate the probability
[len]r[l], P? = LeMy) . A batch of
size m is selected from the dataset by randomly picking samples
without replacement according to the probabilities P;. We denote
the set of indices of the selected samples by I = {i1,ia,...,im} C D.
This results in a counterfactual batch of training samples with the
intervention of label distribution (LabelShift, LS).

of selecting each sample, P}

2.1.2 Attribute Label Shift. Intervening only on the label dis-
tribution may be insufficient to reduce the spurious correlations
in the data. We further intervene on the protected attribute to re-
solve its confounding effect. However, this is often infeasible with
observational data. Therefore, we introduce an estimation of in-
tervention by changing the correlation of protected attribute and
label distributions across different mini-batches during training.
The underlying assumption is that there is a sufficient number of
non-causal factors in the covariates such that the interventional
changes are large enough for the model to distinguish the non-
causal factors from the causal ones. Thus, Attribute Label Shift
aims to intervene on both the protected attribute a and the label
y. Let My, = {ieD|a =1} andeo ={i € D | a; = 0} be the
sets of indices for samples belonging to the protected group and
non-protected group, respectively. n,1 = [M,1| and njyo = [Myol.

A random percentage p; of samples from the protected group is
determined by sampling randomly from the uniform distribution
U (0, 1). We then define the scaled sets of indices MI/Jl ={ie M1 |
p1}and M}’)0 ={ie Mo | 1 — p1}. These sets are used to calculate
the probability of selecting each sample Pp, ; from the protected or
LieM’, ] lieM’, ]

i . Similarly,

non-protected group, Ppii= » Ppo; =
the probability of selecting each sample Ps; from the favored or

unfavored class is defined as Py ; = [ien]i/ll] JPoi = [ienj(\f“] . The final

probability of selecting each sample is the product, P; = Pp; * P ;.
This gives us a batch of training samples with interventions on the
correlation of protected attribute and label (AttrLabelShift, ALS).
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2.2 Decoupling Aleatoric and Epistemic
Uncertainty

GAIA uses BNN via backpropagation (Bayes by Backprop) [7] to

conveniently decouple aleatoric from epistemic uncertainty while

also maintaining its ability to be integrated into existing neural

architectures. Bayes by Backprop is computationally efficient and

theoretically sound. Given C classes, aleatoric uncertainty is for-

mulated as the expected entropy for the prediction [1, 26],
C

Haaw) = [ D) -pul ) logp(uix 0)do. ()

1

where p(y;|x, 0) is the predictive probability of the i-th class from

the model parameterized by 0. Epistemic uncertainty is represented

by the model’s predictive variance [1],

02,i(%) = Var; [p(ylx, 0))], @)

where j denotes the j-th sample of the BNN weights. BNN involves
finding the maximum a posteriori (MAP) weights:

OMAP = arg maxlog P(6]D) = arg max P(D|6) +log P(0). (3)
0 0

The final prediction of BNNs is the expected value of the predicted
label 7 for an unseen sample x over the posterior distribution of the
weights, P(0|D) ie., P(§|%) = Ep(g|p)[P(§|%,0)]. We can then
utilize each candidate prediction, P(§|%, 8;), where 0; ~ P(6|D)
to efficiently evaluate both aleatoric and epistemic uncertainties
using Eq. 1 and 2, respectively.

For tractable estimation, the common practice in variational
inference estimates the posterior using a surrogate, q(6|w), by min-
imizing the Evidence Lower Bound (ELBO) loss [52]. Further, we
assume heteroscedastic uncertainty, i.e., uncertainty varies across
different samples [10], given its practicability. Hence, the uncer-
tainty metrics between predictions are on a per-sample basis. By ex-
plicitly modeling aleatoric and epistemic uncertainty, GAIA traces
whether the uncertainty stems from ambiguity or lack of data.

2.3 Improving Fairness-Utility Trade-off

The goal of GAIA is leveraging aleatoric uncertainty to bridge the
gap between fairness and accuracy based on the hypothesis that
samples with low aleatoric uncertainty are modeled more accurately
and fairly than those with high uncertainty. Thus, to achieve a better
trade-off, we design a model to improve fairness when aleatoric
uncertainty is high and improve utility elsewhere. We first describe
the function f(u) : R — R™ that assigns weights to samples
based on the estimated aleatoric uncertainty u:

Blw) = ( )k,

where the hyper-parameter k helps to weigh one objective in favor
of the other, and u;in and umgx are two hyperparameters to nor-
malize the weights. The overall objective function of GAIA (Eq. 7)
is a bi-objective loss corresponding to both utility and fairness. It
maximizes utility for the samples with low aleatoric uncertainty;
for samples with high aleatoric uncertainty, there is little improve-
ment to be made in terms of utility due to the inherent ambiguity
of the data. Thus, the aim of GAIA is to steer the objective toward
improving the fairness of samples with high aleatoric uncertainty.

U — Umin )

Umax — Umin
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Given a batch of training data S C D and a classifier parame-
terized by 0, the utility loss is a weighted cross-entropy loss:

Lep(S.p) = —é 3 Bi(yi log(p il )+
ieS

(1 = yi) log(1 = p(yilxi, ui))),
where y; is the label for sample x; and f; = f(u;). The conditioning
on prediction p(y;|x;, u;), allows the model to make an informed
choice based on the uncertainty. We define fairness as the difference
in the mean cross-entropy between instances of different protected
attributes. We show in Section 3 that our proposed metric acts as a
feasible surrogate to cover common group fairness metrics. Let Sp
and S be the sets of samples whose protected attribute is 0 and 1,
respectively. We define fairness as follows:

Lair(S,1-§) = | Lcp(So, 1-)— Lce(S1,1-P)| SoUS: = S.
(6)
The objective function of GAIA, £, is the sum of Eq. 5 and Eq. 6:

L(S,p) = Lce(S, p) + Lgair (S, 1= ). ™)

3 THEORETICAL GUARANTEE TO IMPROVE
THE TRADE-OFF

In this section, we theoretically prove GAIA can guarantee to im-
prove the fairness-accuracy trade-off through the following three
key hypotheses: (i) as aleatoric uncertainty increases, accuracy will
decrease; (ii) we can improve fairness in regions of high aleatoric
uncertainty; and (iii) binary cross-entropy (BCE) difference across
separate protected groups (Eq. 6) is proportional to common group
fairness metrics such as equal opportunity difference (EOD) and av-
erage odds difference (AOD). The proof consists of two propositions.
First, we show divergence on the optimal utility under aleatoric
uncertainty. Second, we show the convergence for fairness under
BCE difference between protected and non-protected groups. As
per convention from the problem setting and for the sake of sim-
plicity, we consider the binary classification case. We use AOD for
illustration and similar formulation extends to other group fairness
metrics such as EOD.

©)

3.1 Relation between Aleatoric Uncertainty and
Accuracy

THEOREM 3.1. As the aleatoric uncertainty increases, the model’s
accuracy approaches random chance:

lim accuracy = l,

E[H[q(yl|x)]]—inf c
where C is the number of classes.
Proof of Theorem 3.1. We first define the predictive entropy for the
model. Let p(y|x) be the predicted probability distribution of the
target class y given the input instance x. In a binary classification
problem where y € {0, 1}, the expected predictive entropy is the
average predictive entropy over all instances in the dataset. This
represents the aleatoric uncertainty (Eq. 1).

Next, we will show that the lower bound on the accuracy ap-
proaches random chance as the expected predictive entropy in-
creases. In binary classification, random chance corresponds to an
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accuracy of V2, suggesting that the model is not better than ran-
dom guessing. We first derive a lower bound on the accuracy using
Fano’s inequality [45]. Fano’s inequality relates the conditional
probability of error in predicting the target class y given the input
instance x with the mutual information between y and x:

LEmMMA 3.2 (FANO’S INQUALITY).
H(e) + elog(C—1) > H(Y|X),

where H(¢) is the binary entropy function of €, the probability of
error in predicting the target class, and H(Y|X) is the conditional
entropy of the true conditional probability distribution. In a binary
classification problem, C = 2 and we can simplify Fano’s inequality
as follows:

H(e) +€log(1) = H(Y|X). (8)
Since log(1) = 0, the inequality becomes:
H(e) = H(Y|X). 9)

The probability of error € is related to the accuracy by the following

relationship:

(10)

We can then reformulate Fano’s inequality in terms of accuracy:
H(1 - Accuracy) > H(Y|X). (11)

Since the binary entropy function H(p) is a monotonically increas-
ing function for 0 < p < 1/2 and a monotonically decreasing
function for 1/2 < p < 1, the maximum entropy is achieved when
p = 1/2. Thus, the entropy of the error probability is maximized
when the accuracy is at random chance:

H(1-1/2) = H(1/2) = 1.

€ = 1 - Accuracy.

(12)
Therefore, as the expected predictive entropy E[H[g(y|x)]] in-
creases, the lower bound on the accuracy given by Fano’s inequal-
ity approaches the maximum entropy state, which corresponds to
random chance.

3.2 Relation between BCE Loss Difference and
Fairness

THEOREM 3.3. The expected difference in BCE losses between the
protected and non-protected groups defined in Eq. 6 is proportional to
the Average Odds Difference (AOD).

1 1
E[AL(y)] = o Z AL(yi) = Z AL(yj) o< AOD.
lea, 2 JEA;

Proof of Theorem 3.3. Let us denote the protected attribute instances
as A; and Ajy. Let p; be the predicted probability of the positive
class y = 1 for instances in the group with protected attribute A;,
where i € {1, 2}.

ProrosITION 3.1. The Binary Cross-Entropy (BCE) loss for in-
stances with protected attribute A; is given by

Li(y, pi) = —ylog(pi) — (1 - y) log(1 - pi).

This proposition follows directly from the definition of BCE
for binary classification problems. For group fairness metrics, we
are concerned with True Positive Rate (TPR;) difference and False
Positive Rate (FPR;) difference between different groups.
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LEMMA 3.4 (AVERAGE ODDs DIFFERENCE). The Average Odds Dif-
ference (AOD) between group Ay and group Ay is given by

|TPRy — TPRy| + |FPRy — FPR,|
= > .

Now;, let us analyze the difference between the BCE losses for
the protected (L1 (-)) and non-protected (L (-))groups:

AOD

LEMMA 3.5. The difference in BCE losses between the two protected
attribute groups Ay and Ay can be expressed as

1-p1 )
1-p2)

AL(y) = Li(y, p1) - La(y. p2)
p1
~ylog (—) —(1-y)log (
p2
Let N1 and Nj be the total number of instances in the protected
A1 and non-protected groups Ay, respectively. To prove Theo-
rem 3.3, we compute the expected differences in BCE losses for
the true positive and false positive cases separately.

3.2.1 Equal Opportunity Difference and BCE Difference.
First, consider the true positive cases where y = 1. In this case,
AL(y=1) = - log(*z—;) (from Lemma 3.5). The expected difference
in BCE losses for true positives in both groups can be expressed as:

1 P1 1
E[ALy=1]=— )| —log(—)——
Nl iEAl,yi=1 pz NZ j
o [TPR; — TPRy| = EOD.
(13)

3.2.2 Average Odds Difference and BCE Difference. Next,

consider the false positive cases where y = 0. In this case, AL(y) =

1-—
~log (=5

tives in both groups can be expressed as:

). The expected difference in BCE losses for false posi-

1 1-p1
E[AL(y=0)]=— > —log( )
Ny i€A1,y;=0 1 P2
1 Z 1-p1 (14)
5l
Nz JEA2,y;=0 1 P2
o [FPR; — FPRy|.

Finally, by combining the expected differences in BCE losses for true
positive (Eq. 13) and false positive (Eq. 14) cases with Lemma 3.4,
we get:
E[AL(y)] = E[AL(y = D] + E[AL(y = 0)]
o [TPR; — TPR| + [FPR; — FPR;| = AOD X 2.

Thus, Eq. 15 shows that the expected difference in BCE losses
between the two protected attribute groups is proportional to AOD.
This implies that minimizing the difference in BCE losses can lead
to fairer outcomes with respect to AOD. EOD is a subset of AOD as
demonstrated by Eq. 13.

(15)

3.2.3 A Closer Look. Here, we elaborate on why Eq. 13 and Eq.
15 hold. From Lemma 3.5, for the true positive cases where y = 1,
we have AL(y = 1) = —log (i—;) We first analyze the relationship
between the expected difference in BCE losses and the TPR for the
two protected attribute groups.
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Denote the total number of true positive instances for each group
as NIT P and NZT P and let TPR; and TPR; be the true positive rates
for the groups A; and Ay, respectively. The expected difference in
BCE losses for the true positive instances is represented as

1
EALy=D]=— > -log (‘1)
17 ieApy=1 p2
1 , (16)
- ~log [22].
= g( )
Ny ™ jedny=1 p2
We reformulate Eq. 16 using TPR values as follows:
1 P
E[AL(y =1)] = ~log |22
(AL =Dl = e 2, og(pz)
i€A,y;=1
(17)
1 P1
~ TPR;N; _log(p_z)'
2 JE€A2y;=1

Eq. 17 indicates that as the difference between TPR; and TPRy
increases, E[AL(y = 1)] also increases. This means that if there is a
notable difference in the TPR between the two groups, it will result
in a substantial dissimilarity in the BCE losses as well. Therefore,
we can conclude that the expected difference in BCE losses for
the true positive cases, E[AL(y = 1)], is indeed proportional to
the difference in TPR between the two protected attribute groups.
Similarly, we can establish the proportionality of the expected dif-
ference in BCE losses for false positive cases, E[AL(y = 0)], to
the difference in FPR between the groups. Combining the results
for true positive and false positive cases, we demonstrate that the
expected difference in BCE losses between the two protected at-
tribute groups is proportional to the AOD, as stated in Theorem
3.3. In other words, the expected difference in BCE losses for true
positive cases captures the difference in TPR and FPR between the
two protected attribute groups, which is an essential component of
common group fairness metrics such as EOD and AOD.

3.3 On the Fairness-Utility Trade-off

Under Theorem 3.3, we show that by minimizing the BCE loss
difference in regions of high aleatoric uncertainty, we indirectly
improve group fairness, as reducing the loss entails minimizing the
disparities across different groups. In these regions, the model’s
predictions are more susceptible to biases and disparities since it
relies on learned priors, leading to unfair predictions. By prioritizing
fairness in these regions, we aim to mitigate the adverse effects of
aleatoric uncertainty on marginalized groups. As per Theorem 3.1,
it is not feasible to improve accuracy in such regions.

For regions of high confidence (i.e., low uncertainty), accuracy
converges to 1 (due to the law of large numbers). Thus, when the
uncertainty is low, fairness improves. We can achieve fairness by
optimizing utility. Based on Lemma 3.4, we have

[TPR; — TPR| + [FPR; — FPRy|
- 2
|1-1]+]0o-0] _
—=

lim  AOD

accuracy—1

(18)

0.
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According to Theorems 3.1 and 3.3, GAIA targets utility and
fairness in the respective regions where the other metric is non-
conflicting. This results in the improvement of both utility and
fairness while minimizing the trade-off.

4 EXPERIMENTS

In this section, we show empirical evidence of the effectiveness of
GAIA. We aim to answer the following research questions:

o RQ1: How does GAIA fare against the state-of-the-art baselines
in terms of the fairness-utility trade-off?

e RQ2: How does empirical evidence support our hypothesis re-
garding aleatoric uncertainty, fairness, and utility?

e RQ3: While designed for group fairness, what role does GAIA
play in improving individual fairness?

4.1 Experimental Setup

Experiments are conducted for both tabular and image datasets.
For tabular data, we compare GAIA with seven baselines including
common pre-processing, in-processing, and post-processing ap-
proaches. We use two benchmark tabular datasets and four fairness
metrics including both group and individual fairness metrics. In
particular, for RQ. 1-2, we use EOD and AOD as the group fairness
metrics. We use Generalized Entropy Error (GE) [47] and Consis-
tency Score (CS) [53] to measure individual fairness for RQ. 3. For
utility measure, we use balanced accuracy, which is convention-
ally used in fairness literature since it captures balanced protected
groups. For the image classification task, we use one benchmark
dataset and two additional state-of-the-art approaches as baselines
to validate the generalizability of GAIA.

Datasets. The benchmark tabular datasets and image dataset for
fair machine learning are detailed below:

e Adult [49]: This dataset consists of multiple features ranging
from work class, age, education, and sex. Each instance has a
binary label based on whether an individual’s income exceeds
$50,000/yr. This dataset consists of 48,842 samples.

German [25]: This dataset consists of features related to the
financial status of individuals. The label represents whether the
attributes represent good or bad credit risk. This dataset consists
of 1,000 samples.

CelebA [35]: This dataset contains aligned faces of celebrities
with annotations of various attributes, such as gender, age, expres-
sion, hair type, and attractiveness. This dataset contains 202,599
face images from 10,177 celebrities.

Gender is considered as the protected attribute in each dataset.
Features in tabular datasets are binarized, preprocessed, and scaled
following Bellamy et al. [4]. Preprocessing for CelebA follows the
conventions established by Chuang and Mroueh [16].
Baselines. For tabular data, we compare GAIA against seven well-
established baseline approaches. These approaches can be divided
into pre-processing, in-processing, and post-processing methods.
o Reweighting [27]: Reweighing is a pre-processing approach that
adjusts the weight assigned to examples in each (group, label)
pairing to promote fairness prior to classification.
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e Learning Fair Representations (LFR) [53]: A preprocessing
technique aimed at discovering a latent representation that effec-
tively encodes the data while concealing information pertaining
to protected attributes.

Optimized Preprocessing [9]: Optimized preprocessing is a pre-
processing approach that employs a probabilistic transformation
to modify both features and labels in the data while considering
fairness with respect to groups, minimizing individual distortion,
and preserving data integrity.

Adversarial Debiasing [54]: Adversarial debiasing is an in-
processing technique that trains a classifier to achieve high pre-
diction accuracy while simultaneously reducing the adversary’s
capacity to infer protected attributes from the predictions. This
results in a fair classifier, as the predictions are rendered devoid
of any group discrimination information that could be leveraged
by the adversary.

MetaFair [11]: An in-processing meta-algorithm for fair classifi-
cation that handles a broad range of fairness constraints, includ-
ing non-convex linear fractional constraints such as predictive
parity.

Calibrated Equalized-Odds [41]: A post-processing technique
which uses the calibrated predicted scores to adjust the labels
towards better equalized-odds.

Reject Option Classification (ROC) [28]: A post-processing
technique that balances favorable outcomes between privileged
and unprivileged groups by altering the decision boundary in
regions of the highest uncertainty.

To further examine the effectiveness of the incorporated aleatoric
uncertainty, we compare GAIA against its two sub-module variants:
BNN LS is the uncertainty estimation component where a BNN is
trained using Label Shift (Section 2.1.1), and BNN ALS where it is
trained using Attribute Label Shift (Section 2.1.2).

The baseline methods for tabular data are not designed for image
modality. Thus, for fair comparisons, we consider the following
two state-of-the-art approaches for fair image classification:

e FairBatch: [44] FairBatch seeks to improve the batch selection
process through bi-level optimization such that the downstream
model achieves improved fairness.

e FairMixup [16]: FairMixup uses data augmentation to improve
the fairness-utility tradeoff by making the underlying model
more generalizable through regularization on interpolates.

Implementation Details. For the sake of simplicity in our experi-
ments, we employ a logistic regression model, which is essentially a
multi-layer perceptron (MLP) without any hidden layers. The uncer-
tainties utilized for training the classification model are generated
using a BNN that consists of three hidden layers. The activation
functions employed for the BNN and MLP are LeakyReLU [36]
and ReLU [2], respectively. When necessary, we utilize the Adam
optimizer [29]. Both the BNN and MLP are designed using the JAX
framework [8] and Oryx [20] for sampling from distributions. For
image classification, ResNet-18 [24] is used as the backbone for
both the BNN and the final classifier. We provide the source code
for our implementation.

!https://github.com/aniquetahir/GAIA
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Figure 2: Comparison of Group (left) and Individual (right) Fairness for the Adult and German Datasets. Various approaches
fall on different places on the Pareto front representing the fairness-utility trade-off.

To select the best model from training, we use a simple approach:
During the training phase, between each mini-batch, we calcu-
late the smoothed training prediction accuracy by using a run-
ning average. We select the model parameters corresponding to
the best-smoothed accuracy during training for inference. For the
baselines, we use standard implementations provided by the AI
Fairness 360 Toolkit [4] using the recommended hyper-parameters
where needed. For image baselines, we follow the open-source code
provided by the authors, respectively [44, 16].

4.2 Experimental Results

Tabular Data. We present the experimental results for RQ1 regard-
ing the trade-off between models’ utility and fairness. We visualize
the comparison of Pareto fronts regarding group fairness in Fig. 2
(left). Our model displays pareto dominance in most of the cases
overall. We observe that the in-processing approaches (Adversarial
Debiasing, MetaFair) prefer fairness over utility. In contrast, pre-
(Reweighting, LFR, Optimized Preprocessing) and post-processing
(Calibrated EO, ROC) approaches have a more balanced trade-off.
We also observe a difference in the trade-off across the Adult and
German datasets due to variations in their sample sizes. The Adult
dataset (~48k samples) is significantly larger compared to the Ger-
man dataset (1,000 samples). This may cause each method to per-
form distinctly from the perspective of the fairness-utility trade-off.

For the Adult dataset, we see a smaller disparity between the
performance for versions of our approach using Label Shift (LS) and
Attribute Label Shift (ALS). We hypothesize that this is due to the
larger size of the Adult dataset compared to the German dataset. The
larger dataset size allows the model to make better generalizations
and reduce the uncertainty overall. Thus, the shift used in the BNN
training is less relevant. By comparison, we see a more diverse
performance for the German dataset. The ALS counterparts of both
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FairBatch FairMixup GAIA
Bal AccT 0.562 (0.138) 0.549 (0.035)  0.602 (0.065)
AOD |  0.047(0.105) 0.041(0.032) 0.108 (0.068)
EOD | 0.035 (0.077) 0.044 (0.040)  0.021 (0.018)
GE | 0.086 (0.070)  0.260 (0.144)  0.079 (0.022)

Table 1: GAIA shows an overall improvement over baselines
w.r.t. balanced accuracy, group (AOD and EOD), and individ-
ual fairness (GE) metrics on CelebA image dataset.

BNN and GAIA outperform LS in terms of utility. However, we see
slightly better fairness from the LS counterparts. We believe this is
due to the LS versions falling closer towards random chance which
increases fairness since instances of the protected attribute are
treated equally random. For GAIA LS and GAIA ALS, the disparity
between fairness is less pronounced since both versions perform
comparatively better than random chance.

Fig. 2 also illustrates the value of uncertainty-guided training
in GAIA which considers a weighted sum of utility and fairness
objectives. Even though BNN with distribution shift (BNN LS and
BNN ALS) by itself shows competitive performance compared to
the baselines, GAIA consistently outperforms the BNN in terms of
utility while matching it in terms of fairness. This improvement
is more pronounced in the Adult dataset, where there are more
samples for GAIA to leverage the disparity between ambiguous and
non-ambiguous subsets of data. Our results highlight the viability
of GAIA in improving the fairness-utility trade-off (RQ1).

Image Data. To analyze the generalizability of our approach, we
also evaluate its performance in the image domain using the Celebrity
Faces dataset (CelebA) [35]. We do not report the Consistency Score
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Figure 3: Pruning the most uncertain samples leads to an
improvement in both utility and fairness for the Adult and
German datasets. We make similar findings across datasets
and various versions of our approach.

for fair image classification since the consistency distance in image
data at a pixel level is affected by spurious features, such as the
background. We highlight our results in Table 1.

For multi-objective optimization, an outcome is considered Pareto
dominant if both utility and fairness are improved [5]. GAIA is
Pareto dominant over FairMixup and FairBatch for all compared
fairness metrics except for AOD. FairBatch is Pareto dominant in
the same metrics over FairMixup. While FairMixup is not Pareto
dominant for AOD since it has lower accuracy, it shows superior
AOD performance. We hypothesize this is due to its predictions
being closer to random chance since random predictions are con-
sidered fair under AOD.

FairBatch uses meta-optimization of the batch selection process
to make the underlying model training to be fair. GAIA uses a sim-
ilar idea for batch selection using Label Shift (LS), and Attribute
Label Shift (ALS). However, while our approach explicitly inter-
venes in the label distribution and the attribute-label correlation,
FairBatch uses an outer loss that attempts to train the model in
batch selection. In addition, GAIA is capable of premonition re-
garding uncertainty, allowing it to make informed predictions that
lead to a better trade-off. In contrast, Fair-Mixup uses data aug-
mentation. The counterfactuals generated by data augmentation
through interpolation may not reflect reality. However, when the
batch selection process is changed in FairBatch and GAIA, each
sample comes from the training data. Thus, while the data distribu-
tion changes, each sample reflects a real sample. This explains the
superior performance of both FairBatch and GAIA over FairMixup.

4.3 Relation among Aleatoric Uncertainty,
Utility, and Fairness

To test our central hypothesis that samples with high aleatoric
uncertainty contribute more to algorithmic unfairness and predic-
tion errors, we conduct additional experiments for tabular data to
examine how GAIA performs in terms of utility and fairness when
removing samples with high aleatoric uncertainty (RQ2). Fig. 3
shows results for pruning samples with high aleatoric uncertainty.
For both Adult and German datasets, we observe improved accuracy
and EOD as we filter out the most uncertain predictions. Group
fairness metrics, such as EOD and AOD, consider the difference
between the TPR and FPR. When the predictions completely match
the ground truth, these metrics approach 1 and 0, respectively, for
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all instances of the protected group. The result is an improvement
in both accuracy and fairness. Thus, if we consider the samples with
the most confident predictions, the likelihood of improving both
utility and fairness increases. This serves as sound empirical evi-
dence in favor of our main hypothesis which targets the dichotomy
between samples based on aleatoric uncertainty for shifting focus
between fairness and utility.

4.4 Individual Fairness

Our fairness notion is inspired by group fairness metrics since it
optimizes over the cross-entropy difference for separate instances of
the protected attribute. This raises concern over its applicability for
individual fairness (RQ3). However, empirical evidence from both
the tabular data (Fig. 2, right) and image data (Table 1) shows that
GAIA also performs well on the trade-off when individual fairness
metrics are of particular interest. To understand these results, we
again consider the dichotomy between regions of high and low
aleatoric uncertainty and the two individual fairness metrics we
used (GE and CS).

The Generalized Entropy Error (GE) is a metric that quantifies
the entropy index within each group. When we have low aleatoric
uncertainty within a single group, the predictor tends to closely
match the ground truth for each sample. This is because higher
confidence increases the likelihood of a prediction aligning with
the actual label. On the other hand, when the aleatoric uncertainty
is high, GAIA aims to optimize for equal cross-entropy between
groups, which contributes to improved fairness. However, it is
important to note that in scenarios where aleatoric uncertainty is
high, the labels themselves are inherently noisy. Consequently, the
predictive output for each sample tends to be closer to a random
assignment. Thus, at an individual level, samples are treated equally.
The Consistency Score (CS) is a metric that evaluates how a classifier
treats its k nearest neighbors. In essence, it quantifies the impact
of high aleatoric uncertainty, which signifies increased variability
among the labels of neighboring samples. As this noise is considered
theoretically irreducible, our hypothesis is that leveraging aleatoric
uncertainty can effectively identify areas where consistency can be
enhanced. This approach offers insights into the improved empirical
performance observed in relation to this metric.

4.5 Summary

Since prior works focused on epistemic uncertainty, we study the
connection between aleatoric uncertainty and fairness. We show
how our approach compares against both group and individual fair-
ness. The results complement the findings by Binns [6], who suggest
that group and individual fairness may not always be conflicting
objectives. Our experiments also suggest that ALS introduces an
improvement over LS. In addition, we observe that GAIA outper-
forms BNN consistently in terms of utility, while the BNN has
a minuscule advantage in terms of fairness. BNN has a coherent
representation due to the regularization effect of the variational
inference on the encoding space, where the encoder must output
a probabilistic distribution over the latent variables that approxi-
mates the true posterior. This encourages similar samples to have
similar encodings, leading to a more organized and smoother la-
tent space representation. Therefore, it is not surprising that BNNs
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demonstrate high performance on individual fairness metrics, as
they evaluate the consistency in the treatment of similar covariates.
Both GAIA and BNN outperform baseline approaches consistently
in terms of the fairness-utility trade-off. Results over both image
and tabular datasets show the generalizability of GAIA. Different
architectures can be plugged in and sampling from a distribution
over the model weights can be used to measure uncertainty.

5 RELATED WORK

Current work on fairness ML relies on identifying and mitigat-
ing spurious correlations or reducing epistemic uncertainty. We
highlight the novelty of our approach in comparison.

5.1 Bias Mitigation and Fairness

There are three main types of methods for reducing bias in machine
learning, which depend on where in the model training process
they are applied: (i) pre-processing, (ii) in-processing, and (iii) post-
processing. In addition, there are various metrics for evaluating
fairness that can be grouped into group fairness or individual fair-
ness metrics. Preprocessing methods [27, 53, 21, 9, 12] aim to reduce
bias by modifying the data, labels, or sample importance in the
dataset. For example, the Disparate Impact Remover [21] technique
attempts to adjust the label distribution to ensure that protected
attributes have the same median outcome. The Learning Fair Repre-
sentations (LFR) [53] approach creates a latent representation of the
data to obscure protected attributes. In-processing methods [3, 54,
13] rely on the model architecture to achieve fairness. Adversarial
Debiasing [54] involves an adversary that tries to predict the pro-
tected attribute. The goal is to make the best predictions in a way
that prevents the adversary from distinguishing the protected at-
tribute. Post-processing methods [28, 23, 41] adjust the predictions
of a trained model after inference to make them unbiased. There
are various approaches with different debiasing objectives. Some
methods target specific fairness metrics, such as Calibrated Equal
Odds Difference [41], which aims to minimize Equalized Odds.

5.2 Uncertainty based Learning

Deep Learning has achieved unprecedented success in making ac-
curate predictions in various domains; therefore, it is increasingly
important to evaluate the reliability and uncertainty of Al systems
before deployment. The principles of uncertainty play an impor-
tant role in Al settings such as concrete learning algorithms [38]
and active learning [40]. There are two main types of uncertainty,
i.e., aleatoric (or data) uncertainty and epistemic (or model) uncer-
tainty [26]. Common techniques used in uncertainty quantification
include Bayesian [39, 51] and Ensemble [55, 32] methods. The high-
lights come in the form of popular variational inference approaches
such as Variational Auto-Encoders (VAE) [30]. The specialty of
VAE comes from the estimation of a distribution in the latent space
rather than a specific latent representation. Similarly, Bayesian Neu-
ral Networks (BNNs) use a distribution over the weights, rather
than specific weights to estimate the uncertainty for predictions.
One common variation of BNNs is Bayes by Backprop [7] which
leverages the standard backpropagation used in traditional NNs.
Despite the popularity of uncertainty quantification, approaches
using uncertainty to improve fairness are scarce. ROC [28] is one
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such instance. Liu et al. [34] use a multi-task model for predicting
the under-represented class label in addition to the classification
label to create a robust representation space. Singh et al. [46] pro-
pose an approach for fair ranking where the probability of being
assigned a higher rank is in proportion to the estimated merit.

Our approach complements past work by incorporating aleatoric
uncertainty in particular. While prior works suggest good heuristics
and processing techniques to overcome the challenge of lack of
data, our approach suggests that when the model is likely to make
the correct prediction, it is also likely to be fair. Conversely, when
the model is unlikely to make the correct prediction due to data
ambiguity, we optimize it to ensure fairness. Past approaches can
easily be incorporated into our proposed framework by substituting
them with the utility objective.

6 CONCLUSION AND FUTURE WORK

This study introduces a novel concept balancing fairness and utility
via aleatoric uncertainty. By optimizing objectives based on uncer-
tainty levels, our approach improves fairness and utility trade-off.
Aleatoric uncertainty informs model decisions for better trade-off.
To mitigate the confounding effects associated with protected at-
tributes, we propose a distributional intervention approach when
estimating uncertainty using BNN. We then optimize for fairness in
the solution space with high aleatoric uncertainty, and utility else-
where. The proposed GAIA approach yields an improved fairness-
utility trade-off regarding both group and individual fairness. A
thorough evaluation of our approach is conducted using multiple
datasets across various domains, various metrics, and comparisons
to established baseline methods. The theoretical analyses and em-
pirical evidence provide insights into the advantages, limitations,
and areas for further improvement in our concept.

Our work significantly contributes to the field of ML by offering a
new solution to the balance between fairness and utility. The study
highlights the potential link between fairness and predictive uncer-
tainty, and future research will delve into the robustness, scalability,
and potential applications of this concept in other domains.

While our approach demonstrates promising results, we acknowl-
edge a few limitations. GAIA relies on the differences in uncertainty
between training samples. If the majority of samples consistently ex-
hibit low uncertainty, it suggests both high utility and fairness, even
with simple approaches that do not specifically focus on fairness,
such as Empirical Risk Minimization [50]. However, if most samples
consistently exhibit high uncertainty, our training objective leans
toward maintaining fairness rather than utility.

Altering the uncertainty quantification backbone architecture,
such as using an auto-encoder, could provide additional insights,
and our design allows for such modifications. We separate the down-
stream model from the uncertainty model, enabling easy integration
of GAIA with existing architectures for downstream tasks.
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