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Abstract

Monitoring fish migration, which can extend over distances of thousands of
kilometers, via fish tags is important to maintain healthy fish stocks and pre-
serve biodiversity. One constraint of current fish tags is the limited power of
their batteries. Attaching a piezoelectric element to an oscillating part of the
fish body has been proposed to develop self-powered tags. To determine the
functionality and potential of this technology, we present an analysis showing
variations of the generated voltage with specific aspects of the tail’s response.
We also perform numerical simulations to validate the analysis and determine
the effects of attaching a piezoelectric element on performance metrics including
thrust generation, propulsive efficiency, and harvested electric power. The tail
with the attached piezoelectric element is modeled as a unimorph beam mov-
ing at a constant forward speed and excited by sinusoidal pitching at its root.
The hydrodynamic loads are calculated using three-dimensional unsteady vor-
tex lattice method. These loads are coupled with the equation of motion, which
is solved using the finite element method. The implicit finite different scheme is
used to discretize the time-dependent generated voltage equation. The analysis
shows that the harvested electric power depends on the slope of the trailing
edge, a result that is validated with the numerical simulations. The numeri-
cal simulations show that, depending on the excitation frequency, attaching a
piezoelectric element can increase or decrease the thrust force. The balance of
required hydrodynamic power, generated propulsive power and harvested elec-
trical power shows that, depending on the excitation frequency, relatively high
levels of harvested power can be harvested without a high adverse impact on the
hydrodynamic or propulsive power. For a specified frequency of oscillations, the
approach and results can be used to identify design parameters where harvested
electrical power by a piezoelectric element will have a minimal adverse impact
on the hydrodynamic or propulsive power of a swimming fish.
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1. Introduction

Continuous assessment of fish migration, movement patterns, and fishing
levels is important to maintain healthy fish stocks [1, 2] and biodiversity [3].
Examples of wild fish groups for which migration and movement behavior have
been studied include bluefin tuna [4], basking sharks [5], manta rayes [6], and
saithe [7]. In these and other studies, the monitoring is performed using elec-
tronic tags that are either externally attached to the fish or surgically implanted
in the fish. These tags transmit an acoustic signal to receivers using battery-
powered transmitters. The weight, volume and finite energy of today’s batteries
limit their operational lifetime, which requires periodic replacement if possible
and may affect the fish health [8]. Furthermore, in the case of relatively small
fish, reducing the tag size necessitates a reduction in the battery size, which re-
duces its operational life [8]. For example, the lifetime of MB306 batteries used
in the Juvenile Salmon Acoustic Telemetry System [9] is of the order of few days
[10]. In contrast, fish migration, which involves relocation of fish groups from
one area or body of water to another, can last for one year.

As an alternative to battery-powered tags with limited lifetime, self-powered
fish tags provide the capability of monitoring fish populations over longer peri-
ods. Noting the energy associated with fish body’s motions, one approach for
powering these tags is to harvest energy from a piezoelectric (PZT) element that
is attached or implanted in a moving part of the fish body such as its tail for en-
ergy harvesting purpose. This has been inspired from different demonstrations
of vibration energy harvesting [11–21]. Li et al. [22] developed a self-powered
acoustic transmitter that harvests energy from the deformation of the fish body
while swimming. The unit consists of a flexible piezoelectric composite beam,
a circuit board and a transducer. It is about 10 cm long, has a volume of 0.57
cm3, and weighs about 1 gram. It emits a 150 dB signal having unique tag
codes that can be detected up to 100 meters away [22]. The amount of energy
generated depends on the degree of the body bending during swimming. Other
experimental studies that demonstrated the use of PZT to harvest energy from
a fish-like motion include harvesting energy from bimorph cantilevers [23], a
flying pigeon [24], and a biomimetic fish tail [25]. Cha et al. [26] harvested
energy from fish swimming using ionic polymer-metal composites, while Zhang
et al. [27] used multilayer-structured triboelectric nanogenerator to harvest un-
dersea energy on a bionic-fin. Qian et al. [28] designed a bio-inspired bi-stable
beam that can efficiently harvest energy if attached to a fish body. Numerical
studies have also been performed to investigate energy harvesting from fish-like
motions. Salazar et al.[29] numerically investigated the energy harvesting from
a PZT element attached to a carangiform fish body. They prescribed the fish
motion as a travelling wave along the fish body length [30]. Sun et al. [31] stud-
ied energy harvesting from an inward-type flow device undulating in a fish-like
motion. Chen et al. [32] modeled a tail as a rigid element with a flexible PZT
generator attached to its end to harvest energy.

Although many studies demonstrated the capability of harvesting energy
from fish-like motions, few of them addressed the impact of attaching PZT en-
ergy harvesters on the propulsive performance of the fish. Attaching the PZT
element changes the local stiffness and the harvested power could reduce the
thrust and effectiveness of the swimming action of the fish. Furthermore, there
is not a validated analytical treatment that associates the generated power with
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a physical quantity of the undulating motion that can be used in the initial
assessment and design of a PZT element based on fish size. Here, we perform
analysis and numerical simulations of the effects of attaching a PZT to a flex-
ible element such as a fish tail or caudal fin on its hydrodynamic performance
in terms of generating thrust. The PZT element is made of a thin macro fiber
composite (MFC), which is increasingly applied in engineering, due to its high
flexibility and strong actuation forces [33]. Furthermore, it was demonstrated
to minimize the burden on the fish body as noted by Li et al. [22]. For modeling
purposes, the tail is represented by a beam having an aspect ratio equal to one
and the PZT element is assumed to cover the whole tail. As such, the tail is mod-
eled as a thin unimorph cantilever beam that is excited by sinusoidal pitching at
its root. Although an operational fish tag would include a more complex circuit
that requires a rechargeable battery or a capacitor [22], we limit the study here,
which is concerned with impact of harvesting energy on the fish performance,
to a resistive electrical load. The three-dimensional Unsteady Vortex Lattice
Method (UVLM) [34] is used to calculate the hydrodynamic loads generated
by the pitching excitation under constant forward speed. These include the
thrust and transverse force and the required power. The finite element method
is used to solve the coupled time-dependent equations of motion representing
the fluid-structure interaction. The implicit finite different scheme is used to
discretize the time-dependent generated voltage equation. The coupled equa-
tions of motions are solved for structural deformation of the tail, based on the
hydrodynamic load, at each time step where the generated voltage is updated.

2. Methods

We model the fish tail as a flexible thin rectangular substrate with chord
length c, span b, and thickness hs. To harvest energy, we attach a PZT MFC
layer to the top of the substrate as shown in figure 1a. This layer has a thick-
ness hp and covers the entire length and width of the substrate beam. In the
following, we refer to this composite beam, including the substrate and PZT
layers, as unimorph PZT tail or simply tail. The PZT layer is connected to a
resistive electrical load. We assume that the tail moves with a uniform forward
speed U∞ and is excited by sinusoidal pitching, θ(t) = θosin(ωt), at its root, as
shown in figure 1b. We neglect the flexibility in the spanwise direction for the
range of flexibility considered herein based on the experimental observations by
Dewey et al. [35].

2.1. Governing equations

2.1.1. Tail deflection

The Euler-Bernoulli beam theory is used to model the deflection of the flex-
ible unimorph tail due to pitching excitation at the root and hydrodynamic
loads. To derive the governing equation, we consider a general point p on the
composite beam where, as schematically shown in figure 1b, two frames of ref-
erence are used to describe the dynamics of point p. The first one is the inertial
frame of reference attached to the fish body and defined by X-, Y-, and Z-axes
representing the forward, rotational, and lateral motions, respectively. The sec-
ond one is the rotating local frame of reference attached to the beam’s leading
edge and defined by x-, y-, and z-axes such that the rotating y-axis is coincident
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(a) (b)

Figure 1: (a) Cross section and position of neutral axis (N.A.) for the unimorph piezoelectric
tail. (b) Schematic representation and coordinate systems used in modeling the tail’s oscial-
tions.

with the inertial rotating Y-axis as shown in the figure. The position r⃗p, and

angular velocity Ω⃗ vectors of point p in the rotating frame of reference are given
by

r⃗p = x̂i+ wk̂ (1)

and

Ω⃗ = θ̇ĵ (2)

where î, ĵ, and k̂ are respectively the unit vectors in the x-, y-, and z-directions,
x is the radial distance from the root and w is the transverse deflection in the
x-z plane, and θ̇ is the angular speed of the pitching excitation at the root in
the y-axis. The velocity, V⃗p, and acceleration, a⃗p, of point p in the inertial
frame of reference are respectively given by

V⃗p =
d⃗rp
dt

∣∣∣∣∣
I

=
d⃗rp
dt

∣∣∣∣∣
R

+ Ω⃗× r⃗p = θ̇wî+
(
ẇ − θ̇x

)
k̂ (3)

and

a⃗p =
dV⃗p

dt

∣∣∣∣∣
I

=
dV⃗p

dt

∣∣∣∣∣
R

+Ω⃗×V⃗p =
(
θ̈w + 2θ̇ẇ − θ̇2x

)
î+
(
ẅ − θ̈x− θ̇2w

)
k̂ = ax î+azk̂

(4)

where the subscripts I and R represent respectively the inertial and rotating
frames of reference, (̇) represents the time derivative of the variable, and ax and
az are the x-, and z-components of the inertial acceleration.

We follow the approach of Hussein et al. [36] to derive the governing equa-
tions for the response of the unimorph tail. We also assume that the extension
of the mid-plane is zero, i.e. the beam is in-extensible. The dynamic equilibrium
equation in the x-direction, based on the free-body and kinetics diagrams of a
beam element of mass m per unit length and length dx, as shown in Figure 2 is
written as

dT ≈ maxdx = m
(
θ̈w + 2θ̇ẇ − θ̇2x

)
dx (5)
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Figure 2: Free-body (left sketch) and kinetics (right sketch) diagrams of a general composite
beam element centered at point p.

where dT is the differential tension force. To obtain the tension force distri-
bution T (x) along the tail length, we integrate equation (5) from any arbitrary
point x along the tail to the trailing edge. The resultant tension force distribu-
tion is given as

T (x) =
mθ̇2

2

(
c2 − x2

)
−m

∫ c

x

(
θ̈w + 2θ̇ẇ

)
dx ≈ mθ̇2

2

(
c2 − x2

)
(6)

where the integral term is neglected because w is much smaller than θx. The
mass per unit length, m, of the unimorph piezoelectric tail is given by

m = ρshsb+ ρphpb (7)

where ρs and ρp are the densities of the substrate and PZT materials, respec-
tively.

The equation of dynamic equilibrium in the z-direction is written as

FHdx− dS = mazdx = m
(
ẅ − θ̈x− θ̇2w

)
dx (8)

where FHdx is the normal hydrodynamic force acting on the element as a result
of the pitching excitation θ(t) and the uniform forward speed U∞, and dS is the
differential shear force. The equilibrium equation of the sum of moments yields

dM − Tdw − Sdx = 0 (9)

where the moment due to the normal hydrodynamic forces is neglected when
compared to the other terms. By substituting equation (9) in (8), the governing
equation of the beam deflection is written as:

∂2M

∂x2
− ∂

∂x

(
T (x)

∂w

∂x

)
+m

(
ẅ − θ̈x− θ̇2w

)
= FH(w, ẇ, ẅ) (10)

The internal moment M can be calculated at any cross section by integrating
the first moment of stress distribution over the corresponding area [37] as follows

M(x, t) = −
∫ hb

ha

T s
1 zbdz −

∫ hc

hb

T p
1 zbdz (11)

where T1 is the axial stress. Here and hereafter, the subscripts and superscripts
s and p are used to denote the substrate and PZT layers respectively, ha and

5



hb are respectively the positions of bottom and top surfaces of the substrate
from the neutral axis, while hc is the top surface position of the PZT layer from
this axis as defined in figure 1a. Denoting the distance from the bottom of the
substrate to the neutral axis by h̄, it is given by

h̄ =
hs

2
+

(hp + hs)Ephp

2(Ephp + Eshs)
(12)

where Es and Ep are the Young’s moduli of substrate and PZT layers, respec-
tively. The positions ha, hb and hc are then given by:

ha = −h̄, hb = hs − h̄, and hc = (hs + hp)− h̄ (13)

The stress-strain relations are given by the constitutive equations of the
substrate and PZT materials [38] as

T s
1 = EsS

s
1

T p
1 = Ep(S

p
1 − d31E3)

(14)

where d31 is the PZT constant, and the 1- and 3-directions are coincident with
x- and z-directions in the rotating frame of reference and E3 is the electric field
in the direction of polarization and is related to the electric potential difference
across the PZT layer V (t) by

E3(t) =
−V (t)

hp
(15)

The axial strain S1 at any location x along the beam length and certain level
z from the neutral axis is proportional with the curvature of the beam at the
same location x and given by

S1(x, z, t) = −z
∂2w(x, t)

∂x2
(16)

Substituting equations (14, 15, and 16) into equation (11), the internal moment
is rewritten in terms of the curvature of the beam and the generated voltage as
follows:

M(x, t) = EI
∂2w(x, t)

∂x2
+ΘV (t) [H(x)−H(x− c)] (17)

where EI is the flexural rigidity of the unimorph tail that is given by

EI = Esb

(
h3
b − h3

a

3

)
+ Epb

(
h3
c − h3

b

3

)
(18)

and Θ is the electro-mechanical coupling term that is given by

Θ =
−Epbd31

(
h2
c − h2

b

)
2hp

=
−e31b(hb + hc)

2
(19)

where e31 = Epd31 is the PZT constant. We note that the second term of the
internal moment expression in equation (17) is multiplied by [H(x)−H(x− c)],
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where H(x) is the Heaviside function, to enable its differentiation, which is
required when solving the governing equation (10). We also note that, if the
PZT layer and/or the electrodes cover a region from x1 to x2, then the second
term of equation (17) will be multiplied by [H(x− x1)−H(x− x2)].

Substitution of equation (17) into equation (10) yields the governing equation
for the relation between the beam deflection and generated voltage term as

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
T (x)

∂w

∂x

)
+m

(
ẅ − θ̈x− θ̇2w

)
+ΘV (t)

(
dδ(x)

dx
− dδ(x− c)

dx

)
= FH(w, ẇ, ẅ)

(20)

where δ(x) is the Dirac delta function, obtained when taking the first derivative
of the Heaviside function [39].

2.1.2. Generated electric power

To derive the governing equation for the generated electric power, we follow
the procedure by Erturk and Inman [40]. First, Ohm’s law is used to relate
the generated voltage to the charge distribution resulting from the PZT strain
change while Gauss law is used to determine the collected charges through the
PZT layer [38]. Therefore, Ohm’s law is written as

d

dt

∫
A

D.n dA =
V (t)

R
(21)

where the integration is performed over the electrode area A [37, 38], D is the
vector of the electric displacement components in the PZT layer, n is the the
outward normal unit vector, V is the generated voltage, and R is the electrical
load resistance. The inner product of the integrand gives only the displacement
components in the direction normal to the surface of the PZT layer, i.e., the z- or
3-direction, and since the only source of mechanical strain is assumed to be the
axial strain due to bending, the constitutive equation of the PZT displacement
vector [38] is written as

D3 = e31S
p
1 + εs33E3 (22)

where εS33 is the permittivity component at constant strain, and Sp
1 is the axial

strain component of the PZT layer at its centroid which is calculated from
equation (16). Inserting equation (15) into equation (22), and using the Gauss
law in equation (21), knowing that dA = bdx, the governing equation for the
harvested voltage is expressed as

V (t)

R
+ C̃p

dV (t)

dt
−Θ

∫ c

0

∂3w(x, t)

∂x2∂t
dx = 0 (23)

where C̃p is the PZT layer capacitance defined as

C̃p =
εs33bc

hp
(24)

Applying the zero slope boundary condition at the root, i.e. at x = 0 in
equation (23), yields

V (t)

R
+ C̃pV̇ (t)−Θq̇c(t) = 0 (25)
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where q̇c represents the time rate of change of the slope of the trailing edge and
is given by

q̇c(t) =
∂

∂t

(
∂w(x, t)

∂x

) ∣∣∣∣∣
x=c

(26)

Noting the harmonic response of the flapping element and harvested power, and
following the procedure of Tan et al. [41], we represent the slope of the trailing
edge slope and voltage by harmonic functions and write

qc(t) =

(
∂w

∂x

) ∣∣∣∣
x=c

=
1

2
a1e

iωt + cc

V (t) =
1

2
a2e

iωt + cc

(27)

where i is the unit imaginary number and cc stands for the complex conjugate.
The relation between a1 and a2 is governed by equation (25) and is given by

a2 =
ΘωR

C̃pωR− i
a1 (28)

The root mean square voltage can then be directly expressed in terms of the
trailing edge slope amplitude and written as

Vrms =
RΘω√

C̃2
pω

2R2 + 1

|
(
∂w
∂x

)
x=c

|
√
2

(29)

It is interesting to note here the proportional relation of the harvested voltage
to the slope of the flapping beam at the trailing edge. The harvested electric
power, P = V 2

rms/R, is used to determine an analytical expression for the opti-
mum electrical load resistance Ropt and the corresponding maximum harvested
electric power Pmax as

Ropt =
1

C̃pω
, Pmax =

Θ2ω

4C̃p

∣∣∣∣ (∂w

∂x

)
x=c

∣∣∣∣2 (30)

Equation (30) provides an analytical expression for the direct dependence of
the maximum generated power on the frequency of the excitation and on the
amplitude of the response, which, in turn, is dependent on the amplitude and
frequency of the excitation as applied at the root of the unimorph tail.

2.2. Hydrodynamic forces and power calculations

To determine the hydrodynamic forces, we implement the three-dimensional
unsteady vortex lattice method (UVLM) approach [42–44] that captures added
mass forces, variations in the bound circulation, wake, and induced drag as-
sociated with the swimming action. Details about implementing the three-
dimensional UVLM and the solution of the coupled fluid-structure interaction
can be found in [36, 45, 46]. In summary, the flow is assumed to remain at-
tached over the tail, which is represented by a bound vortex sheet discretized
as vortex rings over Nx × Ny panels, where Nx and Ny are respectively the
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number of panels in the x- and y-directions. Hussein et al. [36] determined that
Nx = 8, Ny = 10 and non-dimensional time step of (c∆t/U∞ = 1/(4Nx + 1))
are sufficient to yield grid independent solution. The total force vector from all
panels is given by

F⃗ =

Nx∑
i

Ny∑
j

F⃗i,j = (FX , FY , FZ) (31)

The input aerodynamic power at the leading edge is calculated from the hydro-
dynamic power required to flap the tail and is calculated as

Pin =

Nx∑
i

Ny∑
j

(⃗
roi,j × F⃗i,j

)
· Ω⃗ (32)

where r⃗oi,j is the position vector from the leading edge to the center of each
panel. The propulsive (output) power is defined as

Pout =
(
F⃗ · Î

)
U∞ = FXU∞ (33)

The propulsive efficiency ηp, transverse force coefficient CL, thrust coefficient
CT , and power coefficient CP are calculated as

ηp =
P out

P in

, CL =
FZ

1
2ρU

2
∞bc

, CT =
FX

1
2ρU

2
∞bc

, and CP =
P in

1
2ρU

3
∞bc

(34)

where () refers to the mean value.

2.3. Solution of the coupled model

2.3.1. Numerical discretization

Using a second order implicit finite difference representation, equation (25)
is written as a difference equation that relates the voltage at time m+ 1 to the
voltage at time m by

1

R

(
V m+1 + V m

2

)
+ C̃p

(
V m+1 − V m

∆t

)
−Θ

(
q̇c

m+1 + q̇c
m

2

)
= 0 (35)

or

V m+1 = −η2
η1

V m +
Θ

2η1

(
q̇c

m+1 + q̇c
m
)

(36)

where

η1 =
1

2R
+

C̃p

∆t
, and η2 =

1

2R
− C̃p

∆t
(37)

The finite element method is also used to discretize the space operator in the
equation of motion (20) by multiplying the residual by a weight function (w̃T )
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and integrating over the generic finite element length. Rearranging the terms,
equation (20) is rewritten as

[M]{q̈}+ [K]{q}+ΘV (t) ({Ro}+ {Rc}) = {F(q, q̇, q̈)} (38)

where [M] is the mass matrix, [K] is the stiffness matrix, and {F(q, q̇, q̈)} is
the time-dependent forcing vector containing the lateral force, forcing torque at
the leading edge, and local hydrodynamic forces on the Nx ×Ny nodal degrees
of freedom q. The integration of the voltage term yields two concentrated
moment vectors defined at the leading {Ro} and trailing {Rc} edges, i.e. at
the first and last finite element nodes. We use the Hermite polynomials to
represent the distribution of q over one element with two degrees of freedom
at each node, including the transverse deflection (w) and slope (∂w/∂x), i.e.
q = {w, ∂w/∂x}T . The above element matrices and vectors are calculated as
follows

[M] = m

∫ l

0

(Nw)
TNwdx

[K] =

∫ l

0

(
EI(N ′′

w)
TN ′′

w +
mθ̇2

2
(N ′

w)
T
(
c2 − (Xi + x)2

)
N ′

w −mθ̇2NT
wNw

)
dx

{Ro} =

∫ l

0

dδ(x)

dx
w̃T dx = −

∫ l

0

δ(x)
dNT

w

dx
dx = −dNT

w

dx

∣∣∣∣∣
x=0

= {0,−1, 0, 0}T , for first element only

{Rc} = −
∫ l

0

dδ(x− c)

dx
w̃T dx =

∫ l

0

δ(x− c)
dNT

w

dx
dx =

dNT
w

dx

∣∣∣∣∣
x=l

= {0, 0, 0, 1}T , for last element only

{F(q, q̇, q̈)} =

∫ l

0

(
NT

wFH(q, q̇, q̈) +mNT
w θ̈x

)
dx

(39)

where l is the element length, Xi is the starting coordinate of each element,
()′ = ∂

∂x is the derivative with respect to x, and Nw is the Hermite polynomials
shape functions defined as

Nw =
1

l3
{
(l3 − 3lx2 + 2x3), (xl3 − 2l2x2 + lx3), (3lx2 − 2x3), (−l2x2 + lx3)

}
(40)

2.3.2. Time-marching scheme

We use the Newmark method [47, 48] for direct time integration of the
equation of motion (38). Using equation (36), the discretized equation of motion
over a local generic element is given as

[M]{q̈}m+1+[C]{q̇}m+1+[K]{q}m+1 = {F(qm+1, q̇m+1, q̈m+1)}+Θ
η2
η1

({Ro}+ {Rc})V m−Θ2

2η1
q̇c

m{Rc}
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(41)

The aforementioned substitution introduced matrix [C], which represents the
slope of last node, i.e. trailing edge. After assembly, all entries in the global
matrix [C] are zeros except for the last diagonal element which is

(
Θ2/(2η1)

)
.

Similarly, all the entries in the global vector {Ro} are zeros except for the second
array element which is −1 and the entries of the global vector {Rc} are all zeros
except for the last array element which is 1.

The displacement ({q}m+1) and velocity ({q̇}m+1) terms are updated based
on Newmark method as

{q}m+1 = {q}m + {q̇}m∆t+
1

2
(1− γ)(∆t)2{q̈}m +

1

2
γ(∆t)2{q̈}m+1 (42)

and

{q̇}m+1 = {q̇}m + (1− α)∆t{q̈}m + α∆t{q̈}m+1 (43)

where α and γ are set equal to 0.5 to ensure stability and accuracy of the
Newmark method.

The acceleration and displacement equations at time (m+1) are respectively
determined by substituting the velocity update equation (43) in the discretized
equation of motion (41), and by substituting the acceleration equation in the
displacement update equation (42). Performing these operations, we write the
displacement and acceleration equations, respectively, in the form

[A1]{q}m+1 =
{
R1(q

m+1, q̇m+1, q̈m+1)
}

[A2]{q̈}m+1 =
{
R2(q

m+1, q̇m+1, q̈m+1)
} (44)

where

[A1] = [M] + α∆t[C] +
1

2
γ(∆t)2[K]

[A2] = [M] + α∆t[C]
(45)

and

{R1} =[A2]

(
{q}m +∆t{q̇}m +

1

2
(1− γ)(∆t)2{q̈}m

)
+

1

2
γ(∆t)2

({
F(qm+1, q̇m+1, q̈m+1)

}
+Θ

η2
η1

({Ro}+ {Rc})V m − Θ2

2η1
q̇c

m{Rc} − [C] ({q̇}m + (1− α)∆t{q̈}m)

)

{R2} =
{
F(qm+1, q̇m+1, q̈m+1)

}
+Θ

η2
η1

({Ro}+ {Rc})V m − Θ2

2η1
q̇c

m{Rc}−

[C] ({q̇}m + (1− α)∆t{q̈}m)− [K]{q̈}m+1

(46)

Using the velocity update equation (43), the system of equations (44) is rewrit-
ten in terms of q and q̇ as follows

[A1]{q}m+1 =
{
R1(q

m+1, q̇m+1, q̈m+1)
}

[A2]{q̇}m+1 =
{
R3(q

m+1, q̇m+1, q̈m+1)
} (47)
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where{
R3(q

m+1, q̇m+1, q̈m+1)
}
= α∆t

{
R2(q

m+1, q̇m+1, q̈m+1)
}
+[A2] ({q̇}m + (1− α)∆t{q̈}m)

(48)

To ensure stability of the solution, we solve equation (47) using the strong
coupling (implicit) approach. Thus, equation (47) is rewritten as a system of
algebraic equations in the form of

F(ζ) =

[
A1 0
0 A2

]{
{q}m+1

{q̇}m+1

}
−
{
{R1}
{R3}

}
= {0} (49)

where {ζ} = {{qm+1}, {q̇m+1}}T . We use Newton-Raphson method to solve
the system of equations (49) where the local iteration (k + 1) is updated by

ζm
k+1 = ζm

k −
(
∂Fi

∂ζj

|ζm
k

)−1

F(ζm
k ) (50)

The convergence criterion is imposed on the displacement vector q and defined
by

||qm
k+1 − qm

k ||
||qm

k+1||
≤ ϵ (51)

When convergence is achieved, the tail form, i.e. deflection and slope, at the
next time step is set to be the one from the last iteration of the current time
step, i.e. q(t0)

m+1 = q(tmk+1).

3. Results and Discussion

The geometric and material properties of the substrate and piezoelectric
components of the unimorph tail are presented in table 1. The flexural rigidity
of the substrate is set to 12.8×10−3Nm2, which is close to the near-root flexural
rigidity values of the biological pectoral fin rays of the bluegill sunfish [49].
Additionally, the beam’s aspect ratio is set equal to 1 and its mass ratio, defined
as the relative magnitude of the fluid inertia with respect to the beam inertia
is set equal to 45.4. All results are presented using the non-dimensional time
U∞t/c and non-dimensional excitation frequency, referred to as the reduced
frequency, k = ωc/2U∞ where ω is the angular frequency of the excitation.
The considered range of the excitation frequency is between 2 and 13 Hz, which
corresponds to a reduced frequency range between 1.7 and 11.27. All simulations
were carried out for an excitation amplitude θo = 8◦. We note that the selected
range of frequencies between 2 and 13 Hz, the relative forward speed of 3.67
BL/s when represented in terms of the beam length (BL), and the range of
resulting non-dimensional tail-flapping amplitude of about 0.2 correspond to
observed parameters of swimming fish [50]. The composite bending stiffness EI
= 0.044 N.m2 is close to the bending stiffness of swimming fish and within the
range required to generate propulsion [51].
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Table 1: Tail and PZT parameters.

Parameter Value
c (mm) 90
U∞ (m/s) 0.33
ρs (kg/m3) 2270
ρp (kg/m3) 5440
Es (GPa) 14.5
Ep (GPa) 30.336
hs (mm) 0.49
hp (mm) 0.16
d31 (pC/N) -170
e31 (C/m2) -5.157
εs33 (nF/m) 12.653

3.1. Harvested voltage and power

The harvested voltage and harvested electric power are dependent on the
electrical load resistance and excitation frequency. Figure 3a shows that the
generated voltage over the considered range of excitation frequencies is linearly
proportional to the load resistance in the range up to about R = 104Ω. As
the resistance value is increased further, the voltage asymptotically approaches
values near 10 V when k = 3.78 and between 20 and 30 V at the higher ex-
citation frequencies. These results validate equation (29), which predicts the
linear dependence of the harvested voltage on the load resistance at relatively
small R values, and non-dependence on the resistance at the higher R values.
Figure 3b shows that for each excitation frequency, there is an optimal electrical
load resistance at which the harvested electric power is maximum. This optimal
value decreases when the reduced frequency is increased from 1.7 to 11.27, in
agreement with the analytical prediction presented in equation (30).

In table 2, we compare the harvested power from the current design to values
of harvested power from previously published experiments. The experiments
include implanting a piezoelectric MFC inside a live fish [22], attaching MFC to
a biomimetic prototype inspired by thresher sharks [25], or attaching the MFC
to an underwater fish-like bimorph cantilever [23]. A comparison of the results
shows that the predictions by the current model are slightly larger but of the
same order of magnitude as in the experiments, mostly because of the idealized
conditions of the numerical simulations..

Table 2: Comparison with previously published experiments.

Reference Material
PZT Size
(mm2)

Average power
(µW )

Host Base Excitation

Li et al. [22]
PZT - MFC

(3-1)
85×3

9.3 @ 1 Hz and
>24 @ 2 Hz

Inside a rainbow trout Pitching

Cha et al. [25]
PZT - MFC

(3-3)
40×7 0.18 @ 1.6 Hz

On biomimetic tail inspired
by thresher sharks

Pitching

Erturk and Delporte [23]
PZT - MFC

(3-3)
85×28 8000 @ 6.7 Hz

underwater fish-like
bimorph cantilever

Heaving

Proposed unimorph tail
PZT - MFC
P2 (3-1)

90×90
23.5 @ 2 Hz and
≈11000 @ 6.7 Hz

Attached to biomimetic fish
tail (unimorph)

Pitching
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(a) (b)

Figure 3: (a) Generated voltage, and (b) harvested electric power variation with electrical
load resistance and reduced frequency.

3.2. Impact of energy harvesting on wake vorticity and hydrodynamic forces

The generated hydrodynamic forces are directly related to the vorticity field
in the wake of the flapping beam characterized by the shedding of counter-
rotating vortices that are responsible for thrust generation. Figure 4 compares
surface plots of the generated circulation in the wake of the flapping beam with
and without attached PZT element for two different excitation frequencies and
a load resistance of R = 2 x 104Ω. At k=2.17, adding a piezoelectric element
reduces the circulation over a broad region of the wake, indicating a reduction
in the propulsive force. In contrast, at k = 3.8, adding the piezoelectric element
increases the circulation and as such the propulsive force. The impact of adding
a piezoelectric element on the circulation in the wake over the whole range
of reduced frequencies is assessed in figure 5, which compares the maximum
generated circulation amplitude by the flapping and unimorph beams. The
plots show that at excitation frequencies with k < 2.17, the generated circulation
levels are slightly reduced when the PZT element was attached. The highest
reduction is about 10%, from 15.7×103 to 14.2×103, at k = 2.17. For k > 4, the
piezoelectric element results in significantly increased circulation in the wake,
with a maximum increase by about four folds near k = 6.

Time histories of the transverse force, thrust, and hydrodynamic power co-
efficients for the bare and unimorph beams at the reduced frequency k = 4 are
compared in figure 6. The resistance value in the unimorph beam was set to
2x104Ω. Figure 6a shows that the amplitude of the transverse force coefficient
increases by about 60% when the PZT element is attached. In both cases, how-
ever, the mean value is zero due to the symmetry of the imposed tail flapping
motion. The mean values of the thrust and hydrodynamic power coefficients
increase when the PZT layer is attached, as shown in figures 6b and c, which
demonstrates that while the PZT layer can increase the thrust, a higher level
of hydrodynamic power is required to generate the increased thrust.

To assess more broadly the impact of the PZT element on the hydrodynamic
performance, we compare in figure 7 the thrust and hydrodynamic power coef-
ficients, and the efficiency as defined in equation (34) of the bare and unimorph
beams over the whole range of excitation frequencies. Figure 7a shows no thrust
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(a) Substrate only at k = 2.17 (b) Unimorph piezoelectric tailat k = 2.17

(c) Substrate only at k = 3.8 (d) Unimorph piezoelectric tail at k = 3.8

Figure 4: Comparison of surface plots of the circulation in the wake of the tail with and
without the PZT element under two different excitation frequencies at k = 2.17 and 3.8.

generation at very low forcing frequencies (k < 1.7). In the range 1.7 < k < 3.3,
attaching the PZT layer decreases slightly the thrust coefficient. In contrast,
over the range of higher excitation frequencies k > 4, adding the piezoelectric
element appreciably increases the thrust coefficient. The maximum increase of
about seven folds takes place at k = 6. The variations in the power coefficient
follow closely the variations of the thrust coefficient as shown in figure 7b. In
the range of k < 3.3, the required power is about the same. In the higher fre-
quency range of k > 4, the required power is larger. The maximum increase
is at k = 6, the same reduced frequency where maximum thrust is obtained.
To get a better perspective on the impact of adding the piezoelectric element
on the hydrodynamic performance, we present in Figure 7c the variations in
the propulsive efficiency with and without the piezoelectric element over the
range of excitation frequencies. The plots show that attaching the piezoelectric
element decreases the propulsive efficiency over the whole range of excitation
frequencies. In the range of k < 3.3, the efficiency decreases from about 35% to
slightly less than 30%. In the range of k > 4, the decrease is more significant
from about 35% to 20% when attaching the PZT layer.Recognizing that fish
skin, tendons, and bones can act like springs to change the stiffness and adapt
to different swimming conditions, it is plausible that the fish can realize a better
performance when a PZT layer is attached by its ability to change its stiffness.

3.3. Validation and significance of analytical predictions

Validation of the analytical expression for the power, as derived above, is
demonstrated in the plots of figure 8, which show agreement between the an-
alytical predictions and numerical simulations for two different excitation fre-
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Figure 5: Variations of the maximum circulation in the wake of the tail with and without the
PZT element with the excitation reduced frequency k at constant excitation amplitude.

quencies over the range of considered electrical loads. This agreement validates
the dependence of the harvested power on the square of the slope of the trailing
edge as predicted by the power equation in section 2.1.2. To assess the impact
of the load resistance and excitation frequency on the slope of the trailing edge,
we plot in figure 9 the simulated time variations of the slope of the trailing
edge for two different frequencies, k = 5.2 and 11.27, and two different electric
loads, 103 and 108Ω, for each frequency. The plots show that the amplitude of
the slope is about the same in all cases. Consequently, beyond specific values
of load resistance and excitation frequencies, the generated voltage can only be
slightly impacted, as also shown in figure 3a.

The dependence of the performance of unimorph beam in terms of generat-
ing thrust and electric energy on the displacement amplitude and slope of the
trailing edge is illustrated in figure 10. The displacement amplitude, A, is nor-
malized by that of the corresponding rigid tail, A∞, under the same excitation
amplitude, 8◦, over the range of excitation frequencies. The plots show that the
PZT element changes the amplitude of the response. In the relatively low regime
of excitation frequencies, k < 3 the PZT causes a decrease in the amplitude of
the response. In the higher excitation frequency regime k > 4, the response
is significantly higher. It is also noted that the maximum response shifts from
taking place near k = 2.6 for the bare beam to taking place near k = 5.2 for the
unimorph beam, indicating a shift in the natural coupled frequency. Also, the
respective maximum amplitude changes from 1.45 to 1.6. Similar observations
can be made about the slope of the trailing edge where the maximum value
shifts from taking place at k = 4 for the case of the bare beam to near k = 7 for
the unimorph beam. It is of interest to note that the maximum generated thrust
takes place at a reduced frequency between those of the maximum amplitude
and maximum slope of the trailing edge, which indicates that the generated
thrust depends on both amplitude and slope of the trailing edge. On the other
hand, the maximum generated voltage and power happen at exactly the same
reduced frequencies where the maximum slope of the trailing edge is observed
in the case of the PZT covered beam, indicating the direct dependence of the
generated power on the slope of the trailing edge.

16



(a) (b)

(c)

Figure 6: Time histories of (a) transverse force, (b) thrust, and (c) power coefficients at
reduced frequency k = 4 using non-dimensional time.

3.4. Balance of hydrodynamic, propulsive and harvested power levels

Figures 11a and b show respectively the input and propulsive power varia-
tions with excitation frequency and electrical load resistance. The plots show
that at reduced frequencies k < 4, the electrical load resistance has no impact
on the propulsion performance in terms of the input power required to flap the
tail and the generated thrust power. Although the level of harvested power by
the PZT element increases exponentially with the increase in the reduced fre-
quency, as shown in figure 11c, its level remains about three orders of magnitude
lower than the hydrodynamic or propulsive power. In the range of frequencies
4 < k < 6, the required hydrodynamic power is not impacted while the propul-
sive power is reduced slightly especially at the optimal load resistance. In this
range, the harvested electrical power by the PZT increases by one order of mag-
nitude as shown in figure 11c. In the higher frequency range, k > 6, both
required hydrodynamic power and propulsive power are reduced depending on
the load resistance. This reduction is not, however, accompanied by a signifi-
cant increase in the level of harvested power. Clearly, k = 6 defines a reduced
frequency at which electrical power can be harvested by a PZT element with a
minimal impact on the hydrodynamic power or propulsive power significantly.
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(a) (b)

(c)

Figure 7: (a) Thrust coefficient, (b) power coefficient, and (c) propulsive efficiency versus
reduced frequency.

4. Conclusions

We performed analysis and numerical simulations to assess the level of har-
vested energy and effects of attaching a PZT element to a deforming part of a
fish body such as its tail. The tail with a PZT element was modeled as a deform-
ing unimorph beam subjected to pitching excitation at its root. The analysis
provided analytical expressions for the generated voltage and power and their
dependence on the slope of the trailing edge. The analysis also shows that the
hydrodynamic power and propulsive thrust depend on the amplitude and slope
of the trailing edge. In contrast, the harvested electric power depends on the
slope of the trailing edge. These results were validated numerically. The nu-
merical simulations showed that attaching a PZT results in a slight reduction of
the vorticity field and the thrust force in the low range of excitation frequencies.
Conversely, it is more pronounced and results in increased vorticity and larger
thrust at higher frequencies. The larger thrust, however, requires a higher level
of input hydrodynamic power. The balance of required hydrodynamic power,
generated propulsive power and harvested electrical power shows a significant
increase initially with the increase in the excitation frequency. However, it is
important to identify the frequency at which maximum benefit, in terms of
high levels of harvested power without a big impact on the hydrodynamic or
propulsive power, is obtained. Because fish skin, tendons, and bones can act like
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(a) (b)

Figure 8: Harvested electric power variation with electrical load resistance for (a) k = 5.2,
and (b) k = 11.27.

(a) At k = 5.2 (b) At k = 11.27

Figure 9: Time history of tail tip slope using the non-dimensional time.

springs to change the stiffness and adapt to different swimming conditions, it is
plausible that the fish can realize a better performance when a PZT is attached.
The approach and results can be used to identify a reduced frequency at which
electrical power can be harvested by a PZT element with a minimal impact on
the hydrodynamic power or propulsive power.
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(a) (b)

Figure 10: (a) Variations of the peak-to-peak amplitude, and (b) the amplitude of the slope
of the trailing edge with the reduced frequency k. A∞ is the peak-to-peak amplitude of the
rigid tail.

(a) (b)

(c)

Figure 11: (a) Input, (b) propulsive, and (c) maximum harvested electric power versus reduced
frequency for the unimorph PZT tail.
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