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Abstract 

The simulation of metals, oxides, and hydroxides can accelerate the design of therapeutics, alloys, 

catalysts, cement-based materials, ceramics, bioinspired composites, and glasses. Here we 

introduce the INTERFACE force field (IFF) and surface models for -Al2O3, -Cr2O3 -Fe2O3, 

NiO, CaO, MgO, -Ca(OH)2, -Mg(OH)2, and -Ni(OH)2. The force field parameters are 

nonbonded, including atomic charges for Coulomb interactions, Lennard-Jones (LJ) potentials for 

van-der-Waals interactions with 12-6 and 9-6 options, as well as a harmonic bond stretching for 

hydroxide ions. The models outperform DFT calculations and earlier atomistic models (Pedone, 

ReaxFF, UFF, CLAYFF) up to two orders of magnitude in reliability, compatibility, and 

interpretability due to a quantitative representation of chemical bonding consistent with other 

compounds across the periodic table and curated experimental data for validation. The IFF models 

exhibit average deviations of 0.2% in lattice parameters, <10% in surface energies (to the extent 

known), and 6% in bulk moduli relative to experiments. The parameters and models can be used 

with existing parameters for solvents, inorganic compounds, organic compounds, biomolecules, 

and polymers in IFF, CHARMM, CVFF, AMBER, OPLS-AA, PCFF, COMPASS, to simulate 

bulk oxides, hydroxides, electrolyte interfaces, multiphase, biological and organic hybrid materials 

at length scales from atoms to micrometers. The nonbonded character of the models also enables 

the analysis of mixed oxides, glasses, certain chemical reactions, and well-performing nonbonded 

models for silica phases, SiO2, are introduced. Automated model building is available in 

CHARMM-GUI Nanomaterial Modeler. We illustrate applications of the models to predict the 

structure of mixed oxides, energy barriers of ion migration, as well as binding energies of water 

and organic molecules in outstanding agreement with experimental data. Examples of model 
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building for hydrated, pH-sensitive oxide surfaces to simulate solid-electrolyte interfaces are 

discussed. 

 

Keywords: Interface Force Field, Bunsenite, Periclase, Quick Lime, Caustic Lime, Corundum, 

Eskolaite, Hematite, Silica, Oxides, Hydroxides, Atomistic Simulation, Molecular Dynamics, 

Atomic Charges 

 

1. Introduction 

Oxides and hydroxides find widespread uses in structural and household applications, electronics, 

catalysis, and medicine (Figure 1a). For example, oxides are abundantly present in cement, 

ceramic, refractory, abrasive, and glass products, as well as in semi-conductors.1-3 Pure and mixed 

metal oxides serve as catalysts and catalyst supports to direct chemical reactions.4 In the medical 

arena, surface-modified oxide and hydroxide nanoparticles are utilized for drug delivery and as 

antimicrobial agents.5, 6 Oxides further play an important role as thin films for corrosion protection 

on metals, or form undesired oxide/hydroxide scale as a result of corrosion.7, 8 Jewelry and 

ornaments often feature oxides, too, and have fascinated mankind from the earliest ages.9 

The structure of crystalline oxides and hydroxides is well known from X-ray and neutron 

scattering experiments.10-16 The characterization of nanostructures, defects, metal-oxide-hydroxide 

interfaces, as well as their organic and biological modifications can be accomplished using various 

imaging techniques such as transmission electron microscopy, scanning tunneling electron 

microscopy, atomic force microscopy, spectroscopy, electrochemical 

measurements, and surface analysis techniques.17-19 However, laboratory studies rarely reach 
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atomic-level resolution. State-of-the-art atomic electron tomography (AET), for example, 

currently requires several years of effort to obtain all-atom 3D images of a limited number of non-

crystalline nanostructures of 103 to 104 atoms, and the resolution is typically only high enough for 

metals, and not sufficient to locate oxygen atoms in oxides, carbon atoms in carbides, or organic 

matter.20-22 Information in limited nanometer resolution can also be obtained from energy-

dispersive X-ray spectroscopy (EDX).23, 24 Measurements of defect formation energies, the 

characterization of the chemistry of hydrated oxide surfaces, solid-electrolyte interactions, and the 

binding mechanisms of organic reactants and biological macromolecules such as proteins is also a 

great challenge, for example, due to the destructive nature of electron beams. Chemically realistic 

models and molecular dynamics simulations can fill in such gaps and provide acceleration using 

inputs from experiments and chemical knowledge,25 such as X-ray data, knowledge of hydration 

reactions, data from surface titration experiments and pK values of acidic surface groups. The 

INTERFACE force field (IFF)26 delivers accurate, compatible, and computationally efficient 

models, covering a wide range of metals,27, 28 minerals such as silica,29, 30 apatites,31 clays,32 cement 

minerals,33, 34 2D materials,35, 36 and a few oxides.37 In this contribution, we expand the coverage 

of IFF to chemically diverse oxides, hydroxides, mixed oxides, and their interfaces with 

electrolytes, organic, and biologically important molecules. 

We introduce the IFF models for 9 common oxides and hydroxides, focusing on the 

development and validation of the all-atom models and potential applications. Our compounds 

include the three corundum-type -Al2O3 -Cr2O3, -Fe2O3, the three rock salt type oxides 

CaO, MgO and NiO, and the three hydroxides -Ca(OH)2, -Mg(OH)2 and -Ni(OH)2 (Figure 1b), 

as well as compatible nonbonded models for silica (discussed separately). Chemical bonding in 

these compounds is partly ionic and partly covalent. The amount of covalent and ionic character 
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in these compounds was determined from experimentally observed atomic charges of the 

constituent elements38-40 and the extended Born Model by Heinz et al. (Figure 1c).41 The extended 

Born model is of foundational importance to IFF and can be used to estimate atomic charges for 

compounds with similar chemistry and coordination numbers within ±10% reliability in relation 

to reference compounds with known atomic charges. The model evaluates the bond polarity and 

magnitude of atomic charges in a compound using the energy contributions of the individual steps 

that describe the formation from the elements in a thermodynamic cycle (Figure 1c, bottom). The 

individual steps involve the atomization energy, the ionization energy, the electron affinity, as well 

as electrostatic and covalent contributions to bonding. Higher atomization energies and higher 

ionization energies indicate stronger covalent bonding, equal to lower atomic charges. Reference 

information on atomic charges is available from experimentally determined deformation electron 

densities and dipole moments,38-40 from validated IFF models for chemically similar minerals 

(silica, aluminates, calcium salts, metal sulfides),26, 30, 42, 43 as well as the interpretation of atomic 

charges in the context of related physical and chemical properties of a group of related 

compounds.41 The extended Born model, in combination with experimental data, fares an order of 

magnitude better than QM methods to assign atomic charges, which lead to >100% scatter and are 

not recommended for force field development. 
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Figure 1. Overview of uses for metal oxides and hydroxides, crystal structures, and the 

quantitative determination of bond polarity. (a) Major applications of metal oxides and hydroxides 

include (clockwise from top left) structural materials such as glass and certain building materials 

(lime), corrosion protection, ceramics and refractories for resistance to high temperatures, catalysts 

for energy conversion (reproduced with permission from ref. 4), electronic devices, and medical 

uses (reproduced with permission from ref. 17). (b) The INTERFACE force field (IFF) was 

extended for the 9 oxides and hydroxides shown. The crystal structure, space group, and 

stoichiometry is indicated, including three 2:3 oxides of corundum structure ( -Al2O3, -Cr2O3, -

Fe2O3), three 1:1 oxides of rocksalt structure (CaO, MgO, NiO), and three hydroxides ( -Ca(OH)2, 

-Mg(OH)2, -Ni(OH)2). (c) Covalent and ionic contributions to chemical bonding were analyzed 

using a thermodynamic cycle, the extended Born model.41 Shown for the example of NiO, the 

extended Born model assists in estimating atomic charges for new compounds relative to 

compounds with known atomic charges, similar chemistry, and similar coordination numbers 

within ±10% reliability. 

 

The oxides and hydroxides have borderline chemistries between covalent and ionic of about 

50% ionic nature. We chose to derived nonbonded models without explicit terms for covalent 

bonding, with the exception of O-H bonds in hydroxides that tend to be less than 50% ionic (H 

charges <0.5 e). 26, 41 Accordingly, we assumed nonbonded models with respect to the metal and 

oxide species that incorporate remaining covalent contributions through minor increases in atomic 

charges and in Lennard-Jones (LJ) well depths (Figure 2a, b). The atomic charges remain close to 

verifiable internal dipole moments (within 10% to 20%) and follow the extended-Born model. 

Nonbonded models have some advantages over bonded models such as the possibility to simulate 
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changes in crystal structure, composition, and defect formation, as well as other forms of reactivity 

without added parameters. Bonded models, if chosen, would require modifications of atomic 

connectivity and parameters to model such processes, which is harder to implement and limits 

broader applicability. 

The proposed models can represent structures from unit cells with few atoms to billions of 

atoms with excellent reproduction of crystal structures, lattice parameters, density, surface energy, 

bulk modulus, and interfacial properties relative to experimental data (Table 1).26 The upper limit 

in scale are micrometers, depending on available computing resources and software for molecular 

simulations. For example, GROMACS44 can be recommended for high computational efficiency. 

In comparison to existing popular atomistic models for oxides and hydroxides such as Pedone et. 

al.,45 DFT calculations,46-48 ReaxFF,49, 50 ClayFF51, 52 and UFF,53 the IFF nonbonded models show 

order-of-magnitude improved accuracy and compatibility, enabling far more accurate simulations 

and new fields of application (Table 1). 

The average deviation in the computed mass density from experiment with the IFF models is 

only 0.2% compared to a range from 2.5% to a massive 111% deviation in earlier models. A 

comparison of IFF lattice parameters with DFT lattice parameters from the AFLOW database and 

with interatomic potentials reported in the Open Knowledgebase of Interatomic Models 

(OpenKIM)54, 55 provides further details (Table S1 and Sections S1 an S2 in the Supporting 

Information).46 

The computed surface energy of the IFF models is the key predictor for the performance in 

simulations of electrolyte and biomolecular interfaces26 and deviates on average 8% from 

experiment, facilitating reliable simulations of interfaces and adsorption. In contrast, earlier force 

fields incur large errors between 45% and 75% (~25% in DFT) which make meaningful 
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simulations of hybrid materials difficult or impossible (Table 1). The surface energy could not be 

computed with the Pedone potential (Section S3 in the Supporting Information). 

The average deviation of computed bulk moduli from experimental measurements is 6% using 

the IFF models, which compares to a range from 5% deviation with the Pedone models to very 

large deviations of 445% using UFF (Table 1). UFF does not achieve trustworthy predictions and 

is thus not recommended.  

Compatibility and transferability of the parameters are important for broader utility. IFF can 

be used with validated water models (e.g. flexible SPC, TIP3P),30, 35, 56, 57 biomolecular force fields 

(CHARMM, GROMOS, AMBER), as well as force fields for organic molecules (OLPS-AA, 

PCFF, CFF, COMPASS, DREIDING) with minimal loss in accuracy, featuring the best 

compatibility and transferability among available models.34, 58, 59 The Pedone potential and ReaxFF 

are only self-compatible and cannot take advantage of the large chemical space of multi-

component electrolytes and biomolecules (proteins, DNA, lipids, carbohydrates) offered by other 

force fields. Specifically, the Pedone models cannot be applied to aqueous and organic interfaces.  

ClayFF can be used with water models and biomolecular force fields in principle (Table 1). 

However, intrinsic errors in the representation of chemical bonding42, 60 and in the physical 

justification of the LJ parameters, along with specific cutoff settings, amplify the uncertainties in 

ClayFF in combination with other force fields, which have some inconsistencies of their own. 

With regard to interpretability, IFF, ClayFF, and UFF include atomic charges and LJ 

parameters that are related to chemical bonding, atomic size, and atomic polarizability (Table 1).26 

IFF emphasizes a physical interpretation of all parameters in depth, while ClayFF and UFF do not. 

ClayFF uses inconsistent atomic charges, e.g., Si being more ionic than Al, and LJ parameters 

have a limited rationale, such as  values near zero for metal ions and excessively large  values 
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for oxygen.51, 52 UFF parameters have no documented rationale and validation for oxide materials, 

resulting in almost random computed properties (Table 1).53 Simulations with UFF, arguably, 

create more problems and confusions than they could solve. The Pedone potential45 and ReaxFF49, 

50, 61-64 entail a large number of empirical terms that can be difficult to understand and modify even 

for expert users. For example, ReaxFF comprises ca. 30 interconnected parameters for bond order 

correction terms for each oxide.  

The runtime (wall time) of simulations with the various force fields is similar. ReaxFF is ~50 

times slower than IFF (Table 1). In terms of chemistry coverage, IFF, ReaxFF, and UFF can 

represent all 9 oxides and hydroxides discussed here. ReaxFF uses only one force field type for 

each element and requires different parameter sets to cover specific oxides and hydroxides.61-64 As 

a result, the simulation of mixed oxides and combinations of oxides and hydroxides in the same 

simulation is limited as the parameters may not fit into a single parameter set. 

In an overall quality comparison, simulations with IFF are several times more reliable than 

with ClayFF and Pedone models (Table 1). CLAYFF has an average error of 8% in density, and 

surface energies with 45% average deviation are rather uncertain. The modulus with 24% average 

deviation is qualitatively justified. Also, ClayFF does not cover all compounds validated here. The 

Pedone models reproduce lattice parameters and bulk moduli in high quality, however, surface and 

interface properties are not accessible, and the rationale for the parameters is inconsistent (e.g., 

many different metal ions have the same atomic charge and other parameters are empirically fitted 

to elastic constants, not energy differences). The performance of ReaxFF is lower than ClayFF and 

borders on that of UFF, including high average deviations of 11% in density, 75% in surface 

energy, and 44% in bulk modulus. Uncertainties of this magnitude for critical properties of 

potential reactants (oxides) and products (hydroxides) raise concerns to what extent the 
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implementation of reactivity adds value. Also, a uniform ReaxFF parameter set may be a challenge 

due to the limitation to one atom type for oxygen (and for every element in general).  

In addition to force fields, ab-initio calculations of Hartree-Fock type and plane-wave DFT 

have been widely used to compute properties of oxides, hydroxides, and organic interfaces at the 

small nanoscale. The major benefit of DFT and equivalent methods consists in adding the 

electronic structure and associated optical, spectroscopic, reactive, and conduction properties. The 

reliability of lattice parameters, surface energies, and adsorption properties is dependent on the 

density functional, types of dispersion correction, and other options, with approximately 100 

choices available (e.g. PBE-D3, HSE, MN15, M06, rPBE, TPSSh).65, 66 The outcomes are often 

uncertain with errors in lattice parameters of several percent, up to 50% in surface energies (~25% 

common), and up to 30% in bulk moduli (~15% common) (Table 1). Computed binding energies 

of molecules to oxide surfaces are often unreliable, e.g., NO adsorption on Ni (100) shows between 

30% and 100% error relative to experimental data, CO adsorption up to 300%.65, 66 In case of hand-

picked density functionals with multiple empirical corrections, deviations can be reduced to ~20% 

for specific molecule-surface combinations. IFF, in comparison, is ~10 times more accurate in 

lattice parameters (~0.2% error), 2 to 5 times more accurate in surface energies (<10% error), 

about twice as accurate in bulk moduli (~6% error), and 2 to 10 times more accurate in adsorption 

energies of organic molecules (~10% error). Overall, IFF enables nearly an order of magnitude in 

improvement and contains no hidden parameters or correction functions. Another major difference 

is that DFT, or more reliable high-level QM methods (MP2, CCSD(T)), are limited to thousands 

or hundreds of atoms and require enormous computational power, about one to ten million times 

more than IFF for the same system size. DFT and CCSD(T) calculations often assume hypothetical 

temperatures of 0 K, in contrast to standard temperature and pressure. Equilibrium solid-electrolyte 
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interfaces at 0 K, for example, would then freeze to ice and expand ~10% in volume, which is not 

useful for practical applications.67 Dynamic properties of oxides, oxide-electrolyte, and oxide-

polymer interfaces cannot be evaluated or are severely restricted in length and time scales.  

In summary, we introduce a set of IFF parameters for oxides and hydroxides that reaches one 

to two orders of magnitude improvement over earlier force fields and enables accurate simulations 

of bulk and interfacial properties due to conceptual clarity, interpretability of the parameters, and 

in-depth validation of key properties. IFF also outperforms the reliability of current density 

functionals by 2 to 10 times at a millionth fraction of the computational cost. In the following, we 

discuss the IFF functional forms, protocols for parameter derivation, and force field parameters. 

Then, results for the computed density, lattice parameters, surface energy and bulk modulus are 

described in comparison to available experimental data. We illustrate four applications of the IFF 

models, including the simulation of mixed oxides, cation migration energies, binding energy of 

water and organic molecules, as well as modifications of oxide surface models in aqueous solutions 

for different pH values. The manuscript ends with conclusions and a section on computational 

methods to share details of model building, visualization, calculations of the crystal structure, 

surface energy, bulk modulus, cation migration, molecular binding energies, sensitivity of model 

parameters, uncertainties and limitations. The Supporting Information includes further details, 

simulation-ready molecular models and force field files, and run scripts to reproduce the data. 

 

Table 1. Summary of characteristics of the IFF models for the 9 oxides and hydroxides relative to 

earlier models, including Pedone et al,45 typical density functionals (PBE, LDA, dispersion 

corrected), ReaxFF,61-64 ClayFF,51, 52 and UFF53. For IFF, 4 options are given which correspond to 

IFF parameters customized for energy expressions using different Lennard-Jones functions (12-6, 
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9-6) and 12-6 combination rules for rmin,ij (geometric, arithmetic). These groups include IFF-

CVFF, OLPS (12-6, geometric); IFF-CHARMM, AMBER (12-6, arithmetic); IFF-PCFF (9-6); 

and IFF-PCFF-HQ (using higher charges for a best fit with the 9-6 LJ potential). 

Property 

IFF 

(CVFF/OPLS, 

CHARM/AMBER, 

PCFF, PCFF-HQ) 

Pedone DFT ClayFF ReaxFF UFF 

Reference This work ref. 45 refs. 46-48 refs. 51, 52 refs. 61-64  ref. 53 

Avg deviation in density 

from expt 

0.1 %, 0.2%, 0.2%, 

0.2% 
2.5 % ~4 % 8 % 11 % 111 % 

Avg deviation in surface 

energy from expt 
5%, 8%, 7%, 8%  

Could not be 

computed 
~25 % 45 % 75 % 71 % 

Avg deviation in bulk 

modulus from expt 
4 %, 5%, 21%, 7% 5 % ~15 % 24 % 44 % 445 % 

Compatibility for 

aqueous interfaces 
Yes No Yes Yes No Yes 

Compatibility with FFs 

for biomolecules 

(CHARMM, AMBER, 

GROMOS) 

Yes No NA Yes No Yes 

Compatibility with FFs 

for organic molecules 

(OPLS-AA, PCFF, CFF, 

COMPASS, 

DREIDING) 

Yes No NA Yes No No 
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Interpretability 

(High/Medium/Low) 
High 

Medium 

(inconsist. 

rationale) 

Low 

(many 

terms/params.) 

Medium 

(inconsist. 

rationale)  

Low  

(many 

terms/params.) 

Low 

(poor rationale) 

Simulation time 

(1.0 = fastest) 
1 1 10-6 1 0.02 1 

Parameter availabilitya 

(9 = all 9 compounds) 
9 6 9 6 9b 9 

 

a The score in the parameter availability category equals the number of compounds covered. Some 

potentials cover all 9 oxides and hydroxides considered here and some 6 oxides and hydroxides. 

The reported average deviations and characteristics are based on the covered compounds. b 

Simulations of mixed oxides and hydroxides may be limited with ReaxFF due to the necessity for 

multiple distinct parameter sets. 

 

2. Results and Discussion 

2.1. Development of IFF Oxide and Hydroxide Parameters. IFF relies on bonded models 

in case of predominantly localized, covalent bonding between neighbor atoms (>50% covalent) 

and on nonbonded models in case of predominantly ionic bonding (<50% covalent and >50 % 

ionic or metallic) for compounds across the periodic table (Figure 2).26 The physical representation 

of chemical bonds according to this rationale is essential and deviations would result in loss of 

accuracy and transferability. Metal oxides and hydroxides have both types of bonding. The 9 core 

compounds lean more towards ionic bonding (Figure 2a), and silica is predominantly covalent. 

Nonbonded models, if physically justified, have the advantages of a simple energy expression and 
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fewer parameters, resulting in applicability to mixed solid phases and certain chemical reactions, 

which is not feasible using bonded models. However, nonbonded models have a higher sensitivity 

to combination rules of LJ parameters than bonded models because interatomic distances are solely 

represented by the LJ parameters. Differences in combination rules in bonded models often still 

allow transferability with marginal loss in accuracy.30, 31, 35, 42, 60, 68 

The nonbonded oxide models use only two terms, Coulomb interactions and van der Waals 

interactions via a LJ potential, to describe the total potential energy (Figure 2a). OH surface groups 

or hydroxide ions in hydroxide minerals with predominantly covalent O-H bonds continue to use 

an additional harmonic bond stretching potential to describe the O-H bonds (Figure 2b). The 

overall energy expression then consists of bond, Coulomb and van der Waals energy terms, 

whereby IFF offers the options of 12-6 or 9-6 forms of the LJ potential (Figure 2c). Bonded 

compounds can be included with their full set of bonded potentials in the same simulation and both 

nonbonded and bonded models have unlimited coexistence and compatibility within IFF. The IFF 

parameters are given in Table 2. 

The workflow to tune the models started with a crystal structure from X-ray diffraction data, 

preferentially the most accurate available measurements (Figure 2d).10-16 Initial atomic charges, 

atom types, and LJ parameters were assigned according to their chemical environment. The atomic 

charges rely on experimental sources and chemical theory in IFF (Figure 1c).41 For example, 

atomic charges of +1.5±0.1 e on Cr atoms and -1.0±0.1 e on O atoms in escolaite, -Cr2O3, were 

determined from X-ray deformation electron densities.69 Atomic charges in corundum, -Al2O3, 

are expected to be between +1.32±0.05 e and +1.47±0.26 e according to measurements for 

octahedral corundum,40 diaspore,38 and tetrahedral AlPO4, which is isoeletronic with SiO2.70 

Furthermore, the extended Born model and comparisons to chemically similar compounds with 
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known atomic charges were employed (Figure 1c), which is critical for the better performance of 

IFF as a whole (Table 1).41 Initial values of the LJ parameter rmin take into account known 

crystallographic radii across the periodic table.71 Hereby, the nonbonded models utilize smaller 

rmin values for the metals than equivalent bonded models.26, 43, 68, 72 Smaller atomic radii are 

required to reproduce the metal-oxygen bond lengths in the absence of bonded terms, to 

accommodate the absence of customary exclusions of nonbonded interactions between 1,2 and 1,3 

bonded atoms, and the values correlate with a smaller cloud of valence electrons due to the 

increased atomic charge. Well-depths 0 play a dual role by contributing to both repulsion between 

atoms at short distance and to minor attractive dispersion interactions at distances larger than rmin.26 

Using the initial parameters, the equilibrium crystal structure, surface energies for the (hkl) 

cleavage plane of lowest energy, and bulk modulus were computed using molecular mechanics 

and molecular dynamics simulations in the NPT and NVT ensembles for validation and subsequent 

iteration. 

Upon analysis of deviations in computed properties from experimental data, the charges q and 

the LJ parameters rmin and 0 were iteratively adjusted to better reproduce bulk and surface 

properties. Hereby, iterations mainly involved the LJ parameters and atomic charges were 

modified in a smaller range as necessary since the representation of chemical bonding is not a fit 

parameter in IFF. The validation was focused on the structure and energy differences (surface 

energy), not on structure and modulus (as the modulus does not enter the Hamiltonian). Higher 

atomic charges tend to increase the density, the surface energy, and the modulus. Larger values of 

rmin decrease the density, surface energy, and the modulus. Larger values of 0 also tend to decrease 

the density due to added repulsion in the predominantly ionic model. However, larger values of 0 

also tend to increase the surface energy and the modulus due to a deeper potential well near 
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equilibrium. The final models typically reproduce the crystal structure, density, and lattice 

parameters within 0.5% deviation from experiments, surface energies within 5% of the target 

value, and bulk moduli within 5% of experimental reference data (Table 2). Bonded parameters 

for OH- ions were assigned utilizing the equilibrium bond length r0, ij from X-ray data and an 

equilibrium bond constant kij, which was tuned to match the bond stretching band in the 

experimental IR spectra (Table 3). The agreement between simulation and experimental 

measurements is better than 1% in bond lengths and 3 cm-1 in wavenumbers (Table 4). The models 

also reproduced the average M-O-H bond angles from X-ray data of about 120° without additional 

parameters with less than 2° deviation in molecular dynamics simulations. We observed significant 

instantaneous fluctuations of the M-O-H bond angles on the order of ±15º (Table 4). The parameter 

iterations involved several thousand molecular mechanics and molecular dynamics simulations in 

total.  

Upon completion of validation, the models were consistent in the representation of chemical 

bonding, structure, and relative energies (Table 2). They are also compatible with and transferable 

to other force fields and can be used to compute a multitude of non-fitted bulk and interfacial 

properties without further adjustments. The chosen atomic charges in the nonbonded models are 

10% to 20% higher than the physically justified values (which correlate with true multipole 

moments). Even larger increases in atomic charges were necessary in the PCFF-HQ version using 

the 9-6 LJ potential to enable accurate predictions of the bulk modulus (Table 2). The trend towards 

higher atomic charges than expected for true chemical bonding compensates for the missing 

covalent bonding contributions in the model and appears to be acceptable for practical 

applications. 
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The nonbonded parameters are, as mentioned earlier, sensitive to mixing rules, i.e., to the 

automated calculation of LJ parameters for pairs of different atom types i and j. Therefore, specific 

IFF parameters are given for 12-6 LJ potentials that use arithmetic combination rules for rmin, ij, as 

in CHARMM and AMBER, as well as for 12-6 LJ potentials that use geometric combination rules 

for rmin, ij as in OPLS-AA and CVFF (for ij, all force fields use geometric combination rules). If 

the specific nonbonded parameters were transferred from one of these groups to the other, we 

observed several percent deviations in lattice parameters, up to 15% percent deviation in surface 

energies, and up to 25% in bulk moduli. 9-6 LJ potentials in PCFF, COMPASS and corresponding 

HQ versions use Waldmann-Hagler (6th power) combination rules. 
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Figure 2. Nonbonded versus bonded models and the workflow for parameter development. (a) 

Comparison of structural representation, energy terms, and utility of nonbonded and bonded 

models. Nonbonded models can be applied when covalent contributions to bonding are 

approximately 50% or less than ionic contributions to bonding. They offer more flexibility to 

simulate different polymorphs and mixed chemistries in comparison to models with explicit 

bonded terms. (b) O-H bonds can be present on the hydroxylated surface layer of oxides in case of 
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aqueous conditions (example of -Al2O3 shown) or in the crystal structure of hydroxides (example 

of -Ca(OH)2 shown). (c) Energy terms in the nonbonded models include the Coulomb energy and 

the van-der-Waals energy, either in 12-6 LJ or in 9-6 LJ form. Hydroxide models also use a 

harmonic energy term for the predominantly covalent O-H bond in the potential energy expression, 

EBond = kij(r0 - rij)2. Force fields compatible with IFF, such as CHARMM or OPLS-AA, employ 

different combination rules for 12-6 LJ potentials, which are specifically accounted for in our 

nonbonded IFF models. (d) The workflow for the development of IFF parameters for oxides and 

hydroxides. Initially, atomic charges, atom types, and LJ parameters are assigned, using 

experimental data and analogies to similar validated chemistry covered in IFF. Tests of computed 

crystal structure, surface energy, and bulk modulus provided feedback for refinements to minimize 

deviations.  
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2.2. Crystal Structure. The reference data for crystal structures and lattice parameters were 

chosen from X-ray and neutron diffraction as reported in the American Mineralogist Crystal 

Structure Database (AMCSD) (Table 5).75 The measurement uncertainties in lattice parameters are 

on the order of 0.1%, and sometimes higher as indicated in Table 5. The IFF parameters of oxides 

and hydroxides were tuned to reproduce these lattice parameters in molecular dynamics 

simulations at 298 K and 1 atm using the NPT ensemble, i.e., constant number of particles, 

pressure, and temperature (Table 5). The average deviations in density and lattice parameters using 

IFF are ±0.2% and <±0.2%, respectively, with maximum deviations of ±0.7% and ±0.75%, 

respectively, compared to the XRD data (Table 1). Cell angles always agree within ±0.05% (Table 

5). The computed results for the Pedone potential, ReaxFF, ClayFF and UFF are included for 

comparison. Average errors with these methods range from few % to larger than 100%, whereby 

individual differences start at 0.3% (ClayFF for MgO) to extreme errors of 43270% (UFF for 

Ca(OH)2). Earlier methods are, on balance, one to three orders of magnitude less accurate than IFF 

and inconsistent across different chemistry. IFF stays close to experimental accuracy. 

Benchmarking with DFT results in the AFLOW database,76 reactive, and other nonbonded 

potentials is possible using the OpenKIM project,54, 55 which has been recently extended to include 

bonded potentials (Table S1 and Sections S1 and S2 in the Supporting Information). Average 

deviations using DFT calculations are approximately 10x larger compared to IFF, specifically, 

~4% in density and ~2% in lattice parameters (refs. 46-48 and Table S1 in the Supporting 

Information). OpenKIM comparisons are currently limited to lattice parameters.
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Table 5. Comparison of density and lattice parameters according to experimental data from X-ray 

diffraction, calculated in this work using 12-6 LJ (IFF-CVFF, OLPS and IFF-CHARMM, 

AMBER) and 9-6 LJ parameters (IFF-PCFF and IFF-PCFF-HQ), and other popular atomistic 

simulation techniques (Pedone et. al., ReaxFF, ClayFF and UFF). The uncertainty in experimental 

data is indicated using multiple crystal structures reported under standard conditions in the 

AMCSD. Deviations of the computed lattice parameters relative to experimental data are 

indicated. 

Source Density 
(g/cm3) 

a 

(Å) 

b 

(Å) 

c 

(Å) 

 

(º) 

 

(º) 

 

(º) 

-Al2O3  (4x4x2 Supercell)    

Experimenta,b 3.987 19.036 19.036 25.982 90 90 120 

Uncertainty ±0.003 ±0.011 ±0.011 ±0.005 0 0 0 

IFF-CVFF, OPLS 3.997 18.956 18.956 26.139 90 90 120 

Dev from expt 0.3% -0.4% -0.4% 0.6% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 3.986 19.039  19.039 25.979 90 90 120 

Dev from expt 0.0% 0.0% 0.0% 0.0% 0% 0% 0% 

IFF-PCFF 3.981 19.095 19.095 25.863 90 90 120 

Dev from expt -0.2% 0.3% 0.3% -0.5% 0% 0% 0% 

IFF-PCFF-HQ 3.984 19.071 19.071 25.907 90 90 120 

Dev from expt -0.1% 0.2% 0.2% -0.3% 0% 0% 0% 

Pedone et.al.d 4.062 18.845 18.845 26.024 90 90 120 
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Dev from expt 1.9% -1.0% -1.0% 0.1% 0% 0% 0% 

ReaxFF-1e 3.477 20.027 19.772 27.260 90 90 120 

Dev from expt -13% 5.2% 3.9% 4.9% 0% 0% 0% 

ReaxFF-2f 3.950a  Not provided in original paper 

Dev from expt -0.9% Not provided in original paper 

ClayFFc,g 3.676 19.492 19.492 26.847 90 90 120 

Dev from expt -7.8% 2.4% 2.4% 3.3% 0% 0% 0% 

UFFh 6.354 16.308 16.308 22.214 90 90 120 

Dev from expt 64% -14.3% -14.3% -14.5% 0% 0% 0% 

-Cr2O3 (4x4x2 Supercell)      

Experimenta,b 5.225 19.843 19.843 27.198 90 90 120 

Uncertainty ±0.014 ±0.016 ±0.016 ±0.026 0 0 0 

IFF-CVFF, OPLS 5.215 19.888 19.888 27.127      90 90 120 

Dev from expt -0.2% 0.2% 0.2% -0.3% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 5.208 19.843 19.842 27.198 90 90 120 

Dev from expt -0.3% 0.0% 0.0% 0.0% 0% 0% 0% 

IFF-PCFF 5.193 19.961 19.961 27.047 90 90 120 

Dev from expt -0.6% 0.6% 0.6% -0.6% 0% 0% 0% 

IFF-PCFF-HQ 5.221 19.919 19.919 27.012 90 90 120 

Dev from expt -0.1% 0.4% 0.4% -0.7% 0% 0% 0% 
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Pedone et.al.d 5.141 20.007 20.007 27.189 90 90 120 

Dev from expt -1.6% 0.8% 0.8% 0.0% 0% 0% 0% 

ReaxFFe 4.807 21.107 21.107 26.127 90 90 120 

Dev from expt -8.0% 6.5% 6.5% -3.9% 0% 0% 0% 

ClayFFc,g Parameters for Cr2O3 not available 

UFFh 6.489 18.840 18.840 24.472 90 90 120 

Dev from expt 24% -4.9% -4.9% -10.0% 0% 0% 0% 

-Fe2O3 (4x4x2 Supercell)    

Experimenta,b 5.246 20.152 20.152 27.544 90 90 120 

Uncertainty ±0.016 ±0.007 ±0.007 ±0.029 0 0 0 

IFF-CVFF, OPLS 5.247 20.211 20.211 27.427 90 90 120 

Dev from expt 0.0% 0.3% 0.3% -0.4% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 5.235 20.250 20.250 27.388 90 90 120 

Dev from expt -0.2% 0.5% 0.5% -0.6% 0% 0% 0% 

IFF-PCFF 5.239 20.258 20.258 27.347 90 90 120 

Dev from expt -0.1% 0.5% 0.5% -0.7% 0% 0% 0% 

IFF-PCFF-HQ 5.259 20.217 20.217 27.351 90 90 120 

Dev from expt 0.2% 0.3% 0.3% -0.7% 0% 0% 0% 

Pedone et.al.d 5.580 19.810 19.810 26.847 90 90 120 

Dev from expt 6.4% -1.7% -1.7% -2.5% 0% 0% 0% 
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ReaxFFe 6.145 20.002 20.003 23.911      90 90 120 

Dev from expt 17% -0.7% -0.7% -13.2% 0% 0% 0% 

ClayFFc,g 3.966 22.358 22.358 29.653 90 90 120 

Dev from expt -24% 10.9% 10.9% 7.7% 0% 0% 0% 

UFFh 27.917 11.559 11.555 15.767 90 90 120 

Dev from expt 432% -42.6% -42.7% -42.8% 0% 0% 0% 

MgO (5x5x5 Supercell)      

Experimenta,b 3.585 21.055 21.055 21.055 90 90 90 

Uncertainty ±0.005 ±0.010 ±0.010 ±0.010 0 0 0 

IFF-CVFF, OPLS 3.582 21.061 21.061 21.061 90 90 90 

Dev from expt -0.1% 0.0% 0.0% 0.0% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 3.586 21.054 21.054 21.054 90 90 90 

Dev from expt 0.0% 0.0% 0.0% 0.0% 0% 0% 0% 

IFF-PCFF 3.577 21.071 21.071 21.071 90 90 90 

Dev from expt -0.2% 0.1% 0.1% 0.1% 0% 0% 0% 

IFF-PCFF-HQ 3.582 21.061 21.061 21.061 90 90 90 

Dev from expt -0.1% 0.0% 0.0% 0.0% 0% 0% 0% 

Pedone et.al.d 3.513 21.197 21.197 21.197 90 90 90 

Dev from expt -2.0% 0.7% 0.7% 0.7% 0% 0% 0% 
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ReaxFFe 3.466 21.294 21.294 21.295 90 90 90 

Dev from expt -3.3% 1.1% 1.1% 1.1% 0% 0% 0% 

ClayFFc,g 3.557 21.109 21.109 21.110 90 90 90 

Dev from expt -0.8% 0.3% 0.3% 0.3% 0% 0% 0% 

UFFh 1.935 25.898 25.873 25.812 90 90 90 

Dev from expt -46% 23% 23% 23% 0% 0% 0% 

CaO (4x4x4 Supercell)     

Experimenta,b 3.337 19.260 19.260 19.260 90 90 90 

Uncertainty ±0.004 ±0.009 ±0.009 ±0.009 0 0 0 

IFF-CVFF, OPLS 3.336 19.261 19.261 19.261 90 90 90 

Dev from expt 0.0% 0.0% 0.0% 0.0% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 3.347 19.240 19.240 19.240 90 90 90 

Dev from expt 0.3% -0.1% -0.1% -0.1% 0% 0% 0% 

IFF-PCFF 3.326 19.282 19.282 19.282 90 90 90 

Dev from expt -0.3% 0.1% 0.1% 0.1% 0% 0% 0% 

IFF-PCFF-HQ 3.348 19.242 19.242 19.242 90 90 90 

Dev from expt 0.3% -0.1% -0.1% -0.1% 0% 0% 0% 

Pedone et.al.d 3.422 19.099 19.099 19.099 90 90 90 

Dev from expt 2.5% -0.8% -0.8% -0.8% 0% 0% 0% 

ReaxFFe 2.826 18.845 23.753 18.845 90 90 90 

Dev from expt -15% -2.3% 23% -2.3% 0% 0% 0% 
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ClayFFc,g 3.591 18.795 18.792 18.793 90 90 90 

Dev from expt 7.6% -2.4% -2.4% -2.4% 0% 0% 0% 

UFFh 2.437 21.274 21.369 21.377 90 90 90 

Dev from expt -27% 11% 11% 11% 0% 0% 0% 

NiO (5x5x5 Supercell)    

Experimenta,b 6.851 20.842 20.842 20.842 90 90 90 

Uncertainty ±0.027 ±0.028 ±0.028 ±0.028 0 0 0 

IFF-CVFF, OPLS 6.837 20.857 20.857 20.857 90 90 90 

Dev from expt -0.2% 0.1% 0.1% 0.1% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 6.843 20.851 20.851 20.851 90 90 90 

Dev from expt -0.1% 0.0% 0.0% 0.0% 0% 0% 0% 

IFF-PCFF 6.843 20.851 20.851 20.851 90 90 90 

Dev from expt -0.1% 0.0% 0.0% 0.0% 0% 0% 0% 

IFF-PCFF-HQ 6.869 20.824 20.824 20.824 90 90 90 

Dev from expt 0.3% -0.1% -0.1% -0.1% 0% 0% 0% 

Pedone et.al.d 6.751 20.945 20.945 20.945 90 90 90 

Dev from expt -1.5% 0.5% 0.5% 0.5% 0% 0% 0% 

ReaxFFe 5.426 22.883 22.667 22.031 90 90 90 

Dev from expt -21% 9.8% 8.8% 5.7% 0% 0% 0% 

ClayFFc,g Parameters not available for NiO 

UFFh 13.424 16.693 16.772 16.504 90 90 90 
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Dev from expt 96% -20% -19.5% -21% 0% 0% 0% 

-Mg(OH)2 (7x7x5 Supercell)    

Experimenta,b 2.366 22.033 22.033 23.850 90 90 120 

Uncertainty ±0.003 ±0.011 ±0.011 ±0.011 0 0 0 

IFF-CVFF, OPLS 2.366 22.054 22.054 23.818 90 90 120 

Dev from expt 0.0% 0.1% -0.1% -0.1% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 2.363 22.011 22.018 23.919 90 90 120 

Dev from expt -0.1% -0.1% -0.1% 0.3% 0% 0% 0% 

IFF-PCFF 2.359 22.100 22.108 23.770 90 90 120 

Dev from expt -0.3% 0.3% 0.3% -0.3% 0% 0% 0% 

IFF-PCFF-HQ 2.370 22.025 22.029 23.824 90 90 120 

Dev from expt 0.2% 0.0% 0.0% -0.1% 0% 0% 0% 

Pedone et.al.d Parameters not available for Mg(OH)2 

ReaxFFe 2.451 21.872 21.875 23.362 90 90 120 

Dev from expt 3.6% -0.7% -0.7% -2.0% 0% 0% 0% 

ClayFFc,g 2.249 22.801 22.880 23.429 90 90 120 

Dev from expt -4.9% 3.5% 3.5% -1.8% 0% 0% 0% 

UFFh 1.247 26.186 26.191 32.028 90 96 120 

Dev from expt -47% 19% 19% 34% 0% 0% 0% 

-Ca(OH)2 (6x6x4 Supercell)    
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Experimenta,b 2.244 21.555 21.555 19.620 90 90 120 

Uncertainty ±0.010 ±0.021 ±0.021 ±0.049 0 0 0 

IFF-CVFF, OPLS 2.245 21.608 21.597 19.530 90 90 120 

Dev from expt 0.0% 0.2% 0.2% -0.5% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 2.243 21.535 21.533 19.670 90 90 120 

Dev from expt 0.0% -0.1% -0.1% 0.3% 0% 0% 0% 

IFF-PCFF 2.245 21.519 21.505 19.693 90 90 120 

Dev from expt 0.0% -0.2% -0.2% 0.4% 0% 0% 0% 

IFF-PCFF-HQ 2.249 21.548 21.555 19.592 90 90 120 

Dev from expt 0.2% 0.0% 0.0% -0.1% 0% 0% 0% 

Pedone et.al.d Parameters not available for Ca(OH)2 

ReaxFFe 2.180 21.299 21.797 24.701 90 90 120 

Dev from expt -2.9% 1.2% 1.2% 0.6% 0% 0% 0% 

ClayFFc,g 2.263 21.720 22.181 18.756 90 90 120 

Dev from expt 0.8% 0.8% 2.9% -4.4% 0% 0% 0% 

UFFh 0.126 24.105 23.990 10650 147 77 120 

Dev from expt -94% 12% 11% 43270% 63% -16% 0% 

-Ni(OH)2 (7x7x5 Supercell)    

Experimenta,b 3.982 21.819 21.819 22.975 90 90 120 

Uncertainty ±0.017 ±0.015 ±0.015 ±0.078 0 0 0 
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IFF-CVFF, OPLS 3.970 21.813 21.813 23.089 90 90 120 

Dev from expt -0.3% 0.0% 0.0% 0.5% 0% 0% 0% 

IFF-CHARMM, 
AMBERc 3.990 21.835 21.835 22.896 90 90 120 

Dev from expt 0.2% 0.1% 0.1% -0.3% 0% 0% 0% 

IFF-PCFF 3.973 21.838 21.843 22.986 90 90 120 

Dev from expt 0.2% 0.1% 0.1% 0.0% 0% 0% 0% 

IFF-PCFF-HQ 3.999 21.766 21.762 22.995 90 90 120 

Dev from expt 0.4% -0.2% -0.3% 0.1% 0% 0% 0% 

Pedone et.al.d Parameters not available for Ni(OH)2 

ReaxFFe 5.161 15.698 15.503 25.477 90 90 120 

Dev from expt 30% -16% -17% 11% 0% 0% 0% 

ClayFFc,g Parameters not available for Ni(OH)2 

UFFh 0.143 16.641 16.286 51180 81 155 121 

Dev from expt -96% -11% -13% 222600% -10% 72% 1% 

 

a, b Lattice parameters were obtained using crystal structure data from X-ray diffraction, refs. 10-16, 

as catalogued in the AMCSD, ref. 75. In case of multiple references for the same minerals, 

references under standard conditions were chosen to compute the standard deviation in the 

experimental data: -Al2O3, refs. 18, 21-23, -Cr2O3, refs. 12, 18, 24-26, -Fe2O3, refs. 19, 25, 27, CaO, refs. 

10, 77, MgO, refs.11, NiO, refs. 10, 78 79, -Ca(OH)2, refs. 10, 80-82, -Mg(OH)2, refs. 16, 83, and -

Ni(OH)2, refs. 10, 78. 
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 c Lattice parameters of IFF-CHARMM/AMBER and ClayFF were computed using larger 

orthogonal simulation cells and converted to the corresponding hexagonal cells for a consistent 

comparison. d Ref. 45. e Refs. 61-63. f Ref. 64.  g Refs. 51, 52. h Ref. 53.
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2.3. Surface Energy. In addition to lattice parameters, an equally critical property for 

validation are energy differences, which can be assessed using (hkl) surface energies, solvation, 

and adsorption data.26, 30, 31, 35, 36, 42, 60, 84, 85 We benchmark surface energies, which are equal to 

cleavage energies for newly created surfaces from the bulk material, and largely determined by 

atomic charges and resulting Coulomb interactions. Freshly cleaved surfaces usually undergo 

some surface reconstruction after cleavage.30, 31, 60, 84, 85 (Therefore, our definition of surface 

energy/cleavage energy differs from “surface energies” calculated from contact angle 

measurements that rely on already-cleaved and reconstructed surfaces.) Cleavage energies are 

reported for the lowest energy (hkl) surfaces of all compounds, which include (0001) surfaces of 

corundum-type oxides, (400) surfaces of oxides of rock-salt type, and the (0002) surfaces of the 

hydroxides, consistent with prior experimental and computational data. The (400) surfaces are 

often identified as (100) surfaces, and (0002) surfaces often as (0001) surfaces in prior literature, 

which is incorrect (too simplified) as a result of limited characterization at the atomic scale (see 

Computational Methods). 

Experimental data for cleavage energies are available for several compounds (Table 6). 

Obtaining reliable values, however, has been challenging due to scarcity of data, inconsistencies 

in some measurements, as well as divergent definitions. A major goal in this work has therefore 

been to obtain consistent estimates with under 10% uncertainty. Towards this goal, we employed 

the analysis of known experimental data from diverse types of measurements, computational data 

with IFF, and chemical theory. We invoked analogies to known cleavage energies of chemically 

similar compounds such as clay minerals, sulfates, phosphates, and related oxides, 30, 31, 35, 42, 60, 68, 

86 as well as data from multiple other calculation techniques, including high-level QM calculations, 
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(Table 6 and Table S2 in the Supporting Information). Quantum mechanical and other theoretical 

data65, 86-89 were hereby treated with appropriate caution. For example, various DFT flavors result 

in computed surface energies and adsorption energies on well-characterized metals and metal 

oxides that differ up to 100% from known experimental values, even when using dispersion-

corrected density functionals, and were not used as a primary source of data.65, 90-93 

Specifically, the (0001) surface energies in the M2O3 group are relatively well supported for  

alumina (1.65 J/m2)94, 95 and iron(III)oxide (1.9 J/m2)96, 97 by consistent experimental data, related 

to each other by the same crystal structure, similar chemistry and atomic charges (Table 6). This 

analogy supports a suggested value for chromia of about 1.8 J/m2. Some earlier calculation data 

are also found in this range (Table S1 in the Supporting Information). The surface energies of 

M2O3 oxides with a metal oxidation state of +3 and atomic charges of 1.6e to 1.7e are furthermore 

expected to be higher than those of the MO oxides, which have an oxidation state of +2 and lower 

atomic charges of 1.1e to 1.2e (Table 6). Surface energies hereby scale approximately with the 

square of the atomic charges. Accordingly, the (400) surface energies in the group of MgO, CaO, 

and NiO oxides are in the range of 0.7 to 1.0 J/m2. Herein, the (400) surface energy of MgO is well 

supported to be 1.0 J/m2 by multiple laboratory measurements at room temperature,98, 99 and was 

recorded as 0.71 J/m2 at the melting point of 3125 K.100 The surface energy for CaO is expected 

to be somewhat lower, and NiO similar to MgO, based on some differences in lattice parameters 

and bonding,101 as well as according to atomic charges from the Extended Born model.41 Extensive 

experimental reference data are available for surface tension measurements of molten CaO-

containing mixed oxides and slag, which indicate 0.65 J/m2 at 1700 K.102 The surface energy of a 

solid at 298 K is always higher than the surface tension of a high temperature melt,103 in proportion 

to the temperature difference, and suggests a cleavage energy on the order 0.7-0.8 J/m2 for CaO at 
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room temperature (Table 6). Several calculations agree with this range, and with slightly larger 

values for NiO (Table S1 in the Supporting Information). Older reported values for the surface 

energy of CaO of 1.3 J/m2 are clearly too high.104 

The M(OH)2 hydroxides result from hydration of the oxides and have a layered structure. The 

(0002) plane is of lowest cleavage energy. Hydroxide ions are present on both sides of the newly 

created surfaces, and the surface energy is expected to be on the order of magnitude of the surface 

tension of water (72 mJ/m2)67 due to hydration and similar hydrogen bonding. The hydroxide ions 

have a higher polarity compared to OH groups in water, represented by larger negative oxygen 

atomic charges (between -1.32e and -1.02e compared to -0.82e in water), plus some variation in 

O-H bond length and H atomic charge (+0.3e to +0.5e compared to +0.41e in water). Therefore, 

cleavage energies are in a range of 0.15 to 0.25 J/m2, which is higher than the surface tension of 

water (0.072 J/m2), and in a similar range as alkali and earth alkali halides (0.15 to 0.25 J/m2).41, 

105-108 Several earlier simulation data support values in this range of (Table 6 and Table S1 in the 

Supporting Information). The IFF models of oxides and hydroxides were calibrated to best 

reproduce these likely surface energies, consistent with the known atomic charges and LJ 

parameters relative to validated compounds with similar chemistry. Agreement in computed lattice 

parameters and bulk moduli with experimental data (Table 7 and next section) supported 

convergence on the most likely values for the cleavage energy. 

In summary, the best estimates of the surface energies are based on experimental results and 

some help of theory. We used these values to benchmark the performance of IFF models and other 

atomistic models (Table 6). Furthermore, we tested the surface energies of various (hkl) surfaces 

with IFF, which confirmed that the (hkl) surfaces of lowest energy are the (0001) surfaces of M2O3-

type oxides, the (400) surfaces for MO type oxides, and the (0002) surfaces of M(OH)2-type 
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hydroxides. The lowest computed surface energies -Al2O3 -Cr2O3 -Fe2O3 are 1.64-

1.68 J/m2, 1.69-1.75 J/m2, and 1.88-1.91 J/m2, respectively (Table 6). For MgO, CaO, and NiO we 

obtained 0.85-0.9 J/m2, 0.71-0.76 J/m2, and 0.97-0.99 J/m2, respectively. The computed cleavage 

-Mg(OH)2 -Ca(OH)2 -Ni(OH)2, are 0.19-0.26 J/m2, 0.16-0.21 

J/m2, and 0.25-0.31 J/m2, respectively. The statistical uncertainty in the computation was hereby 

±0.01 J/m2. 

On average, computed cleavage energies with IFF for the low energy surfaces ((0001) in M2O3 

oxides, (400) in MO oxides, and (0002) in hydroxides) deviate by about 7% from best-estimate 

reference data, while other force fields that routinely neglect such critical validation have average 

errors between 45% and 75%, or do not allow the simulations of surfaces and interfaces by default 

(Table 1 and Table 6). Specifically, the Pedone potential could not be used due to difficulties in 

implementation. The randomness of computed surface energies in other computational methods is 

notable: some cleavage energies even have a negative sign, which equates to voluntary 

decomposition of the bulk material, such as chromia in ReaxFF and the hydroxides in UFF. Since 

cleavage (or surface) energies directly scale with the ability of a force field to reproduce Coulomb 

and van-der-Waals energies combined, defect energies, adsorption in multiphase materials,26 and 

the ability to study catalysts for sustainability,56 the performance of IFF exceeds that of other force 

fields and of some flavors of DFT by a large margin. The highest deviation for any compound in 

any flavor of IFF (CVFF, CHARMM, AMBER, OPLS, PCFF/COMPASS) is 20%, compared to 

a minimum of 85% with other models (Table 6).  

Notably, we required human effort to evaluate and interpret reference data in combination with 

tests by simulations and a low number of interpretable force field parameters. Automation and 

machine learning (ML) are still challenging to incorporate into this workflow since targeted 
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searches for reference data, evaluations of the quality of both reported techniques and 

measurement data, cross-checks to chemically similar compounds, and interpretations in the 

context of chemical theory require multi-domain expert knowledge and iterative processes beyond 

current ML capabilities. For example, if the wrong data were chosen and key rationales not 

followed, the deviations can be 4 to 5 times higher, and the practical value of resulting simulations 

with 40% to 50% error would be questionable.  
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2.4. Bulk Modulus. Computed bulk moduli, as a measure of mechanical properties and 2nd 

derivatives of the energy, deviate on average 5% from experimental data when using 12-6 LJ 

potentials in IFF (CHARMM, CVFF, AMBER, OPLS-AA) (Table 1, Table 7). Average deviations 

increase to 21% when using 9-6 LJ potentials (PCFF/COMPASS) unless atomic charges are 

increased (PCFF-HQ) (Table 1, Table 2). The necessity for modifications in the case of the 9-6 LJ 

potential shows that 12-6 LJ potentials provide an overall better representation of the physical 

interactions, which was similarly observed for metals27, 112 and several minerals.26, 42  

Experimental reference values for the bulk modulus of oxides and hydroxides have been 

readily available, and we analyzed between 3 and 13 independent measurements for each 

compound (Table S3 in the Supporting Information for full compilations). Accordingly, the bulk 

moduli of the corundum type oxides Al2O3, Cr2O3 and Fe2O3 are 254±3 GPa, 231±5 GPa and 

241±8 GPa, respectively, which feature only small uncertainties between ±1% and ±3% (Table 7). 

The high moduli are related to the comparatively high atomic charges (Table 2) and surface 

energies (Table 6). Bulk moduli are reproduced almost within the experimental uncertainty by IFF 

(Table 7). The rocksalt-type oxides MgO, CaO and NiO have bulk moduli of 160±5 GPa, 115±3 

GPa, and 200±11 GPa, which are somewhat lower than those for the M2O3 oxides and reproduced 

by IFF largely within the experimental uncertainty of ±3% to ±5% as well (Table 7). The 

hydroxides Mg(OH)2, Ca(OH)2, and Ni(OH)2, as products of the hydration reaction of the oxides, 

have expectedly lower bulk moduli of 45±6 GPa, 35±6 GPa, and 55±6 GPa, respectively. Even 

though many laboratory measurements are available (Table S2 in the Supporting Information), the 

uncertainty in the reported bulk moduli for the hydroxides is quite high, between ±11% and ±18%, 

and computed values from IFF stay within these bounds (Table 7). Interestingly, the scatter in 
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computed values for specific IFF energy expressions (CHARMM/AMBER, CVFF/OPLS-AA, 

PCFF/COMPASS) was also larger than for the corresponding oxides. 

Among alternative potentials, the Pedone force field yields the same accuracy for bulk moduli 

as IFF, however, it cannot include interfaces with solvents and organic compounds. ClayFF, 

ReaxFF, and UFF yield much higher average errors in bulk moduli of 24%, 44% and even 445%, 

respectively. ReaxFF and UFF can be particularly unreliable with individual deviations of more 

than 100% or even 1000% (Table 7).  

The 12-6 LJ potential in IFF fares better than the 9-6 LJ potential overall. Typically, we use 

the same atomic charges for 12-6 and 9-6 LJ functional forms as they represent the same chemical 

identity (electron distribution) in a material. However, the nonbonded potentials do not include 

bonded terms as a simplification, which results in a lower bulk modulus by 7% to 30 % with the 

9-6 LJ potential when using the same charges as in the 12-6 LJ potential. As an alternative, we 

derived a second set of LJ 9-6 models, IFF-PCFF-HQ, with higher atomic charges (Table 2). The 

IFF-PCFF-HQ parameters match the experimental bulk modulus within 10 % of the experimental 

values, along with excellent performance for lattice parameters and surface energy. Hereby, the 

higher charges artificially compensate for weaker bond strength when using a LJ 9-6 potential, 

which has a softer repulsive component to keep bonds lengths near equilibrium compared to the 

12-6 LJ potential. 
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Next, we will illustrate how IFF parameters are suited to compute properties not included in 

the derivation protocols, such as lattice parameters of mixed oxides, free energies of ion migration 

in oxides, and adsorption energies of water and organic molecules within ~10% of experimental 

measurements. 

2.5. Application to Mixed Oxides. The IFF models can be used to simulate mixed oxides, 

glasses, defects, electrolyte interfaces, organic hybrid materials, interfaces with metals, 2D 

materials, and large biomacromolecules. We demonstrate four example applications to mixed 

oxides such as spinel (MgAl2O4) (Figure 3a-c), defects and migration barriers of Ca2+ and Ni2+ in 

CaO and NiO (Figure 3d-f), as well as the binding energy of water and organic molecules on MgO 

(100) surfaces in comparison to experimental data (Figures 4, 5, and Table 8). An unlimited space 

of bulk materials and interfaces can be studied and validated in follow-on studies. 

Mixed oxides can form upon synthesis from the melt, from solution precursors, or at the 

interface of metal alloys and oxide films during oxidation or corrosion. As an example, spinel 

structures such as MgAl2O4 can form from -Al2O3). Some spinel-

type minerals have great potential in catalysis, for example, in the oxygen evolution reaction in 

water splitting.113 We used the crystal structure of MgAl2O4 from AMCSD75, 114 and the parameters 

of the two component oxides as is to simulate the density, lattice parameters, and bulk modulus 

(Figure 3a, b). Only a small adjustment of the O charge was made to maintain overall charge 

neutrality (charge neutrality is always necessary). The coordination number of Al remains at 6 

while the Mg coordination number with oxygen changes from 6 in MgO to 4 in MgAl2O4. The 

calculated density with the oxide parameters of Mg, Al and O was 3.492 g/cm3 and deviates from 

the experimental value114 of 3.570 g/cm3 by only -2.2% (Figure 3a, b, Sim. 1). The computed bulk 

modulus of 201 GPa agrees perfectly with experimental data of 200 GPa, given ~3% 
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uncertainty.115 The deviation in atomic positions can hardly been seen (Figure 3b). The deviation 

in lattice parameters of +0.7% is larger than those for IFF core compounds, although it is still better 

than other fitted force fields and common density functionals (Table 1). Accordingly, in Simulation 

1 the atomic charges remained at +1.06e for Mg, +1.62e for Al, and -1.075e for O (balanced 

between -1.06 and -1.08e for charge neutrality), and the LJ parameters (rmin and ) 2.06 Å and 0.4 

kcal/mol for Mg, 1.72 Å and 0.45 kcal/mol for Al, and 3.3 Å and 0.35 kcal/mol for O (Table 2). 

In Simulation 2, we tested small modifications of the parameters to improve the fit, if desired 

(Figure 3a, c, Sim. 2). Hereby, we lowered the charge of Mg from 1.06e to 0.96e, changed rmin for 

Mg from 2.06/0.4 to 1.93 Å/0.4 kcal/mol, and modified the oxygen charge to -1.05e to maintain 

overall charge neutrality. The lower charge (and less repulsive rmin) of Mg reflects the lower 

coordination number of 4 in the interstitial sites (as opposed to 6 in MgO).41 This adjusted 

parameter set matches lattice parameters with 0.1% deviation and the bulk modulus remains at 

0.5% deviation from experimental data (Figure 3a, c, Sim. 2). All other parameters remain the 

same (Al: 1.62e, 1.72 Å and 0.45 kcal/mol; O: -1.05e, 3.3 Å and 0.35 kcal/mol). These minor 

adjustments, which physically reflect the change in Mg coordination number and its effect on 

atomic charges (smaller) and atomic radius (smaller due to less repulsion at lower charge), show 

that the simulation of other oxide composition is straightforward (Figure 3a, b, Sim. 1). If any 

changes are desired for the best fit, they are minor and interpretable, i.e., on the order of 10% in 

atomic charges and LJ parameters (Figure 3a, c, Sim. 2). The conditions are that (1) overall charge 

neutrality must be maintained, (2) changes in charges and LJ parameters, if desired, follow 

expected changes in coordination environments. 

2.6. Application to Ion Migration. The growth of oxide films on metal surfaces upon 

oxidation and corrosion happens via cation migration. As an example, the nonbonded models of 
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CaO and NiO were used to compute the free energy of cation migration using steered molecular 

dynamics simulations. As the migration takes place, the free energy was plotted as a function of 

distance (Figure 3d, e), whereby one cation was pulled from one atomic layer to a cation vacancy 

in the next atomic layer (Figure 3f). The Ni2+ or Ca2+ cations were moved at a rate of 1 Å/ns, and 

any slower rates yield convergent results. The cation migration barrier is reported as an average of 

the forward and reverse barriers. The computed free energy barriers for Ca+ and Ni+ ions are 31 

kcal/mol and 32 kcal/mol respectively, which agree very well with the experimentally reported 

barriers of 34-36 kcal/mol for Ni2+ ions116-119 and 28-34 kcal/mol for Ca2+ ions (Figure 3d-f).120, 

121 The results show a near perfect match that exceeds the performance of common DFT 

simulations at a million times lower cost. To carry out these simulations, two vacancies at a 

distance greater than 60 Å were created by deleting a metal cation and an oxygen anion from the 

crystal model of ~80x80x80 Å3 size to maintain charge neutrality, equal to a Schottky defect 

(Figure S1 in the Supporting Information). The cation vacancy was placed at the center of the 

crystal and the anion vacancy was generated at the origin of the crystal system to minimize 

interaction between the two vacancies and obtain unbiased cation migration free energies.  
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Figure 3. Application of the IFF models to mixed oxides and cation migration. (a) The supercell 

of spinel, MgAl2O4, and comparison of the density, lattice parameters, and bulk modulus from 

experiments versus simulation with IFF. Two models are compared, including one with the 

original unmodified oxide parameters (Sim. 1) and slightly modified parameters for MgO to better 

match tetrahedral coordination and the density (Sim. 2). The agreement of lattice parameters is 

very good, under 1% deviation without parameter modifications, and the bulk modulus matches 

experimental data within the measurement uncertainty (~3%) with both models. The octahedral 

coordination environment of Al and the tetrahedral coordination of Mg are highlighted. (b) 

Overlay of the crystal structure of spinel from XRD (smaller spheres) with that obtained by MD 

simulation using original oxide parameters (Sim. 1, larger spheres). The offset is small and barely 
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visible. (c) Overlay of the crystal structure of spinel from XRD (smaller spheres) with that obtained 

by MD simulation using the tuned oxide parameters (Sim. 2, larger spheres). The structures match 

almost perfectly. (d) Free energy profile of Ni2+ cation migration from one layer to the next layer 

in NiO (which contains a vacancy) in steered molecular dynamics simulation. The free energy as 

a function of reaction coordinate is also called “potential of mean force”. (e) Free energy profiles 

of Ca2+ cation migration from one layer to the next layer in CaO, which contains a vacancy, in 

steered molecular dynamics simulation. (f) Schematic of steered molecular dynamics simulation 

used to migrate a cation from one layer to the vacancy in the next layer along with a comparison 

of the experimental and computed free energy of migration and deviation. A comparison of the 

computed free energy barriers to experimental data shows average deviations under 10%, close to 

the measurement uncertainty (table at right hand side). The pulling speed was 1 Å/ns. 

  

2.7. Application to Mineral-Water and Mineral-Organic Interactions. The nonbonded 

models were further tested to compute the adsorption energy of water and organic molecules on 

the MgO (400) surface, often simplistically called a (100) surface, for which experimental 

reference data are available. We used IFF and CVFF, OPLS format,  the flexible SPC water model, 

which can be replaced with TIP3P water with <5% changes in computed properties,30, 58 and the 

CHARMM36 parameters for organic molecules.122 The computed adsorption geometry of single 

water molecules on MgO (400) surfaces at 0 K agrees with quantum mechanical results, and the 

computed adsorption energy of -10.8 kcal/mol closely matches -11.3 kcal/mol obtained from high-

level CCSD(T) quantum mechanical calculations (Figure 4a).66, 123 Other quantum methods at MP2 

and CPC-CBS(D, T) levels indicate -10 to -12.7 kcal/mol, and DFT-D2 up to -15 kJ/mol, which 

is quite significantly lower accuracy compared to IFF.66 Molecular dynamics simulation of single 
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water molecules at a low temperature of 170 K yields an adsorption enthalpy of -8.4 kcal/mol, 

which is within the range of experimental measurements of -8.6 to -12 kcal/mol (Figure 4b).124 

Laboratory data are based on adsorption isotherms measured for temperatures between 100 K and 

300 K for equal surface coverage, as determined by low energy electron diffraction (LEED) and 

helium-atom scattering (HAS).124, 125 Under these conditions and at low surface coverage, 

reversible physisorption of isolated water molecules was observed.66, 126 Typical molecular 

conformations from MD simulations indicate that a reaction to Mg(OH)2 could easily proceed via 

dissociation of an OH bond in adsorbed water (side view in Figure 4b). Binding enthalpies of water 

at monolayer coverage at 170 K were calculated as -15.2 kcal/mol, using 50 H2O molecules on a 

21.05 x 21.05 Å2 cross-sectional area, which compares to laboratory measurements of -20.3 

kcal/mol (Figure 4c).124, 125 According to spectroscopic studies, water partially dissociates on MgO 

(400) surfaces and forms a layer with both water molecules and OH groups at intermediate and 

monolayer coverage,127, 128 which adds an exothermic reaction enthalpy up to -9.0 kcal/mol (930 J 

per g MgO).129, 130 The computed adsorption enthalpy of -15.2 kcal/mol for undissociated water is 

thus in good agreement with the experimental data of -20.3 kcal/mol, assuming that dissociation 

of one third of water molecules126 would add -3 kcal/mol for the partially dissociated water layer 

in experiment. The position and orientation of adsorbed water molecules at monolayer coverage 

in the MD simulation also follow closely the observations in LEED and HAS, which indicate the 

existence of several partially ordered water networks (Figure 4c top view and below). Hereby, the 

oxygen atoms in water coordinate with magnesium ions of the MgO surface. Overall, the 

simulation of physisorbed water using IFF appears realistic with respect to binding geometries and 

~10% uncertainty in binding energies. 
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Figure 4. Application of the IFF MgO oxide models to analyze binding of water molecules to the 

MgO (004) surface using geometry minimization and molecular dynamics simulations. The IFF-

CVFF, OPLS model was used along with the flexible SPC water model. (a) Geometry 

optimization, equal to energy minimization at 0 K, of single water molecules yields a binding 

geometry similar to those observed in quantum mechanical MP2 and CCSD(T) calculations (insets 

in top and side views).66, 123 The IFF binding energy deviates less than 5% from the CCSD(T) 

value.66 (b) Molecular dynamics simulations at 170 K show representative orientations of single 

water molecules. The computed binding enthalpy is in the range of experimental data.124 The 

orientation is favorable for dissociation into hydroxide ions (necessary shifts in electron density 
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are indicated by dotted arrows).127, 128 (c) Monolayer adsorption at 170 K indicates locally ordered 

orientations of water molecules, similar to structures from LEED measurements indicated between 

the top and side views.125 The computed binding enthalpy of water is 5 kcal/mol weaker than in 

experimental measurements, which involves partial dissociation into hydroxide ions126-128 with an 

exothermic reaction enthalpy of -9.0 kcal/mol per dissociated water molecule.129, 130 The overall 

agreement between computation and experiments is very good. 

 

More detailed validation is possible for the adsorption of organic molecules on the MgO (400) 

surface. Hereby, reactions do not occur and measurements of the adsorption energy are available 

for multiple molecules from temperature-programmed desorption (TPD) (Figure 5 and Table 8).131, 

132 Measurements were carried out close to monolayer coverage, and accordingly we analyzed the 

adsorbed configurations of C2H6, n-C4H10, and n-C8H18 for half a monolayer (0.5 ML) and for full 

monolayer coverage (1 ML) on a Mg (400) slab in equilibrium (Figure 5a-f). Monolayer coverage 

was achieved for 204, 109, and 65 molecules of C2H6, n-C4H10, and n-C8H18, respectively, using 

an MgO (400) surface area of 63.165 x 63.165 Å2 (Table 8). The computed adsorption energies 

for 1 ML coverage with C2H6, n-C4H10, and n-C8H18 on MgO surface were -6.0 kcal/mol, -9.6 

kcal/mol and -18.0 kcal/mol (Table 8). The computed values for 0.5 ML coverage are 

approximately 5% lower at -5.7, -9.1, and -17.1 kcal/mol. The agreement with experimental data 

from TPD measurements, which are -5.4, -8.5, and -15.2 kcal/mol, respectively, is between 8% 

and 13%. The agreement is very good given ~10% uncertainty from TPD measurements, no use 

of any fitting parameters for the interfaces, and using CHARMM36 parameters for the organic 

molecules which have some uncertainties of their own. DFT calculations, which are not feasible 
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for systems this size including dynamics, often have uncertainties of 50% and higher for small 

molecules, depending on the density functional.65, 92, 93, 133, 134  

Similar agreement of computed and experimentally measured adsorption energies and 

conformations of organic molecules, biopolymers, and gases on nanostructured metals, minerals, 

and 2D materials on the order of 10% or better was previously demonstrated using IFF parameters 

and combinations with CHARMM, AMBER, OPLS-AA, PCFF, and other (bio)organic force 

fields.25, 29, 30, 34-36, 56, 57, 59, 135, 136 
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Figure 5. Application of the IFF MgO oxide models to analyze alkane binding to the MgO (004) 

surface using molecular dynamics simulations. (a) Snapshot of equilibrium adsorption of C2H6 at 

1 monolayer (ML) surface coverage. (b) Adsorption of C2H6 at ½ ML coverage. (c) Adsorption of 

n-C4H10 at 1 ML surface coverage. (d) Adsorption of n-C4H10 at ½ ML coverage. (e) Adsorption 

of n-C8H18 at 1 ML surface coverage. (f) Adsorption of n-C8H18 at ½ monolayer (ML) coverage.

Fractional coverage leads to nucleation of islands on the surface. At full coverage, the formation 

of domains with different orientation can be seen as the chain length increases.

Table 8. Adsorption energy of C2H6, n-C4H10, and n-C10H18 on the Mg(004) surface according to 

experiments131, 132 and MD simulations for surface coverages of 1.0 and 0.5 monolayer coverage.
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Approximate uncertainties for the experimental measurements and statistical uncertainties for the 

simulation results are indicated. 

Alkane Type of 
measurement Surface coverage Na Adsorption energy Ea 

(kcal/mol) 

C2H6 Expt Near 1 ML  -5.4 ± 0.5 

 Simulation 1 ML 204 -6.0 ± 0.5 

 Simulation ½ ML 102 -5.7 ± 0.5 

C4H10 Expt  Near 1 ML  -8.5 ± 0.8 

 Simulation 1 ML 109 -9.6 ± 0.5 

 Simulation ½ ML 54 -9.1 ± 0.5 

C8H18 Expt Near 1 ML  -15.2 ± 1.5 

 Simulation 1 ML 65 -18.0 ± 0.5 

 Simulation ½ ML 32 -17.1 ± 0.5 

 

a Number of molecules on the surface.   

  

Simulations of biomolecule-oxide and biomolecule-hydroxide assemblies in solution use the 

same type of models as for water and organic molecules and are expected to perform with similar 

accuracy. As shown in prior work, IFF is well suited to characterize peptide and protein 

interactions with various minerals.29, 31, 35, 36, 137, 138 Molecular geometries typically agree with 
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experimental reference data within ~0.5%, plus tolerances depending on the reliability of the 

biomolecular parameters (1% to 3%). Computed binding energies usually agree on the order of 

±10% with experimental data, and sometimes better. The expected accuracy specifically correlates 

with the values for surface energies (Table 6).26 Proof-of-concept simulations for biomolecule-

oxide and biomolecule-hydroxide assemblies can be carried out in future studies as they require 

significant effort and only qualitative experimental reference data are currently available. For 

example, experimental studies of peptide binding to some oxides and hydroxides were summarized 

in ref. 139, such as preferred binding of the peptide QMDTSTSLAPSR and non-preferred binding 

of the peptide HANHQAWNNLA to -Fe2O3.140 Specific adhesion of Escherichia coli 

bacteria to iron oxide nanoparticles and potential recognition motifs such as RRTVKHHVN at pH 

8 have been suggested by laboratory studies. Going forward, quantitative analysis from the 

molecular scale to the small cellular scale using MD simulations with IFF models and experiments 

could answer numerous questions related to molecular recognition, the function of nanoparticle 

therapeutics, imaging agents, vaccine adjuvants, and potential mechanisms of toxicity. 

2.8. Surface Reconstruction. The creation of surfaces by cleavage, as compared to the bulk 

crystal, leads to changes in electrostatic interactions at the surface layers and surface 

reconstruction.31, 60, 84, 85 -Al2O3, the bulk structure can be described as a sequence of 

two layers of Al-atoms followed by a layer of O atoms (Figure 6a, b). Creation of the (0001) 

surface of lowest energy involves cleavage between the two Al layers, which are then distributed 

-Al2O3 slab. Due to changing electrostatic interactions, namely, the absence of 

neighboring Al atoms and O atoms, the surface Al-atoms move closer to the underlying O-layer 

(Figure 6a, b). In addition, the 2 Al layers below the top O-layer merge together (middle arrow 
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Figure 6a, b and inset of Figure 6b) while the two Al peaks remain distinct in the bulk (Figure 6a, 

b). 

In the structure of rock salt type, the atomic layers are composed of both cations and anions in 

alternation as shown for MgO (Figure 6c, d). In this structure, both metal and oxygen atoms are 

equally exposed on the low energy (004) surface, cleavage is electroneutral by default, and 

virtually no surface reconstruction is observed. 

The hydroxide (0002) surfaces are terminated with hydroxide ions and the bulk structure 

consists of a repeat sequence of a layer of (HO) groups, followed by a layer of metal atoms, 

followed again by an (OH) -Ni(OH)2 (Figure 6e, f). Virtually no 

reconstruction of (0002) surfaces is observed due to fully electroneutral cleavage between adjacent 

(OH) layers and loss of comparatively weak electrostatic interactions between the 2 hydroxide 

layers. All atoms were mobile during the simulations of cleavage to analyze the surface dynamics. 
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Figure 6. Sequence of atomic layers and surface reconstruction in the oxides and hydroxides. (a) 

The density profile of the -Al2O3 (0001) surface shows discrete atomic layers of Al and oxygen. 

The top three Al-containing atomic layers near the surface are marked by arrows. The superficial 

Al layer moves closer to the O layer below than in the bulk structure (red highlight). The next two 

Al atomic layers towards the bulk tend to unite into one peak (red highlight) compared to two 

separate peaks for Al atomic layers further inside (red highlight). (b) Side view of the -Al2O3 

(0001) surface, which matches the density profile in (a). The inset shows the atoms near the 

surface, including the compression of top layer Al atoms towards the topmost oxygen layer 

(smallest arrow), the fusion of two Al layers below the topmost oxygen layer (middle arrow), and 

two distinct Al layers below the second oxygen layer (largest arrow). (c) Density profile of the 

MgO (004) surface. The layers are composed of alternating Mg and O atoms in lateral and vertical 

directions (red highlight). No surface reconstruction was observed. (d) Side view of the MgO (004) 

surface, which matches the density profile in (c) and shows no significant surface deformation. (e) 
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-Ni(OH)2 (0002) surface. No surface reconstruction was observed. Single 

peaks are observed for surface hydrogen, oxygen, and Ni atoms while the hydrogen peaks for the 

inner layers show two peaks from adjacent Ni(OH)2 layers (red highlights). (f) Side view of the -

Ni(OH)2 (0002) surface, which matches the density profile in (e) and shows no significant surface 

deformation.  

 

2.9. Surface Modification in Aqueous Solution. As earlier shown for silica, phosphate, and 

aluminate surfaces,30, 31, 42, 68 oxide surfaces in aqueous solution typically undergo hydration 

reactions, for example, M2O3 + H2 , or M2O3 + 3 H2 3. The resulting 

superficial OH groups may be partly protonated, neutral, or deprotonated depending on the pH 

value in solution. Superficial hydration reactions from oxide to hydroxide, when equilibrium 

structures are considered, usually affect at least the surface atomic layer, and could proceed several 

atomic layers further into the bulk structure, especially under dissolution conditions at particularly 

low or high pH values. Consideration of these details is critical for any realistic simulation of 

electrolyte interfaces of oxides and their drastically changing properties as a function of pH value 

in solution. 

A detailed discussion of surface chemistry and the data to quantitatively inform surface models 

will be shared in a follow-up contribution. Here, as an example, we consider alumina-type minerals 

(Al2O3), which feature characteristic AlO(OH) or Al(OH)3 termination upon hydration.141-143 

Correct modeling of these surfaces in aqueous electrolytes requires electroneutral Al2O3 models 

and at least one atomic layer of AlO(OH) or Al(OH)3 termination when the pH value in solution 

is near ~8.4 (the point of zero charge as known from experiments).141-143 Under more acidic 

solution conditions between pH 8 towards 3, the AlO(OH) surface layers include an increasing 
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small percentage of AlO(OH2)+ Cl- surface groups. Under more alkaline conditions from pH 9 

towards 13, AlO(OH) surface layers include an increasing small percentage of negatively charged 

AlO2- Na+ surface groups. To implement specific percentages of ionized groups as a function of 

pH value, we have previously used experimental reference data from surface titration.141-143 For 

alumina, the percentage of ionized AlO(OH) groups is 0% at pH ~ 8.4 and increases to ~10% 

AlO(OH2)+ Cl- groups at pH values of 3, as well as to ~10% AlO2- Na+ groups at pH values of 13, 

respectively. The atomic charges of H atoms and O atoms in OH groups in AlO(OH) and Al(OH)3 

are +0.25e and -0.79e, respectively. Typical bond and angle parameters for these surface groups 

can be taken from existing parameters in IFF. It is critical to obey charge neutrality upon ionization 

of AlO(OH) to AlO(OH2)+ Cl- and AlO2- Na+. No other dedicated or additional force field 

parameters are needed. LJ parameters for Al and O in the surface groups can be kept the same as 

in the bulk or used with minor modifications (see previous examples of silica30 and 

hydroxyapatite31). 

Using such chemically informed surface models makes a large difference in the affinity to 

counterions and charged organic molecules such as carboxylates, ammonium surfactants, and 

chelates to the oxide and hydroxide surfaces.30, 31 Meaningful force field parameters for the core 

compounds, as well as adequate surface models make the difference between reliable and 

unreliable simulations in equal parts. 

2.10. Nonbonded Model for Silica, SiO2. Silica is a key ingredient in glasses, nanoparticles, 

ceramics, and composites. The standard IFF model for silica is bonded, due to predominantly 

covalent bonding with atomic charges of Si of +1.1e versus a formal charge of +4e, and includes 

models for the full range of surface chemistry.26, 30 Nonbonded silica models are therefore expected 

to be less accurate. Nevertheless, due to the absence of bond constraints, a set of nonbonded 
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parameters for silica can be useful for the simulation of mixed oxides, glasses, and ceramics, 

including amorphous melts prepared at high temperatures. Using our workflow and extensive tests 

(Figure 2d), we derived nonbonded models for silica in IFF-CVFF, OPLS-AA format as well as 

in IFF-CHARMM, AMBER formats that perform best in the nonbonded approximation (Table S4 

in the Supporting Information). The atomic charges are +1.3e on the Si atoms and -0.65e on O 

atoms. 12-6 LJ parameters are rmin min = 3.3 

 in IFF-CVFF, OPLS format. The values of rmin decrease 

slightly in IFF-CHARMM, AMBER format to 1.47 Å and 3.17 Å, respectively, since arithmetic 

combination rules result in longer Si-O bond lengths than geometric combination rules (Table S4 

in the Supporting Information). 

The performance of the nonbonded silica models is surprisingly good. The parameters 

reproduce the correct coordination numbers of 4 and 2, different crystal geometries and lattice 

parameters of -quartz and -cristobalite, as well as accurate surface energies (Table S5 in the 

Supporting Information). Bond lengths have ~3.5 % deviation and bond angles ~2% deviation 

from X-ray data. -quartz of 2.66 g/cm3 is reproduced within 0.5% deviation from 

X- -cristobalite of 2.33 g/cm3 is computed -4.5% lower with both types 

of IFF models (IFF-CVFF, OPLS and IFF-CHARMM, AMBER). The individual lattice 

-quartz have deviations between ±0.5% and ±0.7%. The (0001) resp. (001) surface 

energies of the two silica phases are 0.40 ±0.04 J/m2 at 298 K according to measurements144, 145 

and very well reproduced. The computed values are 0.44 J/m2 for IFF-CVFF, OLPS and 0.40 J/m2 

for IFF-CHARMM, AMBER for quartz, and similar values for cristobalite. The bulk modulus of 

-quartz was computed as 45 GPa with IFF-CVFF, OLPS and 44 GPa with IFF-CHARMM, 

AMBER, which is within the range of known measurements (35-45 GPa, 36.5 GPa often 
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reported).30, 67, 146 The computed bulk modulus for -cristobalite is, however, much too high at 44 

GPa (expt: 11-17 GPa).30, 67, 146 Accordingly, structural properties are in very good agreement with 

experimental data, and surface energies are excellent. Elastic constants and mechanical properties 

can have large deviations, and more details of the electronic structure would be required in the 

force field for better results. Overall, the nonbonded parameters for silica do not reach IFF level 

in terms of accuracy and transferability, however, they outperform existing nonbonded models in 

simplicity, speed, surface properties, and have a good level of compatibility. 

The nonbonded silica model can be used to generate and equilibrate amorphous melts of silica 

and complex mixed glasses using annealing techniques, molecular dynamics simulation at high 

temperature, and cooling. Equilibrated models of such melts can be subsequently subjected to 

energy minimization and converted into the bonded IFF silica model, for local domains containing 

silica, for further analysis (every Si atom remains coordinated by 4 O atoms).26, 30 

2.11. Deployment of Oxide and Hydroxide Models. Simulation-ready structures and force 

field files are provided in the Supporting Information (Supporting Files), can be downloaded from 

the IFF website, and are available in the Nanomaterial Modeler module in CHARMM-GUI. The 

parameters can also be manually added to other force fields (AMBER, CHARMM, CFF, 

COMPASS, CVFF, DREIDING, GROMOS, OPLS-AA, PCFF, etc) into the correct sections. 

Simulation-ready models can be built under consideration of the masses, atomic charges, and force 

field types (Tables 2, 3, and Table S4 in the Supporting Information) using suitable software, e.g., 

Materials Studio, VMD, text editors, LAMMPS tools, GROMACS tools, or AMBER tools. 

Using the IFF parameters and models of oxide and hydroxide nanostructures, the Nanomaterial 

Modeler module in CHARMM-GUI allows researchers to build interfaces of the oxides and 

hydroxides and the generation of simulation inputs in various file formats.58 Figure 6 shows the 
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user interface of Nanomaterial Modeler for building models of metal oxides and hydroxides with 

a size of 30  30  30 3. Hereby, the input dimension and the final model dimension can be 

different because of the unit cell size, and an estimated system size is displayed from the unit cell 

information (Figure 7a). Nanomaterial Modeler provides all-atom simulation inputs for various 

MD programs, including NAMD,147 GROMACS,44 AMBER,148 OpenMM,149 CHARMM,150 

GENESIS,151 and LAMMPS152, enabling researchers to employ any package of their choice 

(Figure 7b). To cover different cutoff methods used in various force field forms, the most widely 

standard in IFF, 2) force-

-12 fsw), and 3) LJ particle mesh Ewald (LJPME), are 

supported in the input generation step. Details of the model building algorithm and input 

generation can be found in our previous report.58 
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Figure 7. Model building with CHARMM-GUI Nanomaterial Modeler. (a) The user interface to 

select one of the available oxides and hydroxides. One can adjust the system size with X, Y and Z 

length options under “Box options”.  “Periodic Options” provides a method to define the 

periodicity of the system along each axis. (b) Available options for generating input files of various 

force-

(c) Examples of different surface models along the z-direction for the supported oxides and 

hydroxides.
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The nonbonded character of the models further enables the analysis of complex mixed oxides, 

glasses, and certain chemical reactions. LJ and similar potentials have been previously used to 

model chemical reactions such as glass-forming reactions, the stability of mixed oxides (refs. 45, 

153 and our example of spinel above), hydration vs. dehydration reactions of salts,42 and atom 

abstraction energies in catalysis.154-156 Defect energies and vacancy transport can also be 

considered part of chemical reactions during oxidation and corrosion (refs. 157-160 and example of 

ion migration barriers above). The limitations for chemical reactions are significant, however. For 

example, multi-step reactions or complex chemical transformations are not feasible without 

additional assumptions. The main advantage of the models to approximate several reactions lies 

in the interpretability of the atomic charges and LJ parameters and the possibility to adjust to new 

chemical environments with limited effort. In addition, the prediction of structures and energy 

differences is more reliable than using DFT or other force fields (Table 1). Combinations of MD 

with QM methods can be explored at a local scale when electronic structure effects need to be 

included. The parameters or simulation protocols may be customized to represent a given chemical 

reaction, given experimental data and/or mechanistic knowledge, including realistic temperature, 

dynamics, and length scales. 

2.12. Sensitivity of Force Field Parameters. The force field parameters for molecular 

simulations of oxide-based materials, organic, and biomolecular interfaces introduced here explore 

the limits of simple deterministic energy expressions. A comparison of the computed key 

properties using the different IFF flavors (Tables 4 to 7) and the magnitude of changes in 

parameters (Table 2) indicate the reliability and limitations. The sensitivity of computed properties 

to changes in force field parameters for a fixed energy expression is comparatively low, as further 
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illustrated in the methods section and in the Supporting Information (Tables S6 to S12). 

Uncertainties can also be assessed through the sensitivity of the nonbonded parameters to the 

combination rules when using 12-6 LJ potentials, as well as through the interplay of atomic charges 

with 9-6 LJ parameters when using the IFF-PCFF versus IFF-PCFF-HQ options. For example, 

exchanging the nonbonded parameters of IFF-CVFF, OPLS and IFF-CHARMM, AMBER would 

increase deviations in lattice parameters from ~0.2% up to several %, deviations in surface energies 

from ~7% up to ~15%, and deviations in bulk moduli from ~6% up to ~25%. This exchange of 

parameters is, however, not suggested and only demonstrates the impact of combination rules in 

nonbonded models. 

2.13. Relationship to DFT/ML Trained Force Fields and Emerging Opportunities. DFT 

has had a profound impact in materials design and will continue to drive many exciting 

computational research areas.57, 161 At the same time, we find much better reliability of IFF 

compared to DFT across the board, including the computed densities (<0.3% vs. 4% error), surface 

properties (8% vs. 25%, sometimes up to 50%), and bulk modulus (6% vs. 15%) (Table 1, Table 

6, Table S2, and Section S4 in the Supporting Information). Similar improvements can be expected 

for computed defect energies and adsorption energies at interfaces.135 Therefore, using training 

data from IFF molecular dynamics simulations for machine learned (ML) potentials will lead to 

several times higher reliability than using training data from ab-initio MD simulations.162-164 The 

differences will be particularly significant when considering a wider set of properties such as 

structures, energy differences, elastic properties, adsorption, electrolyte interfaces, organic and 

biological interfaces that are critical to design real materials and devices. 

The computational speed of DFT/ML models also tends to be orders of magnitude slower than 

IFF MD, and usage for multiphase materials outside the training range is difficult.165-167 For 
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example, IFF can be applied to aqueous and organic interfaces without additional parameter 

adjustments or training simulations. DFT/ML methods require further training calculations for 

every added chemical feature such as a different composition or type of adsorbed molecule, and 

the training calculations require about 106 times more computational time compared to IFF MD 

simulations for the same system size. The practical value of DFT/ML-derived force fields and MD 

simulations for materials design is therefore somewhat unclear. The main benefit is the 

applicability to electronic structure problems, chemical reactions, and the expansion of ab-initio 

MD methos at the same level of limited reliability to a larger scale. Near-term applications likely 

include the same types of systems currently studied by DFT, such as mixtures of atoms and small 

molecules and discovery of new chemistries with limited complexity. Training ML-driven force 

fields with higher-level quantum methods (CCSD(T)) is desirable to increase the accuracy, 

however, the extreme computational demand reduces training systems to small sizes in vacuum 

(<100 atoms) that do not scale for applications such as solid-electrolyte interfaces, disordered, 

defective, or polymeric materials. A potential bottleneck is also the large pool of QM options and 

low interpretability of ML-generated potentials. In contrast, the small number of interpretable and 

well-performing parameters in IFF can serve as a reliable “chemical” code to speed up ML 

algorithms and accelerate materials design. 

The proposition of “accurate” global machine learning force fields, so-called “modern machine 

learning force fields (MLFFs)”164 therefore so far remains a myth. This work and earlier studies26-

37, 57, 135, 168, 169 demonstrate that IFF performs several times better. MLFFs lack systematic 

benchmarks in virtually any domain including inorganic compounds as demonstrated here as well 

as biomolecular systems, e.g., DNA and proteins in solution, in comparison to biomolecular force 

fields. It is difficult to envision MLFFs in useful accuracy and interpretability anytime soon. More 
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investment into interpretable, chemically realistic classical and reactive force fields supported by 

AI, in combination with quantum methods, and developing AI tools to accelerate MD simulations 

with IFF and biomolecular FFs is likely to yield better results and faster progress in chemistry and 

materials science than attempting full scale ups with DFT/ML methods. 

The reliability and speed of IFF MD in combination with CHARMM, AMBER, OPLS-AA, 

and PCFF/COMPASS creates opportunities for large-scale screening and training fast ML models 

for property predictions of inorganic, electrolyte, and biomolecular bulk systems and interfaces. 

Leading accuracy, fast training, and production speed could be sufficient for integration into 

autonomous laboratories to help answer experimental questions in real time. 

 

3. Conclusion 

This work introduces the to-date most accurate, efficient, and transferable force fields to simulate 

nine oxides, hydroxides, as well as their interfaces with solvents and organic molecules, and 

extends the INTERFACE force field for valuable chemistry space. The models employ primarily 

nonbonded parameters to represent Coulomb interactions and van-der-Waals interactions, 

including options for 12-6 and 9-6 Lennard-Jones (LJ) potentials. Primary validation involves (1) 

structural properties, represented by lattice parameters with <0.2% average deviation from X-ray 

data, (2) energy differences, represented by <10% average deviation in cleavage energies relative 

to experimental data, and (3) derivatives of energy differences, represented by <6% average 

deviation in bulk moduli from experimental data. The performance is, on average, several times to 

one hundred times higher than that of earlier force fields and DFT calculations. The workflow of 

derivation, interpretation, and validation can be applied to other compounds, expanding to a wider 
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chemistry space. We demonstrate prediction of the structure of mixed oxides, free energy barriers 

of ion transport through bulk oxides, as well as adsorption of water and organic molecules as a 

function of surface coverage in excellent agreement with experimental data. We also explain the 

origin and magnitude of surface reconstruction and introduce conceptually important surface 

models with pH-specific surface chemistry. Nonbonded silica models are introduced to support the 

simulation of glasses and multi-phase ceramics. 

From a theory perspective, we achieve large improvements over prior methods by careful 

analysis of chemical bonding and atomic charges using standard IFF protocols, clear interpretation 

of Lennard-Jones (LJ) parameters, and in-depth validation using a comprehensive survey of state-

of-the-art experimental data. Atomic charges follow consistent trends across the periodic table 

including atomization energies, electron affinities, and ionization energies. Missing covalent 

contributions in the nonbonded models are compensated by increased atomic charges and 

increased LJ well depths. The survey of experimental reference data often included more than 10 

different sources for each data point and only a deep dive analysis of differences in laboratory 

methods, associated errors, chemical theory, viewpoints from DFT and other types of atomistic 

calculations allowed us to compile reliable reference data for surface energies and bulk moduli. 

The scarcity of reliable experimental data and 1:1 use in the appropriate context in simulations 

continues to be a major challenge, especially for conceptually critical surface energies. 

We also witness the high scatter in DFT data in all key properties for validation and illustrate 

that DFT data alone are not suitable for benchmarking of physical properties, interatomic 

potentials, or molecular simulations of oxide and organic hybrid materials. DFT methods can 

contribute in a supportive way to add context to reproducible experimental data, offer qualitative 

guidance in case of sparse experimental data, or provide inspiration about electronic structure 
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effects. As a result, machine-learned potentials and MD simulations from DFT training data have 

between 3 times and 10 times lower accuracy than IFF MD, lower speed, and issues with 

transferability. The force field parameters and approaches for molecular simulations of oxide-

based materials introduced in this work are suitable for mixtures of compounds included in IFF 

and in other organic and biomolecular force fields (CHARMM, AMBER, OPLS-AA, GROMOS, 

PCFF, COMPASS). A wide variety of oxide and hydroxide materials for catalysis, glasses, 

semiconductors, corrosion, ceramics, biomedical imaging, drug delivery, and functional polymer 

composites can be explored. 

              

4. Computational Details 

4.1. Development and Testing of Force Field Parameters. The reference state for validation 

of all oxide and hydroxide parameters was room temperature (298.15 K) and a pressure of 1 atm. 

The parameters can be applied to a wide range of temperatures and pressures without adjustments. 

The derivation of oxide models required 6 nonbond parameters, which include the atomic charge 

(q) and LJ parameters (rmin and ) for metal and oxygen. Atomic charges were assigned based on 

available experimental data and with the help of extended-Born cycle relative to already known 

chemically similar compounds from experimental data and in IFF. Charges of metal and oxygen 

atoms are linked to the stoichiometry of the oxide to maintain charge neutrality. The values were 

iteratively increased to account for covalent bonding contributions, which have no explicit 

representation in the nonbonded model (typically no more than +20%). The atomic diameter, rmin, 

was adjusted to match the atomic positions and the density of the compounds. Epsilon was adjusted 

to match the surface energy. Lastly, all the parameters were refined iteratively to match density 

and lattice parameters within 0.5%, surface energy within 5%, and bulk modulus within 10% of 
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the experimental value, which are the typical IFF targets (Figure 2d). The models of hydroxides 

required an additional equilibrium bond distance (r0) and bond stretching constant (Kb) for OH 

bonds, as well as LJ parameters for the hydrogen atom. The value of r0 was obtained from the 

crystal structure of the hydroxide and Kb by tuning the computed IR/Raman spectrum of the OH 

bond in the hydroxide to experimental data. LJ parameters for hydrogen are zero (negligible) in 

the 12-6 LJ form and small for the 9-6 LJ potential, equal to the parameters in the corresponding 

flexible SPC water models and other hydroxide compounds in IFF.  

4.2. Sensitivity of Computed Properties to the Chosen Energy Expression and Force Field 

Parameters. We offer four types of IFF models for each core compound including two LJ 

functional forms. IFF-CVFF, OLPS and IFF-CHARMM, AMBER models use the 12-6 form of 

the LJ potential with geometric or arithmetic mixing rules for rmin, respectively (Figure 4c). 

Differences in the mixing rules for the 12-6 LJ parameters between different atom types typically 

require rebalancing of nonbonded parameters (atomic charge, rmin, and epsilon) to best reproduce 

the experimental density, surface energy, and bulk modulus, depending upon the crystal structure 

(Table 2). IFF-PCFF and IFF-PCFF-HQ models use the 9-6 form of the LJ potential. PCFF uses 

the same atomic charges as in the 12-6 LJ varieties and IFF-PCFF-HQ uses somewhat higher 

atomic chargesnecessary to match the bulk modulus. The performance of the (IFF-CVFF, OLPS), 

(IFF-CHARMM, AMBER), and IFF-PCFF-HQ models is equivalent, while IFF-PCFF models 

match the density, the surface energy, and yield a bulk modulus that is ~20% too low.  

The sensitivity of computed properties to changes in nonbond parameters for the same energy 

expression, including the same combination rules, is low (Tables S6 to S11 in the Supporting 

Information). When modified parameters continue to reproduce lattice parameters, often equally 

consistent models can be obtained with changes in atomic charges up to 5% and in LJ parameters 
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up to 10%. The sensitivity of the computed binding energy of organic molecules on the mineral 

surfaces as a function of the chosen nonbond parameters is low (Table S12 in the Supporting 

Information). The values of the binding energies change only by about 5% for different sets of 

nonbond parameters, which include changes in atomic charges and in LJ parameters up to 10%, 

under the condition that the lattice parameters (and surface energy) remain approximately the 

same. The relatively low and manageable sensitivity can be helpful for AI-supported learning of 

IFF potentials for new chemistries. 

4.3. Density and Lattice Parameters.  To compute the density and lattice parameters, models 

of the unit cells of the oxides and hydroxides from X-ray data (Figure 1b) were repeated in space 

to create a 3D periodic box of ~1.9 x 1.9 x 1.9 nm3, or larger, to reduce interactions with periodic 

images to a negligible level. The structures were subjected to MD simulations in the NPT ensemble 

at 298.15 K and 1 atm pressure using the Discover program in Materials Studio.170 Velocity scaling 

with a temperature window of 10 K was used as a thermostat, and the Parinello-Raman method 

was used as a barostat, which allows accurate responses to changes in pressure. The total 

simulation time was at least 250 ps (no changes after ~50 ps), and we employed a 0.5 fs time-step 

to lower fluctuations in instantaneous stress (helpful during validation and usually not needed for 

applications of the model). The system was equilibrated during an initial block of 100 ps and data 

was collected for the latter block of 150 ps. The calculation of equilibrium lattice parameters and 

the density in high accuracy required only short simulations of 250 ps, and average values were 

reported for the last block of 150 ps in equilibrium. We also tested that equilibrium lattice 

parameters did not change after several nanoseconds, and even hundreds of nanoseconds of MD 

simulation within the statistical uncertainty of <0.1%. The cutoff for van-der-Waals pairwise 
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interactions using Lennard-Jones parameters was set at 12 Å, equal to the IFF convention. 

Coulomb interactions were calculated using Ewald summation with high accuracy of 10-5. 

The target for validation was to achieve a deviation of no more than 1 % in density and <0.5% 

in lattice parameters (all cell constants and angles) relative to experimental reference data and 

achieved in most cases. The lattice parameters were also independently tested by 200 to 500 steps 

geometry optimization. These calculations are complete very fast within seconds and correspond 

to data at 0 K temperature. The lattice parameters from energy minimization were a fraction of a 

percent smaller than at 298 K due to thermal contraction. 

4.4. Surface Energy. The first step in the calculation of the surface energy, or cleavage energy, 

is the choice of the (hkl) surface (Figure 8). Out of the unlimited number of theoretically possible 

(hkl) cleavage planes, the cleavage plane of minimum energy usually accounts for a large part of 

the exposed crystal surface in equilibrium and can often be selectively analyzed in experiments 

using crack propagation experiments (Figure 1b and dashed lines in Figure 8). The cleavage planes 

of lowest energy are (0001) for the corundum-type structures, (004) for the rock-salt type crystal 

structures, and (0002) for the hydroxides. Some cleavage planes of lowest energy, namely, (004) 

for MO and (0002) for M(OH)2, have sometimes been inaccurately reported as (001) and (0001) 

planes, likely due to limitations in atomic-level characterization tools. According to our 

calculations, cleavage of the actual (001) and (0001) planes would lead to surfaces of much higher 

energy and immediate surface reconstruction. 

To calculate the surface energy, models for the bulk mineral and for two cleaved surfaces were 

created (Figure 8). The surface models contained the same number of atoms as the bulk system 

and have identical box dimensions. The lattice parameters for the bulk model in the lateral 

directions upon cleavage were hereby equal to equilibrium values obtained from prior simulations 
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in the NPT ensemble. The bulk system comprised a thick slab of ~2 x 2 x 4 nm3 size in contact 

with a vacuum slab of ~10 nm thickness (labeled “Bulk” in Figure 8a-c). The surface system was 

composed of two thin slabs of dimension ~2 x 2 x 2 nm3, which were created by moving the atoms 

atop the cleavage plane by ~5 nm away from the atoms below the cleavage plane, leaving sufficient 

vacuum space in between (labeled “Surf” in Figure 8a-c). This procedure cleaves the original bulk 

slab and generates two new surfaces, and has been routinely used for the validation of surface 

energies of solids in IFF.27, 112 Metal cations along the (0001) cleavage plane for corundum-type 

oxides, as well as hydroxide ions along the (0002) cleavage plane for metal hydroxides were then 

divided equally between the two newly created surfaces to ensure local and global charge 

neutrality, as well as zero net dipole moment of the created surface slabs (Figure 8a, c). The lowest 

energy cleavage plane (004) of the metal oxides of MO type, which have the rock salt (NaCl) 

structure, falls between atomic layers which are locally charge-neutral by themselves and were 

separated to create the surfaces (Figure 8b). 

Subsequently, the bulk and the surface system were subjected to molecular dynamics 

simulation in the NVT ensemble using the Discover program. The settings for molecular dynamics 

simulations were the same (time step, thermostat, cutoffs) as for the computation of lattice 

parameters in the NPT ensemble, except for not needing a barostat. First, a short MD simulation 

was run for 100 ps at an elevated temperature of 573 K to mildly anneal both the bulk and surface 

models. This protocol enhances configuration sampling to capture surface reconstruction upon 

cleavage. Annealing accelerates rearrangements of the atoms at the surface, if thermodynamically 

preferred, at low computational cost, as a proxy towards capturing time scales closer to 

experiments. Second, the two systems were subjected to molecular dynamics simulation at 298.15 

K for 250 ps and the average total equilibrium energy of the two systems was recorded over the 
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last 150 ps. Third, the surface energy was calculated as a difference in the total energy between 

the two systems (bulk and surface), and divided by the total area of the two newly generated 

surfaces (2A): 26, 31, 35, 60, 84, 85, 112               

Surface energy, = .        (1) 

The values are reported in J/m2 and have a statistical uncertainty of ±1%. 

 

 

Figure 8. Identification of the (hkl) cleavage planes of lowest energy and the simulation protocol 

for the calculation of the surface energy ES (in J/m2). (a) Bulk structure of M2O3 and the (0001) 

cleavage plane. (b) Bulk structure of MO and the (004) cleavage plane. (c) Bulk structure of 

M(OH)2 and the (0002) cleavage plane. Repeat units of the unit cells along the c axis are indicated. 

First, cleavage planes were defined (blue dashed lines). Second, surfaces were created by moving 
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the two slabs on either side of the cleavage plane apart (~5 nm). Here, consideration of charge 

neutrality for each surface and creating no, or minimal local dipole moments are critical to repreent 

equilibrium cleavage. For example, atomic layers of charged Al3+ ions in (a) were 50/50 distributed 

on each the two created surfaces in a statistical manner to minimize internal electric fields. Third, 

mild annealing and surface relaxation were carried out to redistribute ions and allow for 

equilibrium surface reconstruction, which was especially important for surfaces of M(OH)2 and 

M2O3 post cleavage. 

 

4.5. Bulk Modulus. A 3D periodic box of at least ~2 x 2 x 2 nm3 size was created from the 

unit cells of the oxides and hydroxides (Figure 1). The simulation protocol to calculate the bulk 

modulus involved molecular dynamics in the NPT ensemble and was equal to that of the 

calculation of lattice parameters and density. The simulations were then run at two additional 

pressures for 250 ps to observe change in volume. Typically, we considered pressures between 0.2 

GPa and 0.5 GPa, equal to somewhat less than 1% strain within the linear regime of stress vs strain 

curve. Upon changing the pressure from 0.2 to 0.5 GPa, the average standard deviation in 

computed bulk modulus was observed to be ±2 GPa. The bulk modulus was calculated from the 

difference in average pressure  relative to 1 atm ( = 1 ) and the difference in average 

volume relative to the volume at 1 atm pressure ( ): 

Bulk Modulus, = ( )( )        (2) 

The average pressure and volume were recorded during the equilibrium part of the trajectory (last 

150 ps). The overall average standard deviation in computed bulk modulus was ±4 GPa. 

4.6. Simulation Protocols Using Pedone, CLAYFF, ReaxFF, and UFF Potentials. Data for 

the Pedone potential were inferred from the original references. We attempted an implementation 
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of the Pedone potential in LAMMPS (Section S1 and files in the Supporting Information). 

Simulations with the Pedone potential proved to be challenging and surface or interfacial 

properties are not accessible. The simulations with CLAYFF were run using the same protocols as 

for IFF using the NAMD program, including Ewald summation for Coulomb interactions in high 

accuracy, a 12 Å cutoff for LJ interactions, and typical simulation times of 250 ps.51, 52 Differences 

to using a cutoff of 8 Å were found to be small. ReaxFF simulations were carried out using the 

program LAMMPS and the ”pair_style reax/c” command for 500 ps, along with recommended 

simulation settings. Sample files to repeat the calculations with CLAYFF and ReaxFF are provided 

as part of supporting files. Calculations with UFF were carried out in Materials Studio using 

automated atom types and charges, and otherwise the same simulation protocols as for IFF. 

4.7. Analysis of the Properties of Spinel. The model of MgAl2O4 was built using X-ray data 

from the ACSD and had a size of 2.427 x 2.427 x 2.427 nm3. The simulation protocols to analyze 

the lattice parameters, density, and bulk modulus were as reported above. 

4.8. Cation Migration. Cation migration was analyzed using steered molecular dynamics to 

monitor free energy barriers. We used large models of cubic oxide crystals of approximately 8.0 x 

8.0 x 8.0 nm3 size (Figure S1 in the Supporting Information). First, the lattice was equilibrated by 

MD simulation in the NPT ensemble within the range of experimental temperature. For CaO, the 

measurement temperature was between 1000 to 1400 ºC and a temperature of 1473 K (1200 ºC) 

was chosen in the simulation.120 For NiO, the measurement temperature was between 500 and 800 

ºC and a temperature of 923 K (650 ºC) was chosen in the simulation.119 A Schottky defect, 

consisting of a cation vacancy and an anion vacancy, maintaining electroneutrality, was created in 

the model. We used a large separation, i.e., a cation vacancy at the center of the model and an anion 

vacancy near the vertex of the equilibrated crystal to obtain cation migration barriers that are not 
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influenced by the location of the anion. Steered molecular dynamics simulations were performed 

to pull the metal cation nearest to the cation vacancy at the center of the crystal from the layer 

below the row of atoms that contains the cation vacancy in the direction of the z-axis into the 

existing vacancy (Figure 3f and Figure S1 in the Supporting Information). The cation migrated at 

a rate of 1 Å/ns. All other atoms were mobile except the atoms along the y-axis between 0 to 3.5 

Å, which avoided unwanted crystal deformation due to applied external velocity and resulting 

force (Figure S1, yellow region, in the Supporting Information). The input files and crystal 

structures used to run the simulation in LAMMPS are provided as part of the Supporting 

Information.  

4.9. Adsorption Energy of Water and Alkanes on MgO Surfaces. The adsorption energy of 

water molecules on the MgO (004) surface was computed in a periodic box containing an MgO 

slab of 21.055 x 21.055 x 21.055 Å3 size with a vacuum slab of 250 Å length along z-axis using 

the program LAMMPS. To obtain the binding energy at 0 K, a water molecule was placed in 

different upright and flat configurations near the surface of MgO, molecular mechanics with the 

conjugate gradient algorithm was used to minimize the energy and to identify the structure of 

lowest energy (Figure 4a, b). Then, the energy by placing the water molecule 125 Å away from 

the MgO (004) surface was obtained upon energy minimization. The difference in energy was 

computed between the two states to report the binding energy at 0 K (Figure 4a). To obtain the 

binding energy of a single water molecule at 170 K on the same surface, two molecular dynamics 

simulations were carried out, one with the water molecule near the surface, and another with the 

water molecule approximately 125 Å away from the surface using the NVT ensemble, a time step 

of 1 fs, and a total simulation time of 200 ps with the program LAMMPS. The average energies in 

equilibrium in the bound and detached states were calculated, and the difference is reported as 
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binding energy of water at 170 K (Figure 4b). Care was taken to compute the average total energy 

in the away state by using the equilibrated part of simulation when the water molecule is at least 

30 Å away from the MgO (400) surface.  

The binding energy of one monolayer of water molecules adsorbed on the MgO (400) surface 

was computed by subtracting the average total energy of water molecules in the gaseous state and 

of the MgO slab from the average total energy of the monolayer of water molecules adsorbed on 

the MgO (400) slab.  The energy difference was divided by the total number of water molecules 

and reported per mol of water (Figure 4c). The average total energy of water molecules in the 

vapor phase was computed by placing 125 isolated water molecules in a 100 nm3 cubic box and 

running an MD simulation at 170 K with a timestep of 1 fs for 100 ps. In the initial configuration, 

each water molecule was at least 20 nm away from the nearest neighbor, and the average energy 

was computed from the equilibrium part of simulation when the molecules stayed at least 10 nm 

away from the nearest neighbor. Since 50 water molecules were adsorbed on the surface of the 

MgO 21.055 Å3 cubic slab at 1 ML configuration (Figure 4c), the energy of 125 water molecules 

was scaled to obtain the energy for 50 water molecules in the vapor phase. The average total energy 

of the MgO 21.055 Å3 cubic slab with 100 Å vacuum space along z-axis was computed by running 

an MD simulation in the NVT ensemble at 170 K for 150 ps and using the equilibrated part of the 

trajectory. Finally, the monolayer configuration of water molecules was obtained by initially 

placing 200 water molecules above the MgO (400) surface slab with 100 Å vacuum space along 

the z-axis and gradually lowering the temperature to 170 K in three steps, starting with 500 K, 350 

K and 250 K, for annealing and sufficient configuration sampling. At each temperature step, MD 

simulations were run for 100 ps in the NVT ensemble. After the last run at 170 K, the water 

molecules present in second layer and beyond were deleted from the simulation box. Then, the 
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simulation was continued with only 1 monolayer of water molecules adsorbed on the surface for 

200 ps at 170 K to obtain the average total equilibrium energy of 1 ML of water molecules bound 

to the MgO (400) surface.           

Models of the alkanes C2H6, n-C4H10 and n-C8H18 adsorbed onto the MgO (100) surfaces (more 

precisely, (400) surfaces) of an area of ~6.1 x 6.1 nm2 were obtained in two steps. First, 

approximately two monolayers of alkane molecules were placed on the (400) surface of MgO, 

visually covering the entire surface area. The structure was equilibrated for 0.5 ns using the NVT 

ensemble (Figure S2a, c, e in the Supporting Information). Second, the molecules forming the 

second layer in the equilibrated adsorbed configuration were selected and deleted to obtain an 

adsorbed configuration at monolayer coverage (Figure S2b, d, f in the Supporting Information). 

The monolayer structure was then further equilibrated for 0.5 ns (Figure 5a, c and e). To obtain an 

equilibrium structure at 0.5 ML surface coverage, half of the alkane molecules from the monolayer 

configuration (at 1.0 ML) were removed and the remaining structure was run for another 0.5 ns 

(Figure 5b, d and f). The total average energy of the MgO (400) surface slab (EMgO) and of the 

alkane molecules (Ealkane) were calculated separately. To obtain the adsorption energy (Table 8), 

the total energy of the MgO surface slab and of the alkane molecules was subtracted from the 

energy of the system with alkane molecules adsorbed on the (400) MgO surface: 

= +                      (3) 

Hereby, Ea is the cumulative adsorption energy at monolayer or half monolayer coverage, EMgO is 

the energy of the MgO slab, EAlkane is the energy of one alkane molecule and Na is the total number 

of molecules adsorbed. All the simulations were run using the NAMD program, the IFF-

CHARMM, AMBER parameters for the MgO surface, and available parameters for alkane 

molecules in the CHARMM36 force field. The simulations were run at 75 K, 111 K and 175 K for 
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C2H6, n-C4H10 and n-C8H18 systems respectively, matching the measurement temperatures of the 

respective TPD experiments. The results from eq. (3) were reported on a per-molecule basis, i.e., 

as a value of / , the adsorption energy per single molecule at 1.0 monolayer or 0.5 monolayer 

coverage, respectively (Table 8). 

4.10. Model Uncertainties and Limitations. The models reproduce density, surface energy 

and bulk modulus of the oxides and hydroxides as close to experiments as possible, exploiting the 

limits of the IFF energy expressions and combination rules. We identified and analyzed cleavage 

planes of minimum energy for each crystal structure. Other (hkl) surfaces can be examined and, in 

case of less stable surfaces, bonded parameters may be added to constrain atoms at desired 

positions. In the assessment of mechanical properties, our focus on the reproduction of the bulk 

modulus may not be sufficient to reproduce all the elastic constants, which can be explored in 

further work. For simulations in aqueous environment, bare oxide surfaces often require 

modification to models of hydrated surfaces with a superficial layer of hydroxide (neutral, 

protonated, or deprotonated) as described in Section 2.9.141-143 Uncertainties and potential errors 

are described in the respective sections. 

 

Supporting Information Available: Supporting tables and supporting text showing a comparison 

of lattice parameters in experiment relative to IFF, other potentials, and DFT data in the OpenKIM 

database, computed surface energies using various earlier methods, a detailed survey of 

experimentally measured  bulk moduli, the nonbonded IFF potential for silica, extensive data 

showing the dependence of computed properties with IFF on the choice of force field parameters; 

Supporting figures showing the protocol for carrying out simulations of cation migration and 

formation of alkane monolayers adsorbed on MgO (400) surfaces; Supporting text describing the 
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implementation of the Pedone potential in LAMMPS; Supporting files including simulation-ready 

models of crystal structures and force field files in IFF-CVFF, IFF-CHARMM, IFF-PCFF and 

IFF-PCFF-HQ formats for all oxides and hydroxides, files to reproduce the simulation of the spinel 

crystal structure, of cation migration in the oxides, and of hydrocarbon adsorption on oxide 

surfaces. 
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