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Abstract

The simulation of metals, oxides, and hydroxides can accelerate the design of therapeutics, alloys,
catalysts, cement-based materials, ceramics, bioinspired composites, and glasses. Here we
introduce the INTERFACE force field (IFF) and surface models for a-Al203, a-Cr203, a-Fe20s3,
NiO, CaO, MgO, B-Ca(OH)2, B-Mg(OH)2, and B-Ni(OH).. The force field parameters are
nonbonded, including atomic charges for Coulomb interactions, Lennard-Jones (LJ) potentials for
van-der-Waals interactions with 12-6 and 9-6 options, as well as a harmonic bond stretching for
hydroxide ions. The models outperform DFT calculations and earlier atomistic models (Pedone,
ReaxFF, UFF, CLAYFF) up to two orders of magnitude in reliability, compatibility, and
interpretability due to a quantitative representation of chemical bonding consistent with other
compounds across the periodic table and curated experimental data for validation. The IFF models
exhibit average deviations of 0.2% in lattice parameters, <10% in surface energies (to the extent
known), and 6% in bulk moduli relative to experiments. The parameters and models can be used
with existing parameters for solvents, inorganic compounds, organic compounds, biomolecules,
and polymers in IFF, CHARMM, CVFF, AMBER, OPLS-AA, PCFF, COMPASS, to simulate
bulk oxides, hydroxides, electrolyte interfaces, multiphase, biological and organic hybrid materials
at length scales from atoms to micrometers. The nonbonded character of the models also enables
the analysis of mixed oxides, glasses, certain chemical reactions, and well-performing nonbonded
models for silica phases, SiO2, are introduced. Automated model building is available in
CHARMM-GUI Nanomaterial Modeler. We illustrate applications of the models to predict the
structure of mixed oxides, energy barriers of ion migration, as well as binding energies of water

and organic molecules in outstanding agreement with experimental data. Examples of model



building for hydrated, pH-sensitive oxide surfaces to simulate solid-electrolyte interfaces are

discussed.
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1. Introduction

Oxides and hydroxides find widespread uses in structural and household applications, electronics,
catalysis, and medicine (Figure la). For example, oxides are abundantly present in cement,
ceramic, refractory, abrasive, and glass products, as well as in semi-conductors.'~ Pure and mixed
metal oxides serve as catalysts and catalyst supports to direct chemical reactions.* In the medical
arena, surface-modified oxide and hydroxide nanoparticles are utilized for drug delivery and as
antimicrobial agents.> ® Oxides further play an important role as thin films for corrosion protection
on metals, or form undesired oxide/hydroxide scale as a result of corrosion.” ® Jewelry and

ornaments often feature oxides, too, and have fascinated mankind from the earliest ages.’

The structure of crystalline oxides and hydroxides is well known from X-ray and neutron
scattering experiments.'%!® The characterization of nanostructures, defects, metal-oxide-hydroxide
interfaces, as well as their organic and biological modifications can be accomplished using various
imaging techniques such as transmission electron microscopy, scanning tunneling electron
microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, electrochemical

measurements, and surface analysis techniques.!”!” However, laboratory studies rarely reach



atomic-level resolution. State-of-the-art atomic electron tomography (AET), for example,
currently requires several years of effort to obtain all-atom 3D images of a limited number of non-
crystalline nanostructures of 10° to 10* atoms, and the resolution is typically only high enough for
metals, and not sufficient to locate oxygen atoms in oxides, carbon atoms in carbides, or organic
matter.?>?? Information in limited nanometer resolution can also be obtained from energy-
dispersive X-ray spectroscopy (EDX). 2* Measurements of defect formation energies, the
characterization of the chemistry of hydrated oxide surfaces, solid-electrolyte interactions, and the
binding mechanisms of organic reactants and biological macromolecules such as proteins is also a
great challenge, for example, due to the destructive nature of electron beams. Chemically realistic
models and molecular dynamics simulations can fill in such gaps and provide acceleration using
inputs from experiments and chemical knowledge,?® such as X-ray data, knowledge of hydration
reactions, data from surface titration experiments and pK values of acidic surface groups. The

INTERFACE force field (IFF)*® delivers accurate, compatible, and computationally efficient

27,28 29,30

models, covering a wide range of metals,?”-2® minerals such as silica,?® ** apatites,! clays,*? cement
minerals,*> ** 2D materials,?> % and a few oxides.*’ In this contribution, we expand the coverage
of IFF to chemically diverse oxides, hydroxides, mixed oxides, and their interfaces with

electrolytes, organic, and biologically important molecules.

We introduce the IFF models for 9 common oxides and hydroxides, focusing on the
development and validation of the all-atom models and potential applications. Our compounds
include the three corundum-type oxides a-Al203, a-Cr203, a-Fe203, the three rock salt type oxides
Ca0, MgO and NiO, and the three hydroxides B-Ca(OH)2, B-Mg(OH)2 and -Ni(OH):2 (Figure 1b),
as well as compatible nonbonded models for silica (discussed separately). Chemical bonding in

these compounds is partly ionic and partly covalent. The amount of covalent and ionic character



in these compounds was determined from experimentally observed atomic charges of the
constituent elements***° and the extended Born Model by Heinz et al. (Figure 1c).*! The extended
Born model is of foundational importance to IFF and can be used to estimate atomic charges for
compounds with similar chemistry and coordination numbers within +10% reliability in relation
to reference compounds with known atomic charges. The model evaluates the bond polarity and
magnitude of atomic charges in a compound using the energy contributions of the individual steps
that describe the formation from the elements in a thermodynamic cycle (Figure 1c, bottom). The
individual steps involve the atomization energy, the ionization energy, the electron affinity, as well
as electrostatic and covalent contributions to bonding. Higher atomization energies and higher
ionization energies indicate stronger covalent bonding, equal to lower atomic charges. Reference
information on atomic charges is available from experimentally determined deformation electron
densities and dipole moments,***° from validated IFF models for chemically similar minerals
(silica, aluminates, calcium salts, metal sulfides),?% 3% 4243 a5 well as the interpretation of atomic
charges in the context of related physical and chemical properties of a group of related
compounds.*! The extended Born model, in combination with experimental data, fares an order of
magnitude better than QM methods to assign atomic charges, which lead to >100% scatter and are

not recommended for force field development.
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Figure 1. Overview of uses for metal oxides and hydroxides, crystal structures, and the
quantitative determination of bond polarity. (a) Major applications of metal oxides and hydroxides
include (clockwise from top left) structural materials such as glass and certain building materials
(lime), corrosion protection, ceramics and refractories for resistance to high temperatures, catalysts
for energy conversion (reproduced with permission from ref. #), electronic devices, and medical
uses (reproduced with permission from ref. '7). (b) The INTERFACE force field (IFF) was
extended for the 9 oxides and hydroxides shown. The crystal structure, space group, and
stoichiometry is indicated, including three 2:3 oxides of corundum structure (a-Al203, a-Cr203, a-
Fe203), three 1:1 oxides of rocksalt structure (CaO, MgO, NiO), and three hydroxides (B-Ca(OH)2,
B-Mg(OH)2, B-Ni(OH).). (c) Covalent and ionic contributions to chemical bonding were analyzed
using a thermodynamic cycle, the extended Born model.*! Shown for the example of NiO, the
extended Born model assists in estimating atomic charges for new compounds relative to
compounds with known atomic charges, similar chemistry, and similar coordination numbers

within +10% reliability.

The oxides and hydroxides have borderline chemistries between covalent and ionic of about
50% ionic nature. We chose to derived nonbonded models without explicit terms for covalent
bonding, with the exception of O-H bonds in hydroxides that tend to be less than 50% ionic (H
charges <0.5 e). 2%*! Accordingly, we assumed nonbonded models with respect to the metal and
oxide species that incorporate remaining covalent contributions through minor increases in atomic
charges and in Lennard-Jones (LJ) well depths (Figure 2a, b). The atomic charges remain close to
verifiable internal dipole moments (within 10% to 20%) and follow the extended-Born model.

Nonbonded models have some advantages over bonded models such as the possibility to simulate



changes in crystal structure, composition, and defect formation, as well as other forms of reactivity
without added parameters. Bonded models, if chosen, would require modifications of atomic
connectivity and parameters to model such processes, which is harder to implement and limits

broader applicability.

The proposed models can represent structures from unit cells with few atoms to billions of
atoms with excellent reproduction of crystal structures, lattice parameters, density, surface energy,
bulk modulus, and interfacial properties relative to experimental data (Table 1).° The upper limit
in scale are micrometers, depending on available computing resources and software for molecular
simulations. For example, GROMACS* can be recommended for high computational efficiency.
In comparison to existing popular atomistic models for oxides and hydroxides such as Pedone et.
al.,® DFT calculations,** ReaxFF,*>° ClayFF°! 52 and UFF,* the IFF nonbonded models show
order-of-magnitude improved accuracy and compatibility, enabling far more accurate simulations

and new fields of application (Table 1).

The average deviation in the computed mass density from experiment with the IFF models is
only 0.2% compared to a range from 2.5% to a massive 111% deviation in earlier models. A
comparison of IFF lattice parameters with DFT lattice parameters from the AFLOW database and
with interatomic potentials reported in the Open Knowledgebase of Interatomic Models
(OpenKIM)** %° provides further details (Table S1 and Sections S1 an S2 in the Supporting

Information).*®

The computed surface energy of the IFF models is the key predictor for the performance in
simulations of electrolyte and biomolecular interfaces?® and deviates on average 8% from
experiment, facilitating reliable simulations of interfaces and adsorption. In contrast, earlier force

fields incur large errors between 45% and 75% (~25% in DFT) which make meaningful



simulations of hybrid materials difficult or impossible (Table 1). The surface energy could not be

computed with the Pedone potential (Section S3 in the Supporting Information).

The average deviation of computed bulk moduli from experimental measurements is 6% using
the IFF models, which compares to a range from 5% deviation with the Pedone models to very
large deviations of 445% using UFF (Table 1). UFF does not achieve trustworthy predictions and

1s thus not recommended.

Compatibility and transferability of the parameters are important for broader utility. IFF can
be used with validated water models (e.g. flexible SPC, TIP3P),3* 3357 biomolecular force fields
(CHARMM, GROMOS, AMBER), as well as force fields for organic molecules (OLPS-AA,
PCFF, CFF, COMPASS, DREIDING) with minimal loss in accuracy, featuring the best
compatibility and transferability among available models.** 3% > The Pedone potential and ReaxFF
are only self-compatible and cannot take advantage of the large chemical space of multi-
component electrolytes and biomolecules (proteins, DNA, lipids, carbohydrates) offered by other
force fields. Specifically, the Pedone models cannot be applied to aqueous and organic interfaces.
ClayFF can be used with water models and biomolecular force fields in principle (Table 1).

However, intrinsic errors in the representation of chemical bonding**

and in the physical
justification of the LJ parameters, along with specific cutoff settings, amplify the uncertainties in

ClayFF in combination with other force fields, which have some inconsistencies of their own.

With regard to interpretability, IFF, ClayFF, and UFF include atomic charges and LJ
parameters that are related to chemical bonding, atomic size, and atomic polarizability (Table 1).2
IFF emphasizes a physical interpretation of all parameters in depth, while ClayFF and UFF do not.

ClayFF uses inconsistent atomic charges, e.g., Si being more ionic than Al, and LJ parameters

have a limited rationale, such as ¢ values near zero for metal ions and excessively large ¢ values



for oxygen.*!>>? UFF parameters have no documented rationale and validation for oxide materials,
resulting in almost random computed properties (Table 1).> Simulations with UFF, arguably,
create more problems and confusions than they could solve. The Pedone potential*® and ReaxFF**-
30.61-64 entail a large number of empirical terms that can be difficult to understand and modify even

for expert users. For example, ReaxFF comprises ca. 30 interconnected parameters for bond order

correction terms for each oxide.

The runtime (wall time) of simulations with the various force fields is similar. ReaxFF is ~50
times slower than IFF (Table 1). In terms of chemistry coverage, IFF, ReaxFF, and UFF can
represent all 9 oxides and hydroxides discussed here. ReaxFF uses only one force field type for
each element and requires different parameter sets to cover specific oxides and hydroxides.!* As
a result, the simulation of mixed oxides and combinations of oxides and hydroxides in the same

simulation is limited as the parameters may not fit into a single parameter set.

In an overall quality comparison, simulations with IFF are several times more reliable than
with ClayFF and Pedone models (Table 1). CLAYFF has an average error of 8% in density, and
surface energies with 45% average deviation are rather uncertain. The modulus with 24% average
deviation is qualitatively justified. Also, ClayFF does not cover all compounds validated here. The
Pedone models reproduce lattice parameters and bulk moduli in high quality, however, surface and
interface properties are not accessible, and the rationale for the parameters is inconsistent (e.g.,
many different metal ions have the same atomic charge and other parameters are empirically fitted
to elastic constants, not energy differences). The performance of ReaxFF is lower than ClayFF and
borders on that of UFF, including high average deviations of 11% in density, 75% in surface
energy, and 44% in bulk modulus. Uncertainties of this magnitude for critical properties of

potential reactants (oxides) and products (hydroxides) raise concerns to what extent the
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implementation of reactivity adds value. Also, a uniform ReaxFF parameter set may be a challenge

due to the limitation to one atom type for oxygen (and for every element in general).

In addition to force fields, ab-initio calculations of Hartree-Fock type and plane-wave DFT
have been widely used to compute properties of oxides, hydroxides, and organic interfaces at the
small nanoscale. The major benefit of DFT and equivalent methods consists in adding the
electronic structure and associated optical, spectroscopic, reactive, and conduction properties. The
reliability of lattice parameters, surface energies, and adsorption properties is dependent on the
density functional, types of dispersion correction, and other options, with approximately 100
choices available (e.g. PBE-D3, HSE, MN15, M06, tPBE, TPSSh).%* % The outcomes are often
uncertain with errors in lattice parameters of several percent, up to 50% in surface energies (~25%
common), and up to 30% in bulk moduli (~15% common) (Table 1). Computed binding energies
of molecules to oxide surfaces are often unreliable, e.g., NO adsorption on Ni (100) shows between
30% and 100% error relative to experimental data, CO adsorption up to 300%.5>® In case of hand-
picked density functionals with multiple empirical corrections, deviations can be reduced to ~20%
for specific molecule-surface combinations. IFF, in comparison, is ~10 times more accurate in
lattice parameters (~0.2% error), 2 to 5 times more accurate in surface energies (<10% error),
about twice as accurate in bulk moduli (~6% error), and 2 to 10 times more accurate in adsorption
energies of organic molecules (~10% error). Overall, IFF enables nearly an order of magnitude in
improvement and contains no hidden parameters or correction functions. Another major difference
is that DFT, or more reliable high-level QM methods (MP2, CCSD(T)), are limited to thousands
or hundreds of atoms and require enormous computational power, about one to ten million times
more than IFF for the same system size. DFT and CCSD(T) calculations often assume hypothetical

temperatures of 0 K, in contrast to standard temperature and pressure. Equilibrium solid-electrolyte

11



interfaces at 0 K, for example, would then freeze to ice and expand ~10% in volume, which is not
useful for practical applications.®” Dynamic properties of oxides, oxide-electrolyte, and oxide-

polymer interfaces cannot be evaluated or are severely restricted in length and time scales.

In summary, we introduce a set of IFF parameters for oxides and hydroxides that reaches one
to two orders of magnitude improvement over earlier force fields and enables accurate simulations
of bulk and interfacial properties due to conceptual clarity, interpretability of the parameters, and
in-depth validation of key properties. IFF also outperforms the reliability of current density
functionals by 2 to 10 times at a millionth fraction of the computational cost. In the following, we
discuss the IFF functional forms, protocols for parameter derivation, and force field parameters.
Then, results for the computed density, lattice parameters, surface energy and bulk modulus are
described in comparison to available experimental data. We illustrate four applications of the IFF
models, including the simulation of mixed oxides, cation migration energies, binding energy of
water and organic molecules, as well as modifications of oxide surface models in aqueous solutions
for different pH values. The manuscript ends with conclusions and a section on computational
methods to share details of model building, visualization, calculations of the crystal structure,
surface energy, bulk modulus, cation migration, molecular binding energies, sensitivity of model
parameters, uncertainties and limitations. The Supporting Information includes further details,

simulation-ready molecular models and force field files, and run scripts to reproduce the data.

Table 1. Summary of characteristics of the IFF models for the 9 oxides and hydroxides relative to
earlier models, including Pedone et al,*> typical density functionals (PBE, LDA, dispersion
corrected), ReaxFF,*""** ClayFF,>" 52 and UFF™. For IFF, 4 options are given which correspond to

IFF parameters customized for energy expressions using different Lennard-Jones functions (12-6,

12



9-6) and 12-6 combination rules for rmin; (geometric, arithmetic). These groups include IFF-
CVFF, OLPS (12-6, geometric); IFF-CHARMM, AMBER (12-6, arithmetic); IFF-PCFF (9-6);

and IFF-PCFF-HQ (using higher charges for a best fit with the 9-6 LJ potential).

IFF
(CVFF/OPLS,

P t Ped DFT layFF ReaxFF FF
roperty CHARM/AMBER, edone Clay eax U

PCFF, PCFF-HQ)

45 46-48

Reference This work ref. refs . 31,52

61-64 53

refs refs ref.

Avg deviation in density 0.1 %, 0.2%, 0.2%,
2.5% ~4 % 8 % 11 % 111 %
from expt 0.2%

Avg deviation in surface Could not be
5%, 8%, 7%, 8% ~25% 45% 75 % 71 %
energy from expt computed

Avg deviation in bulk
4 %, 5%, 21%, 7% 5% ~15% 24 % 44 % 445 %
modulus from expt

Compatibility for
Yes No Yes Yes No Yes
aqueous interfaces
Compatibility with FFs
for biomolecules
Yes No NA Yes No Yes
(CHARMM, AMBER,

GROMOS)

Compatibility with FFs
for organic molecules
(OPLS-AA, PCFF, CFF, Yes No NA Yes No No
COMPASS,

DREIDING)
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Medium Low Medium Low
Interpretability Low
High (inconsist. (many (inconsist. (many
(High/Medium/Low) (poor rationale)
rationale) terms/params.) rationale) terms/params.)

Simulation time 6
1 1 10 1 0.02 1
(1.0 = fastest)

Parameter availabilitya

(9 = all 9 compounds)

4 The score in the parameter availability category equals the number of compounds covered. Some
potentials cover all 9 oxides and hydroxides considered here and some 6 oxides and hydroxides.
The reported average deviations and characteristics are based on the covered compounds. °
Simulations of mixed oxides and hydroxides may be limited with ReaxFF due to the necessity for

multiple distinct parameter sets.

2. Results and Discussion

2.1. Development of IFF Oxide and Hydroxide Parameters. IFF relies on bonded models
in case of predominantly localized, covalent bonding between neighbor atoms (>50% covalent)
and on nonbonded models in case of predominantly ionic bonding (<50% covalent and >50 %
ionic or metallic) for compounds across the periodic table (Figure 2).2° The physical representation
of chemical bonds according to this rationale is essential and deviations would result in loss of
accuracy and transferability. Metal oxides and hydroxides have both types of bonding. The 9 core
compounds lean more towards ionic bonding (Figure 2a), and silica is predominantly covalent.

Nonbonded models, if physically justified, have the advantages of a simple energy expression and

14



fewer parameters, resulting in applicability to mixed solid phases and certain chemical reactions,
which is not feasible using bonded models. However, nonbonded models have a higher sensitivity
to combination rules of LJ parameters than bonded models because interatomic distances are solely
represented by the LJ parameters. Differences in combination rules in bonded models often still

allow transferability with marginal loss in accuracy.’® 3! 3542, 60.68

The nonbonded oxide models use only two terms, Coulomb interactions and van der Waals
interactions via a LJ potential, to describe the total potential energy (Figure 2a). OH surface groups
or hydroxide ions in hydroxide minerals with predominantly covalent O-H bonds continue to use
an additional harmonic bond stretching potential to describe the O-H bonds (Figure 2b). The
overall energy expression then consists of bond, Coulomb and van der Waals energy terms,
whereby IFF offers the options of 12-6 or 9-6 forms of the LJ potential (Figure 2c). Bonded
compounds can be included with their full set of bonded potentials in the same simulation and both
nonbonded and bonded models have unlimited coexistence and compatibility within IFF. The IFF

parameters are given in Table 2.

The workflow to tune the models started with a crystal structure from X-ray diffraction data,
preferentially the most accurate available measurements (Figure 2d).!%-!® Initial atomic charges,
atom types, and LJ parameters were assigned according to their chemical environment. The atomic
charges rely on experimental sources and chemical theory in IFF (Figure 1c¢).*! For example,
atomic charges of +1.5+0.1 e on Cr atoms and -1.0+£0.1 e on O atoms in escolaite, a-Cr203, were
determined from X-ray deformation electron densities.®” Atomic charges in corundum, a-AlO3,
are expected to be between +1.32+0.05 e and +1.47+0.26 e according to measurements for
octahedral corundum,* diaspore,®® and tetrahedral AIPOs, which is isoeletronic with SiO2.”°

Furthermore, the extended Born model and comparisons to chemically similar compounds with

15



known atomic charges were employed (Figure 1c), which is critical for the better performance of
IFF as a whole (Table 1).*! Initial values of the LJ parameter rmi take into account known
crystallographic radii across the periodic table.”! Hereby, the nonbonded models utilize smaller
rmin values for the metals than equivalent bonded models.?® #* % 72 Smaller atomic radii are
required to reproduce the metal-oxygen bond lengths in the absence of bonded terms, to
accommodate the absence of customary exclusions of nonbonded interactions between 1,2 and 1,3
bonded atoms, and the values correlate with a smaller cloud of valence electrons due to the
increased atomic charge. Well-depths &0 play a dual role by contributing to both repulsion between
atoms at short distance and to minor attractive dispersion interactions at distances larger than 7min.2°
Using the initial parameters, the equilibrium crystal structure, surface energies for the (hkl)
cleavage plane of lowest energy, and bulk modulus were computed using molecular mechanics
and molecular dynamics simulations in the NPT and NVT ensembles for validation and subsequent

iteration.

Upon analysis of deviations in computed properties from experimental data, the charges ¢ and
the LJ parameters rmin and g0 were iteratively adjusted to better reproduce bulk and surface
properties. Hereby, iterations mainly involved the LJ parameters and atomic charges were
modified in a smaller range as necessary since the representation of chemical bonding is not a fit
parameter in IFF. The validation was focused on the structure and energy differences (surface
energy), not on structure and modulus (as the modulus does not enter the Hamiltonian). Higher
atomic charges tend to increase the density, the surface energy, and the modulus. Larger values of
rmin decrease the density, surface energy, and the modulus. Larger values of o also tend to decrease
the density due to added repulsion in the predominantly ionic model. However, larger values of o

also tend to increase the surface energy and the modulus due to a deeper potential well near

16



equilibrium. The final models typically reproduce the crystal structure, density, and lattice
parameters within 0.5% deviation from experiments, surface energies within 5% of the target
value, and bulk moduli within 5% of experimental reference data (Table 2). Bonded parameters
for OH" ions were assigned utilizing the equilibrium bond length 7y, ; from X-ray data and an
equilibrium bond constant ki, which was tuned to match the bond stretching band in the
experimental IR spectra (Table 3). The agreement between simulation and experimental
measurements is better than 1% in bond lengths and 3 cm™ in wavenumbers (Table 4). The models
also reproduced the average M-O-H bond angles from X-ray data of about 120° without additional
parameters with less than 2° deviation in molecular dynamics simulations. We observed significant
instantaneous fluctuations of the M-O-H bond angles on the order of +15° (Table 4). The parameter
iterations involved several thousand molecular mechanics and molecular dynamics simulations in

total.

Upon completion of validation, the models were consistent in the representation of chemical
bonding, structure, and relative energies (Table 2). They are also compatible with and transferable
to other force fields and can be used to compute a multitude of non-fitted bulk and interfacial
properties without further adjustments. The chosen atomic charges in the nonbonded models are
10% to 20% higher than the physically justified values (which correlate with true multipole
moments). Even larger increases in atomic charges were necessary in the PCFF-HQ version using
the 9-6 LJ potential to enable accurate predictions of the bulk modulus (Table 2). The trend towards
higher atomic charges than expected for true chemical bonding compensates for the missing
covalent bonding contributions in the model and appears to be acceptable for practical

applications.
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The nonbonded parameters are, as mentioned earlier, sensitive to mixing rules, i.e., to the
automated calculation of LJ parameters for pairs of different atom types i and j. Therefore, specific
IFF parameters are given for 12-6 LJ potentials that use arithmetic combination rules for 7min, i, as
in CHARMM and AMBER, as well as for 12-6 LJ potentials that use geometric combination rules
for 7min, ij as in OPLS-AA and CVFF (for ¢, all force fields use geometric combination rules). If
the specific nonbonded parameters were transferred from one of these groups to the other, we
observed several percent deviations in lattice parameters, up to 15% percent deviation in surface
energies, and up to 25% in bulk moduli. 9-6 LJ potentials in PCFF, COMPASS and corresponding

HQ versions use Waldmann-Hagler (6 power) combination rules.
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Figure 2. Nonbonded versus bonded models and the workflow for parameter development. (a)

Comparison of structural representation, energy terms, and utility of nonbonded and bonded

models. Nonbonded models can be applied when covalent contributions to bonding are

approximately 50% or less than ionic contributions to bonding. They offer more flexibility to

simulate different polymorphs and mixed chemistries in comparison to models with explicit

bonded terms. (b) O-H bonds can be present on the hydroxylated surface layer of oxides in case of




aqueous conditions (example of a-Al2O3 shown) or in the crystal structure of hydroxides (example
of B-Ca(OH)2 shown). (¢) Energy terms in the nonbonded models include the Coulomb energy and
the van-der-Waals energy, either in 12-6 LJ or in 9-6 LJ form. Hydroxide models also use a
harmonic energy term for the predominantly covalent O-H bond in the potential energy expression,
EBond = kif(ro - rij)*. Force fields compatible with IFF, such as CHARMM or OPLS-AA, employ
different combination rules for 12-6 LJ potentials, which are specifically accounted for in our
nonbonded IFF models. (d) The workflow for the development of IFF parameters for oxides and
hydroxides. Initially, atomic charges, atom types, and LJ parameters are assigned, using
experimental data and analogies to similar validated chemistry covered in IFF. Tests of computed
crystal structure, surface energy, and bulk modulus provided feedback for refinements to minimize

deviations.
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2.2. Crystal Structure. The reference data for crystal structures and lattice parameters were
chosen from X-ray and neutron diffraction as reported in the American Mineralogist Crystal
Structure Database (AMCSD) (Table 5).”> The measurement uncertainties in lattice parameters are
on the order of 0.1%, and sometimes higher as indicated in Table 5. The IFF parameters of oxides
and hydroxides were tuned to reproduce these lattice parameters in molecular dynamics
simulations at 298 K and 1 atm using the NPT ensemble, i.e., constant number of particles,
pressure, and temperature (Table 5). The average deviations in density and lattice parameters using
IFF are £0.2% and <+0.2%, respectively, with maximum deviations of +0.7% and +0.75%,
respectively, compared to the XRD data (Table 1). Cell angles always agree within +0.05% (Table
5). The computed results for the Pedone potential, ReaxFF, ClayFF and UFF are included for
comparison. Average errors with these methods range from few % to larger than 100%, whereby
individual differences start at 0.3% (ClayFF for MgO) to extreme errors of 43270% (UFF for
Ca(OH)2). Earlier methods are, on balance, one to three orders of magnitude less accurate than IFF

and inconsistent across different chemistry. IFF stays close to experimental accuracy.

Benchmarking with DFT results in the AFLOW database,’® reactive, and other nonbonded
potentials is possible using the OpenKIM project,’® > which has been recently extended to include
bonded potentials (Table S1 and Sections S1 and S2 in the Supporting Information). Average
deviations using DFT calculations are approximately 10x larger compared to IFF, specifically,

46-48

~4% in density and ~2% in lattice parameters (refs. and Table S1 in the Supporting

Information). OpenKIM comparisons are currently limited to lattice parameters.
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Table 5. Comparison of density and lattice parameters according to experimental data from X-ray
diffraction, calculated in this work using 12-6 LJ (IFF-CVFF, OLPS and IFF-CHARMM,
AMBER) and 9-6 LJ parameters (IFF-PCFF and IFF-PCFF-HQ), and other popular atomistic
simulation techniques (Pedone et. al., ReaxFF, ClayFF and UFF). The uncertainty in experimental
data is indicated using multiple crystal structures reported under standard conditions in the

AMCSD. Deviations of the computed lattice parameters relative to experimental data are

indicated.
Source De“Sigy ! b ) ’ P !
(gem’) (4 A) A) G O
0-AlLO3 (4x4x2 Supercell)
Experiment®®  3.987  19.036 19.036 25.982 9 90 120
Uncertainty ~ +0.003  +0.011 +0.011 +0.005 0 0 0
IFF-CVFF, OPLS  3.997  18.956 18.956 26.139 90 90 120
Dev fromexpt  0.3% -0.4% -0.4% 0.6% 0% 0% 0%
IFFA%{I‘;&\({[M’ 3986 19.039 19.039 25979 90 90 120
Dev fromexpt  0.0% 0.0% 0.0% 0.0% 0% 0% 0%
IFF-PCFF 3981  19.095 19.095 25.863 90 90 120
Dev from expt  -0.2% 0.3% 0.3% 0.5% 0% 0% 0%
IFF-PCFF-HQ  3.984  19.071 19.071 25.907 9 90 120
Dev from expt  -0.1% 0.2% 0.2% 03% 0% 0% 0%
Pedone etald  4.062  18.845 18.845 26.024 9 90 120
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Dev from expt 1.9% -1.0% -1.0% 0.1% 0% 0% 0%
ReaxFF-1¢ 3.477 20.027 19.772 27.260 90 90 120
Dev from expt -13% 5.2% 3.9% 4.9% 0% 0% 0%
ReaxFF-2f 3.950% Not provided in original paper
Dev from expt -0.9% Not provided in original paper
ClayFFe# 3.676 19.492 19.492 26.847 90 90 120
Dev from expt -7.8% 2.4% 2.4% 3.3% 0% 0% 0%
UFF" 6.354 16.308 16.308 22.214 90 90 120
Dev from expt 64% -14.3% -14.3% -14.5% 0% 0% 0%
0-Cr203 (4x4x2 Supercell)
Experiment™? 5.225 19.843 19.843 27.198 90 90 120
Uncertainty +0.014 +0.016 +0.016 +0.026 0 0 0
IFF-CVFF, OPLS 5.215 19.888 19.888 27.127 90 90 120
Dev from expt -0.2% 0.2% 0.2% -0.3% 0% 0% 0%
A 5208 19.843 19.842 27198 90 90 120
Dev from expt -0.3% 0.0% 0.0% 0.0% 0% 0% 0%
IFF-PCFF 5.193 19.961 19.961 27.047 90 90 120
Dev from expt -0.6% 0.6% 0.6% -0.6% 0% 0% 0%
IFF-PCFF-HQ 5.221 19.919 19.919 27.012 90 90 120
Dev from expt -0.1% 0.4% 0.4% -0.7% 0% 0% 0%



30

Pedone et.al.¢ 5.141 20.007 20.007 27.189 90 90 120
Dev from expt -1.6% 0.8% 0.8% 0.0% 0% 0% 0%
ReaxFF* 4.807 21.107 21.107 26.127 90 90 120
Dev from expt -8.0% 6.5% 6.5% -3.9% 0% 0% 0%
ClayFFe¢ Parameters for Cr203 not available
UFF" 6.489 18.840 18.840 24.472 90 90 120
Dev from expt 24% -4.9% -4.9% -10.0% 0% 0% 0%
o-Fe;03 (4x4x2 Supercell)
Experiment®® 5.246 20.152 20.152 27.544 90 90 120
Uncertainty +0.016 +0.007 +0.007 +0.029 0 0 0
IFF-CVFF, OPLS  5.247 20.211 20.211 27.427 90 90 120
Dev from expt 0.0% 0.3% 0.3% -0.4% 0% 0% 0%
IFF—ACI\EI{]?];%\?M, 5.235 20.250 20.250 27.388 90 90 120
Dev fromexpt  -0.2% 0.5% 0.5% -0.6% 0% 0% 0%
IFF-PCFF 5.239 20.258 20.258 27.347 90 90 120
Dev fromexpt  -0.1% 0.5% 0.5% -0.7% 0% 0% 0%
IFF-PCFF-HQ 5.259 20.217 20.217 27.351 90 90 120
Dev from expt 0.2% 0.3% 0.3% -0.7% 0% 0% 0%
Pedone et.al.4 5.580 19.810 19.810 26.847 90 90 120
Dev from expt 6.4% -1.7% -1.7% -2.5% 0% 0% 0%



ReaxFF¢ 6.145 20.002 20.003 23911 90 90 120
Dev from expt 17% -0.7% -0.7% -13.2% 0% 0% 0%
ClayFFe 3.966 22.358 22.358 29.653 90 90 120
Dev from expt -24% 10.9% 10.9% 7.7% 0% 0% 0%
UFF® 27917 11.559 11.555 15.767 90 90 120
Dev from expt 432% -42.6% -42.7% -42.8% 0% 0% 0%
MgO (5x5x5 Supercell)
Experiment®® 3.585 21.055 21.055 21.055 90 90 90
Uncertainty +0.005 +0.010 +0.010 +0.010 0 0 0
IFF-CVFF, OPLS  3.582 21.061 21.061 21.061 90 90 90
Dev from expt -0.1% 0.0% 0.0% 0.0% 0% 0% 0%
I[FF-CHARMM,
AMBER® 3.586 21.054 21.054 21.054 90 90 90
Dev from expt 0.0% 0.0% 0.0% 0.0% 0% 0% 0%
IFF-PCFF 3.577 21.071 21.071 21.071 90 90 90
Dev from expt -0.2% 0.1% 0.1% 0.1% 0% 0% 0%
IFF-PCFF-HQ 3.582 21.061 21.061 21.061 90 90 90
Dev from expt -0.1% 0.0% 0.0% 0.0% 0% 0% 0%
Pedone et.al.4 3.513 21.197 21.197 21.197 90 90 90
Dev from expt -2.0% 0.7% 0.7% 0.7% 0% 0% 0%
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ReaxFFe® 3.466 21.294 21.294 21.295 90 90 90
Dev from expt -3.3% 1.1% 1.1% 1.1% 0% 0% 0%
ClayFF©# 3.557 21.109 21.109 21.110 90 90 90
Dev from expt -0.8% 0.3% 0.3% 0.3% 0% 0% 0%
UFF" 1.935 25.898 25.873 25.812 90 90 90
Dev from expt -46% 23% 23% 23% 0% 0% 0%
Ca0O (4x4x4 Supercell)
Experiment®® 3.337 19.260 19.260 19.260 90 90 90
Uncertainty +0.004 +0.009 +0.009 +0.009 0 0 0
IFF-CVFF, OPLS  3.336 19.261 19.261 19.261 90 90 90
Dev from expt 0.0% 0.0% 0.0% 0.0% 0% 0% 0%
IFF_ACI\%?];%\;I M, 3.347 19.240 19.240 19.240 90 90 90
Dev from expt 0.3% -0.1% -0.1% -0.1% 0% 0% 0%
IFF-PCFF 3.326 19.282 19.282 19.282 90 90 90
Dev from expt -0.3% 0.1% 0.1% 0.1% 0% 0% 0%
[FF-PCFF-HQ 3.348 19.242 19.242 19.242 90 90 90
Dev from expt 0.3% -0.1% -0.1% -0.1% 0% 0% 0%
Pedone et.al.4 3.422 19.099 19.099 19.099 90 90 90
Dev from expt 2.5% -0.8% -0.8% -0.8% 0% 0% 0%
ReaxFF® 2.826 18.845 23.753 18.845 90 90 90
Dev from expt -15% -2.3% 23% -2.3% 0% 0% 0%
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ClayFF¢# 3.591 18.795 18.792 18.793 90 90 90
Dev from expt 7.6% -2.4% -2.4% -2.4% 0% 0% 0%
UFF" 2.437 21.274 21.369 21.377 90 90 90
Dev from expt -27% 11% 11% 11% 0% 0% 0%
NiO (5x5x5 Supercell)
Experiment®® 6.851 20.842 20.842 20.842 90 90 90
Uncertainty +0.027  +0.028 +0.028 +0.028 0 0 0
IFF-CVFF, OPLS  6.837 20.857 20.857 20.857 90 90 90
Dev fromexpt  -0.2% 0.1% 0.1% 0.1% 0% 0% 0%
IFF_ACI:\%?ERI?ZIM’ 6.843 20.851 20.851 20.851 90 90 90
Dev fromexpt  -0.1% 0.0% 0.0% 0.0% 0% 0% 0%
IFF-PCFF 6.843 20.851 20.851 20.851 90 90 90
Dev fromexpt  -0.1% 0.0% 0.0% 0.0% 0% 0% 0%
[FF-PCFF-HQ 6.869 20.824 20.824 20.824 90 90 90
Dev from expt 0.3% -0.1% -0.1% -0.1% 0% 0% 0%
Pedone et.al.4 6.751 20.945 20.945 20.945 90 90 90
Dev fromexpt  -1.5% 0.5% 0.5% 0.5% 0% 0% 0%
ReaxFF® 5.426 22.883 22.667 22.031 90 90 90
Dev from expt -21% 9.8% 8.8% 5.7% 0% 0% 0%
ClayFFe Parameters not available for NiO
UFF" 13.424 16.693 16.772 16.504 90 90 90
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Dev from expt 96% -20% -19.5% 21% 0% 0% 0%
B-Mg(OH), (7x7x5 Supercell)
Experiment®? 2.366 22.033 22.033 23.850 90 920 120
Uncertainty +0.003 +0.011 +0.011 +0.011 0 0 0
IFF-CVFF, OPLS  2.366 22.054 22.054 23.818 90 90 120
Dev from expt 0.0% 0.1% -0.1% -0.1% 0% 0% 0%
IFF-A(f\z{éAERIi\ZIM, 2.363 22.011 22.018 23.919 90 90 120
Dev from expt -0.1% -0.1% -0.1% 0.3% 0% 0% 0%
IFF-PCFF 2.359 22.100 22.108 23.770 90 90 120
Dev from expt -0.3% 0.3% 0.3% -0.3% 0% 0% 0%
IFF-PCFF-HQ 2.370 22.025 22.029 23.824 90 90 120
Dev from expt 0.2% 0.0% 0.0% -0.1% 0% 0% 0%
Pedone et.al.4 Parameters not available for Mg(OH):
ReaxFF¢ 2.451 21.872 21.875 23.362 90 90 120
Dev from expt 3.6% -0.7% -0.7% -2.0% 0% 0% 0%
ClayFFes 2.249 22.801 22.880 23.429 90 90 120
Dev from expt -4.9% 3.5% 3.5% -1.8% 0% 0% 0%
UFF? 1.247 26.186 26.191 32.028 90 96 120
Dev from expt -47% 19% 19% 34% 0% 0% 0%

ﬁ-Ca(OH)z

(6x6x4 Supercell)
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Experiment®? 2.244 21.555 21.555 19.620 90 90 120
Uncertainty +0.010 +0.021 +0.021 +0.049 0 0 0
IFF-CVFF, OPLS  2.245 21.608 21.597 19.530 90 90 120
Dev from expt 0.0% 0.2% 0.2% -0.5% 0% 0% 0%
IFF_ACI\EI{]?]?&\:IM’ 2.243 21.535 21.533 19.670 90 90 120
Dev from expt 0.0% -0.1% -0.1% 0.3% 0% 0% 0%
IFF-PCFF 2.245 21.519 21.505 19.693 90 90 120
Dev from expt 0.0% -0.2% -0.2% 0.4% 0% 0% 0%
[FF-PCFF-HQ 2.249 21.548 21.555 19.592 90 90 120
Dev from expt 0.2% 0.0% 0.0% -0.1% 0% 0% 0%
Pedone et.al.¢ Parameters not available for Ca(OH)2
ReaxFF* 2.180 21.299 21.797 24.701 90 90 120
Dev from expt -2.9% 1.2% 1.2% 0.6% 0% 0% 0%
ClayFF¢# 2.263 21.720 22.181 18.756 90 90 120
Dev from expt 0.8% 0.8% 2.9% -4.4% 0% 0% 0%
UFF" 0.126 24.105 23.990 10650 147 77 120
Dev from expt -94% 12% 11% 43270%  63% -16% 0%
B-Ni(OH), (7x7x5 Supercell)
Experiment®P 3.982 21.819 21.819 22.975 90 90 120
Uncertainty +0.017 +0.015 +0.015 +0.078 0 0 0
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IFF-CVFF, OPLS  3.970 21.813 21.813 23.089 90 90 120

Dev from expt -0.3% 0.0% 0.0% 0.5% 0% 0% 0%
IFF-A(f\z{éAERé\ZIM, 3.990 21.835 21.835 22.896 90 90 120
Dev from expt 0.2% 0.1% 0.1% -0.3% 0% 0% 0%
IFF-PCFF 3.973 21.838 21.843 22.986 90 90 120
Dev from expt 0.2% 0.1% 0.1% 0.0% 0% 0% 0%
[FF-PCFF-HQ 3.999 21.766 21.762 22.995 90 90 120
Dev from expt 0.4% -0.2% -0.3% 0.1% 0% 0% 0%
Pedone et.al.4 Parameters not available for Ni(OH):2
ReaxFF¢ 5.161 15.698 15.503 25.477 90 90 120
Dev from expt 30% -16% -17% 11% 0% 0% 0%
ClayFF<¢ Parameters not available for Ni(OH)2
UFF" 0.143 16.641 16.286 51180 81 155 121
Dev from expt -96% -11% -13% 222600% -10% 72% 1%

a5 attice parameters were obtained using crystal structure data from X-ray diffraction, refs. -1,

as catalogued in the AMCSD, ref. 7. In case of multiple references for the same minerals,
references under standard conditions were chosen to compute the standard deviation in the
experimental data: a-AL2Os3, refs. 182123 0-Cr203, refs. 12182426 _Fe,O3, refs. 12527, CaO, refs.
1077 MgO, refs.!!, NiO, refs. 1% 78 7 B-Ca(OH),, refs. ' 8082 B_Mg(OH)2, refs. '* * and B-

Ni(OH),, refs. 1078,
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¢ Lattice parameters of IFF-CHARMM/AMBER and ClayFF were computed using larger
orthogonal simulation cells and converted to the corresponding hexagonal cells for a consistent

comparison. ¢ Ref. °. °Refs. 6163, T Ref. 64, & Refs. 5152, b Ref. 33,
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2.3. Surface Energy. In addition to lattice parameters, an equally critical property for
validation are energy differences, which can be assessed using (hkl) surface energies, solvation,
and adsorption data.?6: 30 31. 35, 36, 42, 60, 84. 85 We benchmark surface energies, which are equal to
cleavage energies for newly created surfaces from the bulk material, and largely determined by
atomic charges and resulting Coulomb interactions. Freshly cleaved surfaces usually undergo
some surface reconstruction after cleavage.’® 3!: 60 8. 85 (Therefore, our definition of surface
energy/cleavage energy differs from “surface energies” calculated from contact angle
measurements that rely on already-cleaved and reconstructed surfaces.) Cleavage energies are
reported for the lowest energy (hkl) surfaces of all compounds, which include (0001) surfaces of
corundum-type oxides, (400) surfaces of oxides of rock-salt type, and the (0002) surfaces of the
hydroxides, consistent with prior experimental and computational data. The (400) surfaces are
often identified as (100) surfaces, and (0002) surfaces often as (0001) surfaces in prior literature,
which is incorrect (too simplified) as a result of limited characterization at the atomic scale (see

Computational Methods).

Experimental data for cleavage energies are available for several compounds (Table 6).
Obtaining reliable values, however, has been challenging due to scarcity of data, inconsistencies
in some measurements, as well as divergent definitions. A major goal in this work has therefore
been to obtain consistent estimates with under 10% uncertainty. Towards this goal, we employed
the analysis of known experimental data from diverse types of measurements, computational data
with IFF, and chemical theory. We invoked analogies to known cleavage energies of chemically
30,31, 35, 42, 60, 68,

similar compounds such as clay minerals, sulfates, phosphates, and related oxides,

% as well as data from multiple other calculation techniques, including high-level QM calculations,
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(Table 6 and Table S2 in the Supporting Information). Quantum mechanical and other theoretical
data®- 8% were hereby treated with appropriate caution. For example, various DFT flavors result
in computed surface energies and adsorption energies on well-characterized metals and metal
oxides that differ up to 100% from known experimental values, even when using dispersion-

corrected density functionals, and were not used as a primary source of data.®% 903

Specifically, the (0001) surface energies in the M203 group are relatively well supported for
alumina (1.65 J/m?)°* %> and iron(Ill)oxide (1.9 J/m?)°%°7 by consistent experimental data, related
to each other by the same crystal structure, similar chemistry and atomic charges (Table 6). This
analogy supports a suggested value for chromia of about 1.8 J/m?. Some earlier calculation data
are also found in this range (Table S1 in the Supporting Information). The surface energies of
M:0s3 oxides with a metal oxidation state of +3 and atomic charges of 1.6e to 1.7¢ are furthermore
expected to be higher than those of the MO oxides, which have an oxidation state of +2 and lower
atomic charges of 1.1e to 1.2e (Table 6). Surface energies hereby scale approximately with the
square of the atomic charges. Accordingly, the (400) surface energies in the group of MgO, CaO,
and NiO oxides are in the range of 0.7 to 1.0 J/m?. Herein, the (400) surface energy of MgO is well

98,99 and was

supported to be 1.0 J/m? by multiple laboratory measurements at room temperature,
recorded as 0.71 J/m? at the melting point of 3125 K.!% The surface energy for CaO is expected
to be somewhat lower, and NiO similar to MgO, based on some differences in lattice parameters
and bonding,'%! as well as according to atomic charges from the Extended Born model.*! Extensive
experimental reference data are available for surface tension measurements of molten CaO-
containing mixed oxides and slag, which indicate 0.65 J/m? at 1700 K.'°? The surface energy of a

solid at 298 K is always higher than the surface tension of a high temperature melt,'® in proportion

to the temperature difference, and suggests a cleavage energy on the order 0.7-0.8 J/m? for CaO at
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room temperature (Table 6). Several calculations agree with this range, and with slightly larger
values for NiO (Table S1 in the Supporting Information). Older reported values for the surface

energy of CaO of 1.3 J/m? are clearly too high.!**

The M(OH)2 hydroxides result from hydration of the oxides and have a layered structure. The
(0002) plane is of lowest cleavage energy. Hydroxide ions are present on both sides of the newly
created surfaces, and the surface energy is expected to be on the order of magnitude of the surface
tension of water (72 mJ/m?)°” due to hydration and similar hydrogen bonding. The hydroxide ions
have a higher polarity compared to OH groups in water, represented by larger negative oxygen
atomic charges (between -1.32e and -1.02e compared to -0.82¢ in water), plus some variation in
O-H bond length and H atomic charge (+0.3e to +0.5¢ compared to +0.41e in water). Therefore,
cleavage energies are in a range of 0.15 to 0.25 J/m?, which is higher than the surface tension of
water (0.072 J/m?), and in a similar range as alkali and earth alkali halides (0.15 to 0.25 J/m?).*
105-108 Several earlier simulation data support values in this range of (Table 6 and Table S1 in the
Supporting Information). The IFF models of oxides and hydroxides were calibrated to best
reproduce these likely surface energies, consistent with the known atomic charges and LIJ
parameters relative to validated compounds with similar chemistry. Agreement in computed lattice

parameters and bulk moduli with experimental data (Table 7 and next section) supported

convergence on the most likely values for the cleavage energy.

In summary, the best estimates of the surface energies are based on experimental results and
some help of theory. We used these values to benchmark the performance of IFF models and other
atomistic models (Table 6). Furthermore, we tested the surface energies of various (hkl) surfaces
with IFF, which confirmed that the (hkl) surfaces of lowest energy are the (0001) surfaces of M20:-

type oxides, the (400) surfaces for MO type oxides, and the (0002) surfaces of M(OH)z-type
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hydroxides. The lowest computed surface energies for a-Al203, a-Cr203, and a-Fe2O3 are 1.64-
1.68 J/m?, 1.69-1.75 J/m?, and 1.88-1.91 J/m?, respectively (Table 6). For MgO, CaO, and NiO we
obtained 0.85-0.9 J/m?, 0.71-0.76 J/m?, and 0.97-0.99 J/m?, respectively. The computed cleavage
energies of the hydroxides B-Mg(OH)2, B-Ca(OH)2 and B-Ni(OH)2, are 0.19-0.26 J/m?, 0.16-0.21
J/m?, and 0.25-0.31 J/m?, respectively. The statistical uncertainty in the computation was hereby

+0.01 J/m?.

On average, computed cleavage energies with IFF for the low energy surfaces ((0001) in M20O3
oxides, (400) in MO oxides, and (0002) in hydroxides) deviate by about 7% from best-estimate
reference data, while other force fields that routinely neglect such critical validation have average
errors between 45% and 75%, or do not allow the simulations of surfaces and interfaces by default
(Table 1 and Table 6). Specifically, the Pedone potential could not be used due to difficulties in
implementation. The randomness of computed surface energies in other computational methods is
notable: some cleavage energies even have a negative sign, which equates to voluntary
decomposition of the bulk material, such as chromia in ReaxFF and the hydroxides in UFF. Since
cleavage (or surface) energies directly scale with the ability of a force field to reproduce Coulomb
and van-der-Waals energies combined, defect energies, adsorption in multiphase materials,*® and
the ability to study catalysts for sustainability,’® the performance of IFF exceeds that of other force
fields and of some flavors of DFT by a large margin. The highest deviation for any compound in
any flavor of IFF (CVFF, CHARMM, AMBER, OPLS, PCFF/COMPASS) is 20%, compared to

a minimum of 85% with other models (Table 6).

Notably, we required human effort to evaluate and interpret reference data in combination with
tests by simulations and a low number of interpretable force field parameters. Automation and

machine learning (ML) are still challenging to incorporate into this workflow since targeted
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searches for reference data, evaluations of the quality of both reported techniques and
measurement data, cross-checks to chemically similar compounds, and interpretations in the
context of chemical theory require multi-domain expert knowledge and iterative processes beyond
current ML capabilities. For example, if the wrong data were chosen and key rationales not
followed, the deviations can be 4 to 5 times higher, and the practical value of resulting simulations

with 40% to 50% error would be questionable.
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2.4. Bulk Modulus. Computed bulk moduli, as a measure of mechanical properties and 2"
derivatives of the energy, deviate on average 5% from experimental data when using 12-6 LJ
potentials in IFF (CHARMM, CVFF, AMBER, OPLS-AA) (Table 1, Table 7). Average deviations
increase to 21% when using 9-6 LJ potentials (PCFF/COMPASS) unless atomic charges are
increased (PCFF-HQ) (Table 1, Table 2). The necessity for modifications in the case of the 9-6 LJ

potential shows that 12-6 LJ potentials provide an overall better representation of the physical

27,112 26,42

interactions, which was similarly observed for metals and several minerals.

Experimental reference values for the bulk modulus of oxides and hydroxides have been
readily available, and we analyzed between 3 and 13 independent measurements for each
compound (Table S3 in the Supporting Information for full compilations). Accordingly, the bulk
moduli of the corundum type oxides Al203, Cr203 and Fe2Os are 254+3 GPa, 231+5 GPa and
24148 GPa, respectively, which feature only small uncertainties between +1% and +£3% (Table 7).
The high moduli are related to the comparatively high atomic charges (Table 2) and surface
energies (Table 6). Bulk moduli are reproduced almost within the experimental uncertainty by IFF
(Table 7). The rocksalt-type oxides MgO, CaO and NiO have bulk moduli of 160+5 GPa, 115+3
GPa, and 200+11 GPa, which are somewhat lower than those for the M203 oxides and reproduced
by IFF largely within the experimental uncertainty of £3% to +5% as well (Table 7). The
hydroxides Mg(OH)2, Ca(OH)2, and Ni(OH)2, as products of the hydration reaction of the oxides,
have expectedly lower bulk moduli of 45+6 GPa, 35+6 GPa, and 55+6 GPa, respectively. Even
though many laboratory measurements are available (Table S2 in the Supporting Information), the
uncertainty in the reported bulk moduli for the hydroxides is quite high, between +11% and +18%,

and computed values from IFF stay within these bounds (Table 7). Interestingly, the scatter in
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computed values for specific IFF energy expressions (CHARMM/AMBER, CVFF/OPLS-AA,

PCFF/COMPASS) was also larger than for the corresponding oxides.

Among alternative potentials, the Pedone force field yields the same accuracy for bulk moduli
as IFF, however, it cannot include interfaces with solvents and organic compounds. ClayFF,
ReaxFF, and UFF yield much higher average errors in bulk moduli of 24%, 44% and even 445%,
respectively. ReaxFF and UFF can be particularly unreliable with individual deviations of more

than 100% or even 1000% (Table 7).

The 12-6 LJ potential in IFF fares better than the 9-6 LJ potential overall. Typically, we use
the same atomic charges for 12-6 and 9-6 LJ functional forms as they represent the same chemical
identity (electron distribution) in a material. However, the nonbonded potentials do not include
bonded terms as a simplification, which results in a lower bulk modulus by 7% to 30 % with the
9-6 LJ potential when using the same charges as in the 12-6 LJ potential. As an alternative, we
derived a second set of LJ 9-6 models, IFF-PCFF-HQ, with higher atomic charges (Table 2). The
IFF-PCFF-HQ parameters match the experimental bulk modulus within 10 % of the experimental
values, along with excellent performance for lattice parameters and surface energy. Hereby, the
higher charges artificially compensate for weaker bond strength when using a LJ 9-6 potential,
which has a softer repulsive component to keep bonds lengths near equilibrium compared to the

12-6 LJ potential.
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Next, we will illustrate how IFF parameters are suited to compute properties not included in
the derivation protocols, such as lattice parameters of mixed oxides, free energies of ion migration
in oxides, and adsorption energies of water and organic molecules within ~10% of experimental

measurements.

2.5. Application to Mixed Oxides. The IFF models can be used to simulate mixed oxides,
glasses, defects, electrolyte interfaces, organic hybrid materials, interfaces with metals, 2D
materials, and large biomacromolecules. We demonstrate four example applications to mixed
oxides such as spinel (MgAl204) (Figure 3a-c), defects and migration barriers of Ca’" and Ni** in
CaO and NiO (Figure 3d-f), as well as the binding energy of water and organic molecules on MgO
(100) surfaces in comparison to experimental data (Figures 4, 5, and Table 8). An unlimited space

of bulk materials and interfaces can be studied and validated in follow-on studies.

Mixed oxides can form upon synthesis from the melt, from solution precursors, or at the
interface of metal alloys and oxide films during oxidation or corrosion. As an example, spinel
structures such as MgAl>204 can form from rock salt (MgO) and corundum (a-Al203). Some spinel-
type minerals have great potential in catalysis, for example, in the oxygen evolution reaction in
water splitting.''* We used the crystal structure of MgA1>O4 from AMCSD’> '* and the parameters
of the two component oxides as is to simulate the density, lattice parameters, and bulk modulus
(Figure 3a, b). Only a small adjustment of the O charge was made to maintain overall charge
neutrality (charge neutrality is always necessary). The coordination number of Al remains at 6
while the Mg coordination number with oxygen changes from 6 in MgO to 4 in MgAl2Oa4. The
calculated density with the oxide parameters of Mg, Al and O was 3.492 g/cm?® and deviates from
the experimental value''* of 3.570 g/cm?® by only -2.2% (Figure 3a, b, Sim. 1). The computed bulk

modulus of 201 GPa agrees perfectly with experimental data of 200 GPa, given ~3%
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uncertainty.'!> The deviation in atomic positions can hardly been seen (Figure 3b). The deviation
in lattice parameters of +0.7% is larger than those for IFF core compounds, although it is still better
than other fitted force fields and common density functionals (Table 1). Accordingly, in Simulation
1 the atomic charges remained at +1.06e for Mg, +1.62e for Al, and -1.075e for O (balanced
between -1.06 and -1.08e for charge neutrality), and the LJ parameters (7mi» and €) 2.06 A and 0.4

kcal/mol for Mg, 1.72 A and 0.45 kcal/mol for Al, and 3.3 A and 0.35 kcal/mol for O (Table 2).

In Simulation 2, we tested small modifications of the parameters to improve the fit, if desired
(Figure 3a, ¢, Sim. 2). Hereby, we lowered the charge of Mg from 1.06e to 0.96e, changed 7min for
Mg from 2.06/0.4 to 1.93 A/0.4 kcal/mol, and modified the oxygen charge to -1.05¢ to maintain
overall charge neutrality. The lower charge (and less repulsive rmin) of Mg reflects the lower
coordination number of 4 in the interstitial sites (as opposed to 6 in MgO).*! This adjusted
parameter set matches lattice parameters with 0.1% deviation and the bulk modulus remains at
0.5% deviation from experimental data (Figure 3a, ¢, Sim. 2). All other parameters remain the
same (Al: 1.62e, 1.72 A and 0.45 kcal/mol; O: -1.05¢, 3.3 A and 0.35 kcal/mol). These minor
adjustments, which physically reflect the change in Mg coordination number and its effect on
atomic charges (smaller) and atomic radius (smaller due to less repulsion at lower charge), show
that the simulation of other oxide composition is straightforward (Figure 3a, b, Sim. 1). If any
changes are desired for the best fit, they are minor and interpretable, i.e., on the order of 10% in
atomic charges and LJ parameters (Figure 3a, ¢, Sim. 2). The conditions are that (1) overall charge
neutrality must be maintained, (2) changes in charges and LJ parameters, if desired, follow

expected changes in coordination environments.

2.6. Application to Ion Migration. The growth of oxide films on metal surfaces upon

oxidation and corrosion happens via cation migration. As an example, the nonbonded models of
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CaO and NiO were used to compute the free energy of cation migration using steered molecular
dynamics simulations. As the migration takes place, the free energy was plotted as a function of
distance (Figure 3d, e), whereby one cation was pulled from one atomic layer to a cation vacancy
in the next atomic layer (Figure 3f). The Ni?* or Ca*" cations were moved at a rate of 1 A/ns, and
any slower rates yield convergent results. The cation migration barrier is reported as an average of
the forward and reverse barriers. The computed free energy barriers for Ca" and Ni" ions are 31
kcal/mol and 32 kcal/mol respectively, which agree very well with the experimentally reported
barriers of 34-36 kcal/mol for Ni?* ions!'®!!? and 28-34 kcal/mol for Ca>" ions (Figure 3d-f).!2"
21 The results show a near perfect match that exceeds the performance of common DFT
simulations at a million times lower cost. To carry out these simulations, two vacancies at a
distance greater than 60 A were created by deleting a metal cation and an oxygen anion from the
crystal model of ~80x80x80 A3 size to maintain charge neutrality, equal to a Schottky defect
(Figure S1 in the Supporting Information). The cation vacancy was placed at the center of the
crystal and the anion vacancy was generated at the origin of the crystal system to minimize

interaction between the two vacancies and obtain unbiased cation migration free energies.
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Application to a mixed oxide — MgO / Al,O; spinel
a Al,O, spinel crystal b
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Figure 3. Application of the IFF models to mixed oxides and cation migration. (a) The supercell
of spinel, MgAL20O4, and comparison of the density, lattice parameters, and bulk modulus from
experiments versus simulation with IFF. Two models are compared, including one with the
original unmodified oxide parameters (Sim. 1) and slightly modified parameters for MgO to better
match tetrahedral coordination and the density (Sim. 2). The agreement of lattice parameters is
very good, under 1% deviation without parameter modifications, and the bulk modulus matches
experimental data within the measurement uncertainty (~3%) with both models. The octahedral
coordination environment of Al and the tetrahedral coordination of Mg are highlighted. (b)
Overlay of the crystal structure of spinel from XRD (smaller spheres) with that obtained by MD

simulation using original oxide parameters (Sim. 1, larger spheres). The offset is small and barely
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visible. (c) Overlay of the crystal structure of spinel from XRD (smaller spheres) with that obtained
by MD simulation using the tuned oxide parameters (Sim. 2, larger spheres). The structures match
almost perfectly. (d) Free energy profile of Ni?* cation migration from one layer to the next layer
in NiO (which contains a vacancy) in steered molecular dynamics simulation. The free energy as
a function of reaction coordinate is also called “potential of mean force”. (e) Free energy profiles
of Ca®" cation migration from one layer to the next layer in CaO, which contains a vacancy, in
steered molecular dynamics simulation. (f) Schematic of steered molecular dynamics simulation
used to migrate a cation from one layer to the vacancy in the next layer along with a comparison
of the experimental and computed free energy of migration and deviation. A comparison of the
computed free energy barriers to experimental data shows average deviations under 10%, close to

the measurement uncertainty (table at right hand side). The pulling speed was 1 A/ns.

2.7. Application to Mineral-Water and Mineral-Organic Interactions. The nonbonded
models were further tested to compute the adsorption energy of water and organic molecules on
the MgO (400) surface, often simplistically called a (100) surface, for which experimental
reference data are available. We used IFF and CVFF, OPLS format, the flexible SPC water model,
which can be replaced with TIP3P water with <5% changes in computed properties,*® °® and the
CHARMM36 parameters for organic molecules.'?? The computed adsorption geometry of single
water molecules on MgO (400) surfaces at 0 K agrees with quantum mechanical results, and the
computed adsorption energy of -10.8 kcal/mol closely matches -11.3 kcal/mol obtained from high-
level CCSD(T) quantum mechanical calculations (Figure 4a).%% 123 Other quantum methods at MP2
and CPC-CBS(D, T) levels indicate -10 to -12.7 kcal/mol, and DFT-D2 up to -15 kJ/mol, which

is quite significantly lower accuracy compared to IFF.®® Molecular dynamics simulation of single
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water molecules at a low temperature of 170 K yields an adsorption enthalpy of -8.4 kcal/mol,
which is within the range of experimental measurements of -8.6 to -12 kcal/mol (Figure 4b).!?*
Laboratory data are based on adsorption isotherms measured for temperatures between 100 K and
300 K for equal surface coverage, as determined by low energy electron diffraction (LEED) and
helium-atom scattering (HAS).'?* 25 Under these conditions and at low surface coverage,
reversible physisorption of isolated water molecules was observed.®® 26 Typical molecular
conformations from MD simulations indicate that a reaction to Mg(OH)2 could easily proceed via
dissociation of an OH bond in adsorbed water (side view in Figure 4b). Binding enthalpies of water
at monolayer coverage at 170 K were calculated as -15.2 kcal/mol, using 50 H20 molecules on a
21.05 x 21.05 A? cross-sectional area, which compares to laboratory measurements of -20.3
kcal/mol (Figure 4c).!** 12 According to spectroscopic studies, water partially dissociates on MgO
(400) surfaces and forms a layer with both water molecules and OH groups at intermediate and

monolayer coverage,'?’ 128

which adds an exothermic reaction enthalpy up to -9.0 kcal/mol (930 J
per g Mg0).'?> 130 The computed adsorption enthalpy of -15.2 kcal/mol for undissociated water is
thus in good agreement with the experimental data of -20.3 kcal/mol, assuming that dissociation
of one third of water molecules'?® would add -3 kcal/mol for the partially dissociated water layer
in experiment. The position and orientation of adsorbed water molecules at monolayer coverage
in the MD simulation also follow closely the observations in LEED and HAS, which indicate the
existence of several partially ordered water networks (Figure 4¢ top view and below). Hereby, the
oxygen atoms in water coordinate with magnesium ions of the MgO surface. Overall, the

simulation of physisorbed water using IFF appears realistic with respect to binding geometries and

~10% uncertainty in binding energies.
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a Single H,0 on MgO (400) b Single H,0 on MgO (400) C H,0 monolayer on MgO (400)
Energy minimization at 0 K 170 K 170 K
E,= -10.8 0.1 kcal/mol - IFF Hy=-8.4 £0.2 kcal/mol - IFF MD Hy= -15.2 +0.1 kcal/mol - IFF MD

E,=-11.3 £0.1 kcal/mol - CCSD(T) H,=-8.6 to -12 kcal/mol - Expt H,= -20.3 +0.5 kcal/mol - Expt
after partial reaction to Mg(OH),
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Figure 4. Application of the IFF MgO oxide models to analyze binding of water molecules to the
MgO (004) surface using geometry minimization and molecular dynamics simulations. The IFF-
CVFF, OPLS model was used along with the flexible SPC water model. (a) Geometry
optimization, equal to energy minimization at 0 K, of single water molecules yields a binding
geometry similar to those observed in quantum mechanical MP2 and CCSD(T) calculations (insets
in top and side views).®® ' The IFF binding energy deviates less than 5% from the CCSD(T)
value.® (b) Molecular dynamics simulations at 170 K show representative orientations of single
water molecules. The computed binding enthalpy is in the range of experimental data.'** The

orientation is favorable for dissociation into hydroxide ions (necessary shifts in electron density
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are indicated by dotted arrows).!?”- 128 (c) Monolayer adsorption at 170 K indicates locally ordered
orientations of water molecules, similar to structures from LEED measurements indicated between
the top and side views.!?> The computed binding enthalpy of water is 5 kcal/mol weaker than in

126-128 with an

experimental measurements, which involves partial dissociation into hydroxide ions
exothermic reaction enthalpy of -9.0 kcal/mol per dissociated water molecule.'?® 13 The overall

agreement between computation and experiments is very good.

More detailed validation is possible for the adsorption of organic molecules on the MgO (400)
surface. Hereby, reactions do not occur and measurements of the adsorption energy are available
for multiple molecules from temperature-programmed desorption (TPD) (Figure 5 and Table 8).!3"
132 Measurements were carried out close to monolayer coverage, and accordingly we analyzed the
adsorbed configurations of C2He, n-C4H10, and n-CsHis for half a monolayer (0.5 ML) and for full
monolayer coverage (1 ML) on a Mg (400) slab in equilibrium (Figure 5a-f). Monolayer coverage
was achieved for 204, 109, and 65 molecules of C2Hs, n-C4Hi1o, and n-CsHis, respectively, using
an MgO (400) surface area of 63.165 x 63.165 A? (Table 8). The computed adsorption energies
for 1 ML coverage with C2Hs, n-C4Hi0, and n-CsHis on MgO surface were -6.0 kcal/mol, -9.6
kcal/mol and -18.0 kcal/mol (Table 8). The computed values for 0.5 ML coverage are
approximately 5% lower at -5.7, -9.1, and -17.1 kcal/mol. The agreement with experimental data
from TPD measurements, which are -5.4, -8.5, and -15.2 kcal/mol, respectively, is between 8%
and 13%. The agreement is very good given ~10% uncertainty from TPD measurements, no use
of any fitting parameters for the interfaces, and using CHARMM36 parameters for the organic

molecules which have some uncertainties of their own. DFT calculations, which are not feasible
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for systems this size including dynamics, often have uncertainties of 50% and higher for small

molecules, depending on the density functional 92 93 133, 134

Similar agreement of computed and experimentally measured adsorption energies and
conformations of organic molecules, biopolymers, and gases on nanostructured metals, minerals,
and 2D materials on the order of 10% or better was previously demonstrated using IFF parameters

and combinations with CHARMM, AMBER, OPLS-AA, PCFF, and other (bio)organic force

fields 25,29, 30, 34-36, 56, 57, 59, 135, 136
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Figure 5. Application of the IFF MgO oxide models to analyze alkane binding to the MgO (004)
surface using molecular dynamics simulations. (a) Snapshot of equilibrium adsorption of C2Hs at
1 monolayer (ML) surface coverage. (b) Adsorption of C2He at /2 ML coverage. (¢) Adsorption of
n-CsHio at 1 ML surface coverage. (d) Adsorption of n-C4Hio at /2 ML coverage. (¢) Adsorption
of n-CsHis at 1 ML surface coverage. (f) Adsorption of n-CsHis at /2 monolayer (ML) coverage.
Fractional coverage leads to nucleation of islands on the surface. At full coverage, the formation

of domains with different orientation can be seen as the chain length increases.

Table 8. Adsorption energy of C2He, n-C4Hio, and n-CioHis on the Mg(004) surface according to

131, 132

experiments and MD simulations for surface coverages of 1.0 and 0.5 monolayer coverage.
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Approximate uncertainties for the experimental measurements and statistical uncertainties for the

simulation results are indicated.

Adane | TP Gurface coverage  ne Adsorption energy E
| C:H;s Expt Near 1 ML -5.4+£0.5
Simulation 1 ML 204 -6.0+£0.5
Simulation 2 ML 102 -5.7+£0.5
CsHio Expt Near 1 ML -8.5+0.8
Simulation 1 ML 109 -9.6+£0.5
Simulation 72 ML 54 -9.1+0.5
CsHis Expt Near 1 ML -15.2+1.5
Simulation 1 ML 65 -18.0+0.5
Simulation 2 ML 32 -17.1+£0.5

4 Number of molecules on the surface.

Simulations of biomolecule-oxide and biomolecule-hydroxide assemblies in solution use the
same type of models as for water and organic molecules and are expected to perform with similar
accuracy. As shown in prior work, IFF is well suited to characterize peptide and protein

interactions with various minerals.? 3! 3% 36. 137. 138 Vglecular geometries typically agree with
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experimental reference data within ~0.5%, plus tolerances depending on the reliability of the
biomolecular parameters (1% to 3%). Computed binding energies usually agree on the order of
+10% with experimental data, and sometimes better. The expected accuracy specifically correlates
with the values for surface energies (Table 6).2° Proof-of-concept simulations for biomolecule-
oxide and biomolecule-hydroxide assemblies can be carried out in future studies as they require
significant effort and only qualitative experimental reference data are currently available. For
example, experimental studies of peptide binding to some oxides and hydroxides were summarized
in ref. '¥, such as preferred binding of the peptide QMDTSTSLAPSR and non-preferred binding
of the peptide HANHQAWNNLA to hematite, a-Fe203.'*" Specific adhesion of Escherichia coli
bacteria to iron oxide nanoparticles and potential recognition motifs such as RRTVKHHVN at pH
8 have been suggested by laboratory studies. Going forward, quantitative analysis from the
molecular scale to the small cellular scale using MD simulations with IFF models and experiments
could answer numerous questions related to molecular recognition, the function of nanoparticle

therapeutics, imaging agents, vaccine adjuvants, and potential mechanisms of toxicity.

2.8. Surface Reconstruction. The creation of surfaces by cleavage, as compared to the bulk
crystal, leads to changes in electrostatic interactions at the surface layers and surface
reconstruction.?! 6% 8485 In case of a-Al203, the bulk structure can be described as a sequence of
two layers of Al-atoms followed by a layer of O atoms (Figure 6a, b). Creation of the (0001)
surface of lowest energy involves cleavage between the two Al layers, which are then distributed
on either side of a-Al203 slab. Due to changing electrostatic interactions, namely, the absence of
neighboring Al atoms and O atoms, the surface Al-atoms move closer to the underlying O-layer

(Figure 6a, b). In addition, the 2 Al layers below the top O-layer merge together (middle arrow
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Figure 6a, b and inset of Figure 6b) while the two Al peaks remain distinct in the bulk (Figure 6a,

b).

In the structure of rock salt type, the atomic layers are composed of both cations and anions in
alternation as shown for MgO (Figure 6c, d). In this structure, both metal and oxygen atoms are
equally exposed on the low energy (004) surface, cleavage is electroneutral by default, and

virtually no surface reconstruction is observed.

The hydroxide (0002) surfaces are terminated with hydroxide ions and the bulk structure
consists of a repeat sequence of a layer of (HO) groups, followed by a layer of metal atoms,
followed again by an (OH) layer as depicted for B-Ni(OH): (Figure 6e, f). Virtually no
reconstruction of (0002) surfaces is observed due to fully electroneutral cleavage between adjacent
(OH) layers and loss of comparatively weak electrostatic interactions between the 2 hydroxide

layers. All atoms were mobile during the simulations of cleavage to analyze the surface dynamics.
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Figure 6. Sequence of atomic layers and surface reconstruction in the oxides and hydroxides. (a)
The density profile of the a-Al203 (0001) surface shows discrete atomic layers of Al and oxygen.
The top three Al-containing atomic layers near the surface are marked by arrows. The superficial
Al layer moves closer to the O layer below than in the bulk structure (red highlight). The next two
Al atomic layers towards the bulk tend to unite into one peak (red highlight) compared to two
separate peaks for Al atomic layers further inside (red highlight). (b) Side view of the a-Al20O3
(0001) surface, which matches the density profile in (a). The inset shows the atoms near the
surface, including the compression of top layer Al atoms towards the topmost oxygen layer
(smallest arrow), the fusion of two Al layers below the topmost oxygen layer (middle arrow), and
two distinct Al layers below the second oxygen layer (largest arrow). (¢) Density profile of the
MgO (004) surface. The layers are composed of alternating Mg and O atoms in lateral and vertical
directions (red highlight). No surface reconstruction was observed. (d) Side view of the MgO (004)

surface, which matches the density profile in (c) and shows no significant surface deformation. (¢)
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Density profile of the B-Ni(OH)2 (0002) surface. No surface reconstruction was observed. Single
peaks are observed for surface hydrogen, oxygen, and Ni atoms while the hydrogen peaks for the
inner layers show two peaks from adjacent Ni(OH):2 layers (red highlights). (f) Side view of the -
Ni(OH)2 (0002) surface, which matches the density profile in (e) and shows no significant surface

deformation.

2.9. Surface Modification in Aqueous Solution. As earlier shown for silica, phosphate, and

aluminate surfaces,’® 31> 42 68

oxide surfaces in aqueous solution typically undergo hydration
reactions, for example, M203 + H2O — 2 MO(OH), or M203 + 3 H20 — 2 M(OH)s. The resulting
superficial OH groups may be partly protonated, neutral, or deprotonated depending on the pH
value in solution. Superficial hydration reactions from oxide to hydroxide, when equilibrium
structures are considered, usually affect at least the surface atomic layer, and could proceed several
atomic layers further into the bulk structure, especially under dissolution conditions at particularly
low or high pH values. Consideration of these details is critical for any realistic simulation of

electrolyte interfaces of oxides and their drastically changing properties as a function of pH value

in solution.

A detailed discussion of surface chemistry and the data to quantitatively inform surface models
will be shared in a follow-up contribution. Here, as an example, we consider alumina-type minerals
(AL203), which feature characteristic AIO(OH) or Al(OH)3 termination upon hydration.'4!-143
Correct modeling of these surfaces in aqueous electrolytes requires electroneutral Al2O3 models
and at least one atomic layer of AIO(OH) or Al(OH)3 termination when the pH value in solution
is near ~8.4 (the point of zero charge as known from experiments).'*!"'** Under more acidic

solution conditions between pH 8 towards 3, the AIO(OH) surface layers include an increasing
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small percentage of AIO(OH2)" CI" surface groups. Under more alkaline conditions from pH 9
towards 13, AIO(OH) surface layers include an increasing small percentage of negatively charged
AlO2” Na' surface groups. To implement specific percentages of ionized groups as a function of
pH value, we have previously used experimental reference data from surface titration.'*!!** For
alumina, the percentage of ionized AIO(OH) groups is 0% at pH ~ 8.4 and increases to ~10%
AIO(OH2)" CI' groups at pH values of 3, as well as to ~10% AlO2” Na" groups at pH values of 13,
respectively. The atomic charges of H atoms and O atoms in OH groups in AIO(OH) and Al(OH)3
are +0.25¢ and -0.79e, respectively. Typical bond and angle parameters for these surface groups
can be taken from existing parameters in [FF. It is critical to obey charge neutrality upon ionization
of AIO(OH) to AIO(OH2)" CI' and AlO2” Na". No other dedicated or additional force field
parameters are needed. LJ parameters for Al and O in the surface groups can be kept the same as
in the bulk or used with minor modifications (see previous examples of silica’® and

hydroxyapatite®!).

Using such chemically informed surface models makes a large difference in the affinity to
counterions and charged organic molecules such as carboxylates, ammonium surfactants, and
chelates to the oxide and hydroxide surfaces.* *! Meaningful force field parameters for the core
compounds, as well as adequate surface models make the difference between reliable and

unreliable simulations in equal parts.

2.10. Nonbonded Model for Silica, SiO,. Silica is a key ingredient in glasses, nanoparticles,
ceramics, and composites. The standard IFF model for silica is bonded, due to predominantly
covalent bonding with atomic charges of Si of +1.1e versus a formal charge of +4e, and includes
models for the full range of surface chemistry.?®** Nonbonded silica models are therefore expected

to be less accurate. Nevertheless, due to the absence of bond constraints, a set of nonbonded
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parameters for silica can be useful for the simulation of mixed oxides, glasses, and ceramics,
including amorphous melts prepared at high temperatures. Using our workflow and extensive tests
(Figure 2d), we derived nonbonded models for silica in IFF-CVFF, OPLS-AA format as well as
in [IFF-CHARMM, AMBER formats that perform best in the nonbonded approximation (Table S4
in the Supporting Information). The atomic charges are +1.3e on the Si atoms and -0.65¢ on O
atoms. 12-6 LJ parameters are rmin = 1.6 A and & = 0.15 kcal/mol for silicon, as well as tmin = 3.3
A and £ = 0.03 kcal/mol for oxygen in IFF-CVFF, OPLS format. The values of rmin decrease
slightly in IFF-CHARMM, AMBER format to 1.47 A and 3.17 A, respectively, since arithmetic
combination rules result in longer Si-O bond lengths than geometric combination rules (Table S4

in the Supporting Information).

The performance of the nonbonded silica models is surprisingly good. The parameters
reproduce the correct coordination numbers of 4 and 2, different crystal geometries and lattice
parameters of a-quartz and a-cristobalite, as well as accurate surface energies (Table S5 in the
Supporting Information). Bond lengths have ~3.5 % deviation and bond angles ~2% deviation
from X-ray data. The density of a-quartz of 2.66 g/cm? is reproduced within 0.5% deviation from
X-ray data and the density of a-cristobalite of 2.33 g/cm? is computed -4.5% lower with both types
of IFF models (IFF-CVFF, OPLS and IFF-CHARMM, AMBER). The individual lattice
parameters of a-quartz have deviations between +0.5% and £0.7%. The (0001) resp. (001) surface
energies of the two silica phases are 0.40 +0.04 J/m? at 298 K according to measurements'** '4°
and very well reproduced. The computed values are 0.44 J/m? for IFF-CVFF, OLPS and 0.40 J/m?
for IFF-CHARMM, AMBER for quartz, and similar values for cristobalite. The bulk modulus of

a-quartz was computed as 45 GPa with IFF-CVFF, OLPS and 44 GPa with IFF-CHARMM,

AMBER, which is within the range of known measurements (35-45 GPa, 36.5 GPa often
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reported).’® ¢7- 146 The computed bulk modulus for a-cristobalite is, however, much too high at 44
GPa (expt: 11-17 GPa).>* 67146 Accordingly, structural properties are in very good agreement with
experimental data, and surface energies are excellent. Elastic constants and mechanical properties
can have large deviations, and more details of the electronic structure would be required in the
force field for better results. Overall, the nonbonded parameters for silica do not reach IFF level
in terms of accuracy and transferability, however, they outperform existing nonbonded models in

simplicity, speed, surface properties, and have a good level of compatibility.

The nonbonded silica model can be used to generate and equilibrate amorphous melts of silica
and complex mixed glasses using annealing techniques, molecular dynamics simulation at high
temperature, and cooling. Equilibrated models of such melts can be subsequently subjected to
energy minimization and converted into the bonded IFF silica model, for local domains containing

silica, for further analysis (every Si atom remains coordinated by 4 O atoms).?% *°

2.11. Deployment of Oxide and Hydroxide Models. Simulation-ready structures and force
field files are provided in the Supporting Information (Supporting Files), can be downloaded from
the IFF website, and are available in the Nanomaterial Modeler module in CHARMM-GUI. The
parameters can also be manually added to other force fields (AMBER, CHARMM, CFF,
COMPASS, CVFF, DREIDING, GROMOS, OPLS-AA, PCFF, etc) into the correct sections.
Simulation-ready models can be built under consideration of the masses, atomic charges, and force
field types (Tables 2, 3, and Table S4 in the Supporting Information) using suitable software, e.g.,

Materials Studio, VMD, text editors, LAMMPS tools, GROMACS tools, or AMBER tools.

Using the IFF parameters and models of oxide and hydroxide nanostructures, the Nanomaterial
Modeler module in CHARMM-GUI allows researchers to build interfaces of the oxides and

hydroxides and the generation of simulation inputs in various file formats.’® Figure 6 shows the
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user interface of Nanomaterial Modeler for building models of metal oxides and hydroxides with
a size of 30 x 30 x 30 A3. Hereby, the input dimension and the final model dimension can be
different because of the unit cell size, and an estimated system size is displayed from the unit cell
information (Figure 7a). Nanomaterial Modeler provides all-atom simulation inputs for various
MD programs, including NAMD,!¥” GROMACS,* AMBER,'*® OpenMM,'¥ CHARMM,!°
GENESIS,"”! and LAMMPS'>2, enabling researchers to employ any package of their choice
(Figure 7b). To cover different cutoff methods used in various force field forms, the most widely
used LJ treatments, such as 1) simple truncation at r = 12 A (12 cutoff), standard in IFF, 2) force-
based switching over 10 to 12 A (10-12 fsw), and 3) LJ particle mesh Ewald (LJPME), are
supported in the input generation step. Details of the model building algorithm and input

generation can be found in our previous report.>
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Figure 7. Model building with CHARMM-GUI Nanomaterial Modeler. (a) The user interface to
select one of the available oxides and hydroxides. One can adjust the system size with X, Y and Z
length options under “Box options”.
periodicity of the system along each axis. (b) Available options for generating input files of various
simulation programs. Three widely used LJ cutoff methods (i.e., simple truncation at r = 12 A,
force-based switching over 10 to 12 A, and L] particle mesh Ewald with no cutoff) are supported.
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The nonbonded character of the models further enables the analysis of complex mixed oxides,
glasses, and certain chemical reactions. LJ and similar potentials have been previously used to
model chemical reactions such as glass-forming reactions, the stability of mixed oxides (refs. *:
153 and our example of spinel above), hydration vs. dehydration reactions of salts,** and atom
abstraction energies in catalysis.!**!% Defect energies and vacancy transport can also be

considered part of chemical reactions during oxidation and corrosion (refs. 1>7-1¢0

and example of
ion migration barriers above). The limitations for chemical reactions are significant, however. For
example, multi-step reactions or complex chemical transformations are not feasible without
additional assumptions. The main advantage of the models to approximate several reactions lies
in the interpretability of the atomic charges and LJ parameters and the possibility to adjust to new
chemical environments with limited effort. In addition, the prediction of structures and energy
differences is more reliable than using DFT or other force fields (Table 1). Combinations of MD
with QM methods can be explored at a local scale when electronic structure effects need to be
included. The parameters or simulation protocols may be customized to represent a given chemical

reaction, given experimental data and/or mechanistic knowledge, including realistic temperature,

dynamics, and length scales.

2.12. Sensitivity of Force Field Parameters. The force field parameters for molecular
simulations of oxide-based materials, organic, and biomolecular interfaces introduced here explore
the limits of simple deterministic energy expressions. A comparison of the computed key
properties using the different IFF flavors (Tables 4 to 7) and the magnitude of changes in
parameters (Table 2) indicate the reliability and limitations. The sensitivity of computed properties

to changes in force field parameters for a fixed energy expression is comparatively low, as further
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illustrated in the methods section and in the Supporting Information (Tables S6 to S12).
Uncertainties can also be assessed through the sensitivity of the nonbonded parameters to the
combination rules when using 12-6 LJ potentials, as well as through the interplay of atomic charges
with 9-6 LJ parameters when using the IFF-PCFF versus IFF-PCFF-HQ options. For example,
exchanging the nonbonded parameters of IFF-CVFF, OPLS and IFF-CHARMM, AMBER would
increase deviations in lattice parameters from ~0.2% up to several %, deviations in surface energies
from ~7% up to ~15%, and deviations in bulk moduli from ~6% up to ~25%. This exchange of
parameters is, however, not suggested and only demonstrates the impact of combination rules in

nonbonded models.

2.13. Relationship to DFT/ML Trained Force Fields and Emerging Opportunities. DFT
has had a profound impact in materials design and will continue to drive many exciting
computational research areas.”” '®! At the same time, we find much better reliability of IFF
compared to DFT across the board, including the computed densities (<0.3% vs. 4% error), surface
properties (8% vs. 25%, sometimes up to 50%), and bulk modulus (6% vs. 15%) (Table 1, Table
6, Table S2, and Section S4 in the Supporting Information). Similar improvements can be expected
for computed defect energies and adsorption energies at interfaces.'*> Therefore, using training
data from IFF molecular dynamics simulations for machine learned (ML) potentials will lead to
several times higher reliability than using training data from ab-initio MD simulations.'*'%* The
differences will be particularly significant when considering a wider set of properties such as
structures, energy differences, elastic properties, adsorption, electrolyte interfaces, organic and

biological interfaces that are critical to design real materials and devices.

The computational speed of DFT/ML models also tends to be orders of magnitude slower than

IFF MD, and usage for multiphase materials outside the training range is difficult.!®>"1®” For
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example, IFF can be applied to aqueous and organic interfaces without additional parameter
adjustments or training simulations. DFT/ML methods require further training calculations for
every added chemical feature such as a different composition or type of adsorbed molecule, and
the training calculations require about 10° times more computational time compared to IFF MD
simulations for the same system size. The practical value of DFT/ML-derived force fields and MD
simulations for materials design is therefore somewhat unclear. The main benefit is the
applicability to electronic structure problems, chemical reactions, and the expansion of ab-initio
MD methos at the same level of limited reliability to a larger scale. Near-term applications likely
include the same types of systems currently studied by DFT, such as mixtures of atoms and small
molecules and discovery of new chemistries with limited complexity. Training ML-driven force
fields with higher-level quantum methods (CCSD(T)) is desirable to increase the accuracy,
however, the extreme computational demand reduces training systems to small sizes in vacuum
(<100 atoms) that do not scale for applications such as solid-electrolyte interfaces, disordered,
defective, or polymeric materials. A potential bottleneck is also the large pool of QM options and
low interpretability of ML-generated potentials. In contrast, the small number of interpretable and
well-performing parameters in IFF can serve as a reliable “chemical” code to speed up ML

algorithms and accelerate materials design.

The proposition of “accurate” global machine learning force fields, so-called “modern machine
learning force fields (MLFFs)”'® therefore so far remains a myth. This work and earlier studies?®
37,57, 135, 168, 169 demonstrate that IFF performs several times better. MLFFs lack systematic
benchmarks in virtually any domain including inorganic compounds as demonstrated here as well
as biomolecular systems, e.g., DNA and proteins in solution, in comparison to biomolecular force

fields. It is difficult to envision MLFFs in useful accuracy and interpretability anytime soon. More
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investment into interpretable, chemically realistic classical and reactive force fields supported by
Al, in combination with quantum methods, and developing Al tools to accelerate MD simulations
with IFF and biomolecular FFs is likely to yield better results and faster progress in chemistry and

materials science than attempting full scale ups with DFT/ML methods.

The reliability and speed of IFF MD in combination with CHARMM, AMBER, OPLS-AA,
and PCFF/COMPASS creates opportunities for large-scale screening and training fast ML models
for property predictions of inorganic, electrolyte, and biomolecular bulk systems and interfaces.
Leading accuracy, fast training, and production speed could be sufficient for integration into

autonomous laboratories to help answer experimental questions in real time.

3. Conclusion

This work introduces the to-date most accurate, efficient, and transferable force fields to simulate
nine oxides, hydroxides, as well as their interfaces with solvents and organic molecules, and
extends the INTERFACE force field for valuable chemistry space. The models employ primarily
nonbonded parameters to represent Coulomb interactions and van-der-Waals interactions,
including options for 12-6 and 9-6 Lennard-Jones (LJ) potentials. Primary validation involves (1)
structural properties, represented by lattice parameters with <0.2% average deviation from X-ray
data, (2) energy differences, represented by <10% average deviation in cleavage energies relative
to experimental data, and (3) derivatives of energy differences, represented by <6% average
deviation in bulk moduli from experimental data. The performance is, on average, several times to
one hundred times higher than that of earlier force fields and DFT calculations. The workflow of

derivation, interpretation, and validation can be applied to other compounds, expanding to a wider

73



chemistry space. We demonstrate prediction of the structure of mixed oxides, free energy barriers
of ion transport through bulk oxides, as well as adsorption of water and organic molecules as a
function of surface coverage in excellent agreement with experimental data. We also explain the
origin and magnitude of surface reconstruction and introduce conceptually important surface
models with pH-specific surface chemistry. Nonbonded silica models are introduced to support the

simulation of glasses and multi-phase ceramics.

From a theory perspective, we achieve large improvements over prior methods by careful
analysis of chemical bonding and atomic charges using standard IFF protocols, clear interpretation
of Lennard-Jones (LJ) parameters, and in-depth validation using a comprehensive survey of state-
of-the-art experimental data. Atomic charges follow consistent trends across the periodic table
including atomization energies, electron affinities, and ionization energies. Missing covalent
contributions in the nonbonded models are compensated by increased atomic charges and
increased LJ well depths. The survey of experimental reference data often included more than 10
different sources for each data point and only a deep dive analysis of differences in laboratory
methods, associated errors, chemical theory, viewpoints from DFT and other types of atomistic
calculations allowed us to compile reliable reference data for surface energies and bulk moduli.
The scarcity of reliable experimental data and 1:1 use in the appropriate context in simulations

continues to be a major challenge, especially for conceptually critical surface energies.

We also witness the high scatter in DFT data in all key properties for validation and illustrate
that DFT data alone are not suitable for benchmarking of physical properties, interatomic
potentials, or molecular simulations of oxide and organic hybrid materials. DFT methods can
contribute in a supportive way to add context to reproducible experimental data, offer qualitative

guidance in case of sparse experimental data, or provide inspiration about electronic structure
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effects. As a result, machine-learned potentials and MD simulations from DFT training data have
between 3 times and 10 times lower accuracy than IFF MD, lower speed, and issues with
transferability. The force field parameters and approaches for molecular simulations of oxide-
based materials introduced in this work are suitable for mixtures of compounds included in IFF
and in other organic and biomolecular force fields (CHARMM, AMBER, OPLS-AA, GROMOS,
PCFF, COMPASS). A wide variety of oxide and hydroxide materials for catalysis, glasses,
semiconductors, corrosion, ceramics, biomedical imaging, drug delivery, and functional polymer

composites can be explored.

4. Computational Details

4.1. Development and Testing of Force Field Parameters. The reference state for validation
of all oxide and hydroxide parameters was room temperature (298.15 K) and a pressure of 1 atm.
The parameters can be applied to a wide range of temperatures and pressures without adjustments.
The derivation of oxide models required 6 nonbond parameters, which include the atomic charge
(g) and LJ parameters (7mi» and &) for metal and oxygen. Atomic charges were assigned based on
available experimental data and with the help of extended-Born cycle relative to already known
chemically similar compounds from experimental data and in IFF. Charges of metal and oxygen
atoms are linked to the stoichiometry of the oxide to maintain charge neutrality. The values were
iteratively increased to account for covalent bonding contributions, which have no explicit
representation in the nonbonded model (typically no more than +20%). The atomic diameter, 7min,
was adjusted to match the atomic positions and the density of the compounds. Epsilon was adjusted
to match the surface energy. Lastly, all the parameters were refined iteratively to match density

and lattice parameters within 0.5%, surface energy within 5%, and bulk modulus within 10% of
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the experimental value, which are the typical IFF targets (Figure 2d). The models of hydroxides
required an additional equilibrium bond distance (0) and bond stretching constant (K») for OH
bonds, as well as LJ parameters for the hydrogen atom. The value of 7o was obtained from the
crystal structure of the hydroxide and K» by tuning the computed IR/Raman spectrum of the OH
bond in the hydroxide to experimental data. LJ parameters for hydrogen are zero (negligible) in
the 12-6 LJ form and small for the 9-6 LJ potential, equal to the parameters in the corresponding
flexible SPC water models and other hydroxide compounds in IFF.

4.2. Sensitivity of Computed Properties to the Chosen Energy Expression and Force Field
Parameters. We offer four types of IFF models for each core compound including two LJ
functional forms. IFF-CVFF, OLPS and IFF-CHARMM, AMBER models use the 12-6 form of
the LJ potential with geometric or arithmetic mixing rules for rmin, respectively (Figure 4c).
Differences in the mixing rules for the 12-6 LJ parameters between different atom types typically
require rebalancing of nonbonded parameters (atomic charge, 7min, and epsilon) to best reproduce
the experimental density, surface energy, and bulk modulus, depending upon the crystal structure
(Table 2). IFF-PCFF and IFF-PCFF-HQ models use the 9-6 form of the LJ potential. PCFF uses
the same atomic charges as in the 12-6 LJ varieties and IFF-PCFF-HQ uses somewhat higher
atomic chargesnecessary to match the bulk modulus. The performance of the (IFF-CVFF, OLPS),
(IFF-CHARMM, AMBER), and IFF-PCFF-HQ models is equivalent, while IFF-PCFF models

match the density, the surface energy, and yield a bulk modulus that is ~20% too low.

The sensitivity of computed properties to changes in nonbond parameters for the same energy
expression, including the same combination rules, is low (Tables S6 to S11 in the Supporting
Information). When modified parameters continue to reproduce lattice parameters, often equally

consistent models can be obtained with changes in atomic charges up to 5% and in LJ parameters
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up to 10%. The sensitivity of the computed binding energy of organic molecules on the mineral
surfaces as a function of the chosen nonbond parameters is low (Table S12 in the Supporting
Information). The values of the binding energies change only by about 5% for different sets of
nonbond parameters, which include changes in atomic charges and in LJ parameters up to 10%,
under the condition that the lattice parameters (and surface energy) remain approximately the
same. The relatively low and manageable sensitivity can be helpful for Al-supported learning of

IFF potentials for new chemistries.

4.3. Density and Lattice Parameters. To compute the density and lattice parameters, models
of the unit cells of the oxides and hydroxides from X-ray data (Figure 1b) were repeated in space
to create a 3D periodic box of ~1.9 x 1.9 x 1.9 nm?, or larger, to reduce interactions with periodic
images to a negligible level. The structures were subjected to MD simulations in the NPT ensemble
at298.15 K and 1 atm pressure using the Discover program in Materials Studio.!” Velocity scaling
with a temperature window of 10 K was used as a thermostat, and the Parinello-Raman method
was used as a barostat, which allows accurate responses to changes in pressure. The total
simulation time was at least 250 ps (no changes after ~50 ps), and we employed a 0.5 fs time-step
to lower fluctuations in instantaneous stress (helpful during validation and usually not needed for
applications of the model). The system was equilibrated during an initial block of 100 ps and data
was collected for the latter block of 150 ps. The calculation of equilibrium lattice parameters and
the density in high accuracy required only short simulations of 250 ps, and average values were
reported for the last block of 150 ps in equilibrium. We also tested that equilibrium lattice
parameters did not change after several nanoseconds, and even hundreds of nanoseconds of MD

simulation within the statistical uncertainty of <0.1%. The cutoff for van-der-Waals pairwise
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interactions using Lennard-Jones parameters was set at 12 A, equal to the IFF convention.
Coulomb interactions were calculated using Ewald summation with high accuracy of 107,

The target for validation was to achieve a deviation of no more than 1 % in density and <0.5%
in lattice parameters (all cell constants and angles) relative to experimental reference data and
achieved in most cases. The lattice parameters were also independently tested by 200 to 500 steps
geometry optimization. These calculations are complete very fast within seconds and correspond
to data at 0 K temperature. The lattice parameters from energy minimization were a fraction of a

percent smaller than at 298 K due to thermal contraction.

4.4. Surface Energy. The first step in the calculation of the surface energy, or cleavage energy,
is the choice of the (hkl) surface (Figure 8). Out of the unlimited number of theoretically possible
(hkl) cleavage planes, the cleavage plane of minimum energy usually accounts for a large part of
the exposed crystal surface in equilibrium and can often be selectively analyzed in experiments
using crack propagation experiments (Figure 1b and dashed lines in Figure 8). The cleavage planes
of lowest energy are (0001) for the corundum-type structures, (004) for the rock-salt type crystal
structures, and (0002) for the hydroxides. Some cleavage planes of lowest energy, namely, (004)
for MO and (0002) for M(OH)2, have sometimes been inaccurately reported as (001) and (0001)
planes, likely due to limitations in atomic-level characterization tools. According to our
calculations, cleavage of the actual (001) and (0001) planes would lead to surfaces of much higher

energy and immediate surface reconstruction.

To calculate the surface energy, models for the bulk mineral and for two cleaved surfaces were
created (Figure 8). The surface models contained the same number of atoms as the bulk system
and have identical box dimensions. The lattice parameters for the bulk model in the lateral

directions upon cleavage were hereby equal to equilibrium values obtained from prior simulations
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in the NPT ensemble. The bulk system comprised a thick slab of ~2 x 2 x 4 nm? size in contact
with a vacuum slab of ~10 nm thickness (labeled “Bulk”™ in Figure 8a-c). The surface system was
composed of two thin slabs of dimension ~2 x 2 x 2 nm?, which were created by moving the atoms
atop the cleavage plane by ~5 nm away from the atoms below the cleavage plane, leaving sufficient
vacuum space in between (labeled “Surf” in Figure 8a-c). This procedure cleaves the original bulk
slab and generates two new surfaces, and has been routinely used for the validation of surface
energies of solids in IFF.27 12 Metal cations along the (0001) cleavage plane for corundum-type
oxides, as well as hydroxide ions along the (0002) cleavage plane for metal hydroxides were then
divided equally between the two newly created surfaces to ensure local and global charge
neutrality, as well as zero net dipole moment of the created surface slabs (Figure 8a, c). The lowest
energy cleavage plane (004) of the metal oxides of MO type, which have the rock salt (NaCl)
structure, falls between atomic layers which are locally charge-neutral by themselves and were
separated to create the surfaces (Figure 8b).

Subsequently, the bulk and the surface system were subjected to molecular dynamics
simulation in the NVT ensemble using the Discover program. The settings for molecular dynamics
simulations were the same (time step, thermostat, cutoffs) as for the computation of lattice
parameters in the NPT ensemble, except for not needing a barostat. First, a short MD simulation
was run for 100 ps at an elevated temperature of 573 K to mildly anneal both the bulk and surface
models. This protocol enhances configuration sampling to capture surface reconstruction upon
cleavage. Annealing accelerates rearrangements of the atoms at the surface, if thermodynamically
preferred, at low computational cost, as a proxy towards capturing time scales closer to
experiments. Second, the two systems were subjected to molecular dynamics simulation at 298.15

K for 250 ps and the average total equilibrium energy of the two systems was recorded over the
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last 150 ps. Third, the surface energy was calculated as a difference in the total energy between
the two systems (bulk and surface), and divided by the total area of the two newly generated

surfaces (2A) 26,31, 35, 60, 84, 85, 112

Eg = —Surf~Bulk (1)

Surface energy, ”

The values are reported in J/m? and have a statistical uncertainty of £1%.
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Figure 8. Identification of the (hkl) cleavage planes of lowest energy and the simulation protocol
for the calculation of the surface energy Es (in J/m?). (a) Bulk structure of M203 and the (0001)
cleavage plane. (b) Bulk structure of MO and the (004) cleavage plane. (c) Bulk structure of
M(OH)2 and the (0002) cleavage plane. Repeat units of the unit cells along the ¢ axis are indicated.

First, cleavage planes were defined (blue dashed lines). Second, surfaces were created by moving
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the two slabs on either side of the cleavage plane apart (~5 nm). Here, consideration of charge
neutrality for each surface and creating no, or minimal local dipole moments are critical to repreent
equilibrium cleavage. For example, atomic layers of charged AI**ions in (a) were 50/50 distributed
on each the two created surfaces in a statistical manner to minimize internal electric fields. Third,
mild annealing and surface relaxation were carried out to redistribute ions and allow for
equilibrium surface reconstruction, which was especially important for surfaces of M(OH)2 and

M20s post cleavage.

4.5. Bulk Modulus. A 3D periodic box of at least ~2 x 2 x 2 nm® size was created from the
unit cells of the oxides and hydroxides (Figure 1). The simulation protocol to calculate the bulk
modulus involved molecular dynamics in the NPT ensemble and was equal to that of the
calculation of lattice parameters and density. The simulations were then run at two additional
pressures for 250 ps to observe change in volume. Typically, we considered pressures between 0.2
GPa and 0.5 GPa, equal to somewhat less than 1% strain within the linear regime of stress vs strain
curve. Upon changing the pressure from 0.2 to 0.5 GPa, the average standard deviation in
computed bulk modulus was observed to be £2 GPa. The bulk modulus was calculated from the
difference in average pressure Py relative to 1 atm (P, = 1 atm) and the difference in average

volume relative to the volume at 1 atm pressure (V;):

(Pf—Po)
Bulk Modulus, K = =V, —— 2
u odulus, 0 W, (2)

The average pressure and volume were recorded during the equilibrium part of the trajectory (last
150 ps). The overall average standard deviation in computed bulk modulus was +4 GPa.
4.6. Simulation Protocols Using Pedone, CLAYFF, ReaxFF, and UFF Potentials. Data for

the Pedone potential were inferred from the original references. We attempted an implementation
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of the Pedone potential in LAMMPS (Section S1 and files in the Supporting Information).
Simulations with the Pedone potential proved to be challenging and surface or interfacial
properties are not accessible. The simulations with CLAYFF were run using the same protocols as
for IFF using the NAMD program, including Ewald summation for Coulomb interactions in high
accuracy, a 12 A cutoff for LJ interactions, and typical simulation times of 250 ps.’!* 3 Differences
to using a cutoff of 8 A were found to be small. ReaxFF simulations were carried out using the
program LAMMPS and the pair_style reax/c” command for 500 ps, along with recommended
simulation settings. Sample files to repeat the calculations with CLAYFF and ReaxFF are provided
as part of supporting files. Calculations with UFF were carried out in Materials Studio using
automated atom types and charges, and otherwise the same simulation protocols as for IFF.

4.7. Analysis of the Properties of Spinel. The model of MgAl>O4 was built using X-ray data
from the ACSD and had a size of 2.427 x 2.427 x 2.427 nm’>. The simulation protocols to analyze
the lattice parameters, density, and bulk modulus were as reported above.

4.8. Cation Migration. Cation migration was analyzed using steered molecular dynamics to
monitor free energy barriers. We used large models of cubic oxide crystals of approximately 8.0 x
8.0 x 8.0 nm? size (Figure S1 in the Supporting Information). First, the lattice was equilibrated by
MD simulation in the NPT ensemble within the range of experimental temperature. For CaO, the
measurement temperature was between 1000 to 1400 °C and a temperature of 1473 K (1200 °C)
was chosen in the simulation.'?® For NiO, the measurement temperature was between 500 and 800
°C and a temperature of 923 K (650 °C) was chosen in the simulation.''® A Schottky defect,
consisting of a cation vacancy and an anion vacancy, maintaining electroneutrality, was created in
the model. We used a large separation, i.e., a cation vacancy at the center of the model and an anion

vacancy near the vertex of the equilibrated crystal to obtain cation migration barriers that are not
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influenced by the location of the anion. Steered molecular dynamics simulations were performed
to pull the metal cation nearest to the cation vacancy at the center of the crystal from the layer
below the row of atoms that contains the cation vacancy in the direction of the z-axis into the
existing vacancy (Figure 3f and Figure S1 in the Supporting Information). The cation migrated at
a rate of 1 A/ns. All other atoms were mobile except the atoms along the y-axis between 0 to 3.5
A, which avoided unwanted crystal deformation due to applied external velocity and resulting
force (Figure S1, yellow region, in the Supporting Information). The input files and crystal
structures used to run the simulation in LAMMPS are provided as part of the Supporting

Information.

4.9. Adsorption Energy of Water and Alkanes on MgO Surfaces. The adsorption energy of
water molecules on the MgO (004) surface was computed in a periodic box containing an MgO
slab of 21.055 x 21.055 x 21.055 A3 size with a vacuum slab of 250 A length along z-axis using
the program LAMMPS. To obtain the binding energy at 0 K, a water molecule was placed in
different upright and flat configurations near the surface of MgO, molecular mechanics with the
conjugate gradient algorithm was used to minimize the energy and to identify the structure of
lowest energy (Figure 4a, b). Then, the energy by placing the water molecule 125 A away from
the MgO (004) surface was obtained upon energy minimization. The difference in energy was
computed between the two states to report the binding energy at 0 K (Figure 4a). To obtain the
binding energy of a single water molecule at 170 K on the same surface, two molecular dynamics
simulations were carried out, one with the water molecule near the surface, and another with the
water molecule approximately 125 A away from the surface using the NVT ensemble, a time step
of 1 fs, and a total simulation time of 200 ps with the program LAMMPS. The average energies in

equilibrium in the bound and detached states were calculated, and the difference is reported as
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binding energy of water at 170 K (Figure 4b). Care was taken to compute the average total energy
in the away state by using the equilibrated part of simulation when the water molecule is at least

30 A away from the MgO (400) surface.

The binding energy of one monolayer of water molecules adsorbed on the MgO (400) surface
was computed by subtracting the average total energy of water molecules in the gaseous state and
of the MgO slab from the average total energy of the monolayer of water molecules adsorbed on
the MgO (400) slab. The energy difference was divided by the total number of water molecules
and reported per mol of water (Figure 4c). The average total energy of water molecules in the
vapor phase was computed by placing 125 isolated water molecules in a 100 nm® cubic box and
running an MD simulation at 170 K with a timestep of 1 fs for 100 ps. In the initial configuration,
each water molecule was at least 20 nm away from the nearest neighbor, and the average energy
was computed from the equilibrium part of simulation when the molecules stayed at least 10 nm
away from the nearest neighbor. Since 50 water molecules were adsorbed on the surface of the
MgO 21.055 A? cubic slab at 1 ML configuration (Figure 4c), the energy of 125 water molecules
was scaled to obtain the energy for 50 water molecules in the vapor phase. The average total energy
of the MgO 21.055 A® cubic slab with 100 A vacuum space along z-axis was computed by running
an MD simulation in the NVT ensemble at 170 K for 150 ps and using the equilibrated part of the
trajectory. Finally, the monolayer configuration of water molecules was obtained by initially
placing 200 water molecules above the MgO (400) surface slab with 100 A vacuum space along
the z-axis and gradually lowering the temperature to 170 K in three steps, starting with 500 K, 350
K and 250 K, for annealing and sufficient configuration sampling. At each temperature step, MD
simulations were run for 100 ps in the NVT ensemble. After the last run at 170 K, the water

molecules present in second layer and beyond were deleted from the simulation box. Then, the
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simulation was continued with only 1 monolayer of water molecules adsorbed on the surface for
200 ps at 170 K to obtain the average total equilibrium energy of 1 ML of water molecules bound

to the MgO (400) surface.

Models of the alkanes C2Hs, n-C4H10 and n-CsHis adsorbed onto the MgO (100) surfaces (more
precisely, (400) surfaces) of an area of ~6.1 x 6.1 nm? were obtained in two steps. First,
approximately two monolayers of alkane molecules were placed on the (400) surface of MgO,
visually covering the entire surface area. The structure was equilibrated for 0.5 ns using the NVT
ensemble (Figure S2a, c, e in the Supporting Information). Second, the molecules forming the
second layer in the equilibrated adsorbed configuration were selected and deleted to obtain an
adsorbed configuration at monolayer coverage (Figure S2b, d, f in the Supporting Information).
The monolayer structure was then further equilibrated for 0.5 ns (Figure 5a, ¢ and e). To obtain an
equilibrium structure at 0.5 ML surface coverage, half of the alkane molecules from the monolayer
configuration (at 1.0 ML) were removed and the remaining structure was run for another 0.5 ns
(Figure 5b, d and f). The total average energy of the MgO (400) surface slab (Emgo) and of the
alkane molecules (Eakane) were calculated separately. To obtain the adsorption energy (Table 8),
the total energy of the MgO surface slab and of the alkane molecules was subtracted from the

energy of the system with alkane molecules adsorbed on the (400) MgO surface:

E, = EAlkane+Mg0 - (EMgO + N - EAlkane) (3)

Hereby, E. is the cumulative adsorption energy at monolayer or half monolayer coverage, Emgo is
the energy of the MgO slab, Eikane 1s the energy of one alkane molecule and N, is the total number
of molecules adsorbed. All the simulations were run using the NAMD program, the IFF-
CHARMM, AMBER parameters for the MgO surface, and available parameters for alkane

molecules in the CHARMMZ36 force field. The simulations were run at 75 K, 111 K and 175 K for
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C2Hs, n-C4Hio and n-CgHis systems respectively, matching the measurement temperatures of the
respective TPD experiments. The results from eq. (3) were reported on a per-molecule basis, i.e.,
as a value of E; /N, the adsorption energy per single molecule at 1.0 monolayer or 0.5 monolayer

coverage, respectively (Table 8).

4.10. Model Uncertainties and Limitations. The models reproduce density, surface energy
and bulk modulus of the oxides and hydroxides as close to experiments as possible, exploiting the
limits of the IFF energy expressions and combination rules. We identified and analyzed cleavage
planes of minimum energy for each crystal structure. Other (hkl) surfaces can be examined and, in
case of less stable surfaces, bonded parameters may be added to constrain atoms at desired
positions. In the assessment of mechanical properties, our focus on the reproduction of the bulk
modulus may not be sufficient to reproduce all the elastic constants, which can be explored in
further work. For simulations in aqueous environment, bare oxide surfaces often require
modification to models of hydrated surfaces with a superficial layer of hydroxide (neutral,
protonated, or deprotonated) as described in Section 2.9.'#!"!43 Uncertainties and potential errors

are described in the respective sections.

Supporting Information Available: Supporting tables and supporting text showing a comparison
of lattice parameters in experiment relative to IFF, other potentials, and DFT data in the OpenKIM
database, computed surface energies using various earlier methods, a detailed survey of
experimentally measured bulk moduli, the nonbonded IFF potential for silica, extensive data
showing the dependence of computed properties with IFF on the choice of force field parameters;
Supporting figures showing the protocol for carrying out simulations of cation migration and

formation of alkane monolayers adsorbed on MgO (400) surfaces; Supporting text describing the

86



implementation of the Pedone potential in LAMMPS; Supporting files including simulation-ready
models of crystal structures and force field files in IFF-CVFF, IFF-CHARMM, IFF-PCFF and
IFF-PCFF-HQ formats for all oxides and hydroxides, files to reproduce the simulation of the spinel
crystal structure, of cation migration in the oxides, and of hydrocarbon adsorption on oxide

surfaces.
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