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Counting, equidistribution and entropy gaps at
infinity with applications to
cusped Hitchin representations

By Harrison Bray at Fairfax, Richard Canary at Ann Abor, Lien-Yung Kao at Washington and
Giuseppe Martone at Ann Arbor

Abstract. We show that if an eventually positive, non-arithmetic, locally Holder con-
tinuous potential for a topologically mixing countable Markov shift with (BIP) has an entropy
gap at infinity, then one may apply the renewal theorem of Kessebohmer and Kombrink to
obtain counting and equidistribution results. We apply these general results to obtain counting
and equidistribution results for cusped Hitchin representations, and more generally for cusped
Anosov representations of geometrically finite Fuchsian groups.

1. Introduction

In this paper, we use the Renewal Theorem of Kessebohmer and Kombrink [33] to
establish counting and equidistribution results for well-behaved potentials on topologically
mixing countable Markov shifts with (BIP) in the spirit of Lalley’s work [36] on finite Markov
shifts. Inspired by work of Schapira and Tapie [64, 65], Dal’bo, Otal and Peigné [19], lommi,
Riquelme and Velozo [27] and Velozo [69] in the setting of geodesic flows on negatively curved
Riemannian manifolds, we define notions of entropy gap at infinity for our potentials. Our
results require that the potentials are non-arithmetic, eventually positive and have an entropy
gap at infinity.

Our main motivation for this general analysis was provided by cusped Hitchin represen-
tations of a geometrically finite Fuchsian group into SL(d, R). Given a linear functional ¢ on
the Cartan algebra a of SL(d,R) which is a positive linear combination of simple roots, we
can define the ¢-translation length £%(A4) = ¢ (£(A)) (where £ is the Jordan projection) for
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A € SL(d,R). The first consequence of the general theory we develop is that if p is cusped

Hitchin, then
t8

#Hy) € 1110 < 2 (p(y)) <1} ~ i—g

where § = §4(p) is the ¢-entropy of p (and [I'] is the collection of conjugacy classes of
elements of I"). We also obtain a Manhattan curve theorem and equidistribution results in this
context. In later work, we plan to use these results to construct pressure metrics on cusped
Hitchin components. A longer term goal is the development of a geometric theory of the aug-
mented Hitchin component which parallels the study of the augmented Teichmiiller space as
the metric completion of Teichmiiller space with the Weil-Petersson metric (see Masur [44]).

General thermodynamical results. We now give more precise statements of our gen-
eral results. We assume throughout that (X1, o) is a topologically mixing, one-sided, countable
Markov shift with alphabet 4 which has the big images and pre-images property (BIP). More-
over, all of our functions will be assumed to be locally Holder continuous (see Section 2 for
precise definitions).

We now introduce the crucial assumptions we will make in our work. Given a locally
Holder continuous function f : ¥7 — R and a € 4, we let

I(fa) =inf{f(x):x € 2T, x; =a}

and
S(f.a) =sup{f(x):x € 21, x; =a).

Note that /( f,a) and S( f, a) are finite since f is locally Holder continuous.
We say that f has a strong entropy gap at infinity if the series

AVOED B

achA

has a finite critical exponent d( ) > 0 and diverges when s = d(f).

We say that f has a weak entropy gap at infinity if Z1(f,s) has a finite critical expo-
nent d( f) > 0 and there exists § = 6(f) > d(f) > 0 so that P(—6f) = 0, where P is the
Gurevich pressure function associated to (X1, o) (defined in Section 2). We will see later (in
Section 3), that a strong entropy gap at infinity implies a weak entropy gap at infinity.

We say that f is strictly positive if ¢(f) = inf{ f(x) : x € 27} > 0. We say that f is
eventually positive if there exist N € N and B > 0 so that

Snf(x) = f(x) + fo(x)) + -+ f(0" ' (x)) > B

for all n > N and x € . Recall that f is arithmetic if the subgroup of R generated by
{S, f(x) : x € Fix"*, n € N} is cyclic, where x € Fix" if 6 (x) = x.
We begin by stating our general counting results. For all n € N, let

Myp(n,t) ={x € Yt :x e Fix" and S, f(x) <t}

and let

oo

AGESY %#Mf(n,z).

n=1



Bray, Canary, Kao and Martone, Counting and equidistribution 3

Theorem A (Growth rate of closed orbits). Suppose that (X1, 0) is a topologically
mixing, one-sided, countable Markov shift which has (BIP). If f : £ — R is locally Holder
continuous, non-arithmetic, eventually positive and has a weak entropy gap at infinity, and

P(=6f) =0, then 5
. t
tlggoMf(t)eW =1.

Similarly, for all k € N, let

Ry(k,t) = {x € My(k,1): x & My(n,1)ifn <k}

and let
o0

1
Re() =) CH#Ry (k. 1),
k=1
If x € My(n,t) — Rp(n,t), then there exists j > 2 so that x € Mf(%, %), SO

t
My (t) — My (5) < Rp(t) < Mys(1).
Therefore, the following result is an immediate corollary of Theorem A.

Corollary 1.1 (Growth rate of closed prime orbits). Suppose that (X7, o) is a topolog-
ically mixing, one-sided, countable Markov shift which has (BIP). If f : ¥ — R is locally
Holder continuous, non-arithmetic, eventually positive and has a weak entropy gap at infinity,
and P(=4f) = 0, then

i 8
tgr&Rf(z)eW =1.

If f is strictly positive, let X be the suspension flow of /. In this setting, we obtained
a generalized form of Bowen’s formula for the critical exponent. Let O be the collection of
closed orbits of X and let

Or@) ={A: LX) <1},

where £7 (1) is the period of A. Notice that #Or (1) = My (1), since if A € O¢(t), then there
exists x € Fix" for some n, so that S, f(x) = £ (A) and x is well defined up to cyclic permu-
tation. Lemma 3.2 implies that every eventually positive locally Holder continuous function (in
our setting) is cohomologous to a strictly positive locally Holder continuous function, so we
are always free to interpret our results from this viewpoint.

Corollary 1.2 (Bowen’s formula). Suppose that (X7, o) is a topologically mixing, one-
sided, countable Markov shift which has (BIP). If f : ¥ — R is locally Holder continuous,
non-arithmetic, strictly positive, has a weak entropy gap at infinity and P(—38f) = 0, then

o1
5= tll)rgoglog#@f(t).
If f: 27 >R and g: X" — R are two strictly positive locally Holder continuous

functions, then there is a natural identification of the set O of closed orbits of X ¢ and the set
O of closed orbits of Xg. If f is strictly positive and has a weak entropy gap at infinity so
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that P(—8f) = 0, then the equilibrium state for —§f induces a measure of maximal entropy
on the suspension flow on X . We obtain an equidistribution result for this equilibrium state
which roughly says that it behaves like a Patterson—Sullivan measure.

In the following theorem, if ¢ and ¥ are real-valued functions, we say that

Theorem B (Equidistribution). Suppose that (£7,0) is a topologically mixing, one-
sided, countable Markov shift which has (BIP) and f : £ — R is locally Holder continuous,
non-arithmetic, eventually positive, has a weak entropy gap at infinity, P(—6f) = O and pu_s ¢
is the equilibrium state for —8f. If g : ¥+ — R is locally Hoélder continuous, eventually
positive, and there exists C > 0 such that

|f(x) —g0)] <C

forall x € >t then

i 1 )3 Skg(x) (fng—Sf) et
ik xeMy (k.t) Sicf (x) [ fdp-ss) 18

ast — oo. If f and g are strictly positive, then

)3 le() (fng—Sf).ﬁ

)lf()/) [ fdu_ss) 18

ye0,(t

ast — 00.

We can obtain a completely analogous statement if we instead consider the set &7 of
primitive closed orbits of the suspension flow X ¢.

Suppose that f : ¥ — R is locally Holder continuous, eventually positive, and has
a strong entropy gap at infinity and that g : &7 — R is also eventually positive and locally
Holder continuous, and that there exists C > 0 so that | f(x) — g(x)| < C for all x € &7,
(Notice that this implies that d( /) = d(g).) Inspired by Burger [13], we define, the Manhattan
curve

€(f.g) = {(a,h) eR?: P(~af —bg) =0,a>0,b>0,a+b>0.

The Manhattan curve has the following properties.

Theorem C (Manhattan curve). Suppose that (X, 0) is a topologically mixing, one-
sided countable Markov shift with (BIP), f : 7 — R is locally Holder continuous, eventually
positive and has a strong entropy gap at infinity and that g : ¥ — R is also eventually pos-
itive and locally Holder continuous. If there exists C > 0 so that | f(x) — g(x)| < C for all
x € X7, then:

(1) (8(1),0),(0,8(g)) € €(f, 8)-
(2) Ifa>0,b>0,anda + b > 0, there exists a unique t > % so that (ta,tb) € €(f, g).
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(3) €(f. g) is a closed subsegment of an analytic curve.

(4) €(f, g) is strictly convex, unless

)
S f(x) = %Sng(x)

forall x € Fix" andn € N.
Moreover; the tangent line to €( f, g) at (a,b) € €(f, g) has slope

fz-i— gdi—qf—bg

s(a,b) = — ,
fz;+ S di—af—pg

where [L_q 5 _pg IS the equilibrium state of the function —af — bg.

Applications to cusped Hitchin representations. Let S = H?/T be a geometrically
finite, hyperbolic surface, and let A(I") C 0H? be the limit set of I' C PSL(2, R). Following
Fock and Goncharov [22], a cusped Hitchin representation is a representation p : I' — SL(d, R)
such that if y € I' is parabolic, then p(y) is a unipotent element with a single Jordan block and
there exists a p-equivariant positive map &, : A(I') — F4. If S is compact, cusped Hitchin
representations are just the traditional Hitchin representations introduced by Hitchin [26] and
further studied by Labourie [34], while if I" is convex cocompact, they are the Hitchin rep-
resentations studied by Labourie and McShane [35]. As these are covered by the traditional
theory of Anosov representations, we will focus on the case where I" is not convex cocompact.
If d = 3 and S has finite area, then a cusped Hitchin representation is simply the holonomy
map of a finite area strictly convex projective structure on S (see Marquis [42]). More gen-
erally, if p : ' = SL(3,R) acts geometrically finitely, in the sense of Crampon and Marquis
[18, Definition 5.14], on a strictly convex domain with C'! boundary, then p is cusped Hitchin
by [22, 1.3. Theorem].

Let

a={GdeR? a1+ +ay =0}

be the standard Cartan algebra for the Lie algebra s[(d, R) of SL(d,R). If T € SL(d, R), let
A(T) = - = Aq(T)

be the (ordered) moduli of (generalized) eigenvalues of 7' (with multiplicity). The Jordan (or
Lyapunov) projection

£:SL(d,R) - a isgivenby {£(T)= (logAi(T),...,logAs(T)).
Foreachk =1,...,d — 1, letoy : a — R be given by oy (d) = ar — a1 and let

d—1
A= { Zt,(xk it > Oforall k and 1, > Oforsomek} Ca*.
k=1

For example, if a g is the Hilbert length functional given by agr (@) = a; — a4, then

d—1
o0y = Zak € A.
k=1
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Similarly, if w1 (d) = ay, then

d—1

=Y

k=1

d—k

o € A.

Given non-trivial ¢ € A and T € SL(d, R), we define the ¢-translation length

t(T) = ¢p(U(T)).

Let (X7, 0) be the Stadlbauer-Ledrappier—Sarig coding [38,66] (if S has finite area) or
Dal’bo—Peigné coding [21] (if not) of the recurrent portion of the geodesic flow on T'1S. It is
topologically mixing and has (BIP). Moreover, it comes equipped with a map

G: A>T

so that if y € T is hyperbolic, then there exists x = X1 ---x, € 7 so that G(x1)--- G(xy) is
conjugate to y. Moreover, x is unique up to powers of ¢. Given a cusped Hitchin representation
p: T — SL(d,R), we will define a vector-valued roof function 7, : £ — a with the property
that if x = X7 --- X, is a periodic element of >, then

Sntp(x) = Tp(x) + T(0(x) + -+ + 15(0" 7 (x)) = £(p(G(x1) -+ G(xn)))

so 7, encodes all the spectral data of p(I").
The following result allows us to use the general thermodynamical machinery we devel-
oped to study cusped Hitchin representations.

Theorem D (Roof functions). Suppose that T is a torsion-free, geometrically finite
Fuchsian group which is not convex cocompact, p : I' — SL(d,R) is a cusped Hitchin rep-
resentation and ¢ € A. Then there exists a locally Holder continuous function

rg’=¢orp:2+—>R
such that:
) fg is eventually positive and non-arithmetic.
(2) Ifx = X1 - Xp, is a periodic element of £, then

St (x) = L2 (p(G(x1) - G(xn))).

3) ‘[ZS has a strong entropy gap at infinity. Moreover, if ¢ = ajoy + -+ ag_10q—1, then
1

d(?) = :
(zp) 201+ +ag_y)

@) If n: T — SL(d, R) is another cusped Hitchin representation, then there exists C > 0
so that
20 (x) — ()] < C

forallx € =T,

We obtain a counting result for cusped Hitchin representations as an immediate conse-
quence of Theorem A.
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Corollary 1.3. Ifp: " — SL(d, R) is a cusped Hitchin representation and ¢ € A, then
there exists a unique § = 84(p) so that P(—6 rf ) =0, and

18

#ly] € [1]:0 < P (o(y) < 1}~

ast — oQ.

We will refer to 84 (p) as the ¢p-topological entropy of p.
If p,n: ' = SL(d,R) are cusped Hitchin representations and ¢ € A, we define the
Manhattan curve

€% (p.n) = {(a,b) eR*: P(—atl —b1f)=0,a>0.b>0,a+b >0}
Theorem C immediately gives the following information about € (p, 1).

Corollary 1.4. Ifp,n: ' — SL(d,R) are cusped Hitchin representations and ¢ € A,
then:

(1) €% (p, n) is a closed subsegment of an analytic curve.
(2) The points (84(p),0) and (0, 84(n)) lie on € (p, n).
(3) €%(p, ) is strictly convex, unless

)
(o) = 22D 49 (1))
8p(p)

forally e T.
Moreover; the tangent line to €% (p, 1) at (8¢(p), 0) has slope

¢
_f Tn AL _56 ()t
5 .

s (p.1) =

We call 1%(p, n) = —s?®(p, n) the ¢-pressure intersection. We also define the renormal-
ized ¢-pressure intersection by

8¢ (1)
I (p.m) = 251 (p. ).
8¢ (p)
As a further corollary of Theorem C we obtain the following rigidity result for renormalized
pressure intersection. This corollary will later play a key role in our forthcoming construction
of pressure metrics on the space of cusped Hitchin representations.

Corollary 1.5. Ifp,n:I' — SL(d,R) are cusped Hitchin representations and ¢ € A,
then

J?(p.m) = 1
with equality if and only if

)
(o)) = %N(w»

forally € T
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As a corollary of Theorem B we obtain the following geometric interpretation of the
pressure intersection. Let

R2(0) = {[y] € [T]:0 < €4 (p(y)) < T}.

Corollary 1.6. If p,n: ' — SL(d,R) are cusped Hitchin representations and ¢ € A,
then
1%(p.n) = lim

@(y)
oo #(R7(0) |, 2

£ '
R (p(y))

In a companion paper, Canary, Zhang and Zimmer [15] study the geometry of cusped
Hitchin representation showing that they are “relatively” Borel Anosov in a sense which gen-
eralizes work of Labourie [34]. They also show that cusped Hitchin representations are stable
with respect to type-preserving deformation in SL(d, C). As a consequence, they see that limit
maps are Holder and vary analytically. In [10], we combine the work in this paper and in [15]
to construct pressure metrics on cusped Hitchin components.

This project is motivated by the hope that there is a geometric theory of the augmented
Hitchin component which generalizes the classical theory for augmented Teichmiiller space.
Masur [44] proved that the augmented Teichmiiller space is the metric completion of Teich-
miiller space with the Weil-Petersson metric. The strata at infinity of augmented Teichmiiller
space consists of Teichmiiller spaces of cusped hyperbolic surfaces. These strata naturally
inherit a Weil-Petersson metric from the completion. The potential analogy is clearest when
d = 3, where Hitchin components are spaces of convex projective structures on closed sur-
faces. Work of Loftin [39] and Loftin and Zhang [40] explores the analytic structure and
topology of this bordification. We hope that our work on pressure metrics will aid in show-
ing that there is an augmented Hitchin component which arises as the metric completion of
the Hitchin component with the pressure metric. See the survey paper [14] for a more detailed
discussion of the conjectural picture.

Other applications. These results have immediate generalizations for Pj-Anosov rep-
resentations of geometrically finite Fuchsian groups.

We also recover (mild generalizations of) many of Sambarino’s results on counting and
equidistribution for uncusped Anosov representations in our framework (see [55-57]).

Historical remarks. Counting and equidistribution results have long been a central
theme of the Thermodynamical Formalism (see, for example, the seminal work of Bowen,
Parry, Pollicott and Ruelle [5, 6, 46, 53]). Lalley’s innovation [36] was the introduction of
renewal theory and the development of a Renewal Theorem which allowed him to obtain pre-
cise counting and equidistribution results. Our work harnesses Kessebohmer and Kombrink’s
extension [33] of Lalley’s Renewal Theorem to the setting of countable Markov shifts to obtain
similar results in our setting.

Bishop and Steger [3] proved a rigidity theorem in the setting of finite area hyperbolic sur-
faces which is the precursor to the study of Manhattan curves. Lalley [37] extended Bishop and
Steger’s rigidity theorem to the setting of closed negatively curved surfaces. The formulation in
terms of a Manhattan curve is due to Burger [13] who worked in the setting of convex cocom-
pact representations into rank one Lie groups. Kao [28] established a Manhattan curve theorem
for geometrically finite Fuchsian groups and Bray, Canary and Kao [9] extended his result
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to the setting of geometrically finite quasifuchsian representations. Kao [29] used his work
to produce pressure metrics on Teichmiiller spaces of geometrically finite Fuchsian groups
and Bray, Canary and Kao [9] similarly produced pressure metrics on deformation spaces of
geometrically quasifuchsian representations.

Dal’bo and Peigné [21] used renewal theorems in their work obtaining counting and mix-
ing results on geometrically finite negatively curved surfaces. They also applied renewal tech-
niques to study counting results for the modular surface [20]. Thirion [67] used related tech-
niques to obtain asymptotic results for orbital counting functions for ping pong groups. Thirion’s
ping pong groups overlap with the class of (images of) cusped P;-Anosov representations.

Corollary 1.3 generalizes results of Sambarino [55-57] from the Anosov setting, while
Corollaries 1.5 and 1.6 generalize results of Bridgeman, Canary, Labourie and Sambarino [11].

In the case of cusped Hitchin representations, d (f,‘f ) is simply the maximum critical
exponent of the ¢-length Poincaré series associated to any unipotent subgroup of p(I"). Thus,
having a strong entropy gap at infinity is analogous to the critical exponent gap used in the work
of Dal’bo and Peigné [21] and Dal’bo, Otal and Peigné [19]. Schapira and Tapie [65, Propo-
sition 7.16] showed that for a geometrically finite negatively curved manifold then there is
a critical exponent gap if and only if the geodesic flow has an entropy gap at infinity. Our
definition is inspired by their work. In turn, Schapira and Tapie were motivated, in part, by
work on strongly positive recurrent potentials for countable Markov shifts due to Gurevich and
Savchenko [25,63], Sarig [60,61], Ruette [54], and Boyle, Buzzi and Gémez [8]. Other rele-
vant precursors to our results include the work of lommi, Riquelme and Velozo [27], Riquelme
and Velozo [52], and Velozo [69].

In recent work, Pollicott and Urbanski [49] used related techniques to obtain fine count-
ing results for conformal dynamical systems. Their main technical tools come from the study of
complexified Ruelle—Perron—Frobenius operators, generalizing early work of Parry and Pollicott
[46] in the setting of finite Markov shifts. (Note that the proof of Kessebdhmer and Kombrink’s
Renewal Theorem [33] also relies on the study of complexified Ruelle—Perron—Frobenius opera-
tors.) Pollicott and Urbanski gave extensive applications to the study of circle packings, rational
functions, continued fractions, Fuchsian groups and Schottky groups and other topics.

Feng Zhu [70] obtained closely related counting and equidistribution results for the
Hilbert length functional on geometrically finite strictly convex projective manifolds. When
d = 3, cusped Hitchin representations are holonomy maps of strictly convex projective sur-
faces, so our results overlap with his in this case.

Outline of paper. In Section 2, we recall the relevant background material from the
theory of countable Markov shifts. In Section 3, we use this theory to explore the consequences
of entropy gaps at infinity. In Section 4, we recall the Renewal Theorem of Kessebohmer and
Kombrink [33] and show that we can apply it in our context. Section 5 contains the crucial
technical material needed in the proof of Theorem A. Sections 6, 7 and 8 contain the proof of
Theorems A, B and C (respectively). In Section 9, we develop the background material needed
for our applications. Section 10 contains the proof of (a generalization of) Theorem D and
Section 11 derives its consequences.

Acknowledgement. The authors would like to thank Godofredo Iommi, Andres Sam-
barino, Barbara Schapira, Ralf Spatzier and Dan Thompson for helpful comments and sugges-
tions. We also thank the referee for suggestions which improved the exposition.
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2. Background from the thermodynamic formalism

In this section, we recall the background results we will need from the Thermodynamic
Formalism for countable Markov shifts as developed by Gurevich and Savchenko [25], Mauldin
and Urbanksi [45] and Sarig [60].

Given a countable alphabet + and a transition matrix T = (z,3) € {0, 1
Markov shift is

}A%XA 3 one-sided
St ={x=(x) ¢ AN lxix;4, = lforalli € N}
equipped with a shift map o : ¥ — X7 which takes (x;);eN t0 (Xj+1)ieN.

We will work in the setting of topologically mixing Markov shifts with (BIP), where
many of the classical results of Thermodynamic Formalism generalize. The shift (X1, 0)
is topologically mixing if for all a,b € A, there exists N = N(a,b) so that if n > N, then
there exists x € X so that x; = a and x,, = b. It has the big images and pre-images property
(BIP) if there exists a finite subset B C # so that if a € », then there exist bg, b1 € B so that

Ihoa = 1 = Lab, -
The theory works best for locally Holder continuous potentials. We say that g : 7 — R
is locally Hélder continuous if there exist A > 0 and o > 0 so that

lg(x) — g(y)| < Ae™®"

whenever x; = y; foralli <n andn € N. When we want to record the constants, we will say
that g is locally a-Holder continuous with constant A. The Gurevich pressure of g is given by

1 S
— Im — n8g(x)
P(g) = nhm p, log E e
{x€Fix" : x| =a}

for some (any) a € 4, where

n
Sng(x) =Y g(0' " (x))
i=1
is the ergodic sum and Fix" = {x € T : 6" (x) = x}.
We say that two locally Holder continuous functions f and g are cohomologous if there
exists a locally Holder continuous function /4 so that

f—g=h—hoo.

The analogue of Livsic’s theorem holds in this setting.

Theorem 2.1 (Sarig [62, Theorem 1.1]). Suppose that 7 is a topologically mixing,
one-sided countable Markov shift with (BIP). If f : 27 — Rand g: =+ — R are both locally
Holder continuous, then f is cohomologous to g if and only if S, f(x) = Spg(x) foralln € N
and x € Fix". In particular, if f and g are cohomologous, then P(—tf) = P(—tg) whenever

P(—tf) is finite.

A o-invariant Borel probability measure ;2 on X7 is an equilibrium state for a locally
Holder continuous function g : ¥ — R if

P(g) =ha(u)+L+ng,

where hq (1) is the measure-theoretic entropy of o with respect to the measure .
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A Borel probability measure  on XV is a Gibbs state for a locally Holder continuous
function g : 1 — R if there exists B > 1 so that

l - u(lai, ... anl) -

B — eSng(x)-nP(g) — B

for all x € [ay,...,ay], where [ay,...,ay,] is the cylinder consisting of all x € T so that
x; =a; foralll <i <n.

Theorem 2.2 (Mauldin and Urbanski [45, Theorem 2.2.9], Sarig [62, Theorem 4.9]). If
ST is a topologically mixing, one-sided countable Markov shift with (BIP), g : T — R is
locally Hélder continuous, it admits a shift invariant Gibbs state jLg, and — [ g dpg < +00,
then [ig is the unique equilibrium state for g.

Recall from the introduction that for g : ¥+ — R a locally Holder continuous function
we define
I(g,a) = inf{g(x) : x € T, x; = a}
and
S(g.a) =sup{g(x):x € =T, x; = a).

We will make crucial use of the following criterion for a potential to admit an equilibrium
state.

Theorem 2.3 (Mauldin and Urbanski [45, Theorems 2.2.4 and 2.2.9, Lemma 2.2.8], Sarig
[62, Theorem 4.9]). If =T is a topologically mixing, one-sided countable Markov shift with
(BIP), g : >t - Ris locally Holder continuous, and

> (g a)e™ED

ach

converges, then —g admits a unique equilibrium state |L—g. Moreover,
/ gdu_g < +o0.
>+

We will need to be able to take the derivatives of the pressure function and to be able
to apply the Implicit Function Theorem. We say that {g, : &7 — R}, s is a real analytic
family if M is a real analytic manifold and for all x € X1, u — gy, (x) is a real analytic func-
tion on M. Mauldin and Urbanski [45, Theorem 2.6.12, Proposition 2.6.13] (see also Sarig
[59, Corollary 4]), prove real analyticity properties of the pressure function and evaluate its
derivative.

Theorem 2.4 (Mauldin—Urbanski, Sarig). Suppose that £ is a topologically mixing,
one-sided countable Markov shift with (BIP). If {gy, : ¥ — R}yenm is a real analytic family
of locally Holder continuous functions such that P(gy,) < oo for all u, then u — P(gy,) is real
analytic.

Moreover, if v € Ty, M and there exists a neighborhood U of ug in M so that ifu € U
and — [+ gu djig,, < 0o, then

Dw@mzé+m@AWme
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Recall that if f : ¥ — R is locally Holder continuous, the transfer operator is defined
by
Lrop(x)i= Y /Po(y),
yeo~1(x)
where ¢ : ¥ — R is a bounded locally Holder continuous function. The transfer operator, in
particular, gives us crucial information about equilibrium states.

Theorem 2.5 (Mauldin and Urbanski [45, Corollary 2.7.5], Sarig [62, Theorem 4.9]).
Suppose that ¥ is a topologically mixing, one-sided countable Markov shift with (BIP). If
g : =T — R is locally Holder continuous, P(g) < +oc, and sup g < +oo, then there exist
unique probability measures jLg and vg on T and a positive function hg : ¥ — R so that

Hg =hgve, Lghg = eP(g)hg’ :szg _ €P(g)\)g.

Moreover, hg is bounded away from both 0 and +00 and ug is an equilibrium state for g.
We will also use the following estimate on the behavior of powers of the transfer operator.

Theorem 2.6 (Mauldin and Urbanski [45, Theorem 2.4.6]). Suppose that >t isa
topologically mixing, one-sided countable Markov shift with (BIP). If g : ¥ — R is locally
Holder continuous, P(g) < 400, and sup g < +00, then there exist R > 0 and n € (0, 1) so
that ifn € N and ¢ : ¥ — R is bounded and locally n-Holder continuous with constant A,
then

e_"P(g)éﬁ’;,qﬁ—hg(x)/qﬁdvg

< Ry"(sup [p(x)| + 4).

xext

3. Entropy gaps at infinity

In this section, we show that a strong entropy gap at infinity implies a weak entropy gap
at infinity and explore the thermodynamical consequences of entropy gaps at infinity.
Recall that d( f) is the critical exponent of the series

Z1(f.s) = Z e S5,

ach

Notice that if f is locally Holder continuous, there exists C > 0 so that S(f,a) — I(f,a) < C
for all a € 4. So the series
Z e—sl (f.a)

ach
has critical exponent d( f) and diverges at d( f) if and only if f has a strong entropy gap at
infinity.
We first observe a bound on the number of letters with I( f,a) <1t.

Lemma 3.1. Suppose that = is a topologically mixing, one-sided countable Markov
shift with (BIP). If f : 7 — R is locally Holder continuous, d(f) is finite and b > d(f),
then there exists D = D(f,b) > 0 so that

Bi(fit) =#{a e A:I(f.a) <t} < De"
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forallt > 0, and
Y Lyoy=n(y) < De

yeo~1(x)

forallx € 2% and t > 0.

Proof. Fix b > d(f). If there does not exist D so that By (f,1) < De®* for all t > 0,
then there exists a sequence t, — 00 so that

Bi(f.tn) = ne’.

But then
Z e—bl(f,a) > Z e—bl(f,a) > nebtne—btn —n
ach {a:I(fia)<tn}
for all n € N, which contradicts our assumption that b > d( f).
Finally, notice that if x € >, then

Z L roy<ny(v) < Bi(fi1) < Debt

yeo~1(x)

forall > O. O

It will often be convenient to work with a strictly positive potential. We observe that an
eventually positive potential is always cohomologous to a strictly positive potential with the
same entropy gaps.

Lemma 3.2. Suppose that 7 is a topologically mixing, one-sided countable Markov
shift with (BIP) and that f : ¥ — R is eventually positive, locally Hélder continuous and
d(f) is finite. Then f is cohomologous to a strictly positive, locally Holder continuous func-
tion g so that:

(1) there exists C so that | f(x) — g(x)| < C forallx € £,

(2) d(f) =d(g)

(3) f has a weak entropy gap at infinity if and only if g has a weak entropy gap at infinity,
(4) f has a strong entropy gap at infinity if and only if g has a strong entropy gap at infinity.

Proof. Notice that (1) implies that |S(f.a) — S(g,a)| < C.Moreover, if f is cohomol-
ogous to g, and both are locally Holder continuous, then P(—tf) = P(—tg) forallt > d(f),
see Theorem 2.1. Therefore, (2)—(4) follow immediately once we construct a strictly positive,

locally Holder continuous function g that is cohomologous to f so that (1) holds.
Let

R=| o, s}

Note that R = |inf,c 4 I( f, a)| is finite since there exists s > d(f) >0sothat ), 4 e—s1(f.a)
is finite. Since f is eventually positive, there exists N € N and B > 0 so that if » > N and
x € I7, then

Snf(x) = B.
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Let
F=laeA:I(f,a) < RN + B}.

Since d( f') is finite, ¥ must be finite. To see this, observe that for s > d(f) > 0,
00 > Z e—sI(f,a) > Z e—sl(f,a) > Z e—s(RN+B)'
ach ac¥ ac¥

For all n € N, define

n

Cof(x) =D (f(0" ' 0D esy(x) + (RN + B) Ly ¢5y(x))

i=1
n

= Suf(x) =D (f(6" 7 (x)) = (RN + B)) 1y, ¢33 (x).

i=1

By construction,
RN?>+ NB+TN >Cy f(x) > B

forall x € X1, where
T =sup{f(x):x1 € F}.

(The lower bound holds, since Cy f(x) = Sy f(x) > B if x; € ¥ forall i < N, and other-
wise one of the summands of Cy f(x) is RN + B and each of the remaining terms are
bounded below by —R.)

We then define g : ©7 — R by

1
g(x) = Cn f(x) + (f(x) = (RN + B)) 1z, g5} (x).
By construction, g is continuous and
B
>—>0
8(x) =

forall x € 7T, so g is strictly positive.
Moreover, if x; € ¥, then |[g(x) — f(x)] < RN 4+ B + 2T, andif x| ¢ ¥, then

800~ (01 = RN + B+ -Cw f(x) = 2(RN + B).
It follows that
lg(x) — f(Xx)| <2(RN+B+T)=:C

forall x € &F.
To show g is locally Holder continuous, consider x, y € X% for which x; = y; for all

i = 1,...,n, and note that it suffices to consider n > N. Then
1 (Y . :
lg(x) —g)| = ‘N ( Z(f(ff’_l(X)) - f(UI_I(Y)))l{xiefi«'}(x))
i=1

+ (f(x) = fFOD g, g7y ()

Since n > N, applying local Holder continuity of f gives the desired conclusion.
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Finally, if x = X7 ... X, € Fix", then one may check that S, f(x) = S, g(x). To see this,
observe that

1606 = 57 (7 Cn 1)) + 85 (00 = (RN + )iy ()

= SO )+ Y (0T ()~ (RN + B)) 1 g ()
j=1

and since o’ (x) = x,

r N
SrCN f(x) = Sy SN f(x¥) = DD (f(0' 71 (x)) = (RN + B) 1y, ¢y (x)

j=li=1

= NS, f(x) =N Y _(f(6/7'(x)) = (RN + B) 1y, ¢} (x).
j=1

Theorem 2.1 then implies that f and g are cohomologous. |

We next study the behavior of P(—tf) fort > d( f), showing among other things that a
strong entropy gap at infinity implies a weak entropy gap at infinity.

Lemma 3.3. Suppose that % is a topologically mixing, one-sided countable Markov
shift with (BIP) and f : ¥ — R is locally Holder continuous and eventually positive.
(1) If d(f) is finite, then P(—tf) is finite if t > d(f) and infinite if t < d(f), and the

functiont — P(—tf) is monotone decreasing and analytic on (d( f), 00).
(2) There exists at most one § € (d(f), o0) so that P(=§f) = 0.

(3) If f has a strong entropy gap at infinity, then t — P(—tf) is proper on (d(f), 00). In
particular, f has a weak entropy gap at infinity.

Proof. Mauldin and Urbanski [45, Theorem 2.1.9] proved that if =% is topologically
mixing and has (BIP), then P(—sf) is finite if and only if

Zi(—f.s) = Z eSupl=sf(x): x1=a}
ach
converges. Therefore, P(—tf) is finite if > d(f) and infinite if < d(f). Notice that the
function ¢t — P(—tf") is monotone decreasing by definition and analytic by Theorem 2.4, so
(1) follows, and (2) is an immediate consequence of (1).

It remains to show (3). The fact that lim,_, ;(r) P(—f) = o0 is essentially contained
in Mauldin and Urbanski’s proof of [45, Theorem 2.1.9], but we elaborate here for com-
pleteness. They show that there exist constants g, s, M,m > 0 so that for any locally Holder
continuous function g,

n+s(n—1) —M+(M—m)n
Z Zi(g,1) > qn——lzl(g’ ",

i=n
where

Zn(g, 1) = Z eSUPxep Sng(x)
PEAK
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and Ay is the set of k-cylinders of £ 7. They observe [45, equation (2.1)] that

lim % log Z,(g, 1) = P(g).
Thus there exists A > 0 such that for all n, there exists 77 € [n,n + s(n — 1)] so that
Za(g. 1) = A" Z1 (g, 1)",
so P(g) > 1+_S log AZ1(g, 1). Therefore, if f has a strong entropy gap at infinity, then
lim Zy(—tf,1) = +o0

t—d(f)
and hence
lim P(—tf)> lim log AZ1(—tf, 1) = +o0.
Jim ( f)_t—>d(f)1—|-s gAZy(—tf. 1)
We now show that lim;_, o, P(—tf) = —oco. Notice that since there exists N > 0 such

that S,, f(x) > B >0 foralln > N and x € 1, we have Sin f(x) > kB for every k > 1.
Then

Z e2td(f)Skn f(x) < Z e 2@=1)d(f)kB=2d(f)Skn f(x)
{x€FixkN : x1=a} {x€FixkN : x| =a}

which implies

1
P(-2td < lim — 1 ~2(—1d()kB=2d(f)Sen F )
(-2td(f)f) = lim ——clog > e

{x€FixkN

=2t —1d(f)B
= S+ P(2d()))
and so limy_,oo P(—1f) = —o0.
Since t — P(—tf) is proper and monotone decreasing on (d( f), c0), it follows that
there exists § > d(f) so that P(—§f) = 0. Therefore, f has a weak entropy gap at infinity
and we have established (3). ]

1x1=a}

We next observe that —¢ f admits an equilibrium state if ¢ > d( f).

Lemma 3.4. Suppose that ™ is a topologically mixing, one-sided countable Markov
shift with (BIP). If f : 7 — R is locally Hélder continuous and eventually positive and
t > d(f), then there exists a unique equilibrium state ju_;y for —t f. Moreover,

0</ fdu_sr < +oo.
>+

Proof. Theorem 2.3 implies that there exists a unique equilibrium state for —¢ f if and
only if
Y t(fa)e SV < too.
ach
Indeed, this series converges since

Z eS80 < 4o
ach

for all s > d(f). Theorem 2.3 also ensures that [y f du_;r < +o00. Since f is eventually
positive, it is cohomologous to a strictly positive function g. Then —z f and —tg are cohomol-
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ogous and hence have the same integral with respect to any shift-invariant measure, and also
share the same shift-invariant equilibrium state, i.e. jt_;r = [L—sg (see [45, Theorem 2.2.7]
and Theorem 2.3). Hence,

di_,+ = du_ 0.
/E+fﬂtf /E+guzg> o

Theorem 2.5 and Lemma 3.3 have the following corollary which we will use repeatedly.

Corollary 3.5. Suppose that £ is a topologically mixing, one-sided countable Markov
shift with (BIP). If f : £ — R is locally Holder continuous, eventually positive, and has
a weak entropy gap at infinity and t > d(f), then there exist unique probability measures
U_zy and v_;r on 1 and a positive function h_ir: T — R so that

Petf =hypvyyr, Loyghp= eP(_tf)h—tf, i:f‘)—zf = ep(_tf)v—tf

and h_;y is bounded away from both 0 and +oc. Moreover, p_;r is the equilibrium state

of —tf.

We will need analogues of these results for functions of the form —zg — §f, where g is
comparable to f and z is close to 0.

Proposition 3.6. Suppose that ¥ is a topologically mixing, one-sided countable
Markov shift with (BIP), f : £ — R is locally Holder continuous, eventually positive and has
a weak entropy gap at infinity and P(—=8f) = 0for8 =8(f) > d(f)>0.Ifg: =7 — Ris
locally Hélder continuous, eventually positive, and there exists C so that | f(x) — g(x)| < C
forall x € X, then the following hold:

(1) Ifz > d(f)— 0, then P(—zg — §f) is finite, z — P(—zg — §f) is monotone decreasing
and analytic on (d(f) — 8, 00) and sup . ex+(—zg — 6f) < +o00.

(2) Ifz > d(f) — 6, then there exist unique probability measures jL_,q_g57 and v_,q_55 on
> and a positive function h_ze_sr: =t — R so that
Mzg—sf =h_zg—s5gV—zg-51-
Eozg-srhozg-sr =" T hzy sy,
£ esv-zg-sr = ¢ vz sy,

Moreover, h_,q_s ¢ is bounded away from both 0 and 400 and jL_,g_sf is the unique
equilibrium state of —zg — §f.

Proof. Notice that
Z eSn(=28=8f) < Z e"ZC pSn((=2—=8) /)
{xeFix" : x;=a} {xeFix" : x1=a}
so P(—zg —8f)is finite if z + 8 > d(f),i.e.if z > d(f) — 8. Similarly, if x € =T, then
(=28 =8f)(x) = =(z +8) f(x) + Cz <sup(—(z + 8) f) + Cz < +o0

if z4+§8 > 0. The function z — P(—zg—§f) is monotone decreasing by definition and analytic
by Theorem 2.4. We have established (1).
Assertion (2) is then an immediate consequence of (1) and Theorem 2.5. O
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4. Renewal Theorems

Our main tool will be the Renewal Theorem of Kessebohmer and Kombrink [33]. Their
result generalized a result of Lalley [36] for finite Markov shifts.

Consider a locally Holder continuous potential f : ¥+ — R.If ¢ : ¥+ — R is a non-
negative, bounded, locally Holder continuous function, we define the renewal function

Ne(@.x.0):=>"" Y ¢ s,ro= ().

n=0yeo—"(x)

We recall that Ny (¢, x, ) satisfies the renewal equation

(@.1) Np(gp.x.1) = ( > Nyt - f(y))) + () L2y (1),

yeo—1(x)

Theorem 4.1 (Renewal Theorem; Kessebohmer and Kombrink [33, Theorem 3.1]). Sup-
pose that X is a topologically mixing, one-sided, countable Markov shift with (BIP) and
f : 2T — R is a strictly positive, non-arithmetic, locally Holder continuous function so that
there exists a unique § > 0 so that P(—8f) = 0 and [x4 tf du_gr < +o00 for all t in some
neighborhood of 8, where u_gr is an equilibrium state for —8f. If ¢ : >t = R is non-
negative, bounded, not identically zero, and locally Holder continuous and there exists ¢ > 0
such that

Ny (9, x,1) < ce',

then

et Js+ ddv_sy
Ne(d,x,t) ~ —h_gr(x JET Y 0]

uniformly for x € £F, where h_g T ST — R is a bounded strictly positive function so that
L_srh_sy =h_ss, v_gr is a probability measure on =t so that :Cfsfv_gf = v_gf and
Besf = h-srvss.

ast — oo,

Remark 4.2. The Renewal Theorem we state above is a special case of [33, Theo-
rem 3.1 (i)]. Following the notations in [33], in our case n = 0 and

1, t>0,

fy(t) = {

0, otherwise.

Kessebohmer and Kombrink [33] in place of our assumption of non-arithmeticity only require
the weaker assumption that f is not a lattice, i.e. that f is not cohomologous to a function so
that {S, f(x) : x € £T} does not lie in a discrete subgroup of R. Moreover, since fy(¢) > 0,
ffzo e T8 H(T)dT = %, and N¢ (¢, x,t) = Ofort < 0when f is strictly positive, their con-
ditions (B) and (D) are satisfied. So, it only remains to check that their condition (C) is satisfied,
which translates to the existence of ¢ > 0 such that

Ne(p,x,1) < ce'd,

We first check that a weak entropy gap at infinity implies such a bound on N¢ (1, x, 7).
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Lemma 4.3. Suppose that 7 is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f : £ — R is a strictly positive, locally Holder continuous function with
a weak entropy gap at infinity. Let § > d(f) be the unique constant such that P(—=§f) = 0.
Then there exists C > 0 such that

o0
Ne(Lx) =" > s, ron=n(y) < Ce

n=0yeoc—"(x)

forallx € 2% and t > 0.
We adopt the strategy of Lalley [36, Lemma 8.1].

Proof. Define forall x € ¥+ and ¢ > 0,
—t§ Nf(l,x,t)
h_sr(x)
where h_g Y is the eigenfunction for the transfer operator given by Theorem 2.5. Let

6([) =sup{G(x,s):x € T, s <t}.

Notice that G(t) is finite for all 7 > 0, since _g¢ is bounded away from 0, and for any fixed
t > 0 there exists only finitely many a € 4 so that I(f,a) <t (which implies that there are
only finitely many # and only finitely many y € o~ "(x), for each n, so that S, f(y) < ¢). Since
h_s is bounded away from 0 and oo, it remains to show that there exists C so that G(t) <C
for all > 0.

The renewal equation (4.1) implies that

G(x.,t)=e

h_ —t§
57 (¥) L

h_sr(x)  h_sr(x)

for all # > 0. Since h_gz(x) is the eigenfunction of £_s5 with eigenvalue 1 = eP(=81)  we
have

Gx.t)= > G.t— f(y)e O

yio(y)=x

3 —sronh=sr ) (Losrhosp))

o Gr=x h_sr(x) h_sr(x)
Ifc =c(f) =inf,cx+ f(x) > 0, then
R 018
Gx,t) =Gt —¢)+ —F—
h_sr(x)

forall x € X1 and ¢ > c¢. Therefore,

n=1
for all m € N, where
. 1
H =sup{—:xe E+}
h_sf(x)
Since G is increasing, it follows that
o
Gt)<C=Gl)+H) e
n=1

for all # > 0, which completes the proof. o
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If  : ©7 — R is bounded, non-negative and locally Holder continuous, then

Ne(p,x,1) < ( sup ¢(x))Nf(1, X,1),
xext
so Lemmas 3.3, 3.4 and 4.3 together imply that we can apply the Renewal Theorem to ¢ when
f is strictly positive and has a weak entropy gap at infinity.

Corollary 4.4. Suppose that ¥ is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f : £ — R is a strictly positive, non-arithmetic, locally Holder contin-
uous function with a weak entropy gap at infinity, P(—=8f) = 0. If ¢ : ¥ — R is bounded,
non-negative, not identically zero and locally Holder continuous, then

e!d ¢ dv_g
900~ by o) 2L
o f i

uniformly for x € £, where h_g T YT — R is a bounded strictly positive function so that
L_srh_sr =h_ss, v_sr is a probability measure on =t so that Qf:gfv_(gf = v_gr and
U—_sf = h_grv_gr is the equilibrium state for —§f .

ast — oo,

5. Preparing to count

In this section we develop the technical tools needed in the proofs of our counting result.
The majority of these results bound the size of various subsets of the shift space. Most impor-
tantly, we show that if y € 07" (x) and S, f(y) is “large,” then “typically” S, f(y) is close
ton f2+ f du_gz. These results and their proofs generalize Lalley [36, Theorem 6]. The fact
that our Markov shift is countable requires more delicate control of error estimates.

For each cylinder p, we choose a sample point z, € p which is not periodic. We then
define

Wa,p.)= Y Llks, fm=n()
ye€oT"(zp)
=#(pNo"(zp) N{x: Snf(x) =1}).

We show that the W(n, p,t) may be used to approximate the size of My (n,1). This allows us
to replace the counting of fixed points with counting of pre-images of our sample points.

If k € N, let Ay be the countable partition of £ into k-cylinders.

Lemma 5.1. Suppose that ¥ is a topologically mixing, one-sided countable Markov
shift with (BIP), f : 27 — R is locally Holder continuous strictly positive and has a weak
entropy gap at infinity. If P(=8f) = 0 and ju_g¢ is the equilibrium state for —§f, then

(i) Ifvg = inf{u_sr(p) : p € Mg}, then limg_, oo vg = 0.
(i) Forany p € A and n > k there exists a bijection

vy Fix" N p — 07" (zp) N p.
(iii) There exists a sequence {€y } such that lime; = 0 and if y € Fix" N p and n > k, then

1Sn f(¥) = Sn f (¥ ()] = €.
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@iv) Ifn > k, then

Z Wn, p,t —ex) <#My(n,t) < Z W(n, p,t + €x).
DEAk DEAk

Moreover, for all k € N and s € (d(f),0), there exists C(k,s) > 0 such that for any
n<kandt >0,

> W(n.p.t) < C(k.s)e* and #Ms(k.1) < C(k.s)e™".
DPEAL

Proof. Let us recall that since p_gz is a Gibbs state for —§f* (see Theorem 2.2) and
P(=8f) = 0, there exists B > 1 such that for every p € A, and x € p

p_sp(p) < Be 05k /().

Since £ is strictly positive, limy_, o inf{Sg (x) : x € T} = +00, so (i) holds.
Given p € Ay, we define an explicit bijection

vy Fix" N p — 07" (zp) N p.
If y = y1y2 -+~ yn € Fix" N p, then let

WR() = Y1 ynTt e E

Note that since y; = z3 and y1 -+ y, € =T, we must have #,,, = ty,z, = 1,50 ()€ =+,

The map W7 is injective by definition. If x € 67" (zp) N p, then, since n > k, xp41 = 21 = X1,

which implies that X7 -~ x;, € Fix"* N p, so W7 is also surjective. Thus, we have established (ii).
Since f is locally Holder continuous, there exist B > 0 and r € (0, 1) so that

|f(x) = f()] < Br!

if x; = y; for all i <. Therefore, if y € Fix" N p, then, since z, € p, y; = W2 (y)i for all
i <n-+k,so

152/ () = Su f(UpON| < & = BY o',
I=k

The first statement in (iv) follows immediately from (ii) and (iii). Choose b € (d(f), z).
Lemma 3.1 implies that there exists D so that

Bi(f.t) =#a e A:I(f.a) <t} < De.

If
c=c(f) =xérlzf+f(X) = inf [(f.a) >0

and r € N, then

Ba(f.re) =#(a1,a2) € AX A I(fa1) + I(f.a2) <rc}

r

P
< ZBl(f, rc—sc)By(f,sc) < ZDzeb’c = rD2eb7e.

s=1 s=1
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We may use the argument above to inductively show that

i=1

k
By (f.rc) = #:(a,') c Ak Z[(f,a,') < rc} < k=1 pkebre,

Notice that

Z W(n,p,rc) < By(f,rc) and #Mg(k,rc) < Bi(f.rc)
DEAg

so (iv) follows. D

We set up some convenient notation. If x € X1, let
W(x,t) ={y e Xt :0"(y) =x, S, f(y) <t forsomen > 1}

Observe that if x is not periodic and y € W(x, ), there is a unique n(y) so that ") (y) = x.
If x is not periodic and € > 0, we let
<]

> e} = W(x,1) — W(x.1, < e),

W(X,l,fé): {yE W(X,t)‘#y)_f

and

W(x,t,>¢€) = {y e W(x,t): #y)_]?

where f = [s+ f du—ss. Moreover, let
W(x,t) =#W(x,1),
Wix,t, <€) =#W(x,t,<e¢),
Wi(x,t,>¢€) =#W(x,t,>¢) = W(x,t) — W(x,t,<€).

The crucial technical result we need for the proof of our counting result is a uniform
bound on the growth of W(x, ¢, > €).

Proposition 5.2. Suppose that ¥ is a topologically mixing, one-sided, countable
Markov shift with (BIP) and f : T — R is a strictly positive, locally Holder continuous
function with a weak entropy gap at infinity. Let § > d( f) be the unique constant such that
P(=6f) = 0. Given € > 0, there exist D > 0 and b < § so that

W(x,t,>¢€) < De?
for any non-periodic x € 7.

Proof. Fix, for the entire proof, € € (0, i).
Theorem 2.6 implies that if s > d( f), then there exist Ry > 0 and 15 € (0, 1) so that

(5.1) e PESDEN A(x) = hogp (x) / 1dv_,z

< Ry
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If s > §, then P(—sf) <0, since P(—§f) = 0 and s — P(—sf) is monotone decreas-
ing and continuous on (d( f), co) (by Lemma 3.3). Then, for any m € N and ¢t > 0,

Z Z I{Snf(y)st}(J’)SZ Z e SSnf(y)—1)

n=myeg—"(x) nz=m yeg—"(x)

=" Y (28 D(x)

n>m

< e Y "PED (h_gy(x) + Renl)

n=m

eMmP(=sf)
< est (ﬁ(l_] + Rs))

where H = sup{h_yr(x) : x € TT}.

n(y) — f < —e, then

n)F >t +n(e and n(y) > ——
f—e€

son(y)f > t(1 + €1), where €] = f;

Lt(l +€1)J
mg =\ ——|.
/

Then
#{y €Wty i = T < —e} < Y s smren)
nzm; yeog—"(x)
o Mt P(=sf)
<e (m(Hs + Rs))
< Doest-i-m,P(—sf),
where H 4R
N N
Do = Do(s. f.€) = T— 557y
Since %|S=3P(—sf) = —f < 0 (by Theorem 2.4), we may also choose s > § so that
1
bo =5 + ——Lp(=sf) < 8.

Notice that by does depend on €. With this choice of s,

{y € W(x,t): ﬁ —f< —6} < DoePt,
One can similarly show that there exist D1 > 0 and b; € (d(f), §) so that
{yeW(x t): (—)—f>e}<D1eb1t

(In this case, we choose r € (d(f),6) so that

—rf) <é,



24 Bray, Canary, Kao and Martone, Counting and equidistribution

where €, = =*— > 0. We then use equation (5.1) and an analysis similar to the one above to
show that o
#{y € W(x,1): L f>e) < Dlet(ﬂrﬁp(_rf)),
n(y)
where D1 = Dy (r, f,€) = eP(_’f)(Hr + R;).)
So,
W(x,t,>¢) < Doebot + Dleb‘t < Deb?
where D = Do + D1 and b = max{by, by} < 6. D

Corollary 5.3. Suppose that £ is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f : £ — R is a strictly positive, locally Hélder continuous function with
a weak entropy gap at infinity. Let § > d(f) be the unique constant such that P(—§f) = 0.
Then, given any € > 0, there exists a > 0 so that:

(1) There exists D > 0 so that
W(x,t,> ¢) < Po-at
Wix,t) —

for any non-periodic x € £

(2) Given any cylinder p, there exists Dy so that

#(W(x,t,>€)N p) —a
B np =

for any non-periodic x € L.

Proof. By Corollary 4.4 we can apply the Renewal Theorem with ¢ = 1 to see that

h_sr(x)
NrLx) =W +1=3" 3 s, j=n() ~ —L=—e?

n=0g"(y)=x 3f

uniformly in x € T, where ~ indicates that the ratio goes to 1 as t — oo. Since there exist
b < 8and D > 0sothat W(x,t,> €) < De?, (1) holds with @ = § — b and some D > 0.
We can similarly apply the Renewal Theorem with ¢p = 1,, to conclude that

v(p)h—ss(x)
Nr(pox.t) =#(Wa)Np+1=3 " > L, ron=n() ~ S—_fe“‘
n=0 07 (y)=x f
uniformly in x € . Since v(p) > 0 and
#(W(x.1,>€)N p) < W(x,t,> €) < D",

assertion (2) holds for some D), depending on the cylinder p. O

The following result will allow us to bound the error terms in our approximations. Given
T > 0, let
P ={peAr:Sif(zp) <T) and Q% = A, — PE.

Notice that P7]f is finite for all k and 7.
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Corollary 5.4. Suppose that ¥ is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f : £ — R is a strictly positive, locally Holder continuous function with
a weak entropy gap at infinity. Let § > d( f) be the unique constant such that P(—§f) = 0.

(1) There exists G > 0 so that
8

1 e
> X SUsiro=n() =G—

n=1{yeo—"(x)}
forany x € T and all t > 0.
(2) Ifk e Nandt > T > 0, then

6

1 _ e
Z Z =1k W s, ron<y(y) = Ge s~

n T P T
n>k {yeo—"(x)}

Proof. Fix some € > 0. Recall from Lemma 4.3 that W(x,t) < Ce?S forall x € T+,
Then

1 1 1
Z Z ;l{Snf(y)ft}(y): Z Fy)—i_ Z i)

n>1yeoc—"(x) yeW(x,t,<€) yeW(x,t,>¢)
f_-i-e
< > ( el LGRS DR (6)
yeW(x,t,<e) yeW(x,t,>¢)

< cﬂ(@) + (De~)Ce'S.

So, (1) holds for some G > 0.
Now notice that

1 1
> ;lgl;(y)l{Snf(y)gt}(y)SZ; Yo Ls, sm=-m()

n>k yeo="(x) n>k yeck—n(x)

1
=> > I WS s w)=t=Ty (W)

m>1weo—"(x)

SZ Z %I{Smf(w)ﬁt—T}(w)

m>1weo—"(x)
2]
_ e
< Ge sT ¢
t—T

which completes the proof of (2). |

6. Counting

Proof of Theorem A. First notice that Lemma 3.2 implies that we may assume that f is
strictly positive and has a weak entropy gap at infinity.

We simplify notation by setting u = pu_sr, v =v_gr, h = h_gz, and f= [ fdp.
where h_gz : YT — R is a bounded strictly positive function so that £_g rh_sr =h_sf,
V_gy is a probability measure on =1 so that é(i:gf V_sr =v_gfr and p_gr = h_grv_syr is
the equilibrium state for —§f .
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Suppose that p € Aj. Corollary 4.4 implies that we can apply the Renewal Theorem
(Theorem 4.1) with ¢ = 1,. Therefore,

L(p.ty:=#Wzp.)Np) =Y Y 1L,(0Ws, ron=(») ~ C(p)e™,

n>1yeoc~"(zp)

where

i) h(z,(;);@y

Fix, for the moment, p € Aj. We define

~ 1 1
Lp.t)y:=) ~W.p)y= >  —1(y).
—n n(y)
> yeW(zp,t)
Then

~ 1 1
Lipn= Y —LmW+ D L0

yewiapzo ") e ")

< Y (f:re)lp(y)Jr Y. L.

YEW(zp,t,<€) yeW(zp,t,>€)

Since, by Corollary 5.3,
#(W(zp,t,>€) N p) < Dpe " #(W(zp,1) N p)

for some Dy, a > 0, it follows that

- iL(p.t) _
limsup —— < f +e€.
t—>oop L(P,[) f
Similarly, a
~ 1 f—e€
Lip.y=)_ W p.1) = > — ()
nzl yGW(Zp,t,SE)
SO R
tL(p,t —
fiminf (2P0 S 7
t—oo L(p.1)

By letting ¢ — 0, we see that

L(p.t) ~

fLP.t)  CP)S s
t t '
Now suppose that P is a subset of A and define
L(P.t)y= Y L(p.t) and L(P.t)y= Y L(p.1).

DEP peEP

The above analysis implies that if P is finite, then

L(P.t)~ Y C(p)e'® and L(P.t)~ ) )/ s,

peP pEP
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Notice that if 7 > 0 and ¢t > T, then Corollary 5.4 and Lemma 5.1 imply that there exists
Cr. > 0 so that

tL(PE,1)  tL(Ag.t) tL(PK.1) (s—8)t 5T 1
et8 S et8 E et8 +tCke +G€ —t_T

for some s € (d(f),6), so

= . tL(Ag, 1) tL(Ag. 1) = -
Y C) < liminf —25— < limsup ——¢~— < 7Y cp)+Ge™T.

t—>00

peP# pEP%

Applying the above inequality to the sequence {P7]5 }TeN, we conclude that

LAy~ Y. C(:;)fe“*’.

DEAK

Lemma 5.1 implies that, given k € N there exists s < § and C > 0 so that

k k
1 1
> D Wp)=Cee™ and Y —#(My(n.1)) < Cre*'
n n

peEA n=1 n=1
and
1 1
2D Wnpi—a) < Y —#(Myn,1)
PEANK n=k n=k
1
< _
<> ZHW(n,p,lﬂLEk)-
PEAL n=k

Therefore, recalling that

My(0) = 32 My, 0),

n>1
we see that
L(Ap.t —e¢p)— Ck€St < Mf(l‘) < L(Ap.t +e)+ CkeSt,
" My (1) My (1)
_ — I t . t t =
U Y Clp) < timind = F <timsup = < 4T 3 COp).

DEAk PEAL

Since & is bounded and continuous and v; = sup{u(p) : p € A} — 0 as k — oo, by
Lemma 5.1 (i),

1 hdv 1
> Cp) = i > hzpv(p) — fg_ =7
PEAK f PEAL f f
as k — o0o. Moreover, lime; = 0. So, finally, we may conclude that
etS
Me(t) ~ —
(1) 5

as desired. O
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7. Equidistribution

We are almost ready to prove our equidistribution result, but first we must develop one
more bound in the spirit of [36, Theorem 6].

7.1. Preparing to equidistribute. Suppose that /' : ¥+ — R and g: ¥+ — R are
both strictly positive, f has a weak entropy gap at infinity and P(—§f) = 0. We simplify
notation, throughout the section, by letting u = p_gs¢ denote the equilibrium state of —§f" and
setting f := [ fdpand g := [ gdpu. Since f and g are strictly positive,

c(f)=inf{f(x):x €Tt} >0 and c(g) =inf{g(x):x e =TT} >0.

Proposition 7.1. Suppose that £ is a topologically mixing, one-sided, countable
Markov shift with (BIP) and f : 7 — R is a strictly positive, locally Holder continuous
Sfunction with a weak entropy gap at infinity. Let 56 > d( f) be the unique constant such that
P(=8f) = 0. Further suppose that g : £ — R is strictly positive and that there exists C > 0
so that | f(x) — g(x)| < C forall x € ¥F. Given € > 0, there exist A > 0 and a < § so that

Sng(y) _ _ otz
n(y) n(y) /

> €,

#{y € W(x,t):

< e} < Ae%!
for any non-periodic x € 7.

Proof. Fix € > 0. We may assume that ¢ < min{c(f),c(g)}.

Ifsn%f)(y) — g < —e¢, then

Sn»n&(y) <n(y)g —n(y)e.

If, in addition, | — f | < e, then

ﬁ —
t<n(y)(f +e),

SO
Sn»)&(y) <n(y)g —n(y)e
_ € te
<n(y)g— ”()’)5 - m
<n(y)(g —e€3) —te3,
where

€3 = max{s, _;} >0
2 2(f +e
Proposition 3.6 implies that the function s — P(—sg — §f) is monotone decreasing
and well defined on (d(f) —§,00). So, if s > 0, then P(—sg —§f) < 0. Moreover, there
exist an equilibrium state ;u_so_57 for —sg — §f and an eigenfunction h_g,_57 for £_s¢ 57
with eigenvalue e?(=58¢=8/) < 1. Furthermore, as %| s=0P(—sg —34f) = —g < 0 (by Theo-
rem 2.4), we may choose s > 0 so that

—do :=5(g —€3) + P(—sg —6f) < 0.
Theorem 2.6 implies that there exist Ry > 0 and 75 € (0, 1) so that

e_”P(_Sg_sf)«f—sg—Sfl —h_sg—s1(x) / Ldv_se—57 || < RsTg
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for all n € N. Therefore,
Sng(y)

< e}
n(y) ( )
<Y > 1yis,e0)=n(E—es)—tes, Suf <t} (V)

nz=0g"(y)=x
< Z Z e—s(Sng(y)—n(§—€3)+t€3)—8(snf(}’)_t)

n=00"(y)=x

#{y € W(x,t):

ol0—stes Zen(s(§—63)+P(—sg—8f))( —nP(—sg— Sf)o‘ﬁ’isg 5f1)
n>0
< pl8—stes Z (h—sg—5f(x) + Esﬁ?)e—ndo
n>0

< Doet8—st€3

forall x € £ T, and some Do > 0 (which depends on ¢, s, g and f).
One may similarly show that there exist €4 > 0, r < 0 and D; > 0 so that

S
#{y € W(x,t): L(y) —g>e |— — fl| < e} < Dlet8+rt64.
n(y) n(y)
Therefore, our result holds with A = Dy 4+ D1 and a = max{§ — s€3,6 + req}. O

7.2. Proof of Theorem B. Lemma 3.2 again implies that we may assume that f and
g are strictly positive and f has a weak entropy gap at infinity. Recall, from Lemma 5.1, that
there exists a sequence {€;} so that lime; = 0, and, for any p € Ay and n > k, there exists
a bijection
Vo Fix"Np—o07"(z) N p
so that
1Sn f(x) = Sp f(Wp (X)) < € and  [Spg(x) — Spg (W, (x))] =< €k

for all x € Fix" N p. Since lim ¢, = 0, there exists ko so thatif n > k > k¢, then
¢ =min{c(f),c(g)} > 2¢.
We assume from now on that k > kg. Then, if p € Ay,

1 Sng(x)< I (Sug(y) + ek
2 2 s 2 n(y)(Snf(y)—ek)l{”(”z"}(y)

n>k xeFix"'Np YEW(zp,t+ex)Np

Sn f(x)<t
and
Sng(x) Z 1 (Sng(y)—ek)
Z > Lin)=k3 (¥)-
n>k x€Fix"Np nfx ) yeW(zp,t—ex)Np DM\ Snf(y) + ek
Snf(x)<t

Since there exists C > 0so that | f(x) — g(x)| < C forall x € &7, Sno f(y) = cn(y)
forall y € X" and ¢ > 2¢, we see that

Sng(y) _ nC + Saf(y)
Snf) = Saf()

Sn(»&(y) + €k
Spon f(¥) — €k

SN

§6=——|—1 and <3

C
¢
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Let

nf(y) Sng(y)

ny) ¢ 56}'

Given € > 0 so that 2¢ + 2¢; < f_ , Proposition 5.2 together with Proposition 7.1, applied to
both f and g, imply that there exist A > 0 and @ < § so that

'V(x,t,fe)={y€'W(x,t): _f‘

#(W(X,[) \ V(x,t, < E)) < ;feat

for all # > 0. Further recall that we saw in the proof of Theorem A that

t8

Lip.n= Y n(lﬁ ~ C(p)feT.

YEW(zp,t+ex)Np

Notice that

U(p.t +€) = Z

YEW(zp,t+e€)Np

( Z 1 (g—i-e—i-n(y)))
_ . €k
yeVipiterzany "IN — €= 505
+3CH#H(W(zp,t + ) \ V(zp,t + €, < €))
k—1

+3C ) W p.1)

n=1

1 (Sn(y)g(y) + Gk)
n(y)\ Sn) f(y) — €k

A

and recall, from Lemma 5.1, that given s € (d( f), §), there exists C(k, s) so that
W(n, p.t) < C(k,s)e” and #My(t) < C(k,s)e*

for all n < k. Therefore,

Ulp.t +€x) _ 8+e+e
lim sup =< = .
t—oo L(p,t+€) f—e—ék

Letting € — 0, we see that

U(p,t
Jim sup A(P -i-Gk)S + €k

g
t—00 L(p I+€k) f_—

We can similarly show that if

Sng(y) —€
Zpt-a)= ), <y> by )(Snf<y)+e];)’

YEW(zp,t—€k)

then
7 T
liminf = (P, —<k) > £ ek.
>0 L(pt—ex) [ +ek
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Therefore,
g — €k Sng(x)
—— <liminf ————
Fte 1o L(p,z —a) Zk FZP Sn /()
Snf(x)<t
Sng(x)
<limsup ~——
t—o0 L(p, t+€k) ngk xelgﬂ Sn f(x)
Sn f(x)<t
< g_+ €k
S — €k
Since P%‘ is a finite set of cylinders, for any T and k, we see that
8 — €k Sng(x)
= <liminf —— Z Z
t — S
f+ex —00 L(PT t—€g) L xR NPk nJ(x)
Sn f(x)<t
Sng(x)
<limsup ~—F—
t—>00 L(P t+ €r) nX>l:c xngP%f Sn f(x)
Sn f(x)=t
< g_—l— €k ‘
=€k

Now notice that if # > 7" > 0, Corollary 5.4 implies that

6§
Loy 38 5670k 1) < 36Ge T
oy Su ()

t—T'
x€Fix"NQk.
Sn f(x)<t
Therefore, as in the proof of Theorem A, we conclude that
g — €k

Sng(x)
> <liminf ————M Z Z
f+ ex t—=>00 L(Ak t—€r) n>k S EFix" Sn f(x)
Snf(x)<t

Sng(x)
<limsup —— —=—
t—>00 L(Ak,l‘ + €x) 1= Z x;{ Sn f(x)

Su f(x)<t
-8 + €k

=7

Recall that lime; = 0,

Z(Ak,l‘ —€r) — Ckest < Mf(l‘) < Z(Ak,l + €r) + Ck€St
for all ¢+ > 0, and that
. 16
tl—lgloMf([)eT =1
so we see that

i l Z Sng(x) g e’
o S Snf(x) f s
Sn f(x)=<t
as desired. This completes the proof of Theorem B.
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8. The Manhattan curve

Suppose that f : ¥ — R is locally Holder continuous, strictly positive and has a strong
entropy gap at infinity and that g : 1 — R is also strictly positive and locally Holder contin-
uous and there exists C > 0 so that | f(x) — g(x)| < C forall x € . In this case,

c(f)=inf{f(x):xeXT}>0 and c¢(g) =inf{g(x) :x € =T} >0.
In this case we define, the enlarged Manhattan curve

Co(f.g) ={(a.b) € D(f. g) : P(—af —bg) =0},

where
D(f.g) ={(a,b) e R? :ac(f) +be(g) >0anda + b > 0}.

Notice that if f: Xt — R and g : ©7 — R are both eventually positive and locally
Holder continuous, f has a strong entropy gap at infinity and there exists a constant C so
that | f (x) — g(x)] < C for all x € T, Lemma 3.2 implies that f and g are cohomolo-
gous to f ¥t - R and g ST — R (respectively) which are both strictly posmve and
locally Holder continuous, f has a strong entropy gap at infinity and there exists C so that
|f(x) —2(x)| < C for all x € =T, Since C(f g = ‘€(f 2), Theorem C follows from the
following stronger statement for strictly positive functions.

Theorem C*. Suppose that (X7,0) is a topologically mixing, one-sided countable
Markov shift with (BIP), f : ¥ — R is locally Hélder continuous, strictly positive and has
a strong entropy gap at infinity and g : ¥ — R is also strictly positive and locally Holder
continuous. If there exists C > 0 so that | f(x) — g(x)| < C forall x € £, then:

(1) (8(1).0).(0,5(g)) € Co(f.8).
(2) If (a,b) € D(f, g), there exists a unique t > (f) so that (ta,th) € €y(f, g).
(3) Co(f. g) is an analytic curve.

(4) Co(f, g) is strictly convex, unless

8.1) Spf(x) = 3((}{)) Sng(x)

for all x € Fix" andn € N.

Moreover, the tangent line to €y( f, g) at (a, b) has slope

fEJr gdi—qf—bg
Js+ f dii—ar—bg

s(a,b) = —

Proof. By definition, (6( f), 0) and (0, §(g)) lie on €y( £, g) so (1) holds.

Notice that, since ‘S(f, a) — S(g,a)| <C foralla € A, d(f)=d(g) and g also has
a strong entropy gap at infinity. Moreover, if (a, b) € D(f, g),thenaf + bg is strictly positive,
has a strong entropy gap at infinity and

d(f)

d@af +bg) = =
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Lemma 3.3 implies that if (a, b) € D(f, g), then the function t — P(—t(af + bg)) is proper

and strictly decreasing on the open interval ( %, 00), so there exists a unique ¢ > % so that

P(~t(af +bg)) = 0.

Thus, (2) holds.
Lemma 3.4 implies that there is an equilibrium state p_, r_pg for —af — bg and that

/ (—af —bg) djiap—bg
>+

is finite. Notice that if (¢, d) € D(f, g), then the ratio % is bounded, this implies that

[, +de dnag-be

is also finite. Theorem 2.4 then implies that if (a,b) € D(f, g), then

0

SoPaf =bg) = [ = di-arosg
and 3

SPCaf =be) = [ —gdasse

Since f is strictly positive, [5x4 —f dji_qf—pg is non-zero, so P is a submersion on D( £, g).
The implicit function theorem then implies that

Co(f.8) ={(a.b) € D(f.8): P(—af —bg) =0}
is an analytic curve and that if (a, b) € €y( f, g) then the slope of the tangent line to €y ( f, g)
at (a, b) is given by
. fz-i— g dﬂ—af—bg
fz+ Sdp—ar—pg ‘

Since P is convex, see Sarig [62, Proposition 4.4], €y ( f, g) is convex. A convex analytic
curve is strictly convex if and only if it is not a line. So it remains to show that f and g satisfy
equation (8.1) if and only if €y( f, g) is a straight line.

If € ( f, g) is a straight line, then by (1) it has slope —%. In particular,

8(f) _ Je+8drsins _ Jor gdisee
8@) [+ fdu—sinr  Jz+ S dn-se)e

s(a,b) =

(8.2) —5(8(f).0) =
By definition,
ho(L—5(g)g) — (&) /z+ gdi_sg)g =0

so, applying equation (8.2), we see that

hoGt-sore) =30 [ dnsiorn =86) [ s =80 [ diosiers =0

Since P(—68(f) f) = 0, this implies that j1_g(g)g is an equilibrium state for —§( /) f. There-
fore, by uniqueness of equilibrium states we see that _g(r)r = U—_g(g)g- Sarig [62, Theo-
rem 4.8] showed that this only happens when —§( f) f and —§(g)g are cohomologous, so the
Livsic Theorem (Theorem 2.1) implies that this occurs if and only if

)
S f(x) = %sngm

for all x € Fix" and n € N. We have completed the proof. |
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9. Background for applications

In this section, we recall the background material that we will need to construct the
roof functions described in Theorem D. We will also recall the more general definition of
cusped Anosov representations of geometrically finite Fuchsian groups into SL(d, R). In the
next section, we will see that Theorem D also extends to this setting.

9.1. Linear algebra. It will be useful to first recall some standard Lie-theoretic nota-
tion. Let
a={(a,....ag) eRY :qy +...+a; =0}

be the standard Cartan algebra for SL(d, R) and let
(1+ = {(al,...,ad) ca.ay =+ Ead}

be the standard choice of positive Weyl chamber. Let a* be the space of linear function-
als on a. For all k € {1,...,d — 1}, let o : a — R be given by ax(a) = ax — ax1. Then
{a1,...,aq_1} span a* and are the simple roots determining the Weyl chamber a™. It is also
natural to consider the fundamental weights w; € a* given by wy (@) = aj + --+ + ay. Notice
that {w1,...,wgz_1} is also a basis for a*.
If A € SL(d,R), let
A(A) =z A2(4) =z -+ = Aa(A)

denote the moduli of the generalized eigenvalues of A and let
01(4) =2 02(A4) =z -+ = 04(A4)
be the singular values of A. The Jordan projection
€:SL(d,R) — at isgivenby £(A) = (logAi(A),...,logAz(A))
and the Cartan projection
k:SL(d,R) — a™ isgivenby «(A4) = (logoi(A),...,logog(A)).

If o (£(A)) > 0, there is a well-defined attracting k-plane which is the plane spanned
by the generalized eigenspaces with eigenvalues of modulus at least Az (A). Recall that the
Cartan decomposition of A € SL(d, R) has the form A = KDL, where K, L € SO(d) and
D is the diagonal matrix with diagonal entries d;j; = o0;(A). If ax(A) > 0, then the k-flag
Ur(A) = K({eq, ..., ex)) is well defined, and is the k-plane spanned by the k longest axes of
the ellipsoid A(S?~1). (Notice that Ux (A) is not typically the attracting k-plane even when
ag(t(4)) > 0.)

9.2. Cusped Anosov representations of geometrically finite Fuchsian groups. Sup-
pose that I' C PSL(2,R) is a torsion-free geometrically finite Fuchsian group, which is not
convex cocompact, and let A(I") be its limit set in OH?.

We will say that a representation p : I' — SL(d,R) is cusped Pj-Anosov, for some
1 <k <d — 1, if there exist continuous p-equivariant maps

5 A(D) - Gre(R?) and  £97F 1 A(T) — Gry—g (RY)
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so that

(1) Ef; and Sg_k are transverse, i.e. if x # y € A(T"), then
) @ gl () =R
2) E’; and £ g —k are strongly dynamics preserving, i.e.if j is k or d—k and {y, } is a sequence

in I" so that y,(0) — x € A(I") and o (0)! —y € A(I'), thenif V € Grj(Rd) and V

is transverse to éf,l_J (), then p(yn) (V) — &5 (x).

The original definition of a cusped Pg-Anosov representation in [15] is given in terms of
a flow space, as in Labourie’s original definition [34]. The characterization we give here is a
natural generalization of characterizations of Guéritaud, Guichard, Kassel and Wienhard [23],
Kapovich, Leeb and Porti [31] and Tsouvalas [68] in the traditional setting. Note that our
cusped Pr-Anosov representations are examples of the relatively Anosov representations con-
sidered by Kapovich and Leeb [30] and the relatively dominated representations considered by
Zhu [71].

The following crucial properties of cusped Pr-Anosov representations are established
in [15]. (Several of these properties also follow from work of Kapovich and Leeb [30] and Zhu
[71] once one establishes that our representations fit into their framework.) If p: ' — SL(d, R)
is cusped P -Anosov, we define the space of type-preserving deformations

Hom,,(p) C Hom(I', SL(d, R))

to be the space of representations o such that if « € I' is parabolic, then o («) is conjugate
to p(a).

Theorem 9.1 (Canary, Zhang and Zimmer [15]). If T" is a geometrically finite Fuchsian
group and p : I' — SL(d, R) is a cusped Pj-Anosov representation, then:

(1) There exist A,a > 0 so that if y € ', then

40940,y (B0)) 5 Lak k(1) > lew
N A

where by is a basepoint for H?.
(2) There exist B,b > 0 so that if y € T, then

Bebt®) > % (o)) >

where t(y) is the translation length of y on H?.
(3) The limit maps & f; and Sg_k are Holder continuous.

(4) There exists an open neighborhood U of p in Homy,(p), so that if o € U, then o is
cusped Py -Anosov.

(5) Ifv € I' is parabolic and j € {1,...,d — 1}, there exist cj(p,v) € Z and Cj(p,v) > 0
so that

o) (k(p(W™))) = ¢ (p, v) logn| < Cj(p,v)

foralln € N. Moreover, if n € Homyy(p), then cj(p, v) = ¢;j(n,v).

(6) p has the Pi-Cartan property, i.e. whenever {y,} is a sequence of distinct elements of I’
such that v, (bo) converges to z € A(T), then EI; (z) = lim U (p(yn))-

(7) pis Pg_p-Anosov.
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9.3. Cusped Hitchin representations. Canary, Zhang and Zimmer [15] also prove that
cusped Hitchin representations are cusped Pr-Anosov for all k, i.e. they are cusped Borel
Anosov, in analogy with work of Labourie [34] in the uncusped case. We say that A € SL(d, R)
is unipotent and totally positive with respect to a basis b = (b1, ..., bg) for R?, if its matrix
representative with respect to this basis is unipotent, upper triangular, and all the minors which
could be positive are positive. Let Us(b) denote the set of all such maps. One crucial property
here is that Uso(b) is a semi-group (see Lusztig [41]).

We say that abasis b = (b1, ...,b;) is consistent with a pair (F, G) of transverse flags if
(b;) = FI NG9+ foralli. A k-tuple (F1i, ..., Fy) in %4 is positive if there exists a basis b
consistent with (F7, Fy) and there exists {us,...,ur} € U(b)>¢ so that F; = u; ---u, F; for
alli =2,....d.

If X isasubsetof S!, we say thatamap £ : X — F is positive if whenever (x1, ..., Xx)
is a consistently ordered k-tuple in X (ordered either clockwise or counter-clockwise), then
(E(x1),...,&(xy)) is a positive k-tuple of flags.

A cusped Hitchin representation is a representation p : I' — SL(d, R) such thatif y € T"
is parabolic, then p(y) is a unipotent element with a single Jordan block and there exists
a p-equivariant positive map &, : A(I') — F;. (In fact, it suffices to define £, on the subset
Aper(I') consisting of fixed points of peripheral elements of T".)

Theorem 9.2 (Canary, Zhang and Zimmer [15]). If T is a geometrically finite Fuchsian
group and p : I' — SL(d, R) is a cusped Hitchin representation, then:

(1) pis Py-Anosov forall1l <k <d — 1.
(2) pisirreducible.
(3) If a € T is parabolic and 1 <k < d — 1, then c(p, ) = 2.

We remark that Sambarino [58] has independently established that p is irreducible and
that Kapovich and Leeb indicate in [30] that they can prove p is Borel Anosov.

9.4. Codings for geometrically finite Fuchsian groups. A torsion-free convex cocom-
pact Fuchsian group admits a finite Markov shift which codes the recurrent portion of its
geodesic flow. The most basic such coding is the Bowen—Series coding [7]. However, if the
group is geometrically finite, but not convex cocompact, this coding is not well behaved. In
this case one must instead consider the countable Markov shifts constructed by Dal’bo and
Peigné [21] if the quotient has infinite area, and Stadlbauer [66] and Ledrappier and Sarig [38]
if the quotient has finite area.

We summarize the crucial properties of these Markov shifts in the following theorem and
will give a brief description of each coding.

Theorem 9.3 (Dal’bo and Peigné [21], Ledrappier and Sarig [38], Stadlbauer [66]).
Suppose that I is a torsion-free geometrically finite, but not cocompact, Fuchsian group. There
exists a topologically mixing Markov shift (£, A) with countable alphabet # with (BIP)
which codes the recurrent portion of the geodesic flow on TY(H?/T"). There exist maps

G: A>T, a)12+—>A(F),
r: A — N, s:A—>T
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with the following properties:

(1) w is locally Hélder continuous and finite-to-one, and w(X1) = A¢(I), i.e. the comple-
ment in A(I'") of the set of fixed points of parabolic elements of T'. Moreover, we have
w(x) = G(x1)w(o(x)) for every x € =+,

(2) If x € Fix", then w(x) is the attracting fixed point of G(x1)---G(x,). Moreover, if
y € T is hyperbolic, then there exists x € Fix"* (for some n) so that y is conjugate to
G(x1)---G(xy,) and x is unique up to shift.

(3) There exists Q € N such that 1 < #(r~'(n)) < Q foralln € N.

(4) There exists a finite collection P of parabolic elements of T, a finite collection R of
elements of T such that ifa € A, then s(a) € P U {id} and G(a) = s(a)" @ 2g,, where
ga € R.

(5) Given a basepoint by € H?2, there exists L > 0 so that ifx € >t andn € N, then
_—
d(G(x1) -+ G(xn)(bo). bow(x)) < L.

If " is convex cocompact, then one may use the Bowen—Series [7] coding (£, o) which
we briefly recall to set the scene for the more complicated codings we will need in the non-
convex cocompact setting. One begins with a fundamental domain Dy for I', containing the
basepoint b, all of whose vertices lie in 9H?, so that the set of face pairings # of Dy is a min-
imal symmetric generating set for I". The classical Bowen—Series coding on the alphabet -4
can be co(n_st)ructed from a “cutting sequence” which records the intersections (f) of a geo-
desic ray bz which intersects Dg, where z € A(I"), with edges of translates of Dy so that gg
geodesic is entering Y (Do) as it passes through 7. The classical Bowen—Series coding for bgz
is given by

(xk) = Vi Vely)-
Each yy Vk_-il-l is a face-pairing, hence this alphabet +4 is a finite generating set for I'. Thus
one obtains a map G : A — I, the map w simply takes the word encoding the geodesic ray
boz to z. Moreover, r(a) = 1 and s(a) = id for all a € 4. A word x in +4 is allowable in this
coding if and only if G(x;11) # G(x;)~! forany i.

If I is geometrically finite and has infinite area quotient, we may use the Dal’bo—Peigné
coding [21]. Roughly, the Dal’bo—Peigné coding coalesces all powers of a parabolic generator
in the Bowen—Series coding. This alteration allows @ to be locally Holder continuous. Here
we may begin with fundamental domain Dy for I', containing the origin O in the Poincaré disk
model, all of whose vertices lie in 9H?, so that the set of face pairings #A¢ of Dy is a minimal
symmetric generating set for I' and such that every parabolic element of I" is conjugate to an
element of Ag. Let  denote the parabolic elements of Ag. We let

A=AgU{p":n>2,peP}

In all cases, G(a) = a.Ifa = p™ forsome p € P, thenr(a) =n+ 1,s5(a) = pand g, = p,
while if not we setr(a) = 1, s(a) = id and g, = a. A word x in A is allowable in this coding if
and only if for any i, G(x;+1) # G(x;)! and if s(x;) € P, then s(x;+1) & {s(x;),s(x;)" L}
For a discussion of this coding in our language, see Kao [28].

If I' is geometrically finite and has a finite area quotient, we cannot use the Dal’bo—Peigné
coding, since there is not a minimal symmetric generating set which contains elements conju-
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gate to every primitive parabolic element of I". Stadlbauer [66] and Ledrappier and Sarig [38]
construct a (more complicated) coding in this setting which has the same flavor and coarse
behavior as the Dal’bo—Peigné coding. One begins with a Bowen—Series coding of I" with
alphabet 4. Let € denote a set of minimal length conjugates of primitive parabolic elements.
They then choose a sufficiently large even number 2N so that the length of every element of €
divides 2N and let  be the collection of powers of elements of € of length exactly 2N . Let 41

be the set of all strings (bg, b1, ..., ban) in Ag so that boby - - - by is freely reduced in A and
so that neither b1by --- by or boby ---bay—1 lies in P. Let A, be the set of all freely reduced
strings of the form (b, v’,vy,...,vk_1,c), where b € Ag —{van}, UV =v1 -y € P,

v; € Agforalli,r € Nandc € Ag—{vg}. Let A = Ay UAy. Ifa = (bg,by,...,boN) € A1,
then G(a) = by, r(a) = 1, s(a) = id and g, = by, while if a = (b, v*, vy --- vg_1,¢), then
let G(a) = v' vy ---vg_q, (@) =t +1,5(a) = v and g, = vy --- Ug_;. The set of allow-
able words is defined so that if x € Fix", then G(x1) --- G(x,) cannot be a parabolic element
of I'. (For a more detailed description see Stadlbauer [66], Ledrappier and Sarig [38] or Bray,
Canary and Kao [9].)

9.5. Busemann and Iwasawa cocycles. We will use the Busemann cocycle to define
our roof functions. We first develop the theory we will need in the simpler case where p is
cusped Pr-Anosov for all k. This theory will suffice for all our application to cusped Hitchin
representations, so one may ignore the discussion of partial flag varieties and partial Iwasawa
cocycles on a first reading.

Quint [51] introduced a vector valued smooth cocycle, called the Iwasawa cocycle,

B :SL(d,R) x F; — a,
where F is the space of (complete) flags in R4 Let Fy denote the standard flag

Fo = ({e1).(e1.e2),....{e1,....eq_1)).

We can write any F € F; as F = K(Fp) where K € SO(d). If A € SL(d,R) and F € ¥,
the Iwasawa decomposition of AK has the form QZ U where Q € SO(d), Z is a diagonal
matrix with non-negative entries, and U is unipotent and upper triangular. Then

B(A, F) = (logzi1,...,logz44).
One may check that it satisfies the following cocycle property (see Quint [51, Lemma 6.2]):
B(ST,F) = B(S,TF)+ B(T, F).

If A is loxodromic (i.e. ax (£(A)) > 0 for all k), then the set of attracting k-planes forms
a flag Fy4, called the attracting flag of A. In this case,

9.1) B(A, Fq) = £(A4)

since if Fq = K4(Fp), then AKy, is upper triangular and the diagonal entries are the eigenval-
ues with their moduli in descending order. (See Sambarino [56, Lemma 7.5].)

The Iwasawa cocycle is also closely related to the singular value decomposition, also
known as the Cartan decomposition. If A is Cartan loxodromic (i.e. o (k(A4)) > 0 for all k),
then the flag U(A) = {Ug(A)} is well defined. If W is the involution taking e; to eg_; 1 and
A has Cartan decomposition A = KDL, then A~! has Cartan decomposition

AV = 'wyawDtwy(wk ).
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Soif S(A) = U(A™!), one may check that B(A, S(A)) = k(A). Moreover, the Cartan decom-
position bounds the Iwasawa cocycle, specifically

I1B(A, F)|| < [le(Al

(see Benoist and Quint [2, Corollary 8.20]).
We will make use of the following close relationship between the Iwasawa cocycle and
the Cartan projection.

Lemma 9.4 (Quint [51, Lemma 6.5]). For any € € (0, 1), there exists C > 0 so that if
A €SL(d.R), F € Fy, ok (A) > 0 41(A) and L(FF, Ug_1 (A7) > €, then

|0 (B(A, F)) — o (k(A))] < C.

Given a representation p : ' — SL(d, R) of a geometrically finite Fuchsian group I" and
a p-equivariant map &, : A(I') — F4, we define its associated Busemann cocycle

Bp: T xA(l) - a

by letting
Bo(y.x) = B(p(y). p(y ") (Ep(x))).

The Busemann cocycle was first defined by Quint [51] and was previously used to power-
ful effect in the setting of uncusped Hitchin representations by Sambarino [55], Martone and
Zhang [43], and Potrie and Sambarino [50].

Lemma9.5. If p: ' — SL(d, R) is a representation of a geometrically finite Fuchsian
group I' and &, : A(I') — F4 is a p-equivariant map, then B, satisfies the cocycle property

Bolay.z) = Bple, 2) + Bo(y,a™'(2))

foralla,y € I" and z € A(I).
Moreover, if p(y) is loxodromic and &,(y ™) is the attracting flag of p(y), then

Bo(y.v ™) = Lip(y)).

Proof. First notice that

Bolay.z) = B(p(@)p(y), p(y " p(@™ ) (Ep(2)))
= B(p(@). p(@) "' (£0(2))) + B(p(y), p(y " Dpla™ ) (Ep(2)))
= ﬂp(O[, Z) + IBP(% a_l(z))'
Then observe that
Bor.v™) = B(p(). p(y "N (r ")) = B(p(r). & (y ™))
Since we have assumed that &,(y ™) is the attracting flag of p(y), we may apply (9.1). |
We now generalize the theory developed above to the setting of partial flag varieties. If

0={iy<---<iry C{l,...,d}, then a O-flag is a nested collection of vector subspaces of
dimension i; of the form

F={0cC Fi' c...c Fir c R%}.
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The 0-flag variety Fy is the set of all 6-flags. Let
ag=1{aca:ar(a) =0ifk ¢ 6}.
There is a unique projection
Po - a—qag

invariant by {w € W : w(ag) = ag}, where W is the Weyl group acting on a by coordinate
permutations. Benoist and Quint [2, Section 8.6] describe a partial Iwasawa cocycle

Bg : SL(d,R) X ?9 — ag

such that pg o B factors through By.
We say that A € SL(d, R) is 8-proximal if o (£(A)) > O for all k € 6. In this case, A has
a well-defined attracting 0-flag F?, and

Bo(A, FY) = pg(L(A)).

In particular,
wr(Bg(A, EY)) = wp (£(A4))

forall k € 6.
Given a representation p : ' — SL(d, R) of a geometrically finite Fuchsian group I" and
a p-equivariant map &, : A(I') — Fy, we define its associated 6-Busemann cocycle

BS:T x A(T) —> ag

by letting
BE(y.2) = Ba(p(y). p(y ") (Ex(2))).

Since pyg is linear, Lemma 9.5 immediately generalizes to give:

Lemma 9.6. Ifp: " — SL(d,R) is a representation of a geometrically finite Fuchsian
group I' and & : A(I') — Fy is a p-equivariant map, then ,Bg satisfies the cocycle property

Bi(ay.z) = Bi(a.2) + Bo(r.e ' (2))

foralla,y € ' and z € A(T).
Moreover, if p(y) is O-proximal and &,(y ™) is the attracting 0-flag of p(y), then

BE(v.yT) = pal(p(y))).

In particular,
o (B (r.y ) = o (Llp(y)))
ifk € 6.

10. Roof functions for Anosov representations

If6 C{l,...,d — 1} is non-empty, we say that p : ' — SL(d, R) is cusped 6-Anosov
if it is cusped Pr-Anosov for all k € 6. We say that 6 is symmetric if k € 6 if and only
if d —k € 6. It will be natural to always assume that 6 is symmetric, since p is cusped



Bray, Canary, Kao and Martone, Counting and equidistribution 41

Pj.-Anosov if and only if it is cusped Py _j-Anosov.If p : ' — SL(d, R) is a cusped 8-Anosov
representation of a geometrically finite Fuchsian group, we define a vector valued roof function

Tp ! T > a
by setting

7p(x) = 5 (G(x1), 0(x)) = Bo(p(G(x1)), p(G(x1)) ™" (Ep(@(x)))).

If ¢ is a linear functional on ag, we define the ¢-roof function rg’ = ¢ o 1,. If pis cusped

Borel Anosov, i.e. if 6 = {1,...,d — 1}, then ag = a and Bg = B so we are in the simpler
setting described in the first part of Section 9.5.
Recall that the Benoist limit cone of a representation p : ' — SL(d, R) is given by

Bp) =) U Rlp)cat.

120 |le(o(y))lI=n

Benoist [1] showed that if I" is Zariski dense, then 8(p) is convex and has non-empty interior.
It is natural to consider linear functionals which are positive on the Benoist limit cone

B(p)" ={p € a*: $(B(p) —{0}) C (0,00)}.

Note that if ¢ € B(p)™, then there is a constant ¢ such that ¢(v) > c||v| for all v € B(p).

We will in general consider roof functions associated to linear functionals in a; NB(p)T.
Recall that aj is spanned by {wy : k € 0}. So if {l,d — 1} C 6 and p is cusped 6-Anosov
(i.e. if p is cusped Pi-Anosov), then w; and the Hilbert length functional oy = w1 + wg—1
both lie in aj N B(p)T.If{1,2} C 6, then a; = wp —2w; € ag N B(p)*, and, more gener-
ally, if {k — 1.k, k + 1} C 0, then o = —wp41 + 2w — wp—1 € aj; N B(p)™ if p is cusped
0-Anosov. Finally, if 6 = {1,...,d — 1} (i.e. p is cusped Borel Anosov), then

d—1
A= {alal +...4+a5_104_1 :a; > 0foralli, Zai > 0}
i=1

caynB(p)* = B(p)*.

Theorem D*. Suppose I is a torsion-free geometrically finite, but not convex cocom-
pact, Fuchsian group, 0 C {1,...,d — 1} is non-empty and symmetric, and p : I' — SL(d, R)
is cusped 0-Anosov. If ¢ € ay N B (p)T, then tff : 21T — R is a locally Hélder continuous
function such that:

(1) If x = X1 - Xp, is a periodic element of X7, then
Satd(x) = ¢ (E(p(G(x1) -+ G(xn)))).

(2) tff is eventually positive.

(3) There exists Cp > 0 such that if j € 0, then

1757 (x) — ¢j (p, s(x1)) log r(x1)| < C,

(with the convention that c;(p, y) = 0 if y is not parabolic).
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4 fg’ has a strong entropy gap at infinity. Moreover, if ¢ = Y ;. cp Ak, then
1
c(p.¢)’

d(zf) =

where

c(p,¢) = inf{z arci(p,v) v e Fparabolic}.
keb

(5) Ifn € Homyp(p) is also Py-Anosov and ¢ € B(n)™, then there exists C > 0 so that
Th () — 2 (0 = €

forallx e =+,

(6) rg is non-arithmetic.

Proof. It follows immediately from Lemma 9.6 and Theorem 9.3 (1) that if x € =T,

then
n—1

SaTp(x¥) = D 7p(07 () = B (G(x1) -+ G(xm), 0(x)).
j=0

In particular, if x = X1 ---x, € X7 is periodic, then, by Lemma 9.6 and Theorem 9.3 (2),

W (Sntp(x)) = Wk (L(p(G(x1) -+ G(xn))))

for all k € 0, since §,(w(x)) is the attracting 0-flag of p(G(x1)---G(xy,)). Thus, (1) holds
since {wy : k € 0} is a basis for ay and the map ¢ — 74 is linear.

If ¢ o 7, is not eventually positive, then there exist sequences {x,} in =T and {my} in
N so that m, — oo and ¢ (Sp,, 7,(xn)) < 1 for all n. Let y, = G((xn)1) -+ G((xn)m, ) and
z, = w(xp). Then
‘15(,32(%1,2,,)) <1 foralln € N.

We may assume that {z,} converges to z € A(I"). Theorem 9.3 (5) implies that there
exists L so that
—
d(yn(bo),bozn) < L

for all n. After passing to another subsequence, we may assume that {y, 1(hg)} converges
to some w € A(T"). We pass to another subsequence, so that {y, !(z,)} converges to some
x € A(T"). Notice that

X #w,

since y,, 1 (bo)y,,; 1(z») converges to a bi-infinite geodesic joining w to x which lies within L
of the basepoint by.

As lim y,;71(bo) = w and p has the Pj-Cartan property for all k € 6 by Theorem 9.2 (6),
we have

lim Uy (p(y,, 1)) = &5 (w).

Since ég_k (x) and Eg_k (w) are transverse, there exist N € N and € > 0 so that if n > N,
then

Z(E v zn). Uai (plym) ™) = €.
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Lemma 9.4 and the p-equivariance of the limit map &, then imply that there exists C so that

|0k (B (v §0(2n)) — @k (K (p(ya)))]
= [0k (Bo (p(yn). oy ) (Eo(zn))) — 0k (ke (p(yn)))] < €
forall k € 6 and alln > N. Since ¢ € ay, this implies that there exists C > 0 such that

(B8 (Vn. E0(zn))) — Dk (p(yn)))| < C

foralln > N.
By Theorem 9.1(1), ¢ (k(p(yn))) — 00, so we have achieved a contradiction. Therefore,
rff is eventually positive, so (2) holds.

In order to establish (3), we first notice that, since || Bg (A, F)| < ||k (A)| forall F € Fy,

1757 (x)] < Cx, = jllk(p(G(x1)))ll

for all x € 1 and j € 6. Since our alphabet is infinite and Cy, — o0 as r(x;) — oo, there
is more work to be done.

If x € X7 and r(x;) > 2, then G(x;) = v"g, for some v € P and g, € R, where
n =r(xy) — 2, then

7p(x) = By (V" ga, 0(x)) = By(p(v"ga), p(v" ga) " (Ep(@(x))))
= Bo(p(v™), p(V ™) (Ep(@(x)))) + Bo(p(ga), p(v" 8a) ™" (§p((x)))).

Notice that

| (Bo(p(ga). p(v" ga) ™! (Ep(@(x))))| = R = max{d [lk(p(ga))] : ga € R}

forall j € 6.

Let p be the fixed point of v in A(I"). Notice that, by construction, there exists an
element @ € A so that G(a) = vg,. Then X = w([a]) is a compact subset of A(T") — {p}.
Therefore, if G(x1) = v" g4, w(x) € V" 1(X), so v " (w(x)) € v~ 1(X). It follows that there
exists € = €(v) > 0 so thatif G(x1) = v"g, and n € N, then

Z(p(w™)(E) (@())). 67 (p) = €
for all j € 6. Lemma 9.4 then implies that there exists D = D(v, g4) > 0 so that
|07 (Ba(p(w™). p(v™) (Ep(@(x))))) — @; (k(p(" )| < D.
foralln € N and j € 6. Theorem 9.1 implies that there exists C = C(v, g4) > 0 so that
5 (k(p (V")) = ¢ (p. v) logn| < €
for all n € N. By combining, we see that
|0j (Bo(p(v"™). p(v™") (Ep(@(x))))) = ¢j(p,v) logn| = C + D

and hence that
157 (x) — ¢j(p,v) log(r(x1) —2)| < C + D + R

for all n € N and j € 0. Since there are only finitely many v in 4, and only finitely many
elements of # so that r(a) < 2 we have completed the proof of (3).
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We next check that rg is locally Holder continuous. Since w : &+ — A(T") is locally
Holder continuous, there exist Z > 0 and { > 0 so that if x; = y; forall j < n, then

d(o(x),0(y)) < Ze™t".
Since &, : A(I') — F; is Holder, there exist D > 0 and ¢ > 0, so thatif z, w € A(T"), then

d(€p(2). Ep(w)) = Dd(z, w)".

Therefore, &, o w is locally Holder continuous, i.e. there exists C and B > 0 so that

d(Ep((x)), Ep(@(y))) < Ce™P"

if x; = yj forall j <n.
Ifa € A, let
Dy = sup{[|DF Bg(p(G(a)).-)| : F € Fo}.

where D By(p(G(a)),-) is the derivative at F of By(p(G(a)),-) : Fg — ag. It follows that
if x; = y;j forall j <nand x; = y; = a, then
|78 () =g )] < 1] DaCe™P".
Recall that if x € £T and G(x1) = v™g,, then

Tp(x) = Bg(p(v™), p(v™™)(¢p(@(x)))) + Ba(p(ga), p(™ ga) ™" (Ep(@(x))))

and that v (w(x)) lies in a compact subset v™1(X) of A(T") — {p} (where p is the fixed
point of v).
There exists ¢ > 0 so thatif x, y € v~1(X) and r € N, then

d(" (). (1) < 5d(x.y).

Notice that, by the cocycle property for By,

By(p(u™). F) = > By(p(v). v/} (F)).
j=1
Thus, if R R
D = D(v) = sup{|| DF Bg(p(v).-)| : F € Fo)}.

then .
1Bs(p(v™). %) = By(p(v™) ) = 3 D 5d(x.y)
s=1

if x,y € v1(X). Notice that there exists T = T'(v) > 0 so that this series can be bounded
above by T'd(x,y). Therefore, if x; = y; forall j =1,...,n and G(x1) = v’g,, where
s > 1, then

(¢ 0 7o) (x) = ($ 0 7o) ()| < (T + R)C||plle™"",
where

R = sup{|[DF Bg(p(ga).-)|l : F € F4q. ga € R}.

Since there are only finitely many v in & and only finitely many elements of «# so that

r(a) <2, r;f is locally Holder continuous.
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If¢p =) pepakwr andv € P, let
c(p.¢.v) =) arcr(p.v) and c(p.¢) = inflc(p.$.v) 1 v € P}.

ke
Notice that ¢(p, ¢) must be positive, since ¢ € B(p)™. Property (3) then implies that

72 (x) = c(p. p.s(x1)) log(r(x1))| < Cpli¢]
for all x € 1. Therefore,

Ze—scpnwnsc(p - Ze—s(c(p Wogn+Colol) < 7, (19 )

n=1

and
Z1(z2,5) < Z Qe 5((P.p)logn=Cpligl) < Z QesColldl

n=1 n=1
if s > 0. (Recall that if n € N, then 1 <#{a € A :r(a) =n} < Q.) Therefore, Zl(rff,s)
converges if and only if s > which establishes (4).

SC(p ®)

_1
c(p,9)’

If n € Hom;p(p) is cusped 6-Anosov and ¢ € B(n™), then ¢;j(p,v) = ¢;(n,v) for all
j €6 and v € &. Property (5) then follows from applying (3) to both 7, and 7, and the fact
that both rp and rf,b are locally Holder continuous.

We may assume that the Zariski closure G of p(I") is reductive. (If it is not reductive,

then Guéritaud, Guichard, Kassel and Wienhard [23, Section 2.5.4] exhibit a representation
55 . T' — SL(d, R) so that the Zariski closure of p*5(T") is reductive and £(p(y)) = £(p**(y))
for all y € I'.) A result of Benoist and Quint [2, Proposition 9.8] then implies that the subgroup
b of the Cartan algebra ag of G generated by Ag(p(I")) is dense in ag (where Ag : G — agq is
the Jordan projection of G). Up to conjugation, we may assume that aq is a sub-algebra of a
(since agq is an abelian algebra and thus is contained in a translate of a, which is a maximal abel-
ian sub-algebra of s[(d, R)). Therefore, the subgroup of R generated by {¢ 0 7,(x) : x € Fix"},
which is just ¢(h), is dense in R. Thus, we have established (6). O

11. Applications

11.1. Anosov representations of geometrically finite Fuchsian groups. Given Theo-
rem D*, we can apply our main results to the roof functions of Anosov representations.

The following counting result is a strict generalization of Corollary 1.3. It follows imme-
diately from Theorems D* and A.

Corollary 11.1. Suppose I' is a torsion-free, geometrically finite, but not convex cocom-
pact, Fuchsian group, 6 C {1, . — 1} is non-empty and symmetric, and p : I’ —> SL(d,R)

is cusped 6 Anosov If ¢ € at9 N O‘B(,o)"' then there exists a unique §4(p) > C(p 3 S0 that
P(— 8¢(p)rp) = 0and
m My() 22 t8¢(p) _
etdo(0) 7

where
My (1) =#{[y] € [[]: 0 < p(L(p(y))) < 1}.
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Similarly, one may combine Theorems C* and D* to obtain a generalization of Corol-
lary 1.4.

Corollary 11.2. Suppose I is a torsion-free, geometrically finite, but not convex cocom-
pact Fuchsian group, 6 C {1, ...,d — 1} is non-empty and symmetric, and p : I' — SL(d, R)
is cusped 6-Anosov. If n € Homyp(p) is also cusped 0-Anosov, ¢ € ag N BT NBMT,
and

€%(p.n) = {(a.b) € D(p.n) : P(=azf —br}) =0},
where
D(p,n) ={(a,b) eR*>:a+b>c(p, )},

then the following hold:

(1) €%(p, n) is an analytic curve.

(2) (4(p).0) and (0,84 (n)) lie on €% (p, n).
(3) €% (p, n) is strictly convex unless

)
(o)) = Sz%”’(n(y))

forally € T.
(4) The tangent line to €% (p, n) at (8¢ (p), 0) has slope

¢
[t dm—&b(p)r;?

¢ —
S (Pﬂ?)——
[0 dm

80T

In the setting of the previous corollary, we may define the pressure intersection

1%(p,n) = —s%(p.n)

and the renormalized pressure intersection

— m 79
8% (p)
We obtain the following intersection rigidity result which will be used crucially in the con-

struction of pressure metrics. The proof follows at once from statements (3) and (4) in Corol-
lary 11.2.

J?(p,n) (p. 7).

Corollary 11.3. Suppose I is a torsion-free, geometrically finite, but not convex cocom-
pact, Fuchsian group, 6 C {1, ...,d — 1} is non-empty and symmetric, and p : I' — SL(d, R)
is cusped 0-Anosov. If n € Homyp (p) is also cusped 6-Anosov and ¢ € ag N BT NBMT,
then

T?(p.n) = 1
with equality if and only if
)
B0 = 20 ()
¢(0)

forally € T'.
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Finally, we derive our equidistribution result, which generalizes Corollary 1.6. It follows
immediately from Theorems B and D*.

Corollary 11.4. Suppose I is a torsion-free, geometrically finite, but not convex cocom-
pact, Fuchsian group, 8 C {1,...,d — 1} is non-empty and symmetric, and p : I' — SL(d,R)
is cusped 0-Anosov. If n € Homyp (p) is also cusped 0-Anosov and ¢ € ap N B(p)TNB(T,
then
3 ()

{9 ’
R o) (p(¥))

1%(0.n) = lim —————
T #(R7.(0)) |

where Rt (p) ={[y] € T : 0 < £®(p(y)) < T}.

11.2. Traditional Anosov representations. Andres Sambarino [55-57] established
analogues of our counting and equidistribution results in the setting of traditional “uncusped”
Anosov representations. In this section, we will sketch how to establish (mild generalizations
of) his results in our framework. Anosov representations of hyperbolic groups were defined
by Labourie [34] and Guichard and Wienhard [24]. We will use a characterization of Anosov
representations of word hyperbolic groups established by Kapovich, Leeb and Porti [32] and
Bochi, Potrie and Sambarino [4].

If T is a word hyperbolic group, then a representation p : I' — SL(d, R) is Pr-Anosov
if there exist 4, a > 0 so that

ox (p(y)) > Aealvl
or+1(0(¥)) ~
for all y € I', where |y| is the word length of y with respect to some fixed generating set on I".
In this case, it is known (see [11] or [17]) that there is a finite Markov shift (E+, o) for the
geodesic flow of I" and a surjective map

G: | Fix" - [I].
neN

If C {1,...,d — 1} is non-empty and symmetric, p is §-Anosov, and ¢ € ag N B(p)™, then

there exists a Holder continuous function tg’ : fo — R so that if x € Fix" C E+, then

Sntg (x) = $(L(p(G(x)))).

Lalley [36, Theorems 5 and 7] established analogues of our counting and equidistribution
results for finite Markov shifts. Moreover, our proofs generalize his techniques so they go
through in the setting of finite Markov shifts without any assumptions on entropy gap.

Corollary 11.5. Suppose that T is a word hyperbolic group, 0 C {1,...,d — 1} is
non-empty and symmetric, and p : I' — SL(d, R) is 60-Anosov. If ¢ € az N B(p)™, then there

exists a unique 64(p) > 0 so that P(—34(p) rg) = 0and

18p(p)
et5¢(0) v

Jim, Mot

where

My (t) = #[y] € [T]: p(L(p(y))) = 1}.
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Proof.  Our proof of property (6) in Theorem D* gives immediately that rf,b is non-

arithmetic, which is the only assumption needed to apply our Theorem A or [36, Theorem 7]
in the setting of a finite Markov shift. O

We also obtain a Manhattan Curve theorem, which does not seem to have appeared in
print before in this generality, but was certainly well known to experts. In particular, Sambarino
[55, Proposition 4.7] describes a closely related phenomenon for Borel Anosov representations.

Corollary 11.6. Suppose that T is a word hyperbolic group, 6 C {1,...,d — 1} is
non-empty and symmetric, and that p : I' — SL(d,R) and n: ' — SL(d,R) are 0-Anosov.
If g €ayNB(p)t N BT and

€% (p.n) ={(a.b) e R* :a + b > 0and P(—atl — br?) = 0},
then the following hold:
(1) €%(p, n) is an analytic curve.

(2) (4(p).0) and (0,84 (1)) lie on €% (p. n).
(3) €% (p, n) is strictly convex unless

)
4 (o(y)) = 5:%3"’(77()/))

forally € T.
Moreover, the tangent line to €% (p, n) at (8¢ (p), 0) has slope

¢
Jm dm_s., oyt

0

é
Jwodm s, gy

~1%(p.n) =~

The analogues of Corollaries 1.5 and 1.6 appear in [11, Section 8] as consequences of
classical Thermodynamical results of Bowen, Pollicott and Ruelle [5, 6,47,53].

Historical remarks. In the counting estimates and equidistribution results in his papers,
Sambarino assumes that p is irreducible if 8 = {1,d — 1} (see [56]) or Zariski dense if p is
Borel Anosov (see [55,57]) and that I" = w1 (M), where M is a negatively curved manifold.
However, after [11] the generalizations stated here would certainly have been well known to
him. Carvajales [16, Appendix A] uses results from [11] to explain how one can remove the
assumption that I' = 7y (M) in Sambarino’s work. The removal of the irreducibility assump-
tion follows from the construction of the semi-simplification in [23]. Pollicott and Sharp [48]
independently derived related counting results for Hitchin representations.
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