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Counting, equidistribution and entropy gaps at
infinity with applications to

cusped Hitchin representations
By Harrison Bray at Fairfax, Richard Canary at Ann Abor, Lien-Yung Kao at Washington and

Giuseppe Martone at Ann Arbor

Abstract. We show that if an eventually positive, non-arithmetic, locally Hölder con-
tinuous potential for a topologically mixing countable Markov shift with (BIP) has an entropy
gap at infinity, then one may apply the renewal theorem of Kesseböhmer and Kombrink to
obtain counting and equidistribution results. We apply these general results to obtain counting
and equidistribution results for cusped Hitchin representations, and more generally for cusped
Anosov representations of geometrically finite Fuchsian groups.

1. Introduction

In this paper, we use the Renewal Theorem of Kesseböhmer and Kombrink [33] to
establish counting and equidistribution results for well-behaved potentials on topologically
mixing countable Markov shifts with (BIP) in the spirit of Lalley’s work [36] on finite Markov
shifts. Inspired by work of Schapira and Tapie [64, 65], Dal’bo, Otal and Peigné [19], Iommi,
Riquelme and Velozo [27] and Velozo [69] in the setting of geodesic flows on negatively curved
Riemannian manifolds, we define notions of entropy gap at infinity for our potentials. Our
results require that the potentials are non-arithmetic, eventually positive and have an entropy
gap at infinity.

Our main motivation for this general analysis was provided by cusped Hitchin represen-
tations of a geometrically finite Fuchsian group into SL.d;R/. Given a linear functional � on
the Cartan algebra a of SL.d;R/ which is a positive linear combination of simple roots, we
can define the �-translation length `�.A/ D �.`.A// (where ` is the Jordan projection) for
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A 2 SL.d;R/. The first consequence of the general theory we develop is that if � is cusped
Hitchin, then

#¹Œ
� 2 Œ�� j 0 < `�.�.
// � tº �
etı

tı
;

where ı D ı�.�/ is the �-entropy of � (and Œ�� is the collection of conjugacy classes of
elements of �). We also obtain a Manhattan curve theorem and equidistribution results in this
context. In later work, we plan to use these results to construct pressure metrics on cusped
Hitchin components. A longer term goal is the development of a geometric theory of the aug-
mented Hitchin component which parallels the study of the augmented Teichmüller space as
the metric completion of Teichmüller space with the Weil–Petersson metric (see Masur [44]).

General thermodynamical results. We now give more precise statements of our gen-
eral results. We assume throughout that .†C; �/ is a topologically mixing, one-sided, countable
Markov shift with alphabet A which has the big images and pre-images property (BIP). More-
over, all of our functions will be assumed to be locally Hölder continuous (see Section 2 for
precise definitions).

We now introduce the crucial assumptions we will make in our work. Given a locally
Hölder continuous function f W †C ! R and a 2 A, we let

I.f; a/ D inf¹f .x/ W x 2 †C; x1 D aº

and
S.f; a/ D sup¹f .x/ W x 2 †C; x1 D aº:

Note that I.f; a/ and S.f; a/ are finite since f is locally Hölder continuous.
We say that f has a strong entropy gap at infinity if the series

Z1.f; s/ D
X
a2A

e�sS.f;a/

has a finite critical exponent d.f / > 0 and diverges when s D d.f /.
We say that f has a weak entropy gap at infinity if Z1.f; s/ has a finite critical expo-

nent d.f / > 0 and there exists ı D ı.f / > d.f / > 0 so that P.�ıf / D 0, where P is the
Gurevich pressure function associated to .†C; �/ (defined in Section 2). We will see later (in
Section 3), that a strong entropy gap at infinity implies a weak entropy gap at infinity.

We say that f is strictly positive if c.f / D inf¹f .x/ W x 2 †Cº > 0. We say that f is
eventually positive if there exist N 2 N and B > 0 so that

Snf .x/ D f .x/C f .�.x//C � � � C f .�
n�1.x// > B

for all n � N and x 2 †C. Recall that f is arithmetic if the subgroup of R generated by
¹Snf .x/ W x 2 Fixn; n 2 Nº is cyclic, where x 2 Fixn if �n.x/ D x.

We begin by stating our general counting results. For all n 2 N, let

Mf .n; t/ D ¹x 2 †
C
W x 2 Fixn and Snf .x/ � tº

and let

Mf .t/ D

1X
nD1

1

n
#Mf .n; t/:
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Theorem A (Growth rate of closed orbits). Suppose that .†C; �/ is a topologically
mixing, one-sided, countable Markov shift which has (BIP). If f W †C ! R is locally Hölder
continuous, non-arithmetic, eventually positive and has a weak entropy gap at infinity, and
P.�ıf / D 0, then

lim
t!1

Mf .t/
tı

etı
D 1:

Similarly, for all k 2 N, let

Rf .k; t/ D ¹x 2Mf .k; t/ W x …Mf .n; t/ if n < kº

and let

Rf .t/ D

1X
kD1

1

k
#Rf .k; t/:

If x 2Mf .n; t/ �Rf .n; t/, then there exists j � 2 so that x 2Mf .
n
j
; t
j
/, so

Mf .t/ �Mf

�
t

2

�
� Rf .t/ �Mf .t/:

Therefore, the following result is an immediate corollary of Theorem A.

Corollary 1.1 (Growth rate of closed prime orbits). Suppose that .†C; �/ is a topolog-
ically mixing, one-sided, countable Markov shift which has (BIP). If f W †C ! R is locally
Hölder continuous, non-arithmetic, eventually positive and has a weak entropy gap at infinity,
and P.�ıf / D 0, then

lim
t!1

Rf .t/
tı

etı
D 1:

If f is strictly positive, let †f be the suspension flow of f . In this setting, we obtained
a generalized form of Bowen’s formula for the critical exponent. Let Of be the collection of
closed orbits of †f and let

Of .t/ D ¹� W f̀ .�/ � tº;

where f̀ .�/ is the period of �. Notice that #Of .t/ DMf .t/, since if � 2 Of .t/, then there
exists x 2 Fixn for some n, so that Snf .x/ D f̀ .�/ and x is well defined up to cyclic permu-
tation. Lemma 3.2 implies that every eventually positive locally Hölder continuous function (in
our setting) is cohomologous to a strictly positive locally Hölder continuous function, so we
are always free to interpret our results from this viewpoint.

Corollary 1.2 (Bowen’s formula). Suppose that .†C; �/ is a topologically mixing, one-
sided, countable Markov shift which has (BIP). If f W †C ! R is locally Hölder continuous,
non-arithmetic, strictly positive, has a weak entropy gap at infinity and P.�ıf / D 0, then

ı D lim
t!1

1

t
log #Of .t/:

If f W †C ! R and g W †C ! R are two strictly positive locally Hölder continuous
functions, then there is a natural identification of the set Of of closed orbits of †f and the set
Og of closed orbits of †g . If f is strictly positive and has a weak entropy gap at infinity so
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that P.�ıf / D 0, then the equilibrium state for �ıf induces a measure of maximal entropy
on the suspension flow on †f . We obtain an equidistribution result for this equilibrium state
which roughly says that it behaves like a Patterson–Sullivan measure.

In the following theorem, if � and  are real-valued functions, we say that

� �  if lim
t!1

�.t/

 .t/
D 1:

Theorem B (Equidistribution). Suppose that .†C; �/ is a topologically mixing, one-
sided, countable Markov shift which has (BIP) and f W †C ! R is locally Hölder continuous,
non-arithmetic, eventually positive, has a weak entropy gap at infinity, P.�ıf / D 0 and ��ıf
is the equilibrium state for �ıf . If g W †C ! R is locally Hölder continuous, eventually
positive, and there exists C > 0 such that

jf .x/ � g.x/j < C

for all x 2 †C, then

1X
kD1

1

k

X
x2Mf .k;t/

Skg.x/

Skf .x/
�

� R
g d��ıfR
f d��ıf

�
�
etı

tı

as t !1. If f and g are strictly positive, then

X

2Of .t/

lg.
/

lf .
/
�

� R
g d��ıfR
f d��ıf

�
�
etı

tı

as t !1:

We can obtain a completely analogous statement if we instead consider the set Pf of
primitive closed orbits of the suspension flow †f .

Suppose that f W †C ! R is locally Hölder continuous, eventually positive, and has
a strong entropy gap at infinity and that g W †C ! R is also eventually positive and locally
Hölder continuous, and that there exists C > 0 so that jf .x/ � g.x/j < C for all x 2 †C.
(Notice that this implies that d.f / D d.g/.) Inspired by Burger [13], we define, the Manhattan
curve

C.f; g/ D ¹.a; b/ 2 R2 W P.�af � bg/ D 0; a � 0; b � 0; aC b > 0º:

The Manhattan curve has the following properties.

Theorem C (Manhattan curve). Suppose that .†C; �/ is a topologically mixing, one-
sided countable Markov shift with (BIP), f W †C ! R is locally Hölder continuous, eventually
positive and has a strong entropy gap at infinity and that g W †C ! R is also eventually pos-
itive and locally Hölder continuous. If there exists C > 0 so that jf .x/ � g.x/j < C for all
x 2 †C, then:

(1) .ı.f /; 0/; .0; ı.g// 2 C.f; g/.

(2) If a � 0, b � 0, and aC b > 0, there exists a unique t > d.f /
aCb

so that .ta; tb/ 2 C.f; g/.
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(3) C.f; g/ is a closed subsegment of an analytic curve.

(4) C.f; g/ is strictly convex, unless

Snf .x/ D
ı.g/

ı.f /
Sng.x/

for all x 2 Fixn and n 2 N.

Moreover, the tangent line to C.f; g/ at .a; b/ 2 C.f; g/ has slope

s.a; b/ D �

R
†C g d��af �bgR
†C f d��af �bg

;

where ��af �bg is the equilibrium state of the function �af � bg.

Applications to cusped Hitchin representations. Let S D H2=� be a geometrically
finite, hyperbolic surface, and let ƒ.�/ � àH2 be the limit set of � � PSL.2;R/. Following
Fock and Goncharov [22], a cusped Hitchin representation is a representation � W�! SL.d;R/
such that if 
 2 � is parabolic, then �.
/ is a unipotent element with a single Jordan block and
there exists a �-equivariant positive map �� W ƒ.�/! Fd . If S is compact, cusped Hitchin
representations are just the traditional Hitchin representations introduced by Hitchin [26] and
further studied by Labourie [34], while if � is convex cocompact, they are the Hitchin rep-
resentations studied by Labourie and McShane [35]. As these are covered by the traditional
theory of Anosov representations, we will focus on the case where � is not convex cocompact.
If d D 3 and S has finite area, then a cusped Hitchin representation is simply the holonomy
map of a finite area strictly convex projective structure on S (see Marquis [42]). More gen-
erally, if � W � ! SL.3;R/ acts geometrically finitely, in the sense of Crampon and Marquis
[18, Definition 5.14], on a strictly convex domain with C 1 boundary, then � is cusped Hitchin
by [22, 1.3. Theorem].

Let
a D ¹Ea 2 Rd W a1 C � � � C ad D 0º

be the standard Cartan algebra for the Lie algebra sl.d;R/ of SL.d;R/. If T 2 SL.d;R/, let

�1.T / � � � � � �d .T /

be the (ordered) moduli of (generalized) eigenvalues of T (with multiplicity). The Jordan (or
Lyapunov) projection

` W SL.d;R/! a is given by `.T / D .log�1.T /; : : : ; log�d .T //:

For each k D 1; : : : ; d � 1, let ˛k W a! R be given by ˛k.Ea/ D ak � akC1 and let

� D

´
d�1X
kD1

tt˛k W tk � 0 for all k and tk > 0 for some k

µ
� a�:

For example, if ˛H is the Hilbert length functional given by ˛H .Ea/ D a1 � ad , then

˛H D

d�1X
kD1

˛k 2 �:
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Similarly, if !1.Ea/ D a1, then

!1 D

d�1X
kD1

d � k

d
˛k 2 �:

Given non-trivial � 2 � and T 2 SL.d;R/, we define the �-translation length

`�.T / D �.`.T //:

Let .†C; �/ be the Stadlbauer–Ledrappier–Sarig coding [38, 66] (if S has finite area) or
Dal’bo–Peigné coding [21] (if not) of the recurrent portion of the geodesic flow on T 1S . It is
topologically mixing and has (BIP). Moreover, it comes equipped with a map

G W A! �

so that if 
 2 � is hyperbolic, then there exists x D x1 � � � xn 2 †C so that G.x1/ � � �G.xn/ is
conjugate to 
 . Moreover, x is unique up to powers of � . Given a cusped Hitchin representation
� W � ! SL.d;R/, we will define a vector-valued roof function �� W †C ! a with the property
that if x D x1 � � � xn is a periodic element of †C, then

Sn��.x/ D ��.x/C �.�.x//C � � � C ��.�
n�1.x// D `

�
�.G.x1/ � � �G.xn//

�
so �� encodes all the spectral data of �.�/.

The following result allows us to use the general thermodynamical machinery we devel-
oped to study cusped Hitchin representations.

Theorem D (Roof functions). Suppose that � is a torsion-free, geometrically finite
Fuchsian group which is not convex cocompact, � W � ! SL.d;R/ is a cusped Hitchin rep-
resentation and � 2 �. Then there exists a locally Hölder continuous function

��� D � ı �� W †
C
! R

such that:

(1) ��� is eventually positive and non-arithmetic.

(2) If x D x1 � � � xn is a periodic element of †C, then

Sn�
�
� .x/ D `

�
�
�.G.x1/ � � �G.xn//

�
:

(3) ��� has a strong entropy gap at infinity. Moreover, if � D a1˛1 C � � � C ad�1˛d�1, then

d.��� / D
1

2.a1 C � � � C ad�1/
:

(4) If � W � ! SL.d;R/ is another cusped Hitchin representation, then there exists C > 0

so that
j��� .x/ � �

�
� .x/j � C

for all x 2 †C.

We obtain a counting result for cusped Hitchin representations as an immediate conse-
quence of Theorem A.
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Corollary 1.3. If � W � ! SL.d;R/ is a cusped Hitchin representation and � 2 �, then
there exists a unique ı D ı�.�/ so that P.�ı��� / D 0, and

#¹Œ
� 2 Œ�� W 0 < `�.�.
// � tº �
etı

tı

as t !1.

We will refer to ı�.�/ as the �-topological entropy of �.
If �; � W � ! SL.d;R/ are cusped Hitchin representations and � 2 �, we define the

Manhattan curve

C�.�; �/ D ¹.a; b/ 2 R2 W P.�a��� � b�
�
� / D 0; a � 0; b � 0; aC b > 0º:

Theorem C immediately gives the following information about C�.�; �/.

Corollary 1.4. If �; � W � ! SL.d;R/ are cusped Hitchin representations and � 2 �,
then:

(1) C�.�; �/ is a closed subsegment of an analytic curve.

(2) The points .ı�.�/; 0/ and .0; ı�.�// lie on C�.�; �/.

(3) C�.�; �/ is strictly convex, unless

`�.�.
// D
ı�.�/

ı�.�/
`�.�.
//

for all 
 2 � .

Moreover, the tangent line to C�.�; �/ at .ı�.�/; 0/ has slope

s�.�; �/ D �

R
�
�
� d��ı�.�/���R
�
�
� d��ı�.�/���

:

We call I�.�; �/ D �s�.�; �/ the �-pressure intersection. We also define the renormal-
ized �-pressure intersection by

J �.�; �/ D
ı�.�/

ı�.�/
I�.�; �/:

As a further corollary of Theorem C we obtain the following rigidity result for renormalized
pressure intersection. This corollary will later play a key role in our forthcoming construction
of pressure metrics on the space of cusped Hitchin representations.

Corollary 1.5. If �; � W � ! SL.d;R/ are cusped Hitchin representations and � 2 �,
then

J �.�; �/ � 1

with equality if and only if

`�.�.
// D
ı�.�/

ı�.�/
`�.�.
//

for all 
 2 � .
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As a corollary of Theorem B we obtain the following geometric interpretation of the
pressure intersection. Let

R
�
T .�/ D ¹Œ
� 2 Œ�� W 0 < `

�.�.
// � T º:

Corollary 1.6. If �; � W � ! SL.d;R/ are cusped Hitchin representations and � 2 �,
then

I�.�; �/ D lim
T!1

1

#.R�T .�//

X
Œ
�2R

�
T .�/

`�.�.
//

`�.�.
//
:

In a companion paper, Canary, Zhang and Zimmer [15] study the geometry of cusped
Hitchin representation showing that they are “relatively” Borel Anosov in a sense which gen-
eralizes work of Labourie [34]. They also show that cusped Hitchin representations are stable
with respect to type-preserving deformation in SL.d;C/. As a consequence, they see that limit
maps are Hölder and vary analytically. In [10], we combine the work in this paper and in [15]
to construct pressure metrics on cusped Hitchin components.

This project is motivated by the hope that there is a geometric theory of the augmented
Hitchin component which generalizes the classical theory for augmented Teichmüller space.
Masur [44] proved that the augmented Teichmüller space is the metric completion of Teich-
müller space with the Weil–Petersson metric. The strata at infinity of augmented Teichmüller
space consists of Teichmüller spaces of cusped hyperbolic surfaces. These strata naturally
inherit a Weil–Petersson metric from the completion. The potential analogy is clearest when
d D 3, where Hitchin components are spaces of convex projective structures on closed sur-
faces. Work of Loftin [39] and Loftin and Zhang [40] explores the analytic structure and
topology of this bordification. We hope that our work on pressure metrics will aid in show-
ing that there is an augmented Hitchin component which arises as the metric completion of
the Hitchin component with the pressure metric. See the survey paper [14] for a more detailed
discussion of the conjectural picture.

Other applications. These results have immediate generalizations for Pk-Anosov rep-
resentations of geometrically finite Fuchsian groups.

We also recover (mild generalizations of) many of Sambarino’s results on counting and
equidistribution for uncusped Anosov representations in our framework (see [55–57]).

Historical remarks. Counting and equidistribution results have long been a central
theme of the Thermodynamical Formalism (see, for example, the seminal work of Bowen,
Parry, Pollicott and Ruelle [5, 6, 46, 53]). Lalley’s innovation [36] was the introduction of
renewal theory and the development of a Renewal Theorem which allowed him to obtain pre-
cise counting and equidistribution results. Our work harnesses Kesseböhmer and Kombrink’s
extension [33] of Lalley’s Renewal Theorem to the setting of countable Markov shifts to obtain
similar results in our setting.

Bishop and Steger [3] proved a rigidity theorem in the setting of finite area hyperbolic sur-
faces which is the precursor to the study of Manhattan curves. Lalley [37] extended Bishop and
Steger’s rigidity theorem to the setting of closed negatively curved surfaces. The formulation in
terms of a Manhattan curve is due to Burger [13] who worked in the setting of convex cocom-
pact representations into rank one Lie groups. Kao [28] established a Manhattan curve theorem
for geometrically finite Fuchsian groups and Bray, Canary and Kao [9] extended his result
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to the setting of geometrically finite quasifuchsian representations. Kao [29] used his work
to produce pressure metrics on Teichmüller spaces of geometrically finite Fuchsian groups
and Bray, Canary and Kao [9] similarly produced pressure metrics on deformation spaces of
geometrically quasifuchsian representations.

Dal’bo and Peigné [21] used renewal theorems in their work obtaining counting and mix-
ing results on geometrically finite negatively curved surfaces. They also applied renewal tech-
niques to study counting results for the modular surface [20]. Thirion [67] used related tech-
niques to obtain asymptotic results for orbital counting functions for ping pong groups. Thirion’s
ping pong groups overlap with the class of (images of) cusped P1-Anosov representations.

Corollary 1.3 generalizes results of Sambarino [55–57] from the Anosov setting, while
Corollaries 1.5 and 1.6 generalize results of Bridgeman, Canary, Labourie and Sambarino [11].

In the case of cusped Hitchin representations, d.��� / is simply the maximum critical
exponent of the �-length Poincaré series associated to any unipotent subgroup of �.�/. Thus,
having a strong entropy gap at infinity is analogous to the critical exponent gap used in the work
of Dal’bo and Peigné [21] and Dal’bo, Otal and Peigné [19]. Schapira and Tapie [65, Propo-
sition 7.16] showed that for a geometrically finite negatively curved manifold then there is
a critical exponent gap if and only if the geodesic flow has an entropy gap at infinity. Our
definition is inspired by their work. In turn, Schapira and Tapie were motivated, in part, by
work on strongly positive recurrent potentials for countable Markov shifts due to Gurevich and
Savchenko [25, 63], Sarig [60, 61], Ruette [54], and Boyle, Buzzi and Gómez [8]. Other rele-
vant precursors to our results include the work of Iommi, Riquelme and Velozo [27], Riquelme
and Velozo [52], and Velozo [69].

In recent work, Pollicott and Urbanski [49] used related techniques to obtain fine count-
ing results for conformal dynamical systems. Their main technical tools come from the study of
complexified Ruelle–Perron–Frobenius operators, generalizing early work of Parry and Pollicott
[46] in the setting of finite Markov shifts. (Note that the proof of Kesseböhmer and Kombrink’s
Renewal Theorem [33] also relies on the study of complexified Ruelle–Perron–Frobenius opera-
tors.) Pollicott and Urbanski gave extensive applications to the study of circle packings, rational
functions, continued fractions, Fuchsian groups and Schottky groups and other topics.

Feng Zhu [70] obtained closely related counting and equidistribution results for the
Hilbert length functional on geometrically finite strictly convex projective manifolds. When
d D 3, cusped Hitchin representations are holonomy maps of strictly convex projective sur-
faces, so our results overlap with his in this case.

Outline of paper. In Section 2, we recall the relevant background material from the
theory of countable Markov shifts. In Section 3, we use this theory to explore the consequences
of entropy gaps at infinity. In Section 4, we recall the Renewal Theorem of Kesseböhmer and
Kombrink [33] and show that we can apply it in our context. Section 5 contains the crucial
technical material needed in the proof of Theorem A. Sections 6, 7 and 8 contain the proof of
Theorems A, B and C (respectively). In Section 9, we develop the background material needed
for our applications. Section 10 contains the proof of (a generalization of) Theorem D and
Section 11 derives its consequences.

Acknowledgement. The authors would like to thank Godofredo Iommi, Andres Sam-
barino, Barbara Schapira, Ralf Spatzier and Dan Thompson for helpful comments and sugges-
tions. We also thank the referee for suggestions which improved the exposition.
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2. Background from the thermodynamic formalism

In this section, we recall the background results we will need from the Thermodynamic
Formalism for countable Markov shifts as developed by Gurevich and Savchenko [25], Mauldin
and Urbanksi [45] and Sarig [60].

Given a countable alphabet A and a transition matrix T D .tab/ 2 ¹0; 1º
A�A a one-sided

Markov shift is
†C D ¹x D .xi / 2 AN

W txixiC1 D 1 for all i 2 Nº

equipped with a shift map � W †C ! †C which takes .xi /i2N to .xiC1/i2N .
We will work in the setting of topologically mixing Markov shifts with (BIP), where

many of the classical results of Thermodynamic Formalism generalize. The shift .†C; �/
is topologically mixing if for all a; b 2 A, there exists N D N.a; b/ so that if n � N , then
there exists x 2 † so that x1 D a and xn D b. It has the big images and pre-images property
(BIP) if there exists a finite subset B � A so that if a 2 A, then there exist b0; b1 2 B so that
tb0a D 1 D tab1 .

The theory works best for locally Hölder continuous potentials. We say that g W †C ! R
is locally Hölder continuous if there exist A > 0 and ˛ > 0 so that

jg.x/ � g.y/j � Ae�˛n

whenever xi D yi for all i � n and n 2 N. When we want to record the constants, we will say
that g is locally ˛-Hölder continuous with constant A. The Gurevich pressure of g is given by

P.g/ D lim
n!1

1

n
log

X
¹x2Fixn Wx1Daº

eSng.x/

for some (any) a 2 A, where

Sng.x/ D

nX
iD1

g.� i�1.x//

is the ergodic sum and Fixn D ¹x 2 †C W �n.x/ D xº.
We say that two locally Hölder continuous functions f and g are cohomologous if there

exists a locally Hölder continuous function h so that

f � g D h � h ı �:

The analogue of Livsic’s theorem holds in this setting.

Theorem 2.1 (Sarig [62, Theorem 1.1]). Suppose that †C is a topologically mixing,
one-sided countable Markov shift with (BIP). If f W†C ! R and g W†C ! R are both locally
Hölder continuous, then f is cohomologous to g if and only if Snf .x/ D Sng.x/ for all n 2 N
and x 2 Fixn. In particular, if f and g are cohomologous, then P.�tf / D P.�tg/ whenever
P.�tf / is finite.

A � -invariant Borel probability measure � on †C is an equilibrium state for a locally
Hölder continuous function g W †C ! R if

P.g/ D h� .�/C

Z
†C

g d�;

where h� .�/ is the measure-theoretic entropy of � with respect to the measure �.
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A Borel probability measure � on †C is a Gibbs state for a locally Hölder continuous
function g W †C ! R if there exists B > 1 so that

1

B
�
�.Œa1; : : : ; an�/

eSng.x/�nP.g/
� B

for all x 2 Œa1; : : : ; an�, where Œa1; : : : ; an� is the cylinder consisting of all x 2 †C so that
xi D ai for all 1 � i � n.

Theorem 2.2 (Mauldin and Urbanski [45, Theorem 2.2.9], Sarig [62, Theorem 4.9]). If
†C is a topologically mixing, one-sided countable Markov shift with (BIP), g W †C ! R is
locally Hölder continuous, it admits a shift invariant Gibbs state �g , and �

R
g d�g < C1,

then �g is the unique equilibrium state for g.

Recall from the introduction that for g W †C ! R a locally Hölder continuous function
we define

I.g; a/ D inf¹g.x/ W x 2 †C; x1 D aº

and
S.g; a/ D sup¹g.x/ W x 2 †C; x1 D aº:

We will make crucial use of the following criterion for a potential to admit an equilibrium
state.

Theorem 2.3 (Mauldin and Urbanski [45, Theorems 2.2.4 and 2.2.9, Lemma 2.2.8], Sarig
[62, Theorem 4.9]). If †C is a topologically mixing, one-sided countable Markov shift with
(BIP), g W †C ! R is locally Hölder continuous, andX

a2A

I.g; a/e�S.g;a/

converges, then �g admits a unique equilibrium state ��g . Moreover,Z
†C

g d��g < C1:

We will need to be able to take the derivatives of the pressure function and to be able
to apply the Implicit Function Theorem. We say that ¹gu W †C ! Rºu2M is a real analytic
family if M is a real analytic manifold and for all x 2 †C, u! gu.x/ is a real analytic func-
tion on M . Mauldin and Urbanski [45, Theorem 2.6.12, Proposition 2.6.13] (see also Sarig
[59, Corollary 4]), prove real analyticity properties of the pressure function and evaluate its
derivative.

Theorem 2.4 (Mauldin–Urbanski, Sarig). Suppose that †C is a topologically mixing,
one-sided countable Markov shift with (BIP). If ¹gu W †C ! Rºu2M is a real analytic family
of locally Hölder continuous functions such that P.gu/ <1 for all u, then u! P.gu/ is real
analytic.

Moreover, if v 2 Tu0M and there exists a neighborhood U of u0 in M so that if u 2 U
and �

R
†C gu d�gu0 <1, then

DvP.gu/ D

Z
†C

Dv.gu.x// d�gu0 :
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Recall that if f W †C ! R is locally Hölder continuous, the transfer operator is defined
by

Lf �.x/ WD
X

y2��1.x/

ef .y/�.y/;

where � W †C ! R is a bounded locally Hölder continuous function. The transfer operator, in
particular, gives us crucial information about equilibrium states.

Theorem 2.5 (Mauldin and Urbanski [45, Corollary 2.7.5], Sarig [62, Theorem 4.9]).
Suppose that †C is a topologically mixing, one-sided countable Markov shift with (BIP). If
g W †C ! R is locally Hölder continuous, P.g/ < C1, and supg < C1, then there exist
unique probability measures �g and �g on †C and a positive function hg W †C ! R so that

�g D hg�g ; Lghg D e
P.g/hg ; L�g�g D e

P.g/�g :

Moreover, hg is bounded away from both 0 andC1 and �g is an equilibrium state for g.

We will also use the following estimate on the behavior of powers of the transfer operator.

Theorem 2.6 (Mauldin and Urbanski [45, Theorem 2.4.6]). Suppose that †C is a
topologically mixing, one-sided countable Markov shift with (BIP). If g W †C ! R is locally
Hölder continuous, P.g/ < C1, and supg < C1, then there exist R > 0 and � 2 .0; 1/ so
that if n 2 N and � W †C ! R is bounded and locally �-Hölder continuous with constant A,
then 



e�nP.g/Ln

g� � hg.x/

Z
� d�g





 � R�n� sup
x2†C

j�.x/j C A
�
:

3. Entropy gaps at infinity

In this section, we show that a strong entropy gap at infinity implies a weak entropy gap
at infinity and explore the thermodynamical consequences of entropy gaps at infinity.

Recall that d.f / is the critical exponent of the series

Z1.f; s/ D
X
a2A

e�sS.f;a/:

Notice that if f is locally Hölder continuous, there exists C > 0 so that S.f; a/ � I.f; a/ � C
for all a 2 A. So the series X

a2A

e�sI.f;a/

has critical exponent d.f / and diverges at d.f / if and only if f has a strong entropy gap at
infinity.

We first observe a bound on the number of letters with I.f; a/ � t .

Lemma 3.1. Suppose that †C is a topologically mixing, one-sided countable Markov
shift with (BIP). If f W †C ! R is locally Hölder continuous, d.f / is finite and b > d.f /,
then there exists D D D.f; b/ > 0 so that

B1.f; t/ D #¹a 2 A W I.f; a/ � tº � Debt
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for all t > 0, and X
y2��1.x/

1¹f .y/�tº.y/ � Debt

for all x 2 †C and t > 0.

Proof. Fix b > d.f /. If there does not exist D so that B1.f; t/ � Debt for all t > 0,
then there exists a sequence tn !1 so that

B1.f; tn/ � ne
btn :

But then X
a2A

e�bI.f;a/ �
X

¹aWI.f;a/�tnº

e�bI.f;a/ � nebtne�btn D n

for all n 2 N, which contradicts our assumption that b > d.f /.
Finally, notice that if x 2 †C, thenX

y2��1.x/

1¹f .y/�tº.y/ � B1.f; t/ � Debt

for all t > 0.

It will often be convenient to work with a strictly positive potential. We observe that an
eventually positive potential is always cohomologous to a strictly positive potential with the
same entropy gaps.

Lemma 3.2. Suppose that †C is a topologically mixing, one-sided countable Markov
shift with (BIP) and that f W †C ! R is eventually positive, locally Hölder continuous and
d.f / is finite. Then f is cohomologous to a strictly positive, locally Hölder continuous func-
tion g so that:

(1) there exists C so that jf .x/ � g.x/j � C for all x 2 †C,

(2) d.f / D d.g/,

(3) f has a weak entropy gap at infinity if and only if g has a weak entropy gap at infinity,

(4) f has a strong entropy gap at infinity if and only if g has a strong entropy gap at infinity.

Proof. Notice that (1) implies that jS.f; a/ � S.g; a/j � C . Moreover, if f is cohomol-
ogous to g, and both are locally Hölder continuous, then P.�tf / D P.�tg/ for all t > d.f /,
see Theorem 2.1. Therefore, (2)–(4) follow immediately once we construct a strictly positive,
locally Hölder continuous function g that is cohomologous to f so that (1) holds.

Let
R D

ˇ̌̌
inf
x2†C

f .x/
ˇ̌̌
:

Note that RD jinfa2A I.f; a/j is finite since there exists s > d.f / > 0 so that
P
a2A e

�sI.f;a/

is finite. Since f is eventually positive, there exists N 2 N and B > 0 so that if n � N and
x 2 †C, then

Snf .x/ � B:
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Let
F D ¹a 2 A W I.f; a/ � RN C Bº:

Since d.f / is finite, F must be finite. To see this, observe that for s > d.f / > 0,

1 >
X
a2A

e�sI.f;a/ �
X
a2F

e�sI.f;a/ �
X
a2F

e�s.RNCB/:

For all n 2 N, define

Cnf .x/ D

nX
iD1

�
f .� i�1.x//1¹xi2F º.x/C .RN C B/1¹xi…F º.x/

�
D Snf .x/ �

nX
iD1

�
f .� i�1.x// � .RN C B/

�
1¹xi 62F º.x/:

By construction,
RN 2

CNB C TN � CNf .x/ � B

for all x 2 †C, where
T D sup¹f .x/ W x1 2 F º:

(The lower bound holds, since CNf .x/ D SNf .x/ � B if xi 2 F for all i � N , and other-
wise one of the summands of CNf .x/ is RN C B and each of the remaining terms are
bounded below by �R.)

We then define g W †C ! R by

g.x/ D
1

N
CNf .x/C

�
f .x/ � .RN C B/

�
1¹x1 62F º.x/:

By construction, g is continuous and

g.x/ �
B

N
> 0

for all x 2 †C, so g is strictly positive.
Moreover, if x1 2 F , then jg.x/ � f .x/j � RN C B C 2T , and if x1 … F , then

jg.x/ � f .x/j � RN C B C
1

N
CNf .x/ � 2.RN C B/:

It follows that
jg.x/ � f .x/j � 2.RN C B C T / DW C

for all x 2 †C.
To show g is locally Hölder continuous, consider x; y 2 †C for which xi D yi for all

i D 1; : : : ; n, and note that it suffices to consider n � N . Then

jg.x/ � g.y/j D

ˇ̌̌̌
ˇ 1N

 
NX
iD1

.f .� i�1.x// � f .� i�1.y///1¹xi2F º.x/

!

C .f .x/ � f .y//1¹x1 62F º.x/

ˇ̌̌̌
ˇ:

Since n � N , applying local Hölder continuity of f gives the desired conclusion.
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Finally, if x D x1 : : : xr 2 Fixr , then one may check that Srf .x/ D Srg.x/. To see this,
observe that

Srg.x/ D Sr

�
1

N
CNf .x/

�
C Sr

�
.f .x/ � .RN C B//1¹x1 62F º.x/

�
D

1

N
SrCNf .x/C

rX
jD1

.f .�j�1.x// � .RN C B//1¹xj 62F º.x/

and since �r.x/ D x,

SrCNf .x/ D SrSNf .x/ �

rX
jD1

NX
iD1

.f .� i�1.x// � .RN C B//1¹xi 62F º.x/

D NSrf .x/ �N

rX
jD1

.f .�j�1.x// � .RN C B//1¹xj 62F º.x/:

Theorem 2.1 then implies that f and g are cohomologous.

We next study the behavior of P.�tf / for t > d.f /, showing among other things that a
strong entropy gap at infinity implies a weak entropy gap at infinity.

Lemma 3.3. Suppose that †C is a topologically mixing, one-sided countable Markov
shift with (BIP) and f W †C ! R is locally Hölder continuous and eventually positive.

(1) If d.f / is finite, then P.�tf / is finite if t > d.f / and infinite if t < d.f /, and the
function t ! P.�tf / is monotone decreasing and analytic on .d.f /;1/.

(2) There exists at most one ı 2 .d.f /;1/ so that P.�ıf / D 0.

(3) If f has a strong entropy gap at infinity, then t ! P.�tf / is proper on .d.f /;1/. In
particular, f has a weak entropy gap at infinity.

Proof. Mauldin and Urbanski [45, Theorem 2.1.9] proved that if †C is topologically
mixing and has (BIP), then P.�sf / is finite if and only if

Z1.�f; s/ D
X
a2A

esup¹�sf .x/ Wx1Daº

converges. Therefore, P.�tf / is finite if t > d.f / and infinite if t < d.f /. Notice that the
function t ! P.�tf / is monotone decreasing by definition and analytic by Theorem 2.4, so
(1) follows, and (2) is an immediate consequence of (1).

It remains to show (3). The fact that limt!d.f / P.�tf / D C1 is essentially contained
in Mauldin and Urbanski’s proof of [45, Theorem 2.1.9], but we elaborate here for com-
pleteness. They show that there exist constants q; s;M;m > 0 so that for any locally Hölder
continuous function g,

nCs.n�1/X
iDn

Zi .g; 1/ �
e�MC.M�m/n

qn�1
Z1.g; 1/

n;

where
Zn.g; 1/ D

X
p2ƒk

esupx2p Sng.x/
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and ƒk is the set of k-cylinders of †C. They observe [45, equation (2.1)] that

lim
1

n
logZn.g; 1/ D P.g/:

Thus there exists A > 0 such that for all n, there exists yn 2 Œn; nC s.n � 1/� so that

Zyn.g; 1/ � A
nZ1.g; 1/

n;

so P.g/ � 1
1Cs

logAZ1.g; 1/. Therefore, if f has a strong entropy gap at infinity, then

lim
t!d.f /

Z1.�tf; 1/ D C1

and hence
lim

t!d.f /
P.�tf / � lim

t!d.f /

1

1C s
logAZ1.�tf; 1/ D C1:

We now show that limt!1 P.�tf / D �1. Notice that since there exists N > 0 such
that Snf .x/ > B > 0 for all n � N and x 2 †C, we have SkNf .x/ > kB for every k � 1.
Then X

¹x2FixkN Wx1Daº

e�2td.f /SkNf .x/ �
X

¹x2FixkN Wx1Daº

e�2.t�1/d.f /kB�2d.f /SkNf .x/

which implies

P.�2td.f /f / � lim
k!1

1

kN
log

X
¹x2FixkN Wx1Daº

e�2.t�1/d.f /kB�2d.f /SkNf .x/

D
�2.t � 1/d.f /B

N
C P.�2d.f /f /

and so limt!1 P.�tf / D �1.
Since t ! P.�tf / is proper and monotone decreasing on .d.f /;1/, it follows that

there exists ı > d.f / so that P.�ıf / D 0. Therefore, f has a weak entropy gap at infinity
and we have established (3).

We next observe that �tf admits an equilibrium state if t > d.f /.

Lemma 3.4. Suppose that †C is a topologically mixing, one-sided countable Markov
shift with (BIP). If f W †C ! R is locally Hölder continuous and eventually positive and
t > d.f /, then there exists a unique equilibrium state ��tf for �tf . Moreover,

0 <

Z
†C

f d��tf < C1:

Proof. Theorem 2.3 implies that there exists a unique equilibrium state for �tf if and
only if X

a2A

tI.f; a/e�tS.f;a/ < C1:

Indeed, this series converges since X
a2A

e�sS.f;a/ < C1

for all s > d.f /. Theorem 2.3 also ensures that
R
†C f d��tf < C1. Since f is eventually

positive, it is cohomologous to a strictly positive function g. Then �tf and �tg are cohomol-
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ogous and hence have the same integral with respect to any shift-invariant measure, and also
share the same shift-invariant equilibrium state, i.e. ��tf D ��tg (see [45, Theorem 2.2.7]
and Theorem 2.3). Hence, Z

†C
f d��tf D

Z
†C

g d��tg > 0:

Theorem 2.5 and Lemma 3.3 have the following corollary which we will use repeatedly.

Corollary 3.5. Suppose that†C is a topologically mixing, one-sided countable Markov
shift with (BIP). If f W †C ! R is locally Hölder continuous, eventually positive, and has
a weak entropy gap at infinity and t > d.f /, then there exist unique probability measures
��tf and ��tf on †C and a positive function h�tf W †C ! R so that

��tf D h�tf ��tf ; L�tf h�tf D e
P.�tf /h�tf ; L�

�tf ��tf D e
P.�tf /��tf

and h�tf is bounded away from both 0 and C1. Moreover, ��tf is the equilibrium state
of �tf .

We will need analogues of these results for functions of the form �zg � ıf , where g is
comparable to f and z is close to 0.

Proposition 3.6. Suppose that †C is a topologically mixing, one-sided countable
Markov shift with (BIP), f W†C ! R is locally Hölder continuous, eventually positive and has
a weak entropy gap at infinity and P.�ıf / D 0 for ı D ı.f / > d.f / > 0. If g W †C ! R is
locally Hölder continuous, eventually positive, and there exists C so that jf .x/ � g.x/j � C
for all x 2 †C, then the following hold:

(1) If z > d.f / � ı, then P.�zg � ıf / is finite, z ! P.�zg � ıf / is monotone decreasing
and analytic on .d.f / � ı;1/ and supx2†C.�zg � ıf / < C1.

(2) If z > d.f / � ı, then there exist unique probability measures ��zg�ıf and ��zg�ıf on
†C and a positive function h�zg�ıf W †C ! R so that

��zg�ıf D h�zg�ıg��zg�ıf ;

L�zg�ıf h�zg�ıf D e
P.�zg�ıf /h�zg�ıff ;

L�
�zg�ıf ��zg�ıf D e

P.�zg�ıf /��zg�ıf :

Moreover, h�zg�ıf is bounded away from both 0 and C1 and ��zg�ıf is the unique
equilibrium state of �zg � ıf .

Proof. Notice thatX
¹x2Fixn Wx1Daº

eSn.�zg�ıf / �
X

¹x2Fixn Wx1Daº

enzC eSn..�z�ı/f /

so P.�zg � ıf / is finite if z C ı > d.f /, i.e. if z > d.f / � ı. Similarly, if x 2 †C, then

.�zg � ıf /.x/ � �.z C ı/f .x/C Cz � sup.�.z C ı/f /C Cz < C1

if zCı > 0. The function z ! P.�zg�ıf / is monotone decreasing by definition and analytic
by Theorem 2.4. We have established (1).

Assertion (2) is then an immediate consequence of (1) and Theorem 2.5.
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4. Renewal Theorems

Our main tool will be the Renewal Theorem of Kesseböhmer and Kombrink [33]. Their
result generalized a result of Lalley [36] for finite Markov shifts.

Consider a locally Hölder continuous potential f W †C ! R. If � W †C ! R is a non-
negative, bounded, locally Hölder continuous function, we define the renewal function

Nf .�; x; t/ WD

1X
nD0

X
y2��n.x/

�.y/1¹Snf .y/�tº.y/:

We recall that Nf .�; x; t/ satisfies the renewal equation

(4.1) Nf .�; x; t/ D

� X
y2��1.x/

Nf .�; y; t � f .y//

�
C �.x/1¹t�0º.t/;

Theorem 4.1 (Renewal Theorem; Kesseböhmer and Kombrink [33, Theorem 3.1]). Sup-
pose that †C is a topologically mixing, one-sided, countable Markov shift with (BIP) and
f W †C ! R is a strictly positive, non-arithmetic, locally Hölder continuous function so that
there exists a unique ı > 0 so that P.�ıf / D 0 and

R
†C tf d��ıf < C1 for all t in some

neighborhood of ı, where ��ıf is an equilibrium state for �ıf . If � W †C ! R is non-
negative, bounded, not identically zero, and locally Hölder continuous and there exists c > 0
such that

Nf .�; x; t/ � ce
tı ;

then

Nf .�; x; t/ �
etı

ı
h�ıf .x/

R
†C � d��ıfR
†C f d��ıf

as t !1,

uniformly for x 2 †C, where h�ıf W †C ! R is a bounded strictly positive function so that
L�ıf h�ıf D h�ıf , ��ıf is a probability measure on †C so that L�

�ıf
��ıf D ��ıf and

��ıf D h�ıf ��ıf .

Remark 4.2. The Renewal Theorem we state above is a special case of [33, Theo-
rem 3.1 (i)]. Following the notations in [33], in our case � D 0 and

fy.t/ D

´
1; t � 0;

0; otherwise:

Kesseböhmer and Kombrink [33] in place of our assumption of non-arithmeticity only require
the weaker assumption that f is not a lattice, i.e. that f is not cohomologous to a function so
that ¹Snf .x/ W x 2 †Cº does not lie in a discrete subgroup of R. Moreover, since fy.t/ � 0,R1
�1

e�T ıfy.T / dT D
1
ı

, andNf .�; x; t/ D 0 for t < 0when f is strictly positive, their con-
ditions (B) and (D) are satisfied. So, it only remains to check that their condition (C) is satisfied,
which translates to the existence of c > 0 such that

Nf .�; x; t/ � ce
tı :

We first check that a weak entropy gap at infinity implies such a bound on Nf .1; x; t/.
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Lemma 4.3. Suppose that †C is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f W †C ! R is a strictly positive, locally Hölder continuous function with
a weak entropy gap at infinity. Let ı > d.f / be the unique constant such that P.�ıf / D 0.
Then there exists C > 0 such that

Nf .1; x; t/ D
1X
nD0

X
y2��n.x/

1¹Snf .y/�tº.y/ � Ce
tı

for all x 2 †C and t > 0.

We adopt the strategy of Lalley [36, Lemma 8.1].

Proof. Define for all x 2 †C and t > 0,

G.x; t/ D e�tı
Nf .1; x; t/
h�ıf .x/

;

where h�ıf is the eigenfunction for the transfer operator given by Theorem 2.5. Let

yG.t/ D sup¹G.x; s/ W x 2 †C; s � tº:

Notice that yG.t/ is finite for all t > 0, since h�ıf is bounded away from 0, and for any fixed
t > 0 there exists only finitely many a 2 A so that I.f; a/ � t (which implies that there are
only finitely many n and only finitely many y 2 ��n.x/, for each n, so that Snf .y/ � t ). Since
h�ıf is bounded away from 0 and1, it remains to show that there exists yC so that yG.t/ � yC
for all t > 0.

The renewal equation (4.1) implies that

G.x; t/ D
X

yW�.y/Dx

G.y; t � f .y//e�ıf .y/
h�ıf .y/

h�ıf .x/
C

e�tı

h�ıf .x/

for all t > 0. Since h�ıf .x/ is the eigenfunction of L�ıf with eigenvalue 1 D eP.�ıf /, we
have X

yW�.y/Dx

e�ıf .y/
h�ıf .y/

h�ıf .x/
D
.L�ıf h�ıf /.x/

h�ıf .x/
D 1:

If c D c.f / D infx2†C f .x/ > 0, then

G.x; t/ � yG.t � c/C
e�tı

h�ıf .x/

for all x 2 †C and t � c. Therefore,

yG.mc/ � yG.c/C yH

mX
nD1

e�cnı

for all m 2 N, where
yH D sup

²
1

h�ıf .x/
W x 2 †C

³
:

Since yG is increasing, it follows that

yG.t/ � yC D yG.c/C yH

1X
nD1

e�cnı

for all t > 0, which completes the proof.
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If � W †C ! R is bounded, non-negative and locally Hölder continuous, then

Nf .�; x; t/ �
�

sup
x2†C

�.x/
�
Nf .1; x; t/;

so Lemmas 3.3, 3.4 and 4.3 together imply that we can apply the Renewal Theorem to � when
f is strictly positive and has a weak entropy gap at infinity.

Corollary 4.4. Suppose that†C is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f W †C ! R is a strictly positive, non-arithmetic, locally Hölder contin-
uous function with a weak entropy gap at infinity, P.�ıf / D 0. If � W †C ! R is bounded,
non-negative, not identically zero and locally Hölder continuous, then

Nf .�; x; t/ �
etı

ı
h�ıf .x/

R
†C � d��ıfR
†C f d��ıf

as t !1,

uniformly for x 2 †C, where h�ıf W †C ! R is a bounded strictly positive function so that
L�ıf h�ıf D h�ıf , ��ıf is a probability measure on †C so that L�

�ıf
��ıf D ��ıf and

��ıf D h�ıf ��ıf is the equilibrium state for �ıf .

5. Preparing to count

In this section we develop the technical tools needed in the proofs of our counting result.
The majority of these results bound the size of various subsets of the shift space. Most impor-
tantly, we show that if y 2 ��n.x/ and Snf .y/ is “large,” then “typically” Snf .y/ is close
to n

R
†C f d��ıf . These results and their proofs generalize Lalley [36, Theorem 6]. The fact

that our Markov shift is countable requires more delicate control of error estimates.
For each cylinder p, we choose a sample point zp 2 p which is not periodic. We then

define
W.n; p; t/ D

X
y2��n.zp/

1p.y/1¹xWSnf .x/�tº.y/

D #.p \ ��n.zp/ \ ¹x W Snf .x/ � tº/:

We show that the W.n; p; t/ may be used to approximate the size of Mf .n; t/. This allows us
to replace the counting of fixed points with counting of pre-images of our sample points.

If k 2 N, let ƒk be the countable partition of †C into k-cylinders.

Lemma 5.1. Suppose that †C is a topologically mixing, one-sided countable Markov
shift with (BIP), f W †C ! R is locally Hölder continuous strictly positive and has a weak
entropy gap at infinity. If P.�ıf / D 0 and ��ıf is the equilibrium state for �ıf , then

(i) If vk D inf¹��ıf .p/ W p 2 ƒkº, then limk!1 vk D 0.

(ii) For any p 2 ƒk and n � k there exists a bijection

‰np W Fixn \ p ! ��n.zp/ \ p:

(iii) There exists a sequence ¹�kº such that lim �k D 0 and if y 2 Fixn \ p and n � k, then

jSnf .y/ � Snf .‰
n
p .y//j � �k :
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(iv) If n � k, then X
p2ƒk

W.n; p; t � �k/ � #Mf .n; t/ �
X
p2ƒk

W.n; p; t C �k/:

Moreover, for all k 2 N and s 2 .d.f /; ı/, there exists C.k; s/ > 0 such that for any
n < k and t > 0,X

p2ƒk

W.n; p; t/ � C.k; s/est and #Mf .k; t/ � C.k; s/e
st :

Proof. Let us recall that since ��ıf is a Gibbs state for �ıf (see Theorem 2.2) and
P.�ıf / D 0, there exists B > 1 such that for every p 2 ƒk , and x 2 p

��ıf .p/ � Be
�ıSkf .x/:

Since f is strictly positive, limk!1 inf¹Sk.x/ W x 2 †Cº D C1, so (i) holds.
Given p 2 ƒk , we define an explicit bijection

‰np W Fixn \ p ! ��n.zp/ \ p:

If y D y1y2 � � �yn 2 Fixn \ p, then let

‰np .y/ D y1 � � �ynz1 � � � zm � � � :

Note that since y1 D z1 and y1 � � �yn 2†C, we must have tyny1 D tynz1 D 1, so‰np .y/2†
C.

The map‰np is injective by definition. If x 2 ��n.zp/\p, then, since n � k, xnC1 D z1 D x1,
which implies that x1 � � � xn 2 Fixn\p, so‰np is also surjective. Thus, we have established (ii).

Since f is locally Hölder continuous, there exist B > 0 and r 2 .0; 1/ so that

jf .x/ � f .y/j � Br l

if xi D yi for all i � l . Therefore, if y 2 Fixn \ p, then, since zp 2 p, yi D ‰np .y/i for all
i � nC k, so

jSnf .y/ � Snf .‰
n
p .y//j � �k D B

1X
lDk

r l :

The first statement in (iv) follows immediately from (ii) and (iii). Choose b 2 .d.f /; z/.
Lemma 3.1 implies that there exists D so that

B1.f; t/ D #¹a 2 A W I.f; a/ � tº � Debt :

If
c D c.f / D inf

x2†C
f .x/ D inf

a2A
I.f; a/ > 0

and r 2 N, then

B2.f; rc/ D #¹.a1; a2/ 2 A �A W I.f; a1/C I.f; a2/ � rcº

�

rX
sD1

B1.f; rc � sc/B1.f; sc/ �

rX
sD1

D2ebrc D rD2ebrc :
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We may use the argument above to inductively show that

Bk.f; rc/ D #

´
.ai / 2 Ak

W

kX
iD1

I.f; ai / � rc

µ
� rk�1Dkebrc :

Notice that X
p2ƒk

W.n; p; rc/ � Bn.f; rc/ and #Mf .k; rc/ � Bk.f; rc/

so (iv) follows.

We set up some convenient notation. If x 2 †C, let

W.x; t/ D ¹y 2 †C W �n.y/ D x; Snf .y/ � t for some n � 1º

Observe that if x is not periodic and y 2 W.x; t/, there is a unique n.y/ so that �n.y/.y/ D x.
If x is not periodic and � > 0, we let

W.x; t;� �/ D

²
y 2 W.x; t/ W

ˇ̌̌̌
t

n.y/
� xf

ˇ̌̌̌
� �

³
and

W.x; t; > �/ D

²
y 2 W.x; t/ W

ˇ̌̌̌
t

n.y/
� xf

ˇ̌̌̌
> �

³
D W.x; t/ �W.x; t;� �/;

where xf D
R
†C f d��ıf . Moreover, let

W.x; t/ D #W.x; t/;

W.x; t; < �/ D #W.x; t;� �/;

W.x; t; > �/ D #W.x; t; > �/ D W.x; t/ �W.x; t;� �/:

The crucial technical result we need for the proof of our counting result is a uniform
bound on the growth of W.x; t; > �/.

Proposition 5.2. Suppose that †C is a topologically mixing, one-sided, countable
Markov shift with (BIP) and f W †C ! R is a strictly positive, locally Hölder continuous
function with a weak entropy gap at infinity. Let ı > d.f / be the unique constant such that
P.�ıf / D 0. Given � > 0, there exist D > 0 and b < ı so that

W.x; t; > �/ � Debt

for any non-periodic x 2 †C.

Proof. Fix, for the entire proof, � 2 .0;
xf
2
/.

Theorem 2.6 implies that if s > d.f /, then there exist Rs > 0 and �s 2 .0; 1/ so that

(5.1)




e�nP.�sf /Ln

�sf 1.x/ � h�sf .x/
Z

1 d��zf





 � Rs�ns :
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If s > ı, then P.�sf / < 0, since P.�ıf / D 0 and s ! P.�sf / is monotone decreas-
ing and continuous on .d.f /;1/ (by Lemma 3.3). Then, for any m 2 N and t > 0,X

n�m

X
y2��n.x/

1¹Snf .y/�tº.y/ �
X
n�m

X
y2��n.x/

e�s.Snf .y/�t/

D est
X
n�m

.Ln
�sf 1/.x/

� est
X
n�m

enP.�sf /.h�sf .x/CRs�
n
s /

� est
�
emP.�sf /

1 � eP.�sf /
.Hs CRs/

�
;

where Hs D sup¹h�sf .x/ W x 2 †Cº.
If t
n.y/
� xf < ��, then

n.y/ xf > t C n.y/� and n.y/ >
t

xf � �
;

so n.y/ xf > t.1C �1/, where �1 D �
xf ��

. Given t > 0, let

mt D

�
t .1C �1/

xf

�
:

Then

#
²
y 2 W.x; t/ W

t

n.y/
� xf < ��

³
�

X
n�mt

X
y2��n.x/

1¹Snf .y/�tº.y/

� est
�
emtP.�sf /

1 � eP.�sf /
.Hs CRs/

�
� D0e

stCmtP.�sf /;

where
D0 D D0.s; f; �/ D

Hs CRs

1 � eP.�sf /
:

Since d
ds
jsDıP.�sf / D � xf < 0 (by Theorem 2.4), we may also choose s > ı so that

b0 WD s C
1C �1
xf

P.�sf / < ı:

Notice that b0 does depend on �. With this choice of s,

#
²
y 2 W.x; t/ W

t

n.y/
� xf < ��

³
� D0e

b0t :

One can similarly show that there exist D1 > 0 and b1 2 .d.f /; ı/ so that

#
²
y 2 W.x; t/ W

t

n.y/
� xf > �

³
� D1e

b1t :

(In this case, we choose r 2 .d.f /; ı/ so that

b1 WD r C
1 � �2
xf

P.�rf / < ı;
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where �2 D �
xfC�

> 0. We then use equation (5.1) and an analysis similar to the one above to
show that

#
®
y 2 W.x; t/ W

t

n.y/
� xf > �

¯
� D1e

t
�
rC

1��2
xf
P.�rf /

�
;

where D1 D D1.r; f; �/ D eP.�rf /.Hr CRr/.)
So,

W.x; t; > �/ � D0e
b0t CD1e

b1t � Debt

where D D D0 CD1 and b D max¹b1; b2º < ı.

Corollary 5.3. Suppose that†C is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f W †C ! R is a strictly positive, locally Hölder continuous function with
a weak entropy gap at infinity. Let ı > d.f / be the unique constant such that P.�ıf / D 0.
Then, given any � > 0, there exists a > 0 so that:

(1) There exists yD > 0 so that
W.x; t; > �/

W.x; t/
� yDe�at

for any non-periodic x 2 †C.

(2) Given any cylinder p, there exists Dp so that

#.W.x; t; > �/ \ p/

#.W.x; t/ \ p/
� Dpe

�at

for any non-periodic x 2 †C.

Proof. By Corollary 4.4 we can apply the Renewal Theorem with � D 1 to see that

Nf .1; x; t/ D W.x; t/C 1 D
X
n�0

X
�n.y/Dx

1¹Snf .y/�tº.y/ �
h�ıf .x/

ı xf
etı

uniformly in x 2 †C, where � indicates that the ratio goes to 1 as t !1. Since there exist
b < ı and D > 0 so that W.x; t; > �/ � Debt , (1) holds with a D ı � b and some yD > 0.

We can similarly apply the Renewal Theorem with � D 1p to conclude that

Nf .1p; x; t/ D #.W.x; t/ \ p/C 1 D
X
n�0

X
�n.y/Dx

1p1¹Snf .y/�tº.y/ �
�.p/h�ıf .x/

ı xf
etı

uniformly in x 2 †C. Since �.p/ > 0 and

#.W.x; t; > �/ \ p/ � W.x; t; > �/ � Debt ;

assertion (2) holds for some Dp depending on the cylinder p.

The following result will allow us to bound the error terms in our approximations. Given
T > 0, let

P kT D ¹p 2 ƒk W Skf .zp/ � T º and QkT D ƒk � P
k
T :

Notice that P kT is finite for all k and T .
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Corollary 5.4. Suppose that†C is a topologically mixing, one-sided, countable Markov
shift with (BIP) and f W †C ! R is a strictly positive, locally Hölder continuous function with
a weak entropy gap at infinity. Let ı > d.f / be the unique constant such that P.�ıf / D 0.

(1) There exists G > 0 so thatX
n�1

X
¹y2��n.x/º

1

n
1¹Snf .y/�tº.y/ � G

etı

t

for any x 2 †C and all t > 0.

(2) If k 2 N and t > T > 0, thenX
n>k

X
¹y2��n.x/º

1

n
1QkT .y/1¹Snf .y/�tº.y/ � Ge

�T ı etı

t � T
:

Proof. Fix some � > 0. Recall from Lemma 4.3 that W.x; t/ � Cetı for all x 2 †C.
Then X

n�1

X
y2��n.x/

1

n
1¹Snf .y/�tº.y/ D

X
y2W.x;t;��/

1

n.y/
C

X
y2W.x;t;>�/

1

n.y/

�

X
y2W.x;t;��/

�
xf C �

t

�
1.y/C

X
y2W.x;t;>�/

1.y/

� Cetı
�
xf C �

t

�
C . yDe�at /Cetı :

So, (1) holds for some G > 0.
Now notice thatX
n>k

X
y2��n.x/

1

n
1QkT .y/1¹Snf .y/�tº.y/ �

X
n>k

1

n

X
y2�k�n.x/

1¹Sn�kf .y/�t�T º.y/

D

X
m�1

X
w2��m.x/

1

mC k
1¹Smf .w/�t�T º.w/

�

X
m�1

X
w2��m.x/

1

m
1¹Smf .w/�t�T º.w/

� Ge�ıT
etı

t � T

which completes the proof of (2).

6. Counting

Proof of Theorem A. First notice that Lemma 3.2 implies that we may assume that f is
strictly positive and has a weak entropy gap at infinity.

We simplify notation by setting � D ��ıf , � D ��ıf , h D h�ıf , and xf D
R
f d�,

where h�ıf W †C ! R is a bounded strictly positive function so that L�ıf h�ıf D h�ıf ,
��ıf is a probability measure on †C so that L�

�ıf
��ıf D ��ıf and ��ıf D h�ıf ��ıf is

the equilibrium state for �ıf .
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Suppose that p 2 ƒk . Corollary 4.4 implies that we can apply the Renewal Theorem
(Theorem 4.1) with � D 1p. Therefore,

L.p; t/ WD #.W.zp; t / \ p/ D
X
n�1

X
y2��n.zp/

1p.y/1¹Snf .y/�tº.y/ � C.p/e
tı ;

where

C.p/ D
h.zp/�.p/

ı xf
:

Fix, for the moment, p 2 ƒk . We define

yL.p; t/ WD
X
n�1

1

n
W.n; p; t/ D

X
y2W.zp;t/

1

n.y/
1p.y/:

Then

yL.p; t/ D
X

y2W.zp;t;��/

1

n.y/
1p.y/C

X
y2W.zp;t;>�/

1

n.y/
1p.y/

�

X
y2W.zp;t;��/

�
xf C �

t

�
1p.y/C

X
y2W.zp;t;>�/

1p.y/:

Since, by Corollary 5.3,

#.W.zp; t; > �/ \ p/ � Dpe
�at#.W.zp; t / \ p/

for some Dp; a > 0, it follows that

lim sup
t!1

t yL.p; t/

L.p; t/
� xf C �:

Similarly,

yL.p; t/ D
X
n�1

1

n
W.n; p; t/ �

X
y2W.zp;t;��/

�
xf � �

t

�
1p.y/

so

lim inf
t!1

t yL.p; t/

L.p; t/
� xf � �:

By letting � ! 0, we see that

yL.p; t/ �
xf L.p; t/

t
�
C.p/ xf

t
etı :

Now suppose that P is a subset of ƒk and define

L.P; t/ D
X
p2P

L.p; t/ and yL.P; t/ D
X
p2P

yL.p; t/:

The above analysis implies that if P is finite, then

L.P; t/ �
X
p2P

C.p/etı and yL.P; t/ �
X
p2P

C.p/ xf

t
etı :
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Notice that if T > 0 and t > T , then Corollary 5.4 and Lemma 5.1 imply that there exists
Ck > 0 so that

t yL.P kT ; t /

etı
�
t yL.ƒk; t /

etı
�
t yL.P kT ; t /

etı
C tCke

.s�ı/t
CGe�ıT

t

t � T

for some s 2 .d.f /; ı/, so

xf
X
p2PkT

C.p/ � lim inf
t!1

t yL.ƒk; t /

etı
� lim sup

t!1

t yL.ƒk; t /

etı
� xf

X
p2PkT

C.p/CGe�ıT :

Applying the above inequality to the sequence ¹P kT ºT2N , we conclude that

yL.ƒk; t / �
X
p2ƒk

C.p/ xf

t
etı :

Lemma 5.1 implies that, given k 2 N there exists s < ı and Ck > 0 so that

X
p2ƒk

kX
nD1

1

n
W.n; p; t/ � Cke

st and
kX
nD1

1

n
#.Mf .n; t// � Cke

st

and X
p2ƒk

1X
nDk

1

n
W.n; p; t � �k/ �

1X
nDk

1

n
#.Mf .n; t//

�

X
p2ƒk

1X
nDk

1

n
W.n; p; t C �k/:

Therefore, recalling that

Mf .t/ D
X
n�1

1

n
#.Mf .n; t//;

we see that
yL.ƒk; t � �k/ � Cke

st
�Mf .t/ � yL.ƒk; t C �k/C Cke

st ;

so

e�ı�k xf
X
p2ƒk

C.p/ � lim inf
t!1

tMf .t/

etı
� lim sup

t!1

tMf .t/

etı
� eı�k xf

X
p2ƒk

C.p/:

Since h is bounded and continuous and vk D sup¹�.p/ W p 2 ƒkº ! 0 as k !1, by
Lemma 5.1 (i), X

p2ƒk

C.p/ D
1

ı xf

X
p2ƒk

h.zp/�.p/!

R
h d�

ı xf
D

1

ı xf

as k !1. Moreover, lim �k D 0. So, finally, we may conclude that

Mf .t/ �
etı

tı

as desired.
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7. Equidistribution

We are almost ready to prove our equidistribution result, but first we must develop one
more bound in the spirit of [36, Theorem 6].

7.1. Preparing to equidistribute. Suppose that f W †C ! R and g W †C ! R are
both strictly positive, f has a weak entropy gap at infinity and P.�ıf / D 0. We simplify
notation, throughout the section, by letting � D ��ıf denote the equilibrium state of �ıf and
setting xf WD

R
f d� and xg WD

R
g d�. Since f and g are strictly positive,

c.f / D inf¹f .x/ W x 2 †Cº > 0 and c.g/ D inf¹g.x/ W x 2 †Cº > 0:

Proposition 7.1. Suppose that †C is a topologically mixing, one-sided, countable
Markov shift with (BIP) and f W †C ! R is a strictly positive, locally Hölder continuous
function with a weak entropy gap at infinity. Let ı > d.f / be the unique constant such that
P.�ıf / D 0. Further suppose that g W †C ! R is strictly positive and that there exists C > 0

so that jf .x/ � g.x/j � C for all x 2 †C. Given � > 0, there exist A > 0 and a < ı so that

#
²
y 2 W.x; t/ W

ˇ̌̌̌
Sng.y/

n.y/
� xg

ˇ̌̌̌
> �;

ˇ̌̌̌
t

n.y/
� xf

ˇ̌̌̌
� �

³
� Aeat

for any non-periodic x 2 †C.

Proof. Fix � > 0. We may assume that � < min¹c.f /; c.g/º.
If Sn.y/g.y/

n.y/
� xg < ��, then

Sn.y/g.y/ < n.y/xg � n.y/�:

If, in addition, j t
n.y/
� xf j � �, then

t � n.y/. xf C �/;

so
Sn.y/g.y/ < n.y/xg � n.y/�

� n.y/xg � n.y/
�

2
�

t�

2. xf C �/

� n.y/.xg � �3/ � t�3;

where

�3 D max
²
�

2
;

�

2. xf C �/

³
> 0:

Proposition 3.6 implies that the function s ! P.�sg � ıf / is monotone decreasing
and well defined on .d.f / � ı;1/. So, if s > 0, then P.�sg � ıf / < 0. Moreover, there
exist an equilibrium state ��sg�ıf for �sg � ıf and an eigenfunction h�sg�ıf for L�sg�ıf
with eigenvalue eP.�sg�ıf / < 1. Furthermore, as d

ds
jsD0P.�sg � ıf / D �xg < 0 (by Theo-

rem 2.4), we may choose s > 0 so that

�d0 WD s.xg � �3/C P.�sg � ıf / < 0:

Theorem 2.6 implies that there exist xRs > 0 and x�s 2 .0; 1/ so that



e�nP.�sg�ıf /L�sg�ıf 1 � h�sg�ıf .x/
Z

1 d��sg�ıf





 � Rsx�ns



Bray, Canary, Kao and Martone, Counting and equidistribution 29

for all n 2 N. Therefore,

#
²
y 2 W.x; t/ W

Sng.y/

n.y/
� xg < ��;

ˇ̌̌̌
t

n.y/
� xf

ˇ̌̌̌
� �

³
�

X
n�0

X
�n.y/Dx

1¹yWSng.y/�n�.xg��3/�t�3; Snf .y/�tº.y/

�

X
n�0

X
�n.y/Dx

e�s.Sng.y/�n.xg��3/Ct�3/�ı.Snf .y/�t/

D etı�st�3
X
n�0

en.s.xg��3/CP.�sg�ıf //
�
e�nP.�sg�ıf /Ln

�sg�ıf 1
�

� etı�st�3
X
n�0

�
h�sg�ıf .x/C xRsx�

n
s

�
e�nd0

� D0e
tı�st�3

for all x 2 †C, and some D0 > 0 (which depends on �, s, g and f ).
One may similarly show that there exist �4 > 0, r < 0 and D1 > 0 so that

#
²
y 2 W.x; t/ W

Sng.y/

n.y/
� xg > �;

ˇ̌̌̌
t

n.y/
� xf

ˇ̌̌̌
� �

³
� D1e

tıCrt�4 :

Therefore, our result holds with A D D0 CD1 and a D max¹ı � s�3; ı C r�4º.

7.2. Proof of Theorem B. Lemma 3.2 again implies that we may assume that f and
g are strictly positive and f has a weak entropy gap at infinity. Recall, from Lemma 5.1, that
there exists a sequence ¹�kº so that lim �k D 0, and, for any p 2 ƒk and n � k, there exists
a bijection

‰np W Fixn \ p ! ��n.zp/ \ p

so that
jSnf .x/ � Snf .‰

n
p .x//j � �k and jSng.x/ � Sng.‰

n
p .x//j � �k

for all x 2 Fixn \ p. Since lim �k D 0, there exists k0 so that if n � k � k0, then

c D min¹c.f /; c.g/º > 2�k :

We assume from now on that k � k0. Then, if p 2 ƒk ,X
n�k

1

n

X
x2Fixn\p
Snf .x/�t

Sng.x/

Snf .x/
�

X
y2W.zp;tC�k/\p

1

n.y/

�
Sng.y/C �k

Snf .y/ � �k

�
1¹n.y/�kº.y/

and X
n�k

1

n

X
x2Fixn\p
Snf .x/�t

Sng.x/

Snf .x/
�

X
y2W.zp;t��k/\p

1

n.y/

�
Sng.y/ � �k

Snf .y/C �k

�
1¹n.y/�kº.y/:

Since there exists C > 0 so that jf .x/ � g.x/j � C for all x 2 †C, Sn.y/f .y/ � cn.y/
for all y 2 †C and c > 2�k , we see that

Sng.y/

Snf .y/
�
nC C Snf .y/

Snf .y/
� yC D

C

c
C 1 and

Sn.y/g.y/C �k

Sn.y/f .y/ � �k
� 3 yC :
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Let

V.x; t;� �/ D

²
y 2 W.x; t/ W

ˇ̌̌̌
Snf .y/

n.y/
� xf

ˇ̌̌̌
� �;

ˇ̌̌̌
Sng.y/

n.y/
� xg

ˇ̌̌̌
� �

³
:

Given � > 0 so that 2� C 2�k < xf , Proposition 5.2 together with Proposition 7.1, applied to
both f and g, imply that there exist yA > 0 and ya < ı so that

#
�
W.x; t/ n V.x; t;� �/

�
� yAeyat

for all t > 0. Further recall that we saw in the proof of Theorem A that

yL.p; t/ D
X

y2W.zp;tC�k/\p

1

n.y/
� C.p/ xf

etı

t
:

Notice that

U.p; t C �k/ WD
X

y2W.zp;tC�k/\p

1

n.y/

�
Sn.y/g.y/C �k

Sn.y/f .y/ � �k

�

�

� X
y2V.zp;tC�k ;��/\p

1

n.y/

�
xg C � C �k

n.y/

xf � � � �k
n.y/

��
C 3 yC#

�
W.zp; t C �k/ n V.zp; t C �k;� �/

�
C 3 yC

k�1X
nD1

W.n; p; t/

and recall, from Lemma 5.1, that given s 2 .d.f /; ı/, there exists C.k; s/ so that

W.n; p; t/ � C.k; s/est and #Mf .t/ � C.k; s/e
st

for all n < k. Therefore,

lim sup
t!1

U.p; t C �k/

yL.p; t C �k/
�
xg C � C �k
xf � � � �k

:

Letting � ! 0, we see that

lim sup
t!1

U.p; t C �k/

yL.p; t C �k/
�
xg C �k
xf � �k

:

We can similarly show that if

Z.p; t � �k/ D
X

y2W.zp;t��k/

1

n.y/
1p.y/

�
Sng.y/ � �k

Snf .y/C �k

�
;

then

lim inf
t!1

Z.p; t � �k/

yL.p; t � �k/
�
xg � �k
xf C �k

:
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Therefore,
xg � �k
xf C �k

� lim inf
t!1

1

yL.p; t � �k/

X
n�k

1

n

X
x2Fixn\p
Snf .x/�t

Sng.x/

Snf .x/

� lim sup
t!1

1

yL.p; t C �k/

X
n�k

1

n

X
x2Fixn\p
Snf .x/�t

Sng.x/

Snf .x/

�
xg C �k
xf � �k

:

Since P kT is a finite set of cylinders, for any T and k, we see that

xg � �k
xf C �k

� lim inf
t!1

1

yL.PT ; t � �k/

X
n�k

1

n

X
x2Fixn\PkT
Snf .x/�t

Sng.x/

Snf .x/

� lim sup
t!1

1

yL.P kT ; t C �k/

X
n�k

1

n

X
x2Fixn\PkT
Snf .x/�t

Sng.x/

Snf .x/

�
xg C �k
xf � �k

:

Now notice that if t > T > 0, Corollary 5.4 implies thatX
n�k

1

n

X
x2Fixn\QkT
Snf .x/�t

Sng.x/

Snf .x/
� 3 yC yL.QkT ; t / � 3

yCGe�ıT
etı

t � T
:

Therefore, as in the proof of Theorem A, we conclude that

xg � �k
xf C �k

� lim inf
t!1

1

yL.ƒk; t � �k/

X
n�k

1

n

X
x2Fixn
Snf .x/�t

Sng.x/

Snf .x/

� lim sup
t!1

1

yL.ƒk; t C �k/

X
n�k

1

n

X
x2Fixn
Snf .x/�t

Sng.x/

Snf .x/

�
xg C �k
xf � �k

:

Recall that lim �k D 0,

yL.ƒk; t � �k/ � Cke
st
�Mf .t/ � yL.ƒk; t C �k/C Cke

st

for all t > 0, and that

lim
t!1

Mf .t/
tı

eıt
D 1;

so we see that
1X
nD1

1

n

X
x2Fixn
Snf .x/�t

Sng.x/

Snf .x/
�
xg

xf

etı

tı

as desired. This completes the proof of Theorem B.
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8. The Manhattan curve

Suppose that f W †C ! R is locally Hölder continuous, strictly positive and has a strong
entropy gap at infinity and that g W †C ! R is also strictly positive and locally Hölder contin-
uous and there exists C > 0 so that jf .x/ � g.x/j < C for all x 2 †C. In this case,

c.f / D inf¹f .x/ W x 2 †Cº > 0 and c.g/ D inf¹g.x/ W x 2 †Cº > 0:

In this case we define, the enlarged Manhattan curve

C0.f; g/ D ¹.a; b/ 2 D.f; g/ W P.�af � bg/ D 0º;

where
D.f; g/ D ¹.a; b/ 2 R2 W ac.f /C bc.g/ > 0 and aC b > 0º:

Notice that if f W †C ! R and g W †C ! R are both eventually positive and locally
Hölder continuous, f has a strong entropy gap at infinity and there exists a constant C so
that jf .x/ � g.x/j � C for all x 2 †C, Lemma 3.2 implies that f and g are cohomolo-
gous to yf W †C ! R and yg W †C ! R (respectively) which are both strictly positive and
locally Hölder continuous, yf has a strong entropy gap at infinity and there exists yC so that
j yf .x/ � yg.x/j � yC for all x 2 †C. Since C.f; g/ D C. yf ; yg/, Theorem C follows from the
following stronger statement for strictly positive functions.

Theorem C*. Suppose that .†C; �/ is a topologically mixing, one-sided countable
Markov shift with (BIP), f W †C ! R is locally Hölder continuous, strictly positive and has
a strong entropy gap at infinity and g W †C ! R is also strictly positive and locally Hölder
continuous. If there exists C > 0 so that jf .x/ � g.x/j < C for all x 2 †C, then:

(1) .ı.f /; 0/; .0; ı.g// 2 C0.f; g/.

(2) If .a; b/ 2 D.f; g/, there exists a unique t > d.f /
aCb

so that .ta; tb/ 2 C0.f; g/.

(3) C0.f; g/ is an analytic curve.

(4) C0.f; g/ is strictly convex, unless

(8.1) Snf .x/ D
ı.g/

ı.f /
Sng.x/

for all x 2 Fixn and n 2 N.

Moreover, the tangent line to C0.f; g/ at .a; b/ has slope

s.a; b/ D �

R
†C g d��af �bgR
†C f d��af �bg

:

Proof. By definition, .ı.f /; 0/ and .0; ı.g// lie on C0.f; g/ so (1) holds.
Notice that, since

ˇ̌
S.f; a/ � S.g; a/

ˇ̌
� C for all a 2 A, d.f / D d.g/ and g also has

a strong entropy gap at infinity. Moreover, if .a; b/ 2 D.f; g/, then af C bg is strictly positive,
has a strong entropy gap at infinity and

d.af C bg/ D
d.f /

aC b
:
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Lemma 3.3 implies that if .a; b/ 2 D.f; g/, then the function t ! P.�t .af C bg// is proper
and strictly decreasing on the open interval .d.f /

aCb
;1/, so there exists a unique t > d.f /

aCb
so that

P.�t .af C bg// D 0:

Thus, (2) holds.
Lemma 3.4 implies that there is an equilibrium state ��af �bg for �af � bg and thatZ

†C
.�af � bg/ d��af �bg

is finite. Notice that if .c; d/ 2 D.f; g/, then the ratio cfCdg
afCbg

is bounded, this implies thatZ
†C
.cf C dg/ d��af �bg

is also finite. Theorem 2.4 then implies that if .a; b/ 2 D.f; g/, then
à
àa
P.�af � bg/ D

Z
†C
�f d��af �bg

and
à
àb
P.�af � bg/ D

Z
†C
�g d��af �bg :

Since f is strictly positive,
R
†C �f d��af �bg is non-zero, so P is a submersion on D.f; g/.

The implicit function theorem then implies that

C0.f; g/ D ¹.a; b/ 2 D.f; g/ W P.�af � bg/ D 0º

is an analytic curve and that if .a; b/ 2 C0.f; g/ then the slope of the tangent line to C0.f; g/

at .a; b/ is given by

s.a; b/ D �

R
†C g d��af �bgR
†C f d��af �bg

:

Since P is convex, see Sarig [62, Proposition 4.4], C0.f; g/ is convex. A convex analytic
curve is strictly convex if and only if it is not a line. So it remains to show that f and g satisfy
equation (8.1) if and only if C0.f; g/ is a straight line.

If C0.f; g/ is a straight line, then by (1) it has slope � ı.f /
ı.g/

. In particular,

(8.2) � s.ı.f /; 0/ D
ı.f /

ı.g/
D

R
†C g d��ı.f /fR
†C f d��ı.f /f

D

R
†C g d��ı.g/gR
†C f d��ı.g/g

:

By definition,

h� .��ı.g/g/ � ı.g/

Z
†C

g d��ı.g/g D 0

so, applying equation (8.2), we see that

h� .��ı.g/g/� ı.f /

Z
†C

f d��ı.g/g D ı.g/

Z
†C

g d��ı.g/g � ı.f /

Z
†C

f d��ı.g/g D 0:

Since P.�ı.f /f / D 0, this implies that ��ı.g/g is an equilibrium state for �ı.f /f . There-
fore, by uniqueness of equilibrium states we see that ��ı.f /f D ��ı.g/g . Sarig [62, Theo-
rem 4.8] showed that this only happens when �ı.f /f and �ı.g/g are cohomologous, so the
Livsic Theorem (Theorem 2.1) implies that this occurs if and only if

Snf .x/ D
ı.g/

ı.f /
Sng.x/

for all x 2 Fixn and n 2 N. We have completed the proof.
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9. Background for applications

In this section, we recall the background material that we will need to construct the
roof functions described in Theorem D. We will also recall the more general definition of
cusped Anosov representations of geometrically finite Fuchsian groups into SL.d;R/. In the
next section, we will see that Theorem D also extends to this setting.

9.1. Linear algebra. It will be useful to first recall some standard Lie-theoretic nota-
tion. Let

a D ¹.a1; : : : ; ad / 2 Rd W a1 C : : :C ad D 0º

be the standard Cartan algebra for SL.d;R/ and let

aC D ¹.a1; : : : ; ad / 2 a W a1 � � � � � ad º

be the standard choice of positive Weyl chamber. Let a� be the space of linear function-
als on a. For all k 2 ¹1; : : : ; d � 1º, let ˛k W a! R be given by ˛k.Ea/ D ak � akC1. Then
¹˛1; : : : ; ˛d�1º span a� and are the simple roots determining the Weyl chamber aC. It is also
natural to consider the fundamental weights !k 2 a� given by !k.Ea/ D a1 C � � � C ak . Notice
that ¹!1; : : : ; !d�1º is also a basis for a�.

If A 2 SL.d;R/, let
�1.A/ � �2.A/ � � � � � �d .A/

denote the moduli of the generalized eigenvalues of A and let

�1.A/ � �2.A/ � � � � � �d .A/

be the singular values of A. The Jordan projection

` W SL.d;R/! aC is given by `.A/ D .log�1.A/; : : : ; log�d .A//

and the Cartan projection

� W SL.d;R/! aC is given by �.A/ D .log �1.A/; : : : ; log �d .A//:

If ˛k.`.A// > 0, there is a well-defined attracting k-plane which is the plane spanned
by the generalized eigenspaces with eigenvalues of modulus at least �k.A/. Recall that the
Cartan decomposition of A 2 SL.d;R/ has the form A D KDL, where K;L 2 SO.d/ and
D is the diagonal matrix with diagonal entries di i D �i .A/. If ˛k.A/ > 0, then the k-flag
Uk.A/ D K.he1; : : : ; eki/ is well defined, and is the k-plane spanned by the k longest axes of
the ellipsoid A.Sd�1/. (Notice that Uk.A/ is not typically the attracting k-plane even when
˛k.`.A// > 0.)

9.2. Cusped Anosov representations of geometrically finite Fuchsian groups. Sup-
pose that � � PSL.2;R/ is a torsion-free geometrically finite Fuchsian group, which is not
convex cocompact, and let ƒ.�/ be its limit set in àH2.

We will say that a representation � W � ! SL.d;R/ is cusped Pk-Anosov, for some
1 � k � d � 1, if there exist continuous �-equivariant maps

�k� W ƒ.�/! Grk.R
d / and �d�k� W ƒ.�/! Grd�k.R

d /
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so that

(1) �k� and �d�k� are transverse, i.e. if x ¤ y 2 ƒ.�/, then

�k� .x/˚ �
d�k
� .y/ D Rd :

(2) �k� and �d�k� are strongly dynamics preserving, i.e. if j is k or d�k and ¹
nº is a sequence
in � so that 
n.0/! x 2 ƒ.�/ and 
�1n .0/! y 2 ƒ.�/, then if V 2 Grj .Rd / and V
is transverse to �d�j� .y/, then �.
n/.V /! �

j
� .x/.

The original definition of a cusped Pk-Anosov representation in [15] is given in terms of
a flow space, as in Labourie’s original definition [34]. The characterization we give here is a
natural generalization of characterizations of Guéritaud, Guichard, Kassel and Wienhard [23],
Kapovich, Leeb and Porti [31] and Tsouvalas [68] in the traditional setting. Note that our
cusped Pk-Anosov representations are examples of the relatively Anosov representations con-
sidered by Kapovich and Leeb [30] and the relatively dominated representations considered by
Zhu [71].

The following crucial properties of cusped Pk-Anosov representations are established
in [15]. (Several of these properties also follow from work of Kapovich and Leeb [30] and Zhu
[71] once one establishes that our representations fit into their framework.) If � W� ! SL.d;R/
is cusped Pk-Anosov, we define the space of type-preserving deformations

Homtp.�/ � Hom.�;SL.d;R//

to be the space of representations � such that if ˛ 2 � is parabolic, then �.˛/ is conjugate
to �.˛/.

Theorem 9.1 (Canary, Zhang and Zimmer [15]). If � is a geometrically finite Fuchsian
group and � W � ! SL.d;R/ is a cusped Pk-Anosov representation, then:

(1) There exist A; a > 0 so that if 
 2 � , then

Aead.b0;
.b0// � e˛k.�.�.
/// �
1

A
e
d.b0;
.b0//

a ;

where b0 is a basepoint for H2.

(2) There exist B; b > 0 so that if 
 2 � , then

Bebt.
/ � e˛k.`.�.
/// �
1

B
e
t.
/
b ;

where t .
/ is the translation length of 
 on H2.

(3) The limit maps �k� and �d�k� are Hölder continuous.

(4) There exists an open neighborhood U of � in Homtp.�/, so that if � 2 U , then � is
cusped Pk-Anosov.

(5) If � 2 � is parabolic and j 2 ¹1; : : : ; d � 1º, there exist cj .�; �/ 2 Z and Cj .�; �/ > 0
so that

j j̨ .�.�.�
n/// � cj .�; �/ lognj < Cj .�; �/

for all n 2 N. Moreover, if � 2 Homtp.�/, then cj .�; �/ D cj .�; �/.

(6) � has the Pk-Cartan property, i.e. whenever ¹
nº is a sequence of distinct elements of �
such that 
n.b0/ converges to z 2 ƒ.�/, then �k� .z/ D limUk.�.
n//.

(7) � is Pd�k-Anosov.
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9.3. Cusped Hitchin representations. Canary, Zhang and Zimmer [15] also prove that
cusped Hitchin representations are cusped Pk-Anosov for all k, i.e. they are cusped Borel
Anosov, in analogy with work of Labourie [34] in the uncusped case. We say thatA 2 SL.d;R/
is unipotent and totally positive with respect to a basis b D .b1; : : : ; bd / for Rd , if its matrix
representative with respect to this basis is unipotent, upper triangular, and all the minors which
could be positive are positive. Let U>0.b/ denote the set of all such maps. One crucial property
here is that U>0.b/ is a semi-group (see Lusztig [41]).

We say that a basis b D .b1; : : : ; bd / is consistent with a pair .F;G/ of transverse flags if
hbi i D F

i \Gd�iC1 for all i . A k-tuple .F1; : : : ; Fk/ in Fd is positive if there exists a basis b
consistent with .F1; Fk/ and there exists ¹u2; : : : ; ukº 2 U.b/>0 so that Fi D ui � � �u2F1 for
all i D 2; : : : ; d .

IfX is a subset of S1, we say that a map � W X ! Fd is positive if whenever .x1; : : : ; xk/
is a consistently ordered k-tuple in X (ordered either clockwise or counter-clockwise), then
.�.x1/; : : : ; �.xk// is a positive k-tuple of flags.

A cusped Hitchin representation is a representation � W � ! SL.d;R/ such that if 
 2 �
is parabolic, then �.
/ is a unipotent element with a single Jordan block and there exists
a �-equivariant positive map �� W ƒ.�/! Fd . (In fact, it suffices to define �� on the subset
ƒper.�/ consisting of fixed points of peripheral elements of � .)

Theorem 9.2 (Canary, Zhang and Zimmer [15]). If � is a geometrically finite Fuchsian
group and � W � ! SL.d;R/ is a cusped Hitchin representation, then:

(1) � is Pk-Anosov for all 1 � k � d � 1.

(2) � is irreducible.

(3) If ˛ 2 � is parabolic and 1 � k � d � 1, then ck.�; ˛/ D 2.

We remark that Sambarino [58] has independently established that � is irreducible and
that Kapovich and Leeb indicate in [30] that they can prove � is Borel Anosov.

9.4. Codings for geometrically finite Fuchsian groups. A torsion-free convex cocom-
pact Fuchsian group admits a finite Markov shift which codes the recurrent portion of its
geodesic flow. The most basic such coding is the Bowen–Series coding [7]. However, if the
group is geometrically finite, but not convex cocompact, this coding is not well behaved. In
this case one must instead consider the countable Markov shifts constructed by Dal’bo and
Peigné [21] if the quotient has infinite area, and Stadlbauer [66] and Ledrappier and Sarig [38]
if the quotient has finite area.

We summarize the crucial properties of these Markov shifts in the following theorem and
will give a brief description of each coding.

Theorem 9.3 (Dal’bo and Peigné [21], Ledrappier and Sarig [38], Stadlbauer [66]).
Suppose that � is a torsion-free geometrically finite, but not cocompact, Fuchsian group. There
exists a topologically mixing Markov shift .†C;A/ with countable alphabet A with (BIP)
which codes the recurrent portion of the geodesic flow on T 1.H2=�/. There exist maps

G W A! �; ! W †C ! ƒ.�/;

r W A! N; s W A! �
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with the following properties:

(1) ! is locally Hölder continuous and finite-to-one, and !.†C/ D ƒc.�/, i.e. the comple-
ment in ƒ.�/ of the set of fixed points of parabolic elements of � . Moreover, we have
!.x/ D G.x1/!.�.x// for every x 2 †C.

(2) If x 2 Fixn, then !.x/ is the attracting fixed point of G.x1/ � � �G.xn/. Moreover, if

 2 � is hyperbolic, then there exists x 2 Fixn (for some n) so that 
 is conjugate to
G.x1/ � � �G.xn/ and x is unique up to shift.

(3) There exists Q 2 N such that 1 � #.r�1.n// � Q for all n 2 N.

(4) There exists a finite collection P of parabolic elements of � , a finite collection R of
elements of � such that if a 2 A, then s.a/ 2 P [ ¹idº andG.a/ D s.a/r.a/�2ga, where
ga 2 R.

(5) Given a basepoint b0 2 H2, there exists L > 0 so that if x 2 †C and n 2 N, then

d
�
G.x1/ � � �G.xn/.b0/;

�����!
b0!.x/

�
� L:

If � is convex cocompact, then one may use the Bowen–Series [7] coding .†C; �/ which
we briefly recall to set the scene for the more complicated codings we will need in the non-
convex cocompact setting. One begins with a fundamental domain D0 for � , containing the
basepoint b0, all of whose vertices lie in àH2, so that the set of face pairings A ofD0 is a min-
imal symmetric generating set for � . The classical Bowen–Series coding on the alphabet A

can be constructed from a “cutting sequence” which records the intersections .tk/ of a geo-
desic ray

 !
b0z which intersects D0, where z 2 ƒ.�/, with edges of translates of D0 so that the

geodesic is entering 
k.D0/ as it passes through tk . The classical Bowen–Series coding for
 !
b0z

is given by
.xk/ D .
k


�1
k�1/:

Each 
k
�1kC1 is a face-pairing, hence this alphabet A is a finite generating set for � . Thus
one obtains a map G W A! � , the map ! simply takes the word encoding the geodesic ray
�!
b0z to z. Moreover, r.a/ D 1 and s.a/ D id for all a 2 A. A word x in A is allowable in this
coding if and only if G.xiC1/ ¤ G.xi /�1 for any i .

If � is geometrically finite and has infinite area quotient, we may use the Dal’bo–Peigné
coding [21]. Roughly, the Dal’bo–Peigné coding coalesces all powers of a parabolic generator
in the Bowen–Series coding. This alteration allows ! to be locally Hölder continuous. Here
we may begin with fundamental domain D0 for � , containing the origin 0 in the Poincaré disk
model, all of whose vertices lie in àH2, so that the set of face pairings A0 of D0 is a minimal
symmetric generating set for � and such that every parabolic element of � is conjugate to an
element of A0. Let P denote the parabolic elements of A0. We let

A D A0 [ ¹p
n
W n � 2; p 2 P º:

In all cases, G.a/ D a. If a D pn for some p 2 P , then r.a/ D nC 1, s.a/ D p and ga D p,
while if not we set r.a/ D 1, s.a/ D id and ga D a. A word x in A is allowable in this coding if
and only if for any i , G.xiC1/ ¤ G.xi /�1 and if s.xi / 2 P , then s.xiC1/ … ¹s.xi /; s.xi /�1º.
For a discussion of this coding in our language, see Kao [28].

If � is geometrically finite and has a finite area quotient, we cannot use the Dal’bo–Peigné
coding, since there is not a minimal symmetric generating set which contains elements conju-
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gate to every primitive parabolic element of � . Stadlbauer [66] and Ledrappier and Sarig [38]
construct a (more complicated) coding in this setting which has the same flavor and coarse
behavior as the Dal’bo–Peigné coding. One begins with a Bowen–Series coding of � with
alphabet A0. Let C denote a set of minimal length conjugates of primitive parabolic elements.
They then choose a sufficiently large even number 2N so that the length of every element of C

divides 2N and let P be the collection of powers of elements of C of length exactly 2N . Let A1

be the set of all strings .b0; b1; : : : ; b2N / in A0 so that b0b1 � � � b2N is freely reduced in A0 and
so that neither b1b2 � � � b2N or b0b1 � � � b2N�1 lies in P . Let A2 be the set of all freely reduced
strings of the form .b; � t ; �1; : : : ; �k�1; c/, where b 2 A0 � ¹�2N º, � D �1 � � � �2N 2 P ,
�i 2 A0 for all i , t 2 N and c 2 A0�¹�kº. Let A D A1[A2. If aD .b0; b1; : : : ; b2N /2A1,
then G.a/ D b1, r.a/ D 1, s.a/ D id and ga D b1, while if a D .b; � t ; �1 � � � �k�1; c/, then
let G.a/ D � t�1�1 � � � �k�1, r.a/ D t C 1, s.a/ D � and ga D �1 � � � �k�1. The set of allow-
able words is defined so that if x 2 Fixn, then G.x1/ � � �G.xn/ cannot be a parabolic element
of � . (For a more detailed description see Stadlbauer [66], Ledrappier and Sarig [38] or Bray,
Canary and Kao [9].)

9.5. Busemann and Iwasawa cocycles. We will use the Busemann cocycle to define
our roof functions. We first develop the theory we will need in the simpler case where � is
cusped Pk-Anosov for all k. This theory will suffice for all our application to cusped Hitchin
representations, so one may ignore the discussion of partial flag varieties and partial Iwasawa
cocycles on a first reading.

Quint [51] introduced a vector valued smooth cocycle, called the Iwasawa cocycle,

B W SL.d;R/ � Fd ! a;

where Fd is the space of (complete) flags in Rd . Let F0 denote the standard flag

F0 D .he1i; he1; e2i; : : : ; he1; : : : ; ed�1i/:

We can write any F 2 Fd as F D K.F0/ where K 2 SO.d/. If A 2 SL.d;R/ and F 2 Fd ,
the Iwasawa decomposition of AK has the form QZU where Q 2 SO.d/, Z is a diagonal
matrix with non-negative entries, and U is unipotent and upper triangular. Then

B.A; F / D .log z11; : : : ; log zdd /:

One may check that it satisfies the following cocycle property (see Quint [51, Lemma 6.2]):

B.ST; F / D B.S; TF /C B.T; F /:

If A is loxodromic (i.e. ˛k.`.A// > 0 for all k), then the set of attracting k-planes forms
a flag FA, called the attracting flag of A. In this case,

(9.1) B.A; FA/ D `.A/

since if FA D KA.F0/, then AKA is upper triangular and the diagonal entries are the eigenval-
ues with their moduli in descending order. (See Sambarino [56, Lemma 7.5].)

The Iwasawa cocycle is also closely related to the singular value decomposition, also
known as the Cartan decomposition. If A is Cartan loxodromic (i.e. ˛k.�.A// > 0 for all k),
then the flag U.A/ D ¹Uk.A/º is well defined. If W is the involution taking ei to ed�iC1 and
A has Cartan decomposition A D KDL, then A�1 has Cartan decomposition

A�1 D .L�1W /.WD�1W /.WK�1/:
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So if S.A/ D U.A�1/, one may check that B.A; S.A// D �.A/. Moreover, the Cartan decom-
position bounds the Iwasawa cocycle, specifically

kB.A; F /k � k�.A/k

(see Benoist and Quint [2, Corollary 8.20]).
We will make use of the following close relationship between the Iwasawa cocycle and

the Cartan projection.

Lemma 9.4 (Quint [51, Lemma 6.5]). For any � 2 .0; 1/, there exists C > 0 so that if
A 2 SL.d;R/, F 2 Fd , �k.A/ > �kC1.A/ and †.F k; Ud�k.A�1// � �, then

j!k.B.A; F // � !k.�.A//j � C:

Given a representation � W � ! SL.d;R/ of a geometrically finite Fuchsian group � and
a �-equivariant map �� W ƒ.�/! Fd , we define its associated Busemann cocycle

ˇ� W � �ƒ.�/! a

by letting
ˇ�.
; x/ D B.�.
/; �.


�1/.��.x///:

The Busemann cocycle was first defined by Quint [51] and was previously used to power-
ful effect in the setting of uncusped Hitchin representations by Sambarino [55], Martone and
Zhang [43], and Potrie and Sambarino [50].

Lemma 9.5. If � W � ! SL.d;R/ is a representation of a geometrically finite Fuchsian
group � and �� W ƒ.�/! Fd is a �-equivariant map, then ˇ� satisfies the cocycle property

ˇ�.˛
; z/ D ˇ�.˛; z/C ˇ�.
; ˛
�1.z//

for all ˛; 
 2 � and z 2 ƒ.�/.
Moreover, if �.
/ is loxodromic and ��.
C/ is the attracting flag of �.
/, then

ˇ�.
; 

C/ D `.�.
//:

Proof. First notice that

ˇ�.˛
; z/ D B
�
�.˛/�.
/; �.
�1/�.˛�1/.��.z//

�
D B

�
�.˛/; �.˛/�1.��.z//

�
C B

�
�.
/; �.
�1/�.˛�1/.��.z//

�
D ˇ�.˛; z/C ˇ�.
; ˛

�1.z//:

Then observe that

ˇ�.
; 

C/ D B

�
�.
/; �.
�1/.��.


C//
�
D B

�
�.
/; ��.


C/
�
:

Since we have assumed that ��.
C/ is the attracting flag of �.
/, we may apply (9.1).

We now generalize the theory developed above to the setting of partial flag varieties. If
� D ¹i1 < � � � < irº � ¹1; : : : ; dº, then a � -flag is a nested collection of vector subspaces of
dimension ij of the form

F D ¹0 � F i1 � � � � � F ir � Rd º:
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The � -flag variety F� is the set of all � -flags. Let

a� D ¹Ea 2 a W ˛k.Ea/ D 0 if k … �º:

There is a unique projection
p� W a! a�

invariant by ¹w 2 W W w.a� / D a�º, where W is the Weyl group acting on a by coordinate
permutations. Benoist and Quint [2, Section 8.6] describe a partial Iwasawa cocycle

B� W SL.d;R/ � F� ! a�

such that p� ı B factors through B� .
We say thatA 2 SL.d;R/ is � -proximal if ˛k.`.A// > 0 for all k 2 � . In this case,A has

a well-defined attracting � -flag F �A , and

B� .A; F
�
A / D p� .`.A//:

In particular,
!k.B� .A; F

�
A // D !k.`.A//

for all k 2 � .
Given a representation � W � ! SL.d;R/ of a geometrically finite Fuchsian group � and

a �-equivariant map �� W ƒ.�/! F� , we define its associated � -Busemann cocycle

ˇ�� W � �ƒ.�/! a�

by letting
ˇ�� .
; z/ D B�

�
�.
/; �.
�1/.��.z//

�
:

Since p� is linear, Lemma 9.5 immediately generalizes to give:

Lemma 9.6. If � W � ! SL.d;R/ is a representation of a geometrically finite Fuchsian
group � and � W ƒ.�/! F� is a �-equivariant map, then ˇ�� satisfies the cocycle property

ˇ�� .˛
; z/ D ˇ
�
� .˛; z/C ˇ

�
� .
; ˛

�1.z//

for all ˛; 
 2 � and z 2 ƒ.�/.
Moreover, if �.
/ is � -proximal and ��.
C/ is the attracting � -flag of �.
/, then

ˇ�� .
; 

C/ D p� .`.�.
///:

In particular,
!k.ˇ

�
� .
; 


C// D !k.`.�.
///

if k 2 � .

10. Roof functions for Anosov representations

If � � ¹1; : : : ; d � 1º is non-empty, we say that � W � ! SL.d;R/ is cusped � -Anosov
if it is cusped Pk-Anosov for all k 2 � . We say that � is symmetric if k 2 � if and only
if d � k 2 � . It will be natural to always assume that � is symmetric, since � is cusped
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Pk-Anosov if and only if it is cuspedPd�k-Anosov. If � W � ! SL.d;R/ is a cusped � -Anosov
representation of a geometrically finite Fuchsian group, we define a vector valued roof function

�� W †
C
! a�

by setting

��.x/ D ˇ
�
�

�
G.x1/; !.x/

�
D B�

�
�.G.x1//; �.G.x1//

�1.��.!.x///
�
:

If � is a linear functional on a� , we define the �-roof function ��� D � ı ��. If � is cusped
Borel Anosov, i.e. if � D ¹1; : : : ; d � 1º, then a� D a and B� D B so we are in the simpler
setting described in the first part of Section 9.5.

Recall that the Benoist limit cone of a representation � W � ! SL.d;R/ is given by

B.�/ D
\
n�0

[
k�.�.
//k�n

RC�.�.
// � aC:

Benoist [1] showed that if � is Zariski dense, then B.�/ is convex and has non-empty interior.
It is natural to consider linear functionals which are positive on the Benoist limit cone

B.�/C D ¹� 2 a� W �.B.�/ � ¹E0º/ � .0;1/º:

Note that if � 2 B.�/C, then there is a constant c such that �.v/ > ckvk for all v 2 B.�/.
We will in general consider roof functions associated to linear functionals in a�

�
\B.�/C.

Recall that a�
�

is spanned by ¹!k W k 2 �º. So if ¹1; d � 1º � � and � is cusped � -Anosov
(i.e. if � is cusped P1-Anosov), then !1 and the Hilbert length functional ˛H D !1 C !d�1
both lie in a�

�
\B.�/C. If ¹1; 2º � � , then ˛1 D !2 � 2!1 2 a�

�
\B.�/C, and, more gener-

ally, if ¹k � 1; k; k C 1º � � , then ˛k D �!kC1 C 2!k � !k�1 2 a�
�
\B.�/C if � is cusped

� -Anosov. Finally, if � D ¹1; : : : ; d � 1º (i.e. � is cusped Borel Anosov), then

� D

´
a1˛1 C : : :C ad�1˛d�1 W ai � 0 for all i;

d�1X
iD1

ai > 0

µ
� a�� \B.�/C D B.�/C:

Theorem D*. Suppose � is a torsion-free geometrically finite, but not convex cocom-
pact, Fuchsian group, � � ¹1; : : : ; d � 1º is non-empty and symmetric, and � W � ! SL.d;R/
is cusped � -Anosov. If � 2 a�

�
\B.�/C, then ��� W †C ! R is a locally Hölder continuous

function such that:

(1) If x D x1 � � � xn is a periodic element of †C, then

Sn�
�
� .x/ D �

�
`.�.G.x1/ � � �G.xn///

�
:

(2) ��� is eventually positive.

(3) There exists C� > 0 such that if j 2 � , then

j�
!j
� .x/ � cj .�; s.x1// log r.x1/j � C�

(with the convention that cj .�; 
/ D 0 if 
 is not parabolic).
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(4) ��� has a strong entropy gap at infinity. Moreover, if � D
P
k2� ak!k , then

d.��� / D
1

c.�; �/
;

where

c.�; �/ D inf
²X
k2�

akck.�; �/ W � 2 � parabolic
³
:

(5) If � 2 Homtp.�/ is also Pk-Anosov and � 2 B.�/C, then there exists C > 0 so that

j��� .x/ � �
�
� .x/j � C

for all x 2 †C.

(6) ��� is non-arithmetic.

Proof. It follows immediately from Lemma 9.6 and Theorem 9.3 (1) that if x 2 †C,
then

Sn��.x/ D

n�1X
jD0

��.�
j .x// D ˇ��

�
G.x1/ � � �G.xm/; !.x/

�
:

In particular, if x D x1 � � � xn 2 †C is periodic, then, by Lemma 9.6 and Theorem 9.3 (2),

!k.Sn��.x// D !k
�
`.�.G.x1/ � � �G.xn///

�
for all k 2 � , since ��.!.x// is the attracting � -flag of �.G.x1/ � � �G.xn//. Thus, (1) holds
since ¹!k W k 2 �º is a basis for a�

�
and the map � ! �� is linear.

If � ı �� is not eventually positive, then there exist sequences ¹xnº in †C and ¹mnº in
N so that mn !1 and �.Smn��.xn// < 1 for all n. Let 
n D G..xn/1/ � � �G..xn/mn/ and
zn D !.xn/. Then

�
�
ˇ�� .
n; zn/

�
< 1 for all n 2 N:

We may assume that ¹znº converges to z 2 ƒ.�/. Theorem 9.3 (5) implies that there
exists L so that

d.
n.b0/;
��!
b0zn/ � L

for all n. After passing to another subsequence, we may assume that ¹
�1n .b0/º converges
to some w 2 ƒ.�/. We pass to another subsequence, so that ¹
�1n .zn/º converges to some
x 2 ƒ.�/. Notice that

x ¤ w;

since
������������!

�1n .b0/


�1
n .zn/ converges to a bi-infinite geodesic joining w to x which lies within L

of the basepoint b0.
As lim 
�1n .b0/ D w and � has the Pk-Cartan property for all k 2 � by Theorem 9.2 (6),

we have
limUk.�.


�1
n // D �k� .w/:

Since �d�k� .x/ and �d�k� .w/ are transverse, there exist N 2 N and � > 0 so that if n > N ,
then

†
�
�k� .


�1
n zn/; Ud�k.�.
n/

�1/
�
� �:
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Lemma 9.4 and the �-equivariance of the limit map �� then imply that there exists C so that

j!k.ˇ
�
� .
n; ��.zn/// � !k.�.�.
n///j

D j!k.B� .�.
n/; �.

�1
n /.��.zn//// � !k.�.�.
n///j � C

for all k 2 � and all n � N . Since � 2 a�
�

, this implies that there exists yC > 0 such that

j�.ˇ�� .
n; ��.zn/// � �.�.�.
n///j �
yC

for all n � N .
By Theorem 9.1(1), �.�.�.
n///!1, so we have achieved a contradiction. Therefore,

�
�
� is eventually positive, so (2) holds.

In order to establish (3), we first notice that, since kB� .A; F /k � k�.A/k for all F 2 F� ,

j�
!j
� .x/j � Cx1 D j k�.�.G.x1///k

for all x 2 †C and j 2 � . Since our alphabet is infinite and Cx1 !1 as r.x1/!1, there
is more work to be done.

If x 2 †C and r.x1/ � 2, then G.x1/ D �nga for some � 2 P and ga 2 R, where
n D r.x1/ � 2, then

��.x/ D ˇ
�
� .�

nga; !.x// D B�
�
�.�nga/; �.�

nga/
�1.��.!.x///

�
D B�

�
�.�n/; �.��n/.��.!.x///

�
C B�

�
�.ga/; �.�

nga/
�1.��.!.x///

�
:

Notice thatˇ̌
!j
�
B� .�.ga/; �.�

nga/
�1.��.!.x////

�ˇ̌
� R D max¹dk�.�.ga//k W ga 2 Rº

for all j 2 � .
Let p be the fixed point of � in ƒ.�/. Notice that, by construction, there exists an

element ya 2 A so that G.ya/ D �ga. Then X D !.Œya�/ is a compact subset of ƒ.�/ � ¹pº.
Therefore, ifG.x1/ D �nga, !.x/ 2 �n�1.X/, so ��n.!.x// 2 ��1.X/. It follows that there
exists � D �.�/ > 0 so that if G.x1/ D �nga and n 2 N, then

†
�
�.��n/.�j� .!.x///; �

d�j
� .p/

�
� �

for all j 2 � . Lemma 9.4 then implies that there exists D D D.�; ga/ > 0 so thatˇ̌
!j
�
B� .�.�

n/; �.��n/.��.!.x////
�
� !j .�.�.�

n///
ˇ̌
� D:

for all n 2 N and j 2 � . Theorem 9.1 implies that there exists C D C.�; ga/ > 0 so thatˇ̌
!j .�.�.�

n/// � cj .�; �/ logn
ˇ̌
< C

for all n 2 N. By combining, we see thatˇ̌
!j
�
B� .�.�

n/; �.��n/.��.!.x////
�
� cj .�; �/ logn

ˇ̌
� C CD

and hence that ˇ̌
�
!j
� .x/ � cj .�; �/ log.r.x1/ � 2/

ˇ̌
� C CD CR

for all n 2 N and j 2 � . Since there are only finitely many � in P , and only finitely many
elements of A so that r.a/ � 2 we have completed the proof of (3).
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We next check that ��� is locally Hölder continuous. Since ! W †C ! ƒ.�/ is locally
Hölder continuous, there exist Z > 0 and � > 0 so that if xj D yj for all j � n, then

d.!.x/; !.y// � Ze��n:

Since �� W ƒ.�/! Fd is Hölder, there exist D > 0 and � > 0, so that if z; w 2 ƒ.�/, then

d.��.z/; ��.w// � Dd.z;w/
�:

Therefore, �� ı ! is locally Hölder continuous, i.e. there exists C and ˇ > 0 so that

d.��.!.x//; ��.!.y/// � Ce
�ˇn

if xj D yj for all j � n.
If a 2 A, let

Da D sup¹kDFB� .�.G.a//; � /k W F 2 F�º;

where DFB� .�.G.a//; � / is the derivative at F of B� .�.G.a//; � / W F� ! a� . It follows that
if xj D yj for all j � n and x1 D y1 D a, then

j��� .x/ � �
�
� .y/j � k�kDaCe

�ˇn:

Recall that if x 2 †C and G.x1/ D �mga, then

��.x/ D B�
�
�.�m/; �.��m/.��.!.x///

�
C B�

�
�.ga/; �.�

mga/
�1.��.!.x///

�
and that ��m.!.x// lies in a compact subset ��1.X/ of ƒ.�/ � ¹pº (where p is the fixed
point of �).

There exists c > 0 so that if x; y 2 ��1.X/ and r 2 N, then

d.�r.x/; �r.y// �
c

r2
d.x; y/:

Notice that, by the cocycle property for B� ,

B� .�.�
m/; F / D

mX
jD1

B� .�.�/; �
j�1.F //:

Thus, if
yD D yD.�/ D sup¹kDFB� .�.�/; � /k W F 2 F�º;

then

kB� .�.�
m/; x/ � B� .�.�

m/; y/k �

mX
sD1

yD
c

s2
d.x; y/

if x; y 2 ��1.X/. Notice that there exists T D T .�/ > 0 so that this series can be bounded
above by Td.x; y/. Therefore, if xj D yj for all j D 1; : : : ; n and G.x1/ D �sga, where
s � 1, then

j.� ı ��/.x/ � .� ı ��/.y/j � .T CR/Ck�ke
�ˇn;

where
R D sup¹kDFB� .�.ga/; � /k W F 2 Fd ; ga 2 Rº:

Since there are only finitely many � in P and only finitely many elements of A so that
r.a/ � 2, ��� is locally Hölder continuous.
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If � D
P
k2� ak!k and � 2 P , let

c.�; �; �/ D
X
k2�

akck.�; �/ and c.�; �/ D inf¹c.�; �; �/ W � 2 P º:

Notice that c.�; �/ must be positive, since � 2 B.�/C. Property (3) then implies that

j��� .x/ � c.�; �; s.x1// log.r.x1//j � C�k�k

for all x 2 †C. Therefore,
1X
nD1

e�sC�k�k
1

nsc.�;�/
D

1X
nD1

e�s.c.�;�/ lognCC�k�k/ � Z1.�
�
� ; s/

and

Z1.�
�
� ; s/ �

1X
nD1

Qe�s.c.�;�/ logn�C�k�k/ �

1X
nD1

QesC�k�k
1

nsc.�;�/

if s > 0. (Recall that if n 2 N, then 1 � #¹a 2 A W r.a/ D nº � Q.) Therefore, Z1.�
�
� ; s/

converges if and only if s > 1
c.�;�/

, which establishes (4).

If � 2 Homtp.�/ is cusped � -Anosov and � 2 B.�C/, then cj .�; �/ D cj .�; �/ for all
j 2 � and � 2 P . Property (5) then follows from applying (3) to both �� and �� and the fact
that both ��� and ��� are locally Hölder continuous.

We may assume that the Zariski closure G of �.�/ is reductive. (If it is not reductive,
then Guéritaud, Guichard, Kassel and Wienhard [23, Section 2.5.4] exhibit a representation
�ss W � ! SL.d;R/ so that the Zariski closure of �ss.�/ is reductive and `.�.
// D `.�ss.
//
for all 
 2 � .) A result of Benoist and Quint [2, Proposition 9.8] then implies that the subgroup
h of the Cartan algebra ag of G generated by �G.�.�// is dense in ag (where �G W G! ag is
the Jordan projection of G). Up to conjugation, we may assume that ag is a sub-algebra of a

(since ag is an abelian algebra and thus is contained in a translate of a, which is a maximal abel-
ian sub-algebra of sl.d;R/). Therefore, the subgroup of R generated by ¹� ı ��.x/ W x 2 Fixnº,
which is just �.h/, is dense in R. Thus, we have established (6).

11. Applications

11.1. Anosov representations of geometrically finite Fuchsian groups. Given Theo-
rem D*, we can apply our main results to the roof functions of Anosov representations.

The following counting result is a strict generalization of Corollary 1.3. It follows imme-
diately from Theorems D* and A.

Corollary 11.1. Suppose � is a torsion-free, geometrically finite, but not convex cocom-
pact, Fuchsian group, � � ¹1; : : : ; d � 1º is non-empty and symmetric, and � W � ! SL.d;R/
is cusped � -Anosov. If � 2 a�

�
\B.�/C, then there exists a unique ı�.�/ > 1

c.�;�/
so that

P.�ı�.�/�
�
� / D 0 and

lim
t!1

M�.t/
tı�.�/

etı�.�/
D 1;

where
M�.t/ D #¹Œ
� 2 Œ�� W 0 < �.`.�.
/// � tº:
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Similarly, one may combine Theorems C* and D* to obtain a generalization of Corol-
lary 1.4.

Corollary 11.2. Suppose � is a torsion-free, geometrically finite, but not convex cocom-
pact Fuchsian group, � � ¹1; : : : ; d � 1º is non-empty and symmetric, and � W � ! SL.d;R/
is cusped � -Anosov. If � 2 Homtp.�/ is also cusped � -Anosov, � 2 a�

�
\B.�/C \B.�/C,

and
C�.�; �/ D ¹.a; b/ 2 D.�; �/ W P.�a��� � b�

�
� / D 0º;

where
D.�; �/ D ¹.a; b/ 2 R2 W aC b > c.�; �/º;

then the following hold:

(1) C�.�; �/ is an analytic curve.

(2) .ı�.�/; 0/ and .0; ı�.�// lie on C�.�; �/.

(3) C�.�; �/ is strictly convex unless

`�.�.
// D
ı�.�/

ı�.�/
`�.�.
//

for all 
 2 � .

(4) The tangent line to C�.�; �/ at .ı�.�/; 0/ has slope

s�.�; �/ D �

R
�
�
� dm�ı�.�/�

�
�R

�
�
� dm�ı�.�/�

�
�

:

In the setting of the previous corollary, we may define the pressure intersection

I�.�; �/ D �s�.�; �/

and the renormalized pressure intersection

J �.�; �/ D
ı�.�/

ı�.�/
I�.�; �/:

We obtain the following intersection rigidity result which will be used crucially in the con-
struction of pressure metrics. The proof follows at once from statements (3) and (4) in Corol-
lary 11.2.

Corollary 11.3. Suppose � is a torsion-free, geometrically finite, but not convex cocom-
pact, Fuchsian group, � � ¹1; : : : ; d � 1º is non-empty and symmetric, and � W � ! SL.d;R/
is cusped � -Anosov. If � 2 Homtp.�/ is also cusped � -Anosov and � 2 a�

�
\B.�/C \B.�/C,

then
J �.�; �/ � 1

with equality if and only if

`�.�.
// D
ı�.�/

ı�.�/
`�.�.
//

for all 
 2 � .
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Finally, we derive our equidistribution result, which generalizes Corollary 1.6. It follows
immediately from Theorems B and D*.

Corollary 11.4. Suppose � is a torsion-free, geometrically finite, but not convex cocom-
pact, Fuchsian group, � � ¹1; : : : ; d � 1º is non-empty and symmetric, and � W � ! SL.d;R/
is cusped � -Anosov. If � 2 Homtp.�/ is also cusped � -Anosov and � 2 a�

�
\B.�/C \B.�/C,

then

I�.�; �/ D lim
T!1

1

#.R�T .�//

X
Œ
�2R

�
T .�/

`�.�.
//

`�.�.
//
;

where RT .�/ D ¹Œ
� 2 � W 0 < `�.�.
// � T º.

11.2. Traditional Anosov representations. Andres Sambarino [55–57] established
analogues of our counting and equidistribution results in the setting of traditional “uncusped”
Anosov representations. In this section, we will sketch how to establish (mild generalizations
of) his results in our framework. Anosov representations of hyperbolic groups were defined
by Labourie [34] and Guichard and Wienhard [24]. We will use a characterization of Anosov
representations of word hyperbolic groups established by Kapovich, Leeb and Porti [32] and
Bochi, Potrie and Sambarino [4].

If � is a word hyperbolic group, then a representation � W � ! SL.d;R/ is Pk-Anosov
if there exist A; a > 0 so that

�k.�.
//

�kC1.�.
//
� Aeaj
 j

for all 
 2 � , where j
 j is the word length of 
 with respect to some fixed generating set on � .
In this case, it is known (see [11] or [17]) that there is a finite Markov shift .†C� ; �/ for the
geodesic flow of � and a surjective map

G W
[
n2N

Fixn ! Œ��:

If � � ¹1; : : : ; d � 1º is non-empty and symmetric, � is � -Anosov, and � 2 a� \B.�/C, then
there exists a Hölder continuous function ��� W †C� ! R so that if x 2 Fixn � †C� , then

Sn�
�
� .x/ D �.`.�.G.x////:

Lalley [36, Theorems 5 and 7] established analogues of our counting and equidistribution
results for finite Markov shifts. Moreover, our proofs generalize his techniques so they go
through in the setting of finite Markov shifts without any assumptions on entropy gap.

Corollary 11.5. Suppose that � is a word hyperbolic group, � � ¹1; : : : ; d � 1º is
non-empty and symmetric, and � W � ! SL.d;R/ is � -Anosov. If � 2 a�

�
\B.�/C, then there

exists a unique ı�.�/ > 0 so that P.�ı�.�/�
�
� / D 0 and

lim
t!1

M�.t/
tı�.�/

etı�.�/
D 1;

where
M�.t/ D #¹Œ
� 2 Œ�� W �.`.�.
/// � tº:
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Proof. Our proof of property (6) in Theorem D* gives immediately that ��� is non-
arithmetic, which is the only assumption needed to apply our Theorem A or [36, Theorem 7]
in the setting of a finite Markov shift.

We also obtain a Manhattan Curve theorem, which does not seem to have appeared in
print before in this generality, but was certainly well known to experts. In particular, Sambarino
[55, Proposition 4.7] describes a closely related phenomenon for Borel Anosov representations.

Corollary 11.6. Suppose that � is a word hyperbolic group, � � ¹1; : : : ; d � 1º is
non-empty and symmetric, and that � W � ! SL.d;R/ and � W � ! SL.d;R/ are � -Anosov.
If � 2 a�

�
\B.�/C \B.�/C and

C�.�; �/ D ¹.a; b/ 2 R2 W aC b > 0 and P.�a��� � b�
�
� / D 0º;

then the following hold:

(1) C�.�; �/ is an analytic curve.

(2) .ı�.�/; 0/ and .0; ı�.�// lie on C�.�; �/.

(3) C�.�; �/ is strictly convex unless

`�.�.
// D
ı�.�/

ı�.�/
`�.�.
//

for all 
 2 � .

Moreover, the tangent line to C�.�; �/ at .ı�.�/; 0/ has slope

�I�.�; �/ D �

R
�
�
� dm�ı�.�/�

�
�R

�
�
� dm�ı�.�/�

�
�

:

The analogues of Corollaries 1.5 and 1.6 appear in [11, Section 8] as consequences of
classical Thermodynamical results of Bowen, Pollicott and Ruelle [5, 6, 47, 53].

Historical remarks. In the counting estimates and equidistribution results in his papers,
Sambarino assumes that � is irreducible if � D ¹1; d � 1º (see [56]) or Zariski dense if � is
Borel Anosov (see [55, 57]) and that � D �1.M/, where M is a negatively curved manifold.
However, after [11] the generalizations stated here would certainly have been well known to
him. Carvajales [16, Appendix A] uses results from [11] to explain how one can remove the
assumption that � D �1.M/ in Sambarino’s work. The removal of the irreducibility assump-
tion follows from the construction of the semi-simplification in [23]. Pollicott and Sharp [48]
independently derived related counting results for Hitchin representations.
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[45] R. D. Mauldin and M. Urbański, Graph directed Markov systems, Cambridge Tracts in Math. 148, Cambridge
University, Cambridge 2003.

[46] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque
187–188, Société Mathématique de France, Paris 1990.

[47] M. Pollicott, Symbolic dynamics for Smale flows, Amer. J. Math. 109 (1987), no. 1, 183–200.
[48] M. Pollicott and R. Sharp, Length asymptotics in higher Teichmüller theory, Proc. Amer. Math. Soc. 142

(2014), no. 1, 101–112.
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