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Hitchin representations of Fuchsian groups

Richard Canary

Abstract. We survey the theory of Hitchin representations of closed surface groups into PSL.d;R/
with a focus on their dynamical and geometric properties. We then describe recent extensions of
this work to study Hitchin representations of co-finite area Fuchsian groups. The motivation for this
recent work is a conjecture about the geometry of the augmented Hitchin component.

Dedicated to Dennis Sullivan on the occasion of his 80th birthday. Dennis was very kind
to me when I was a feckless young mathematician and he continues to be an inspiration

now that I am a feckless old mathematician.

1. Introduction

Nigel Hitchin [57] used the theory of Higgs bundles to enumerate the components of the
“character variety” of (conjugacy classes of) representations of a closed surface group
into PSL.d;R/. He identified a component which is topologically a cell. When d D 2, this
component is the classical Teichmüller space of a surface, so he called this component
the Teichmüller component. This component is now known as the Hitchin component and
representations in this component are known as Hitchin representations. In his paper, he
makes a comment which served as one of the primary motivations for the new field of
higher (rank) Teichmüller theory.

“Unfortunately, the analytical point of view used for the proofs gives no indication
of the geometrical significance of the Teichmüller component.” Nigel Hitchin [57]

This challenge was taken up by François Labourie [66], from a dynamical viewpoint,
and Vladimir Fock and Alexander Goncharov [47], from a more algebraic viewpoint.
As one consequence, they were able to show that all Hitchin representations are discrete
and faithful, and Labourie shows that they are quasi-isometric embeddings. Subsequently,
Andres Sambarino [105] constructed Anosov flows which encoded spectral data associ-
ated to a Hitchin representation. This allowed him to invoke results from thermodynamic
formalism to obtain counting and equidistribution results for Hitchin representations. Mar-
tin Bridgeman, Dick Canary, François Labourie and Andres Sambarino [22, 23], built
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on Sambarino’s earlier work and work of Curt McMullen [91] in the classical setting
to construct mapping class group invariant analytic Riemannian metrics on the Hitchin
component which generalize the Weil–Petersson metric on Teichmüller space. These met-
rics are called pressure metrics. Nicolas Tholozan [120] described an embedding of the
Hitchin component into the Teichmüller space of foliated complex structures on the unit
tangent bundle of the surface, first studied by Dennis Sullivan [116], so that the pullback
of a “Weil–Petersson metric” on the Teichmüller space is the simple root pressure metric.
(This is a highly selective history which reflects the focus of the author and hence of this
paper.)

If one pinches a collection of disjoint curves in a hyperbolic surface, one naturally
obtains a (possibly disconnected) cusped finite area hyperbolic surface. Bill Abikoff [1]
bordified Teichmüller space by appending all such limiting surfaces and the result is
known as augmented Teichmüller space. The “strata at infinity” are naturally Teichmüller
spaces of (possibly disconnected) finite area hyperbolic surfaces. This space itself is not
well behaved topologically, e.g. it is not locally compact, but one may view it as the “uni-
versal cover” of the Deligne–Mumford compactification of moduli space. More explic-
itly, the quotient of augmented Teichmüller space by the action of the mapping class
group may be identified with the Deligne–Mumford compactification of Moduli space.
Howard Masur [89] showed that the metric completion of Teichmüller space with the
Weil–Petersson metric may be identified with augmented Teichmüller space.

In recent years, the author has been fascinated by the goal of developing a theory of an
“augmented Hitchin component” and proving that it arises as the metric completion of the
Hitchin component with respect to a pressure metric. The analogy is especially compelling
when d D 3, as Hitchin representations are holonomy maps of convex (real) projective
structures (see Choi–Goldman [38]) and points in the augmented Hitchin component con-
jecturally correspond to (possibly disconnected) finite area convex projective surfaces.
John Loftin and Tengren Zhang [83] worked out the topological aspects of the augmented
Hitchin component when d D 3 and obtain local parametrizations of neighborhoods of the
“strata at infinity.” In collaboration with Tengren Zhang and Andy Zimmer [33], we devel-
oped a theory of Hitchin representations of general geometrically finite Fuchsian groups.
In collaboration with Harry Bray, Nyima Kao and Giuseppe Martone [18], we developed
a dynamical framework to establish parallels of the counting and equidistribution results
of Sambarino. In subsequent work [19], we combine these results to construct pressure
metrics on components of Hitchin representations of Fuchsian lattices, which arise as the
strata at infinity for the augmented Hitchin component.

The first part of this paper will focus on the developments of the classical Hitchin
component, while the second portion will describe a conjectural geometric picture of the
augmented Hitchin component and describe the progress made towards this still elusive
goal.
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2. The dynamical viewpoint of Labourie

François Labourie [66] introduced techniques from Anosov dynamics to study the flow
on the flat bundle associated to a Hitchin representation. We recall some notation before
describing his work.

Throughout this paper S will be a closed, orientable, connected surface of genus g� 2.
Let �d W PSL.2;R/ ! PSL.d;R/ be the irreducible representation, which is unique up to
conjugation. A representation �W�1.S/! PSL.d;R/ is said to be d -Fuchsian if it is (con-
jugate to) the result of post-composing a Fuchsian representation �0W�1.S/! PSL.2;R/
(i.e. a discrete, faithful representation) with the irreducible representation �d . A represen-
tation �W�1.S/! PSL.d;R/ is said to be a Hitchin representation if it can be continuously
deformed to a d -Fuchsian representation. One then defines the Hitchin component Hd .S/

to be the space of PGL.d;R/-conjugacy classes of Hitchin representations, i.e.

Hd .S/ � Hom.�1.S/; PSL.d;R//=PGL.d;R/:

Hitchin proved that Hd .S/ is a cell.

Theorem 2.1 (Hitchin [57]). The Hitchin component Hd .S/ is a real analytic manifold
which is (real analytically) diffeomorphic to R.d2�1/.2g�2/.

The Fuchsian locus in Hd .S/ consists of (conjugacy classes of) d -Fuchsian represen-
tations and is an embedded copy of the Teichmüller space T .S/ of S .

We may identify S D H2=� as a hyperbolic surface, where � � PSL.2;R/, so � is
identified with �1.S/. The unit tangent bundle T 1S of S is then the quotient T 1H2=�

of the unit tangent bundle of H2. Hitchin observes that every Hitchin representation
�W�1.S/! PSL.d;R/ lifts to a representation y�W�1.S/! SL.d;R/ (see Culler [41] for
general criteria guaranteeing lifting which apply in this case). The flat bundle associated
to a representation �W�1.S/! SL.d;R/ is formed as

E� D .T 1H2
� Rd /=�;

where the action on the first factor is the standard action of � on T 1H2 and the action
on Rd is given by y�.�/.

The geodesic flow
¹�t WT

1S ! T 1Sºt2R

lifts to the geodesic flow
¹z�t WT

1H2
! T 1H2

ºt2R

and then extends to a flow on ¹ Q tºt2R on T 1H2 � Rd which acts trivially on the second
factor, i.e. Q t .Ev; Ew/ D .z�t .Ev/; Ew/. The flow ¹ Q tº then descends to a flow ¹ tº on E�

which “extends” ¹�tº. (If you intended to be confusing, you would say that ¹ tº is the
flow parallel to the flat connection.)

One way of stating Labourie’s fundamental dynamical result is that the flat bundle
admits a splitting into line bundles with certain contraction properties. We recall that a
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flow ¹ tº on a vector bundle V over a compact base B is contracting if given some (any)
continuous family ¹k � kbºb2B of norms on the fibers, there exists C; c > 0 so that

k t .Ev/k�t .b/ � Ce�ct
kEvkb

for all b 2 B , t > 0 and Ev 2 Vb .

Theorem 2.2 (Labourie [66]). If � 2 Hd .S/, then E� admits a flow-invariant splitting

E� D L1 ˚ L2 ˚ � � � ˚ Ld

into line bundles so that the flow induced by  t is contracting on Li ˝ L�
j if i > j .

Notice that this splitting lifts to a flow-invariant, �-equivariant splitting

T 1H2
� Rd

D zL1 ˚ zL2 ˚ � � � zLd :

If 
 2 � , let Evi be a non-trivial vector in zLi lying over a tangent vector to the axis of 
 .
(Notice that, by flow invariance, the line zLi is independent of which point on the axis
you pick.) Then, since the splitting is flow invariant and �-equivariant, Evi must be an
eigenvector for y�.
/. Let `i .�.
// denote the associated eigenvalue of y�.
/, i.e.

y�.
/.Evi / D `i .y�.
//Evi :

The fact that Li ˝L�
j is contracting if i > j implies that j`i .y�.
//j > j j̀ .y�.
//j if i > j .

In particular, �.
/ is loxodromic and if �i .�.
// D j`i .y�.
//j, then

�1.�.
// > �2.�.
// > � � � > �d .�.
//:

Moreover, since the flow is contracting we see that there exists C; c > 0 so that if `.
/
denotes the translation length of 
 on H2, then

�i .�.
//

�iC1.�.
//
� Cec`.
/

if 
 2 � and 1 � i � d � 1.
Labourie’s splitting also gives rise to a �-equivariant, Hölder continuous limit map

��W @H2 ! Fd where Fd is the space of d -dimensional flags. If x ¤ y 2 H2, consider a
flow line (a.k.a. geodesic) joining y to x and choose non-trivial vectors Evi 2 zLi lying over
a vector tangent to the flow line. One then defines

��.x/ D
�
hEv1i; hEv1; Ev2i; : : : ; hEv1; Ev2; : : : ; Evd�1i

�
;

��.y/ D
�
hEvd i; hEvd ; Evd�1i; : : : ; hEvd ; Evd�1; : : : ; Ev2i

�
:

In particular, ��.x/ is transverse to ��.y/. The contraction properties of the flow imply
that ��.x/ does not depend on y and that �� is Hölder.

We summarize these properties below.
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Theorem 2.3 (Labourie [66]). If � 2 Hom.�1.S/; PSL.d;R// is a Hitchin representa-
tion, then

(1) there exists a Hölder continuous �-equivariant map ��W @H2 ! Fd so that if
x ¤ y, then ��.x/ is transverse to ��.y/;

(2) if 
 2 �1.S/, then �.
/ is loxodromic and ��.

C/ is the attracting flag of �.
/,

where 
C is the attracting fixed point of 
 ;

(3) there exists C; c > 0 so that

�i .�.
//

�iC1.�.
//
� Cec`.
/

if 
 2 � and 1 � i � d � 1.

The properties above do not characterize Hitchin representations. For example, if one
takes the direct product of a Fuchsian representation and the trivial one-dimensional rep-
resentation, it will satisfy all the properties above. Such representations are known as
Barbot representations, since they were first studied by Thierry Barbot [4]. However,
Oliver Guichard [52] extended Labourie’s work to provide the following characterization.

Theorem 2.4 (Guichard [52]). If � 2 Hom.�1.S/; PSL.d;R//, then � is a Hitchin repre-
sentation if and only if there exists a continuous �-equivariant map �W @H2 ! P .Rd / so
that if ¹x1; : : : ; xd º are distinct points in @H2, then

�.x1/˚ � � � ˚ �.xd / D Rd :

Notice that it is clear that Barbot representations do not satisfy this characterization,
since the image of any such map cannot span R3 in this case. (In fact, small deformations
of Barbot representations also admit limit maps which fail to satisfy Guichard’s criterion.)

Labourie’s work also allows him to extend Fricke’s theorem to the setting of Hitchin
components. We recall that the mapping class group Mod.S/ of a closed orientable surface
is the group of (isotopy classes of) orientation-preserving self-homeomorphisms of S .

Theorem 2.5 (Labourie [69]). The mapping class group Mod.S/ acts properly discontin-
uously on Hd .S/.

Remarks. (1) Hitchin’s work [57] establishes analogous results for representations into
all split real Lie groups, but we will only discuss the case of PSL.d;R/, which is the most
studied case. Hitchin’s work uses the theory of Higgs bundles. Due to the author’s woeful
ignorance, we will not discuss any of the subsequent work on Hitchin representations from
this more analytic viewpoint.

(2) In Labourie’s seminal paper, he more generally defines Anosov representations of a
hyperbolic group into any semi-simple Lie group. This definition was explored more fully
by Guichard–Wienhard [54], and later by Guéritaud–Guichard–Kassel–Wienhard [51],
Kapovich–Leeb–Porti [61], Bochi–Potrie–Sambarino [9], Kassel–Potrie [62], Tsouvalas
[121] and others. In particular, analogues of all the basic properties discussed above exist
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in this setting. For generalizations of Fricke’s theorem to this setting, see Guichard–
Wienhard [54, Corollary 5.4] or Canary [31, Theorem 6.4].

The theory of Anosov representations has emerged as a central language in higher
Teichmüller theory. For those interested in me blathering on endlessly about Anosov rep-
resentations, lecture notes are available on my webpage.1

3. The positive viewpoint of Fock–Goncharov

Vladimir Fock and Alexander Goncharov [47] characterize Hitchin representations as
those representations which admit a positive limit map.

We begin by recalling the definition of a positive map of a subset of the circle into Fd .
This definition relies on the work of Lusztig [84] and others on positivity in semi-simple
Lie groups. Given an ordered basis B for Rd , we say that a unipotent element A 2

SL.d;R/ is totally positive with respect to B, if its matrix with respect to B is upper tri-
angular and all its minors (which are not forced to be 0 by the fact that the matrix is upper
triangular) are strictly positive. The set U>0.B/ of unipotent, totally positive, upper tri-
angular matrices with respect to B is a semi-group. An ordered k-tuple .F1; F2; : : : ; Fk/

of distinct flags in Fd is positive with respect to an ordered basis B D .b1; : : : ; bd /

for Rd if bi 2 F
.i/
1 \ F

.d�iC1/

k
for all i , and there exists u2; : : : ; uk�1 2 U>0.B/ so

that Fi D uk�1 � � � uiFk for all i D 2; : : : ; k � 1. Here F .k/ denotes the k-dimensional
component of a flag F . IfX is a subset of S1 then a map �WX!Fd is positive if whenever
.x1; : : : ; xn/ is a cyclically ordered subset of distinct points in X , then .�.x1/; : : : ; �.xn//

is positive with respect to some ordered basis. (In fact, it suffices to only consider 4-tuples
of points.)

If B D ¹e1; e2º is the standard basis for R2, then

U>0.B/ D

²�
1 a

0 1

�
W a > 0

³
and one may check that a n-tuple of distinct points in F2 D P .R2/ Š S1 is positive with
respect to B if and only if x1 D Œe1�, xn D Œe2� and the other points proceed monotonically
in the counter-clockwise direction. More generally, one may check that a map �WX ! F2

is positive if and only if it is monotonic.
Vladimir Fock and Alexander Goncharov obtain the following characterization of

Hitchin representations.

Theorem 3.1 (Fock–Goncharov [47]). A representation �W�1.S/!PSL.d;R/ is a Hitchin
representation if and only if there exists a positive �-equivariant map �W @H2 ! P .Rd /.

They develop further structure which allows them to explicitly parametrize Hitchin
components using natural algebraic data. This viewpoint was further developed by Francis
Bonahon and Guillaume Dreyer [11, 12].

1httpW//www.math.lsa.umich.edu/~canary

http://www.math.lsa.umich.edu/~canary
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Remark. Olivier Guichard and Anna Wienhard [55] developed a more general notion of
a ‚-positivity for real semi-simple Lie groups and characterize exactly which Lie groups
admit such structures. Guichard, Labourie and Wienhard [53] recently proved that ‚-
positive representations are Anosov and that the space of‚-positive representations into a
given Lie group contains entire components of the space of reductive representations. This
theory encompasses both Hitchin representations into split real Lie groups and maximal
representations into Hermitian Lie groups of tube type, as well as certain representations
into SO.p;q/ (when p¤ q) and four other exceptional Lie groups. In the case of SO.p;q/,
Jonas Beyrer and Beatrice Pozzetti [6] further show that the set of ‚-positive representa-
tions is exactly a collection of components of the representation variety. The fundamental
conjecture is that ‚-positive representations account for all components of representa-
tion varieties of surface groups into simple Lie groups which consist entirely of discrete
faithful representations. (For a Higgs bundle-theoretic perspective, see Bradlow–Collier–
García–Prada–Gothen–Oliveira [16].)

4. Sambarino’s geodesic flows

Andres Sambarino [105] defined a family of Anosov flows associated to a Hitchin repre-
sentation which record the spectral data of the representation. We first recall some linear
algebra so that we can state his results.

Let
a D ¹Ea 2 Rd

W a1 C � � � C ad D 0º

be the standard Cartan algebra for PSL.d;R/. The space a� of linear functionals on a is
generated by the simple roots ¹˛1; : : : ; ˛d�1º where

˛i .Ea/ D ai � aiC1:

The standard positive Weyl Chamber aC is then the set where all the ˛i are non-negative,
i.e.

aC
D ¹Ea 2 a W a1 � � � � � ad º D ¹Ea 2 a W ˛i .Ea/ � 0 8 iº:

We will also be interested in the linear functionals given by the fundamental weights !k

and the Hilbert length !H , where

!k.Ea/ D a1 C � � � C ak and !H .Ea/ D a1 � ad D !1.Ea/C !d�1.Ea/:

The Jordan projection �W PSL.d;R/! aC records the spectral data associated to an
element of PSL.d;R/. If A 2 PSL.d;R/ has generalized eigenvalues with moduli

�1.A/ � � � � � �d .A/;

then
�.A/ D

�
log�1.A/; : : : ; log�d .A/

�
:



R. Canary 362

If � 2 Hd .S/, the Benoist limit cone B.�/ encodes the spectral data of �.�/. Explic-
itly,

B.�/ D
[

2�

RC�.�.
// � aC:

We will be interested in the collection BC.�/ of linear functionals which are positive on
B.�/ n ¹E0º, given by

BC.�/ D
®
� 2 a�

j �.Ea/ > 0 8 Ea 2 B.�/ n ¹E0º
¯
:

Theorem 2.3 implies that B.�/ n ¹E0º is contained in the interior of aC, so

� D

°
� 2 a�

j � D

X
ci˛i ; ci � 0 8 i; and

X
ci > 0

±
� B.�/C:

Notice that, in particular, each fundamental weight !k 2 � and !H 2 �.
If � 2 BC.�/, then one obtains a natural associated length function, given by

`�.�.
// D �.�.
//:

If d D 2 and � D ˛1 D !H D 2!1, then `�.�.
// is just the usual translation length
`.�.
// of �.
/. One may then consider an associated �-topological entropy h�.�/ which
records the exponential growth rate of the number of (conjugacy classes of) elements of
�-length at most T . Concretely, let

R
�
T .�/ D

®
Œ
� 2 Œ�� W `�.�.
// � T

¯
and h�.�/ D lim

T!1

log #R�
T .�/

T
;

where Œ�� is the set of conjugacy classes of elements of � .
We can now summarize some of Sambarino’s work. We recall that a flow space U1 is

said to be Hölder orbit equivalent to a flow space U2 if there is a Hölder homeomorphism
f W U1 ! U2 which takes flow lines to flow lines (but does not necessarily preserve the
time parameter).

Theorem 4.1 (Sambarino [104,105]). If � 2 Hd .S/ and � 2 BC.�/, then there exists an
Anosov flow U�.�/ which is Hölder orbit equivalent to the geodesic flow on T 1.S/ so that
the period of the orbit of U�

� associated to Œ
� 2 Œ�� is given by `�.�.
//. Moreover, the
topological entropy of U�.�/ is exactly h�.�/ and

#RT .�/ �
eh�.�/T

h�.�/T
; i.e. lim

T!1

#.RT .�//h
�.�/T

eh�.�/T
D 1:

If ˛i;j 2 a� is given by ˛i;j .Ea/ D ai � aj (so ˛i D ˛i;iC1) and i > j , then one may
obtain U˛i;j .�/ from the contracting line bundle Li ˝L�

j . The flows U˛i .�/ are known as
the simple root flows. Similarly, if !1 2 a� is the first fundamental weight, i.e. !1.Ea/D a1,
then one may observe thatL1 is contracting and obtain U!1.�/, which we call the spectral
radius flow, in the same manner.
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We now explain how to obtain a flow space UL, Hölder orbit equivalent to T 1S ,
from a contracting (Hölder) line bundle L over T 1S . One first lifts L to the contracting
line bundle zL over T 1H2 and considers the associate principal R-bundle yL over T 1H2

so that the fiber over Ev 2 T 1H2 is given by .zLjEv n ¹E0º/= ˙ 1 and the action of t 2 R
is given by ŒEv�! Œet Ev�. Notice that there is a projection map � W T 1H2 ! @2H2 (where
@2H2 D ¹.x;y/ W x;y 2 @H2; x¤ yº) and all the vectors tangent to the geodesic joining x
to y are taken to .x; y/. Then, zUL D ��

yL is a principal R-bundle over @2H2, so admits a
natural geodesic flow. The group � acts on zUL with quotient UL (see [23, Proposition 2.4]
for more details). If 
 2 � , then the closed orbit of UL associated to Œ
� has period

� log
k�`.
/.Ev/k

kEvk

for any vector Ev 2 T 1H2 tangent to the axis of 
 . For example, if L D L1, this period is
the spectral radius !1.�.
// D log �1.
/ of �.
/, while if L D Li ˝ L�

j , the period is
given by

˛i;j .�.
// D log
�i .�.
//

�j .�.
//
:

It is not difficult to write down an explicit Hölder orbit equivalence between T 1H2 and UL

in general (see [22, Proposition 4.2] for details).
For more general � 2 BC.�/, Sambarino [105] makes use of the Iwasawa cocycle.

Quint [102] defines the Iwasawa cocycle BWPSL.d;R/� Fd ! a in terms of the Iwasawa
decomposition. Specifically, if F 2 Fd , then there exists K 2 PO.d/, so that F D K.F0/

where F0 is the flag determined by the standard basis and if A 2 SL.d;R/, then B.A; F /
is the unique element of a satisfying

AK D LeB.A;F /U

for some L 2 PO.d/ and upper triangular, unipotent element U . More geometrically, if
Ev1 2 F .1/ is non-trivial, then

!1.B.A; F // D log
kA.Ev1/k

kEv1k

and if Evk is a non-trivial vector in Ek.F .k// 2 P .EkRd / is non-trivial, where Ek is the
kth exterior power, then

!k.B.A; F // D log
kEkA.Evk/k

kEvkk
:

Notice that if A is loxodromic and FA is the attracting flag of A, then B.A; FA/ D �.A/.
The Iwasawa cocycle satisfies the cocycle relation,B.CD;F /DB.C;D.F //CB.D;F /

for all C;D 2 PSL.d;R/.
Given � 2 Hd .S/ and � 2 BC.�/, Sambarino defines the Hölder cocycle

ˇ�
� W� � @H2

! a given by ˇ�
� .
; x/ D �

�
B.�.
/; ��.x//

�
:
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The period of a Hölder cocycle ˇ associated to 
 is given by ˇ.
; 
C/, so the period
of ˇ�

� associated to 
 is �.�.�.
//. Using the theory of Hölder cocycle developed by
Ledrappier [75], Sambarino shows that the action of � on @2H2 � R defined by


.x; y; t/ D
�

.x/; 
.y/; t C ˇ�

� .
; y/
�

is properly discontinuous and cocompact. One may then define the quotient flow space
U�.�/ D @2H2 � R=� .

Rafael Potrie and Andres Sambarino later showed that simple root entropy is constant
on the Hitchin component and used this to establish a remarkable entropy rigidity theorem
for Hitchin representations.

Theorem 4.2 (Potrie–Sambarino [99]). If � 2 Hd .S/ and 1� i � d � 1, then h˛i .�/D1.
Moreover, if � D

P
ci˛i 2 �, then

h�.�/ �
1

c1 C � � � C cd

and if ci > 0 for all i , then equality holds if and only if � is d -Fuchsian.

Remark. Sambarino [105, Corollary 7.15] also obtains analogous results for the growth
rate of translation length on the symmetric space. In subsequent work, Sambarino [106]
establishes a mixing property for the Weyl chamber flow which allowed him to establish
equidistribution results for U�.�/, see also Chow–Sarkar [40]. For more recent develop-
ments, see Burger–Landesberg–Lee–Oh [29], Carvajales [36,37], Edwards–Lee–Oh [45],
Landesberg–Lee–Lindenstraus–Oh [74], Lee–Oh [78,79], Pozzetti–Sambarino–Wienhard
[100, 101], and Sambarino [108].

5. Pressure metrics for the Hitchin component

In the 1970’s, Bill Thurston proposed that one could construct a new Riemannian metric
on Teichmüller space, by considering the “Hessian of the length of a random geodesic.”
Scott Wolpert [125] (see also Fathi–Flaminio [46]) proved that Thurston’s metric was a
scalar multiple of the classical Weil–Petersson metric, which is defined using quadratic
differentials and Beltrami differentials. Bonahon [10] later re-interpreted Thurston’s met-
ric in terms of geodesic currents. McMullen [91] showed that one could use the thermody-
namic formalism to construct a pressure form on the space H0.T

1S/ of all pressure zero
Hölder functions on T 1S , embed Teichmüller space in H0.T

1S/ and obtain Thurston’s
metric as the pullback of the pressure form. Bridgeman [20] extended McMullen’s analy-
sis to quasifuchsian space, obtaining a path metric which is an analytic Riemannian metric
away from the Fuchsian locus. By construction, it is mapping class group invariant and
agrees with the Weil–Petersson metric (up to scalar multiplication) on the Fuchsian locus.

Martin Bridgeman, Dick Canary, François Labourie and Andres Sambarino [22, 23]
showed that one can use McMullen’s procedure to produce analytic pressure forms on the
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Hitchin component associated to any linear functional in �. One key technical ingredient
here is to show that the limit map varies analytically over the space of Hitchin represen-
tations, see [22, Theorem 6.1]. Since the Busemann cocycle ˇ�

� is defined in terms of
the limit map, the thermodynamic formalism then implies that most natural dynamical
quantities vary analytically. In particular, the entropy varies analytically over the Hitchin
component (see [22, Theorem 1.3] and Pollicott–Sharp [97, Theorem 3]). The founda-
tional texts of thermodynamic formalism are books by Bowen [13], Parry–Pollicott [95]
and Ruelle [103]. A fuller description of the use of thermodynamic formalism to construct
pressure metrics is given in the survey article by Bridgeman, Canary and Sambarino [24].

Given two Hitchin representation �W�! PSL.d;R/ and �W�! PSL.d;R/ and � 2�,
we define their pressure intersection

I �.�; �/ D lim
T!1

1

#.R�
T .�//

X
Œ
�2RT .�/

`�.�.
//

`�.�.
//
;

which one may think of as the �-length (in �) of a random geodesic (with respect to
�-length in �). One then considers the renormalized pressure intersection given by

J �.�; �/ D
h�.�/

h�.�/
I �.�; �/:

(Thurston and McMullen did not need to renormalize the pressure intersection since there
is a single projective class of linear functionals and each entropy is constant on the Teich-
müller space of a closed surface.) The functions I � and J � are analytic on the Hitchin
component (see [22, Theorem 1.3]) and J � achieves its global minimum of 1 along the
diagonal (see [22, Corollary 8.2]). (The results in [22] referenced in the last sentence are
stated only for � D !1, but the proofs easily generalize to all linear functionals in �,
see [19].)

Theorem 5.1 (Bridgeman–Canary–Labourie–Sambarino [22, Corollary 6.2]). If S is a
closed orientable surface, d � 3 and � 2 �, then J � is an analytic function on Hd .S/ �

Hd .S/. Moreover, if �; � 2 Hd .S/, then

J �.�; �/ D 1 and J �.�; �/ � 1:

If � 2 �, then one may define the �-pressure form on Hd .S/ by

P �
jT�Hd .S/ D Hess J �.�; �/:

Since J � is analytic, P � is analytic, and since J � achieves its minimum along the diag-
onal, P � is non-negative at every point. Notice that, by construction, P � is mapping
class group invariant and, by Wolpert’s result [125], agrees with (a scalar multiple of)
the Weil–Petersson metric on the Fuchsian locus. The most difficult portion of the analy-
sis then involves determining if P � is non-degenerate, and hence gives rise to an analytic
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Riemannian metric. (Mark Pollicott and Richard Sharp [98] provide an alternate formula-
tion of the pressure form P � when � D !1.)

It is important to notice that the �-pressure form will not be non-degenerate for all �.
For example, since !H is invariant under the contragredient involution (which takes A
to .AT /�1), it is easy to see that P !H will be degenerate on the self-dual locus (i.e. the
fixed point set of the contragredient involution) in Hd .S/ (see [24, Lemma 5.22]), which
always includes the Fuchsian locus. The same analysis applies to any linear functional
which is invariant under the contragredient involution. For example, P ˛n is degenerate on
the self-dual locus of H2n.S/, see [23, Proposition 8.1]. Similarly, the pressure metric on
quasifuchsian space is degenerate along the Fuchsian locus, which is the fixed point set of
the involution of quasifuchsian space induced by complex conjugation, see [20].

However, in the case that � is either the first fundamental weight !1 or first simple
root ˛1, P � is non-degenerate. One hopes that Potrie and Sambarino’s result that simple
root entropy is constant on the Hitchin component, will make the simple root pressure
metric more tractable to study. No other cases are fully understood at this point.

Theorem 5.2 ([22, Corollary 1.6] and [23, Theorem 1.6]). If S is a closed orientable
surface and d � 3, then the pressure forms P !1 and P ˛1 are analytic Riemannian metrics
on the Hitchin component Hd .S/ which are invariant under the action of the mapping
class group Mod.S/. Moreover, the restrictions of both metrics to the Fuchsian locus are
scalar multiples of the Weil–Petersson metric.

The following elementary conjecture illustrates how little is known about the pressure
metric. See [24, Section 7] for a further discussion of questions about the pressure metric,
all of which remain wide open. However, since the time that survey was written, François
Labourie and Richard Wentworth [72] and Xian Dai [42] have made significant progress
in describing the pressure metric at the Fuchsian locus.

Conjecture. There exists a sequence of points in Hd .S/ whose P !1 -distance to the
Fuchsian locus diverges to 1.

One natural place to start would be to study Hitchin components of triangle groups
when d D 3, which are often one-dimensional, see Choi–Goldman [39]. (Nie [93] explic-
itly computes the deformation spaces in some cases.) All the results discussed so far
go through immediately for Hitchin components of cocompact triangle groups (see, for
example, Alessandrini–Lee–Schaffhauser [3]). It is still unknown whether or not these
one-dimensional Hitchin components have finite diameter. One would also like to investi-
gate this conjecture and all the questions in [24] for the simple root pressure metric P ˛1 .

When � D !H and d D 3, one can give a complete analysis of the degeneracy of P !H .
We say that a non-zero vector Ev 2 T�Hd .S/ is self-dual if dC.Ev/ D �Ev, where

C WHd .S/! Hd .S/
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is the contragredient involution, i.e. C.�/ 2 Hd .S/ is given by

C.�/.
/ D �.
�1/T :

Notice that self-dual vectors are based at the self-dual locus and that when d D 3 the
self-dual locus is exactly the Fuchsian locus.

Theorem 5.3 (Bridgeman–Canary–Sambarino [24, Section 5.8] and Bray–Canary–Kao–
Martone [19]). If S is a closed orientable surface and Ev 2 TH3.S/ is non-zero, then

P !H .Ev; Ev/ D 0

if and only if Ev is a self-dual vector. Therefore, the pressure form P !H gives rise to a
mapping class group invariant path metric which is an analytic Riemannian metric away
from the Fuchsian locus and agrees with (a scalar multiple of) the Weil–Petersson metric
on the Fuchsian locus.

Remarks. (1) Qiongling Li [80] produced another mapping class group invariant Rie-
mannian metric on H3.S/, which she calls the Loftin metric. The Loftin metric also
restricts to a scalar multiple of the Weil–Petersson metric on the Fuchsian locus. One
expects that her metric differs from our pressure metrics, but that is unknown so far.

Inkang Kim and Genkai Zhang [64] constructed a mapping class group invariant
Kähler metric on H3.S/ in which the Fuchsian locus is a totally geodesic complex sub-
manifold whose intrinsic metric agrees with the Weil–Petersson metric, see also Labourie
[70, Corollary 1.3.2]. The relationship of this metric to the pressure metrics and Li’s metric
is also not understood.

(2) Marc Burger [26] was the first one to consider the pressure intersection, in the
context of convex cocompact rank one representations. His work was motivated by rigid-
ity result for pairs of Fuchsian representations due to Chris Bishop and Tim Steger [8].
The pressure intersection can also be interpreted in terms of Gerhard Knieper’s geodesic
stretch [65], see the discussion in Schapira–Tapie [111].

(3) Bridgeman, Canary, Labourie and Sambarino [22] more generally define a pres-
sure form P !1 associated to the first fundamental weight at smooth points of deformation
spaces of projective Anosov representations into SL.d;R/ which is non-degenerate at all
“generic” representations.

6. Geodesic currents and collar lemmas for Hitchin representations

In this section, we discuss some of the work which further explores the analogy between
the Hitchin component and Teichmüller space. The choice of topics reflects our personal
tastes and the focus of this article.

Francis Bonahon [10] exhibited a geodesic current ��, known as the Liouville current,
associated to a Fuchsian representation �W�1.S/!PSL.2;R/ such that if 
 2�1.S/�¹idº,
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then
i.��; 
/ D `.�.
//

(where `.�.
// is the hyperbolic translation length of �.
/). He used his theory of Liou-
ville currents to reinterpret both Thurston’s compactification of Teichmüller space and
Thurston’s definition of the Weil–Petersson metric. Recall that a geodesic current on S
is a locally finite, �1.S/-invariant Radon measure on @�1.S/ � @�1.S/ � � (where �
is the diagonal). Moreover, currents associated to (weighted) closed curves are dense in
the space C.S/ of geodesic currents and the intersection function i WC.S/ � C.S/! R
agrees with geometric intersection number on pairs of closed curves.

If � 2 Hd .S/, François Labourie [67] (see also [23] and Martone–Zhang [88]) exhibit
a geodesic current �H

� , again called the Liouville current, so that

i.�H
� ; 
/ D `!H .�.
// D log

�
�1.�.
//

�d .�.
//

�
if 
2�1.S/� ¹idº. Bridgeman, Canary, Labourie, and Sambarino [23] define the Liouville
volume

volL.�/ D i.�H
� ; �

H
� /

of a Hitchin representation. They also show that �H
� is a multiple of the Bowen–Margulis

current for the simple root flow U
˛1
� (see [23, Theorem 1.3]) and use this fact and a result

of Nicolas Tholozan [119] to establish a rigidity result when d D 3. It is natural to ask
whether a similar rigidity holds in higher dimensions.

Theorem 6.1 (Bridgeman–Canary–Labourie–Sambarino [23, Corollary 1.5]). If S is a
closed orientable surface and � 2 H3.S/, then volL.�/ � 4�2j�.S/j with equality if and
only if � lies in the Fuchsian locus.

If � is a geodesic current on S and U is a geodesic flow orbit equivalent to T 1S ,
then one may use the Hopf parametrization of T 1H2 to obtain a (possibly degenerate)
volume form �˝ dt on U by considering the local product of � and the element dt of
path length, see [23] for details. Bridgeman, Canary, Labourie and Sambarino show that
one may re-interpret I ˛1 D J ˛1 in terms of the Liouville current, see [23, Section 6].
Specifically,

I ˛1.�; �/ D

R
U˛1.�/ �H

� ˝ dtR
U˛1.�/ �H

� ˝ dt
:

More generally, Giuseppe Martone and Tengren Zhang [88] produce, for each k 2

¹1; : : : ; d � 1º and Hitchin representation �W�1.S/! PSL.d;R/, a geodesic current �k
�

so that if 
 is a closed curve on S , then

i.�k
� ; 
/ D `!kC!d�k .�.
//:

In their construction, �1
� is exactly the symmetrization of �H

� (i.e. the geodesic current
with the same periods which is invariant under the involution exchanging the first and
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second coordinate). Martone and Zhang also introduce the more general class of positively
ratioed representations and produce geodesic currents with analogous properties in this
more general setting.

Martone and Zhang use their theory to get a deep understanding of how the Hilbert
length entropy of a sequence of Hitchin representations can converge to 0. One particularly
easy stated consequence of their work is the following relationship between the entropy
and the systole of a Hitchin representation. If � 2 BC.�/, we can define the �-systole of
� to be

sys�.�/ D min
®
`�.
/ j 
 2 � n ¹idº

¯
:

Theorem 6.2 (Martone–Zhang [88, Corollary 7.6]). Let S be a closed orientable surface.
Given d � 3 and k 2 ¹1; : : : ; d � 1º, there existsLDL.S;d;k/ > 0 so that if � 2 Hd .S/,
then

h!kC!d�k .�/ sys!kC!d�k .�/ � L:

In particular, h!H .�/ sys!H .�/ � L:

Tengren Zhang [126,127] (and Xin Nie [92,93] when d D 3) produce sequences ¹�nº

in Hd .S/ of representations so that sys!H .�n/! 1 and h!H .�n/! 0. If d D 3,

!H .�n.
// D `˛1.�n.
//C `˛1.�n.

�1//;

so if 
 is any element of �1.S/ � ¹1º, then

max¹`˛1.�n.
//; `
˛1.�n.


�1//º ! 1:

One hopes that such sequences would have their distance to the Fuchsian locus diverge to
infinity.

One might naively think that Zhang’s sequences would have h˛1.�n/! 0. However,
we know, from Potrie–Sambarino [99], that h˛1.�n/ D 1 for all n. One possible explana-
tion for this, in the simple case where d D 3, would be that for many elements in �1.S/,
the middle eigenvalue �2.�n.
// remains “near” to either �1.�n.
// or �3.�n.
//, so that
one of ¹`˛1.�n.
//; `

˛1.�n/.

�1/º is growing quickly while the other remains moder-

ate or even bounded. This phenomenon was observed in explicit computations done by
Martin Bridgeman and the author for Hitchin components of certain triangle groups. This
suggests the surprising possibility that the simple root systole is bounded above on Hd .S/.

Question. Given a closed surface S and d , does there exist L > 0 so that sys˛1.�/ � L

for all � 2 Hd .S/?

Another deep analogy with the traditional theory of Fuchsian groups was established
when Gye-Seon Lee and Tengren Zhang [77] proved an analogue of the collar lemma for
Fuchsian groups for Hitchin representations. We will not state the precise version of their
results, but we recall the following consequences which hold for all Hitchin representa-
tions.
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Theorem 6.3 (Lee–Zhang [77, Corollary 1.2]). If S is a closed, orientable surface of gen-
us at least two, ˛ and 
 are homotopically non-trivial closed curves on S , and � 2 Hd .S/,
then

(1) if i.˛; 
/ ¤ 0, then �
e`!H .�.˛//

� 1
��
e`!H .�.˛//

� 1
�
> 1;

(2) and if ˛ is not simple, then `!H .�.˛// � log.2/.

One consequence of their work is that sufficiently complicated curve systems deter-
mine proper multi-length functions.

Corollary 6.4 (Lee–Zhang [77, Corollary 1.4]). If S is a closed orientable surface of
genus at least two and � D ¹
1; : : : ; 
kº is a collection of homotopically non-trivial closed
curves which contains a pants decomposition of S and so that if ˛ is any homotopically
non-trivial curve ˛ on S , then i.˛; �/ ¤ 0, then the map

L� WHd .S/! Rk given by L�.�/ D
�
`!H .�.
i //

�k

iD1

is proper.

Marc Burger and Beatrice Pozzetti [30] subsequently established collar lemmas for
maximal representations into Sp.2n;R/ and Jonas Beyrer and Beatrice Pozzetti [5] for
partially hyperconvex representations of surface groups.

We briefly mention some other important work which explore analogies between
Hitchin components and Teichmüller spaces.

(1) Richard Skora [114] showed that one may describe Thurston’s compactification of
Teichmüller space in terms of actions of �1.S/ on R-trees. Anne Parreau [94] constructed
a similar compactification of the Hitchin component by actions of �1.S/ on R-buildings.
(Her work applies to compactification of much more general character varieties.) Marc
Burger, Alessandra Iozzi, Anne Parreau and Beatrice Pozzetti [27] analyzed the Parreau
compactification and showed that there is a non-empty open domain of discontinuity for
the action of the mapping class group on the boundary. In subsequent work, they study
the real spectrum compactification of the Hitchin component which admits a continuous,
surjective map to the Parreau compactification which is mapping class group invariant, see
their survey article [28]. Their work depends crucially on the theory of geodesic currents.

(2) Zhe Sun, Anna Wienhard and Tengren Zhang [117, 118, 124] studied Goldman’s
symplectic form on the Hitchin component. They prove an analogue of Wolpert’s magic
formula in this setting and construct Darboux coordinates for the symplectic structure.
They also construct a half-dimensional space of Hamiltonian flows which generalize the
twist flows on Teichmüller space.

(3) Nigel Hitchin [57] offers a parametrization of Hd .S/ as
Qk

dD2 Q
k.X/ where

Qk.X/ is the space of holomorphic k-differentials on a Riemann surface X homeomor-
phic to S . Unfortunately, this parametrization is not invariant with respect to the mapping
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class group. François Labourie [68] and John Loftin [81] showed that there is a homeo-
morphism from H3.S/ to the bundle of cubic holomorphic differentials over T .S/ which
is equivariant with respect to the action of the mapping class group. Recent work of Vlad
Markovic [85] indicates that Labourie’s approach in [70] will not generalize to produce
similar mapping class group invariant parametrizations when d > 3.

(4) Bridgeman, Pozzetti, Sambarino and Wienhard [25, Corollary A] showed that
Hd .S/ is an isolated minimum for the ˛1-entropy functional for the space of quasi-
Hitchin representations into PSL.d;C/. (A representation �W�1.S/! PSL.d;C/ is quasi-
Hitchin if it is Borel Anosov and can be deformed to a Hitchin representation through
Borel Anosov representations.) Moreover, they describe the Hessian of the ˛1-entropy
functional at the Hitchin locus. Their results generalize work of Bowen [14], Bridge-
man [20] and McMullen [91] in the quasifuchsian setting.

(5) François Labourie and Greg McShane [71] proved an analogue of McShane’s
identity for Hitchin representations, while Nick Vlamis and Andrew Yarmola [123] proved
an analogue of the Basmajian identity for Hitchin representations. Yi Huang and Zhe
Sun [58] proved versions of McShane’s identity for holonomy maps of finite area convex
projective surfaces (and for positive representations of Fuchsian lattices).

(6) Richard Schwartz and Richard Sharp [113] proved an explicit correlation result for
lengths on hyperbolic surfaces. Specifically, they prove that given �1; �2 2 T .S/DH2.S/

and " > 0, there exist C;M > 0 so that

#
®
Œ
� 2 Œ�� W `.�1.
// 2 .x; x C "/ and `.�2.
// 2 .x; x C "/

¯
� C

eMx

x3=2
:

Xian Dai and Giuseppe Martone [43, Theorem 1.7] generalize this result to arbitrary linear
functions in �, by showing that given �1; �2 2 Hd .S/, � 2 � and " > 0, there exist
C;M > 0 so that

#
®
Œ
� 2 Œ�� W h�.�1/`

�.�1.
// 2 .x; x C h�.�1/"/

and h�.�2/`
�.�2.
// 2 .x; x C h�.�2/"/

¯
� C

eMx

x3=2
:

Schwartz and Sharp [113] asked whether or not M can be arbitrarily close to 0. Dai and
Martone [43, Theorem 1.3] show that this can happen even in the Fuchsian setting.

(7) It is a classical result, that one can find finitely many simple closed curves whose
lengths determine a point in Teichmüller space. Ursula Hamenstadt [56] and Paul Schmutz
[112] showed that 6g � 5 curves suffice, but that no set of 6g � 6 curves completely
determine a point in Teichmüller space. Bridgeman, Canary, Labourie and Sambarino [22,
Theorem 1.2] show that the !1-lengths of all curves on S determine a point in Hd .S/.
Bridgeman, Canary and Labourie [21] showed that the !1-length of all simple closed
curves on S determine a points in Hd .S/ if S has genus at least 3. It would be interesting
to know whether or not finitely many curves suffice. (Sourav Ghosh [49] recently showed
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that there are finitely many elements of �1.S/ whose full Jordan projections determine a
point in Hd .S/.)

(8) Vladimir Fock and Alexander Thomas [48] have defined the notion of a higher
complex structure on a closed surface. They conjecture that the space of higher complex
structures of order d on a surface S is canonically isomorphic to the Hitchin compo-
nent Hd .S/.

7. The Teichmüller theoretic viewpoint of Sullivan and Tholozan

In August 2017, Nicolas Tholozan gave an inspirational talk describing how to use the
work of Dennis Sullivan to give a Teichmüller-theoretic interpretation of the simple root
pressure metric P ˛1 . We will give a brief description of his work, which unfortunately is
not fully available yet. If you want more details I suggest you view his talk on YouTube2,
consult his lecture notes3 for a mini-course given at the University of Michigan in Decem-
ber 2019 and/or read Sullivan’s beautiful paper [116].

One may consider the unit tangent bundle T 1H2 of the hyperbolic plane as a foliated
space where the leaves are the central stable leaves of the geodesic flow. More prosaically,
each leaf of the foliation consists of tangent vectors to all geodesic ending at a fixed point
in @H2. Each leaf is canonically identified with H2 (up to isometry) and hence admits a
well-defined complex structure. One may thus view T 1H2 as admitting a complex folia-
tion. If S D H2=� , then � acts as a group of holomorphic automorphisms of this complex
foliation, so T 1S is also a complex foliated manifold.

Sullivan [116] developed a theory of the Teichmüller space T .L/ of complex struc-
tures on a complex laminated space L (i.e. spaces which admit a local product structure
in which the horizontal leaves admit a complex structure). Notice that a complex structure
on a leaf induces a smooth structure on the leaf. An element of T .L/ may be viewed
as a complex foliated laminated space with a homeomorphism to L which preserves the
lamination structure and is smooth on each leaf (up to appropriate marked equivalence).
Sullivan’s Teichmüller theory involves generalizations of both quadratic differentials and
Beltrami differentials, so he is able to construct both a Teichmüller metric and a Weil–
Petersson metric on T .L/.

Tholozan [120] constructs a continuous bijection CF between the space of (conjugacy
classes of) entropy one geodesic flows which are Hölder orbit equivalent to T 1S and the
space T h.T 1S/ of elements of T .T 1S/ where the homeomorphism to T 1.S/ is trans-
versely Hölder.4 Roughly, one maps the stable leafs of flow space to horocycles. The fact
that the entropy is 1 allows one to see that this gives an identification of (the cover of) each

2httpsW//www.youtube.com/watch?v=8BdSaum7OeI&t=8s
3httpW//www.math.ens.fr/~tholozan/Annexes/CocyclesReparametrizations2.pdf
4See Theorem 0.4 of Tholozan’s lecture notes.

https://www.youtube.com/watch?v=8BdSaum7OeI&t=8s
http://www.math.ens.fr/~tholozan/Annexes/CocyclesReparametrizations2.pdf
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leaf with H2. A result of Candel [35] then shows that this gives rise to a foliated complex
structure on T 1S .

From CF one obtain an embedding

RWHd .S/! T .T 1S/;

whereR.�/DCF.U˛1.�//. Tholozan’s main result is that P ˛1 is the pullback of a “Weil–
Petersson metric” on T .T 1S/.

Theorem 7.1 (Tholozan [120]). If S is a closed orientable hyperbolic surface of genus
g � 2, then the simple root pressure metric P ˛1 is the pullback, via the embedding R, of
a scalar multiple of a “Weil–Petersson metric” on T .T 1S/.

This opens up the possibility of using classical Teichmüller theoretic techniques to
study the, so far mysterious, simple root pressure metric. One can also pull back the
Teichmüller metric on T .T 1S/ to obtain a metric Q˛1 on Hd .S/, which one might call
the simple root Teichmüller metric. As in the classical setting, the simple root Teichmüller
metric should be less regular, but easier to control. One might first study the properties
of the simple root Teichmüller metric, and then study its relationship with the simple root
pressure metric.

Remark. Labourie [67] also constructs a candidate for a highest Teichmüller space in
which all Hitchin components embed. He uses cross ratios to embed every Hitchin com-
ponent Hd .S/ in the space of (conjugacy classes of) representations of �1.S/ into the
space of Hölder self-homeomorphisms of the space J of 1-jets of real-valued functions
on the circle. This embedding records the Hilbert length functional and is closely related
to Labourie’s Liouville current. There is a relationship between Labourie’s work and that
of Tholozan coming from the fact that the Liouville current is the Bowen–Margulis current
of the (first) simple root flow.

8. Hitchin representations of Fuchsian groups

If � is a Fuchsian group, i.e. a discrete subgroup of PSL.2;R/, we say that a representa-
tion �W� ! PSL.d;R/ is a Hitchin representation if there exists a �-equivariant positive
map �Wƒ.�/! Fd , where ƒ.�/ � @H2 is the limit set of � . If � is convex cocompact
(i.e. finitely generated and without parabolic elements) and torsion-free, Hitchin repre-
sentations of � were studied by Labourie and McShane [71]. If H2=� has finite volume
and d D 3, then �.�/ preserves and acts properly discontinuously on a strictly convex
domain �� � RP 2 and ��=�.�/ is a finite area real projective surface (or orbifold), see
Choi–Goldman [38] or Marquis [86, 87].

Dick Canary, Tengren Zhang and Andy Zimmer [33] prove that Hitchin representa-
tions of finitely generated Fuchsian groups have many of the same geometric properties
as Hitchin representations of closed surface groups. (More generally, they study Anosov
representations of finitely generated Fuchsian groups.)
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Theorem 8.1 (Canary–Zhang–Zimmer [33]). If � is a geometrically finite Fuchsian group,
b0 is a basepoint for H2 and �W� ! PSL.d;R/ is a Hitchin representation, then

(1) There exists B; b > 0 so that if 
 2 � , then

Beb`.
/
�

�k.�.
//

�kC1.�.
//
�
1

B
e

`.
/
b

for all k 2 ¹1; : : : ; d � 1º.

(2) If ˛ 2 � is parabolic, then �.˛/ is unipotent and its Jordan normal form has only
one block.

(3) The orbit map ��W�.b0/! Xd .R/ given by ��.
.b0// D Œ�.
/� is a quasi-isom-
etric embedding.

(4) The limit map �� is Hölder.

(5) If z 2 ƒ.�/, then ��.z/ varies analytically over the space of Hitchin representa-
tions.

Harry Bray, Dick Canary, Nyima Kao and Giuseppe Martone [18] developed ana-
logues of the dynamical results of Sambarino in the setting of general Hitchin representa-
tions of a torsion-free, finitely generated Fuchsian group � . If � is convex cocompact, then
Sambarino’s original theory applies. The key new difficulty in the presence of parabolic
elements is that one can no longer model the (recurrent portion of the) geodesic flow
on T 1X , where X D H2=� by a finite Markov coding. However, Françoise Dal’bo and
Marc Peigné [44] (in the case where X has infinite area) and Manuel Stadlbauer, Francois
Ledrappier and Omri Sarig [76, 115] (in the case where X has finite area) have devel-
oped well-behaved countable Markov codings. These codings are natural generalizations
of the Bowen–Series [15] (finite) Markov codings of convex cocompact Fuchsian groups.
Kao [59] first used these codings to construct a pressure metric on Teichmüller space, and
Bray, Canary and Kao [17] used them to construct pressure metrics on deformation spaces
of cusped quasifuchsian groups.

We recall that a one-sided countable Markov shift .†C; �/ is determined by a count-
able alphabet A and a transition matrix T 2 ¹0; 1ºA�A. An element x 2†C is a one-sided
infinite string x D .xi /i2N of letters in A so that T .xi ; xiC1/ D 1 for all i 2 N. The
shift � simply removes the first letter and shifts every other letter one place to the left,
i.e. �.x/ D .xiC1/i2N . Let Fixn denote the set of periodic words in †C with period n.

Given a torsion-free finitely generated group � , then the associated countable Markov
shift .†C; �/ constructed by Dal’bo–Peigné or Stadlbauer–Ledrappier–Sarig has the fol-
lowing crucial properties.

(1) There exists a finite-to-one Hölder map !W†C ! ƒ.�/ which surjects onto the
complement ƒc.�/ of the set of fixed points of parabolic elements of � .

(2) There exists a map GWA ! � so that if x 2 Fixn, then !.x/ is the attracting fixed
point of G.x1/ � � �G.xn/.
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(3) If 
 2� is hyperbolic, then there exists x 2 Fixn (for some n) so that 
 is conjugate
to G.x1/ � � �G.xn/. Moreover, x is unique up to cyclic permutation.

In addition, †C is well behaved in the sense that it satisfies the assumptions needed to
make use of the powerful thermodynamic formalism for countable Markov shifts devel-
oped by Daniel Mauldin and Mariusz Urbanski [90] and Omri Sarig (see his lecture notes5

and [109]).
Bray, Canary, Kao and Martone [18] show that given � 2 Hd .�/ there is a vector-

valued function ��W†
C ! a which records all the spectral data of �.�/. Specifically, they

define
��.x/ D B

�
�.G.x1//; �.G.x1//

�1.��.!.x///
�

and prove that it has the following property.

Theorem 8.2 (Bray–Canary–Kao–Martone [18]). Suppose that � is a torsion-free, finitely
generated Fuchsian group, with associated one-sided Markov shift .†C; �/ and �W� !

PSL.d; R/ is a Hitchin representation. There is a locally Hölder continuous function
��W†

C ! a so that if � 2 �, ��
� D � ı ��, and x 2 Fixn, then

Sn�
�
� .x/ D

n�1X
iD0

��
� .�

i .x// D `�.G.x1/ � � �G.xn//:

Much as in the classical case one may define the �-topological entropy of a Hitchin
representations by letting

R
�
T .�/ D

®
Œ
� 2 Œ�hyp� W `

�.�.
// � T
¯

and h�.�/ D lim
log #R�

T .�/

T
;

where Œ�hyp� is the collection of conjugacy classes of hyperbolic elements of � . The only
difference here is that we omit consideration of parabolic elements, which are not present
in the case of closed surface groups. One may then also generalize the definitions of pres-
sure intersection and renormalized intersection. If �; � 2 Hd .�/ and � 2 �, then

I �.�; �/ D lim
T!1

1

#.R�
T .�//

X
Œ
�2RT .�/

`�.�.
//

`�.�.
//

and

J �.�; �/ D
h�.�/

h�.�/
I �.�; �/:

Bray, Canary, Kao and Martone use the renewal theorem of Marc Kesseböhmer and
Sabrina Kombrink [63] for countable Markov shifts to establish counting and equidistri-
bution results in the setting of countable Markov shifts in the spirit of the work of Steven
Lalley [73] in the setting of finite Markov shifts. In the case of Hitchin representations,
their counting result has the following form. (When d D 3, then our results are a special
case of more general results of Feng Zhu [128] when � D !H .)

5httpsW//www.weizmann.ac.il/math/sarigo/sites/math.sarigo/files/uploads/tdfnotes.pdf

https://www.weizmann.ac.il/math/sarigo/sites/math.sarigo/files/uploads/tdfnotes.pdf
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Theorem 8.3 (Bray–Canary–Kao–Martone [18]). Suppose that � is a torsion-free, finitely
generated Fuchsian group and �W�!PSL.d;R/ is a Hitchin representation. If �2BC.�/,
then there exists h�.�/ > 0 so that

#R�
T .�/ �

eth�.�/

th�.�/
:

Our equidistribution result [18, Corollary 1.6] expresses the geometrically defined
pressure intersection function in terms of equilibrium states, which allows one to employ
the machinery of thermodynamical formalism to verify analyticity and construct analytic
pressure forms. A more precise statement would take us further into a discussion of ther-
modynamic formalism than time allows for in a brief survey paper.

The results in [18] and [33] combine to show that entropies and pressure intersection
vary analytically.

Corollary 8.4 ([19]). If � is a finitely generated Fuchsian group and � 2�, then h� is an
analytic function on Hd .�/ and I � and J � are analytic functions on Hd .�/ � Hd .�/.
Moreover, J �.�; �/ D 1 and J �.�; �/ � 1 for all �; � 2 Hd .�/.

If � 2 �, then we can again define a �-pressure form P � on Hd .�/ by considering
the Hessian of the renormalized pressure intersection J � . Corollary 8.4 allows one to
use the thermodynamic formalism for countable Markov shifts developed by Mauldin–
Urbanski and Sarig to produce pressure metrics on Hitchin components of general finitely
generated, torsion-free Fuchsian groups. (One can embed Hitchin components of finitely
generated Fuchsian groups with torsion into Hitchin components of finitely generated,
torsion-free Fuchsian groups and thus obtain pressure metrics on them as well.) Recall that
Mod.�/ is the group of (isotopy classes of) orientation-preserving self-homeomorphisms
of X D H2=� .

Theorem 8.5 (Bray–Canary–Kao–Martone [19]). If � is a finitely generated torsion-free
Fuchsian group and d � 3, then the pressure forms P !1 is an analytic Riemannian metric
on the Hitchin component Hd .�/ which is invariant under the action of the mapping class
group Mod.�/.

Canary, Zhang and Zimmer [34] showed that if � is a lattice (i.e. H2=� has finite
area), then the simple root entropies are constant over Hd .�/, which generalizes a result
of Potrie–Sambarino [99] from the cocompact case.

Theorem 8.6 (Canary–Zhang–Zimmer [34]). If � is a torsion-free Fuchsian lattice and
� 2 Hd .�/, then h˛k .�/ D 1 for all k 2 ¹1; : : : ; d � 1º.

This allows Bray, Canary, Kao and Martone to establish the non-degeneracy of the
simple root pressure metric.

Theorem 8.7 (Bray–Canary–Kao–Martone [19]). If � is a torsion-free Fuchsian lat-
tice and d � 3, then the pressure form P ˛1 is an analytic Riemannian metric on the
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Hitchin component Hd .�/ which is invariant under the action of the mapping class group
Mod.�/.

The analysis of the Hilbert length pressure metric was carried out for all finitely gen-
erated Fuchsian groups, yielding the following general result.

Theorem 8.8 (Bray–Canary–Kao–Martone [19]). If � is a finitely generated torsion-free
Fuchsian group and Ev 2 T�H3.�/ is non-zero, then P !H .Ev; Ev/ D 0 if and only if Ev is a
self-dual vector. Therefore, the pressure form P !H gives rise to a mapping class group
invariant path metric which is an analytic Riemannian metric away from the Fuchsian
locus.

Canary, Zhang and Zimmer [34] are also able to generalize the entropy rigidity theo-
rem of Rafael Potrie and Andres Sambarino [99]. (In the process they obtain a result for
the Hausdorff dimension of .1; 1; 2/-hypertransverse groups which is a common general-
ization of the results of Beatrice Pozzetti, Andres Sambarino and Anna Wienhard [100]
for .1; 1; 2/-hyperconvex Anosov representations and those of Chris Bishop and Peter
Jones [7] for discrete subgroups of SO.d; 1/.) We recall that Sambarino [107], general-
izing earlier unpublished work of Olivier Guichard, showed that if �W � ! PSL.d;R/
is Hitchin, then either �.�/ is Zariski dense or its Zariski closure is conjugate to either
�d .PSL.2;R// (in which case � is d -Fuchsian), G2 (in which case d D 7), PSO.n; n � 1/
(in which case d D 2n � 1) or PSp.2n;R/ (in which case d D 2n).

Theorem 8.9 (Canary–Zhang–Zimmer [34]). If � is a finitely generated Fuchsian group,
� 2 Hd .�/ and � D

P
ci˛i 2 �, then

h�.�/ �
1

c1 C � � � C cd�1

:

Moreover, equality occurs exactly when � is a lattice and either

(1) � is d -Fuchsian;

(2) � D ck˛k for some k;

(3) d D 2n, the Zariski closure of �.�/ is conjugate into PSp.2n;R/ and

� D ck˛k C cd�k˛d�k

for some k;

(4) d D 2n � 1, the Zariski closure of �.�/ is conjugate into PSO.n; n � 1/ and

� D ck˛k C cd�k˛d�k

for some k;

(5) d D 7, the Zariski closure of �.�/ is conjugate to G2, and

� D c1˛k C c3˛3 C c4˛4 C c6˛6:
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Remarks. (1) Hitchin representations of finitely generated groups are relatively domi-
nated, in the sense developed by Feng Zhu [129,130], and relatively Anosov from various
viewpoints developed in the work of Misha Kapovich and Bernhard Leeb [60]. Many
of the properties detailed in Theorem 8.1 can be derived in their frameworks. Our main
motivation for developing our viewpoint was to establish the analytic variation of the limit
map, which was not yet available from either of the previous viewpoints.

(2) Our work with Bray, Kao and Martone, was partially inspired by the work of
Barbara Schapira and Samuel Tapie [111]. In particular, their work develops the notion
of an entropy gap at infinity for a geodesic flow on a negatively curved manifold, which
we adapt in our setting of Hölder potentials on “well-behaved” countable Markov shifts,
see also Velozo [122]. One may obtain related counting and equidistribution results for
cusped Hitchin representations using the theory in Paulin-Pollicott-Schapira [96] and/or
Schapira–Tapie [110].

9. The augmented Hitchin component

In this section, we recall the theory of the augmented Teichmüller space of a closed surface
from classical Teichmüller theory and describe an analogous conjectural geometric picture
of the augmented Hitchin component. The Hitchin component H3.S/ can be viewed as the
space of (marked) real projective surfaces homeomorphic to S , so the analogy is easiest
to discuss when d D 3. Moreover, John Loftin and Tengren Zhang [83] have explored the
topological picture when d D 3. We will restrict our discussion to this case, although we
hope that there is an analogous picture for all d .

Augmented Teichmüller space

The augmented Teichmüller space yT .S/ of a closed orientable surface S of genus g� 2, is
obtained from Teichmüller space by appending all finite area hyperbolic surfaces obtained
by pinching a collection of disjoint simple closed curves on S . It was introduced by
Bill Abikoff [1] who proved that the mapping class group Mod.S/ acts properly dis-
continuously on yT .S/ and that its quotient is homeomorphic to the Deligne–Mumford
compactification of the Moduli space of S . (Recall that the Moduli space of S is the
quotient of T .S/ by the action of Mod.S/.) As such, one may view the augmented Teich-
müller space as the “orbifold universal cover” of the Deligne–Mumford compactification
of Moduli space.

The most concrete way to describe the augmented Teichmüller space is to look at
the local coordinates given by extending the Fenchel–Nielsen coordinates on Teichmüller
space. Suppose that P D ¹
1; : : : ; 
3g�3º is a pants decomposition, i.e. a collection of
disjoint simple closed curves decomposing S into 2g � 2 pairs of pants (subsurfaces
homeomorphic to a twice-punctured disk). The Fenchel–Nielsen coordinates associate
to each hyperbolic surface in T .S/ and each curve a positive real co-ordinate which is
the length of the associated geodesic in the surface and another real coordinate which
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records the “twist” about the curve. (The choice of twist co-ordinate involves additional
choices, but is canonical once appropriate choices are made.) This results in a real analytic
coordinate system for Teichmüller space as

T .S/ Š .R>0 � R/3g�3:

If C is any non-empty sub-collection of P , then there is a “stratum at infinity” con-
sisting of (marked) finite area hyperbolic surfaces homeomorphic to S nC . One naturally,
obtains Fenchel–Nielsen coordinates on this strata by looking at the curves in P n C , so

T .S n C/ Š .R>0 � R/#.PnC /
Š

Y
R2SnC

T .R/;

where R is a component of S n C .
If C D ¹
1º, then one may append the stratum T .S n ¹
1º/ by allowing the length

coordinate associated to 
1 to be 0 and forgetting the twist co-ordinate when this occurs.
So,

T .S/ [ T .S n ¹
1º/ Š .R>0 � R/3g�4
� .R�0 � R/= �;

where the equivalence relation is given by letting .0; s/ � .0; t/ for all s; t 2 R. Notice
that the resulting space has the unfortunate property of failing to be locally compact.
More generally, one may append all the strata at infinity which are Teichmüller spaces of
surfaces pinched along sub-collections of P at the same time, to obtain

yT P .S/ D
�
.R�0 � R/= �

�3g�3
:

Then, one defines the augmented Teichmüller space yT .S/ to be the union of the yT P .S/

over the collection P of all pants decompositions of S , with the obvious identification of
(marked) isometric surfaces and the topology induced by regarding the yT P .S/ as local
coordinate systems, so

yT .S/ D
[

P2P

yT P .S/:

We regard T .S/ D T .S n ;/ as the central stratum and each T .S n C/ as a stratum at
infinity. This description is discussed more fully in Bill Abikoff’s book [2, Section II.3.4].

One may also give a more representation-theoretic viewpoint on the augmented Teich-
müller space. One may regard an element of T .S n C/ Š

Q
R2SnC as a collection � D

¹�RºR2SnC of (conjugacy classes of) representations of �1.R/ into PSL.2;R/ where R
is a component of S n C and �R takes each curve freely homotopic into the boundary
of R to a parabolic element. If each �i D ¹.�i /Ri

ºRi2SnCi
is a collection of elements

of T .S n Ci /, where each Ci is a collection of disjoint simple closed curves on S , then
we say that ¹�iº converges to ¹.�1/R1

ºR12SnC1
if Ci is contained in C1 for all large

enough i , and for each component R1 of S n C1, the sequence ¹�i jR1
º (which makes

sense for large enough i ) converges (up to conjugation) to .�1/R1
. This viewpoint is

explored more fully in the larger setting of representations into PSL.2;C/ by Dick Canary
and Pete Storm [32].
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Howard Masur [89] showed that the augmented Teichmüller space is homeomorphic to
the metric completion of Teichmüller space with the Weil–Petersson metric. Moreover, the
induced metric on each stratum at infinity is its Weil–Petersson metric. We will formulate
his result in a manner which is convenient for our later description of the conjectural
geometric picture of the augmented Hitchin component.

Theorem 9.1 (Masur [89]). Let dWP
C denote the Weil–Petersson metric on T .S n C/

where C is a (possibly empty) collection of disjoint non-parallel simple closed curves.
There exists a complete metric yd on yT .S/ such that if T .S n C/ is any stratum of yT .S/

then the restriction of yd to T .S n C/ agrees with dWP
C .

Augmented Hitchin components

Suhyoung Choi and Bill Goldman [38] showed that if � 2 H3.S/, then there exists a
strictly convex domain �� in the projective plane RP 2 so that �.�1.S// acts freely and
properly discontinuously on ��, so X� D ��=�.�1.S// is a strictly convex projective
surface. (A domain in RP 2 is strictly convex if its closure lies in an affine chart for RP 2

and is strictly convex in that chart.) Bill Goldman [50] produced coordinates on H3.S/

which generalize the classical Fenchel–Nielsen coordinates.
John Loftin and Tengren Zhang [83] use a modification of Goldman’s coordinates

for H3.S/ which was developed by Tengren Zhang [127]. One again begins with a pants
decomposition P D ¹
1; : : : ; 
3g�3º of S . For each curve 
i there are two length coordi-
nates, given by ˛1.�.
i // and ˛2.�.
i //, which determine �.
i / up to conjugacy, and two
real-valued coordinates, one of which extends the twist coordinate from the Fuchsian set-
ting and the other of which is called the bulge coordinate. Associated to every pair of pants
in S �P there are two real-valued coordinates, which are called internal coordinates. The
projective structure on each pair of pants in S �P is determined by the length coordinates
of its boundary curves together with its two internal coordinates. In these coordinates,

H3.S/ Š
�
.R>0/

2
� R2

�3g�3
� .R2/2g�2:

IfC is a non-empty subcollection of the pants decompositionP , then we let H3.S nC/

denote the space of marked finite area projective structures on S n C . Then, both length
coordinates associated to any curve in C are 0 and we have no twist or bulge co-ordinate
associated to any curve in C , so

H3.S n C/ Š
�
.R>0/

2
� R2

�#.PnC /
� .R2/2g�2

Š

Y
R2SnC

H3.R/;

where H3.R/D H3.�R/where H2=�R is a finite area hyperbolic surface homeomorphic
toR. (Ludovic Marquis [86] also describes a parametrization of H3.S nC/.) IfC D ¹
1º,
we append H3.S n ¹
1º/ to H3.S/ as a “stratum at infinity” much as we did in the Teich-
müller setting by allowing the additional length coordinate pair .0; 0/ for the curve 
1 but
ignoring the twist and bulge coordinates whenever this occurs, so

H3.S/ [ H3

�
S n ¹
1º

�
Š

�
.R>0/

2
� R2

�3g�4
�
�
.R�0/

2
� R2

�
= � �.R2/2g�2
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where .0; 0; a; b/ � .0; 0; c; d/ for all a; b; c; d 2 R. Again, the resulting space fails to be
locally compact. If we let yH P

3 .S/ be the result of appending H3.S nC/ for all non-empty
subcollections C of P , then the resulting space is parametrized as

yH P
3 .S/ Š

�
..R�0/

2
� R2/= �

�3g�3
� .R2/2g�2:

Then, one defines the augmented Hitchin component yH3.S/ to be the union of the yH P
3 .S/

over the collection P of all pants decompositions of S , with the obvious identification of
(marked) convex projective surfaces and the topology induced by regarding the yH P

3 .S/

as local coordinate systems, so

yH3.S/ D
[

P2P

yH P
3 .S/:

Notice that if C is the set of (isotopy classes of) non-empty collections of disjoint non-
parallel curves on S , then

yH3.S/ D H3.S/
G

C2C

H3.S n C/

and we regard H3.S/ as the central stratum and each H3.S n C/ as a stratum at infinity.
Loftin and Zhang consider a larger augmented Hitchin component where the “pinched”

curves are not required to map to unipotent elements. This space is natural from various
viewpoints. However, we expect, with very little evidence, that our smaller augmented
Hitchin component arises as the metric completion of the Hitchin component with a pres-
sure metric. John Loftin [82] earlier gave a more analytic description of the augmented
Hitchin component from the point of view of the parametrization of H3.S/ as the bundle
of cubic differentials over Teichmüller space. This more analytic viewpoint is also useful
in the study of the augmented Hitchin component, but we will not discuss it further here.

The geometric picture

We are now ready to give a description of our conjectural geometric picture. If � 2 �,
then there is a pressure form P � on each “stratum at infinity” of yH3.S/ and on the central
stratum H3.S/. This gives rise to a path pseudo-metric d� on each stratum. If � is !1

or ˛1, then d� is an analytic Riemannian metric on each stratum, while if � D !H then it
is a path metric on each stratum. One way to state our conjecture is the following.

Conjecture. If � is !1, ˛1 or !H , then d� extends to a complete metric yd� on yH3.S/.
In particular, yH3.S/ is the metric completion of H3.S/ with the pressure metric d� .

Even though the metric d!H is only a path metric on each stratum, it may be the most
natural metric to investigate. If � 2 H3.S/, then the Hilbert metric on�� is Gromov hyp-
erbolic and induces a Finsler metric on X� D ��=�.�1.S// and `!H .�.
// is the length
of the unique closed geodesic on X� in the free homotopy class of 
 , see Marquis [87].
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One expects that the conjectural picture described above should generalize to all values
of d . In this case, one should be able to replace the Zhang-modified Goldman coordinates,
with the coordinates described by Fock–Goncharov [47] or Bonahon–Dreyer [11]. The
representation theoretic viewpoint also generalizes, where one replaces the assumption
that the images of boundary components of complementary surfaces map to parabolic
elements with the assumption that the restriction to each complementary surface R is a
Hitchin representation of a finite area uniformization of R.
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