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1. Introduction

In this paper, we construct pressure metrics on the cusped Hitchin component of
Hitchin representations of a torsion-free Fuchsian lattice into PSL(d,R). The first two
metrics are mapping class group invariant, analytic Riemannian metrics. These metrics
are associated to the first fundamental weight and the first simple root. Our third pressure
metric is based on the Hilbert length. It is a mapping class group invariant path metric
which is an analytic Riemannian metric off of the self-dual locus. These constructions
are based on earlier constructions of Bridgeman, Canary, Labourie and Sambarino [7-9]
in the case of Hitchin components of closed surface groups.

The main new technical difficulties involve the fact that while the geodesic flow of a
closed hyperbolic surface may be coded by a finite Markov shift, there is no finite Markov
coding of the geodesic flow of a geometrically finite hyperbolic surface. Stadlbauer [44]
and Ledrappier-Sarig [27] provide a countable Markov coding of the (recurrent portion
of the) geodesic flow of a finite area hyperbolic surface. In a previous paper, we used
these codings, work of Canary-Zhang-Zimmer [11] on cusped Hitchin representations,
and the Thermodynamic Formalism for countable Markov shifts, to establish counting
and equidistribution results for cusped Hitchin representations. In this paper, we apply
the theory developed in that paper to construct our pressure metrics.

The long-term goal of this project is to realize these metrics as the induced metric
on the strata at infinity of the metric completion of the Hitchin component of a closed
surface group with its pressure metric. In the classical setting, when d = 2, Masur [31]
showed that the metric completion of Teichmiiller space of a closed surface S, with the
Weil-Petersson metric, is the augmented Teichmiller space. The strata at infinity in the
augmented Teichmiiller space come from Teichmiiller space of, possibly disconnected,
surfaces obtained from pinching S along a multicurve. We hope that the Hilbert length
pressure metric when d = 3 may be more natural to study given its connection to
Hilbert geometry. When d = 3, the Hitchin component of a closed surface is the space of
holonomy maps of convex projective structures on the surface. The strata at infinity of
the augmented Hitchin component would then be cusped Hitchin components consisting
of finite area convex projective structures obtained from pinching the surface along a
multicurve. We hope to eventually establish an analogue of Masur’s result in the higher
rank setting. (See [10] for a more detailed description of the conjectural geometric picture
of the augmented Hitchin component.)
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We now discuss our results more precisely. We recall that if I" is a torsion-free, geo-
metrically finite Fuchsian group (i.e. a discrete non-abelian finitely generated subgroup
of PSL(2,R)), then a Hitchin representation is a representation p : I' — PSL(d, R) which
admits a positive equivariant limit map & : A(T') — F; where A(T') C OH? is the limit
set of I" and Fy is the space of d-dimensional flags. As in the closed case, they all arise
as type-preserving deformations of the restriction of an irreducible representation of
PSL(2,R) into PSL(d, R).

The Hitchin component H4(T') is the space of conjugacy classes of Hitchin representa-
tions of I' into PSL(d, R). Fock and Goncharov, see the discussion in [14, Sec 1.8], show
that the Hitchin component is topologically a cell. (When d = 3, H3(T') is parameter-
ized by Marquis [30], when T" is a lattice, and more generally by Loftin and Zhang [28].
Bonahon-Dreyer [2, Thm. 2] and Zhang [47, Prop. 3.5] explicitly describe variations of
the Fock-Goncharov parametrization when I' is cocompact, and their analyses should
extend to our setting.) More generally, if G is a real-split Lie subgroup of PSL(d,R),
let H(I', G) be the space of Hitchin representations with image in G. (In particular,
Ha(T) = H(T,PSL(d,R)) in this notation.) Fock-Goncharov [14] and Hitchin [19] (see
also [16, §9.3]) show that H(T", G) is topologically a cell.

Theorem 1.1. If T" C PSL(2,R) is torsion-free and geometrically finite and G is a real-
split Lie subgroup of PSL(d,R), then the cusped Hitchin component H(T', G) is an analytic
manifold diffeomorphic to R™ for some m € N.

It

a={7eR!| Y = =0}

is the standard Cartan algebra for PSL(d, R), let

d—1
A:{¢:Zaiai|aiZOVi, Za¢>0}Ca*
i=1

where «; is the simple root given by «;(#) = x; — x;—1. Notice that A is exactly the
collection of linear functionals which are strictly positive on the interior of the Weyl
chamber

a+:{f€a|m1>--->xd}.
Consider the Jordan projection v : PSL(d,R) — a™ given by

v(4) = (log M (A), . ., log Aa(A))

where A1(A) > -+ > A\g(A) are the (ordered) moduli of generalized eigenvalues of A.
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If € A and p € Hq4(T'), denote by £2() = ¢(v(p(7))) the ¢-length of v € T. We may
define the ¢-entropy of p as

h¢(p)= lim #R?“(p)

T—o00

where [T’y is the set of conjugacy classes of hyperbolic elements in I', and

R3(p) = {[] € [Thyp] | L2(7) < T}

Moreover, if p,n € H4(I'), we may define the ¢-pressure intersection

1 24Q0)
) — E n
2(p,m) = Jim R? ®(v)’
| T(p)|[7]€R$(p) r

and a renormalized ¢-pressure intersection

h? ()
T (psn) = 755 1%(pu1).
h?(p)

Our key tool in the construction of the pressure metric will be results of Bray, Canary,
Kao and Martone [5] and Canary, Zhang and Zimmer [11] which combine to prove that
all these quantities vary analytically. See [7, Section 8.1] for the analogous statement
when T is cocompact.

Theorem 1.2. If I" C PSL(2,R) is torsion-free and geometrically finite and ¢ € A, then
h®(p) varies analytically over Hq(T') and I® and J? vary analytically over Hq(T')x Hq(T).
Moreover, if p,n € Hq(T'), then

and J?(p,n) =1 if and only if £5(y) = hz(”)g‘ﬁ(v) for allveT.
Given ¢ € A, we define a pressure form on the Hitchin component, by letting

]P)¢|Tp7-[d(l‘) = Hess(J?(p, ).
Since J? achieves its minimum along the diagonal, P? will always be non-negative.
However, it will not always be non-degenerate. Typically, the most difficult portion of
the proof of the construction of a pressure metric is to verify non-degeneracy, or, more
generally, to characterize which vectors are degenerate.

We first consider the first fundamental weight w; € A, given by wi(Z) = z1. As a
consequence of a much more general result, Bridgeman, Canary, Labourie and Sambarino
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[7] prove that P“* is non-degenerate on the Hitchin component of a convex cocompact
Fuchsian group. We recall that the mapping class group Mod(T") is the group of (isotopy
classes of) orientation-preserving self-homeomorphisms of H?/T.

Theorem 1.3. If I" C PSL(2,R) is torsion-free and geometrically finite, then the pressure
form P“t is non-degenerate, so gives rise to a mapping class group invariant, analytic
Riemannian metric on Hq(T).

Bridgeman, Canary, Labourie and Sambarino [8] later expanded their techniques to
show that the first simple root gives rise to a non-degenerate pressure metric on the
Hitchin component of a closed surface group. We implement their outline in the cusped
setting. We make crucial use of a result of Canary, Zhang and Zimmer [12] which assures
us that simple root entropies are constant on the Hitchin components of Fuchsian lattices
(which generalizes a result of Potrie and Sambarino [37] for Hitchin components of closed
surface groups).

Theorem 1.4. If ' C PSL(2,R) is a torsion-free lattice, then the pressure form P! is
non-degenerate, so gives rise to a mapping class group invariant, analytic Riemannian
metric on Hq(T).

Finally, we consider the functional wpy associated to the Hilbert length given by
wr () = x1 — xq. Tt is easy to see that if C': Hg(T') — Hq(T) is the contragredient
involution and ¥ € TH4(T') is anti-self-dual, i.e. DC(¥) = —¥, then P¥# (¥,9) = 0 (see
[9, Lem. 5.22]). In particular, P“# is not globally non-degenerate. However, one can still
show that the pressure form gives rise to a path metric. Bridgeman, Canary and Sam-
barino [9, Sec. 5.8] previously remarked that this is the case when I is a closed surface

group.

Theorem 1.5. If ' C PSL(2,R) is torsion-free and geometrically finite, then P“H gives
rise to a mapping class group invariant path metric on Hq(T') which is an analytic
Riemannian metric off of the self-dual locus.

When d = 3, cusped Hitchin representations of a torsion-free lattice are holonomy
maps of finite area convex projective surfaces and the Hilbert length is the translation
length with respect to the Hilbert metric. In this case, the analogy with the augmented
Teichmiiller space is most compelling and we expect that this case may be the easiest
case in which to begin the analysis of the augmented Hitchin component. Notice that our
proposed augmented Hitchin component would be a proper subspace of the augmented
Hitchin component introduced and studied in [28].

Theorems 1.3 and 1.5 are derived by generalizing the main result of [7, Thm. 1.4] into
the setting of (cusped) Anosov representations of geometrically finite Fuchsian groups. A
(cusped) P; 4—1-Anosov representation of a geometrically finite Fuchsian group I is type-
preserving, i.e. takes hyperbolic elements to biproximal elements and parabolic elements
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to (weakly) unipotent elements, and admits an equivariant limit map from the limit
set of I' into the partial flag variety whose elements are pairs (L, H) where L is a line
contained in a hyperplane H in R?. See Section 2.3 for detailed definitions.

Let Pqud_l}(F ,d) be the set of irreducible Pp; q_1}-Anosov representations into

PSL(d,R) and let Pﬁqu}(rvd) = ’F’}th’dfl}(lj,d)/PSL(d,R). If H is a reductive sub-
group of PSL(d,R), then an element h € H is H-generic if its centralizer is a maximal
torus in H. If H = PSL(d,R), then an element is H-generic if and only if it is diagonal-
izable over C with distinct eigenvalues. A representation into H is said to be H-generic
if its image contains an H-generic element. In particular, all Hitchin representations are
PSL(d, R)-generic, so Theorem 1.3 is a special case of the following more general result.

Theorem 1.6. Suppose that T C PSL(2,R) is torsion-free and geometrically finite. If
W is an analytic submanifold of P}ﬁqu}(r’d)f H is a reductive subgroup of PSL(d,R)
and every representation in W has image in H and is H-generic, then P“'|tw is an
analytic Riemannian metric on W. Moreover, if W is invariant under a subgroup M of
the mapping class group, then P“! |ty is M-invariant.

The proof of Theorem 1.6 follows the same outline as the proof of the main result
in [7]. Standard results from the Thermodynamic Formalism imply that ¢ € T,V has
wi-pressure norm zero if and only if there exists K so that Dzls* = K/{3* for all hy-
perbolic elements v € T'. We can then apply [7, Lemma 9.8] to show that K = 0. An
analysis using Labourie’s cross ratio functions is used to show that this implies that ¢
itself must be zero, which completes the proof.

Finally, we remark that if I' is geometrically finite but has torsion, then it has a
finite index normal subgroup I'y which is torsion-free. One may identify I'/Ty with a
finite index subgroup G of the mapping class group of H?/I'y and then identify H4(T)
with the submanifold of H4(Tg) which is stabilized by G. It follows that one obtains
mapping class group invariant analytic Riemannian metrics P“* and P on H4(I') and
a mapping class group invariant path metric on H,4(I") which is analytic Riemannian off
of the self-dual locus.

Historical remarks Thurston described a metric on Teichmiiller space which was the
“Hessian of the length of a random geodesic.” Wolpert [46] showed that this metric
gives a scalar multiple of the classical Weil-Petersson metric. Bonahon [1] reinterpreted
Thurston’s metric in terms of geodesic currents. McMullen [33] showed that one may
interpret Thurston’s metric in terms of Thermodynamic Formalism, as the Hessian of
a pressure intersection function. Bridgeman [6] generalized McMullen’s construction to
the setting of quasifuchsian space. Bridgeman, Canary, Labourie and Sambarino [7] then
showed how to use his construction to produce analytic Riemannian metrics at “generic”
smooth points of deformation spaces of projective Anosov representations, and in par-
ticular on Hitchin components. Pollicott and Sharp [36] gave an alternate interpretation
of this metric.
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Kao [20] used countable Markov codings to construct pressure metrics on Teichmiiller
spaces of punctured surfaces. Bray, Canary and Kao [4] generalized this to the setting
of cusped quasifuchsian groups.

Acknowledgment We thank the referee for their helpful comments, which allowed us to
simplify our proofs and improve our results.

2. Background
2.1. Linear algebra

The Jordan projection v: SL(d,R) — a™ is the map which associates to A € SL(d,R)
the list (log A1(A),...,log Aq(A4)) of logarithms of moduli of generalized eigenvalues of
A in decreasing order.

The Cartan projection r: SL(d,R) — a™ is

Kk(A) = (logoi(A),...,logoq(A))

where {0;(A)}¢_; are the singular values of A labeled in decreasing order. Recall that
each element of SL(d,R) may be written as A = KDL where K, L € SO(d) and D is
the diagonal matrix with (4,7)-entry given by o;(A). If ag(k(A4)) > 0, then Ux(A) =
K({e1,...,ex)) is well-defined and is the k-plane spanned by the first k& major axes of
A(S471).

Suppose that 6 is a symmetric subset of {1,...,d—1},i.e. k € @ if and only if d—k € 6.
Define the 0-Cartan subspace as

ap={aeca:a;@=0if j ¢ 0}

and let Ay denote the set of functionals in aj which are positive on the interior aj =

at Nag. In particular,
A=Apn a4

The 0-Cartan projection kg: SL(d,R) — ap is the unique map so that wy(ke(A)) =
wi(K(A)) for all A € SL(d,R) and all k € 6.
If 0 = {k1,..., ks } we define the 0-flag variety

Fo={(Fr Fke Fko)y.Fbvc Fk2 c ..o c Fhn}

where each F*i is a vector subspace of R? of dimension k;. In particular, the full flag
variety JFg is the same as Fyy o . q—1) in this notation.
Quint [38] introduced a vector valued smooth cocycle, called the 0-Twasawa cocycle,

By :SL(d,R) x Fg — ag
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with the defining property that if &k € §, A € SL(d,R), F € Fy, U is a non-trivial vector
in E¥(F*) ¢ E*(R?), where E* denotes the k'" exterior power, then

E*A(%)
o (Bo(4, F)) = log 12 AT
leal
where || - || is the norm on E*R? induced by the standard Euclidean norm on R?. Note

that the Jordan and Cartan projections (resp. #-Iwasawa cocycle) descend to well-defined
functions on PSL(d,R) (resp. PSL(d,R) x Fp).

2.2. Thermodynamic formalism

In this section, we recall the background results we will need from the Thermody-
namic Formalism for countable Markov shifts as developed by Gurevich-Savchenko [18§],
Mauldin-Urbanski [32] and Sarig [43].

Given a countable alphabet A and a transition matrix T = (tu) € {0,1}4*4 a
one-sided Markov shift is

>t = {2 =(2;) € AN | ty,,,, = 1 forall i € N}

equipped with a shift map o : X+t — X% which takes (;);eny t0 (7i11)ien- One says
that (X1, 0) is topologically mizing if for all a,b € A, there exists N = N(a,b) so that if
n > N, then there exists z € ¥ so that z; = a and x,, = b. The shift (X1, ) has the
big images and pre-images property (BIP) if there exists a finite subset B C A so that
if a € A, then there exists by, b; € B so that tp, o =1 =144,.

Given a one-sided countable Markov shift (X%, ¢) and a function g : X7 — R, we
say that g is locally Holder continuous if there exists C > 0 and n € (0,1) so that if
z,y € X7 and x; = y; for all 1 < i < n, then

l9(z) —g(y)| < Cn™.

If n € N, the n*"-ergodic sum of g at x € X+ is

n

Sug(@) = 3 g(o" (@)

i=1

and Fix" = {z € ©T | 0" (x) = z} is the set of periodic words with period dividing n.
The pressure of a locally Holder continuous function g : ¥ — R is defined to be

P(g) = sup hg(m)—i-/gdm:mej\/lgand —/gdm<oo

z+ z+
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where M, is the space of o-invariant probability measures on X" and h,(m) is the
measure-theoretic entropy of o with respect to the measure m.

A o-invariant Borel probability measure m on X7T is an equilibrium measure for a
locally Hélder continuous function g : ¥+ — R if

We remark that there are several different but equivalent definitions of pressure and
equilibrium measure in the current setting. Readers can find a more detailed discussion
of this in Bray-Canary-Kao-Martone [5, pg. 11]. Mauldin-Urbanski ([32, Thm. 2.6.12,
Prop. 2.6.13 and 2.6.14]) and Sarig ([42, Cor. 4], [43, Thm 5.10 and 5.13]) prove that the
pressure function is real analytic in our setting and compute its derivatives. Recall that
{gu : Tt = R}yuen is a real analytic family if M is a real analytic manifold and for all
x €3, u— g,(z) is a real analytic function on M.

Theorem 2.1 (Mauldin-Urbanski, Sarig). Suppose that (X1, 0) is a one-sided countable
Markov shift which has (BIP) and is topologically mizing. If {g, : ¥T — Rluen is a
real analytic family of locally Holder continuous functions such that P(g,) < oo for all
u, then u — P(g,) is real analytic.

Moreover, if v € T,,, M and there exists a neighborhood U of ug in M so that if u € U,
then — [, gudmyg, < oo, then

DsP(g.) = / Di(gu(x)) dmy,, .
>+

In the case of finite Markov shifts, the assumption that P(g,) < oo is automatically
satisfied and Theorem 2.1 is due to Ruelle [39] and Parry-Pollicott [35].

Bowen and Series [3] constructed a finite Markov coding for the action of a convex
cocompact group I' on its limit set A(T'). Dal’bo and Peigné [13], when T is geometrically
finite but not a lattice, and Stadlbauer [44] and Ledrappier-Sarig [27], when T is a lattice,
constructed a countable Markov coding for the action of I' on its conical limit set A.(T").
We summarize their crucial properties below (see [4] for a more complete description
in our language). If a € A, then G(a) is the associated element of I" and logr(a) is
“coarsely” the translation distance (of some fixed basepoint) of G(a).

Theorem 2.2 (Bowen-Series [3], Dal’bo-Peigné [13], Ledrappier-Sarig [27], Stadlbauer
[44])). Suppose that T is a torsion-free geometrically finite Fuchsian group. There exists
a topologically mizing Markov shift (X7, 0) with countable alphabet A with (BIP) and
maps

G:A—T, w:3" - A), and r: A— N
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with the following properties.

(1) wis locally Hélder continuous, finite-to-one and w(X1) = A.(T), i.e. the complement
in A(T") of the set of fized points of parabolic elements of T'. Moreover, w(x) =
G(z1)w(o(x)) for every x € XT.

(2) If x € Fix", then w(x) is the attracting fized point of G(x1) - - G(xy). Moreover, if
v € T is hyperbolic, then there exists x € Fix" (for some n) so that 7 is conjugate
to G(x1) -+ G(xy,) and x is unique up to cyclic permutation.

(3) There exists D € N so that 1 < #(r~'(n)) < D for alln € N.

2.3. Anosov representations of geometrically finite Fuchsian groups

We next recall the definition of a Pyp-Anosov representation of a geometrically finite
Fuchsian group and the results of Bray-Canary-Kao-Martone [5] and Canary-Zhang-
Zimmer [11] which will play a crucial role in our work.

Let ' be a geometrically finite Fuchsian group and let 6 be a symmetric subset of
{1,...,d — 1}. We say that a representation p : I' — PSL(d,R) is Py-Anosov, if there
exists a continuous p-equivariant map &, : A(I') — Fy so that

(1) &, is transverse, ie. if ¢ # y € A(T') and k € §, then

& (@) @ 57 (y) =RY,

(2) &, is strongly dynamics preserving, i.e. if {v,} is a sequence in I' so that v, (by) —
x € A(T') and 7, }(by) — y € A(T) for some basepoint by € H2, then if F € Fp is
transverse to £,(y), then p(y,)(F) = &,(x).

We denote the space of Ps-Anosov representations of I' into PSL(d, R) by Py(T', d). We
will need the following observation, which follows immediately from the above definition.

Lemma 2.3. If p: T' — PSL(d,R) is in ﬁ{l,d,l}(F,d) and Ty is a Schottky subgroup of
T, then p|r, is a projective Anosov representation of the convex cocompact subgroup T'y.

Canary, Zhang and Zimmer establish fundamental properties of Py-Anosov represen-
tations of geometrically finite Fuchsian groups which generalize the properties of classical
Anosov representations.

Theorem 2.4 (Canary-Zhang-Zimmer [11]). Suppose that T is a geometrically finite Fuch-
sian group, p: ' — PSL(d,R) is a Py-Anosov representation.

(1) If v € T is hyperbolic and k € 0, then p(v) is Py-prozimal.
(2) If « € T is parabolic, then p(c) is weakly unipotent in PSL(d,R), i.e. its Jordan-
Chevalley decomposition has elliptic semi-simple part and non-trivial unipotent part.
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(8) There exist A,a > 0 so that if y €T and k € 0, then

1 d(bm(bo»
a

Aoy (b0)) > gak(re(p(7))) > —

D>

where by s a basepoint for H2.

(4) p has the Py-Cartan property, i.e. whenever {v,} is a sequence of distinct elements
of T' such that ~,(bo) converges to z € A(T), then £i(z) = lm Uk (p(yn)) for all
ked.

They also show that limit maps of Anosov representations vary analytically.

Theorem 2.5 (Canary-Zhang-Zimmer [11]). If {py : T' = PSL(d,R)}uenr is a real an-
alytic family of Py-Anosov representations of a geometrically finite Fuchsian group and
z € A(I"), then the map from M to Fy given by u — &, (2) is real analytic.

Ifpe Py (T, d), the 6-Benoist limit cone of p is

=N U Riselp(7) Cay.

n20|lre (p(v) [ Zn

The positive dual to the 6-Benoist limit cone is given by

Bo(p)* ={¢ € a5 | ¢ (Bolp) — {0}) C (0,00)} . (1)

In previous work [5], we constructed potentials on the Markov shift which encode the
spectral properties of Anosov representations of geometrically finite, torsion-free Fuch-
sian groups. First we use the 6-Iwasawa cocycle to define a vector-valued roof function
7, X1 — ag by

7p(x) = By (p(G(21)), p(G(21)) " (& (w(2))))

If ¢ € By(p)*t one defines the roof function T;f’ = ¢ o 7,. Notice that since By(p) is
contained in the interior of the positive Weyl chamber aj, the set Ay is contained in
By(p)".

We use the Thermodynamic Formalism for countable Markov shifts to analyze these
potentials. In particular, we use a renewal theorem of Kesseb6hmer and Kombrink [24]
to generalize arguments of Lalley [26] to establish counting and equidistribution results
in our setting. We summarize the results we will need from our work below.

Theorem 2.6 (Bray-Canary-Kao-Martone [5]). Suppose that T is a torsion-free, geomet-
rically finite Fuchsian group which is not convex cocompact, p : I' — PSL(d,R) is a
Py-Anosov representation and ¢ € By(p)T. Then, there exists a locally Hélder continu-
ous function 7' =¢oT1,: X" = R such that
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(1) T;f is eventually positive, i.e. there exist N € N and B > 0 such that SnT;f(ac) > B
forallm >N and x € 7.

(2) There exists d(¢) > 0, so that the function h — P(—hT;f’) is finite, proper and strictly
monotone on (d(¢$),00) and infinite otherwise.

(3) There exists C, > 0, and for all x1 € A, c(p, ,x1) > 1/d(¢) so that if x € T, then

Tg)(x) - C(p, ¢,$1) IOgT(l’l)‘ S Cp~
(4) If x =TT, is a periodic element of T, then

Spt(z) = £5(G(21) - Glzn)).

p p

(5) The ¢-entropy h?(p) of p is the unique solution of P(—hT;f’) = 0. Moreover,

i h?(p)T Ry (p)

TSoo P (0T =1

(6) There is a unique equilibrium measure mf)’ for —h¢(p)7’,§b.

We also established a rigidity theorem for renormalized pressure intersection and
use our equidistribution result to give a thermodynamical reformulation of the pressure
intersection. Recall that Ay C aj is the set of functionals which are strictly positive on
the interior of aj. We often restrict to this set of linear functionals, since Ay is the largest
set of linear functionals contained in By(p)* for every Pp-Anosov representation p.

Theorem 2.7 (Bray-Canary-Kao-Martone [5]). If p,n : T' — PSL(d,R) are Py-Anosov
representations of a geometrically finite Fuchsian group and ¢ € Ay, then

J%(p,m) > 1
with equality if and only if
he(n)
(9(y) = 722200 (y
) he(p) )

for all v € T'. Moreover,

-~ Js+ Tr? dmﬁ

I*(p,n) =
fz+ 7';? dmf:

and —I1%(p,m) is the slope of the tangent line at (h®(p),0) to

C?(p,n) = {(a,b) € R? | P(—m';ZS —bT,‘f) =0,a>0,b>0,a+b>0}.
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2.4. Hitchin representations

We say that a basis b = (by,...,bq) is consistent with a pair (F,G) of transverse
flags if (b;) = F' N G4~ for all i. We denote by U(b)~o C SL(d, R) the subsemigroup
of upper triangular unipotent matrices which are totally positive with respect to b, i.e.
A € U(b)so if, in the basis b, A is upper triangular unipotent and the determinants of
all the minors of A are positive, unless they are forced to be zero by the fact that A is
upper triangular.

Then, a k-tuple (Fi,..., Fx) in Fqy is positive if there exists a basis b consistent with
(F1, Fy) and there exists {ug,...,ur—1} € U(b)so so that F; = wug_q---u;F} for all
i=2,...,k— 1. If X is a subset of S!, we say that a map & : X — F, is positive if
whenever (z1,...,xy) is a consistently ordered k-tuple in X (ordered either clockwise or
counter-clockwise), then (£(z1),...,&(zk)) is a positive k-tuple of flags.

Let T' be a geometrically finite Fuchsian group and let A(I') C OH? be its limit set.
Following Fock and Goncharov [14], a Hitchin representation p : I' — PSL(d,R) is a
representation such that there exists a p-equivariant positive map ¢, : A(T') — Fa.
If S is closed, Hitchin representations are just the traditional Hitchin representations
introduced by Hitchin [19] and further studied by Labourie [25]. When I' contains a
parabolic element, we sometimes refer to these Hitchin representations as cusped Hitchin
representations to distinguish them from the traditional Hitchin representations.

Canary, Zhang and Zimmer [11] proved the following important structural results.
(Sambarino [41] independently showed that Hitchin representations are strongly irre-
ducible.)

Theorem 2.8. If p € Hy(T'), then p is {1,...,d — 1}-Anosov and strongly irreducible.

We recall that Sambarino [41, Theorem A] classified the possible Zariski closures of
images of Hitchin representations.

Theorem 2.9 (Sambarino [41]). Suppose that T' C PSL(2,R) is a geometrically finite
Fuchsian group, and p : T — PSL(d,R) is a Hitchin representation. Then the Zariski
closure of p(T') either lies in an irreducible image of PSL(2,R) or is conjugate to either
PSL(d,R), PSp(2n,R) when d = 2n, PSO(n,n —1) when d = 2n —1, or Gy when d = 1.

Historical remarks: The results in this subsection generalize earlier results in the case
when I is convex cocompact. More precisely, when I' is convex cocompact, Theorem 2.4
follows from work of Labourie [25], Fock and Goncharov [14], Guichard and Wienhard
[17], Kapovich, Leeb and Porti [22,23], Guérituad, Guichard, Kassel, and Wienhard [15]
and Tsouvalas [45], Theorems 2.5 and 2.7 are due to Bridgeman, Canary, Labourie, and
Sambarino [7] and Theorem 2.6 is due to Sambarino [40]. Finally, Theorem 2.8 is due to
Labourie [25].
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Anosov representations of geometrically finite Fuchsian groups are also relatively
Anosov in the sense of Kapovich and Leeb [21] and relatively dominated in the sense
of Zhu [48]. In particular, one can derive Theorem 2.4 in either of their settings. The
approach in [11] was motivated by the need to prove Theorem 2.5, whose proof was
not clear from either pre-existing viewpoint. Zhu and Zimmer [49] have now generalized
the techniques of [11] to establish a generalization of Theorem 2.5 to the setting of all
relatively Anosov representations.

3. Entropy, intersection and the pressure form

Our pressure form is defined as the Hessian of a renormalized intersection function,
so it is crucial to show that this function is analytic (or at least C?). Let Py(I,d) be the
space of Py-Anosov representations of I" into PSL(d, R).

Theorem 3.1. If W is an analytic submanifold of Py (T',d) and ¢ € Ng, then h?(p) varies
analytically over W and I® and J® vary analytically over W x W. Moreover, if p,m € W,
then

J%(p,m) > 1

. . 4
and J?®(p,n) = 1 if and only zfﬁfj(v) = Z¢EZ§€$(7) for ally €T.
Proof. If T is convex cocompact, then this result is established in [7]. So we will assume
that T is geometrically finite but not convex cocompact for the rest of this proof.
Theorem 2.5 implies that the limit map &, varies analytically over W. Since 7,(z) =
By(p(G(x1)), p(G(21)) " (£p(w(x)))) and By is analytic we see that 7,, and hence 79 =

¢ o T,, varies analytically over W. It then follows from Theorem 2.6 and Theorem 2.1
that (h, p) — P(—h’]’;)b) is analytic on (d(¢),00) x W. Since P(=h®(p)7?) = 0 and

:f/demz’<O

for all p € W, the Implicit Function Theorem implies that h?(p) varies analytically over
w.
Let

t=h?(p)

R=W xW xDy;  where Dy={(a,b)€R?|a+b>d(¢)}

and let Pg : R — R be given by Pr(p,n,a,b) = P(—an - bT;f). Mauldin and Urbanski
[32, Thm. 2.1.9] show that if f is locally Holder continuous, then P(f) is finite if and
only if Z1(f) < 400, where

Zi(f) = Z Sl (@) s mi=sh 4 o
s€A
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By grouping the terms so that r(s) = n, Theorem 2.6 implies that

oo

Zl(f _ bT Z (a+b) a(ay log n—max{C,,C, })

SO P(*aTg) - ng)) < +o00 if a + b > d(¢). Therefore, Pg is finite on R, and hence, by
Theorem 2.1, analytic on R. As above, Pg is a submersion on Pg'(0), so Py'(0) is
an analytic submanifold of R. Moreover, by Theorem 2.7, —I1%(p,n) is the slope of the
tangent line to P ' (0)N{(p,n) x Dy} at the point (p,n, (h(p),0)), so I?(p,n) is analytic.
Since entropy is analytic, it follows immediately that J¢(p,n) is analytic.

The final claim follows directly from Theorem 2.7. O

Let 755” (T, d) be the set of irreducible representations in Py(T", d) and let Pi(L,d) =
ﬁé”(F d)/PSL(d,R). The argument of [7, Proposition 7.1] shows that the action of
PSL(d,R) on Pé”(F d) is free, proper and analytic. It follows that if W is an analytic
submanifold of Pi™" (T, d), then its pre-image W is an analytic submanifold of Py(T, d).

In this setting, we get the following result which generalizes Theorem 1.2 from the
introduction.

Corollary 3.2. If W is an analytic submanifold of Py (T',d) and ¢ € Ay, then h®(p)
varies analytically over W and I® and J¢ vary analytically over W x W. Moreover, if
p,m €W, then

and J%(p,n) = 1 if and only iffﬁ(fy) = hz(z)&?(v) for ally €T.

Given ¢ € Ay, we define a pressure form on any analytic submanifold W of Pi" (T, d)
by letting

¢ — ¢, .
P |.|.pW = Hess(J?(p, ).
Ifv= % ’t:O [pt] where {pt}ie(—e,e) is a one-parameter analytic family in W, then

d2

PO = ga,

J¢(p07 Pt)
We note that the exact same definitions apply when T" is a cocompact lattice, see [9,
Sect. 5.5]. We observe the following immediate properties.

Proposition 3.3. If W is an analytic submanifold of Pi™"(T',d) and ¢ € Ay, then P?
is analytic and non-negative, i.e. if ¥ € TW, then P?(¥,%) > 0. Moreover, if M is a
subgroup of the mapping class group of T and W is M -invariant, then P? is M -invariant.
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Proof. The pressure form P? is analytic, since J¢ is analytic and is non-negative since
J¢ achieves its minimum along the diagonal, see Theorem 2.7. If ¢p € M, then €$(poq/;) =
051, (p), 50 RE(poh) = ¢~ (RY(p)) and h?(p) = h¢ (o p), s0 J%(p,n) = J*(poth, no
1), which implies that P¢ is ¢-invariant. 0O

The following degeneracy criterion for pressure metrics is standard in the setting of
finite Markov shifts, see for example [9, Cor. 2.5], but requires a little more effort in the
setting of countable Markov shifts. In our setting, this criterion is established exactly as
in Lemma 8.1 in [4].

Proposition 3.4. Suppose that W is an analytic submanifold of Py (I',d) and ¢ € Ag.
If v € TW and ¢ € Ay, then P?(¥, %) = 0 if and only if

Dy (h?4) =0
forall v eT.

We next observe that Dz log Kﬁ‘; is independent of v if ¥ is degenerate and +y is hyper-
bolic.

Lemma 3.5. Suppose that W is an analytic submanifold of Py (T,d) and ¢ € Ng. If
7€ TW and P?(4,7) = 0, then,

Dyt = Kt
Dzh?

for all v €T, where K = TInE

Proof. By Proposition 3.4, if ¥ is degenerate, then
h?(p)Dgts = —(Dzh?) 5

for all hyperbolic v € T', so Dgé?; = K@ for all hyperbolic v € T'. If v € T' is parabolic,
then Z?j is the zero function, so the condition holds trivially. O

Recall that if M is a real analytic manifold, an analytic function f : M — R has
log-type K at v € T, M if f(u) # 0 and

Dolog(|f])(v) = Klog(|f(w)])-

In this language, Lemma 3.5 implies that if Aﬁ is the function defined by p — et and
P? (%, %) = 0 then there exists K so that AZ; has log-type K at @ for all v € T.
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4. The spectral radius pressure metric

We are now ready to establish our generalization of the main theorem of [7].

Theorem 1.6. If W is an analytic submanifold of ff;}‘_l(R d), H is a reductive subgroup
of PSL(d,R) and every representation in W has image in H and is H-generic, then
Pty is an analytic Riemannian metric on W. Moreover, if W is invariant under a
subgroup M of the mapping class group, then Pt |ty is M -invariant.

Since every cusped Hitchin representation is irreducible and SL(d, R)-generic, Theo-
rem 1.3 follows immediately from Theorem 1.6.

Proof of Theorem 1.6. Proposition 3.3 implies that we only need to prove that every
non-zero vector ¥ € TW is non-degenerate. Suppose vy € T,,W is a degenerate vector.
Lemma 3.5 implies that there exists K so that AJ* has log-type K at v for all v € I'.
Our first step consists of showing that K = 0.

Let po(«) be an H-generic element. We claim that « is hyperbolic and, consequently
that po(a) is biproximal. If not, « is parabolic, and po(c) is weakly unipotent, see
Theorem 2.4 part (2). In particular, po(«) is not diagonalizable over C, so its centralizer
cannot be a maximal torus, which contradicts the assumption that po(«) is H-generic.

Let 8 be an element of I', so that o and § generate a free convex cocompact subgroup
Iy of T. Lemma 2.3 then implies that the restriction po|r, is Py1,q—13-Anosov in the
traditional sense. One may then choose an open neighborhood Wy of pg in W so that if
p € Wo, then plr, is Pf; 4—13-Anosov and p(a) is H-generic. We then can consider the
analytic family {p|r, } pew, and apply [7, Lemma 9.8] to conclude that K = 0.

Next, we show that if A%" is log-type zero at v for all v € I, then vp = 0.

Recall that Labourie defines a continuous cross-ratio b on pairs of mutually transverse
hyperplanes (P, Py) and lines (L1, L) by setting

_ ¢1(01) P2 (V2)
¢1(T2) P2 (V1)

where ¢1 and ¢ are linear functionals with kernel P, and P> and v and ¥ are non-zero

b(PhPQ;LlaLQ)

vectors in L; and Ly. One may then define a continuous cross-ratio b, : A(I')®*) — R,
where A(T')*) is the set of pairwise distinct quadruples in A(T), by setting

b, (2,y, z,w) =b(E(2),£07 (y), £ (2), £ (w)).

Note that b, is well-defined because p is Pf; 4—1}-Anosov. Suppose that («a, ) is a pair of
hyperbolic elements of I' generating a rank two Schottky subgroup of ', then (p(a), p(5))
generate a projective Anosov Schottky group, so [7, Prop. 10.4] gives that

A (p)
b,(a”, 57, %, a") = lim 2"
2 )= A )
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It follows that b,(a™, 87,87, a™) is of log-type zero (since ratios of log-type zero func-
tions are log-type zero, as are limits of log-type zero functions). Since such quadruples
are dense in A(I')®), it follows that b,(z,y,z,w) is log-type zero for all quadruples in
AT)®),

Given a projective frame F = (Ly,..., Lgy1) for P(R?) and a projective frame F* =
(P, ..., Pay1) for P((RY)*), one can define a smooth injective immersion

where W (d) is the quotient of the space of (d + 1) x (d 4+ 1) matrices via a multiplica-
tive action of (R — {0})2(*+1) whose action on the coefficients of the matrix is given by
(@1, ,@441,b1, - ,bay1)(Mi;) = a;b;M;; (see [7, Section 10.2]). (Recall that a projec-
tion frame for P(R?) is a collection of d + 1 lines so that no d lines are contained in any
hyperplane.) Specifically one chooses non-zero vectors v; € L; and covectors ¢; € P; so
that > 0; =0 and ) ¢; = 0 and defines

prpe(A) = [:(A(¥)))]-

This smooth injective immersion and the cross ratio b, are related by the following
crucial property, whose proof proceeds exactly as in [7, Lemma 10.7].

Lemma 4.1. Suppose {x1,...,xq+1} and {y1,...,y4+1} are two collections of pairwise

distinct points in A(T), and that F = {&}(x1),...,&)(zay1)} and F* = {37 (y1),...,
fg_l(yd+1)} are projective frames. Then

prr-(p(a)) = [bp(yi, 2, (), w)]
for arbitrary z,w € A(T") and for all a € T.

The remainder of the proof then simply mimics the proof of [7, Lemma 10.8].
Let {p:} be a path in W so that %Lp;—o = 7. Since p is irreducible, see [7,

Lemma 2.17], we may choose {x1,...,24+1} and {y1,...,y4+1} so that their images
F={&}(x1),..., &) (xar1)} and F* = {57 (y1), ..., €07 (yas1)} are projective frames.
Let Fy = {&}, (x1),..., &), (xar1)} and Ff = {47 (y1), ..., €4 (yay1)}- We may assume,

by restricting the path, that F; and F; are projective frames, and, by conjugating, that
F, = Fy for all ¢.

Then pp, rr(pe()) = [by, (i, 2, (), w)], for all @ € T and all t. So, since our
cross-ratios have log type zero, we see that

d

— * =0
dt t:o'thFt (pt(a))

forall a« €T.
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By construction, if B € PSL(d,R) and F and F* are any projective frames, then
pr e (A) = pp p-(B~'A). So, if we choose C; € PSL(d,R) so that (C; ')*F; = Fy,
then

d

d
0= |, _ prrs (@) =

d
; =D . _’
dtle dt‘t:o”F‘)’FO (Cepe(a)) HFo, Fg (dt t=octpt(04)>

for all a € I'. Since pp, ry; is an immersion, this implies that

d
Gi Crmnle) =0

forall « € T, so

d
COOE

i)+ (5], emtar =0

t=

for all o € T'. By considering the case where a = id, we see that Co = (%) Ct) =0.
t=0

Since Cy = I, we see that % Opt(a) =0 for all @ € T, which implies that vp =0. O
t=

5. The Hilbert length pressure metric

Theorem 1.6 has the following immediate corollary:

Corollary 5.1. If S is a simple subgroup of PSL(d,R) and W is a submanifold of Hq(T)
consisting of representations whose Zariski closure is S, then P“H is non-degenerate on
TW.

Proof. Consider the Adjoint representation Ad : S — SL(V') where V is the Lie algebra
of S. Then H = Ad(S) is an irreducible reductive subgroup of SL(V'). Moreover, if p € W,
then Adop is irreducible and H-generic. Theorem 1.6 implies that the pressure form P!
is non-degenerate on TAd(W).

Note that Ad is an immersion as the adjoint representation ad: V' — sl(V) is injective.
Recall that wy(Adop(y)) = wr(p(y)). Therefore, P“# |ty is the pull-back of P“* |1 44w
and hence non-degenerate. O

The proof of [7, Lemma 13.1] immediately generalizes to give the following lemma.
(See Appendix A for a proof.)

Lemma 5.2. Let Wy be a smooth manifold and let W,, C W,,_1 C --- Wy C Wy be a
nested collection of submanifolds of Wy so that W; has positive codimension in W;_1 for
all i. Suppose that g is a smooth non-negative symmetric 2-tensor g such that

o g is positive definite on T,W;_1 if x € W;_1 \ W,
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o the restriction of g to T,W,, is positive definite if x € W,.
Then the path pseudo metric defined by g is a metric.

One thus obtains a pressure path metric on Hg(T") associated to the Hilbert length
functional, by applying Sambarino’s analysis of the possible Zariski closures of Hitchin
representations (see Theorem 2.9).

Theorem 1.5. Suppose that T' C PSL(2,R) is torsion-free and geometrically finite. If
v € THq(T') is non-zero, then PH (¥,0) = 0 if and only if ¥ is anti-self-dual. Moreover,
PwH gives rise to a mapping class group invariant path metric on Hq(T') which is an
analytic Riemannian metric off of the self-dual locus.

Proof. Let Wy = Hy(D). If n > 4 is even, let W C Hy(T') be the submanifold of
representations whose Zariski closure is conjugate into PSp(n,R) and let W5 be the
Fuchsian locus (i.e. representations contained in an irreducible image of PSL(2,R).) If n >
5is odd, and n # 7, let W7 C H4(T') be the submanifold of representations whose Zariski
closure is conjugate into PSO(n,n —1). If n = 7, let W1 C H4(T") be the submanifold of
representations whose Zariski closure is conjugate into PSO(4, 3), let Wy C H4(T') be the
submanifold of W; consisting representations whose Zariski closure is conjugate into Go
and let W3 be the Fuchsian locus. If n = 3, let W; be the Fuchsian locus. (Theorem 1.1
implies that Wy is a manifold and that W is always a submanifold of W;_;).

In all cases, Corollary 5.1 implies that P“# is non-degenerate on T,W,_ 1 if = €
Wi_1\ W;. Therefore, Lemma 5.2 implies that P“# gives rise to a path metric on Hq(T")
which is Riemannian off of W;. O

6. The (first) simple root pressure metric
6.1. Trace functions

Recall that an element in Hq(T') is a conjugacy class of Hitchin representations of
I into PSL(d,R). It will be convenient to identify H4(I') with a subset Hq(I') of the
character variety

X4(T') = Hom(T, SL(d, C))//SL(d, C).

The character variety X,4(T') is the biggest Hausdorff quotient of Hom(T',SL(d,C))
by the SL(d,C)-action by conjugation which coincides with the GIT quotient of
Hom(T",SL(d, C)) by this same action (See [34]).

If T is cocompact, then Hitchin [19] showed that there is a component, Hq(T'), of X4(T)
and an analytic diffeomorphism F : Hq(I') = Ha(T), so that F ([p]) is the conjugacy class
of a lift to SL(d,R) of p.
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Let Hq(I) denote the set of all Hitchin representations of I' in PSL(d,R). If I is not
cocompact, then, since T is a free group and H4(T") is an analytic manifold, it is easy to
define an analytic map

F : H4(T') — Hom(T', SL(d, C))

so that F(p) is a lift of p. Since Hitchin representations are strongly irreducible, see
Theorem 2.4, Schur’s Lemma implies that F(p) is conjugate to F(n) in SL(d,C) if and
only p and 7 are conjugate in PSL(d,R). Then, again since Hitchin representations are
strongly irreducible, it follows that F' descends to an analytic embedding F: Hq(T) —
X4(T) whose image lies in the smooth part of Xq(I'). We then let Hq(T') = F'(Hq(T)).
Notice that if d is odd, then Hq(T') = Hq(T).

If v € T, there is a complex analytic trace function Tr, : X4(I') — C so that Tr.([p])
is the trace of p(7). It is well-known that derivatives of trace functions generate the co-
tangent space at any smooth point, see for example Lubotzky-Magid [29]. The following
consequence will be used to verify the non-degeneracy of the first simple root pressure
form.

Lemma 6.1. If [p] € Hq(T), then {Dy Tr, | v € T'} spans the cotangent space Tf‘p]’;qd(f‘).

Even though Tr, is not well-defined on H4(I'), we will abuse notation by saying that
DyTrg = 0 for some o' € THq4(S) if Dpp()Trg = 0.

6.2. Nondegeneracy

Bridgeman, Canary, Labourie and Sambarino [8] prove that if T is a closed surface
group, then Pt is non-degenerate on H4(I'). A key tool in their work is the fact, due
to Potrie-Sambarino [37], that the topological entropy h*'(p) = 1 if p € Hy4(T'). Ca-
nary, Zhang and Zimmer [12] generalized Potrie and Sambarino’s result to the setting of
torsion-free lattices which are not cocompact.

Theorem 6.2 (Potrie-Sambarino [37] and Canary-Zhang-Zimmer [12]). If T' C PSL(2,R)
is a torsion-free lattice, and p € Hq(T'), then h*1(p) = 1.

With this result in hand, we are ready to establish the non-degeneracy of the first
simple root pressure metric.

Theorem 1.4. If ' C PSL(2,R) is a torsion-free lattice, then the pressure form P is
non-degenerate, so it gives rise to a mapping class group invariant, analytic Riemannian
metric on Hq(T).

Proposition 3.3 and Lemma 6.1 together imply that Theorem 1.4 follows from the
following proposition.
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Proposition 6.3. If v € T, Ha(I") and P (¥, %) = 0, then Dy Trg =0 for all f € T.

Here, we will only sketch the proof, since the proof proceeds exactly as in the proof
of [8, Prop. 7.4].

Proof. We again abuse notation by identifying [p] with F([p]) € Hq(T'). Since ho1 (p) = 1
for all p € H4(T), Proposition 3.4 implies that Dgégl =0 forall g eT.

If a € T' is parabolic, then Tr,, is constant on ﬁd(F), so Dy Tr, = 0.

If B is hyperbolic, we may choose a € T, so that « is hyperbolic and o and S have
non-intersecting axes. We may pass to powers o' and S” which generate a Schottky
subgroup of I'. We are then exactly in the setting of the proof of [8, Prop. 7.4] which
shows that DzA;(p(8™)) = DaXi(p(B8))™ = 0 for all i. Therefore, Dz\;(p(8)) = 0 for all
1,50 Dy Trg = 0. O

Appendix A

‘We prove:

Lemma 5.2. Let Wy be a smooth manifold and let W,, C W,,_1 C --- Wy C Wy be a
nested collection of submanifolds of Wy so that W; has non-zero codimension in W;_y
for alli. Set W, 11 = (0. Suppose that g is a smooth non-negative symmetric 2-tensor on
Wy such that for every i = 0,...,n, the restriction of g to T,W; is positive definite if
x € W; \ Wiy1. Then, the path pseudo-metric defined by g is a metric.

Proof. We proceed iteratively to establish the following claim:

Claim. If © € W;\ W41, then x has a neighborhood U whose closure U lies in Wo\Wii1,
so that if u € U \ {x}, then d(z,u) > 0.

Once we have proved this claim for all ¢, we will have completed the proof of the
lemma.

If z € Wy \ Wy, then if U is any neighborhood of = whose closure U is disjoint from
W1, then g is Riemannian on U. Therefore, our claim is true for i = 0.

Next, we suppose that the claim is true for all ¢ = j < k, and prove the claim for
i = k. This establishes the claim for all i.

Let n; = dimW;. If & € Wy \ Wgy1, we may identify some neighborhood U of z
with the Euclidean unit ball in R (centered at 0) so that  is identified with 0. We
may assume that the closure U of U is compact and disjoint from Wj; and that if
j < k, then W; N T is identified with the intersection of the closure D(0,1) of B(0,1)
with R™ x {0}"0~"5. We will work in coordinates for the rest of this proof. We identify
TD(0,1) with D(0,1) x R™,

Since the restriction of g to T' (W), \ Wi.1) is Riemannian, there exists r, s > 0 so that if
7is a (Euclidean) unit vector in (W ND(0,1)) x R™ x {0}~ then s> > g(7, ¥) > 4r2.
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Since g is continuous, it follows that, after possibly restricting to a smaller neighbor-
hood of z, we can assume that if 7 is a unit vector in D(0,1) x R™ x {0}"0~", then
45% > g(,7) > r2. It follows that the (Euclidean) projection map from 7 : D(0,1) — W}
is K-Lipschitz where K = 2. Therefore, since the restriction of g to T(Wj, \ Wiy1) is
Riemannian, it follows that if v € U and mg(u) # 0, then d(u,z) > 0. On the other
hand, if 7 (u) = 0 and u # z, then u € Wy \ W, so, by our iterative assumption, there
exists a neighborhood V' of u whose closure lies in Wy \ Wy, so that if v € V'\ {u}, then
d(v,u) > 0. It follows that there exists ¢ > 0 so that if v € 9V, then d(u,v) > c. Since
x ¢ V, this implies that d(x,u) > d(0V,u) > ¢ > 0. This completes the proof of the
claim and hence the lemma. O
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