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1. Introduction

In this paper, we construct pressure metrics on the cusped Hitchin component of 
Hitchin representations of a torsion-free Fuchsian lattice into PSL(d, R). The first two 
metrics are mapping class group invariant, analytic Riemannian metrics. These metrics 
are associated to the first fundamental weight and the first simple root. Our third pressure 
metric is based on the Hilbert length. It is a mapping class group invariant path metric 
which is an analytic Riemannian metric off of the self-dual locus. These constructions 
are based on earlier constructions of Bridgeman, Canary, Labourie and Sambarino [7–9]
in the case of Hitchin components of closed surface groups.

The main new technical difficulties involve the fact that while the geodesic flow of a 
closed hyperbolic surface may be coded by a finite Markov shift, there is no finite Markov 
coding of the geodesic flow of a geometrically finite hyperbolic surface. Stadlbauer [44]
and Ledrappier-Sarig [27] provide a countable Markov coding of the (recurrent portion 
of the) geodesic flow of a finite area hyperbolic surface. In a previous paper, we used 
these codings, work of Canary-Zhang-Zimmer [11] on cusped Hitchin representations, 
and the Thermodynamic Formalism for countable Markov shifts, to establish counting 
and equidistribution results for cusped Hitchin representations. In this paper, we apply 
the theory developed in that paper to construct our pressure metrics.

The long-term goal of this project is to realize these metrics as the induced metric 
on the strata at infinity of the metric completion of the Hitchin component of a closed 
surface group with its pressure metric. In the classical setting, when d = 2, Masur [31]
showed that the metric completion of Teichmüller space of a closed surface S, with the 
Weil-Petersson metric, is the augmented Teichmüller space. The strata at infinity in the 
augmented Teichmüller space come from Teichmüller space of, possibly disconnected, 
surfaces obtained from pinching S along a multicurve. We hope that the Hilbert length 
pressure metric when d = 3 may be more natural to study given its connection to 
Hilbert geometry. When d = 3, the Hitchin component of a closed surface is the space of 
holonomy maps of convex projective structures on the surface. The strata at infinity of 
the augmented Hitchin component would then be cusped Hitchin components consisting 
of finite area convex projective structures obtained from pinching the surface along a 
multicurve. We hope to eventually establish an analogue of Masur’s result in the higher 
rank setting. (See [10] for a more detailed description of the conjectural geometric picture 
of the augmented Hitchin component.)
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We now discuss our results more precisely. We recall that if Γ is a torsion-free, geo-
metrically finite Fuchsian group (i.e. a discrete non-abelian finitely generated subgroup 
of PSL(2, R)), then a Hitchin representation is a representation ρ : Γ → PSL(d, R) which 
admits a positive equivariant limit map ξ : Λ(Γ) → Fd where Λ(Γ) ⊂ ∂H2 is the limit 
set of Γ and Fd is the space of d-dimensional flags. As in the closed case, they all arise 
as type-preserving deformations of the restriction of an irreducible representation of 
PSL(2, R) into PSL(d, R).

The Hitchin component Hd(Γ) is the space of conjugacy classes of Hitchin representa-
tions of Γ into PSL(d, R). Fock and Goncharov, see the discussion in [14, Sec 1.8], show 
that the Hitchin component is topologically a cell. (When d = 3, H3(Γ) is parameter-
ized by Marquis [30], when Γ is a lattice, and more generally by Loftin and Zhang [28]. 
Bonahon-Dreyer [2, Thm. 2] and Zhang [47, Prop. 3.5] explicitly describe variations of 
the Fock-Goncharov parametrization when Γ is cocompact, and their analyses should 
extend to our setting.) More generally, if G is a real-split Lie subgroup of PSL(d, R), 
let H(Γ, G) be the space of Hitchin representations with image in G. (In particular, 
Hd(Γ) = H(Γ, PSL(d, R)) in this notation.) Fock-Goncharov [14] and Hitchin [19] (see 
also [16, §9.3]) show that H(Γ, G) is topologically a cell.

Theorem 1.1. If Γ ⊂ PSL(2, R) is torsion-free and geometrically finite and G is a real-
split Lie subgroup of PSL(d, R), then the cusped Hitchin component H(Γ, G) is an analytic 
manifold diffeomorphic to Rm for some m ∈ N.

If

a =
{

�x ∈ Rd |
∑

xi = 0
}

is the standard Cartan algebra for PSL(d, R), let

Δ =
{

φ =
d−1∑
i=1

aiαi | ai ≥ 0 ∀ i,
∑

ai > 0
}

⊂ a∗

where αi is the simple root given by αi(�x) = xi − xi−1. Notice that Δ is exactly the 
collection of linear functionals which are strictly positive on the interior of the Weyl 
chamber

a+ = {�x ∈ a | x1 � · · · � xd} .

Consider the Jordan projection ν : PSL(d, R) → a+ given by

ν(A) = (log λ1(A), . . . , log λd(A))

where λ1(A) ≥ · · · ≥ λd(A) are the (ordered) moduli of generalized eigenvalues of A.
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If φ ∈ Δ and ρ ∈ Hd(Γ), denote by 
φ
ρ(γ) = φ(ν(ρ(γ))) the φ-length of γ ∈ Γ. We may 

define the φ-entropy of ρ as

hφ(ρ) = lim
T →∞

#Rφ
T (ρ)
T

where [Γhyp] is the set of conjugacy classes of hyperbolic elements in Γ, and

Rφ
T (ρ) =

{
[γ] ∈ [Γhyp] | 
φ

ρ(γ) ≤ T
}

.

Moreover, if ρ, η ∈ Hd(Γ), we may define the φ-pressure intersection

Iφ(ρ, η) = lim
T →∞

1
|Rφ

T (ρ)|
∑

[γ]∈Rφ
T (ρ)


φ
η (γ)


φ
ρ (γ)

,

and a renormalized φ-pressure intersection

Jφ(ρ, η) = hφ(η)
hφ(ρ)Iφ(ρ, η).

Our key tool in the construction of the pressure metric will be results of Bray, Canary, 
Kao and Martone [5] and Canary, Zhang and Zimmer [11] which combine to prove that 
all these quantities vary analytically. See [7, Section 8.1] for the analogous statement 
when Γ is cocompact.

Theorem 1.2. If Γ ⊂ PSL(2, R) is torsion-free and geometrically finite and φ ∈ Δ, then 
hφ(ρ) varies analytically over Hd(Γ) and Iφ and Jφ vary analytically over Hd(Γ) ×Hd(Γ). 
Moreover, if ρ, η ∈ Hd(Γ), then

Jφ(ρ, η) ≥ 1

and Jφ(ρ, η) = 1 if and only if 
φ
ρ (γ) = hφ(η)

hφ(ρ) 
φ
η (γ) for all γ ∈ Γ.

Given φ ∈ Δ, we define a pressure form on the Hitchin component, by letting

Pφ
∣∣
TρHd(Γ) = Hess(Jφ(ρ, ·)).

Since Jφ achieves its minimum along the diagonal, Pφ will always be non-negative. 
However, it will not always be non-degenerate. Typically, the most difficult portion of 
the proof of the construction of a pressure metric is to verify non-degeneracy, or, more 
generally, to characterize which vectors are degenerate.

We first consider the first fundamental weight ω1 ∈ Δ, given by ω1(�x) = x1. As a 
consequence of a much more general result, Bridgeman, Canary, Labourie and Sambarino 
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[7] prove that Pω1 is non-degenerate on the Hitchin component of a convex cocompact 
Fuchsian group. We recall that the mapping class group Mod(Γ) is the group of (isotopy 
classes of) orientation-preserving self-homeomorphisms of H2/Γ.

Theorem 1.3. If Γ ⊂ PSL(2, R) is torsion-free and geometrically finite, then the pressure 
form Pω1 is non-degenerate, so gives rise to a mapping class group invariant, analytic 
Riemannian metric on Hd(Γ).

Bridgeman, Canary, Labourie and Sambarino [8] later expanded their techniques to 
show that the first simple root gives rise to a non-degenerate pressure metric on the 
Hitchin component of a closed surface group. We implement their outline in the cusped 
setting. We make crucial use of a result of Canary, Zhang and Zimmer [12] which assures 
us that simple root entropies are constant on the Hitchin components of Fuchsian lattices 
(which generalizes a result of Potrie and Sambarino [37] for Hitchin components of closed 
surface groups).

Theorem 1.4. If Γ ⊂ PSL(2, R) is a torsion-free lattice, then the pressure form Pα1 is 
non-degenerate, so gives rise to a mapping class group invariant, analytic Riemannian 
metric on Hd(Γ).

Finally, we consider the functional ωH associated to the Hilbert length given by 
ωH(�x) = x1 − xd. It is easy to see that if C : Hd(Γ) → Hd(Γ) is the contragredient 
involution and �v ∈ T Hd(Γ) is anti-self-dual, i.e. DC(�v) = −�v, then PωH (�v, �v) = 0 (see 
[9, Lem. 5.22]). In particular, PωH is not globally non-degenerate. However, one can still 
show that the pressure form gives rise to a path metric. Bridgeman, Canary and Sam-
barino [9, Sec. 5.8] previously remarked that this is the case when Γ is a closed surface 
group.

Theorem 1.5. If Γ ⊂ PSL(2, R) is torsion-free and geometrically finite, then PωH gives 
rise to a mapping class group invariant path metric on Hd(Γ) which is an analytic 
Riemannian metric off of the self-dual locus.

When d = 3, cusped Hitchin representations of a torsion-free lattice are holonomy 
maps of finite area convex projective surfaces and the Hilbert length is the translation 
length with respect to the Hilbert metric. In this case, the analogy with the augmented 
Teichmüller space is most compelling and we expect that this case may be the easiest 
case in which to begin the analysis of the augmented Hitchin component. Notice that our 
proposed augmented Hitchin component would be a proper subspace of the augmented 
Hitchin component introduced and studied in [28].

Theorems 1.3 and 1.5 are derived by generalizing the main result of [7, Thm. 1.4] into 
the setting of (cusped) Anosov representations of geometrically finite Fuchsian groups. A 
(cusped) P1,d−1-Anosov representation of a geometrically finite Fuchsian group Γ is type-
preserving, i.e. takes hyperbolic elements to biproximal elements and parabolic elements 
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to (weakly) unipotent elements, and admits an equivariant limit map from the limit 
set of Γ into the partial flag variety whose elements are pairs (L, H) where L is a line 
contained in a hyperplane H in Rd. See Section 2.3 for detailed definitions.

Let P̃irr
{1,d−1}(Γ, d) be the set of irreducible P{1,d−1}-Anosov representations into 

PSL(d, R) and let Pirr
{1,d−1}(Γ, d) = P̃irr

{1,d−1}(Γ, d)/PSL(d, R). If H is a reductive sub-
group of PSL(d, R), then an element h ∈ H is H-generic if its centralizer is a maximal 
torus in H. If H = PSL(d, R), then an element is H-generic if and only if it is diagonal-
izable over C with distinct eigenvalues. A representation into H is said to be H-generic 
if its image contains an H-generic element. In particular, all Hitchin representations are 
PSL(d, R)-generic, so Theorem 1.3 is a special case of the following more general result.

Theorem 1.6. Suppose that Γ ⊂ PSL(2, R) is torsion-free and geometrically finite. If 
W is an analytic submanifold of Pirr

{1,d−1}(Γ, d), H is a reductive subgroup of PSL(d, R)
and every representation in W has image in H and is H-generic, then Pω1 |TW is an 
analytic Riemannian metric on W . Moreover, if W is invariant under a subgroup M of 
the mapping class group, then Pω1 |TW is M -invariant.

The proof of Theorem 1.6 follows the same outline as the proof of the main result 
in [7]. Standard results from the Thermodynamic Formalism imply that �v ∈ TρW has 
ω1-pressure norm zero if and only if there exists K so that D�v
ω1

γ = K
ω1
γ for all hy-

perbolic elements γ ∈ Γ. We can then apply [7, Lemma 9.8] to show that K = 0. An 
analysis using Labourie’s cross ratio functions is used to show that this implies that �v
itself must be zero, which completes the proof.

Finally, we remark that if Γ is geometrically finite but has torsion, then it has a 
finite index normal subgroup Γ0 which is torsion-free. One may identify Γ/Γ0 with a 
finite index subgroup G of the mapping class group of H2/Γ0 and then identify Hd(Γ)
with the submanifold of Hd(Γ0) which is stabilized by G. It follows that one obtains 
mapping class group invariant analytic Riemannian metrics Pω1 and Pα1 on Hd(Γ) and 
a mapping class group invariant path metric on Hd(Γ) which is analytic Riemannian off 
of the self-dual locus.

Historical remarks Thurston described a metric on Teichmüller space which was the 
“Hessian of the length of a random geodesic.” Wolpert [46] showed that this metric 
gives a scalar multiple of the classical Weil-Petersson metric. Bonahon [1] reinterpreted 
Thurston’s metric in terms of geodesic currents. McMullen [33] showed that one may 
interpret Thurston’s metric in terms of Thermodynamic Formalism, as the Hessian of 
a pressure intersection function. Bridgeman [6] generalized McMullen’s construction to 
the setting of quasifuchsian space. Bridgeman, Canary, Labourie and Sambarino [7] then 
showed how to use his construction to produce analytic Riemannian metrics at “generic” 
smooth points of deformation spaces of projective Anosov representations, and in par-
ticular on Hitchin components. Pollicott and Sharp [36] gave an alternate interpretation 
of this metric.



H. Bray et al. / Advances in Mathematics 435 (2023) 109352 7
Kao [20] used countable Markov codings to construct pressure metrics on Teichmüller 
spaces of punctured surfaces. Bray, Canary and Kao [4] generalized this to the setting 
of cusped quasifuchsian groups.

Acknowledgment We thank the referee for their helpful comments, which allowed us to 
simplify our proofs and improve our results.

2. Background

2.1. Linear algebra

The Jordan projection ν : SL(d, R) → a+ is the map which associates to A ∈ SL(d, R)
the list (log λ1(A), . . . , log λd(A)) of logarithms of moduli of generalized eigenvalues of 
A in decreasing order.

The Cartan projection κ : SL(d, R) → a+ is

κ(A) = (log σ1(A), . . . , log σd(A))

where {σi(A)}d
i=1 are the singular values of A labeled in decreasing order. Recall that 

each element of SL(d, R) may be written as A = KDL where K, L ∈ SO(d) and D is 
the diagonal matrix with (i, i)-entry given by σi(A). If αk(κ(A)) > 0, then Uk(A) =
K(〈e1, . . . , ek〉) is well-defined and is the k-plane spanned by the first k major axes of 
A(Sd−1).

Suppose that θ is a symmetric subset of {1, . . . , d −1}, i.e. k ∈ θ if and only if d −k ∈ θ. 
Define the θ-Cartan subspace as

aθ = {�a ∈ a : αj(�a) = 0 if j /∈ θ}

and let Δθ denote the set of functionals in a∗
θ which are positive on the interior a+

θ =
a+ ∩ aθ. In particular,

Δ = Δ{1,...,d}.

The θ-Cartan projection κθ : SL(d, R) → aθ is the unique map so that ωk(κθ(A)) =
ωk(κ(A)) for all A ∈ SL(d, R) and all k ∈ θ.

If θ = {k1, . . . , kn} we define the θ-flag variety

Fθ = {(F k1 , F k2 , . . . , F kn) : F k1 ⊂ F k2 ⊂ · · · ⊂ F kn}

where each F ki is a vector subspace of Rd of dimension ki. In particular, the full flag 
variety Fd is the same as F{1,2,...,d−1} in this notation.

Quint [38] introduced a vector valued smooth cocycle, called the θ-Iwasawa cocycle,

Bθ : SL(d,R) × Fθ → aθ
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with the defining property that if k ∈ θ, A ∈ SL(d, R), F ∈ Fθ, �vk is a non-trivial vector 
in Ek(F k) ⊂ Ek(Rd), where Ek denotes the kth exterior power, then

ωk(Bθ(A, F )) = log ||EkA(�vk)||
||�vk||

where || · || is the norm on EkRd induced by the standard Euclidean norm on Rd. Note 
that the Jordan and Cartan projections (resp. θ-Iwasawa cocycle) descend to well-defined 
functions on PSL(d, R) (resp. PSL(d, R) × Fθ).

2.2. Thermodynamic formalism

In this section, we recall the background results we will need from the Thermody-
namic Formalism for countable Markov shifts as developed by Gurevich-Savchenko [18], 
Mauldin-Urbanski [32] and Sarig [43].

Given a countable alphabet A and a transition matrix T = (tab) ∈ {0, 1}A×A a 
one-sided Markov shift is

Σ+ = {x = (xi) ∈ AN | txixi+1 = 1 for all i ∈ N}

equipped with a shift map σ : Σ+ → Σ+ which takes (xi)i∈N to (xi+1)i∈N . One says 
that (Σ+, σ) is topologically mixing if for all a, b ∈ A, there exists N = N(a, b) so that if 
n ≥ N , then there exists x ∈ Σ+ so that x1 = a and xn = b. The shift (Σ+, σ) has the 
big images and pre-images property (BIP) if there exists a finite subset B ⊂ A so that 
if a ∈ A, then there exists b0, b1 ∈ B so that tb0,a = 1 = ta,b1 .

Given a one-sided countable Markov shift (Σ+, σ) and a function g : Σ+ → R, we 
say that g is locally Hölder continuous if there exists C > 0 and η ∈ (0, 1) so that if 
x, y ∈ Σ+ and xi = yi for all 1 ≤ i ≤ n, then

|g(x) − g(y)| ≤ Cηn.

If n ∈ N, the nth-ergodic sum of g at x ∈ Σ+ is

Sng(x) =
n∑

i=1
g(σi−1(x))

and Fixn = {x ∈ Σ+ | σn(x) = x} is the set of periodic words with period dividing n.
The pressure of a locally Hölder continuous function g : Σ+ → R is defined to be

P (g) = sup

⎧⎨⎩hσ(m) +
∫

g dm : m ∈ Mσ and −
∫

g dm < ∞

⎫⎬⎭

Σ+ Σ+
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where Mσ is the space of σ-invariant probability measures on Σ+ and hσ(m) is the 
measure-theoretic entropy of σ with respect to the measure m.

A σ-invariant Borel probability measure m on Σ+ is an equilibrium measure for a 
locally Hölder continuous function g : Σ+ → R if

P (g) = hσ(m) +
∫

Σ+

g dm.

We remark that there are several different but equivalent definitions of pressure and 
equilibrium measure in the current setting. Readers can find a more detailed discussion 
of this in Bray-Canary-Kao-Martone [5, pg. 11]. Mauldin-Urbanski ([32, Thm. 2.6.12, 
Prop. 2.6.13 and 2.6.14]) and Sarig ([42, Cor. 4], [43, Thm 5.10 and 5.13]) prove that the 
pressure function is real analytic in our setting and compute its derivatives. Recall that 
{gu : Σ+ → R}u∈M is a real analytic family if M is a real analytic manifold and for all 
x ∈ Σ+, u → gu(x) is a real analytic function on M .

Theorem 2.1 (Mauldin-Urbanski, Sarig). Suppose that (Σ+, σ) is a one-sided countable 
Markov shift which has (BIP) and is topologically mixing. If {gu : Σ+ → R}u∈M is a 
real analytic family of locally Hölder continuous functions such that P (gu) < ∞ for all 
u, then u → P (gu) is real analytic.

Moreover, if �v ∈ Tu0M and there exists a neighborhood U of u0 in M so that if u ∈ U , 
then − 

∫
Σ+ gudmgu0

< ∞, then

D�vP (gu) =
∫

Σ+

D�v(gu(x)) dmgu0
.

In the case of finite Markov shifts, the assumption that P (gu) < ∞ is automatically 
satisfied and Theorem 2.1 is due to Ruelle [39] and Parry-Pollicott [35].

Bowen and Series [3] constructed a finite Markov coding for the action of a convex 
cocompact group Γ on its limit set Λ(Γ). Dal’bo and Peigné [13], when Γ is geometrically 
finite but not a lattice, and Stadlbauer [44] and Ledrappier-Sarig [27], when Γ is a lattice, 
constructed a countable Markov coding for the action of Γ on its conical limit set Λc(Γ). 
We summarize their crucial properties below (see [4] for a more complete description 
in our language). If a ∈ A, then G(a) is the associated element of Γ and log r(a) is 
“coarsely” the translation distance (of some fixed basepoint) of G(a).

Theorem 2.2 (Bowen-Series [3], Dal’bo-Peigné [13], Ledrappier-Sarig [27], Stadlbauer 
[44])). Suppose that Γ is a torsion-free geometrically finite Fuchsian group. There exists 
a topologically mixing Markov shift (Σ+, σ) with countable alphabet A with (BIP) and 
maps

G : A → Γ, ω : Σ+ → Λ(Γ), and r : A → N
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with the following properties.

(1) ω is locally Hölder continuous, finite-to-one and ω(Σ+) = Λc(Γ), i.e. the complement 
in Λ(Γ) of the set of fixed points of parabolic elements of Γ. Moreover, ω(x) =
G(x1)ω(σ(x)) for every x ∈ Σ+.

(2) If x ∈ Fixn, then ω(x) is the attracting fixed point of G(x1) · · · G(xn). Moreover, if 
γ ∈ Γ is hyperbolic, then there exists x ∈ Fixn (for some n) so that γ is conjugate 
to G(x1) · · · G(xn) and x is unique up to cyclic permutation.

(3) There exists D ∈ N so that 1 ≤ #(r−1(n)) ≤ D for all n ∈ N.

2.3. Anosov representations of geometrically finite Fuchsian groups

We next recall the definition of a Pθ-Anosov representation of a geometrically finite 
Fuchsian group and the results of Bray-Canary-Kao-Martone [5] and Canary-Zhang-
Zimmer [11] which will play a crucial role in our work.

Let Γ be a geometrically finite Fuchsian group and let θ be a symmetric subset of 
{1, . . . , d − 1}. We say that a representation ρ : Γ → PSL(d, R) is Pθ-Anosov, if there 
exists a continuous ρ-equivariant map ξρ : Λ(Γ) → Fθ so that

(1) ξρ is transverse, i.e. if x �= y ∈ Λ(Γ) and k ∈ θ, then

ξk
ρ (x) ⊕ ξd−k

ρ (y) = Rd,

(2) ξρ is strongly dynamics preserving, i.e. if {γn} is a sequence in Γ so that γn(b0) →
x ∈ Λ(Γ) and γ−1

n (b0) → y ∈ Λ(Γ) for some basepoint b0 ∈ H2, then if F ∈ Fθ is 
transverse to ξρ(y), then ρ(γn)(F ) → ξρ(x).

We denote the space of Pθ-Anosov representations of Γ into PSL(d, R) by P̃θ(Γ, d). We 
will need the following observation, which follows immediately from the above definition.

Lemma 2.3. If ρ : Γ → PSL(d, R) is in P̃{1,d−1}(Γ, d) and Γ0 is a Schottky subgroup of 
Γ, then ρ|Γ0 is a projective Anosov representation of the convex cocompact subgroup Γ0.

Canary, Zhang and Zimmer establish fundamental properties of Pθ-Anosov represen-
tations of geometrically finite Fuchsian groups which generalize the properties of classical 
Anosov representations.

Theorem 2.4 (Canary-Zhang-Zimmer [11]). Suppose that Γ is a geometrically finite Fuch-
sian group, ρ : Γ → PSL(d, R) is a Pθ-Anosov representation.

(1) If γ ∈ Γ is hyperbolic and k ∈ θ, then ρ(γ) is Pk-proximal.
(2) If α ∈ Γ is parabolic, then ρ(α) is weakly unipotent in PSL(d, R), i.e. its Jordan-

Chevalley decomposition has elliptic semi-simple part and non-trivial unipotent part.
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(3) There exist A, a > 0 so that if γ ∈ Γ and k ∈ θ, then

Aead(b0,γ(b0)) ≥ eαk(κθ(ρ(γ))) ≥ 1
A

e
d(b0,γ(b0))

a

where b0 is a basepoint for H2.
(4) ρ has the Pθ-Cartan property, i.e. whenever {γn} is a sequence of distinct elements 

of Γ such that γn(b0) converges to z ∈ Λ(Γ), then ξk
ρ (z) = lim Uk(ρ(γn)) for all 

k ∈ θ.

They also show that limit maps of Anosov representations vary analytically.

Theorem 2.5 (Canary-Zhang-Zimmer [11]). If {ρu : Γ → PSL(d, R)}u∈M is a real an-
alytic family of Pθ-Anosov representations of a geometrically finite Fuchsian group and 
z ∈ Λ(Γ), then the map from M to Fθ given by u → ξρu

(z) is real analytic.

If ρ ∈ P̃θ(Γ, d), the θ-Benoist limit cone of ρ is

Bθ(ρ) =
⋂

n�0

⋃
‖κθ(ρ(γ))‖�n

R+κθ(ρ(γ)) ⊂ a
+
θ .

The positive dual to the θ-Benoist limit cone is given by

Bθ(ρ)+ =
{

φ ∈ a∗
θ | φ

(
Bθ(ρ) − {�0}

)
⊂ (0, ∞)

}
. (1)

In previous work [5], we constructed potentials on the Markov shift which encode the 
spectral properties of Anosov representations of geometrically finite, torsion-free Fuch-
sian groups. First we use the θ-Iwasawa cocycle to define a vector-valued roof function 
τρ : Σ+ → aθ by

τρ(x) = Bθ

(
ρ(G(x1)), ρ(G(x1))−1(ξρ(ω(x)))

)
If φ ∈ Bθ(ρ)+ one defines the roof function τφ

ρ = φ ◦ τρ. Notice that since Bθ(ρ) is 
contained in the interior of the positive Weyl chamber a+

θ , the set Δθ is contained in 
Bθ(ρ)+.

We use the Thermodynamic Formalism for countable Markov shifts to analyze these 
potentials. In particular, we use a renewal theorem of Kesseböhmer and Kombrink [24]
to generalize arguments of Lalley [26] to establish counting and equidistribution results 
in our setting. We summarize the results we will need from our work below.

Theorem 2.6 (Bray-Canary-Kao-Martone [5]). Suppose that Γ is a torsion-free, geomet-
rically finite Fuchsian group which is not convex cocompact, ρ : Γ → PSL(d, R) is a 
Pθ-Anosov representation and φ ∈ Bθ(ρ)+. Then, there exists a locally Hölder continu-
ous function τφ

ρ = φ ◦ τρ : Σ+ → R such that
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(1) τφ
ρ is eventually positive, i.e. there exist N ∈ N and B > 0 such that Snτφ

ρ (x) > B

for all n � N and x ∈ Σ+.
(2) There exists d(φ) > 0, so that the function h �→ P (−hτφ

ρ ) is finite, proper and strictly 
monotone on (d(φ), ∞) and infinite otherwise.

(3) There exists Cρ > 0, and for all x1 ∈ A, c(ρ, φ, x1) ≥ 1/d(φ) so that if x ∈ Σ+, then∣∣∣τφ
ρ (x) − c(ρ, φ, x1) log r(x1)

∣∣∣ ≤ Cρ.

(4) If x = x1 · · · xn is a periodic element of Σ+, then

Snτφ
ρ (x) = 
φ

ρ

(
G(x1) · · · G(xn)

)
.

(5) The φ-entropy hφ(ρ) of ρ is the unique solution of P (−hτφ
ρ ) = 0. Moreover,

lim
T →∞

hφ(ρ)TRφ
T (ρ)

ehφ(ρ)T
= 1.

(6) There is a unique equilibrium measure mφ
ρ for −hφ(ρ)τφ

ρ .

We also established a rigidity theorem for renormalized pressure intersection and 
use our equidistribution result to give a thermodynamical reformulation of the pressure 
intersection. Recall that Δθ ⊂ a∗

θ is the set of functionals which are strictly positive on 
the interior of a∗

θ. We often restrict to this set of linear functionals, since Δθ is the largest 
set of linear functionals contained in Bθ(ρ)+ for every Pθ-Anosov representation ρ.

Theorem 2.7 (Bray-Canary-Kao-Martone [5]). If ρ, η : Γ → PSL(d, R) are Pθ-Anosov 
representations of a geometrically finite Fuchsian group and φ ∈ Δθ, then

Jφ(ρ, η) ≥ 1

with equality if and only if


φ
ρ(γ) = hφ(η)

hφ(ρ) 
φ
η (γ)

for all γ ∈ Γ. Moreover,

Iφ(ρ, η) =
∫

Σ+ τφ
η dmφ

ρ∫
Σ+ τφ

ρ dmφ
ρ

and −Iφ(ρ, η) is the slope of the tangent line at (hφ(ρ), 0) to

Cφ(ρ, η) = {(a, b) ∈ R2 | P (−aτφ
ρ − bτφ

η ) = 0, a � 0, b � 0, a + b > 0}.
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2.4. Hitchin representations

We say that a basis b = (b1, . . . , bd) is consistent with a pair (F, G) of transverse 
flags if 〈bi〉 = F i ∩ Gd−i+1 for all i. We denote by U(b)>0 ⊂ SL(d, R) the subsemigroup 
of upper triangular unipotent matrices which are totally positive with respect to b, i.e. 
A ∈ U(b)>0 if, in the basis b, A is upper triangular unipotent and the determinants of 
all the minors of A are positive, unless they are forced to be zero by the fact that A is 
upper triangular.

Then, a k-tuple (F1, . . . , Fk) in Fd is positive if there exists a basis b consistent with 
(F1, Fk) and there exists {u2, . . . , uk−1} ∈ U(b)>0 so that Fi = uk−1 · · · uiFk for all 
i = 2, . . . , k − 1. If X is a subset of S1, we say that a map ξ : X → Fd is positive if 
whenever (x1, . . . , xk) is a consistently ordered k-tuple in X (ordered either clockwise or 
counter-clockwise), then (ξ(x1), . . . , ξ(xk)) is a positive k-tuple of flags.

Let Γ be a geometrically finite Fuchsian group and let Λ(Γ) ⊂ ∂H2 be its limit set. 
Following Fock and Goncharov [14], a Hitchin representation ρ : Γ → PSL(d, R) is a 
representation such that there exists a ρ-equivariant positive map ξρ : Λ(Γ) → Fd. 
If S is closed, Hitchin representations are just the traditional Hitchin representations 
introduced by Hitchin [19] and further studied by Labourie [25]. When Γ contains a 
parabolic element, we sometimes refer to these Hitchin representations as cusped Hitchin 
representations to distinguish them from the traditional Hitchin representations.

Canary, Zhang and Zimmer [11] proved the following important structural results. 
(Sambarino [41] independently showed that Hitchin representations are strongly irre-
ducible.)

Theorem 2.8. If ρ ∈ Hd(Γ), then ρ is {1, . . . , d − 1}-Anosov and strongly irreducible.

We recall that Sambarino [41, Theorem A] classified the possible Zariski closures of 
images of Hitchin representations.

Theorem 2.9 (Sambarino [41]). Suppose that Γ ⊂ PSL(2, R) is a geometrically finite 
Fuchsian group, and ρ : Γ → PSL(d, R) is a Hitchin representation. Then the Zariski 
closure of ρ(Γ) either lies in an irreducible image of PSL(2, R) or is conjugate to either 
PSL(d, R), PSp(2n, R) when d = 2n, PSO(n, n − 1) when d = 2n − 1, or G2 when d = 7.

Historical remarks: The results in this subsection generalize earlier results in the case 
when Γ is convex cocompact. More precisely, when Γ is convex cocompact, Theorem 2.4
follows from work of Labourie [25], Fock and Goncharov [14], Guichard and Wienhard 
[17], Kapovich, Leeb and Porti [22,23], Guérituad, Guichard, Kassel, and Wienhard [15]
and Tsouvalas [45], Theorems 2.5 and 2.7 are due to Bridgeman, Canary, Labourie, and 
Sambarino [7] and Theorem 2.6 is due to Sambarino [40]. Finally, Theorem 2.8 is due to 
Labourie [25].



14 H. Bray et al. / Advances in Mathematics 435 (2023) 109352
Anosov representations of geometrically finite Fuchsian groups are also relatively 
Anosov in the sense of Kapovich and Leeb [21] and relatively dominated in the sense 
of Zhu [48]. In particular, one can derive Theorem 2.4 in either of their settings. The 
approach in [11] was motivated by the need to prove Theorem 2.5, whose proof was 
not clear from either pre-existing viewpoint. Zhu and Zimmer [49] have now generalized 
the techniques of [11] to establish a generalization of Theorem 2.5 to the setting of all 
relatively Anosov representations.

3. Entropy, intersection and the pressure form

Our pressure form is defined as the Hessian of a renormalized intersection function, 
so it is crucial to show that this function is analytic (or at least C2). Let P̃θ(Γ, d) be the 
space of Pθ-Anosov representations of Γ into PSL(d, R).

Theorem 3.1. If W̃ is an analytic submanifold of P̃θ(Γ, d) and φ ∈ Δθ, then hφ(ρ) varies 
analytically over W̃ and Iφ and Jφ vary analytically over W̃ ×W̃ . Moreover, if ρ, η ∈ W̃ , 
then

Jφ(ρ, η) ≥ 1

and Jφ(ρ, η) = 1 if and only if 
φ
ρ (γ) = hφ(η)

hφ(ρ) 
φ
η (γ) for all γ ∈ Γ.

Proof. If Γ is convex cocompact, then this result is established in [7]. So we will assume 
that Γ is geometrically finite but not convex cocompact for the rest of this proof.

Theorem 2.5 implies that the limit map ξρ varies analytically over W̃ . Since τρ(x) =
Bθ(ρ(G(x1)), ρ(G(x1))−1(ξρ(ω(x)))) and Bθ is analytic we see that τρ, and hence τφ

ρ =
φ ◦ τρ, varies analytically over W̃ . It then follows from Theorem 2.6 and Theorem 2.1
that (h, ρ) → P (−hτφ

ρ ) is analytic on (d(φ), ∞) × W̃ . Since P (−hφ(ρ)τφ
ρ ) = 0 and

d

dt
P (−tτφ

ρ )
∣∣∣
t=hφ(ρ)

= −
∫

τφ
ρ dmφ

ρ < 0

for all ρ ∈ W̃ , the Implicit Function Theorem implies that hφ(ρ) varies analytically over 
W̃ .

Let

R = W̃ × W̃ × D̂φ where D̂φ =
{

(a, b) ∈ R2 |a + b > d(φ)
}

and let PR : R → R be given by PR(ρ, η, a, b) = P (−aτφ
ρ − bτφ

η ). Mauldin and Urbanski 
[32, Thm. 2.1.9] show that if f is locally Hölder continuous, then P (f) is finite if and 
only if Z1(f) < +∞, where

Z1(f) =
∑

esup{f(x) : x1=s} < +∞.

s∈A
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By grouping the terms so that r(s) = n, Theorem 2.6 implies that

Z1(−aτφ
ρ − bτφ

η ) ≤
∞∑

n=1
e

−(a+b)
(

1
d(φ) log n−max{Cρ,Cη}

)

so P (−aτφ
ρ − bτφ

η ) < +∞ if a + b > d(φ). Therefore, PR is finite on R, and hence, by 
Theorem 2.1, analytic on R. As above, PR is a submersion on P −1

R (0), so P −1
R (0) is 

an analytic submanifold of R. Moreover, by Theorem 2.7, −Iφ(ρ, η) is the slope of the 
tangent line to P −1

R (0) ∩{(ρ, η) ×D̂φ} at the point (ρ, η, (h(ρ), 0)), so Iφ(ρ, η) is analytic. 
Since entropy is analytic, it follows immediately that Jφ(ρ, η) is analytic.

The final claim follows directly from Theorem 2.7. �
Let P̃irr

θ (Γ, d) be the set of irreducible representations in P̃θ(Γ, d) and let Pirr
θ (Γ, d) =

P̃irr
θ (Γ, d)/PSL(d, R). The argument of [7, Proposition 7.1] shows that the action of 

PSL(d, R) on P̃irr
θ (Γ, d) is free, proper and analytic. It follows that if W is an analytic 

submanifold of Pirr
θ (Γ, d), then its pre-image W̃ is an analytic submanifold of P̃θ(Γ, d).

In this setting, we get the following result which generalizes Theorem 1.2 from the 
introduction.

Corollary 3.2. If W is an analytic submanifold of Pirr
θ (Γ, d) and φ ∈ Δθ, then hφ(ρ)

varies analytically over W and Iφ and Jφ vary analytically over W × W . Moreover, if 
ρ, η ∈ W , then

Jφ(ρ, η) ≥ 1

and Jφ(ρ, η) = 1 if and only if 
φ
ρ (γ) = hφ(η)

hφ(ρ) 
φ
η (γ) for all γ ∈ Γ.

Given φ ∈ Δθ, we define a pressure form on any analytic submanifold W of Pirr
θ (Γ, d)

by letting

Pφ
∣∣
TρW

= Hess(Jφ(ρ, ·)).

If �v = d
dt

∣∣
t=0[ρt] where {ρt}t∈(−ε,ε) is a one-parameter analytic family in W , then

Pφ(�v,�v) = d2

dt2

∣∣∣
t=0

Jφ(ρ0, ρt).

We note that the exact same definitions apply when Γ is a cocompact lattice, see [9, 
Sect. 5.5]. We observe the following immediate properties.

Proposition 3.3. If W is an analytic submanifold of Pirr
θ (Γ, d) and φ ∈ Δθ, then Pφ

is analytic and non-negative, i.e. if �v ∈ TW , then Pφ(�v, �v) ≥ 0. Moreover, if M is a 
subgroup of the mapping class group of Γ and W is M -invariant, then Pφ is M -invariant.
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Proof. The pressure form Pφ is analytic, since Jφ is analytic and is non-negative since 
Jφ achieves its minimum along the diagonal, see Theorem 2.7. If ψ ∈ M , then 
φ

γ(ρ ◦ψ) =

φ

ψ−1(γ)(ρ), so Rφ
T (ρ ◦ψ) = ψ−1(

Rφ
T (ρ)

)
and hφ(ρ) = hφ(ψ ◦ρ), so Jφ(ρ, η) = Jφ(ρ ◦ψ, η ◦

ψ), which implies that Pφ is ψ-invariant. �
The following degeneracy criterion for pressure metrics is standard in the setting of 

finite Markov shifts, see for example [9, Cor. 2.5], but requires a little more effort in the 
setting of countable Markov shifts. In our setting, this criterion is established exactly as 
in Lemma 8.1 in [4].

Proposition 3.4. Suppose that W is an analytic submanifold of Pirr
θ (Γ, d) and φ ∈ Δθ. 

If �v ∈ TW and φ ∈ Δθ, then Pφ(�v, �v) = 0 if and only if

D�v

(
hφ
φ

γ

)
= 0

for all γ ∈ Γ.

We next observe that D�v log 
φ
γ is independent of γ if �v is degenerate and γ is hyper-

bolic.

Lemma 3.5. Suppose that W is an analytic submanifold of Pirr
θ (Γ, d) and φ ∈ Δθ. If 

�v ∈ TW and Pφ(�v, �v) = 0, then,

D�v
φ
γ = K
φ

γ

for all γ ∈ Γ, where K = − D�vhφ

hφ(ρ) .

Proof. By Proposition 3.4, if �v is degenerate, then

hφ(ρ)D�v
φ
γ = −

(
D�vhφ

)

φ

γ

for all hyperbolic γ ∈ Γ, so D�v
φ
γ = K
φ

γ for all hyperbolic γ ∈ Γ. If γ ∈ Γ is parabolic, 
then 
φ

γ is the zero function, so the condition holds trivially. �
Recall that if M is a real analytic manifold, an analytic function f : M → R has 

log-type K at v ∈ TuM if f(u) �= 0 and

Dulog(|f |)(v) = K log(|f(u)|).

In this language, Lemma 3.5 implies that if Λφ
γ is the function defined by ρ → e�φ

ρ (γ) and 
Pφ(�v, �v) = 0 then there exists K so that Λφ

γ has log-type K at �v for all γ ∈ Γ.
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4. The spectral radius pressure metric

We are now ready to establish our generalization of the main theorem of [7].

Theorem 1.6. If W is an analytic submanifold of Pirr
1,d−1(Γ, d), H is a reductive subgroup 

of PSL(d, R) and every representation in W has image in H and is H-generic, then 
Pω1 |TW is an analytic Riemannian metric on W . Moreover, if W is invariant under a 
subgroup M of the mapping class group, then Pω1 |TW is M -invariant.

Since every cusped Hitchin representation is irreducible and SL(d, R)-generic, Theo-
rem 1.3 follows immediately from Theorem 1.6.

Proof of Theorem 1.6. Proposition 3.3 implies that we only need to prove that every 
non-zero vector �v ∈ TW is non-degenerate. Suppose �v0 ∈ Tρ0W is a degenerate vector. 
Lemma 3.5 implies that there exists K so that Λω1

γ has log-type K at �v0 for all γ ∈ Γ. 
Our first step consists of showing that K = 0.

Let ρ0(α) be an H-generic element. We claim that α is hyperbolic and, consequently 
that ρ0(α) is biproximal. If not, α is parabolic, and ρ0(α) is weakly unipotent, see 
Theorem 2.4 part (2). In particular, ρ0(α) is not diagonalizable over C, so its centralizer 
cannot be a maximal torus, which contradicts the assumption that ρ0(α) is H-generic.

Let β be an element of Γ, so that α and β generate a free convex cocompact subgroup 
Γ0 of Γ. Lemma 2.3 then implies that the restriction ρ0|Γ0 is P{1,d−1}-Anosov in the 
traditional sense. One may then choose an open neighborhood W0 of ρ0 in W so that if 
ρ ∈ W0, then ρ|Γ0 is P{1,d−1}-Anosov and ρ(α) is H-generic. We then can consider the 
analytic family {ρ|Γ0}ρ∈W0 and apply [7, Lemma 9.8] to conclude that K = 0.

Next, we show that if Λω1
γ is log-type zero at �v0 for all γ ∈ Γ, then �v0 = 0.

Recall that Labourie defines a continuous cross-ratio b on pairs of mutually transverse 
hyperplanes (P1, P2) and lines (L1, L2) by setting

b(P1, P2, L1, L2) = φ1(�v1)φ2(�v2)
φ1(�v2)φ2(�v1)

where φ1 and φ2 are linear functionals with kernel P1 and P2 and �v1 and �v2 are non-zero 
vectors in L1 and L2. One may then define a continuous cross-ratio bρ : Λ(Γ)(4) → R, 
where Λ(Γ)(4) is the set of pairwise distinct quadruples in Λ(Γ), by setting

bρ(x, y, z, w) = b(ξd−1
ρ (x), ξd−1

ρ (y), ξ1
ρ(z), ξ1

ρ(w)).

Note that bρ is well-defined because ρ is P{1,d−1}-Anosov. Suppose that (α, β) is a pair of 
hyperbolic elements of Γ generating a rank two Schottky subgroup of Γ, then (ρ(α), ρ(β))
generate a projective Anosov Schottky group, so [7, Prop. 10.4] gives that

bρ(α−, β−, β+, α+) = lim
Λω1

αnβ(ρ)
ω1 .
n→∞ Λαn(ρ)
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It follows that bρ(α−, β−, β+, α+) is of log-type zero (since ratios of log-type zero func-
tions are log-type zero, as are limits of log-type zero functions). Since such quadruples 
are dense in Λ(Γ)(4), it follows that bρ(x, y, z, w) is log-type zero for all quadruples in 
Λ(Γ)(4).

Given a projective frame F = (L1, . . . , Ld+1) for P (Rd) and a projective frame F ∗ =
(P1, . . . , Pd+1) for P ((Rd)∗), one can define a smooth injective immersion

μF,F ∗ : PSL(d,R) → W (d)

where W (d) is the quotient of the space of (d + 1) × (d + 1) matrices via a multiplica-
tive action of (R − {0})2(d+1) whose action on the coefficients of the matrix is given by 
(a1, · · · , ad+1, b1, · · · , bd+1)(Mij) = aibjMij (see [7, Section 10.2]). (Recall that a projec-
tion frame for P (Rd) is a collection of d + 1 lines so that no d lines are contained in any 
hyperplane.) Specifically one chooses non-zero vectors �vi ∈ Li and covectors φi ∈ Pi so 
that 

∑
�vi = 0 and 

∑
φi = 0 and defines

μF,F ∗(A) = [φi(A(�vj))].

This smooth injective immersion and the cross ratio bρ are related by the following 
crucial property, whose proof proceeds exactly as in [7, Lemma 10.7].

Lemma 4.1. Suppose {x1, . . . , xd+1} and {y1, . . . , yd+1} are two collections of pairwise 
distinct points in Λ(Γ), and that F = {ξ1

ρ(x1), . . . , ξ1
ρ(xd+1)} and F ∗ = {ξd−1

ρ (y1), . . . ,

ξd−1
ρ (yd+1)} are projective frames. Then

μF,F ∗(ρ(α)) = [bρ(yi, z, α(xj), w)]

for arbitrary z, w ∈ Λ(Γ) and for all α ∈ Γ.

The remainder of the proof then simply mimics the proof of [7, Lemma 10.8].
Let {ρt} be a path in W so that d

dt ρt|t=0 = �v0. Since ρ is irreducible, see [7, 
Lemma 2.17], we may choose {x1, . . . , xd+1} and {y1, . . . , yd+1} so that their images 
F = {ξ1

ρ(x1), . . . , ξ1
ρ(xd+1)} and F ∗ = {ξd−1

ρ (y1), . . . , ξd−1
ρ (yd+1)} are projective frames. 

Let Ft = {ξ1
ρt

(x1), . . . , ξ1
ρt

(xd+1)} and F ∗
t = {ξd−1

ρt
(y1), . . . , ξd−1

ρt
(yd+1)}. We may assume, 

by restricting the path, that Ft and F ∗
t are projective frames, and, by conjugating, that 

Ft = F0 for all t.
Then μFt,F ∗

t
(ρt(α)) = [bρt

(yi, z, α(xj), w)], for all α ∈ Γ and all t. So, since our 
cross-ratios have log type zero, we see that

d

dt

∣∣∣
t=0

μFt,F ∗
t

(ρt(α)) = 0

for all α ∈ Γ.
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By construction, if B ∈ PSL(d, R) and F and F ∗ are any projective frames, then 
μF,B∗F ∗(A) = μF,F ∗(B−1A). So, if we choose Ct ∈ PSL(d, R) so that (C−1

t )∗F ∗
t = F ∗

0 , 
then

0 = d

dt

∣∣∣
t=0

μFt,F ∗
t

(ρt(α)) = d

dt

∣∣∣
t=0

μF0,F ∗
0 (Ctρt(α)) = DμF0,F ∗

0

(
d

dt

∣∣∣
t=0

Ctρt(α)
)

for all α ∈ Γ. Since μF0,F ∗
0 is an immersion, this implies that

d

dt

∣∣∣
t=0

Ctρt(α) = 0

for all α ∈ Γ, so

C0 ◦ d

dt

∣∣∣
t=0

ρt(α) +
(

d

dt

∣∣∣
t=0

Ct

)
◦ ρt(α) = 0

for all α ∈ Γ. By considering the case where α = id, we see that Ċ0 =
(

d
dt

∣∣∣
t=0

Ct

)
= 0. 

Since C0 = I, we see that d
dt

∣∣∣
t=0

ρt(α) = 0 for all α ∈ Γ, which implies that �v0 = 0. �
5. The Hilbert length pressure metric

Theorem 1.6 has the following immediate corollary:

Corollary 5.1. If S is a simple subgroup of PSL(d, R) and W is a submanifold of Hd(Γ)
consisting of representations whose Zariski closure is S, then PωH is non-degenerate on 
TW .

Proof. Consider the Adjoint representation Ad : S → SL(V ) where V is the Lie algebra 
of S. Then H = Ad(S) is an irreducible reductive subgroup of SL(V ). Moreover, if ρ ∈ W , 
then Ad ◦ρ is irreducible and H-generic. Theorem 1.6 implies that the pressure form Pω1

is non-degenerate on TAd(W ).
Note that Ad is an immersion as the adjoint representation ad : V → sl(V ) is injective. 

Recall that ω1(Ad ◦ρ(γ)) = ωH(ρ(γ)). Therefore, PωH |TW is the pull-back of Pω1 |TAd(W )
and hence non-degenerate. �

The proof of [7, Lemma 13.1] immediately generalizes to give the following lemma. 
(See Appendix A for a proof.)

Lemma 5.2. Let W0 be a smooth manifold and let Wn ⊂ Wn−1 ⊂ · · · W1 ⊂ W0 be a 
nested collection of submanifolds of W0 so that Wi has positive codimension in Wi−1 for 
all i. Suppose that g is a smooth non-negative symmetric 2-tensor g such that

• g is positive definite on TxWi−1 if x ∈ Wi−1 \ Wi,
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• the restriction of g to TxWn is positive definite if x ∈ Wn.

Then the path pseudo metric defined by g is a metric.

One thus obtains a pressure path metric on Hd(Γ) associated to the Hilbert length 
functional, by applying Sambarino’s analysis of the possible Zariski closures of Hitchin 
representations (see Theorem 2.9).

Theorem 1.5. Suppose that Γ ⊂ PSL(2, R) is torsion-free and geometrically finite. If 
�v ∈ THd(Γ) is non-zero, then PωH (�v, �v) = 0 if and only if �v is anti-self-dual. Moreover, 
PωH gives rise to a mapping class group invariant path metric on Hd(Γ) which is an 
analytic Riemannian metric off of the self-dual locus.

Proof. Let W0 = Hd(Γ). If n ≥ 4 is even, let W1 ⊂ Hd(Γ) be the submanifold of 
representations whose Zariski closure is conjugate into PSp(n, R) and let W2 be the 
Fuchsian locus (i.e. representations contained in an irreducible image of PSL(2, R).) If n ≥
5 is odd, and n �= 7, let W1 ⊂ Hd(Γ) be the submanifold of representations whose Zariski 
closure is conjugate into PSO(n, n − 1). If n = 7, let W1 ⊂ Hd(Γ) be the submanifold of 
representations whose Zariski closure is conjugate into PSO(4, 3), let W2 ⊂ Hd(Γ) be the 
submanifold of W1 consisting representations whose Zariski closure is conjugate into G2
and let W3 be the Fuchsian locus. If n = 3, let W1 be the Fuchsian locus. (Theorem 1.1
implies that W0 is a manifold and that Wi is always a submanifold of Wi−1).

In all cases, Corollary 5.1 implies that PωH is non-degenerate on TxWi−1 if x ∈
Wi−1 \ Wi. Therefore, Lemma 5.2 implies that PωH gives rise to a path metric on Hd(Γ)
which is Riemannian off of W1. �
6. The (first) simple root pressure metric

6.1. Trace functions

Recall that an element in Hd(Γ) is a conjugacy class of Hitchin representations of 
Γ into PSL(d, R). It will be convenient to identify Hd(Γ) with a subset Ĥd(Γ) of the 
character variety

Xd(Γ) = Hom(Γ, SL(d,C))//SL(d,C).

The character variety Xd(Γ) is the biggest Hausdorff quotient of Hom(Γ, SL(d, C))
by the SL(d, C)-action by conjugation which coincides with the GIT quotient of 
Hom(Γ, SL(d, C)) by this same action (See [34]).

If Γ is cocompact, then Hitchin [19] showed that there is a component, Ĥd(Γ), of Xd(Γ)
and an analytic diffeomorphism F : Hd(Γ) → Ĥd(Γ), so that F ([ρ]) is the conjugacy class 
of a lift to SL(d, R) of ρ.
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Let H̃d(Γ) denote the set of all Hitchin representations of Γ in PSL(d, R). If Γ is not 
cocompact, then, since Γ is a free group and H̃d(Γ) is an analytic manifold, it is easy to 
define an analytic map

F : H̃d(Γ) → Hom(Γ, SL(d,C))

so that F (ρ) is a lift of ρ. Since Hitchin representations are strongly irreducible, see 
Theorem 2.4, Schur’s Lemma implies that F (ρ) is conjugate to F (η) in SL(d, C) if and 
only ρ and η are conjugate in PSL(d, R). Then, again since Hitchin representations are 
strongly irreducible, it follows that F descends to an analytic embedding F̂ : Hd(Γ) →
Xd(Γ) whose image lies in the smooth part of Xd(Γ). We then let Ĥd(Γ) = F̂ (Hd(Γ)). 
Notice that if d is odd, then Ĥd(Γ) = Hd(Γ).

If γ ∈ Γ, there is a complex analytic trace function Trγ : Xd(Γ) → C so that Trγ([ρ])
is the trace of ρ(γ). It is well-known that derivatives of trace functions generate the co-
tangent space at any smooth point, see for example Lubotzky-Magid [29]. The following 
consequence will be used to verify the non-degeneracy of the first simple root pressure 
form.

Lemma 6.1. If [ρ] ∈ Ĥd(Γ), then {D�v Trγ | γ ∈ Γ} spans the cotangent space T∗
[ρ]Ĥd(Γ).

Even though Trγ is not well-defined on Hd(Γ), we will abuse notation by saying that 
D�vTrβ = 0 for some �v ∈ THd(S) if DDF (�v)Trβ = 0.

6.2. Nondegeneracy

Bridgeman, Canary, Labourie and Sambarino [8] prove that if Γ is a closed surface 
group, then Pα1 is non-degenerate on Hd(Γ). A key tool in their work is the fact, due 
to Potrie-Sambarino [37], that the topological entropy hα1(ρ) = 1 if ρ ∈ Hd(Γ). Ca-
nary, Zhang and Zimmer [12] generalized Potrie and Sambarino’s result to the setting of 
torsion-free lattices which are not cocompact.

Theorem 6.2 (Potrie-Sambarino [37] and Canary-Zhang-Zimmer [12]). If Γ ⊂ PSL(2,R)
is a torsion-free lattice, and ρ ∈ Hd(Γ), then hα1(ρ) = 1.

With this result in hand, we are ready to establish the non-degeneracy of the first 
simple root pressure metric.

Theorem 1.4. If Γ ⊂ PSL(2, R) is a torsion-free lattice, then the pressure form Pα1 is 
non-degenerate, so it gives rise to a mapping class group invariant, analytic Riemannian 
metric on Hd(Γ).

Proposition 3.3 and Lemma 6.1 together imply that Theorem 1.4 follows from the 
following proposition.
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Proposition 6.3. If �v ∈ T[η]Hd(Γ) and Pα1(�v, �v) = 0, then D�v Trβ = 0 for all β ∈ Γ.

Here, we will only sketch the proof, since the proof proceeds exactly as in the proof 
of [8, Prop. 7.4].

Proof. We again abuse notation by identifying [ρ] with F ([ρ]) ∈ Ĥd(Γ). Since hα1(ρ) = 1
for all ρ ∈ Hd(Γ), Proposition 3.4 implies that D�v
α1

β = 0 for all β ∈ Γ.
If α ∈ Γ is parabolic, then Trα is constant on Ĥd(Γ), so D�v Trα = 0.
If β is hyperbolic, we may choose α ∈ Γ, so that α is hyperbolic and α and β have 

non-intersecting axes. We may pass to powers αn and βn which generate a Schottky 
subgroup of Γ. We are then exactly in the setting of the proof of [8, Prop. 7.4] which 
shows that D�vλi(ρ(βn)) = D�vλi(ρ(β))n = 0 for all i. Therefore, D�vλi(ρ(β)) = 0 for all 
i, so D�v Trβ = 0. �
Appendix A

We prove:

Lemma 5.2. Let W0 be a smooth manifold and let Wn ⊂ Wn−1 ⊂ · · · W1 ⊂ W0 be a 
nested collection of submanifolds of W0 so that Wi has non-zero codimension in Wi−1
for all i. Set Wn+1 = ∅. Suppose that g is a smooth non-negative symmetric 2-tensor on 
W0 such that for every i = 0, . . . , n, the restriction of g to TxWi is positive definite if 
x ∈ Wi \ Wi+1. Then, the path pseudo-metric defined by g is a metric.

Proof. We proceed iteratively to establish the following claim:

Claim. If x ∈ Wi \Wi+1, then x has a neighborhood U whose closure U lies in W0 \Wi+1, 
so that if u ∈ U \ {x}, then d(x, u) > 0.

Once we have proved this claim for all i, we will have completed the proof of the 
lemma.

If x ∈ W0 \ W1, then if U is any neighborhood of x whose closure U is disjoint from 
W1, then g is Riemannian on U . Therefore, our claim is true for i = 0.

Next, we suppose that the claim is true for all i = j < k, and prove the claim for 
i = k. This establishes the claim for all i.

Let ni = dim Wi. If x ∈ Wk \ Wk+1, we may identify some neighborhood U of x

with the Euclidean unit ball in Rn0 (centered at �0) so that x is identified with �0. We 
may assume that the closure U of U is compact and disjoint from Wk+1 and that if 
j ≤ k, then Wj ∩ U is identified with the intersection of the closure D(�0, 1) of B(�0, 1)
with Rnj × {�0}n0−nj . We will work in coordinates for the rest of this proof. We identify 
TD(�0, 1) with D(�0, 1) × Rn0 .

Since the restriction of g to T (Wk\Wk+1) is Riemannian, there exists r, s > 0 so that if 
�v is a (Euclidean) unit vector in (Wk ∩D(�0, 1)) ×Rnk ×{�0}n0−nk , then s2 ≥ g(�v, �v) ≥ 4r2.
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Since g is continuous, it follows that, after possibly restricting to a smaller neighbor-
hood of x, we can assume that if �v is a unit vector in D(�0, 1) × Rnk × {�0}n0−nk , then 
4s2 ≥ g(�v, �v) ≥ r2. It follows that the (Euclidean) projection map from πk : D(�0, 1) → Wk

is K-Lipschitz where K = 2s
r . Therefore, since the restriction of g to T (Wk \ Wk+1) is 

Riemannian, it follows that if u ∈ U and πk(u) �= �0, then d(u, x) > 0. On the other 
hand, if πk(u) = �0 and u �= x, then u ∈ W0 \ Wk, so, by our iterative assumption, there 
exists a neighborhood V of u whose closure lies in W0 \ Wk, so that if v ∈ V \ {u}, then 
d(v, u) > 0. It follows that there exists c > 0 so that if v ∈ ∂V , then d(u, v) ≥ c. Since 
x /∈ V , this implies that d(x, u) ≥ d(∂V, u) ≥ c > 0. This completes the proof of the 
claim and hence the lemma. �
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