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The amateur radio community is a global, highly engaged, and technical
community with an intense interest in space weather, its underlying physics, and
how it impacts radio communications. The large-scale observational capabilities
of distributed instrumentation fielded by amateur radio operators and radio
science enthusiasts offers a tremendous opportunity to advance the fields
of heliophysics, radio science, and space weather. Well-established amateur
radio networks like the RBN, WSPRNet, and PSKReporter already provide rich,
ever-growing, long-term data of bottomside ionospheric observations. Up-
and-coming purpose-built citizen science networks, and their associated novel
instruments, offer opportunities for citizen scientists, professional researchers,
and industry to field networks for specific science questions and operational
needs. Here, we discuss the scientific and technical capabilities of the global
amateur radio community, review methods of collaboration between the
amateur radio and professional scientific community, and review recent peer-
reviewed studies that have made use of amateur radio data and methods.
Finally, we present recommendations submitted to the U.S. National Academy of
Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033
for using amateur radio to further advance heliophysics and for fostering
deeper collaborations between the professional science and amateur radio
communities. Technical recommendations include increasing support for
distributed instrumentation fielded by amateur radio operators and citizen
scientists, developing novel transmissions of RF signals that can be used
in citizen science experiments, developing new amateur radio modes that
simultaneously allow for communications and ionospheric sounding, and
formally incorporating the amateur radio community and its observational assets
into the Space Weather R20O2R framework. Collaborative recommendations
include allocating resources for amateur radio citizen science research projects
and activities, developing amateur radio research and educational activities in
collaboration with leading organizations within the amateur radio community,
facilitating communication and collegiality between professional researchers
and amateurs, ensuring that proposed projects are of a mutual benefit to both
the professional research and amateur radio communities, and working towards
diverse, equitable, and inclusive communities.

KEYWORDS

amateur radio, ham radio, citizen science, HamSCl, ionosphere, space weather,
heliophysics
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1 Introduction

Amateur radio, also known as ham radio, is a non-commercial
radio service for individuals interested in wireless communications,
experimentation, engineering, and science. Since its establishment
in 1912, the United States (US) amateur radio service has made
significant contributions to radio technology and science. In
the 1920s, radio propagation experiments known as the trans-
Atlantic tests were coordinated by the American Radio Relay
League (ARRL) and the Radio Society of Great Britain (RSGB).
The experiments led to a greatly improved understanding of
the ionosphere and directly contributed to the development of
the field of atmospheric science (Yeang, 2013). The International
Geophysical Year (IGY) of 1957/1958 included both formal
and informal amateur radio citizen science activities, including
experiments jointly coordinated by the U.S. Air Force and the
ARRL (Duquet, 1959; Southworth, 1959; Southworth, 1960; Dora,
2023). The study of Long Delayed Echos (LDEs), including
magnetospheric ducting of high frequency radio signals, is another
early example of amateur-professional collaborations (Stormer,
1928; Villard et al., 1969; Villard et al., 1970; Muldrew, 1979). The
US Federal Communications Commission (FCC) rules require
this work continue today: Part 97 of the FCC rules states that a
primary purpose of the amateur radio service is the “Continuation
and extension of the amateur’s proven ability to contribute to the
advancement of the radio art” Recent advances in computing and
software defined radio provide potent and novel opportunities to
meet this mandate.

Throughout the previous solar cycle, the amateur radio
community has risen to this task. Using software defined radios,
high speed personal computers, and the Internet, amateurs have
voluntarily built multiple networks that automatically monitor and
log global amateur radio communications. Many of the signals
observed by these systems use frequencies that propagate through
and are directly affected by the ionosphere. Thus, the data from these
networks can be used to study the upper atmosphere and the coupled
geospace system. Over the past decade, these networks™ data, along
with other amateur radio data, have led to multiple peer-reviewed
studies. These include studies of the ionospheric impacts of solar
flares and geomagnetic storms (Frissell et al., 2014; Witvliet et al.,
2016b; Frissell etal., 2019), traveling ionospheric disturbances
(TIDs) (Frissell etal.,, 2022c), Sporadic E (Deacon etal., 2021;
Deacon et al.,, 2022a), near vertical incidence skywave (NVIS)
propagation (Walden, 2012; Witvliet et al., 2015a; Witvliet et al.,
2015b; Witvliet et al., 2016b; Walden, 2016; Witvliet and Alsina-
Pages, 2017), greyline propagation (Lo etal., 2022), 160 m band
propagation (Vanhamel et al., 2022), solar eclipses (Frissell et al.,
2018), plasma cutoff and single-mode fading (Perry et al., 2018),
and the development of new instrumentation (Collins et al., 2021;
Collins et al., 2023).

This paper will summarize the peer-reviewed contributions
of the amateur radio community to heliophysics since 2014 and
discuss the scientific and technical capabilities of today’s amateur
radio community. It will also explain the current structure of the
amateur radio community and how it can collaborate with the
professional heliophysics community. This review paper includes
and expands upon the material from two white papers submitted
to the US National Academy of Sciences Decadal Survey for Solar
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and Space Physics (Heliophysics) 2024-2033: Frissell et al. (2022b)
discusses the scientific and technical capabilities and contributions
of the amateur radio community, while a companion white paper,
Frissell et al. (2022a), discusses ways of fostering a collaborative
relationship between the professional heliophysics and amateur
radio communities.

Following are five sections: Section 2 describes the amateur
radio community and the qualities that make it ideal for citizen
science. Section 3 describes the basic physics that make it
possible for amateur radio to be used for ionospheric remote
sensing. Section 4 reviews recent amateur radio citizen science
studies published in peer-reviewed journals. Section 5 provides
the recommendations and discussion in the original white
papers for advancing the technical capabilities for heliophysics
and further fostering amateur radio - professional heliophysics
collaborations over 2024-2033. Section 6 summarizes the paper.
Table 1 presents a summary of selected scientific and technical
amateur radio/citizen science publications presented in this review

paper.

2 Amateur radio as a community for
citizen science

2.1 The amateur radio service

Amateur radio is a non-commercial radio service with almost
770,000 US licensed operators (FCC License Counts, 2023) and
over 3 million licensed worldwide. Amateurs can be any age
and range in experience from novice to those with advanced
Science-Technology-Engineering-Math (STEM) degrees. Each
amateur is required to hold an amateur radio license issued
by a national government. The licensing process ensures that
each licensee demonstrate appropriate knowledge of radio
science, electrical engineering, and amateur radio rules and
practice.

While the amateur radio service is controlled by the national
government of each individual's country, the interests of radio
amateurs worldwide are represented by the International Amateur
Radio Union (IARU, iaru.org) and its 172 member national societies.
Member societies include the US American Radio Relay League
(ARRL, arrl.org), the Radio Society of Great Britain (RSGB, rsgb.or
¢), Radio Amateurs of Canada (RAC, rac. ca), the Japan Amateur
Radio League (JARL, jarl.org), and others. Each society engages
their country’s amateurs through Internet platforms, membership
journals, and local radio club affiliations. The TARU societies,
independent publishers, websites, e-mail groups, social media sites,
podcasts, “hamfests”, equipment manufacturers, and special interest
amateur radio organizations engage, coordinate, and promote
amateur radio worldwide.

Because they rely on signals that are refracted back to Earth by
the highly variable ionosphere (Figure 1), many popular amateur
radio activities are affected by space weather. These space weather
impacts are part of the hobby’s allure. Many amateurs enjoy the
challenge of space weather prediction and use that knowledge to
make contact with distant stations (DXing). Amateurs also enjoy
“contests”, events during which they amass points by contacting as
many other stations and locations as possible. DXers and contesters
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TABLE 1 Summary table of amateur radio and citizen science research cited in this review paper. The upper section is organized by science topic; the bottom
section is organized by instrumentation type. “Professional Studies” have been published in peer-reviewed professional journals or are technical reports written
by professional scientists. “Amateur Radio Publications” are publications that have appeared in amateur radio magazines, journals, or books. Only references
that explicitly use amateur radio or citizen science techniques are included in this table. See the referenced sections(s) for more detailed discussion on a topic
and references that do not explicitly discuss amateur radio/citizen science.

Professional studies Amateur radio publications Sections
Organized by Science Topic
Collins et al. (2022), Collins et al. (2023) §4.7, §4.8
Dawn/Dusk Terminator Effects Frissell et al. (2019)
Lo (2022); Lo et al. (2022)
Frissell et al. (2019)
Geomagnetic & Ionospheric Storms §4.1
Malkotsis et al. (2022)
Callaway. (2016)
Greyline. (1924)
Greyline Propagation Lo. (2022); Lo et al. (2022) §4.7
Hoppe and Dalton (1975)
Nichols (2005)
Lightning HF Signatures Fung et al. (2020)
Goodacre. (1980a) Goodacre. (1980b)
Muldrew (1979) Holm (2009)
Long-Delayed Echos §5.1
Vidmar and Crawford (1985) Martinez (2007)
Villard et al. (1969, 1970)
Walden. (2012), Walden. (2016)
Near-Vertical Incidence Skywave §4.6
Witvliet et al. (2014), Witvliet et al. (2015c¢), Witvliet et al. Witvliet and Van Maannen (2005)
(2015a), Witvliet etal. (2015b), Witvliet et al. (2016b), Witvliet and Van Maannen (2006a)
Witvliet et al. (2016a); Witvliet and Alsina-Pages (2017); Witvliet and Van Maannen (2006b)
Witvliet etal. (2019); Witvliet (2021); Witvliet et al.
(2023)
Plasma Cutoft and Single-Mode Fading Perry et al. (2018)
Luetzelschwab et al. (2022)
Radio Propagation (General) Vanhamel et al. (2022) §4.5
Serra (2022)
Bamford. (2000)
Solar Eclipses Frissell. (2019) §4.2

Frissell et al. (2018)

Solar Flares

Collins et al. (2023)
Frissell et al. (2014); Frissell et al. (2019)
Malkotsis et al. (2022)

Witvliet et al. (2016b)

§4.1, §4.8, §5.1

Sporadic E Deacon et al. (2021), Deacon et al. (2022a); Deacon et al. Bacon. (2021) §4.4
(2022b)
Ferrell. (1951) Southworth. (1959)
Transequatorial Propagation §5.1
Southworth (1960) Tilton (1947)
Traveling Ionospheric Disturbances Collins et al. (2023)
§4.3, §5.1
Frissell et al. (2022¢)
Organized by Instrumentation Type
Collins et al. (2021a) Collins et al. (2021b)
Amateur Radio Spotting Networks Deacon et al. (2021), Deacon et al. (2022a); Deacon et al. Frissell (2019) §3.1, §5.1

(2022b)

Frissell etal. (2014), Frissell etal. (2018), Frissell et al.
(2019), Frissell et al. (2022¢)

Griffiths et al. (2020)
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TABLE 1 (Continued) Summary table of amateur radio and citizen science research cited in this review paper. The upper section is organized by science topic;
the bottom section is organized by instrumentation type. “Professional Studies” have been published in peer-reviewed professional journals or are technical
reports written by professional scientists. “Amateur Radio Publications” are publications that have appeared in amateur radio magazines, journals, or books.
Only references that explicitly use amateur radio or citizen science techniques are included in this table. See the referenced sections(s) for more detailed
discussion on a topic and references that do not explicitly discuss amateur radio/citizen science.

Professional studies Amateur radio publications Sections

Lo (2022); Lo et al. (2022) Taylor and Walker (2010)
Perry et al. (2018)

Vanhamel et al. (2022)

GNSS Scintillation Rodrigues and Moraes. (2019) §3.2, 5.1

Collins et al. (2021a), Collins et al. (2022), Collins et al.
HEF Doppler Shift (2023) Collins et al. (2021b) §3.2, 5.1

Gibbons et al. (2022)

HF Elevation of Arrival Serra. (2023) §3.2,§5.1

LF/VLF Receivers Malkotsis et al. (2022) §3.2,85.1

21 Dec 2012 1700 UT - FHE Beam 7 120

1154

s
Ny [l0g o(m

10.5

Ground range [km]

10.0

FIGURE 1

Illustration showing how radio amateurs using HF frequencies can remote sense the ionosphere. This raytrace simulation shows 14.5 MHz radio waves
transmitted from Fort Hays, Kansas propagating toward the northeast through the IRl model perturbed with a Medium Scale Traveling lonospheric
Disturbance. Radios located at points where the rays touch the ground are predicted to receive the signal transmitted from Kansas modulated by the
ionosphere that it propagates through. From Frissell et al. (2016a).

can win certificates, awards, and public recognition. Serious ARRL Transatlantic Tests (Yeang, 2013) and the ARRL-Air Force
participants build elaborate stations and antenna systems and IGY experiments (Duquet, 1959; Southworth, 1960; Dora, 2023),
actively study radio propagation and space weather (e.g., Donovan,  the Ham Radio Citizen Science Investigation (HamSCI, https
2021; Nunés, 2021; Luetzelschwab et al.,, 2022). To effectively fulfill ~ ://hamsci.org) was founded in 2015 with a mission to bring
their duties, amateurs engaged in public service and emergency  together both the amateur radio and professional communities
communications also need to understand space weather and its (Frissell et al., 2015; Frissell et al., 2016b; Silver, 2016). HamSCI’s
effects on radio propagation. objectives are to 1) advance scientific research and understanding
through amateur radio activities, 2) encourage the development
of new technologies to support scientific research, and 3) provide
2.2 Ham radio science citizen investigation educational opportunities for the amateur community and the
(HamSCI) general public. HamSCTI’s founders and core leadership team are
amateur radio operators and professional scientists. Today, HamSCI
The amateur radio and professional heliophysics communities ~ has multiple projects supported by the U.S. National Science
share many common goals and interests, but the cultural and  Foundation (NSF), National Aeronautics and Space Administration
structural differences between the communities is such that (NASA), the Amateur Radio Digital Communications (ARDC)
effective collaboration is not automatic. Amateurs may make new  foundation, and is recognized as an official NASA Citizen Science
discoveries or technological advances but not be able to report  project. HamSCI is highly collaborative and structured such that
them in the peer-reviewed literature. Conversely, professional it can promote multiple projects from different institutions, and
scientists may make important discoveries that amateurs do  projects led by the amateur radio community. Thus, HamSCI is
not immediately appreciate or can access. Continuing in the  extremely adaptable, scalable, and ideally suited for novel and
long tradition of amateur radio citizen science efforts like the  creative projects.
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2.3 Exchange between amateur and
professional communities

A key tenet of citizen science is the ability for amateurs and
professionals to connect with each other and freely exchange ideas.
Bi-directional exchange is important because the amateur and
professional communities often have different but complementary
skills, experience, and perspectives. For instance, an amateur might
have excellent practical expertise in selecting the best operating
frequencies and modes for effective communications under a
variety of geophysical conditions. However, they may not have
the necessary academic background to understand the physics
underlying why their choices are effective. Trained scientists may
have extensive experience using different data sets to explain a
particular phenomenon, but may lack a practical understanding of
how this impacts actual operations.

In a variety of ways, HamSCI facilitates bi-directional
communications, including e-mail lists, weekly teleconferences,
and the annual HamSCI workshop (HamSCI Get Involved, 2023).
Currently, the HamSCI Google Group has over 850 amateur
and professional global members. Many are members of both
communities. The Google group allows anyone to post questions,
announcements, or begin a discussion. While posting is open,
moderators do monitor the group to ensure posts follow the
HamSCI Community Participation Guidelines. (2022). Similar idea
exchanges occur on the multiple Zoom teleconferences held each
week.

HamSClI also connects amateurs and professionals at in-person
conferences. Since 2018, HamSCI has hosted an annual workshop
for amateurs and professionals to meet and give presentations
(HamSCI Meetings, 2023). The HamSCI workshop is now a hybrid
workshop, allowing for the benefits of an in-person meeting
combined with the accessibility of a virtual workshop. The meeting
is announced through multiple outlets that reach both amateur and
professional audiences. Each year, leaders from communities are
selected as invited speakers.

In addition to its own meeting, HamSCI members also
participate in professional and amateur conferences. Professional
conferences include the NSF Coupling, Energetics, and Dynamics
of Atmospheric Regions (CEDAR) workshop and the fall American
Geophysical Union (AGU) meeting. Amateur radio conferences
include the ARRL-TAPR Digital Communications Conference and
the Dayton Hamvention. Research funding supports the meeting
travel of volunteers, students, and professionals. The regular
participation by both amateurs and professionals at these meetings
builds trust and facilitates collaboration between the groups.

2.4 Education and training

Education and training are critical to citizen science. Amateur
radio has long provided training in electrical engineering,
communications systems, antenna and information theory, space
weather, and programming. Training starts with licensing, but life-
long education is strongly encouraged. Amateur radio topics are
closely aligned with heliophysics research needs. Citizen science
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collaborations with the amateur community should support and
enhance existing training programs and add new opportunities that
delve even deeper into heliophysics.

Opportunities for developing and delivering heliophysics
educational materials are available by collaborating with established
providers of amateur radio content. The ARRL, other national
radio societies, and independent publishers produce books and
media for amateur radio education (e.g., ARRL Store, 2022;
CQ Store, 2022). The ARRL already has excellent in-person and
virtual training programs established and routinely works with
independent and school-affiliated amateur radio clubs across the
country. Other groups with established radio educational programs
include scouting (Radio Merit Badge, 2022; K2BSA, 2022) and
Youth on the Air (YOTA, 2022). Besides working with established
groups, independent creation of education and training programs
and materials is effective. Instructors can create courses that use
amateur radio to introduce space physics, like Reiff (2008) at
Rice University and Frissell et al. (2022d) at The University of
Scranton. Amateur radio contests can be used to introduce space
weather concepts. Shortwave listening contests that make use of free,
internet connected radios can be used by unlicensed participants
(Sarwar et al., 2021).

Current school-based learning emphasizes modeling concepts
and investigations that follow UDL (Universal Design for Learning)
principles (CAST, 2018). Amateur radio offers an established,
externally-supported, and multifaceted educational canon that
is uniquely suited to supporting UDL goals. Amateur radio
training naturally incorporates UDL principles because concepts are
presented in multiple ways (mathematically, with models, verbally,
and through building or using a radio). This results in a highly
accessible way to understand math, science, engineering, or even
writing (Collins et al., 2017) for people who may find these subjects
challenging.

3 Amateur radio as a tool for
ionospheric remote sensing

Amateur radios power as a heliophysics remote sensing
tool lies in the way its signals interact with the ionosphere and
atmosphere. Extremely Low Frequency (ELE <3 kHz) and Very
Low Frequency (VLE 3-30 kHz) waves propagate in the Earth-
Ionosphere waveguide, while Low (LE, 30-300 kHz), Medium
(MFE, 0.3-3 MHz), and High (HE 3-30 MHz) frequency signals
can be refracted back to Earth by the ionosphere (Figure 1).
Higher frequencies may also propagate back to Earth under certain
ionospheric conditions such as Sporadic E or neutral atmospheric
conditions such as temperature inversions. In all of these cases,
the ionosphere or atmosphere will modulate the signals as they
propagate, allowing the received signal to be used for remote
sensing the path between the transmitter and receiver. With few
exceptions, citizen scientists without a license can use radio receivers
across all of these frequencies to study signals of opportunity
and natural radio sources. Amateur radio operators have
additional privileges that permit them to transmit signals on select
bands.
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3.1 Global scale amateur radio
observational networks

The amateur radio community has voluntarily built and
currently run several automated networks that routinely monitor
amateur radio communications in near-real time and report
these observations to central databases. The major operational
networks include the Reverse Beacon Network (RBN, http://www
reversebeacon.net/), PSKReporter (https://pskreporter.info/), and
the Weak Signal Propagation Reporter Network (WSPRNet, htt
ps://www.wsprnet.org/). An older, manual reporting network is
the DX Cluster. Each system has a different architecture and
primarily monitors different amateur radio modes. For instance,
the RBN reports primarily amateur radio Morse code transmissions
(known colloquially to amateurs as Continuous Wave or CW),
PSKReporter monitors various digital amateur communication
modes, and WSPRNet initially reported only on the WSPR
mode (Taylor and Walker, 2010) that was designed specifically
to probe weak signal HF propagation paths. Reporting of a
similar mode, FST4W, was added to WSPRnet in 2022. Since
2019 the WSPRDaemon service (WD, http://wsprdaemon.org)
makes available all WSPR reports since 2008 via client applications
that dramatically speed queries (among others, http://wspr.rocks
and https://wspr.live), while also relieving load on the WSPRnet
server.

The RBN, PSKReporter, and WSPRNet have operated since
2008. While primarily built for the internal use of the amateur
radio community, the operators of these networks have graciously
allowed the science community to access the data for research.
Frissell et al. (2014) first demonstrated the use of this data for space
weather and space physics research by showing a solar flare HF
radio blackout observed by the RBN. Numerous additional studies
have since been published in both the amateur literature (e.g.,
Bacon, 2021; Serra, 2022), and in the professional literature reviewed
in Section 4. WD, used with certain Software Defined Receivers
(SDRs), uses two algorithms in time and frequency domains to
estimate local noise, a measurement of interest in its own right, and
useful to convert signal to noise ratio from WSPR and FST4W to
signal level. Insights gained from noise estimates in conjunction
with WSPR have been published in professional and amateur
journals (Griffiths et al., 2020; Lo et al., 2022). Since 2022 WD has
also accepted spectral spreading estimates from FST4W reception
reports enabling attribution of each observation to a propagation
mode, e.g., one- and two-hop F layer refraction, side scatter, and
ionosphere-ionosphere.

Since the observations of these networks extend back to
2008, great potential exists for large scale statistical investigations.
For example, Sanchezetal. (2022) and Engelke etal. (2022) are
currently conducting Large Scale Traveling Ionospheric Disturbance
(LSTID) climatologies. These networks can be expanded by
encouraging amateurs and professionals to field more receivers.
Additionally, all of these amateur radio networks provide real-
time web-based displays and data streams. Although the real-time
capabilities are not currently used in any official capacity, the
global nature of these systems and direct applicability to real-time
HF communications makes their use compelling for operational
purposes.
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3.2 Purpose-built citizen science
instrumentation

The existing large-scale, amateur radio networks offer
tremendous capabilities in terms of geospatial coverage, wide-
scale amateur adoption, real-time reporting, and duration of
historical archives. However, these systems have been designed
to monitor radio propagation path openings, not for making finely-
calibrated ionospheric physics measurements. These networks are
limited by temporal uncertainties on the order of +1 s, frequency
uncertainties on the order of +1 Hz, spatial uncertainties on the
order of kilometers, and uneven sampling cadences between 1 and
2 min. Recent technological advances can overcome many of these
limitations with orders of magnitude improvement. For instance,
low-cost (US$50 to $150) GNSS disciplined oscillators (GNSSDO)
can now be integrated into instrumentation to automatically provide
not only precision location information, but also precision time
(+50 ns) and frequency (down to parts in 107'° using 1 s averaging)
measurements (Frissell et al., 2021). Such low cost precision was not
available just a few years ago, nor was the need for such precision
recognized widely by the amateur radio community.

The development of novel instruments and techniques targeted
at citizen science study of the ionosphere and space has been made
possible due to more affordable hardware, the relatively recent
advent of the Internet and high-speed computing, and recognition
among the amateur radio community of the importance of precision
measurements for understanding radio propagation. These new
instruments can be broadly separated into two categories. The
first category consists of passive instruments that rely on receiving
signals-of-opportunity, such as GNSS signals, government-run
beacons and radars, and broadcast radio stations. These passive
instruments typically do not require a license and are unlikely
to cause interference to other equipment. Thus, they allow for
broad citizen science participation (see Section 3.2.1). The second
category, in contrast, consists of active instruments that generate
radio signals that can be used for remote sensing and generally
requires a license. These instruments can take advantage of the
amateur radio community’s unique transmitting privileges (see
Section 3.2.2).

3.2.1 Passive observations of signals of
opportunity

Novel systems, capable of making and reporting precision
passive ionospheric measurements automatically, easily, and at low
cost are now being developed. One example is the NSF-funded
HamSCI Personal Space Weather Station (PSWS). Its aim is to create
a network of ground-based space weather sensing instruments
to advance scientific understanding and improve propagation
nowcast/forecast capabilities for radio operators (Collins et al,
2021; Frissell et al.,, 2021). The PSWS uses a modular approach
to integrate various instruments including an HF radio receiver,
GNSS TEC receiver, ground magnetometer, and VLF receiver.
A low-cost variant (<US$300) of the HF receiver known as the
“Grape” can make precision Doppler measurements (Collins et al.,
2022; Gibbons et al., 2022; Collins et al., 2023), with recent Grape
results by Collins et al. (2023) reviewed in Section 4.8. A wideband
software defined radio (SDR) for the performance-based HamSCI
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PSWS known as the “TangerineSDR” is being developed to take
advantage of signals of opportunity such as oblique chirp ionosondes
(Joshi et al., 2021; Vierinen, 2022) and oceanographic HF radars
known as CODARs (Kaeppleretal, 2022). Another valuable
Citizen Science project is the ScintPi, a low-cost way to measure
ionospheric scintillation using a GNSS receiver coupled with a
RaspberryPi single-board computer (Rodrigues and Moraes, 2019).
Malkotsis et al. (2022) developed an amateur radio based VLF/LF
receiver for lower ionospheric modeling. Serra (2023) developed
amateur system for making HF elevation of arrival measurements.

3.2.2 Active sounding

Because licensed amateurs can transmit radio signals, the
community can develop active ionospheric sounding modes and
equipment (within the constraints set by Federal Communications
Commission Rules Part 97 that govern the amateur radio service).
Within these guidelines, modes designed for the purpose of
ionospheric sounding may be possible, such as the development
of a limited capability, low-cost, low-power ionosonde designed
to work within the amateur radio bands (McGwier, 2018; Lloyd,
2019). However, as amateur radio is primarily a radio service
for two-way communications rather than scientific research,
techniques that simultaneously allow for communications and
improved ionospheric sounding are particularly valued, e.g.,
coherent CW, where computer-generated Morse code transmissions
are synchronized using GNSS Pulse-Per-Second (PPS) timing,
allowing for time-of-flight measurements of radio transmissions
(Kazdan et al., 2022). Conceivably, similar timing measurements
or coding for ionospheric measurement could be incorporated
into amateur radio digital modes such as WSPR or FT8. Such
measurements would be a boon for amateurs and scientists by
providing more data to determine the exact propagation mode used
for a particular exchange.

3.3 Relationship to professional
observations and modeling

Observations provided by the larger and robust amateur
radio citizen science networks are valuable because they increase
ionospheric sampling while benefiting from the creativity and
expertise of the amateur radio community working in collaboration
with the professional scientists. These networks should be viewed
as an integral part of the existing space science and space weather
infrastructure, which includes ionosondes (Reinisch et al., 2009;
Bullett and Mabie, 2018), SuperDARN radars (Greenwald et al.,
1995; Chisham et al., 2007; Nishitani et al., 2019), Incoherent Scatter
Radars (ISRs) (Evans, 1969; Evans, 1975; Goncharenko et al., 2018),
GNSS TEC and scintillation receivers (Rideout and Coster, 2006;
Coster and Komjathy, 2008; Deshpande et al., 2016), professional
ground magnetometers, rockets, spacecraft, etc. Every amateur and
professional technique has both limitations and advantages; thus
they should be used in a complementary fashion to ensure accurate
measurement and to help develop a complete understanding of the
geospace environment.

A natural use of amateur radio observations would be to
provide observations of the impact of space weather activity
on actual communications systems (e.g., Section4.1), or to
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link bottomside ionospheric observations to height-integrated
GNSS TEC measurements (e.g., Section 4.3). Amateur Radio
measurements have the potential to be a dominant dataset
for operational and scientific data-model assimilation. They
directly complement existing GNSS datasets, which currently
cannot independently separate the topside and bottomside
ionosphere reliably. In certain cases, amateur radio networks
can be used directly with professional instrumentation. Fallen.
(2018), Fallen. (2019) successfully demonstrated the use of amateur
WSPRNet stations to receive WSPR signals transmitted by the
High Frequency Active Auroral Research Program (HAARP)
transmitter (National Research Council, 2014) in Gakona, AK to
test ionospheric propagation models. HAARP, in conjunction with
precision amateur receivers and modeling, may also prove useful
in advancing the understanding of long delayed echos (LDEs,
Section 5.1.1).

Modeling is another important tool through which amateur
radio observations can be used for scientific purposes. HF raytracing
using numerical ionospheric models (Figure 1) link even simple
binary propagation path observations to potentially valid physical
mechanisms. This is particularly powerful when hundreds of
thousands of propagation paths are modeled, such as when HF radio
communications were observed on multiple frequencies during the
2017 Great American Total Solar Eclipse (Section 4.2). Preparations
to gather similar observations are now being made for the 2023
and 2024 American Solar Eclipses (Frissell, 2022). As advances
in modeling, and other techniques such as data assimilation and
ionospheric tomography, improve, so will the use of amateur radio
observations to advance heliophysics.

4 Amateur radio: Recent science
results

4.1 lonospheric impacts of solar flares and
geomagnetic storms

Solar flares and geomagnetic storms are space weather
disturbances that immediately and profoundly impact both the
ionosphere and HF radio communications. Solar flares suddenly
enhance extreme ultraviolet (EUV) and X-ray energy that causes
rapid increases in the D-region ionization. Collisional absorption
due to this D-region enhancement can cause complete fading out
of dayside HF radio communications for periods ranging from
a few minutes to an hour or more. Because solar EUV and X-
ray energy propagate at the speed of light, it takes ~8 min for
flares to travel from the Sun to the Earth and no advanced
warning of these impacts is possible (Dellinger, 1937; Benson, 1964;
McNamara, 1979; Chakraborty et al., 2018; Chakraborty et al., 2019;
Chakraborty et al., 2021; Chakraborty et al., 2022).

Solar flares generally erupt from Active Regions, and are
often accompanied by Coronal Mass Ejections (CMEs) and Solar
Energetic Proton (SEP) events. CMEs can generate radio bursts that
can cause noise that arrives in minutes and lasts up to tens of hours.
SEPs can lead to Polar Cap Absorption (PCA) events that arrive
in tens of minutes and may last days, affecting radio signals in the
high latitude ionosphere (Bailey, 1964; Reiner et al., 1998; Sauer and
Wilkinson, 2008; Knipp et al., 2016).
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When CMEs or high speed streams (HSSs)/co-rotating
interaction regions (CIRs) are Earthward-directed and carry a
southward Interplanetary Magnetic Field (IMF), the transfer of
energy and momentum from the solar wind into the magnetosphere
is maximized and can result in a phenomenon known as a
geomagnetic storm (Gonzalez et al., 1994; Gonzalez et al., 1999).
Geomagnetic storms further trigger ionospheric storms, which
result in complex, global changes to the Earth’s ionosphere. The
changes vary as a function of geomagnetic latitude, local time,
season, atmospheric composition, and time relative to storm
onset (Matsushita, 1959; Fuller-Rowell et al., 1996; Rishbeth, 1998;
Buonsanto, 1999; Thomas et al., 2016).

The impacts of solar flares (e.g., Joselyn, 1992) and
geomagnetic/ionospheric storms (e.g., Ferrell, 1951) on HF
communications and the ionosphere have been long appreciated
by the amateur radio, space weather, and professional scientific
communities. Advances on these topics continue today.
Measurements by Witvlietetal. (2016b), Witvlietetal. (2023)
during an X1.6 solar flare showed a 45 dB increase in attenuation of
radio signals arriving via the ionosphere, but also a 12 dB drop of
ambient electromagnetic noise (Figure 2). This proves that 94% of
the background noise received in a remote rural area propagates via
the ionosphere, which was not known previously.

The recently developed automated, global-scale amateur radio
networks such as the RBN, WSPRNet, and PSKReporter now offer
an unprecedented ability to both measure the impacts of these
space weather phenomena on actual communications and use
those communications to remote sense the ionosphere. Frissell et al.
(2014) used the RBN to observe solar flare impacts on HF
communications, and Frissell et al. (2019) used RBN and WSPRNet
observations to study solar flare and geomagnetic storm impacts
during the active period of 4-10 September 2017. Most recently,
Collins et al. (2023) used the network of Grape low-cost Personal
Space Weather Stations to observe solar flares impacting HF Doppler
Shift (Section 4.8).

Figure 3 (from Frissell etal., 2019) shows the HF RBN and
WSPRNet response over Europe for two X-class solar flares
occurring on 6 September 2017, with geomagnetic and solar flare
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FIGURE 2
Measured background electromagnetic noise, dropping 12 dB at the
impact of a X1.6 solar flare. This proves that 94% of the background
noise in a remote rural area propagates via the ionosphere. From
Witvliet et al. (2023).
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information data in the top two panels. Deep radio blackouts are
observed across all displayed HF bands in response to the solar flares
in the GOES data. Frissell et al. (2019) also shows the response of
the North American sector, which was transitioning from night to
dawn during the occurrence of these flares. Due to shielding by the
Earth, few to no flare effects were observed in the North American
observations.

The global response of RBN and WSPRNet observations to
a geomagnetic storm are shown in Figure 4 (from Frissell et al.,
2019). The beginning of the storm at 2100 Coordinated Universal
Time (UTC) 7 September 2017 causes a brief enhancement
of communications activity on the 7-28 MHz bands, followed
by below-average radio activity on the 7-21 MHz bands until
1400 UTC 9 September. These observations are consistent with
ionospheric storms occurring in the summer/equinoctial months
(Thomas et al., 2016). In addition to the analysis of the period
immediately around this geomagnetic storm, Frissell et al. (2019)
shows a global suppression of HF propagation lasting 12-15
days after the storm. This is attributed to combined storm and
flare effects during this period, and is shown to be correlated
with a decrease in observed daily average GPS TEC over the
continental U.S.

4.2 lonospheric response to solar eclipses

Solar eclipses, which occur when the Moon’s shadow is
projected onto the Earth, are not only stunning visual displays
but also dramatically impact the ionosphere and ionospheric radio
communications. A temporary reduction of insolation occurs and
causes a corresponding reduction of photoionization and cooling
that affects atmospheric structure and composition. Solar eclipses
differ from the dawn-dusk transition. The eclipse shadow is highly
localized, transient, supersonic, and often does not follow an East-
West trajectory. Similarly, the exact conditions (such as trajectory
and season) of every eclipse is unique. This uniqueness adds to the
scientific value of studying each eclipse.

Solar eclipses are classified as total (solar disk is completely
occluded), annular (lunar disk fits inside of the solar disk), and
partial (only part of the solar disk is occluded). While some
type of solar eclipse usually occurs somewhere on Earth two to
three times each year, it is rare that a total solar eclipse occurs
over regions that are well-instrumented for ionospheric study.
Due to their predictability, solar eclipses are widely regarded
as critical “controlled” ionospheric experiments and thus have
received significant attention (e.g., Benyon and Brown, 1956;
Evans, 1965a; Evans, 1965b; Anastassiades, 1970; Roble et al., 1986;
Krankowski et al., 2008). Amateur radio operators and citizen
scientists have also authored or contributed to solar eclipse
ionospheric studies (Kennedy and Schauble, 1970; Kennedy et al.,
1972; Bamford, 2000; Bamford, 2001).

On 21 August 2017, in just over 90 min, a total solar eclipse
traversed the Continental United States (CONUS) from Oregon
to South Carolina. It affected so many people in North America
that it became popularly known as “The Great American Eclipse”
Due to the eclipse’s trajectory, it offered an unprecedented
opportunity to study the ionosphere using a wide variety of
instrumentation and models (Coster et al., 2017; Huba and Drob,
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Example of solar flare ionospheric impacts observed by amateur radio observing networks over Europe on 6 September 2017. (A) SYM-H (black line)
and Kp (colored stems). (B) GOES-13 (blue) and GOES-15 (orange) XRS 0.1-0.8 nm X-ray measurements. Flares are observed at 0857 UTC (X2.2) and
1153 UTC (X9.3) and indicated with dotted vertical lines. (C—F) Two-dimensional contour histograms of RBN and WSPRNet spot data for the 28-, 21-,
14-, and 7-MHz amateur radio bands, respectively. Bin size is 250 km x 10 min. To the left of each histogram is a map showing the log density of TX-RX
midpoints of all spots used in the histogram. The white dashed lines on the histograms show the solar zenith angle computed for (51° N, 8° E), the point
indicated by the yellow star on each map. Radio blackouts across the HF bands can be seen in response to the solar flares in the GOES data. From
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2017; Zhangetal., 2017; Bullett and Mabie, 2018; Cohen et al.,
2018; Goncharenko etal., 2018; Linetal, 2018; Mraketal.,
2018; Yauetal, 2018). This was also the first solar eclipse for
which the recently developed automated amateur radio reporting
networks, including the RBN, PSKReporter, and WSPRNet,
were leveraged. HamSCI organized the Solar Eclipse QSO Party
(SEQP), a large-scale citizen science experiment structured like
a traditional amateur radio contest. The event took place over
8 hours, from 1400-2200 UTC on 21 August 2017. It started
2 hours before first contact of partial eclipse in Oregon and
ended 2hours after the last contact in South Carolina. By
structuring the experiment like an amateur radio contest, it was
possible to leverage the amateur radio community’s pre-existing
capability to generate records of hundreds of thousands of radio
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communication paths on multiple frequencies over the entire
CONUS.

Frissell etal. (2018) reported on the 2017 SEQP RBN
observations and used the PHaRLAP HF raytracing toolkit (Cervera
and Harris, 2014) to compare the observations to the predicted
eclipsed ionosphere generated by the physics-based SAMI3
ionospheric model (Huba and Drob, 2017). Figure 5 (adapted
from Frissell et al. (2018)) shows the results. RBN observations are
presented in the left column; SAMI3/PHaRLAP modeling results
are shown in the right column. Frissell et al. (2018) concluded that
14 MHz communications predominantly refracted off of the E
region ionosphere during this event. Model results further show
that these simulated rays all had mean takeoff angles 0 < 10°,
suggesting that low angle 14 MHz signals were below the E region
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FIGURE 4

Observations showing the response of the high frequency amateur radio propagation to a geomagnetic storm occurring in the period of 6-12
September 2017. (A) SYM-H (black line) and Kp (colored stems). (B) GOES-13 (blue) and GOES-15 (orange) XRS 0.1-0.8 nm X-ray measurements. (C—H)
Z-score of RBN and WSPRNet spot data relative to geomagnetically quiet days (-25 < Sym—H < 25 nT and Kp < 3) from 2016 and 2017 for the 28-, 21-,
14-,7-, 3.5-, and 1.8-MHz amateur radio bands, respectively. To the left of each time series is a map showing the TX-RX midpoints of all spots used in
each histogram. Vertical dotted lines indicate (2100 UTC 7 September 2017) start of disturbed Kp (0000 UTC 9 September 2017) end of disturbed Kp,
and (1400 UTC 9 September 2017) apparent high-frequency recovery. From Frissell et al. (2019).

cutoff frequency before and after the eclipse but escaped into
space during the eclipse due to reduced ionospheric densities.
Poor data-model agreement for h >125km refractions suggests
ionospheric densities were never sufficient to support high angle
14 MHz rays.
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In addition to publishing the 2017 SEQP results in
the peer-reviewed scientific literature, they have also been
reported in amateur radio community journals (Frissell, 2019).
The 2017 SEQP results are important not only for their
contributions to observations and understanding of the 21
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Solar Eclipse QSO Party Results from Frissell et al. (2018). RBN observations are presented in the left column; SAMI3/PHaRLAP modeling results are
shown in the right column. (Row A) Maps depicting the locations of amateur radio transmitters (black dots), RBN receivers (blue stars), and TX-RX path
midpoints of each reported or simulated signal (dots color coded by maximum eclipse obscuration). Observations in this figure have been restricted to
midpoints that fall in the region of >90% maximum obscuration. (Rows B—E) Time series of >90% maximum obscuration RBN (left) or simulated (right)
midpoints for the 14, 7, 3.5, and 1.8 MHz amateur radio bands, respectively. For each plot, the x-axis shows time in hours relative to eclipse maximum,
the y-axis shows TX-RX great circle range Ry in km, and the colorbar shows spot density contours on an underlying 500 km by 10 min grid. The white
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Simulation results that are most consistent with observations are shown for each band: E region (h < 125 km) refractions for 14 MHz and F region

(h =125 km) refractions for 7, 3.5, and 1.8 MHz

August 2017 solar eclipse, but they also provide a foundation
for using amateur radio and modeling techniques for the
study of future eclipses, including the upcoming 18 October
2023 annular and 8 April 2024 total solar Great American
Eclipses.

4.3 Traveling ionospheric disturbances

Frissell et al. (2022c) demonstrated for the first time that
automated amateur radio networks, including the RBN, WSPRNet,
and PSKReporter, can observe large scale traveling ionospheric
disturbances (LSTIDs). Traveling ionospheric disturbances (TIDs)
are quasi-periodic variations of ionospheric densities. They are
generally divided into two categories. LSTIDs have horizontal speeds
between 400 and 1,000 ms™!, periods between 30 min and 3 h,
and horizontal wavelengths greater than 1,000 km. Medium Scale
TIDs (MSTIDs) have horizontal speeds between 100 and 250 m s
periods between 15minand 1h, and horizontal wavelengths
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of several hundred kilometers (e.g., Georges, 1968; Francis,
1975; Ogawa etal., 1987). LSTIDs are typically associated with
atmospheric gravity waves (AGWs) generated by Joule heating and
particle precipitation from auroral zone disturbances (Hunsucker,
1982; Lyons et al., 2019). These AGWs may propagate equatorward
for long distances, transporting energy from the auroral zone
to middle and low latitudes (Richmond, 1979). They can even
reach the opposite hemisphere (Zakharenkova etal., 2016). Both
MSTIDs and LSTIDs affect HF radio propagation by focusing
and defocusing rays (Figure 1). As a TID passes overhead, the
HF skip distance lengthens and shortens and will cause received
radio stations to fade in and out with the same period as the
TID.

Figure 6 from Frissell et al. (2022¢) shows LSTID signatures
observed by the RBN, PSKReporter, and WSPRNet in the
14 MHz amateur radio band (Figures 6A,B), along with coincident
observations by the Blackstone (BKS) SuperDARN HF radar
(Figures 6C,D) and Global Navigation Satellite System (GNSS)
differential Total Electron Content (dTEC) (Figures 6E,F). Red
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Example of Large Scale Traveling lonospheric Disturbances (LSTIDs) observed using amateur radio networks, the Blackstone (BKS) SuperDARN radar,
and GNSS dTEC. (A) Geographic distribution of TX-RX midpoints of amateur radio communications observed over the continental United States on 3
November 2017 from 1200 to 2359 UTC. (B) Time series showing the TX-RX distance for 14 MHz amateur radio spots in 2 min by 25 km bins. (C)
Location and FOV of the BKS SuperDARN radar; Beam 13 is highlighted in red. (D) Ground scatter power observations of BKS Beam 13 with ~11 MHz
transmit frequency. (E) GNSS dTEC measurements at 1343 UTC. (F) Time series (blue line) of GNSS dTEC median values calculated from measurements
in the black box region in (E). Dotted orange line shows data filtered with a 2-4 h bandpass filter. (G) FFT Magnitude spectrum of the unfiltered data in
(F). Red dots overlaid on (B) and (D) show a sinusoidal 2.5 h oscillation in skip distance common to both the amateur radio and SuperDARN

measurements. From Frissell et al. (2022c).

dots overlaid on Figures 6B,D show a sinusoidal 2.5 h oscillation in
skip distance common to both the amateur radio and SuperDARN
measurements. Figure 6G shows a Fast Fourier Transform
(FFT) of the unfiltered data in Figure 6F that reveals a 2.5h
spectral peak, demonstrating remarkable consistency between
the amateur radio, SuperDARN, and GNSS dTEC observations.
The HF skip distance oscillation is inversely related to the
dTEC oscillation, consistent with the hypothesis that increased
ionization levels correspond with increased HF refraction and
therefore shorter skip distances. Further analysis by Frissell et al.
(2022¢) shows the LSTIDs observed in the amateur radio data
to have a propagation azimuth of ~163°, horizontal wavelength
of ~1,680 km, and phase speed of ~1,200 km h7L, all parameters
consistent with the GNSS dTEC observations. SuperMAG SME
index enhancements and Poker Flat Incoherent Scatter Radar
measurements suggest the observed LSTIDs were driven by
auroral electrojet intensifications and Joule heating. This novel
measurement technique has applications in future scientific
studies of LSTIDs and for assessing the impact of LSTIDs on HF
communications.
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4.4 Sporadic E

Sporadic-E (Es) is of great interest to radio amateurs, with
many actively searching for intense Es events in order to extend
their communications range at VHF frequencies via oblique
reflection. This has enabled a number of scientific studies,
including the detection and tracking of Es events, the exploration
of the true nature of Es reflection, and the link between
the occurrence of sporadic-E and lower atmosphere weather
events.

Data from amateur radio reporting networks have been used
to map intense sporadic-E events. This approach can provide
an important supplement to other techniques, allowing the
detection and tracking of Es where no suitable ionosonde or
other measurements are available at the right time and place. The
technique has been validated by reference to ionosonde data where
there is overlap (Deacon et al., 2022a).

Figure 7A shows an example map of Western Europe, on which
are plotted reception reports, on three frequencies, from a single
15-min period on 18 August 2018. Solid lines indicate the great
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FIGURE 7
(A) Example map showing reception reports from a 15-min period centered on 14:45 UTC 18 August 2018. Solid lines indicate the great circle paths
between the transmitting and receiving stations. (B) Example map showing the midpoints of reported signal paths from the same time period as in (A),
plus the estimated geographical coverage of the data. Solid circles represent the midpoints of reported great circle paths, and background dots
indicate the estimated geographical coverage of the measurements. Green = 28 MHz, blue = 50 MHz, red = 70 MHz. From Deacon et al. (2022a).

circle paths between transmitting and receiving stations. It can be
seen that there is clear triangulation, from multiple directions, of
a number of concentrated areas of reflection. In order to show
the pattern of estimated reflection points more clearly, Figure 7B
represents the same reception reports as in Figure 7A but with
solid circles indicating the mid-points of the great circle paths,
with the paths themselves omitted for clarity. The very small dots
show an estimated coverage plot. A clear gap can be seen between
an Es cloud over central Europe and one over eastern France.
This technique can be used to reveal the incidence, evolution
and decline of a sporadic-E event in a way that is not possible
with other techniques. A pseudo-real time video, included as
supplementary material in Deacon etal. (2022a), has also been
produced to show the evolution of this event over the course of
several hours.

Amateur resources and equipment have also been used to
investigate the process by which oblique VHF radio wave reflection
from intense midlatitude Es clouds occurs, with specular reflection,
scattering, and/or magnetoionic double refraction all previously
proposed in the literature. The experimental approach uses the
polarization behaviour of the reflected signals as an indicator
of the true reflection mechanism, as described in Deacon et al.
(2021).

In Deaconetal. (2022b), results are presented from a
measurement campaign in the summer of 2018. The campaign
gathered a large amount of data at a receiving station in the south
of the UK using six European amateur radio beacon transmitters,
received via sporadic-E reflection, as 50 MHz signal sources. In
all cases the signals received were elliptically polarized, despite
being transmitted with nominally linear polarization; there were
also indications that polarization behaviour varied systematically
with the orientation of the path to the geomagnetic field. This
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represents, for all the examples recorded, clear evidence that
signals were reflected from midlatitude Es by magnetoionic double
refraction.

The analysis approach seeks to establish an overall picture of
polarization behavior, and Figure 8 shows a representative example.
The distribution of measured polarization ellipse parameters for a
beacon in the Faroe Islands is shown in histogram form. Figure 8A
shows measured axial ratio on the horizontal axis on a logarithmic
scale, with circular polarization marked by the red line in the
center. Left-hand elliptical polarization is to the left of the red
line and right-hand elliptical polarization is to the right of the
red line. Linear polarization, when present, appears as very high
values to the far right or left of the center line. Figure 8B shows
measured tilt angle, with the red line marking 0° (horizontal) and
with negative angles to the left, positive angles to the right. In each
case, the vertical axis is the percentage of the total measurements in
each bin.

A clear result of the measurement campaign is that, for all
six beacons, the signals received were elliptically polarized after
reflection from the Es cloud. This was despite the fact that all the
beacons were known to be transmitting with linear polarization.
Received signals exhibited no evidence of depolarization, and there
were indications that polarization behaviour varied systematically
depending on the orientation of the wave normal to the geomagnetic
field at the point of reflection. This represents convincing evidence
that the mechanism for radio wave reflection was principally
magnetoionic double refraction, rather than either scattering or
“specular reflection”

Referring now to what causes sporadic-E clouds to form, in a
recent review article for an amateur radio audience (Bacon, 2021),
the author, a professional meteorologist, describes the probable
links between meteorological phenomena and the occurrence of
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Vertical axis: proportion of samples per bin. From Deacon et al. (2022b).

Example polarization analysis. Faroe Islands beacon, 8 August 2018, total 40 min at 6,000 samples s7L. (A) Polarization ellipse axial ratio histogram.
Horizontal axis: axial ratio (logarithmic scale). Red center line: axial ratio = 1 (circular polarization). Left of center line: left-hand elliptical polarization.
Right of center line: right-hand elliptical polarization. Vertical axis: proportion of samples per bin. (B) Polarization ellipse tilt angle histogram. Horizontal
axis: tilt angle (linear scale). Red center line: tilt angle = 0° (horizontal). Left of center line: negative tilt angle. Right of center line: positive tilt angle.
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sporadic-E layers. Although the wind-shear theory for the creation
of Es is well established, and the important role of diurnal and
semi-diurnal atmospheric tides is clear, there is good evidence
from radar studies of the mesosphere/lower thermosphere region
that there is additional wave activity interacting with the tidal
components. These are upward-propagating atmospheric gravity
waves (AGW) produced by weather systems in the troposphere.
These features are often localized to specific regions associated
with weather events, tending to move as the weather systems
move.

If successful prediction of the localized incidence of intense
sporadic-E is to be achieved, these lower-atmosphere phenomena
must be taken into account. An online prediction tool is under
development (Bacon, 2023) which incorporates jet streams,
mountain waves, upper wind patterns and atmospheric vorticity,
along with atmospheric tides, meteor rates and the geomagnetic
field as well as geographical factors. A real-time map is automatically
produced indicating the relative probability of the occurrence
of intense Es, both geographically and temporally. The model is
currently being tested and refined, using input both from practical
amateur radio experience and by comparison with ionosonde
data.

4.5 Plasma cutoff and single-mode fading
The utility of amateur radio enthusiast’s transmissions for

science activities has been demonstrated in several different
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experiments, including those in which fundamental plasma
and magnetoionic properties of the terrestrial ionosphere were
studied. One experiment in particular, reported in Perry et al.
(2018) conducted on 28 June 2015, involved amateur radio users
participating in the 2015 ARRL Field Day and the Radio Receiver
Instrument (RRI; James et al. (2015)) which is part of the Enhanced
Polar Outflow Probe (e-POP; Yau and James (2015)) onboard the
Cascade, Smallsat and Ionospheric Polar Explorer (CASSIOPE)
spacecraft in low-Earth orbit.

RRI is a digital radio receiver comprised of 4, 3-m monopole
antennas and accompanying receiver electronics. RRI's science
targets include artificial and natural radio emissions, including HF
transmissions, and is able to measure radio waves from 10 Hz
to 18 MHz, sampling at 62.5kHz, and providing in-phase and
quadrature measurements of incident signals. RRI’s monopoles can
be electronically configured into a crossed-dipole configuration in
which both dipoles sample the same frequency, which allows for
polarization information; or, the dipoles can be “tuned” to sample
separate frequencies.

For the 28 June 2015 experiment, the RRI was configured such
that one of RRI’s dipoles was tuned to 7.025 MHz to monitor the
40 m amateur radio band, while the other was tuned to 3.525 MHz
to monitor the 80 m amateur radio band. RRI was activated for
117 s, beginning at 01:16:14 UTC, while the CASSIOPE spacecraft
was at 386 km altitude, just north of Milwaukee, Wisconsin, heading
in a southeasterly direction. During the experiment the spacecraft
moved along the western shore of Lake Michigan, ending southeast
of Nashville, Tennessee, at 358 km altitude.
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A spectrogram of signals received on the RRI dipole monitoring
the 40 m band (tuned to 7.025 MHz), reproduced from Perry et al.
(2018), is shown in Figure 9 panel a. For approximately the first
30 s of the pass, the amateur’s CW emissions are easily identified
by the strong, narrow, and syncopated emissions. Perry etal.
(2018) identified the call signs of these amateurs aurally, and
confirmed their geodetic locations during the 2 minute experiment.
Each identified (and confirmed) call sign is marked in the figure.
Dramatically, the amateur emissions disappeared about the first 30 s
of the experiment, as the spacecraft moved southeasterly. There were
no identifiable emissions on the other dipole, which was tuned to
monitor the 80 m band (at 3.525 MHz).

Supplementary data from other passive ground-based receiving
networks (not shown here) indicated that the amateurs continued
to transmit throughout the 2 minute RRI experiment. Accordingly,
Perry etal. (2018) attributed the disappearance of amateur radio
signals to plasma cutoff. As CASSIOPE moved south, the amateur
transmissions became internally reflected by the ionosphere because
the product of the transmissions’ frequency and their angle of
incidence with respect to the ionosphere dropped below the
ionosphere’s critical frequency—an effect described by the Secant Law
and plasma cutoff.

Numerical ray trace modeling, constrained by ionosonde
measurements in the continental United States and an empirical
model of the ionospheric plasma density, shown in panel b of
Figure 9, support the plasma cutoff hypothesis. In the ray trace
simulation for the 25 June 2018 experiment, HF rays were traced
from the positions of the identified hams in Figure 9 panel a,
through an ionosphere with a critical frequency of 6.9 MHz in
the region—just below RRIs tuned frequency. As the results
show, rays propagated up to the spacecraft in a region where
CASSIOPE was passing through in the first 30 s of the experiment.
As the spacecraft moved south, the rays corresponding to the
transmissions observed in the first 30 s of the experiment became
internally reflected and could no longer propagate through the
ionosphere to RRI. Amateur transmissions were not observed for
the remainder of the experiment because CASSIOPE had moved
into an ionosphere whose critical frequency was above that of the
40 m band. A close inspection of the simulation results indicate
that the simulated signal cutoff—when the rays became internally
reflected—occurred approximately 15 s after it was observed in the
RRI data. These results demonstrated the ability to use amateur
radio transmissions to remotely sense fundamental properties of
the ionosphere, such as its critical frequency, to a high-degree of
accuracy.

In their analysis of the same 28 June 2015 RRI dataset, Perry et al.
(2018) also reported evidence of single-mode fading. Figure 10
shows an extract of the ‘ESV) a portion of the KIESV’ call-
sign, formed by Morse code ‘dits’ and ‘dahs, received by RRI. An
inspection of the peaks of each pulse shows a periodic oscillation
of the order of 30 Hz that is remarkably coherent. Perry et al. (2018)
ruled out any instrumental effect, such as an unstable transmitting
system.

Additional ray trace analysis performed by Perry et al. (2018)
showed that only the ordinary mode (O-mode) transmitted wave
would have been incident on RRI during this portion of the
experiment. The O-mode one is of two modes of propagation for
radio waves at these frequencies; the other is the extraordinary mode
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(X-mode). The O-mode has an index of refraction that is closer
to unity than the X-mode; therefore, at transmitting frequencies
close to the ionosphere’s critical frequency, which—as discussed
earlier—was the case during the 28 June 2015 experiment, a range
of frequencies exists that would allow for the O-mode to propagate
up to RRI but not the X-mode, which would undergo cutoft. This is
illustrated in Figure 9, which shows only O-mode traces propagation
to CASSIOPE altitudes.

Because the transmitting frequency of the O-mode rays incident
on RRI are so close to the ionosphere’s critical frequency they are
heavily refracted. This is indicated in Figure 9, which shows that
the rays propagating up to RRI are not parallel to one another, and
several exhibit strong refraction. As a result, an interference pattern
is established with the non-parallel O-mode rays, complete with
peaks and nulls in terms of intensity. As the CASSIOPE spacecraft
moved southward, it transited the pattern, which registered as peaks
and nulls in K9ESV’s transmission. This is referred to as a single-
mode fade (the mode here is the O-mode) (James, 2006), and it is a
magnetoionic effect—a manifestation of the birefringent properties
of the terrestrial ionosphere. Additional calculations performed by
Perry et al. (2018) showed that a fading-rate of the order of 30 Hz is
plausible for the case of K9ESV’s signal geometry and CASSIOPE’s
trajectory during the experiment. This result is a compelling case,
and demonstrates the capacity to study fundamental plasma and
magnetoionic properties of the ionosphere using amateur radio
signals and with the cooperation of amateur radio operators.

4.6 Near Vertical Incidence Skywave
propagation

In remote areas where no telecommunication networks
exist, or where such networks have been disabled by natural
disasters or hostilities, Near Vertical Incidence Skywave (NVIS)
propagation can be used to quickly restore information transfer
and coordination (Witvliet and Alsina-Pages, 2017). This is done
with radio waves emitted at steep angles, which are reflected by the
ionosphere to cover a contiguous area with a radius of 200 km or
more.

To support work from humanitarian organizations that deliver
basic healthcare in low and middle income countries (LMIC),
such as Médecins sans Frontieres, a group consisting of radio
amateurs and scientists established the optimum NVIS antenna
height through simulation and measurement (Witvliet and Van
Maannen 2005; Witvliet and Van Maannen 2006a; Witvliet and Van
Maannen 2006b; Witvliet et al., 2015a). It was shown that the use of
mobile whip antennas will result in a Dead Zone between 30 and
60 km of the transmitter due to suppression of high-angle waves
(Witvliet, 2021).

The same group showed that the magneto-ionic propagation
phenomenon discovered by Appleton and Builder (1933) and
described in detail by Ratcliffe (1962) and Rawer (2013) produces
two fully isolated radio channels on the same frequency, if
complementary left- and right-hand circular polarization antennas
are used (Witvliet etal,, 2015b; 2016b). This knowledge can be
used to create more effective HF Multiple Input Multiple Output
(MIMO) systems with compact antennas (Witvliet et al., 2014)
or to mitigate the multipath fading typical for ionospheric radio

frontiersin.org


https://doi.org/10.3389/fspas.2023.1184171
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

Frissell et al. 10.3389/fspas.2023.1184171

Dipole B, 101 Vs|?
e-POP RRI Spectrogram i

June 28, 2015

7.045

7.035

7.025

Input B
Frequency (MHz)

7.015

7.005
I T T T T T T T T T T T T T T T T T T T T T T |
01:16:14 01:16:44 01:17:14 01:17:44 01:18:11
Geog. Lat (°) T T T T T T T T T T T T T T T T T T T T T T T ]
43.67 41.77 39.79 37.80 36.00
Geog. Lon (°) T T T T T T T T T T T T T T 7 T T ]
-88.06 -87.62 -87.20 -86.81 -86.48
Altitude (km) T T T T T T T T T T T T T T T T T T T ]
386.31 378.48 370.90 363.85 357.97

B 400

300
200

100

height (km)

latitude (deg)

FIGURE 9

(A) A spectrogram of data collected during the 28 June 2015 experiment by the RRI dipole tuned to monitor the 40 m amateur band (tuned at

7.025 MHz), reproduced from Perry et al. (2018). CASSIOPE's position during the experiment is provided on the horizontal axis. Amateur operators
whose transmissions could be aurally identified and whose locations could be confirmed are marked with their respective amateur radio call signs.
Plasma cutoff is marked by the cessation of amateur signals after the first 30 s of the experiment. (B) The results of the numerical ray trace simulations,
supporting the plasma cutoff hypothesis. The top portion shows CASSIOPE's altitude track with respect to geodetic latitude, descending from right to
left, overlaid on an empirical ionosphere. The origin of the rays were the geodetic positions of the identified amateur operators denoted in (A). The lack
of rays penetrating through the ionosphere south of approximately 41° is due to plasma cutoff.

(Witvliet et al., 2015c). They also discovered the Happy Hour- For their research they created compact hybrid transmit
propagation interval, in which only circularly polarized waves are ~ antennas to produce waves with digitally programmable
received (Witvliet et al, 2015b). This phenomenon is simulated in ~ polarization (Witvliet etal, 2016a). NVIS propagation is very
Figure 11A, measurements are shown in Figures 11B,C. efficient: these small 1-W probe transmitters produce 57 dB
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FIGURE 10

1 Second, 0.01 second ticmarks

Reproduced from Perry et al. (2018), Morse coded pluses—'dits’ and ‘dahs'—spelling out the 'ESV' portion of the 'K9ESV' call-sign, received by RRI
during the 28 June 2015 experiment. A coherent oscillation on the peaks of the pulses was identified as a manifestation of single-mode fading, a
product of the CASSIOPE spacecraft passing through a self-interference pattern established by the O-mode component of K9ESV's transmissions.

signal-to-noise ratio in a 10 Hz bandwidth at 100 km distance
(Witvliet et al., 2019).

4.7 Greyline propagation

Greyline propagation is a phenomenon where HF radio signals
start and end at locations close to the terminator line at sunrise or
sunset. This was first reported in the Amateur Wireless magazine
in 1924, where it was noted that the propagation on wavelengths of
80 m and 95 m between the UK and New Zealand was best between
6.30 a.m. and 7 a.m. (Greyline, 1924). This early reference noted that
this was thought to be because of the overlap of dawn and dusk.
Hoppe and Dalton (1975), Nichols (2005), and a recent publication
by Callaway (2016) all provided further evidence for terminator
enhancement of HF propagation.

It should be noted that there are different propagation
paths which can be classified as greyline propagation. While
the transmitter and receiver locations are known, the path in
between them is not measured. Therefore there are two possible
interpretations of the term greyline propagation - one being a case
where the propagation is continuously along the terminator and the
other where only the start and end points (i.e., the transmitter and
the receiver) are at the terminator and the propagation in between
might be along the terminator or it might not be (i.e., other paths are
possible).

Although there have been consistent reports of greyline
propagation throughout the history of amateur radio, there
have been relatively few reports in the scientific literature.
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Ponyatov et al. (2014) reported super long-distance and round-
the-world propagation and noted preferential take off azimuths
in relation to the terminator for the achievement of successful
propagation links between Australia and Russia. Such HF studies
historically required either experimental scientific equipment to be
deployed or they relied on regular observation and documented
reporting from dedicated radio amateurs. This has changed
over the past few years, with the new opportunities offered by
the Weak Signal Propagation Reporter (WSPR) network (Taylor
and Walker, 2010). There are now more than a decade of
automatically recorded world-wide radio links in the WSPR
database that allow investigations to be conducted on a statistical
basis.

Loetal. (2022) undertook a systematic study of radio
propagation at 7 MHz between New Zealand (NZ) and the United
Kingdom (UK) and other long-distance locations. They found
that there was a clear preference for links to be made around
the terminator times, thus providing statistical evidence that
the terminator time was indeed preferred for propagation to be
supported. An example figure summarising the UK to Australia
propagation during the year 2017 is shown in Figure 12. Lo et al.
(2022) also found some interesting results from ray-tracing through
the International Reference Ionosphere (IRI) model that indicated
that the paths were not necessarily traveling along the terminator
even though they started and ended at it. They noted the preference
for nighttime propagation where the absorption of the signals would
be reduced.

The research in the PhD thesis of Lo (2022) provided some
useful lessons about the use of WSPR data for scientific study of
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(A) During Happy Hour, an interval at sunrise and just after sunset, only the extraordinary wave propagates. This results in the reception of purely
right-hand circular polarized waves (Northern hemisphere). (B) The measured signal strength of the two independently propagating characteristic
waves and (C) the isolation between them. Local noon is 13:00 UTC. During Happy Hour, an interval at sunrise and just after sunset, only right-hand
circular polarized waves (R) are received (Northern hemisphere). From Witvliet et al. (2015b).

the ionosphere. The first was that accurate observations to provide
a realistic global specification of the ionosphere at a given time
would be needed to allow high confidence in the use of ray-tracing
to determine the full propagation path. Lo et al. (2022) suggests a
number of ways that the amateur radio data itself could be used to
improve models. Model electron density could be iteratively adjusted
until a best fit to the observed propagation paths is found. This is
similar to the non-linear inversion to fit oblique HF observations
by Heitmann and Gardiner-Garden (2019) and Psiaki (2019). It
is important to note that models such as the IRI are smoothed
monthly medians and do not include plasma irregularities and
small-scale structures. Using more advanced and realistic models
may produce better results; additionally, the amateur observations
may help to validate or constrain such models. While fitting a
3D model that includes such small-scale features is extremely
challenging due to the large possible solution space, Mitchell et al.
(2017) successfully demonstrated this in a localized region for TIDs
using a Monte Carlo forward ray-trace approach to finding a best-
fit to solve the inversion problem. With continued improvements to
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raw computational power, advancements in modeling techniques,
and increased data quality and coverage, it is conceivable that this
type of approach could eventually be extended to global scales in
near-real time.

The second lesson is that the lack of a distinct local noise
channel at the receiver sites hampered the separation of variations
in the local noise pattern from that of the propagation reception
- essentially a lack of reception of a signal could be either
because its propagation was not supported or because the local
noise was preventing a decoding of the WSPR signal. Therefore
a resulting recommendation was to include a noise channel
recording facility on WSPR receivers. The third recommendation
was that a direction of arrival measurement at some receivers
would be very beneficial with interpretations of the propagation
paths. In particular for the super long-distance propagation
there are multiple feasible paths that the signal can take to
the antipode and these could be distinguished if there were
angle of arrival (azimuthal) capabilities at some of the receiving
sites.
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FIGURE 12

7 MHz radio links made from the UK to Australia in 2017. The blue shaded area is the Australian daytime hours. The red area is the UK daytime hours.
The yellow shaded area is the common daytime hours, and the white shaded area is the common night hours. The colors indicate the number of links

4.8 HamSClI personal space weather
station observations

The HamSCI Personal Space Weather Station (PSWS) is a
project to develop and deploy ground-based instruments capable
of remote sensing the geospace environment in a form useable by
citizen scientists (Collins et al., 2021; Frissell et al., 2021; Collins,
2023). The low-cost PSWS version (< US$300 for all hardware),
known as the “Grape’, is a low intermediate frequency (IF)
receiver capable of making precision frequency measurements by
mixing received HF signals with outputs from a GNSS Disciplined
Oscillator (Gibbons et al., 2022). By measuring the Doppler shifts of
signals emitted by high-stability transmitters such as US National
Institute of Standards and Technology (NIST) standards stations
WWYV (Fort Collins, Colorado) and WWVH (Kekaha, Hawaii), or
Canadian standards station CHU (Ottawa, Ontario), it is possible to
measure ionospheric variability imparted on the received signal. The
observed Doppler shifts may be attributed to changes in ionospheric
peak layer height, peak layer electron density, and/or layer thickness
that can cause changes in the propagation path. Positive Doppler
shifts indicate decreasing path lengths (blueshifts), while negative
Doppler shifts indicate increasing path lengths (redshifts) (Lynn,
2009). Frequency stability of WWV and WWVH was recently
reviewed by Lombardi (2023) in the amateur radio journal
QST.

Gibbons et al. (2022) describes the Grape Version 1 hardware,
while Collins etal. (2023) describes the Grape data collection,
processing, and presents examples. Figure 13 from Collins et al.
(2023) shows almost 2 years (27 July 2020 through 30 May 2022)
of Grape 10 MHz WWYV observations received using a Grape
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Version 1 receiver located in Macedonia, Ohio (near Cleveland).
Figure 13A shows a time series of Doppler shift measurements;
Figure 13B shows a time series of received power measurements.
Each column of pixels represents 1 day; solar mean time calculated
for the midpoint between Fort Collins and Cleveland is shown on the
y-axis. Positive Doppler shifts at dawn (blues) and negative Doppler
shifts at dusk (reds) along with seasonal variations in the dawn/dusk
times are clearly evident. A new antenna and preamplifier were
installed on 26 August 2021, resulting in higher received power. Data
is aggregated by the WWV Amateur Radio Club via FTP at the end
of each UTC day.

Figure 14 (from Collins etal,, 2023) shows the response
of a network of Grape Personal Space Weather Stations to
X-ray solar flares on 28 October 2021. The response is a
Doppler “flash’, similar to the signature observed by SuperDARN
radars (Chakraborty etal,, 2018; Chakrabortyetal,, 2021;
Chakraborty et al., 2022). Figure 14A presents NOAA GOES-17
0.1-0.8 nm band X-ray flux measurements showing an X1 class
flare at ~1535 UTC and a C4.9 class flare at ~1738 UTC. Figure 14B
shows Grape Doppler shift and 14c shows Grape Doppler received
power for a network of Grapes distributed across the continental
US monitoring the 10 MHz WWYV signal transmitted from Fort
Collins, CO. The data from each Grape station is color-coded by
longitude. Grapes show a sudden increase in Doppler shift for both
flares and decrease in received power in response to the X1 flare.
Station response varies with longitude, indicating propagation paths
closer to the flare impact point observe a stronger response. The
response to the X1 flare at 1535 UTC is quite large; but the Grape
receivers are also sensitive to the orders-of-magnitude less powerful
C4.9 class flare at 1738 UTC.
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(A) Doppler shift and (B) Received power measurements of the 10 MHz signal produced by the WWV transmitter near Fort Collins, Colorado received
with a Grape Version 1 Low-Cost Personal Space Weather Station located near Cleveland, Ohio for the period 27 July 2020 through 30 May 2022. Each
column of pixels represents 1 day; solar mean time calculated for the midpoint between Fort Collins and Cleveland is shown on the y-axis. Positive
Doppler shifts at dawn (blues) and negative Doppler shifts at dusk (reds) along with seasonal variations in the dawn/dusk times are clearly evident. A
new antenna and preamplifier were installed on 26 August 2021, resulting in higher received power. From Collins et al. (2023).

In addition to the seasonal, dawn-dusk, and solar flare
signatures demonstrated in Figure 13, Figure 14, Collins et al.
(2023) also demonstrates that the Grapes are sensitive to MSTID-
band (15 < T < 60 min) variability. Although the Grape Version 1
observations presented here track only a single frequency bin with
time, newer versions of the Grape software can record at least 4 Hz of
bandwidth around the WWYV carrier allowing for multi-hop mode
splitting and Doppler spread measurement.

5 Discussion

Here, we present the recommendations relating to amateur
radio and heliophysics that were submitted to the U.S.
National Academy of Science Decadal Survey for Solar and
Space Physics (Heliophysics) 2024-2033. Section 5.1 presents
the technical recommendations for advancing heliophysics
proposed by Frissell et al. (2022b), while Section 5.2 presents the
recommendations for fostering a collaborative relationship between
the professional heliophysics and amateur radio communities.
Proposed by Frissell et al. (2022a). We note that amateur radio
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citizen science also dovetails with other citizen science projects on
aurora (MacDonald et al., 2015) and radio waves from Jupiter as well
as other sources (Arnold, 2014; Fung et al., 2020). However making
these connections requires effort to align data and communities.
All of these topics could also be expanded and encouraged with
satellite mission opportunities to do citizen science at a larger
scale more akin to environmental projects like iNaturalist, as
discussed by MacDonald et al. (2022) Decadal Survey White
Paper, Science for all: The case for Citizen Science in all NASA
missions.

5.1 Amateur radio and the advancement of
heliophysics

5.1.1 Scientific advancements

Amateur radio and citizen science networks show great promise
in addressing open questions within heliophysics, radio science,
and space weather. Figure 3 shows how these networks can be
used to measure the ionospheric impacts of solar flares and
their direct effects on HF radio communications (Frissell et al.,
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Response of a network of Grape Personal Space Weather Stations to X-ray solar flares on 28 October 2021. Grape stations shown are receiving the

10 MHz WWV signal transmitted from Fort Collins, CO and are color-coded by longitude. (A) NOAA GOES-17 0.1-0.8 nm band X-ray flux
measurements showing an X1 class flare at ~1535 UTC and a C4.9 class flare at ~1738 UTC. (B) Time series of Grape 10 MHz Doppler shift
measurements. (C) Time series of Grape 10 MHz received power measurements. Grapes show a sudden increase in Doppler shift and decrease in
received power in response to both flares. Station response varies with longitude, indicating propagation paths closer to the flare impact point observe

a stronger response. From Collins et al. (2023).

2019). Systems such as the RBN, WSPRNet, and PSKReporter
can provide timing measurements of HF absorption and recovery
relative to solar flare occurrence as a function of frequency and
geographic location. Precision HF Doppler receivers such as the
Grape (Section 3.2.1) can also provide measurements of flare-
induced Sudden Frequency Deviation (SFD) and provide insights
on the mechanism causing these deviations (Collins et al., 2023).
In addition to these, amateurs are continuously developing novel
approaches to making low-cost scientific measurements, such as
the elevation angle of arrival system developed by Serra (2023).
These measurements, especially when made over large geographic
regions, can be used in conjunction with physics-based models such
as WACCM-X (Liu et al., 2018) or TIME-GCM (Siskind et al., 2022)
to address open questions about how solar flares can affect certain
D-region parameters (such as changes in electron temperature
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and collision frequencies) or how ionospheric HF absorption
mechanisms may change as a function of latitude (Chakraborty,
2021).

Figure 1, Figure 6 show how the amateur radio networks
can measure TIDs and how those measurements can be linked
with observations from other instruments. TIDs continue to
be a Frontier topic in ionospheric heliophysics. They may be
associated with atmospheric gravity waves (AGWs) (e.g., Hines,
1960; Bossert et al., 2022) or electrodynamic processes (e.g., Kelley,
2011; Atilawetal., 2021) and can propagate large horizontal
distances (even to the opposite hemisphere) (Zakharenkova et al.,
2016). Advanced physics-based models such as SD-WACCM-
X/SAMI3 (McDonald et al., 2015) and HIAMCM (Becker and
Vadas, 2020) coupled with raytracing tools such as PHaRLAP
(Cervera and Harris, 2014; Calderon, 2022) provide the ability to
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link TID observations with theoretical models. TIDs are critical
to understanding atmosphere-ionosphere-space coupling and
atmospheric energy transport between latitudinal and longitudinal
regions. Large-scale statistical studies of TIDs using amateur radio
data such as Sanchez et al. (2022) and Engelke et al. (2022), and the
development of HF Doppler sounding techniques to determine TID
parameters such as period, wavelength, and direction (Crowley and
Rodrigues, 2012; Romanek et al., 2022) will undoubtedly advance
TID understanding.

Mid-latitude Sporadic E, i.e., intermittently occurring patchy,
thin layers (few kilometers thick) of enhanced ionization between
~90-130 km altitude (Haldoupis, 2011), continues to be an active
interest area for both professionals and amateurs. Interesting
propagation conditions that occur for amateur radio operators
in the Very High Frequency (VHE 30-300 MHz) and high HF
bands remain unexplained, and numerous open questions regarding
the formation of Sporadic E are unanswered. “Can we observe
Sporadic E forming in place?”, “Sporadic E patches seem to be
advected regions, given how they move with amateur radio spots,
but where do they come from? Where do they form?” and “What
physics was going on there that caused their formation?” The
formation of Sporadic E is unresolved. Wind shears play a role, but
some dispute remains about how localized the shears need to be.
Deacon et al. (2022a), Deacon et al. (2021) are working to identify
and characterize Sporadic E patches with amateur radio data, and
Bacon (2021) is developing a model for predicting Sporadic E and
its effects on amateur radio propagation.

There are numerous additional scientific topics that can
be advanced with amateur radio. Transequatorial propagation
(TEP), first reported in QST by amateur Tilton (1947), is
unusually long-distance radio propagation that occurs across the
equator, particularly on the HF and VHF bands. TEP became
an important subject of the early amateur-professional studies
(Ferrell, 1951), including the ARRL-US Air Force Radio Propagation
Project (Southworth, 1959; Southworth, 1960). Explanations include
chordal hops between the equatorial ionospheric anomaly (EIA)
enhancements and propagation off of the unique structures
associated with Spread F and equatorial plasma bubbles (Nielson
and Crochet, 1974; Flaherty et al., 1996; Maruyama and Kawamura,
2006). Because of TEP’s sporadic nature and the requirement
to have transmitters and receivers on opposite sides of the
equator, it can be challenging to make observations that advance
understanding of TEP and its underlying plasma dynamics.
However, the long-term, multi-frequency, global observations of
the RBN, PSKReporter, and WSPRNet are well suited for such
studies.

Long delayed echos (LDEs) (Muldrew, 1979) in the 1-30 MHz
range have regularly been heard since the first observations by an
amateur in 1927. Stormer (1928) presented the first observations and
this led to a 2-year test program with transmissions on 9.55 MHz
from the Netherlands and where simultaneous observations of
delays from 3 to 30s were reported both there and in Norway.
Vidmar and Crawford (1985) gives five likely explanations, but since
the 1970s, the only mechanism that is well understood is ducting
in the magnetosphere combined with ionospheric reflection, which
only gives echos up to 0.5 s (Ellis and Goldstone, 1987; Martinez,
2007; Holm, 2009). The others are 2) travel many times around
the world (Goodacre, 1980; Goodacre, 1980), 3) mode conversion
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involving coupling to mechanical waves in the ionosphere with
delays up to tens of seconds (Crawford et al., 1970; Muldrew, 1979),
4) reflection from distant plasma clouds, 5) non-linearity in addition
to mode conversion to account for observations at VHF and
UHE

Major advancements in instrumentation and modeling during
recent decades provide compelling reasons to re-visit these
LDE hypotheses using carefully designed professional-amateur
campaigns. High-powered professional transmitters, such as
HAARP, can provide signals that may trigger LDEs. The echos
can then be received by GNSS-disciplined amateur radio receivers
capable of making precision time and frequency measurements.
These measurements, in conjunction with modern, high-resolution
magnetospheric-ionospheric models to suggest where wave mode
conversion may occur, provides a plausible path forward in
understanding LDE generation.

5.1.2 Research to operations and operations to
research (R202R)

Research to Operations (R20) is the process by which
research observational capabilities and models are transferred to
operations, and conversely Operations to Research (O2R) is where
the operations community identifies gaps in these capabilities.
These processes form a feedback loop that, in response to the
Promoting Research and Observations of Space Weather to Improve
the Forecasting of Tomorrow (PROSWIFT) Act (Public Law No:
116-181 Oct. 2020) (PROSWIFT, 2020), has been formalized
as the Space Weather Research-to-Operations and Operations-
to-Research Framework (SWR2O2R, 2022). The amateur radio
networks, which provide real-time and historical observations of
actual communications systems, speak directly to this mandate.
These systems can provide data for nowcasting, forecasting, the
development of new models and data products, and the validation
of current models, such as the NOAA SWPC D-Region Absorption
Prediction (D-RAP) model (Akmaev etal., 2010). The amateur
radio community and its measurements represent a yet-to-be
activated asset for the validation and improvement of existing and
future Space Weather operational products through their access to
a Space Weather domain inaccessible to many other instruments.
Engaging with this community will further-enable R2O2R activities
to build robust operational products and elucidate new Space
Weather science.

5.1.3 Recommendations for advancing the
technical capabilities of amateur radio in
heliophysics

Amateur radio is being utilized in space physics and space
weather in many ways. Existing networks built by the amateur radio
community such as the RBN, PSKReporter, and WSPRNet and
purpose-built networks and instrumentation such as the HamSCI
Personal Space Weather Station provide global-scale data that can
be used on its own or in conjunction with measurements from
other instruments and model outputs to address open questions
in heliophysics. Amateur radio data are available in near real-time
and are from actual communications systems. Thus, they represent
an important part of the R202R loop. To maximize the benefit
of amateur radio capabilities for heliophysics, we recommend the
following.
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e Increased support for large-scale observational capabilities of
distributed instrumentation fielded by amateur radio operators
and radio science enthusiasts.

e Advocate for continued and novel transmissions of RF signals
used in citizen science experiments, and, where appropriate,
facilitate cooperation and technical exchange between the
operators of those signals and the space physics research
community. Examples include: NIST WWV and WWVH
(Nelson et al., 2005), U.S. Navy chirp sounders (Headrick

1998; Bernhardtetal,, 2017), CODAR
oceanography radars (Kaeppler et al., 2022), and U.S. Navy
VLF transmitters (Gross and Cohen, 2020; Richardson and
Cohen, 2021).

e Develop receivers that make use of established professional

and Thomason,

transmitters for coordinated experiments. These receivers can
be deployed by citizen scientists, professional researchers,
industry, and government users alike.

e Develop new amateur radio modes that simultaneously allow
for communications and ionospheric sounding.

e Develop methods for continuous cross-calibration among
instrumentation, both amateur and professional.

e Strategically expand citizen science networks to other countries
and regions of the world to ensure truly global observations.

e Formally incorporate the amateur radio community and
observational assets into Space Weather R202R Framework.

5.2 Fostering collaborations with the
amateur radio community

5.2.1 Driving co-design and collaboration in
amateur radio science

To maximize broader impacts in the areas of learning and equity,
Pandya and Dibner (2018) provide a comprehensive resource for
the design of citizen science projects (cf. Section 5.2.2). HamSCI
embraces a model of citizen science where volunteers are engaged
in every stage of an investigation, from formulating questions to
building tools and engaging in analysis. This co-design concept
is critical for participant engagement, project success, making the
best use of skills and talents, and ensuring the project benefits
all involved. In these collaborations, all participants should be
fully credited and have rights to use the materials and ideas they
help develop. Open hardware (TAPR, 2022) and open software
(GNU Project, 2022) licenses are used for all projects. HamSCI
volunteers are encouraged to set up ORCIDs, use callsigns as
FAIR identifiers (Stall et al., 2019), and are given co-authorship or
acknowledgment in papers and presentations.

As discussed in Section 2.3 and Section 2.4, amateur radio
operators have a powerful combination of advanced technical
skills and strong avocational initiative. They are, thus, well-
positioned to participate in hardware and software development.
For instance, the NSF-funded HamSCI Personal Space Weather
Station (PSWS) project is developing a network of novel ground-
based instruments for ionospheric remote sensing that can be
used by citizen scientists and professionals alike (Collins et al.,
2021; Frissell et al., 2021; Gibbons et al., 2022). In developing the
PSWS proposal, HamSCI joined with Tucson Amateur Packet Radio
(TAPR, tapr.org), a volunteer amateur radio electrical engineering
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organization with a global presence and almost 40 years of
experience.

5.2.2 Diversity, equity, and inclusion (DEI)

The current demographic landscape of the amateur radio
community as well as the projected demographic changes in the
United States present significant challenges and opportunities to
increase diversity. Barriers to entry include exam and equipment
costs, asymmetric mentorship opportunities, and a lack of support
for some community newcomers. Demographic statistics are not
readily available, but informal surveys (Thomas, 2019) and the
authors’ lived experience indicate that the population of active
amateur radio operators is generally White, overwhelmingly male,
and over the age of 55. Instances of implicit and explicit bias
are common and expected for Black, Indigenous, and people of
color (BIPOC), female, and LGBTQ + hams, leading to a “leaky
pipeline” of talent within the hobby (Howell and Wright, 2021) and
thereby reducing the pool of possible citizen science volunteers.
It would seem that much of this bias is “baked in” to the hobby
(Haring, 2003; Wills, 2021); however, it is also true that members
of underrepresented groups were innovators in radio (Fikes, 2007;
Blue, 2008) and that inclusion is as much a task of “remembering”
as it is opening space. The ARRL has signaled willingness to address
current Diversity, Equity, Inclusion (DEI) issues (Minster, 2022), but
much more can and should be done.

Targeted efforts to include more women, young people, and
underrepresented groups into the hobby will have an outsized
impact. The benefits of these efforts will be twofold: they will
introduce to the participants a valuable technical skillset, while
simultaneously growing the ranks of amateur radio operators
to keep the community strong and maintain open source,
noncommercial access to the electromagnetic spectrum (EMS) for
future generations. In short, increasing the ranks of amateurs will
help the community maintain citizen access to the EMS natural
resource.

To do this, the science community must leverage best practices
in diversity, equity and inclusion, as well as proven educational
practices tuned for minoritized communities. The authors
recommend a three-prong strategy: supporting amateur radio
organizations that welcome diverse cohorts in training and exams,
encouraging the inclusion of amateur radio in existing STEAM
curricula of formal and informal programs (Derickson et al., 2019)
with strong DEI components, and working with demographically
focused amateur clubs such as OMIK, Young Ladies Radio
League, and Rainbow Amateur Radio Association, to help those
underrepresented find supportive and sustaining communities in
the hobby.

The that
change—beyond tokenism—will be required to build sustainable,
of
Fundamental shifts in the way scientists and amateur radio operators

authors acknowledge long-term, substantive

inclusive communities radio amateurs and scientists.
see themselves and how others see them are required. The question
“what does a scientist or amateur radio operator look like?” needs
answers that reflect the changing demographics of the US and the
demographics of the world.

Further support may be needed to help amateur radio and
scientific communities welcome minoritized people and help them

hold space in the community. Amateur radio operators often
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struggle with the “Curse of Knowledge™: a cognitive bias where an
expert assumes something that they are intimately familiar with
must be widely known and/or inherently easy (Weiman, 2007).
Hams must remember that mentoring (“Elmering”) in the form
of open source education, “teaching to learn”, and the ethos of
sharing knowledge are part of being an amateur. Everyone comes
with some knowledge or experience that they can contribute to the

a3

collective-indeed the cliché “the smartest person in the room is the
room” is truism in the amateur radio community. The challenge
for “more seasoned” hams working in DEI is to meet newcomers
at their level of knowledge, and be willing and patient enough to
help support these “new” cohorts in developing a “room” in which

everyone increases their knowledge (Freire and Macedo, 2005).

5.2.3 Giving back to the amateur radio
community

All amateur radio citizen science projects need to address
research questions and advance the scientific field, but it is also
crucially important that the projects also benefit the amateur
radio community. It is important that project participants receive
appropriate acknowledgment. This will often be in the form
of co-authorship and/or acknowledgment in publications and
presentations. They should also have the ability to retain intellectual
property rights (at least in the open source sense) on ideas and
designs. When data collection is involved, amateurs want feedback
to know that their data has been received and is being used.
Interviews with HamSCI participants indicate that web-based,
real-time displays of participant data are an important way to
provide this feedback. As new scientific discoveries are made or
operational products are developed using amateur radio resources,
those discoveries and products should be made available back to
the amateur community in a way that is understandable and useful
to them. Finally, it is important to listen to the amateur radio
community to identify ways in which the scientific community can
provide the greatest service to the amateurs.

5.2.4 Recommendations for Fostering
Collaborations with the amateur radio
community
e Provide funding resources for amateur radio-based citizen
science projects. The amateur radio community is a highly
technical, engaged community that has a proven track record
of making substantial contributions to heliophysics science
and technology. Support should be provided for collaborative
amateur radio-professional research projects, infrastructure
for the collection, storage, and distribution of citizen science
datasets and analytical tools, conferences and workshops that
bring professionals and amateurs together in-person and
virtually, and personnel support to help manage these projects.
e Develop research and educational programs in collaboration
with organizations already established in the amateur radio
community. Many organizations, including the ARRL, TAPR,
CQ Communications, Scouts, and HamSCI already have
established means of engaging with the amateur radio
community. By having citizen science projects collaborate with
these groups, it is possible to broaden participation.
e Develop international collaborations to solve global-scale
science problems. Heliophysics problems extend beyond the
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regulatory boundaries of the United States. Global scientific
collaborations, coordinated with the help of the IARU and its
member societies, should be established.

e Recognize volunteers as colleagues that have important skills
and insight. Many amateurs have years of experience and/or
advanced degrees in fields relevant to Heliophysics research.
Volunteers that do not are highly enthusiastic and are willing
to learn. Volunteers should be respected and treated collegially.

e Encourage attendance of amateur radio citizen scientists at
professional conferences and provide funding for relationship
building with and between communities. This can be done
through direct support and citizen science related discounted
registration. It would encourage skilled and vested amateurs
to foster relationships with scientists in a professional venue
and allow them to learn how scientific papers are written and
presented.

e Ensure open access to publications and software. Requiring
all publicly funded research to publish open access and
encouraging the use of open source software for analysis will
make research more accessible to citizen scientists.

e Provide citizen scientists with routes to peer-reviewed
publication. Citizen scientists working on independent
research projects may lack funding to cover publication fees
or knowledge of how to properly analyze data and prepare
a manuscript for a peer-reviewed journal. We recommend
resources be allocated and policies be established to help citizen
scientists clear these hurdles.

e Ensure that collaborations have a clear benefit to the scientific
and amateur radio communities. All amateur radio citizen
science projects need to address research questions and advance
the scientific field, but it is also important that the projects also
benefit the amateur radio community.

e Encourage growth and diversity, equity, and inclusion in
the amateur radio community. Support amateur radio
organizations to welcome diverse cohorts in training and
exams, while also encouraging the inclusion of amateur radio
in existing STEAM curricula with strong DEI components.

6 Summary

The amateur radio community is a global, highly engaged,
and technical community with an intense interest in space
weather, its underlying physics, and how it impacts radio
communications. The large-scale observational capabilities of
distributed instrumentation fielded by amateur radio operators
and radio science enthusiasts offers a tremendous opportunity to
advance the fields of heliophysics, radio science, and space weather.
Well-established amateur radio networks like the RBN, WSPRNet,
and PSKReporter already provide rich, ever-growing, long-term
data of bottomside ionospheric observations. Up-and-coming
purpose-built citizen science networks, and their associated novel
instruments, offer opportunities for citizen scientists, professional
researchers, and industry to field networks for specific science
questions and operational needs.

In this paper, we discussed the scientific and technical
capabilities of the global amateur radio community, reviewed
methods of collaboration between the amateur radio and
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professional scientific communities, and summarized recent peer-
reviewed studies that have made use of amateur radio data and
methods. Finally, we presented recommendations submitted to
the U.S. National Academy of Science Decadal Survey for Solar
and Space Physics (Heliophysics) 2024-2033 for using amateur
radio to further advance heliophysics and for fostering deeper
collaborations between the professional science and amateur radio
communities. Technical recommendations include increasing
support for distributed instrumentation fielded by amateur radio
operators and citizen scientists, developing novel transmissions
of RF signals that can be used in citizen science experiments,
developing new amateur radio modes that simultaneously allow
for communications and ionospheric sounding, and formally
incorporating the amateur radio community and its observational
assets into the Space Weather R202R framework. Collaborative
recommendations include allocating resources for amateur radio
citizen science research projects and activities, developing amateur
radio research and educational activities in collaboration with
leading organizations within the amateur radio community,
facilitating communication and collegiality between professional
researchers and amateurs, ensuring that proposed projects are of a
mutual benefit to both the professional research and amateur radio
communities, and working towards diverse, equitable, and inclusive
communities.
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