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Abstract—Transfer learning leverages feature representations of deep
neural networks (DNNs) pretrained on source tasks with rich data to
empower effective finetuning on downstream tasks. However, the pre-
trained models are often prohibitively large for delivering generalizable
representations, which limits their deployment on edge devices with
constrained resources. To close this gap, we propose a new transfer
learning pipeline, which leverages our finding that robust tickets can
transfer better, i.e., subnetworks drawn with properly induced adversarial
robustness can win better transferability over vanilla lottery ticket
subnetworks. Extensive experiments and ablation studies validate that
our proposed transfer learning pipeline can achieve enhanced accuracy-
sparsity trade-offs across both diverse downstream tasks and sparsity
patterns, further enriching the lottery ticket hypothesis.

I. INTRODUCTION

Deep neural networks (DNNs) trained on large-scale datasets have
prevailed as state-of-the-art (SOTA) solutions for various cognition
tasks across many application domains, thanks to their record-
breaking performance. However, the availability of a large amount
of training data, one of the major driving forces behind the amazing
success of DNNs, is not often possible due to the required high
cost of data collection and laborious annotations. Fortunately, recent
advances in transfer learning, which leverage rich feature represen-
tations learned on source tasks for which big training datasets are
available to empower the learning on downstream tasks with limited
data resources, have provided a promising data-efficient solution
for enhancing the achievable downstream accuracy. For example, a
typical solution of transfer learning for boosting task accuracy on
small-scale vision tasks is to finetune the models pretrained on large-
scale datasets in a supervised or unsupervised manner.

In parallel, it is increasingly demanded to advance DNN-powered
edge applications by leveraging the recent success of transfer learn-
ing, i.e., adapting the pretrained models that serve as general feature
extractors to various downstream tasks on the edge where collecting
high-quality annotated data at scale is difficult or not practical.
Nevertheless, the pretrained models are often prohibitively large in
order to ensure generalizable feature representations, which stands at
odds with the limited resources available on edge devices like mobile
phones. Therefore, it is highly desired to trim down the complexity
of large pretrained models while at the same time maintaining their
transferability to various downstream tasks, which can be drastically
different from the goal of standard model compression which aims
to preserve the task accuracy on the same dataset after compression.

To close the aforementioned gap, recent pioneering works [2],
[13] have extended the lottery ticket hypothesis [6] to pretrained
models under a transfer learning setting, i.e., they have shown
that there exist subnetworks, which inherit the pretrained model
weights as initialization, can match the task accuracy of their dense
network counterparts after finetuning on downstream tasks, which
shed light on potential opportunities of inducing sparsity into large
pretrained models for enhanced efficiency without degrading their
transferability. However, one missing piece is that all these previous

works directly reuse the metrics for identifying lottery tickets under
a standard training setting, e.g., weight magnitudes [2], [13], which
were originally designed for maintaining the accuracy on the same
task and thus do not necessarily help preserve the transferability to
downstream tasks. We emphasize that given the general existence
of lottery tickets in pretrained models, extra priors are required for
identifying more transferable ones among them in addition to the
aforementioned metrics.

To this end, we ask an intriguing question: “what kind of priors
should we consider for drawing more transferable tickets from
pretrained models?” Inspired by recent works [4], [19] showing that
enhancing adversarial robustness [11] of pretrained models results
in better representations that align well with human perceptions [4],
we hypothesize that subnetworks hidden in pretrained models with
properly induced adversarial robustness, dubbed robust tickets, can
win better transferability over vanilla lottery tickets drawn without
considering a robustness objective, dubbed natural tickets. In other
words, the key insight of this work is that adversarial robustness can
serve as a proper prior for drawing more transferable tickets from
pretrained models for transfer learning. In particular, we summarize
our contributions as follows:

• We discover that robust tickets can transfer better, i.e., properly
induced adversarial robustness can serve as a good prior for
drawing more transferable subnetworks from pretrained models
under a transfer learning setting.

• We extensively study different schemes for drawing robust
tickets from pretrained models, leading to new pipelines for
more effectively transferring decent subnetworks to downstream
tasks, which can push forward the achievable transferability-
sparsity trade-offs over natural ones.

• We conduct extensive experiments to understand the properties
of robust tickets, and benchmark their effectiveness over nat-
ural tickets across different (1) datasets and tasks, (2) sparsity
patterns, (3) pretraining schemes, and (4) performance metrics,
including downstream accuracy, the robustness under adversarial
perturbations, and out-of-distribution detection performance.

• We empirically analyze the underlying reasons behind the trans-
ferability of robust tickets, which is found to be highly correlated
to their capability of handling domain gaps, and explore the
boundary regarding (1) whether and (2) when robust tickets
could transfer better than natural tickets.

We believe this work has not only provided a new perspective that
complements the lottery ticket hypothesis for transfer learning, but
also opened up a new angle for empowering transfer learning on edge
devices toward enhanced accuracy-efficiency trade-offs.

II. HYPOTHESIS AND METHODOLOGY

A. Key Hypothesis

We hypothesize that subnetworks drawn from pretrained models
with properly induced adversarial robustness (i.e., robust tickets),
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can win better transferability in terms of the achievable accuracy
on downstream tasks, as compared to vanilla lottery tickets drawn
without considering any robustness objective (natural tickets). This
is inspired by recent observations [4], [19] showing that adversarial-
robustness-aware training enables learning better feature represen-
tations, which aligns well with human perceptions, and thus can
enhance the achievable task performance of transfer learning thanks
to the resulting bias of focusing on less difficult inputs with large
signal-to-noise ratios and the removal of redundant features [4]. Built
upon the aforementioned hypothesis, our work leverages adversarial
robustness as a prior for drawing more transferable tickets from
pretrained models, considering the general existence of lottery tickets.

B. Drawing Robust Tickets

Overview. To practically leverage our hypothesis above for dis-
covering highly transferable tickets, it is critical to identify how to
induce adversarial robustness as priors during the process of drawing
lottery tickets. We find that enhancing the adversarial robustness
of the pretrained dense model can serve as a simple but effective
way to introduce robustness priors for drawing tickets with better
transferability on downstream tasks. This is inspired by recent ob-
servations showing that (1) lottery tickets drawn from adversarially
trained DNNs can preserve decent adversarial robustness [15], and
(2) the adversarial robustness of pretrained models on a source task
can be inherited to downstream tasks [23].

Therefore, we consider a two-stage process for delivering robust
tickets: (1) inducing adversarial robustness to the dense models when
pretraining them on the source tasks, and (2) drawing robust tickets
from the robustly pretrained dense models resulting from the previous
stage, which are then transferred to downstream tasks.

Inducing adversarial robustness to pretrained models. In this
work, we mainly apply adversarial training [16], considering that it
is one of the most effective robustifying methods when pretraining a
dense model on a source task. Additionally, we also adopt random
smoothing [3] to validate the generality of our discovered insight.

Different schemes for discovering robust tickets. We adopt dif-
ferent pruning methods to draw robust tickets for fairly benchmarking
with their corresponding natural ticket counterparts. In particular, a
robust ticket can be formulated as f(⋅;m ⊙ θpre), where f is the
pretrained model parameterized by θpre and m is a binary mask for
indexing the sparse subnetworks within the pretrained model. We
derive m with three different schemes as follows and evaluate the
transferability of our proposed robust tickets and commonly adopted
natural tickets under these schemes in the experiment section.

① One-shot magnitude pruning (OMP): In OMP, we directly
prune weights with the smallest magnitudes based on ∣∣θpre∣∣ toward
the target pruning ratio, and identify the model with the remaining
weights as the robust ticket, which is further transferred to down-
stream tasks. Note that robust tickets and natural tickets differ in
the pretrained weights ∣∣θpre∣∣ during OMP: The former is drawn
from robustly pretrained dense models while the latter is drawn from
naturally pretrained dense models.

② Adversarial iterative magnitude pruning (A-IMP): Motivated
by the success of IMP in discovering lottery tickets across application
domains [2], [6], we propose an adversarial variant of IMP, dubbed
as A-IMP, for drawing robust tickets. Following the common practice
of IMP [2], [6], after each pruning iteration, weights with the
smallest magnitudes as determined by the target pruning ratio of the
current iteration will be pruned and then the sparsity of m is further
increased. This process is iteratively repeated until reaching the target
sparsity. To induce the target robustness prior during iterative pruning

of the pretrained model, we modify the training objective to an
adversarial formulation that performs a minimax optimization:

argmin
θpre

max
∥δ∥∞≤ϵ

ℓs(f(m⊙ θpre, xs + δ), ys) (1)

where xs and ys are the input and label pairs of the source task, ls is
the corresponding loss function, and δ is the adversarial perturbation
under a norm constraint of ϵ.

③ Learnable mask pruning (LMP): LMP directly learns a task-
specific mask mt for each downstream task on top of the pretrained
model without further tuning the model weights [8], [9], [17]. In
particular, LMP can be formulated as:

argmin
mt

ℓt(f(mt ⊙ θpre, xt), yt) s.t. ∣∣mt∣∣0 ⩽ kt (2)

where xt and yt are the input and label pairs of the downstream
task t and an L0 constraint is exerted on mt to ensure the number
of its non-zero elements is no more than kt. To optimize mt in
a differentiable manner, following [17], during forward we binarize
mt to m̂t, which approximates the top kt elements of mt using
1 and otherwise 0, while during backward all the elements of mt

are updated via straight-through estimation, i.e., ∂lt
∂mt

≈
∂lt
∂m̂t

. Note
that LMP provides a new perspective for validating whether more
transferable tickets can be discovered in pretrained models via tuning
the sparsity patterns instead of model weights. Similar to that of the
OMP case, robust tickets and natural tickets differ in whether they
are drawn from adversarially or naturally trained dense models.

III. EXPERIMENTAL RESULTS

In this subsection, we aim to answer the research questions that
are critical in better understanding and guiding practical uses of our
proposed robust tickets via extensive experiments.

A. Experiment Setup

Models and datasets. We consider ResNet18 and ResNet50, which
are commonly adopted feature extractors for transfer learning [2],
[19], featured by different degrees of overparameterization. We
consider 14 datasets across different application domains, including
classification on 13 datasets (CIFAR-10/100 and another 11 tasks
from VTAB [24]) and segmentation on PASCAL VOC [5].

Pretraining settings. By default, we adopt ImageNet [18] as the
source task for pretraining the models. For robust pretraining, we
adopt PGD training [16] by default and we follow [19] to pick the
optimal perturbation strength for each task.

Finetuning settings. For classification tasks, we follow the settings
in [19], i.e., using an SGD optimizer for finetuning 150 epochs in total
with a batch size of 64, a momentum of 0.9, and a weight decay of
1e-4. The learning rate decays by 0.1 at the 50-th and 100-th epochs.
For segmentation on PASCAL VOC, we finetune for 30k iterations
using an SGD optimizer with a momentum of 0.9, a weight decay
of 1e-4, and a batch size of 4. The learning rate decays by 0.1 at the
18k-th and 22k-th iterations.

B. Whether robust tickets can transfer better across pruning methods
and sparsity patterns?

Drawing robust tickets via OMP. We benchmark the transferabil-
ity of robust tickets and natural tickets drawn by applying OMP on
robust/naturally pretrained models. respectively, across various down-
stream classification tasks. We consider both whole-model finetuning
and linear evaluation, where the weights of the drawn tickets are fixed
and only a new classifier is learned on top of their extracted features.

Benchmark under whole-model finetuning. We discover robust
and natural tickets at different sparsity ratios from ResNet18/50,
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a) ResNet18 @ CIFAR-10 b) ResNet18 @ CIFAR-100 c) ResNet50 @ CIFAR-10 d) ResNet50 @ CIFAR-100

Ffig.1:ComparfingthewholemodelfinetunfingaccuracyofrobusttficketsandnaturaltficketsfidentfifiedvfiaOMPfromResNet18/50on
CIFAR-10/100,wfithzoom-finsfortheextremesparsfity(90%∼99%

a) ResNet18 @ CIFAR10 b) ResNet18 @ CIFAR100

c) ResNet50 @ CIFAR10 d) ResNet50 @ CIFAR100

Ffigure2
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Structured R50 OMP

Whole Model Ffinetunfing Lfinear Evaluatfion

I) ResNet50 @ CIFAR-10 II) ResNet50 @ CIFAR-100 III) ResNet50 @ CIFAR-10 IV) ResNet50 @ CIFAR-100
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Ffig.2:Comparfingthelfinearevaluatfionaccuracyofrobusttfickets
andnaturaltficketsfidentfifiedvfiaOMP.

Ffig.3:Evaluatfingstructuredrobusttficketsovernaturalonesdfiscov-
eredvfiaOMPfromResNet50.

whficharetransferredtoCIFAR-10/100wfithwhole-modelfinetunfing.
AsshownfinFfig.1,wecanseethat(1)alfignfingwfithourhypothesfis,
robusttficketscanconsfistentlyoutperformthenaturetficketsunder
thewhole-modelfinetunfingparadfigm,e.g.,robusttficketsachfieve
a1.95%hfigheraccuracyonResNet50/CIFAR-100underasparsfity
of0.7,and(2)therobustnessprfiorscanbeeffectfivelyfinherfitedby
extremelysparsesubnetworksaccordfingtotheconsfistentbenefitof
robusttficketsovernaturalones,e.g.,a2.38%hfigheraccuracyon
ResNet18/CIFAR-100underasparsfityashfighas0.99.

Benchmarkunderlfinearevaluatfion.AsshownfinFfig.2,wecan
observethatrobusttficketsaggressfivelywfinthetransferredaccuracy,
e.g.,a⩾11.75%hfigheraccuracyonResNet50/CIFAR-100tfillthe
sparsfityratfioof0.92.Thfisfindficatesthesuperfiorfityofrobusttfickets
asafixedfeatureextractorwfithnotablybettertolerancetopotentfial
domafinshfifts,thankstotherobustnessprfiors.
Structuredrobusttfickets.Wedfiscoverstructuredrobusttfickets,
whfichbenefitthereal-hardwareacceleratfion,vfiaprunfingthepre-
trafinedmodelsatdfifferentgranularfitfies,fincludfingrow-wfise,kernel-
wfise,andchannel-wfiseones.AsshownfinFfig.3,wecanseethat(1)
robusttficketsconsfistentlywfinacrossdfifferentsparsfitypatternsand
evaluatfionparadfigms,and(2)fitfisharderformorestructuredtfickets
tofinherfitrobustnessprfiorsaccordfingtothesmallergafinsovernatural
oneswfithmorecoarse-grafinedsparsfitypatterns.
Keyfinsfights.Thfissetofexperfimentsfindficatesthat❶robusttfickets
fidentfifiedbythesfimplestOMPmechanfismcanalreadyoutperform
thenaturalcounterparts,whfichfimplfiesthegeneralexfistenceofhfighly
transferablesubnetworksfinrobustpretrafinedmodels,and❷although
adversarfialrobustnesscanalsoserveasgoodprfiorsforextremely
sparsesubnetworks,whfichbenefitsmoreefficfienttransferlearnfing,
thefiradvantagesovernaturalonesaresmallerthantheonesunder
relatfivelylowsparsfitysfincefewerneuronsdurfingpretrafinfingare
finherfitedfintheformercase.
DrawfingrobusttficketsvfiaA-IMP.WebenchmarkA-IMPwfith

naturaltficketsaswellasotherIMPvarfiantsfinFfig.4,where‘US’
and‘DS’denotewhetherIMPfisperformedontheupstream(source)
taskorthedownstreamtaskandtherobust/naturaltficketsdfifferfin
whetherstartfingfromanadversarfiallyornaturallypretrafinedmodel,
e.g.,A-IMPfisequfivalenttoUSrobusttfickets. Wecanobserve
that(1)generallythetworobusttficketsoutperformthenatural
onesacrossmostsparsfityratfios;(2)ourA-IMP(USrobusttfickets)
achfievesthe mostcompetfitfivetransferabfilfityunder mfildsparsfity
andDSrobusttficketsachfieveabetteraccuracyoverA-IMPunder
relatfivelylargesparsfity,whereupdatfingthesparsfitypatternsvfiaIMP
basedontask-specfificfinformatfionofthedownstreamtaskbecomes
morecrucfial;and(3)forResNet50onCIFAR-100,thetworobust
tficketsoutperformnaturalonesundermfildsparsfity,whereasthelatter
becomesthewfinnerunderextremelyhfighsparsfity(>0.95)accordfing
tothezoom-finpartofFfig.4(d).Weconjecturethatthfisfisbecause
onmorecomplexdatasets,learnfingtask-specfificsparsfitypatterns
vfiaIMPbecomesfincreasfinglycrucfialunderextremelyhfighsparsfity,
wherefewerrobustnessprfiorsfinducedbypretrafinfingcanbefinherfited,
favorfingthenaturaltficketsthatbenefitfrommoreaccuratepretrafined
modelsonthesourcetask.
DrawfingrobusttficketsvfiaLMP.DfifferentfromOMPandA-

IMP,theunfiquepropertyofLMPfisthatonlythelearnablemasks
areoptfimfizedondownstreamtaskswhfilethemodelwefightsare
fixedtothepretrafinedones,thusLMPcanbecomprehendedas
dfirectlyextractfingtask-specfificsubnetworkshfiddenfinthepretrafined
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a) ResNet18 @ CIFAR-10

c) ResNet50 @ CIFAR-10

b) ResNet18 @ CIFAR-100

d) ResNet50 @ CIFAR-100

a) ResNet18 @ CIFAR10 b) ResNet18 @ CIFAR100

c) ResNet50 @ CIFAR10 d) ResNet50 @ CIFAR100

Ffigure6

Ffig.4:BenchmarkrobusttficketswfithnaturalonesdfiscoveredbyIMPvarfiants.Accuracyunderhfighsparsfityfiszoomedfin.

a) ResNet50 @ CIFAR-10 b) ResNet50 @ CIFAR-100

Ffig.5:Benchmarkrobusttficketswfithnaturaltficketsdfiscoveredby
LMPfromResNet18/50onCIFAR-10/100.

Ffig.6:Benchmarkthetficketsfromdfifferentpretrafinfingschemes.

model.AsshownfinFfig.5,robusttficketsdrawnbyLMPconsfistently
outperformnaturalones,findficatfingthatrobustpretrafined models
wfithfinducedrobustnessprfiorsaremorelfikelytocontafinhfighly
transferablesubnetworkswfithoutwefightfinetunfing,whfichvalfidates
ourhypothesfisfromanewperspectfive.

Summary.Comparfingtheaforementfionedthreeprunfingschemes
fordrawfingrobusttfickets,IMP-basedUS/DSrobusttficketsgenerally
wfinthebesttransferabfilfity,especfiallyunderextremelyhfighsparsfity
ratfios,whfichmaybeattrfibutedtotherobusttrafinfingobjectfivedurfing
thefiteratfiveoptfimfizatfionfordfiscoverfingtherobusttfickets.

C. Whetheradversarfialpretrafinfingfisnecessaryforrobusttfickets?

Setup.Tostudywhetheradversarfialtrafinfingfistheonlywayto
finducerobustnessprfiorsforenablfingbettertransferabfilfity,weapply
randomsmoothfing(RS)[3]asanalternatfiverobusttrafinfingmethod
forpretrafinfingaResNet50,ontopofwhfichtheOMPfisapplfied.
Resultsandanalysfis.Webenchmarkthetransferabfilfityofdfif-
ferenttficketsdrawnbyOMPfromnaturallypretrafinedmodelsand
adversarfially/RSpretrafined models.AsshownfinFfig.6,wecan
observethatalthoughthetficketsfromRSpretrafined modelsare
finferfiortotherobusttficketsfromadversarfiallytrafinedmodels,they
canstfilloutperformthenaturaltfickets.
Keyfinsfights.

(a). ResNet50 @ Object Detectfion (b). ResNet50 @ Segmentatfion

Thfissetofexperfimentsfindficatesthatrobustness
prfiorsfinducedfintopretrafinfingvfiavarfiousrobusttrafinfingalgorfithms
canbegenerallyfinherfitedbythedrawntficketsandthusbenefitthe
transferabfilfitytodownstreamtasks.

Ffig.7:Benchmarkrobusttficketsandnaturalonesdrawnfrom
ResNet50vfiaOMPonthesegmentatfiontask.

D. Wfilltheconclusfionsbescalabletootherdownstreamtasks?

Setup.WetransfertheOMPprunedrobusttficketsandnatural
tficketstothesegmentatfiontaskonPASCALVOCasshownfinFfig.7.
Resultsandanalysfis.Wecanobservethatgenerallyourhy-
pothesfisstfillholdsthatrobusttficketsachfieveconsfistentlyhfigher
mIOU,especfiallyundermfildsparsfityratfios,whfichfindficatesthatthe
robustnessprfiorscouldenhancethetransferabfilfityacrossdfifferent
downstreamtasks,notlfimfitedtoclassfificatfiontasks.
Keyfinsfights.Asfimplementfingtheadversarfialpretrafinfingonlarge-

scaledatasetsfiscostly,weexpectthatourrobustnessprfiorscould
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a) ResNet18 @ Afircraft b) ResNet18 @ Bfirdsnap c) ResNet18 @ Caltech-101 d) ResNet18 @ Caltech-256

e) ResNet18 @ Cars f) ResNet18 @ CIFAR-10 g) ResNet18 @ CIFAR-100 h) ResNet18 @ DTD

fi) ResNet18 @ Flowers j) ResNet18 @ Food k) ResNet18 @ Pets l) ResNet18 @ SUN397

VtabR18 Lfinear mafin

Ffig.8:BenchmarkrobusttficketsdrawnbyA-IMPandnaturaltficketsdrawnbyIMPfintermsofotherpropertfies,fi.e.naturalaccuracy
(denotedasAcc),robustnesstoadversarfialperturbatfion(denotedasAdv-Acc)andOoDperformance(denotedasROC-AUC).

Ffig.9:ComparfingthelfinearevaluatfionaccuracyofrobusttficketsandnaturaltficketsfidentfifiedvfiaOMPmethodon12tasksfromtheVTAB
benchmark[24].AlltficketsfinthfisfigurearefidentfifiedfromdenseResNet18models.

unfiversallytransfertodfifferentdownstreamtasks.Thfissetofexper-
fimentsfindficatesthatalthoughthecostofadversarfialpretrafinfingfis
hfigher,theunfiversaltransferabfilfityofrobustnessprfiorsacrosstasks
couldamortfizethfisaddfitfionalcost.

E. Whataboutotherpropertfiesofrobusttfickets?

Setup.Inaddfitfiontothenaturalaccuracy,wealsofillustratethe
out-performanceofrobusttficketsovernaturalonesunderdfifferent
metrfics,fincludfingadversarfialrobustnessandOoDperformance.
Resultsandanalysfis.FromFfig.8,wecanseethat(1)robust
tficketsoutperformthevanfillacounterpartsconsfistentlyfintermsof
naturalaccuracy,adversarfialaccuracy,andOoDperformance.Thfis
findficatesthat❶robustnessprfiorscanboostthecapabfilfitytocombat
finputperturbatfionsfinaddfitfiontoenhancfingthetransferabfilfity,and
❷ robustnessprfiorscanfimprovelarge models’(e.g.,ResNet50)
OoDperformanceandthusenhancetherelfiabfilfity.Therawdatafor
vfisualfizfingFfig.8fisprovfidedfinTab.I.

F. Whenandwhycouldrobusttficketstransferbetter?

Setup.Tounderstandtheunderlyfingreasonsbehfindrobusttfickets’
transferabfilfityaswellasfidentfifywhenrobusttficketswfin,weextend
thelfinearevaluatfionsettfingto12tasksfinVTAB[24].Herewealso

TABLEI:Rawdataofallthementfionedpropertfiesofrobusttfickets
andnaturaltficketsdrawnfromResNet18/50vfiaA-IMP.

Model Propertfies
RobustTfickets NaturalTfickets

20.00% 59.04% 79.08% 89.26% 20.00% 59.04% 79.08% 89.26%

R-18

Accuracy↑ 96.3 96.34 96.13 95.31 95.79 95.47 95 94.74
ECE↓ 0.0159 0.015 0.0186 0.0201 0.0125 0.0173 0.0175 0.0264
NLL↓ 0.1737 0.1769 0.1872 0.2166 0.1866 0.1954 0.2116 0.2336
Adv-Acc↑ 55.83 53.9 51.93 47.69 27.89 25.71 23.43 19.9
ROC-AUC↑ 0.83 0.74 0.73 0.66 0.89 0.83 0.85 0.8

R-50

Accuracy↑ 97.6 97.05 96.62 95.72 96.66 96.71 96.2 95.77
ECE↓ 0.0137 0.0132 0.0161 0.0179 0.0095 0.0121 0.0127 0.0128
NLL↓ 0.1279 0.1457 0.1728 0.2028 0.1451 0.1509 0.1659 0.1961
Adv-Acc↑ 67.4 65.62 60.59 55.32 42.66 40.34 36.3 30.79
ROC-AUC↑ 0.8 0.84 0.77 0.78 0.72 0.74 0.74 0.76

measuretheFIDscore[12],whfichfindficatesthedfifferencefindata
dfistrfibutfionbetweentwodatasets(notethatalowerFIDdenotesa
smallerdomafingap),betweenthesourcedatasetImageNetandeach
downstreamdatasetfinVTABbysamplfingthesame8000fimages
fromImageNetandusfingallthefimagesfineachdownstreamdataset.

Observatfionsandanalysfis.AsshownfinFfig.9,robusttfickets
outperform/match/underperformnaturaltficketsfin7/3/2outofthe
total12casesunderhfighsparsfityratfios.AccordfingtoTab.II,we
canobservethatrobusttficketsconsfistentlyoutperformnaturalones
ondatasetswfithalargerFID,wherethedomafingapbetweendown-
streamdatasetsandImageNetfislarger,andonlymatch/underperform
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their natural counterparts on datasets with a lower FID. This indicates
that adversarial robustness can serve as a prior for transferability as
it reflects the capability for dealing with domain gaps and thus could
be helpful in real-world applications where the distributions of target
tasks often diverge from those of the source tasks.

TABLE II: Winning tickets on each dataset in VTAB with the
corresponding FID calculated over ImageNet.

Dataset CIFAR-10 Aircraft CIFAR-100 Pets Flowers Cars

FID Score 205.04 198.33 190.31 173.23 153.76 150.92
Winner Robust Robust Robust Robust Robust Robust

Dataset Food DTD Birdsnap SUN397 Caltech-101 Caltech-256

FID Score 115.95 97.33 92.64 67.7 56.71 27.54
Winner Match Natural Match Natural Robust Match

Key insights. This experiment complements our key insights and
enhances our understanding of when robust tickets perform better,
which also indicates that FID is one potential metric to choose the
proper transfer learning scheme.

IV. RELATED WORK

Lottery ticket hypothesis. The lottery ticket hypothesis [6] is
the first to discover that there exist trainable subnetworks which
are hidden in an over-parameterized dense network but can match
the accuracy of their dense network counterparts after being trained
in isolation. This intriguing finding has motivated various follow-
up works that explore the lottery ticket hypothesis under different
scenarios. In particular, [2], [13] extend the lottery ticket hypothesis
to transfer learning and find that subnetworks inheriting the pretrained
model weights as initialization can match the task accuracy of their
dense network counterparts after finetuning. However, their adopted
metrics were originally designed for maintaining the accuracy of the
identified tickets on the same task and thus do not necessarily help
preserve the transferability to downstream tasks.

Transfer learning. Motivated by the success of DNNs as a general
feature extractor, transfer learning [21] has been widely adopted
across different domains to benefit downstream tasks from DNNs
pretrained on a big data regime. Although pioneering works [14] have
investigated various factors that can affect the effectiveness of transfer
learning, how to discover highly transferable and sparse subnetworks
is still an open research question.

Adversarial robustness. DNNs are known to be vulnerable to
adversarial attacks [11]. As adversaries, stronger attacks have been
continuously proposed to degrade the accuracy of target DNNs,
including both white-box [16] and black-box ones [1]. In response,
various defense methods have been proposed to enhance DNNs’
adversarial robustness [16], [20]. In addition, adversarial robustness
has been found to be highly correlated with other desired properties,
e.g., reducing overfitting for image recognition [22] and enabling
better transfer learning [4], [19]. Recent works [7], [10] also aim to
achieve both robustness and efficiency within a single framework.

V. CONCLUSION

Recent advances in transfer learning have provided a promising
data-efficient solution for enhancing the achievable task performance
of downstream tasks. To further enhance the model efficiency towards
wide-scale adoption, we study what good priors are for identifying
highly transferable subnetworks on top of the lottery ticket hy-
pothesis and interestingly discover that adversarial robustness can
serve as a good prior for drawing more transferable subnetworks.
We conduct extensive experiments across diverse tasks, sparsity
patterns, pretraining schemes, and performance metrics to understand
the properties of robust tickets and analyze the underlying reasons

behind their transferability. Our work has complemented the lottery
ticket hypothesis and opened up a new perspective for empowering
transfer learning on edge devices by pushing forward the achievable
transferability-sparsity trade-offs.
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