
1.  Introduction
Anthropogenic aerosols have a net cooling effect on global climate and partially offset warming from greenhouse 
gases, but represent the largest uncertainty in estimating total anthropogenic radiative forcing (RF) from 1850 
to 2019 (Szopa et al., 2021). Aerosol RF results from aerosol-radiation interactions (RFari), including scatter-
ing solar radiation (Twomey,  1967), and aerosol-cloud interactions (RFaci), including changing cloud albedo 
(Twomey, 1977). Other aerosol effects such as impacts on cloud fraction and lifetime are uncertain, but may be 
significant in the Arctic (Shindell et al., 2013). Sulfate aerosols have the largest cooling effect of any aerosol and 
their contribution to RF also has the largest uncertainty (Szopa et al., 2021).

The magnitude of aerosol RF depends on preindustrial aerosol abundance due to the nonlinear relationship 
between aerosols and cloud albedo: as aerosol abundance increases, cloud sensitivity to aerosol decreases. 
Thus, one of the largest sources of uncertainty in aerosol RF is poorly constrained natural emissions of aerosol 
precursors (Carslaw et al., 2013; Gettelman, 2015), especially emissions of volcanic sulfur dioxide (SO2) and 
marine dimethyl sulfide (DMS), which are dominant natural sources of Arctic sulfate aerosol (Abbatt et al., 2019; 
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Legrand et al., 1997; Patris et al., 2002; Wasiuta et al., 2006). Other potential sources of sulfate aerosol, including 
carbonyl sulfide, dust, and biomass burning, are negligible in the Arctic (Abbatt et al., 2019; Kjellström, 1998; 
Legrand et al., 1997; Patris et al., 2002; Wasiuta et al., 2006). Although volcanic eruptions garner more attention 
in the climate literature, passive emissions of SO2 are currently estimated to be about 10 times the typical annual 
emissions of SO2 from eruptions (Carn et al., 2017).

Satellites provide global daily observations of volcanic SO2 emissions from eruptive and passive degassing (Carn 
et al., 2015, 2017). Ground-based observations show that these satellite observations provide a lower-end esti-
mate on volcanic SO2 emissions because satellite detection limits are too high to reliably detect passive emis-
sions from weakly degassing volcanoes (Fischer et al., 2019). Furthermore, volcanic SO2 emissions inventories 
are primarily derived from UV satellite measurements, which have data gaps at high latitudes in the winter 
months (Carn et al., 2017). In addition to underestimating SO2 emissions, these inventories exclude emissions 
of other sulfur species such as hydrogen sulfide (H2S), which is difficult to measure from space due to a lack of 
characteristic absorption bands in the near UV and an overlap of IR absorption bands with those of water vapor 
(Clarisse et al., 2011). Estimates of volcanic H2S emissions range from 1 to 35 Tg S yr −1 (Halmer et al., 2002); 
the upper end of this range is three times the estimated global annual mean eruptive plus passive volcanic SO2 
flux of 11–13 Tg S yr −1 (Carn et al., 2015, 2017). After emission, H2S is oxidized to SO2 on the timescale of 
1–3 days (D’Alessandro et al., 2009; Kourtidis et al., 2008; Pham et al., 1995), by which point it is too dispersed 
to be detected by satellite. Thus, satellite observations underestimate volcanic sulfur emissions (Carn et al., 2017; 
Fischer et al., 2019), but the magnitude of the underestimate and the contribution of volcanic sulfur to the global 
sulfur burden remains unquantified.

2.  Quantifying Preindustrial Sources of Ice Core Sulfate
We quantify volcanic and DMS-derived biogenic contribution to preindustrial (1200–1850 CE) Arctic sulfate 
aerosols by measuring sulfate concentrations (SO4 2−) and sulfur isotopic composition (δ 34S(SO4 2−)) in ice 
core samples from Summit, Greenland (see Text S1 in Supporting Information S1 for details on measurement 
methods). We select samples from years without influence from large volcanic eruptions (Figure 1, Cole-Dai 
et al., 2013; Gautier et al., 2019).

To estimate the relative contribution of volcanic and DMS-derived biogenic sulfate to total ice core non-sea salt 
sulfate (nssSO4 2−), we assume that δ 34S(nssSO4 2−) is a concentration-weighted average of the mean biogenic 
sulfate isotopic composition (δ 34Sbio) and mean volcanic sulfate isotopic composition (δ 34Svolc):

𝑓𝑓bio + 𝑓𝑓volc = 1�

𝑓𝑓bio δ
34
Sbio + 𝑓𝑓volc δ

34
Svolc = δ

34
S
(

nssSO4
2−
)

�

where fbio is the fraction of DMS-derived biogenic sulfate and fvolc is the fraction of volcanic sulfate. δ 34Sbio 
is well constrained by measurements of sulfur isotopic composition of marine biogenic compounds at 
δ 34Sbio = +18.8 ± 0.3‰ (Table S1 and Figure S1 in Supporting Information S1). Observations of sulfate from an 
inland Antarctic ice core far from the marine biogenic source show δ 34Sbio = +18.6 ± 0.9‰ (Patris et al., 2000), 
suggesting minimal fractionation due to transport and oxidation of marine biogenic sulfur (Text S2 in Supporting 
Information S1).

We estimate δ 34Svolc using two methods. First, we estimate δ 34Svolc by applying a Monte Carlo routine to a 
Keeling Plot (Keeling,  1958; Keeling et  al.,  1989; Pataki et  al.,  2003) of the ice core observations to deter-
mine δ 34Svolc = +4.1 ± 0.5 ‰ (Figure S2 and Table S3 in Supporting Information S1) using similar assump-
tions and methods as in Patris et  al.  (2000,  2002) (Text S2 in Supporting Information  S1). Second, we use 
direct δ 34S observations of volcanic gas and ash from 367 measurements of volcanic δ 34S(H2S), δ 34S(SO4 2−), 
δ 34S(SO2), and δ 34S(bulk S) from 38 volcanoes around the world (Table S2 in Supporting Information S1) to 
yield δ 34Svolc = +3.8 ± 0.7 ‰, where the standard error of the mean is determined using a bootstrapping method 
(Figure S1 and Text S2 in Supporting Information S1). Both estimates of δ 34Svolc (+4.1 ± 0.5 ‰ and +3.8 ± 0.7 
‰) result in similar values for mean ice core fvolc (66% and 64%, respectively; Text S3 in Supporting Informa-
tion S1), but we focus on δ 34Svolc = +4.1 ± 0.5 ‰ because this value more likely represents a regional signature 
and also incorporates any fractionation effects on δ 34Svolc during transport to Summit.
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Figure  1 shows ice core δ 34S(nssSO4 2−) and nssSO4 2− concentration between 1200 and 1850 CE The mean 
δ 34S(nssSO4 2−) is +9.2 ‰, indicating that the isotopically lighter volcanic sulfur contributes about twice as 
much on average as the biogenic sulfur source. Figure  2 shows that the mean volcanic sulfate concentration 
(19.1  ±  7.1  μg  kg −1) is 2.0  ±  1.7 times larger than the mean DMS-derived biogenic sulfate concentration 
(9.4 ± 3.0 μg kg −1) and that the mean fraction of sulfate from volcanoes (fvolc) is 66 ± 10%. Using δ 34Svolc = +2.5 
‰ from a small number of observations from volcanoes near Greenland also yields a dominant contribution from 
volcanic sulfate (fvolc = 59%) (Text S3 in Supporting Information S1). We also consider how our estimate for fvolc 
is affected by including a continental source of sulfur (e.g., H2S emissions from vegetation, salt marshes, tropical 
forests, soils, and wetlands) based on Watts (2000), which results in fvolc = 58% to 60% (Text S4 in Supporting 
Information S1). These numbers are similar to a previous estimate of fvolc = 57% from Legrand et al. (1997) in a 
Summit, Greenland ice core, which was estimated by subtracting an assumed DMS-derived contribution to ice 
core sulfate based on the summertime peak in nssSO4 2−.

3.  Comparing Ice Core Sulfate to a Global Model
To evaluate current estimates of the relative importance of volcanic and DMS-derived biogenic sulfate aerosol 
abundance in global models, we use the GEOS-Chem global 3-D chemical transport model (version 13.2.1, 
Text S5 in Supporting Information S1) described in Bey et al. (2001) driven by assimilated meteorology from 
MERRA-2. Volcanic SO2 emissions are from Carn et al. (2015, 2017), updated annually in (Carn, 2022). The 
Carn et al. (2015, 2017) SO2 emissions inventory is used in many global models and is the upper end of volcanic 
SO2 emissions in Climate Model Intercomparison Project (CMIP6) models. The Carn et al. (2015, 2017) inven-
tory includes passive and eruptive volcanic SO2 emissions measured by the Ozone Monitoring Instrument (OMI) 
since 2005. Model DMS emissions are based on Lana et al. (2011). To simulate a preindustrial atmosphere, all 
anthropogenic emissions are turned off (Zhai et al., 2021). We use meteorology and volcanic SO2 emissions from 

Figure 1.  Decadal and sub-decadal ice core δ 34S(nssSO4 2−) (‰, black symbols) and annual mean nssSO4 2− concentration 
(μg kg −1, gray line). Thick colored bars show the isotopic signatures of volcanic sulfur (δ 34Svolc = +4.1 ± 0.5 ‰) and 
DMS-derived biogenic sulfur (δ 34Sbio = +18.8 ± 0.3 ‰). The δ 34S(nssSO4 2−) samples were selected as one 2-year sample 
per decade from 1200 to 1750 CE and one 1-year sample every 4 years from 1750 to 1850 CE from years where nssSO4 2− 
was not influenced by large tropospheric or stratospheric eruptions (Cole-Dai et al., 2013; Gautier et al., 2019). Data from 
Patris et al. (2002) is also shown (circle). Error in δ 34S(nssSO4 2−) measurements is estimated based on replicate analysis of 
whole-process standards.
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the year 2013, during which passive and eruptive volcanic SO2 emissions in regions affecting the Arctic (i.e., 
Kamchatka, Alaska, and Iceland) were similar to the 2004–2017 median. To compare model results to ice-core 
derived estimate of fvolc, the average fvolc of the modeled tropospheric burden of SO2 and sulfate is computed in 
the Summit, Greenland air-mass source region (120°W‒30°E, 42°‒90°N) based on the 5-day average aerosol 
lifetime in the Arctic and HYSPLIT backward trajectory analysis (Zhai et al., 2021). The modeled fvolc is similar 
when calculated with other methods, including fvolc of modeled sulfur deposition in the ice core region (Figure S3 
in Supporting Information S1), and when modeled with meteorology from the year 2007 (Text S5 in Supporting 
Information S1).

Figure 3a shows that the modeled preindustrial fvolc over the Summit, Greenland air-mass source region using the 
SO2 emissions reported by Carn et al. (2015, 2017) is 34%, which is 3.2 standard deviations lower than the mean 
ice core fvolc. The modeled volcanic sulfur contribution (fvolc = 34%) is lower than the observed fvolc in all 74 ice 
core samples representing 123 years between 1200 and 1850 CE (Figure 2b).

4.  Discussion
4.1.  Biogenic and Continental Sulfur Emissions and Chemistry

A model underestimate in fvolc relative to the ice-core derived estimate fvolc could be explained by an overestimate 
in modeled DMS emissions or an underestimate in modeled volcanic emissions. Modeled preindustrial DMS 
emissions would have to be overestimated by a factor of three for DMS emissions to explain the model under-
estimate in fvolc. Ice core records show declining concentrations of methanesulfonic acid, an oxidation product 
of DMS, since the preindustrial (Osman et al., 2019), indicating that it is unlikely that present-day DMS flux is 
three times higher than that of the preindustrial. It is also unlikely that DMS emissions in the Arctic are over-
estimated by a factor of three; in fact, GEOS-Chem modeled atmospheric DMS concentrations are biased low 
in the Arctic (Text S6 in Supporting Information S1; Mungall et al., 2016). Although modeled DMS oxidation 

Figure 2.  Volcanic and dimethyl sulfide (DMS)-derived biogenic sulfate concentrations and volcanic fraction in ice core 
samples from preindustrial years (1200–1850 CE) without large volcanic eruptions. (a) Volcanic (orange) and DMS-derived 
biogenic (blue) sulfate concentrations (μg kg −1) calculated with δ 34Svolc = +4.1 ± 0.5 ‰. (b) Volcanic fraction of ice core 
nssSO4 2− in each sample during the preindustrial (1200–1850 CE). Dashed gray line shows the mean volcanic fraction of ice 
core nssSO4 2− (fvolc = 66%). Dashed red line shows the GEOS-Chem simulated volcanic sulfur fraction (fvolc = 34%) in the 
air-mass source region of Summit with the default volcanic SO2 emissions from Carn et al. (2015, 2017). Error bars were 
determined by propagating the uncertainty in isotopic source signatures and sample measurement error in both (a and b).
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chemistry is simplified, uncertainty in modeled DMS chemistry cannot explain the discrepancy between modeled 
and observed fvolc (Text S6 in Supporting Information S1).

It is possible that other sources of sulfur not considered in global climate models could contribute to Arctic 
sulfate. For example, emissions of H2S from continental sources (e.g., vegetation, salt marshes, tropical forests, 
soils, and wetlands) contribute approximately 1.5 Tg S yr −1 globally (Watts, 2000). However, even if we assume 
this source contributes up to 4% of ice core sulfate, thereby lowering ice core fvolc to 58%–60% from 66% (Text S4 
in Supporting Information S1), the model would still underestimate fvolc in the Summit, Greenland back trajectory 
region.

4.2.  Underestimate in Passive Volcanic Degassing Emissions

Given the low likelihood of an overestimation of DMS-derived sulfate in the Arctic, the discrepancy between 
modeled and ice core fvolc is best explained by an underestimate in passive volcanic sulfur emissions, which is 
consistent with comparisons between satellite and ground-based observations of SO2 (Fischer et al., 2019) and 
the omission of volcanic H2S emissions in models. It is also possible that preindustrial passive volcanic degassing 
was elevated relative to the present day. The sampled time period (1200–1850 CE) is during the “Little Ice Age” 
(LIA), usually defined as a period of relatively cool climate starting in the mid-thirteenth century and ending 
around 1850 CE (Grove, 2001). A driving factor in cooling observed during the LIA was an increased frequency 
of volcanic eruptions (Newhall et al., 2018). It is conceivable that passive volcanic degassing, which increases 
prior to and following volcanic eruptions (Carn et al., 2017), was also elevated during the preindustrial relative 
to the present day, which would exacerbate the underestimate in passive sulfur degassing emissions in the prein-
dustrial. Elevated passive sulfur degassing around periods of increased eruption frequency has been suggested to 
explain differences between early and late nineteenth-century δ 34S(nssSO4 2−) in Antarctic ice cores (Takahashi 
et al., 2022).

To quantify and understand the factors contributing to the underestimate in preindustrial volcanic emissions, 
three volcanic emissions scenarios were prescribed in the model in place of the Carn et al. (2015, 2017) inven-
tory: we label them the 371 scenario, the H2S scenario, and the H2S 1.7 scenario (summarized in Table S4 in 
Supporting Information S1). These emissions scenarios have increased passive degassing of SO2 relative to Carn 
et al.  (2015, 2017) while leaving eruptive emissions unchanged. In the 371 scenario, volcanic SO2 emissions 
are based on comparison between satellite and ground-based passive volcanic sulfur emissions from Fischer 
et al. (2019) for volcanoes included in the Carn et al. (2015, 2017) SO2 inventory. The 371 scenario also includes 
SO2 fluxes from the 371 volcanoes identified as degassing by Fischer et  al.  (2019) that are not included in 

Figure 3.  Modeled tropospheric fvolc in two preindustrial simulations. (a) Tropospheric fvolc in the preindustrial simulation 
with the default scenario volcanic emissions. (b) Tropospheric fvolc in the preindustrial simulation with emissions from the 
H2S 1.7 scenario. Dotted black lines outline the 5-day back trajectory region (120°W–30°E, 42°–90°N) for the Summit, 
Greenland ice core (location marked with “+”) as described in Zhai et al. (2021). The mean fvolc of the sulfur (SO2 + SO4 2−) 
burden for the air-mass source region are shown in the bottom left.
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the Carn et  al.  (2015,  2017) SO2 inventory. These 371 volcanoes are classified as either “hydrothermal” or 
“magmatic” and fluxes are assigned to be 3 or 7 t S day −1 (0.001 or 0.003 Tg S year −1), respectively (Fischer 
et al., 2019). This includes 16 Icelandic volcanoes each emitting 3 t S day −1 (0.017 Tg S year −1 in total). The 371 
scenario results in a modest increase in fvolc in the Greenland air mass region from 34% in the default scenario to 
36%, still three standard deviations below the mean ice core fvolc of 66% (Figure 2b).

In the H2S scenario, we hypothesize that preindustrial and present-day simulations are missing a significant 
volcanic sulfur source due to the omission of H2S from volcanic emissions inventories. Here, H2S contribution is 
represented by increasing modeled SO2 emissions due to the short 1- to 3-day lifetime of H2S against oxidation to 
SO2 (D’Alessandro et al., 2009; Kourtidis et al., 2008; Pham et al., 1995). Accordingly, SO2 emissions are multi-
plied by a factor based on measured or predicted SO2 to H2S ratios (Halmer et al., 2002; Table S5 in Supporting 
Information S1). The H2S scenario results in a fvolc of 46%, which is 2 standard deviations below the mean ice 
core fvolc of 66%.

In the H2S 1.7 scenario, we multiply the SO2 emissions from the H2S scenario by 1.7 for each volcano. We choose 
the factor of 1.7 to approximate the mean ice core fvolc of 66%. As expected and shown in Figure 3b, the H2S 1.7 
scenario produces fvolc of 61%, which approximately aligns with the mean ice core fvolc of 66%. This scenario 
implies that current estimates of preindustrial volcanic emissions are underestimated due to the omission of H2S 
emissions and/or that passive volcanic degassing has decreased since the preindustrial.

We also consider a scenario where only Icelandic volcanoes have increased sulfur emissions and that these 
emissions are much larger than Icelandic emissions in the three aforementioned emissions scenarios (Text S7 
in Supporting Information S1). SO2 emissions from Iceland were 5.1 Tg S yr −1 in this scenario, which is 30 
times larger than sulfur emissions from Iceland in the H2S 1.7 scenario (0.16 Tg S yr −1), but both scenarios are 
within the estimated range of sulfur emissions from Icelandic volcanoes based on observations from Icelan-
dic hot springs (Text S7 in Supporting Information S1; Supplementary Data File 2). Icelandic volcanic sulfur 
emissions of this magnitude reconcile the discrepancy between the model and ice core (Text S7 in Supporting 
Information S1). Given the recent studies indicating that passive volcanic degassing CO2 emissions in Iceland 
might be significantly underestimated (e.g., Ilyinskaya et al., 2018), it is possible that underestimated Icelandic 
volcanic sulfur emissions could explain most or all of the discrepancy between the ice core and modeled fvolc. 
This possibility also has significant radiative forcing implications (Text S7 in Supporting Information S1), and 
highlights the large uncertainty and disproportionate impact of Icelandic volcanic emissions in the North Atlantic 
and Greenland.

4.3.  Radiative Forcing Implications

Models indicate that the cooling effect of anthropogenic aerosols would be lower than previously thought if 
the preindustrial sulfate aerosol abundance was higher because of the nonlinear relationship between aerosols 
and RFaci: as preindustrial aerosol abundance increases, cloud albedo becomes less sensitive to anthropogenic 
aerosols (Carslaw et al., 2013; Gettelman et al., 2015). To explore the potential RF implications of our emissions 
scenarios, we consider three possibilities. First, we assume that the default volcanic emissions inventory from 
Carn et al. (2015, 2017) accurately estimates present-day emissions, but underestimates passive volcanic sulfur 
emissions in the preindustrial. Second, we assume that passive volcanic sulfur emissions have not changed since 
the preindustrial, and that both preindustrial and present-day passive degassing emissions are underestimated. 
Overlapping volcanic and anthropogenic sulfur isotopic source signatures preclude quantifying volcanic sulfate 
in post-1850 ice core samples (Ghahremaninezhad et al., 2016; Patris et al., 2002; Wasiuta et al., 2006), therefore 
we cannot use post-1850 ice core measurements to evaluate this possibility. A third possibility is a combination 
of the first two: volcanic sulfur emissions in both present-day and preindustrial are underestimated and volcanic 
passive sulfur emissions were higher in the preindustrial relative to the present day. The RF implications of this 
third possibility will fall in between the first two.

To quantify the RF implications of an underestimate in passive volcanic degassing emissions in the preindustrial 
(first possibility) or both the preindustrial and present day (second possibility), we estimate RF for each possibil-
ity (RF = RFari + RFaci), where RFari is calculated using GEOS-Chem (Text S5 in Supporting Information S1) and 
RFaci is calculated using the simple heuristic model described by Wood (2021) (Text S8 in Supporting Informa-
tion S1). We estimate ΔRF by subtracting RF with the Carn et al. (2015, 2017) inventory from RF with elevated 
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passive degassing emissions representing the first or second possibility (Table S6 in Supporting Information S1). 
We quantify ΔRF for the first possibility by using the H2S 1.7 scenario in the preindustrial and using the default 
scenario in the present day. We quantify ΔRF for the second possibility by using the H2S 1.7 scenario in both 
the preindustrial and present day. We focus on the H2S 1.7 scenario because it results in a preindustrial modeled 
fvolc (61%) approximately equal to the ice core fvolc (66%). The resulting ΔRF for both possibilities are summa-
rized in Table 1. ΔRF ranges from +0.29 W m −2 (ΔRFari = +0.03 W m −2, ΔRFaci = +0.26 W m −2; Table 1, 
Figure S4 in Supporting Information S1) where only preindustrial emissions are underestimated, to +0.11 W m −2 
(ΔRFari = 0.0 W m −2, ΔRFaci = +0.11 W m −2; Table 1, Figure S4 in Supporting Information S1) where both 
preindustrial and present-day emissions are underestimated. We estimate that underestimating Icelandic passive 
volcanic sulfur emissions could have an equally large or larger impact on radiative forcing (ΔRF = +0.55 W m −2) 
(Text S7 in Supporting Information S1). This analysis neglects the effects of cloud adjustments to aerosol (i.e., 
impacts on cloud fraction, cloud lifetime, and semi-direct aerosol effects). Nevertheless, these calculations show 
that the impact of underestimating volcanic emissions on RF calculations is potentially large. Future studies using 
fully coupled atmosphere-ocean global climate models with enhanced volcanic emissions will be useful for more 
accurately quantifying RF implications and uncertainty.

5.  Conclusions
Our results indicate that passive volcanic degassing sulfur emissions influencing the Arctic are underestimated 
by up to a factor of three. We show that increased volcanic sulfur emissions from passive degassing results in 
estimated Arctic anthropogenic aerosol cooling that is up to a factor of two lower in magnitude. An overly strong 
anthropogenic aerosol cooling due to underestimated passive volcanic sulfur degassing could at least partially 
explain excessively strong aerosol cooling in CMIP6 climate models (Dittus et al., 2020) and the underestimates 
of modeled Arctic amplification compared to observations (Rantanen et al., 2022).

Quantifying passive volcanic sulfur degassing emissions is critical for constraining anthropogenic aerosol forc-
ing. More observations of SO2 emissions from passive volcanic degassing are required to constrain the magnitude 
of the underestimate in the passive volcanic SO2 emissions inventory based on satellite measurements in Carn 
et al.  (2015, 2017). Additionally, H2S, which is typically neglected in volcanic emissions inventories used in 
global climate models, should be considered a potentially important contributor to the global atmospheric sulfur 
budget and thus climate.

Data Availability Statement
All ice core data and Iceland volcanic gas observations are available in the National Science Foundation (NSF) 
Arctic Data Center at https://doi.org/10.18739/A2N873162. GEOS-Chem version 13.2.1 code is publicly availa-
ble at https://doi.org/10.5281/zenodo.5500717.

Emissions 
scenario

Volcanic emissions 
scenario in present 
day (fvolc of natural 

nssSO4 2−)

Volcanic emissions 
scenario in 

preindustrial (fvolc of 
natural nssSO4 2−)

Arctic aerosol SW TOA 
RF a (RFari

 b + RFaci
 c) 

between present day and 
in preindustrial (W m −2)

Difference between default 
arctic RF and emissions 
scenario Arctic RF (W 
m −2) (ΔRFari + ΔRFaci)

Default Default (fvolc = 34%) Default (fvolc = 34%) −0.55 (−0.10 + −0.45)

Possibility 1 Default (fvolc = 34%) H2S 1.7 (fvolc = 61%) −0.26 (−0.07 + −0.19) +0.29 (0.03 + 0.26)

Possibility 2 H2S 1.7 (fvolc = 61%) H2S 1.7 (fvolc = 61%) −0.44 (−0.10 + −0.34) +0.11 (0.00 d + 0.11)

 aThe total shortwave (SW) top-of-atmosphere (TOA) radiative forcing (RF) is estimated as the sum of the RF from aerosol-
radiation interactions (RFari) and RF from aerosol-cloud interaction (RFaci).  bDifference between present-day radiative effect 
from aerosol-radiation interactions and preindustrial radiative effect from aerosol-radiation interactions.  cEstimated present-
day RF from aerosol-cloud interactions (Text S8).  dΔRFari between the default possibility and possibility 2 is negligible 
compared to ΔRFaci.

Table 1 
Radiative Forcing (RF) Estimates for Different Present-Day and Preindustrial Volcanic Scenarios
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