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ABSTRACT Bacteria in the effluent of wastewater treatment plants (WWTPs) can trans-
fer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conju-
gation; however, there is a lack of quantitative assessment of this phenomenon in
continuous cultures. Our objective was to determine the effects of background nutrient
levels in river water column and growth rates of bacteria on the conjugation frequency
of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance
level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the dis-
charge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bac-
teria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the
donor cells were constructed by filter mating with bacteria in the effluent of a local
WWTP. Results showed that higher bacterial growth rate (0.45 h21 versus 0.15 h21) led
to higher conjugation frequencies (1024 versus 1026 transconjugant per recipient). The
nutrient level also significantly affected the conjugation frequency, albeit to a lesser
extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the
recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased
to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-con-
taining plasmid in both the donor and the transconjugant cells also occur in other fecal
bacterial genera. The quantitative information obtained from this study can inform haz-
ard identification related to the proliferation of wastewater-associated ARGs in surface
water.

IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The dis-
charge point of WWTP effluent, where ARGs may be horizontally transferred from bac-
teria of treated wastewater to bacteria of receiving water, is an important interface
between the human-dominated ecosystem and the natural environment. The use of
batch cultures in previous studies cannot adequately simulate the nutrient conditions
and growth rates in receiving water. In this study, chemostats were employed to simu-
late the continuous growth of bacteria in receiving water. Furthermore, the experi-
mental setup allowed for separate investigations on the effects of nutrient levels
(i.e., simulating background nutrients in river water) and bacterial growth rates on
conjugation frequencies and resulting resistance levels. The study generates statisti-
cally sound ecological data that can be used to estimate the risk of wastewater-origi-
nated ARGs as part of the One Health framework.

KEYWORDS tetracycline resistance, conjugation, chemostat, E. coli, growth rate,
nutrient level

The decreased effectiveness of antibiotics to treat bacterial infections due to antibiotic
resistance poses a serious threat to public health (1). Recently, the role of the environ-

ment as a medium in disseminating antibiotic resistance has been recognized. The
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“one-health” concept, which integrates humans, animals, and the environment, has been
proposed as a strategy to address the emergence and spread of antibiotic resistance (2).
Wastewater treatment plants (WWTPs), an important interface between human and the
environment, are deemed “hot spots” for antibiotic resistance genes (ARGs) (3). Effluent
from WWTPs can carry microbes containing mobile genetic elements and ARGs (4).
Further, effluent from WWTPs can also contain pollutants such as antibiotics, heavy metals,
surfactants, nanoparticles, etc. (5–7). These contaminant residues can create selective
pressures for horizontal gene transfer (HGT) of ARGs in receiving water and soil (8).
Consequently, WWTP effluent, particularly effluent without disinfection, could be a major
contributor to the emergence and spread of antibiotic resistance in receiving water.

Two mechanisms, chromosomal mutation and HGT, may be involved in the emer-
gence of antibiotic resistance in previously susceptible cells as a consequence of WWTP
discharge into receiving water. Mutation can be induced by selective pressure in the
environment, such as the presence of antibiotics (9, 10). Although mutations conferring
resistance impose an initial fitness cost to bacterial hosts (11, 12), this fitness cost is often
temporary and can be alleviated by compensatory mutations in later generations (10,
13). Therefore, mutational resistance against antibiotics can emerge and persist under
selective pressure, which can occur in surface waters receiving WWTP effluent containing
low levels of antibiotics (9, 10).

HGT can occur through conjugation, transformation, and transduction. Conjugative
plasmids can self-replicate and carry the genes needed for self-transmission. Most broad-
host-range conjugative plasmids have been found carrying ARGs (14). Consequently,
conjugation is considered responsible for the spread of the majority of antibiotic resist-
ance (15). Environmental factors, such as nutrient availability, temperature, and pH (16),
and the characteristics of donor and recipient cells, such as their growth rate, can affect
conjugation frequencies (17). However, most of the conjugation studies were conducted
in batch cultures (18–20), which cannot simulate microbial communities residing in natu-
ral environments such as rivers. Different from microbes growing in batch cultures,
where the nutrient contents are very high initially before gradually depleting, microbes
face relatively constant, low nutrient levels over a long segment of a river (21), although
the nutrient levels can vary significantly among river systems (22). Also, in contrast to
microbes growing in batch reactors, where cells go through four distinctive growth
phases (i.e., lag, exponential, stationary, and death phases), microbes in river systems
may maintain a relatively stable growth rate (23). Hence, in order to assess the risk of
ARG proliferation in surface water receiving WWTP effluent, it is important to examine
how environmental and microbial factors affect conjugation frequencies in continuous
cultures.

The objective of this study was to determine the effects of background nutrient levels
in river water column and growth rates of bacteria on the conjugation frequency of
ARGs from bacteria in WWTP effluent to river bacteria, as well as on the resulting resist-
ance level of the river bacteria. Two Escherichia coli strains were used as donor and recip-
ient cells to simulate bacteria in WWTP effluents and river bacteria, respectively.
Chemostats were used to grow continuous cultures simulating river waters receiving
WWTP effluents and were operated under different growth rates and nutrient levels (Fig. 1).
The antibiotic tetracycline was also present in the chemostat reactors at an environmentally
relevant concentration (i.e., 10 mg/L) (6, 24). Both culture-based and whole-genome
sequencing (WGS) approaches were used to evaluate phenotypic and genotypic changes,
respectively, resulting from conjugation events under continuous culture conditions. The
findings from this study can improve our understanding of the transfer of ARGs from WWTP
effluents to surface water.

RESULTS AND DISCUSSION
Effects of growth rate and nutrient level on conjugation frequency after 16 h of

conjugation. It took 1.5 and 3.0 days, respectively, for the number of recipient cells to
reach steady state in the chemostat reactors under high (0.45 h21) and low (0.15 h21)
growth rates (see Fig. S1 in the supplemental material). After the recipient cells
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reached steady state, donor cells were introduced to the chemostat reactor (time 0). By
analyzing the conjugation frequency measured at 16 h, the analysis of variance
(ANOVA) results showed that both the nutrient level and the growth rate had signifi-
cant effects on conjugation frequency (P values in Table S1). Tukey’s post hoc test
results showed a significant main effect for the growth rate under both nutrient levels
(Fig. 2; F = 20, P, 0.001 for 1/10 MHB; F = 133, P, 0.001 for 1/3 MHB), while the nutri-
ent level had a significant effect on the conjugation frequency only under a growth
rate of 0.45 h21 (Fig. 2; F = 17, P , 0.05).

A higher growth rate resulted in a higher conjugation frequency (Fig. 2). Under the
nutrient level of 1/10 Mueller-Hinton broth (MHB), the conjugation frequencies were
(8.08 6 4.41) � 1024 and (1.81 6 2.21) � 1026 after 16 h for the 0.45 h21 and 0.15 h21

growth rates, respectively. In comparison, under a nutrient level of 1/3 MHB, the conju-

FIG 2 Conjugation frequency under different growth rates (0.45 h21 and 0.15 h21) and different
nutrient levels (1/10 MHB and 1/3 MHB) at 16 h. Asterisk represents statistically significant differences
(* and *** indicate P , 0.05 and P , 0.001, respectively [Tukey’s post doc test]). Error bars represent
standard deviations (n = 6).

FIG 1 Experimental setup of the chemostat reactor system.
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gation frequencies after 16 h were (8.94 6 1.76) � 1025 for bacteria grown at 0.45 h21

and (1.876 2.48) � 1026 bacteria grown at 0.15 h21.
Several factors can affect conjugation frequencies, such as growth phase, cell den-

sity, donor-to-recipient ratio, nutrient concentrations, temperature, pH, and mating
time (25). Batch reactors are often used to measure conjugation frequencies; however,
they do not allow for separate controls of growth phase (i.e., resource-dependent
growth rate) and cell densities. By using batch reactors, Lopatkin et al. reported that
conjugation frequency significantly increased when the concentration of glucose was
increased in the medium (26). In batch reactors, higher initial nutrient levels result in
higher cell densities and higher growth rates, which makes it difficult to compare the
relative importance of cell density and growth rate to conjugation frequency. In con-
trast to batch reactors, chemostat reactors are operated to grow continuous cultures,
which can better simulate the river environment (27) and allow for separate controls of
cell density (through nutrient level in chemostat influent) and growth rate (through
dilution rate) (28). As shown in the result (Fig. 2), the growth rate significantly affected
the conjugation frequency, regardless of the cell densities, in chemostat reactors.

Effects of growth rate and nutrient level on the number of transconjugants
during the 96-h conjugation experiment. Conjugation experiments often use a mat-
ing window of 16 h because subsequent growth of transconjugants may cause overes-
timation of the conjugation frequency (29). In reality, bacteria from WWTP effluent can
co-reside with indigenous river bacteria in receiving water for days or longer, resulting
in longer mating times. Therefore, the number of transconjugants were also monitored
for the time points beyond 16 h.

ANOVA tests show significant main effects of both nutrient level (see Table S2,
F4, 20 = 7.991, P = 0.037) and growth rate (F4, 20 = 18.508, P = 0.008) on the number of
transconjugants. Tukey’s post hoc tests showed significantly higher concentrations of
transconjugants under higher nutrient levels (P , 0.05) and at higher growth rates
(P , 0.001). There was a significant interaction effect between nutrient level and growth
rate (ANOVA: F4, 20 = 7.170, P = 0.040). Tukey’s post hoc tests showed significantly higher
concentration of transconjugants at a 0.45 h21 growth rate and 1/3 MHB than under the
other treatment combinations (P , 0.05). Conjugation time had a significant effect on
the number of transconjugants after 96 h of conjugation (see Table S2).

Under the 1/10 MHB nutrient level, the number of transconjugants increased from
(9.83 6 1.95) � 101 to (4.89 6 4.37) � 103 CFU mL21 at the 0.45 h21 growth rate and
increased from (5.08 6 5.32) � 101 to (3.69 6 3.38) � 102 CFU mL21 for the 0.15 h21

growth rate (Fig. 3a). Similarly, under the 1/3 MHB nutrient level, the number of transcon-
jugants showed an increase from (2.106 0.32)� 102 to (4.196 2.88) � 104 CFU mL21 for

FIG 3 Concentrations of transconjugants (n = 6) at 0.45 h21 and 0.15 h21 growth rates with nutrient levels of 1/10
MHB (a) and 1/3 MHB (b). Asterisks represents statistically significant differences (i.e., *, **, and *** indicate P , 0.05,
P , 0.01, and P , 0.001, respectively [Tukey’s post doc test]).
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cultures grown under 0.45 h21 and (1.18 6 1.21) � 102 to (6.61 6 6.18) � 102 CFU mL21

for the 0.15 h21 growth rate (Fig. 3b).
For a given experimental duration, a higher growth rate means a larger number of

generations. Therefore, the number of generations of the cultured cells associated with
the growth rate of 0.45 h21 was always three times that associated with the growth
rate of 0.15 h21. Interestingly, the number of transconjugants at the same generation
numbers were the same for the same nutrient conditions, regardless of growth rate
(see Fig. S2). Therefore, slow-growing bacteria can have a similar number of transcon-
jugants as fast-growing bacteria, if they reach the same generation numbers.

In addition, the presence of antibiotic also likely had an impact on the conjugation
frequency reported here. Unlike batch reactors, where the concentration of antibiotics
may decrease over time due to degradation and adsorption to bacterial cells, the tetra-
cycline concentration in the chemostat reactors was maintained at 10 mg L21 by con-
tinuously pumping freshly prepared antibiotic solutions. The antibiotic concentration
used in this study is an environmentally relevant concentration. A previous study
showed that 10 mg L21 of tetracycline increased the transfer frequency of ARGs by 2-
fold compared to a condition without tetracycline (18). Furthermore, although higher
concentrations of tetracycline may favor selection of a tetracycline-resistant pheno-
type, such concentrations could also lead to a decline in the number of detectable
transfer events.

MIC change. The minimum inhibitory concentrations (MICs) of transconjugants were
substantially higher than those of the original recipients. The MIC of the original recipient
cells for tetracycline was 2 mg L21. Under the 1/10 MHB nutrient level, for the cells with a
growth rate of 0.45 h21, the MIC of transconjugants increased to 64 mg L21 at 16 h and
eventually reached 128 mg L21 at 96 h (Fig. 4a). For the cells with the growth rate of 0.15
h21, the MIC of transconjugants increased to 64 mg L21 at 16 h and remained at that level
until the end of the conjugation experiments at 96 h (Fig. 4a). Under the 1/3 MHB nutrient
level, the MIC of the transconjugants with 0.15 h21 growth rate increased to and maintained
at 64 mg L21, while the MIC of the transconjugants with the 0.45 h21 growth rate eventually
increased to 128 mg L21 at the end of the conjugation experiment at 96 h (Fig. 4b). It is
worth noting that the MIC of the donor increased from 2 mg L21 (for strain CV601) to
256 mg L21 (for strain CW) after the filter-mating experiment with treated WWTP effluent.

According to Kruskal-Wallis tests, the growth rate had a significant impact on the
MICs of transconjugants (see Table S3, P , 0.05), while the nutrient level did not have
significant impact. The difference in MICs between the two growth rates was likely
caused by the difference in the development of compensatory adaptation under the
two growth rates. Newly acquired genes often function inefficiently within existing

FIG 4 Change in tetracycline MIC relative to the J53 control strain after 4 days of the conjugation experiment at 0.45 h21

and 0.15 h21 growth rates with nutrient levels of 1/10 MHB (a) and 1/3 MHB (b). The results are averages from six
replicate chemostats, and error bars are too small to be visible.
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genomic background (30). Because plasmids often only harbor loci that are necessary
for their own replication, the fitness costs could be high for gene disruption, energetic
requirements, and specific protein level interactions (31). Prensky and coworkers
reported that new transconjugants grew significantly slower and/or with longer lag
times than lineages that had been replicating for several generations (32). This obser-
vation is consistent with our findings where, at any given time, transconjugants from
later generations (i.e., the ones under higher growth rate) had higher MIC values than
transconjugants from earlier generations (i.e., the ones under lower growth rate).

In actual riverine environment, the antibiotic residues in wastewater effluent could
also cause the emergence of antibiotic resistance in river bacteria by causing mutations.
In order to study the effects of antibiotics alone on the emergence of antibiotic resist-
ance in riverine consortia, mutation experiments were also conducted in our simplified
chemostat systems. In the mutation experiment, the increases in MIC were much smaller
than those from the conjugation experiment. Under a 1/10 MHB nutrient level, the MIC
of the mutant increased from 2 to 8 mg/L and to 4 mg/L under growth rates of 0.45 h21

and 0.15 h21, respectively, after 96 h of mutation experiment (see Fig. S3a). Under a 1/3
MHB nutrient level, the MIC of the mutant increased from 2 to 4 mg/L under both
growth rates of 0.45 h21 and 0.15 h21 (see Fig. S3b).

The MICs of the mutants were much lower than those of the transconjugants. This
suggests that cells acquiring resistance through conjugation could pose a higher haz-
ard (i.e., a higher MIC) than those acquiring resistance through mutation. Furthermore,
the MIC of mutants were not significantly affected by either growth rate or nutrient
level (see Fig. S3). Among the four treatment scenarios tested, the combination of 0.45
h21 growth rate and 1/10 MHB resulted in the highest MIC at the end of the mutation
experiment. Resistance mutations are often costly, and there is a significant difference
in the fitness cost between antibiotic classes and bacterial species (9). Further, through
meta-analysis, Melnyk and coworkers found that the relative fitness of resistance muta-
tion is negatively correlated with the fold-incase in MIC conferred by the mutation.

Whole-genome sequencing. To confirm the transfer of plasmids carrying tetracy-
cline resistance genes, whole-genome sequencing was conducted to compare the
genomes of the donor, recipient, transconjugants, and mutants. The sequence of all
possible plasmids was examined in the donor (CW) to identify tetracycline resistance
genes (see Table S4). Of the seven plasmids identified, only plasmid CW_60 contained
the known tetracycline-resistant genes tet(A) and tet(R) (see Fig. S4). The CW_60 plas-
mid shared more than 98% nucleotide sequence identity with plasmids found in E. coli,
Klebsiella pneumonia, Salmonella enterica, Shigella flexneri, and Shewanella algae strains.
Table S5 shows four plasmid entries, out of all BLAST hits, containing sequences similar
to the CW_60 plasmid conferring resistance to tetracycline and other antibiotics (33–
35). The presence of similar plasmids in different bacterial genera suggests that the
plasmid can be transferred between different species via HGT.

CW_60 was also detected in the transconjugants grown with the 0.45 h21 growth
rate (i.e., T45) with 8 bases shorter in the transconjugants (see Fig. S5). CW_60 was not
detected in the transconjugants grown under the growth rate of 0.15 h21 (i.e., T15).
However, other plasmids that were present in donor and T45 were found in T15.
CW_60 in T15 was probably not detected because of the fragmentation of predicted
open reading frames as a result the inability of short read lengths to bridge certain
genomic regions (36). These results proved that a mobile plasmid containing tetracy-
cline resistance genes were transferred from WWTP effluent to donor and then later
from donor (i.e., CW) to transconjugants.

The discrepancy in MIC level between donor and transconjugants could be due to
several factors, such as heterogeneity of MIC of cells in the culture and compatibility of
the plasmid (37). Further studies are needed to better elucidate the reasons for the dif-
ference in MIC between transconjugants and donor, as well as between transconju-
gants grown at different growth rates. Attempts were made to identify underlying
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mechanisms causing this difference using the WGS data. However, no convincing find-
ings were obtained.

The genomes of mutants grown under different growth rates were assembled (i.e.,
M45 and M15 for mutants grown under 0.45 h21 and 0.15 h21 growth rates, respec-
tively). There were only three mutation events in M15 compared to J53 (Table 1). The
first mutation in M15 was found in the nohD gene. This gene is typically near a site of
targeted chromosome cleavage by lambda terminase that introduces double-strand
cleavages in DNA (38). The nohD gene is often involved in DNA recombination. The
second mutation in M15 was on the insH-5 gene, which interacts with the termini of
the IS5 sequence (39). IS5 can enhance gene transcription when it is placed on either
side of the promoter for a target gene (40). Hence, the interaction between insH-5 and
the IS5 sequence can play a key role in transcription enhancement. The third mutation
was on the pinQ gene. There is no known involvement of pinQ in antibiotic resistance.
No mutation in M15 was directly related to tetracycline resistance, which might be the
reason for the similar MICs between J53 and M15 (2 mg L21 versus 4 mg L21). Gene
knockout or monitoring of expression levels of these genes would be needed to fur-
ther confirm their roles for the elevated MICs.

Six mutations were identified in the M45 genome (Table 1). Of those mutations,
yaaA encodes a peroxide stress resistance protein, which prevents oxidative damage
to both DNA and proteins by diminishing the amount of unincorporated iron within
the cell and may play a role in tetracycline resistance (41). The mutation in yaaA likely
occurred due to a stress response in reaction to tetracycline presence. Tetracycline pro-
duces lethal oxidative stress to kill the bacteria (42). Therefore, when facing oxidative
stress induced by tetracycline, cells produce antioxidant enzymes to survive (43).
Consequently, the higher MIC of M45 (8 mg L21) compared to J53 (2 mg L21) was likely
due to the mutation in the yaaA gene.

Environmental implications. Conjugation frequencies vary widely (1028 to 1021

transconjugants per recipient [T/R]) for different bacterial donor-recipient pairs and dif-
ferent plasmids. They can also be affected by the test methods (batch versus continu-
ous cultures; Table 2). The transfer frequencies (1026 to 1024) obtained in our study
were comparable to other studies (18, 20, 44) and were much lower than in other stud-
ies reporting conjugation frequency between 1023 and 1021 (19, 23, 29, 45–47). Cells
in batch systems, with a cultivation period of 12 to 48 h, may undergo growth stage
regulation (48), where some plasmids were significantly downregulated in conjugative
transfer during stationary phase. Similar to this study, an in situ study (49), which
reported the plasmid transfer frequencies of 1026 to 1024 in seawater, also suggested
that the transfer frequencies from batch tests might have been overestimated (45).

The antibiotics in WWTP effluent may act as a selective force that drives the HTG of
ARGs and may cause the mutation of river bacteria (46, 50, 51). In the simplified model
system tested here (i.e., E. coli and tetracycline as model bacteria and antibiotic), our
results demonstrate that the antibiotic residues in WWTP effluent would result in a
greater ecological and public health implications through driving conjugation than
through causing mutations.

TABLE 1Mutations in recipients grown at 0.45 and 0.15 h21

Samplea Gene Mutation(s) Description
M45 yaaA A!E 73; D!A 242 Peroxide stress resistance protein YaaA

cbrA T!A 243; T!A 292; V!M 345 Colicin M resistance protein
yfgI L!F 5; I!V 54 Nalidixic acid resistance protein YfgI
tehA A!T 60 Tellurite resistance protein
rclC W!R 28 Reactive chlorine species resistance protein C
hslJ A!P 14; N!I 94; L!V 134 Lipoprotein implicated in novobiocin resistance

M15 nohD E*82; E!Q 84 DLP12 prophage putative DNA-packaging protein NohD
insH-5 I!V 83; A!P 117; K!E 185; G!S 187; H!N 190 Rac prophage IS5 transposase and transactivator
pinQ E!G 38; K*82; D!A 194 Qin prophage putative site-specific recombinase

aThe two mutants are denoted as M45 and M15.
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MATERIALS ANDMETHODS
E. coli strains. Two E. coli strains, CV601 and J53, obtained from Holger Heuer of the Julius Kühn

Institute were used as donor and recipient cells, respectively, for the conjugation experiments. These strains
have been used as model bacteria to study ARG proliferation in several other studies (29, 52, 53). E. coli strain
CV601 is resistant to both kanamycin and rifampin and is tagged with green fluorescent protein, which
makes the cells appear green under UV light (54). E. coli strain J53 is resistant to sodium azide (55).

Construction of donor cells by acquiring tet-carrying plasmid(s) from WWTP effluent. Filter mat-
ing was used to capture the conjugative plasmids according to a previously published procedure with mini-
mal modifications (54). Initially, E. coli CV601 was cultured in lysogeny broth (LB; i.e., 1 L of LB medium
contains 10 g tryptone, 5 g yeast extract, and 10 g sodium chloride) containing 50 mg L21 kanamycin and
50 mg L21 rifampicin at 180 rpm and 30°C overnight. The cell culture was then diluted 20-fold in fresh LB
broth and grown for 10 h to reach the exponential growth phase. The cells were washed twice in phosphate-
buffered saline (PBS) to remove the trace of antibiotics and were resuspended in 15 mL of PBS.

The Theresa Street WWTP in Lincoln, NE, has a treatment capacity of treating 28 million gallons of
municipal wastewater per day. The secondary effluent (i.e., the wastewater was treated by the activated
sludge process and was not disinfected by the UV system) from the WWTP was filtered through S-Pak fil-
ters with a 0.45-mm pore size (Millipore Corp., Bedford, MA). Bacteria were removed from the filters by
vortexing for 15 min in 25 mL of PBS. The bacterial suspension was decanted to a new tube and centri-
fuged for 15 min at 2,700 � g. The pellet was washed with PBS twice and resuspended in PBS. The vol-
ume of PBS was adjusted to reach an optical density at 600 nm (OD600) of 1.4.

Next, 2 mL of effluent bacteria and 2 mL of CV601 were combined and vortexed in a 10-mL centri-
fuge tube. A 100-mL portion of the combined suspension was loaded onto a 0.22-mm pore size mixed
cellulose ester filter (Whatman, Plc, Inc., Maidstone, Kent, UK), which was placed on an LB agar plate
amended with 100 mg L21 cycloheximide, followed by incubation at 37°C for 2 days. Cycloheximide was
used to remove undesirable organisms from WWTP effluent (56). After incubation, the cell mixture on
the filter disk was resuspended in 2 mL of PBS with vortexing. The suspension was plated on LB agar
plates, which contained 50 mg L21 kanamycin, 50 mg L21 rifampicin, 100 mg L21 cycloheximide, and
10 mg L21 tetracycline. As controls, CV601 cells were grown and plated under the same conditions
except the presence of cells from WWTP effluent. After 2 days, CV601 transconjugants receiving plas-
mids from the WWTP effluent formed visible colonies on agar plates, and their identities were further
verified by their green appearance under UV light. Confirmation of plasmids conferring tetracycline re-
sistance was later verified using the MIC test. The resulting CV601 transconjugant (designated CW),
which contained tet-carrying plasmids, was inoculated in selective LB media and stored at –80°C with
glycerol. CW was later used as the donor cells in the conjugation experiments in this study. Tetracycline
was used as the model antibiotic in this study, since it commonly occurs in surface waters impacted by
WWTP effluent (57).

Chemostat reactor design. The experiment was conducted according to a 2 � 2 factorial design:
nutrient level (1/3-strength and 1/10-strength MHB) and growth rate (0.15 and 0.45 h21). Two E. coli
strains, CW (i.e., CV601 transconjugants) and J53, were used as the donor and recipient, respectively.
First, E. coli J53 were cultured in LB broth in the presence of 200 mg L21 sodium azide at 35°C with 180-
rpm shaking overnight. The J53 culture at the late exponential phase was then diluted to an OD600 of
0.3. Next, 15 mL of the diluted J53 culture was added to the chemostat reactor (Fig. 1) to simulate recipi-
ent cells in surface water (i.e., river bacteria). The J53 cell number in chemostats was monitored to
ensure it reached a steady state before simulated WWTP effluent (i.e., a solution containing donor CW
cells and tetracycline) was introduced to the chemostat reactors.

Three replicate chemostat reactors were operated for each treatment combination (i.e., nutrient level �
growth rate). The chemostat systems were established according to a published ministat manual (58).
Briefly, the chemostat reactors were made of glass and the tubing was made of autoclavable Marprene. The
entire experiment was conducted in a fume hood without sunlight exposure, and the chemostat reactor
was operated at room temperature 22°C. Filtered air was pumped into chemostats to provide oxygen and to
mix solution. Within each experimental run, all reactors had the same dilution rate (i.e., 0.15 or 0.45 h21).
Given the growth rates of E. coli in the environment (0.17 to 0.90 h21) (59), as well as the washout rate and

TABLE 2 Plasmid transfer frequencies between pure strains and bacterial communities of various environments

E. coli strain

Source Plasmid Method Frequency (T/R)a Source or referenceDonor Recipient
MG1655 Activated sludge pKJK5 Batch 1� 10–3 to 4.3� 10–2 19
CV601 Wastewater Batch 2.2� 10–6 to 8.7� 10–6 18
MG1655 Activated sludge pKJK5 Batch 5.05� 10–4 20
MG1655 Activated sludge pKJK5 Batch 3.0� 10–3 to 1.4� 10–2 23
MG1655 Wastewater pKJK5 Batch 2.0� 10–2 to 1.0� 10–1 45
K-12 Activated sludge RP4 Bioreactor 2.76� 10–5 44
C600 Activated sludge RP4 Batch 4.6� 10–3 to 1.3� 10–2 47
CV601 J53 Sediment Batch 8.48� 10–7 to 7.48� 10–1 29
CV601 J53-2 Batch 8.46� 10–5 to 1.02� 10–1 46
CV601 J53 Wastewater CW_60 Chemostat reactor 1.81� 10–6 to 8.08� 10–4 This study
aT/R, transconjugants/recipient.
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the bacteriostatic effect of tetracycline, dilution rates of 0.15 h21 and 0.45 h21 were chosen to represent low
and high growth rates, respectively, in this study. In chemostat reactors, the growth rate of a single culture
was equal to the dilution ratio of the reactor at steady state. To monitor if a steady state had been reached,
the cell density of recipient cells was monitored by measuring the optical density. When the density of recip-
ient cells reached steady state in the chemostat reactors, 15 mL of the CW donor culture was directly added
to reactors. Then, a simulated effluent (i.e., a solution containing CW cells and tetracycline) was pumped into
the reactors with the same flow rate as the media that had been pumped to support the growth of the re-
cipient cells in the reactors. The time that the simulated effluent was introduced was denoted as day 0.
Since the flow rate into the reactors doubled and the solution volumes increased from 15 to 30 mL, the dilu-
tion ratio was kept constant. The CW cells and tetracycline in the simulated effluent reached final concentra-
tions of 108 CFU mL21 and 10 mg L21, respectively, in the chemostats. To account for the emergence of
ARGs due to mutation, all of the chemostat experiments were repeated in the same manner by introducing
a simulated effluent without CW donor (i.e., tetracycline only). The entire experiment was repeated for a sec-
ond time.

Bacterial enumeration. Samples from chemostats were taken after 16, 24, 48, 72, and 96 h and plated
on selective media to enumerate recipient and transconjugant cells. Donor cells inside chemostats were
measured as well. Serial dilutions (1:10) were done using PBS, and diluted samples were plated in triplicate
for each reactor. Donors were enumerated on LB agar supplemented with 50 mg L21 kanamycin, 50 mg L21

rifampicin, and 10 mg L21 tetracycline, followed by incubation at 35°C for 16 h. Recipients were enumerated
on LB agar supplement with 200 mg L21 sodium azide and then incubated at 35°C for 20 h. Transconjugants
were plated on LB agar supplemented with 10 mg L21 tetracycline and 200 mg L21 sodium azide, followed
by incubation at 35°C for 24 h. The results were recorded as CFU mL21.

Calculating the conjugation frequency. The conjugation frequency (CF) was expressed as the num-
ber of transconjugants per recipient colonies formed (60):

CF ¼ No: of transconjugants CFU
mL

� �

No: of recipients CFU
mL

� �

MIC measurement.MIC values were assessed using MHB media containing a series of 2-fold diluted
tetracycline concentrations (i.e., 0.5, 1, 2, 4, 8, 16, 32, 64, 128, and 256 mg L21). The MHB media were dis-
pensed into 96-well plates (VWR Company, Monroeville, PA). Tetracycline hydrochloride (Sigma-Aldrich,
St. Louis, MO) stock solution (512 mg/L) was freshly prepared and stored for no more than 7 days at 4°C.
The stability of the stock solution over the storage period was checked using a high-pressure liquid chro-
matograph in the Water Sciences Laboratory at University of Nebraska—Lincoln (61). Inocula represent-
ing the donors, recipients, or transconjugants were diluted and then inoculated into each well of 96-well
plates containing an ;110-mL final volume in each well. A negative control (no cell or antibiotic) was
included on each 96-well plate. The plates were then incubated in a microplate reader (BioTek instru-
ments, Inc., Winooski, VT) at 37°C for 16 to 20 h to obtain growth curves by continuous reading of the
absorbance during the incubation period. The MIC was determined as the lowest concentration of tetra-
cycline that did not permit any visible cell growth (62).

Whole-genome sequencing and assembly. Seven samples were selected for WGS, including strains
CV601, J53, and CW, as well as two transconjugant and two mutant isolates, from growth rates 0.15 and
0.45 h21 with nutrient concentrations of 1/3 MHB. DNA was extracted using a QIAamp DNA minikit
(Qiagen, Inc, Germantown, MD). Samples were sequenced to obtain 150-bp, paired-end reads at the
University of Nebraska Medical Center Genomics Core Facility using an Illumina NextSeq 500 (Illumina,
Inc., San Diego, CA) with a midoutput flow cell. All samples have been uploaded to NCBI’s Sequence
Read Archive (SRA) under BioProject ID PRJNA750500.

Analysis of sequencing reads was conducted by the Center for Biotechnology at University of
Nebraska—Lincoln. Initial trimming and quality control were performed using Trim Galore! (v6.0, with
the default parameters except for q = 30 and retain length $ 35) and FASTQC (v0.11) to remove low-
quality reads and adapter sequences (63). The remaining reads were assembled via SPAdes (v3.13) with
multiple Kmer values (7 to 125 in steps of four) (64). After the assemblies, the quality of each assembly
was analyzed using QUAST v5.0 (65). Genome annotation was conducted using Prokka (v1.13.3) with the
following settings: –kingdom Bacteria and –gcode 11 (66). Overlap between the coding regions of genes
and rRNAs region was allowed (–cdsrnaolap). In addition, noncoding RNAs were searched in annotation
(–rfam). KAIJU (v1.7) was used for taxonomic classification with default parameters and database
ProGenome (version May 2019) (67). The assembled contigs were assessed using Plasmid Finder (v2.0)
to identify potential plasmids (68). The PLSDB database was utilized to confirm the presence of the plas-
mids (69). Bowtie 2 (v2.3) with default parameters was used to align samples (70). SAMtools (v1.9) and
BCFtools (v1.9) were utilized to generate and filter variant coding format files (71).

Statistical analysis. Repeated-measure ANOVAs were conducted to evaluate the main and interaction
effects of the nutrient level and growth rate, with time as a repeated-measure factor, on the conjugation fre-
quency or the number of transconjugants. A Kruskal-Wallis test was conducted to evaluate the effects of con-
jugation times, growth rates, and nutrient levels on the MICs of mutants and transconjugants. All the statistical
analysis was carried out using TIBCO Statistica (v13.3.0; Tibco Software, Palo Alto, CA).

SUPPLEMENTAL MATERIAL
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