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Abstract— Group testing is a technique that can reduce the
number of tests needed to identify infected members in a popu-
lation, by pooling together multiple diagnostic samples. Despite
the variety and importance of prior results, traditional work
on group testing has typically assumed independent infections.
However, contagious diseases among humans, like SARS-CoV-
2, have an important characteristic: infections are governed by
community spread, and are therefore correlated. In this paper,
we explore this observation and we argue that taking into account
the community structure when testing can lead to significant
savings in terms of the number of tests required to guarantee
a given identification accuracy. To show that, we start with a
simplistic (yet practical) infection model, where the entire popu-
lation is organized in (possibly overlapping) communities and the
infection probability of an individual depends on the communities
(s)he participates in. Given this model, we compute new lower
bounds on the number of tests for zero-error identification and
design community-aware group testing algorithms that can be
optimal under assumptions. Finally, we demonstrate significant
benefits over traditional, community-agnostic group testing via
simulations using both noiseless and noisy tests.

Index Terms— Coding, group testing.

I. INTRODUCTION

GROUP testing can identify the infected individuals in a
population using much fewer tests than individual test-

ing. The idea is based on pooled tests, which are tests applied
on groups of diagnostic samples from multiple individuals. So,
if infections are sparse, then many pooled tests are likely to
be negative and large parts of the population can be massively
identified as healthy. Interestingly, group testing has become
popular in the context of COVID-19 [3], [4], [5], [6], [7], and
several countries (including India, Germany, US, and China)
have already deployed preliminary group-testing strategies [8],
[9]. Also, companies and schools use pooled tests to regularly
monitor parts of their population, and then do individual tests
once a pooled test comes out positive.
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Group testing has a rich history in academic literature
dating back to R. Dorfman in 1943, who first introduced the
concept [10]. One can find nice summaries of the various
setups examined so far in [11], [12], [13]. Simply stated, the
traditional group-testing problem assumes a population of n

individuals out of which a few are infected independently,
and the goal is to design testing strategies to identify the
infected individuals from the pooled-test results. In this regard,
most works propose a particular test design (e.g. Bernoulli)
coupled with a decoding strategy (e.g. Definite Defectives),
and guarantees are provided on the number of tests required to
achieve zero- or small-error identification. Additionally, order-
optimality results have been proved for the asymptotic regime,
where the population size tends to infinity (see Section II for
more details).

The new observation we make in this paper is that viral
diseases like SARS-CoV-2 are governed by community spread,
hence are not independent. So, we ask: if infections are
based on a known community structure, can we leverage that
structure to make group testing more efficient, i.e. achieve the
same identification accuracy as traditional group testing, but
with even fewer tests?

Knowing the overall community structure (at least to some
extent) is not unrealistic today [14], [15], [16], but simpler,
more easily acquired structures are also important. As a use
case, consider an apartment building consisting of F families
that have practiced social distancing; clearly, there is a strong
correlation on whether members of the same family are
infected or not. Assume that the building management would
like to test all members to enable access to common facilities.
We ask: what is the most test-efficient way to do so? how
many tests do we actually need?

We argue that taking into account the community structure
may lead to significant savings in terms of the number of
tests required to guarantee a given identification accuracy.
Using entropy arguments, it is easy to see that accounting for
individual correlations can help coming up with a lower bound
for the number of tests that can be less than the traditional
counting bound: if we represent the state (infected or not)
of each individual as a binary variable, the joint entropy of
correlated variables can be much smaller than the sum of the
individual entropies. This indicates that there may be room for
improvement on the algorithmic side as well. As an extreme
case, in the above example, assume that in each family, either
all or no members are infected; then clearly, it is enough to
test a single member from each family.

We also argue that leveraging the community structure
can enlarge the regime, where group testing offers significant
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benefits over individual testing. Indeed, classical group testing
offers much greater benefits in the sparse regime, where
k = ⇥(n↵) and ↵ < 1. [11], [17], [18], [19], [20]. However,
taking into account the community structure allows us to
identify and remove from the population large groups of
infected members, thus reducing their proportion and con-
verting a possibly linear- to a sparse-regime identification.
Essentially, the community structure can guide us on when
to use individual and when group testing.

Our results are as follows: Suppose that n population mem-
bers are organized into F (possibly overlapping) communities,
out of which kf have at least one infected member. The latter
may hold exactly or on average. First, we derive a lower bound
on the number of tests needed to identify all infected members
without error; for some communities and infection regimes,
the bound can be shown to increase (almost) linearly with
kf (the number of infected communities) as opposed to k

(the number of infected members). Second, we propose an
adaptive algorithm that achieves the lower bound in specific
parameter regimes. Third, we propose a nonadaptive algorithm
that accounts for the community structure and reduces the
number of tests at the expense of few false positives. Fourth,
we propose a new decoder based on loopy belief propaga-
tion that is generic enough to accommodate any community
structure and can be combined with any test design (encoder)
to achieve low error rates. Last, we numerically validate
that leveraging the community structure can offer significant
benefits either when tests are noiseless or not.

The paper is structured as follows: We start with background
and related work (Section II). Next, we present our community
infection model (Section III) and compute the corresponding
lower bound (Section IV). Then, we describe our community-
aware (non)adaptive test designs for the case where com-
munities have no overlap (Section V), which offers useful
insights for designing tests in the general (overlapping) case
(Section VI). Finally, we present our loopy belief propagation
(LBP) decoder (Section VII), and we close with numerical
evaluation (Section VIII) and conclusions (Section IX).

II. BACKGROUND AND RELATED WORK

A. Traditional Group Testing

In mathematical terms, a pooled test indexed by ⌧ takes as
input samples from a set of individuals �⌧ and outputs a binary
value: 1 (“positive”) if at least one of the samples is infected,
and 0 (“negative”) if none of them is infected. More precisely,
let Ui = 1 if individual i is infected, and 0 otherwise. The
output of pooled test ⌧ is calculated as Y⌧ =

W
i2�⌧

Ui, whereW
stands for the OR operator (disjunction).
Group testing typically considers two models for the infec-

tions in a population of n members: (i) a combinatorial
priors model, where a fixed number of infected individuals
k is randomly selected among all sets of size k ; (ii) an
i.i.d probabilistic priors model, where each individual is i.i.d.
infected with probability p, hence the expected number of
infected members is k̄ = np.

In each model, of critical interest is the minimum number
of group tests T = T (n) needed to identify the infected

members without error or with high probability. In the com-
binatorial model (i), since T tests allow to distinguish among
2T combinations of test outputs, we need T � log2

�n
k

�
to

identify k randomly infected individuals out of n . This is
known as the counting bound and implies that in a sparse
regime (i.e. k = ⇥(n↵) and ↵ 2 [0, 1)), no algorithm
can use less than O(k log n

k ) tests to achieve (almost) zero-
error identification [12], [21]. In the probabilistic model (ii),
a similar bound has been derived for the number of tests
needed on average: T � nh2 (p), where h2 is the binary
entropy function [11].

The usual goal in group testing is to design a testing
algorithm that is able to identify all infection statuses U =
(U1, U2, . . . ., Un). Testing algorithms can be adaptive or non-
adaptive. Adaptive testing uses the outcome of previous tests
to decide what tests to perform next. One such example is the
binary splitting algorithm (BSA), which implements a form
of binary search [22], [23]. Nonadaptive testing constructs,
in advance, a test matrix G 2 {0, 1}T⇥n where each row
corresponds to a test ⌧ , each column to a member, and the
non-zero elements determine the sets �⌧ . Although adaptive
testing typically needs fewer tests, nonadaptive testing is often
more practical as all tests can be executed in parallel.

Known results (for noiseless group testing): In the com-
binatorial model (i), if the number of infected individuals
follows a sparse regime (i.e. k = ⇥(n↵) and ↵ 2 [0, 1)),
adaptive group testing, and more specifically Hwang’s gen-
eralized binary splitting algorithm (HGBSA), is asymptoti-
cally optimal w.r.t. the counting bound [11], [23]. Moreover,
if ↵ 2 [0, 0.409] there exists a nonadaptive, randomized test
design, coupled with decoder, which can identify all infected
individuals from the test outcomes with high probability, using
a number of tests that asymptotically matches the counting
bound. However, the latter is not possible for nonadaptive
group testing whenever ↵ > 0.409; i.e., no test design,
randomized or not, with a number of tests matching the
counting bound allows to infer the infected members with a
non-vanishing probability. Therefore, in this regime at least
two stages of testing are necessary [24].

Conversely, classic individual testing has been proved to be
order-optimal in the linear regime (i.e. k = ⇥(n)). In fact,
if the infection rate k/n is more than 0.38, group testing does
not use fewer tests than one-to-one (individual) testing unless
high identification error rates are acceptable [17], [18], [19],
[20]. Moreover, it has been recently shown that individual
testing is asymptotically optimal among non-adaptive designs
in the mildly sublinear regime (where k = !( n

log n )) [25].
The above achievability/converse results for the combinato-

rial priors are directly applicable to the probabilistic model
(ii), by considering p = k/n . In fact, Theorems 1.7 and
1.8 from [11] imply that any algorithm that attains a vanishing
probability of error on the combinatorial priors, also attains
a vanishing probability of error on the corresponding i.i.d.
probabilistic priors.

Evidently, despite its thorough analysis, prior work has
focused on independent infections. This is perhaps because
the group-testing problem has been motivated so far by its
interesting mathematical aspect. Group testing is a form of
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inference in sparsity regimes, such as compressed sensing, but
with an interesting difference: all operations are in Boolean
(as opposed to real-valued) algebra, which makes the problem
significantly harder. However, the practical challenges of the
current pandemic (e.g. scale/cost of testing) and the fact that
viral diseases are spread according to people’s interactions
have naturally brought up the need for similar results in the
case of correlated/community-based infections.

B. Related Work
The idea of community-aware group testing was explored

in our conference papers [1], [2], and also our earlier
preprints [26], [27]. A similar idea of using side-information
from contact tracing in decoding was proposed in [28], [29],
independently from our work. In our opinion, that work
is complementary to ours; we focus more on test designs
rather than decoding, for which we use known algorithms
such as COMP and LBP. Follow-up works also share similar
goals [30], [31], [32], [33], [34], [35].

Our community-based approach can be viewed as an instan-
tiation of a recent trend in the group-testing literature that
examines variations motivated by “real-world” scenaria. For
example, graph-constrained group testing considers the case
where samples cannot be pooled together arbitrarily in tests,
but must conform to constraints imposed by a graph [36], [37],
[38], [39]. Sparse group testing considers cases where individ-
uals can participate in a limited number of tests, or tests cannot
pool more than a limited number of samples; such constraints
can significantly affect the scaling laws [40]. However, in our
context, individuals can be grouped into tests freely.

Another related line of work is the work on
graph-constrained group testing (e.g., see [36], [38], [39]) that
solves the problem of how to design group tests when there
are constraints on which samples can be pooled together,
provided in the form of a graph; in our case, individuals can
be pooled together into tests freely.

Further related is the work on independent but not identical
priors [41], [42], as well as the work on models for the
test outcomes or noisy tests. For example, [43] proposes a
test model specifically tailored to COVID-19 testing, where
the test outcomes may also provide a rough estimate of the
number of infected samples. In addition, following up on a
rich literature on noisy group testing (see for example [44],
[45], [46]), generalized group testing [47] subsumes as special
cases a variety of noisy group-testing models; it assumes the
test outcome is positive with some probability f(x), where x
is the number of defectives tested in a pool, and f(·) is an
arbitrary monotonically increasing (stochastic) test function.
In this work, we do not further expand on these complementary
and interesting directions.

Finally, belief propagation has been considered in the past in
the context of noiseless [48] as well as noisy [49] nonadaptive
group testing, but in the traditional setting, where infections
are independent. In this work, we modify loopy belief prop-
agation (LBP) to incorporate the structure of the community-
based, correlated infections into the structure of the factor
graph; in particular, we add more variable nodes representing
the infection status of the communities and we compute the

variable-to-factor-node and factor-to-variable-node messages
accordingly. Our community-aware LBP decoder is generic
enough to accommodate any community structure and can be
combined with any test design (encoder).

III. MODEL AND PROBLEM FORMULATION

A. Community Model
Our work extends the results of the traditional setting

in Section II-A by assuming a possibly-overlapping com-
munity structure: members may belong to one or more
communities—hence they are infected according to new com-
binatorial and probabilistic models, depending on how the
communities overlap (Section III-B).

More formally, we assume that all members of the entire
population V = {1, 2, · · · ,n} are organized in a known
community structure, which can be perceived in the form
of a hypergraph G(V, E): each vertex v 2 V corresponds
to an individual, that we simply call a member, and each
edge e 2 E indicates which members belong to the same
community. Since G is a hypergraph, an edge may connect
any number of vertices; hence, a member may belong to one
or multiple communities. The number of communities that a
member belongs to is called the degree of the member.

There exist F communities in total, and each community e

has |Ve | members.
The hypergraph G may be decomposed into connected

components, where each component C (VC , EC ) is a sub-
hypergraph. For each component C , we define a partition
DC of VC as the smallest collection of nonempty subsets of
members/vertices that participate in exactly the same subset
of communities/hyperedges. More specifically, consider the
following social preorder on VC : a member v is said to be
not more socialized than another member ⌫, if ⌫ participates
in all the communities that also v participates in. If v is not
more socialized than ⌫ and ⌫ is not more socialized than v , we
say that v and ⌫ are socially equivalent—they participate in
the same set of communities. The latter defines an equivalent
relation, and DC is the collection of the equivalent classes.

For each part d 2 DC , Vd denotes the set of mem-
bers it contains, and EVd is the (common) set of commu-
nities/hyperedges they belong to. Clearly, all members in
Vd have the same degree of at least one; and as described
next, these members are infected according to some common
infection principle.

We distinguish 2 kinds of sets in DC : (a) the “outer” sets:
DC ,out , {d 2 DC : @b 2 DC s.t. EVb ⇢ EVd}, and (b) the
“inner” sets: DC ,in , DC \DC ,out . In other words, given the
social preorder defined above, when an equivalent class d is
such that d itself is the only class that is not more socialized
than d , then d is called an outer set. Hence, outer sets are
the minimal elements in the social preorder; the rest are inner
sets.

Figure 1 depicts a simple example: EC consists of 3 hyper-
edges, and DC contains 7 disjoint sets/ equivalent classes:
3 outer (yellow) and 4 inner (green, blue) sets. Note that the
members of inner sets have a higher degree than those of the
outer sets, while the degree of an outer set is not necessarily
equal to one.
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Fig. 1. An example partition with 3 outer (yellow) and 4 inner (green, blue)
sets.

B. Infection Models

The following community-based infection models parallel
the classic ones (Section II-A):
• Combinatorial Model (I). kf of the communities have
at least one infected member (we will call these infected
communities). The rest of the communities have no infected
members. Any combination of infected communities has the
same chance of occurring. In each infected community, there
are k

e
m infected members, out of which k

I
m are shared among

a subset of infected communities I ✓ E , that happen to
intersect in the underlying community model. I.e., in each
subset of members VI = \e2IVe 6= ;), there exist k

I
m infected

members. Similarly, in each disjoint subset d 2 DC of the
partition described above, the number of infected members is
denoted by kd

m. The infected communities (resp. infected com-
munity members) are randomly chosen out of all communities
(resp. members that belong to the same communities), and all
combinations are possible.

As also discussed below, to better capture practical infection
scenaria, we further assume that k

I
m/|VI | is an increasing

function of the number of intersecting communities |I|. Simi-
larly, kd

m/|Vd | is a non-decreasing function of the degree |EVd |.
• Probabilistic Model (II). Each community e is infected with
probability q i.i.d. If a member v of an infected community
e belongs only to that community (i.e. has degree 1), then
it is infected with probability pv = pe , independently from
the other members/communities. If v belongs to a subset of
infected communities I ✓ E , it is considered to be infected
by either of these communities; so, given their infection
probabilities {pe : e 2 I}, we say that v becomes infected
with probability: pv = 1 �

Q
e2I(1 � pe). If v does not

belong to any infected community, then pv = 0. Note that
a community e may be labeled “infected” without having any
infected members; however, the probability of this is negligible
for reasonably high infection probabilities pe and practical
values of |Ve |.

Some useful remarks: First, note that although the com-
munities are infected independently, their structure causes
a dependent infection model; in fact, the way communities
overlap determines the infection probability of their shared
members.

Second, our models capture situations where the infection
is determined by the participation in a community rather
than the status of community members. Albeit simplistic,
we believe that this model can be useful in real pandemics.
Since the exact community structure of the entire population
may be hard to be known in practice, we expect that a

graph such as G can only partially describe the reality; there
might be additional members that do not belong to V but
interact with the ones in it in various unknown ways, or there
might be additional communities that are simply not captured
due to unknown member interactions. Hence, assuming that
communities become infected independently seems a simple
yet reasonable model to use.

However, once a few communities in G get infected, we
expect that the infection probability of a member will increase
with the number of infected communities it belongs to, which
is captured by our models in the dependence of kd

m/|Vd | on
|EVd | and the computation of pv . In Section VI, we leverage
this in order to design our adaptive and non-adaptive testing
strategies.

Third, both models (I) and (II) allow communities to have
quite different infection levels from each other (e.g., different
infection probabilities); this is important, as, if we view
the setting we examine here as a “static” snapshot of how
infections dynamically evolve over time, our models enable to
capture many different paths and ways to arrive at the current
snapshot state.

A special case of our model is the non-overlapping case,
where the population is partitioned in F disjoint communities.
This case is more amenable to analysis (e.g. if k

e
m = pe |Ve |,

both models I and II behave similarly) and offers useful
insights; so, we will examine it separately (Section V).

C. Problem Formulation
Given the above community infection model, our goal is

two-fold: (a) provide new lower bounds on the number of
tests T needed for zero-error identification; and (b) design
community-aware testing algorithms that are more efficient
than traditional group testing, i.e. they can achieve the same
identification accuracy using significantly fewer tests.

Assumptions: We assume that there is no dilution noise; that
is, the performance of a test does not depend on the number
of samples pooled together. This is a reasonable assumption
with genetic RT-PCR tests, where even small amounts of viral
nucleotides can be amplified to be detectable [7], [50]. How-
ever, we do consider noisy tests in our numerical evaluation
using a Z-channel noise model (Section VIII). We remark
that this is simply a model one may use; our algorithms are
agnostic to this and can be used with other noise models.

Terminology: Ûv denotes the estimated state of Uv after
running our group testing algorithm. Zero error means that
Ûv = Uv for all v 2 V . Vanishing error requires that the
overall error probability goes to zero with n . We distinguish
between False Negative (FN) and False Positive (FP) errors:
FN errors occur when infected members are identified as non-
infected (and vice-versa for FP).

IV. LOWER BOUND ON THE NUMBER OF TESTS

We now compute the minimum number of tests needed to
identify all infected members under the zero-error criterion in
both models (I) and (II). All proofs are in appendix A.

Theorem 1 (Combinatorial Community Bound): Consider
combinatorial model (I). Any algorithm that identifies all k
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infected members without error requires a number of tests T

satisfying:

T � log2

✓
F

kf

◆
+
X

C2G

X

d2DC

log2

✓
|Vd |

kd
m

◆
, (1)

where |Vd | (resp. kd
m) is the number of members (resp.

infected members) in each disjoint set d 2 DC . In the non-
overlapping case, the above reduces to:

T � log2

✓
F

kf

◆
+

kfX

e=1

log2

✓
|Ve |

ke
m

◆
. (2)

Observations: We can make two observations in the case
where the number of members in infected communities follows
a “strongly” linear regime (i.e. kd

m ⇡ |Vd |) and the number of
infected communities kf follows a sparse regime (i.e., kf =
⇥(F↵f ) for ↵f 2 [0, 1)):

(a) The bound increases almost linearly with kf (the number
of infected communities), as opposed to k (the overall number
of infected members). This is because, if the infection regime
about communities is sparse, the following asymptotic equiv-
alence holds: log2

�F
kf

�
⇠ kf log2

F
kf
⇠ (1� ↵f )kf log2 F .

(b) If additionally to the sparse regime about communities,
an overall sparse regime (k = ⇥(n↵) for ↵ 2 [0, 1)) holds,
then the community bound may be significantly lower than the
(community-agnostic) counting bound. Consider, for example,
a symmetric non-overlapping case, where in (2) |Ve | = M

and k
e
m = km for all e 2 E : The asymptotic behavior of the

counting bound in the sparse regime is log2

�n
k

�
⇠ k log2

n
k ⇠

kf km log2
F
kf

, where the latter is because km ⇡ M . So, the
ratio of the counting bound to the combinatorial community
bound in (2) scales (as F gets large) as:

log2

�n
k

�

log2

�F
kf

�
+ kf log2

�M
km

� ⇠
kf km log2

F
kf

kf log2
F
kf

= km .

This observation is relevant for practical scenarios, as many
times, the population is composed of communities with
members in close contact (e.g. relatives, work colleagues,
etc.)—hence, almost all members of infected communities are
expected to be infected (i.e. km ⇡ M ), even if the overall
infection regime may still be sparse.

A similar bound exists for the probabilistic model (II).
By rephrasing [41, Theorem 1], any probabilistic group testing
algorithm, whose average success probability is at least Psuc,
requires at least T � Psuc · H (U) tests.

Accordingly, we state the following theorem:
Theorem 2 (Probabilistic Community Bound (II)): Con-

sider probabilistic model (II). Any algorithm with noiseless
measurements, whose average success probability is at least
Psuc, requires a number of tests:

T � Psuc·

"
Fh2 (q)

+
nX

v=1

X

I✓Ev

q
|I|(1� q)|Ev |�|I|h2

 
Y

e2I
(1� pe)

!

Algorithm 1 Non-Overlapping Community Testing
Ûv is the estimated infection status of member v .
Ûx is the estimated infection status of a mixed sample x .
SelectRepresentatives() is a function that selects a representative
subset from a set of members.
AdaptiveTest() is a classic adaptive algorithm that tests a set of
items (mixed samples or members).
1: for e 2 E do
2: re = SelectRepresentatives ({v : v 2 e})
3: end for
4:

h
Ûx(r1), . . . , Ûx(rF )

i
= AdaptiveTest (x (r1), . . . , x (rF ))

5: Set A := ;
6: for e = 1, . . . ,F do
7: if Ûx(re ) = “positive” then
8: Use a noiseless, individual test for each community mem-

ber: Ûv = Uv , 8v 2 e .
9: else

10: A := A [ {v : v 2 e}
11: end if
12: end for
13:

n
Ûv : v 2 A

o
= AdaptiveTest (A)

14: return
h
Û1, . . . , Ûn

i

�

FX

e=1

(1� q + q(1� pe)|Se |)

· h2

✓
1� q

1� q + q(1� pe)|Se |

◆#
, (3)

where Ev is the set of communities that member v belongs to,
I is the subset of infected communities in Ev , and Se is the
set of members who only belong to community e .

In the non-overlapping case, the above reduces to:

T � Psuc·

"
Fh2 (q)

+
FX

e=1

q |Ve |h2 (pe)� weh2

✓
1� q

we

◆#
, (4)

where we = 1� q + q(1� pe)|Ve |.
As said, we consider both zero-error recovery (Psuc = 1)

and recovery with errors; the former is related to our adaptive
test designs, the latter to our nonadaptive ones.

V. ALGORITHMS FOR NON-OVERLAPPING COMMUNITIES

In this section, we examine the case of non-overlapping
communities, which is not only a realistic scenario (e.g.
consider the apartment building from our introduction), but
also offers useful insights for the general case described in
the next section. All proofs can be found in appendix B.

A. Adaptive Algorithm
Algorithm 1 is our adaptive algorithm for the non-

overlapping case. We next sketch its main points, but the
interested reader may also find a detailed rationale about it
in Section B-C).

The algorithm consists of two parts; both make use
of some traditional adaptive group-testing algorithm, say
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AdaptiveTest() (such as BSA). We use AdaptiveTest() as an
abstraction for any existing (or future) adaptive group-testing
algorithm that assumes independent infections. We distin-
guish between 2 different kinds of input for AdaptiveTest():
(a) a set of selected members, which is the typical input of
group-testing algorithms; (b) a set of selected mixed samples.
A mixed sample is created by pooling together samples from
multiple members that usually have some common character-
istic. For example, mixed sample x (re) denotes an aggregate
sample of a set of representative members re from community
e . A mixed sample is “positive,” if at least one of the members
that compose it is infected, and “negative” otherwise. Because
in some cases we care about mixed samples, we can treat
them in the same way as individual samples—hence use group
testing to identify the infection state of mixed samples as we
do for individuals.

Part 1 (lines 1-4): The goal of this part is to detect
the infection regime inside each community e , so that the
community is tested accordingly in Part 2: i.e., via group
testing, if e is “lightly” infected, and via individual testing,
otherwise. Our idea is motivated by the result presented in
Section II-A that group testing is beneficial, only if the
infection rate is low (i.e. pe  0.38). Thus, the only remaining
challenge is to accurately detect the infection regime spending
only a limited number of tests. In this paper, we limit our
exploration to using only one mixed sample in this regard,
but more sophisticated techniques are also possible (see for
example appendix B-D).

More specifically, a representative subset re of community e

is selected using a sampling function SelectRepresentatives()
(lines 1-3). Then, a mixed sample x (re) is produced, and an
AdaptiveTest() is applied to the representative mixed sam-
ples (line 4). If AdaptiveTest() achieves exact reconstruction
(which is usually the case), then: Ûx(re) = Ux(re).

Part 2 (lines 5-13): We treat Ûx(re) as an estimate of the
infection regime inside community e: if Ûx(re) is positive, then
we consider the community as heavily infected (i.e ke

m/|Ve |
or pe � 0.38), otherwise lightly infected (i.e. ke

m/|Ve | or
pe < 0.38). Since group testing performs better than individual
testing only in the latter case (Section II-A), we use individual
testing for each heavily-infected community (lines 7-8), and
group testing for all the lightly-infected ones (line 13).

Analysis for the number of tests. We now compute the
maximum expected number of tests needed by our algorithm
to detect the infection status of all members without error.
We present our results using the symmetric (a.k.a. uniform)
case, where |Ve | = M , k

e
m = km (for the combinatorial

model) or pe = p (for the probabilistic model), and |re | = R
for all communities: Let SelectRepresentatives() be a simple
function that performs uniform (random) sampling without
replacement, and consider 2 choices for the AdaptiveTest()
algorithm: (i) Hwang’s generalized binary splitting algorithm
(HGBSA) [23], which is optimal if the number of infected
members of the tested group is known in advance; and
(ii), traditional binary-splitting algorithm (BSA) [22], which
performs well, even if little is known about the number of
infected members.

Lemma 1 (Expected Tests - Symmetric Combinatorial
Model): Consider the choices (i) and (ii) for the
AdaptiveTest() defined above. Algorithm 1 succeeds using
an expected number of tests:

T̄(i)  kf �c

✓
log2

F

kf �c
+ 1 + M

◆

+ k (1� �c)
✓

log2
n � kf M�c

k (1� �c)
+ 1
◆

(5)

T̄(ii)  kf �c (log2 F + 1 + M )
+ k (1� �c) (log2 n + 1) , (6)

where �c is the expected fraction of infected communities
whose mixed sample is positive, computed by the hypergeo-
metric distribution Hyper(M , km , R).

Lemma 2 (Expected Tests - Symmetric Probabilistic
Model): If Algorithm 1 uses BSA in place of AdaptiveTest(),
then it succeeds using an expected number of tests:

T̄  Fq�p (log2 F + 1 + M )
+ nqp (1� �p) (log2 n + 1) , (7)

where �p = 1� (1� p)R is the expected fraction of infected
communities whose mixed sample is positive.

Lemmas 1, 2 are derived in appendix B, as a repeated
application of the performance bounds of HGBSA and BSA:
if out of n members, k are infected, then HGBSA (resp. BSA)
achieves exact identification using at most: log2

�n
k

�
+k (resp.

k log2 n + k ) tests [11], [51].
Observations:
(a) For certain community structures and given that heav-

ily/lightly infected communities are detected without errors
in Part 1, our algorithm can asymptotically achieve (up to
a constant) the lower combinatorial bound of Theorem 1.
We show this via 2 examples:

First, consider a sparse regime for communities (i.e. kf =
⇥(F↵f ) for ↵f 2 [0, 1)) and a moderately linear regime within
each community (i.e. km/M ⇡ 0.5). Thus:
log2

�F
kf

�
⇠ kf log2(F/kf ), log2

�M
km

�
⇠ Mh2 (km/M) ⇠ M and

the bound in Theorem 1 becomes: kf (log2
F/kf + M ). If R

is chosen such that all infected communities (which are also
heavily infected as km/M > 0.38) are detected without errors
(e.g. if R > M � km ), then �c = 1; thus, the RHS of (5)
becomes almost equal (up to constant kf ) to the lower bound
in Theorem 1.

Second, consider the opposite example, where the infection
regime for communities is very high, while each separate
community is lightly infected. In this case, k = kf km ⇡ kf ;
therefore, the lower bound becomes: T ⇠ kf log2(F/kf ) +
kf km log2(M/km) ⇡ k log2(n/k). If R is chosen such that none
of the (lightly infected) communities is marked as heavily
infected in Part 1 (e.g. if R = 0, which reduces to using
traditional community-agnostic group testing), then �c = 0,
and the RHS of (5) is almost equal (up to k ) to the bound
in (2).

(b) The upper bound in (6) shows that our algorithm
achieves significant benefits compared to BSA when the
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infected communities are heavily-infected and R is cho-
sen such that �c = 1 (e.g. R > M � km ); this is
because T̄(ii)  kf (log2 F + 1 + M ) ⌧ k log2 n + k . Also,
it achieves the same performance as BSA, when communities
are lightly-infected and R is chosen such that �c = 0 (e.g.
R = 0); this is because T̄(ii)  k log2 n +k . Since the former
case is more realistic, our algorithm is expected to perform
much better than classic BSA in practice.

The examples in observation (a) and the above analysis
indicate two things: First, the knowledge of the community
structure is more beneficial when communities are heavily
infected; in case of very light infections, traditional group
testing performs equally well. Our experiments showed that
the community structure helps whenever p > 0.15, with
benefits increasing with p. Second, a rough estimate of the
communities’ infection rate has to be available in order to
optimally choose R. In appendix B-C, we demonstrate that
this is unavoidable in the symmetric scenario we examine
and when only one mixed sample per community is used to
identify which communities are heavily/lightly infected.

(c) Even in the most favorable regime for our
community-aware group testing, where very few communities
are infected with almost all their members infected (i.e.
kf = ⇥(F↵f ) for ↵f 2 [0, 1) and km ⇡ M ), even if R
is chosen optimally such that �c = 1, the ratio of the
expected number of tests needed by Algorithm 1 (see (5))
and HGBSA cannot be less than 1/ log(n/k), which upper
bounds the benefits one may get. In appendix B-D, we detail
this observation and provide an optimized version of our
algorithm that slightly improves upon the gain of 1/ log(n/k).

B. Non-Adaptive Algorithm

For simplicity of notation, consider the symmetric case,
where |Ve | = M for all communities.

Test Matrix. We split G into two sub-matrices G1 and
G2 of sizes T1 ⇥ n and T2 ⇥ n .
. The sub-matrix G1 identifies the infected communities
using one mixed sample from each community, akin to line
4 of Algorithm 1. We want G1 to identify all (non-)infected
communities with small error probability. If there are many
tests available, we set T1 = F and use one row for each
community test. Otherwise, in sparse kf regimes, we set
T1 closer to O(kf log F

kf
).

. The sub-matrix G2 has a block matrix structure and contains
F identity matrices IM , one for each community. G2 is
designed as follows: (i) each block column contains only
one identity matrix IM , i.e., each member is tested only
once; (ii) each block row i (i 2 {1, 2, · · · , b}) contains ci

identity matrices IM , i.e., there are ci members included in
the corresponding tests. As a result: T2 = bM . An example
with F = 6, b = 3, c1 = 2, c2 = 1, c3 = 3 is:

G2 =
"

IM 0M⇥M 0M⇥M IM 0M⇥M 0M⇥M
0M⇥M IM 0M⇥M 0M⇥M 0M⇥M 0M⇥M
0M⇥M 0M⇥M IM 0M⇥M IM IM

#
.

Our detailed rationale about G2 can be found in appendix B-E.

Decoding. We use the test outcomes of G1 to identify the
non-infected communities and we remove the corresponding
columns from G2. We next use the remaining columns of G2

and combinatorial orthogonal matching pursuit (COMP) [52],
[53] to identify the infected members, namely: (i) A member
is identified as non-infected if it is included in at least one
negative test in G2. (ii) All other members, that are only
included in positive tests in G2, are identified as infected.

Error Probability. After the removal of the columns, the
block structure of G2 helps us obtain a test matrix that is
close to an identity matrix—hence perform “almost” individual
testing. Also, note that our decoding strategy for G2 leads to
zero FN errors. But, FP errors may happen if identity matrices
IM corresponding to two or more infected communities appear
in the same block row—we call this event “covering”. In this
case, some non-infected members may be included in the same
test with infected members from other communities and falsely
identified as infected. Building on these ideas, the following
lemmas guide us through a design of G2 that minimizes the
(FP) error probability:

Lemma 3: Under models (I) and (II), the probability of a
“covering” event, where there is some block row containing
two or more infected communities is:

PI
covering = 1�

P
|B|=kf : B✓{1,2,··· ,b}

Q
i2B

ci

�F
kf

� , (8)

PII
covering = 1�

bY

i=1

⇥
(1� q)ci + ciq(1� q)ci�1

⇤
. (9)

Lemma 4: Pcovering is minimized for both models (I) and
(II), if ci = c, 8i 2 {1, · · · , b}.
Given a G2 sub-matrix as in Lemma 4, we now compute the
system FP probability:

P(any-FP) , P(9v : Ûv = 1 and Uv = 0). (10)

We do so, under the assumption that F is a multiple of b

and c: i.e., b = T2/M and c = FM /T2. If F cannot be
factorized, we can simply pad our design with F

0 fictitious
communities without infected members, so that F + F

0 = bc.
Lemma 5: For G2 as in Lemma 4 and F = bc, the system

FP probability for models (I) and (II) equals:

PI(any-FP) =

"
1�

1�M
km

�
# "

1�

�T2/M
kf

�
(FM /T2)kf

�F
kf

�
#

PII(any-FP) =

"
1�

MX

i=1

⇥
p

i(1� p)M�i
⇤2 1�M

i

�
#

·

"
1�

✓
(1� q)

FM
T2
�1
✓

1� q +
FMq

T2

◆◆T2/M
#

P(any-FP) can be pessimistic; a more practical metric is the
average fraction of members that are misidentified (error rate):
R(error) , 1/n · |{v : Ûv 6= Uv}|.

Lemma 6: For G2 as in Lemma 4, the error rate is calcu-
lated for models (I) and (II) as:

RI(error) <
kf (M � km)

FM
· PI

joint, (11)
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Algorithm 2 Adaptive Community Testing
Ûv is the estimated infection state of member v .
Ûx is the estimated state of mixed sample x .
1: for d 2 DC ,out , 8 connected component C of G do
2: rd  SelectRepresentatives (Vd)
3: end for
4:

n
Ûx(rd )

o
 AdaptiveTest ({x (rd)})

5: Set A := ;
6: for each connected component C of G do
7: for d 2 DC ,out do
8: if Ûx(rd ) = “positive” then
9: Individually test Vd : Ûv  Uv , 8v 2 Vd .

10: p̂d  1/|Vd | ·
P

v2Vd
1{Ûv= “positive”}

11: else
12: A A [ {v : v 2 Vd}
13: end if
14: end for
15: for b 2 DC ,in (in increasing order of degree) do
16: if 9d 2 DC s.t. EVd ⇢ EVb & p̂d > ✓ then
17: Individually test Vb : Ûv  Uv , 8v 2 Vb .
18: p̂b  1/|Vb | ·

P
v2Vb

1{Ûv= “positive”}
19: else
20: A A [ {v : v 2 Vb}
21: end if
22: end for
23: end for
24:

n
Ûv : v 2 A

o
= AdaptiveTest (A)

25: return
h
Û1, . . . , Ûn

i

RII(error) < (1� p)q
⇥
1� (1� q)c�1

⇤
. (12)

VI. EXTENSION TO OVERLAPPING COMMUNITIES

A. Adaptive Algorithm

Algorithm 2 describes our generalized adaptive algorithm.
It is built on Algorithm 1, with the main difference being
that the representatives are selected from the outer sets
(Section III-A) of the communities. More specifically, the
algorithm is again split into 2 parts:

Part 1: For each component of the graph G, we first
identify the outer sets DC ,out . Then, from each outer set d ,
we select a representative subset of members rd , and create
the mixed sample x (rd) (lines 1-2). Finally, all mixed samples
are identified (line 4).

Part 2: We treat Ûx(rd ) as a rough estimate of the infection
regime inside each set d : if Ûx(rd ) is positive, we consider d

to be heavily infected and we individually test its members
(line 9); otherwise, we consider it lightly infected and we
include its members in set A (line 12). For our rough estimate
of the infection regime to be a good one, we choose the
number of representatives based on some prior information
about infection rate of each outer set; for example if pe < 0.38
then only one representative is enough, otherwise pooling
together the entire set is one’s best option. Note that the exact
knowledge of pe and a rough prior may be easily acquired. For
example, in realistic scenarios, where the community infection
rates are not expected to be low, pooling together the entire
outer set is a good heuristic.

Due to individually testing the heavily-infected outer sets,
we obtain more accurate estimates of their infection rates, p̂d ,
by computing the average proportion of infected members (line
10). We use these estimates to decide how to test the inner
sets of the component: if an outer set d exists whose members
belong to a subset of communities in EVb and its estimated
infection rate p̂d is above a threshold ✓, then members of
Vb are tested individually (line 17) and a new estimate p̂b

for the infection rate of that set is computed (line 18). Else,
members of Vb are included in set A. Our rationale follows the
infection model described in Section III-B, which implies that
the infection probability of the members of an inner set b will
be at least equal to the infection probability of the members
(of an outer set d ) whose community(ies) are a subset of EVd .
Hence, if an outer set is heavily infected then a corresponding
inner set will be heavily infected, too. In our experiments,
we numerically examine the impact of ✓.

Finally, we test all members of set A that are not tested
individually (because infection probability is presumably low)
using traditional group testing (line 23).

B. Non-Adaptive Algorithms

For simplicity, we describe our non-adaptive algorithm
using the symmetric case.

Test Matrix. We again split G into two sub-matrices
G1 and G2 of sizes T1 ⇥ n and T2 ⇥ n .
. The sub-matrix G1 identifies the non-infected outer sets
using one mixed sample for each outer set. If the number
of tests available is large, we set T1 to be the number of
outer sets; otherwise, in sparse kf regimes, T1 can be closer
to O(kf log F

kf
).

. Suppose T2 = n
c , with c being an integer parameter value.

The sub-matrix G2 of size T2⇥n has one “1” in each column
(each of the n member participates in one test) and c “1”s in
each row (each test pools together c members). For c = 1,
this reduces to individual testing.

The design of G2 amounts to deciding which members are
placed in the same test. We propose that no two members
from the same outer/inner set are placed in the same test and
that (assuming set sizes are equal) we randomly select which
of the sets with equal degrees will be tested together, i.e. the
corresponding identity matrices will be in the same block row;
equivalently, G2 is a concatenation of c identity matrices IT2 ,
i.e., G2 = [IT2 IT2 · · · IT2 ]. If set sizes are different, we try
to put sets of similar size and degree in the same block rows
and compensate missing rows with zero-padding.

Decoding. We use the same decoder from Section V-B that
follows the logic of COMP decoder.

Intuition. Suppose that there are only few infected com-
munities, each one having a large percentage (say > 0.38) of
infected members. The idea is similar to the non-overlapping
case: ideally, once the members of the non-infected outer
sets are removed because of the decoding phase of G1, we
would like each row to have only a single member (instead
of being empty or having more members). The proposed
structure attempts to balance exactly this: having a high
enough number of members in each row so that, once the
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non-infected community members are removed in the first
decoding phase, no row remains empty; and having a low
enough number of members in each row, so that, once the
non-infected community members are removed, each row has
a small number of members.

Example. We here illustrate for a special case our proposed
design for G2 and the resulting error rate our algorithm
achieves. Assume that we have F communities, where 2Fo

communities pairwise overlap (each community overlaps with
exactly one other community) and the remaining F�2Fo com-
munities do not overlap with any other community. Assume
each community has M members, and overlapping communi-
ties share Mo members. We construct the sub-matrix G2 of
size T2 ⇥ n as in the following example that uses F = 6,
Fo = 2, M = 3, Mo = 1:

G2 =

2

4
I3 I3

I2 I2
I1 I1

I2 I2

3

5 .

This matrix starts with b1 = F�2Fo
c block-rows that

each contains c identity matrices IM , one corresponding to
each non-overlapping community. We then have b2 = Fo

c
block-rows each containing c identity matrices I2M�Mo , one
for each pair of overlapping communities. Each I2M�Mo

matrix contains three matrices IM�Mo , IMo , and IM�Mo

corresponding to the members that belong only in one of
the communities, or in both. Note that F = (b1 + 2b2)c and
T2 = b1M + b2(2M �Mo).

Error Rate. Note that the (COMP) decoding strategy that
we use leads to zero FN errors. The following lemma provides
an analysis of the error (FP) rate for the design of G2 in the
example which is defined as: R(error) , 1/n ·|{v : Ûv 6= Uv}|.
We provide the expected error rate for only the probabilistic
model (II) for the purpose of comparison with traditional
Bernoulli design in Fig. 2.

Lemma 7: Consider the probabilistic model (II). For the
community structure and G2 as described in the above exam-
ple, the error rate is:

RII(error) =
1
n

h �
1� (1� pq)c�1

�
· N1

+
⇣
1� (1� pq)2(c�1)

⌘
· N2

i
, (13)

where N1 and N2 are the expected number of non-overlapped
and overlapped members in infected communities that are non-
infected, respectively, and can be obtained as

N1 = (F � 2Fo)q(1� p)M + 2Foq(1� p)(M �Mo)
N2 = Fo

�
1� (1� q)2

�
(1� p)Mo.

The error rate of traditional group testing using Bernoulli
design (with parameter 1

k ) and COMP decoding has an error
rate of Rtradition(error) = 1/n · (n� k)

�
1� 1/k(1� 1/k)k

�T
.

Fig. 2 depicts R(error) for parameters F = 150, Fo = 60,
M = 10, Mo = 2, q = 0.2, and p = 0.2.

Remark: Our nonadaptive designs for both the
non-overlapping as well as the overlapping cases use
identity blocks in G2 (i.e. each individual is tested once).

Fig. 2. Error rate for Bernoulli design vs G1G2 design for the example.

Fig. 3. An example of factor graph.

This is because our designs want to capture well the case,
where the fraction of infected members within each infected
community or outer/inner disjoint set is large (say > 0.38).
If we considered sparse infection regimes and very light
infection rates, we could perhaps replace each identity block
matrix in G2 with a nonadaptive group testing matrix that is
known to be optimal in the particular regime of operation.
In significantly sparse regimes, even traditional nonadaptive
designs (that are agnostic to the community structure)
might perform equally well. However, in this paper and our
experiments (Section VIII), we focus more on the former
case, because this is the most interesting scenario.

VII. LOOPY BELIEF PROPAGATION DECODER

We now describe our new algorithm for decoding infec-
tion status of the individuals (and communities). This is
accomplished by estimating the posterior probability of the
corresponding individual (or community) being infected via
loopy belief propagation (LBP). LBP computes the posterior
marginals exactly when the underlying factor graph describing
the joint distribution is a tree (which is rarely the case) [54].
Nevertheless, it is a practical algorithm that has achieved suc-
cess on various applications. Also, LBP offers soft information
(posterior distributions), which can be proved more useful than
hard decisions in the context of disease-spread management.

We use LBP for our probabilistic model, because it is
fast and can be easily configured to take into account the
community structure leading to more reliable identification.
Many inference algorithms exist that estimate the posterior
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marginals, some of which have also been employed for
group testing. For example, GAMP [28] and Monte-Carlo
sampling [55] may yield more accurate decoders. However,
the focus of our work is to examine whether benefits from
accounting for the community structure (both at the test design
and the decoder) exist; hence we think that considering a
simple (possibly sub-optimal) decoder based on LBP is a good
first step—we defer more complex designs to future work.

We next describe the factor graph and the belief propagation
update rules for our probabilistic model (II). Let the infection
status of each community e be Xe ⇠ Ber(q). Moreover, let
Sv denote the set of communities that Uv belongs to. Then:

P(X1, . . . ,XF ,U1, . . . ,Un , Y1, . . . , YT ) =
FY

e=1

P(Xe)
nY

v=1

P(Uv |XSv )
TY

⌧=1

P(Y⌧ |U�⌧ ), (14)

where �⌧ is the group of individuals included in test ⌧ .
Equation (14) can be represented by a factor graph, where
the variable nodes correspond to the variables Xe ,Uv , Y⌧ and
the factor nodes correspond to P(Xe), P(Uv |XSv ), P(Y⌧ |U�⌧ ).
Figure 3 shows an example of 2 communities, 4 members and
2 tests.

Given the result of each test is y⌧ , i.e., Y⌧ = y⌧ , LBP
estimates the marginals P(Xe = v|Y1 = y1, . . . , YT = yT )
and P(Uv = u|Y1 = y1, . . . , YT = yT ), by iteratively
exchanging messages across the variable and factor nodes.
The messages are viewed as beliefs about that variable or
distributions (a local estimate of P(variable|observations)).
Since all random variables are binary, each message is a
2-dimensional vector.

We use the factor graph framework from [54] to compute the
messages: Variable nodes Y⌧ continually transmit the message
[0, 1] if Y⌧ = 1 and [1, 0] if Y⌧ = 0 on its incident edge,
at every iteration. Each other variable node (Xe and Uv ) uses
the following rule: for incident each edge e, the node computes
the elementwise product of the messages from every other
incident edge e0 and transmits this along e. For the factor
node messages, we derive closed-form expressions for the
sum-product update rules (akin to equation (6) in [54]). The
exact messages are described in appendix D.

VIII. NUMERICAL EVALUATION

A. Non-Overlapping Case

Experimental setup I: Symmetric. In our simulations,
we consider 2 different use cases about the community struc-
ture: (Community 1) a neighborhood with F = 200 families
of M = 5 members each, and (Community 2) a university
department with F = 20 classes of M = 50 students
each. In each use case, we also examine 2 different infection
regimes: (a) a high-infection regime, where k̄/n = 0.1; and
(b) a low-infection regime, where k̄ =

p
n = 32. Finally,

we consider both noiseless tests that have perfect accuracy and
noisy tests that follow the Z-channel model from Section III-C.
For each scenario, we average over 500 randomly generated
community structures, in which the members/students are
infected according to the symmetric probabilistic model (II):

Fig. 4. Noiseless non-overlapping case: Average number of tests.

first a family/class is chosen at random w.p. q to be infected
and then each of its members/students gets randomly infected
w.p. p.

Results. For brevity, we show only the low-infection
regime—complete results are in [1, App. E].

(i) Noiseless testing – Average number of tests: In this
experiment, we measure the average number of tests needed
by 3 algorithms that achieve zero-error reconstruction (Algo-
rithm 1 with R = 1, R = M , and classic BSA), and a
nonadaptive algorithm (Section V-B) that uses T1 = F tests
for G1 and has FP rate around 0.5%. Algorithm 1 assumes
no prior knowledge of the number of infected families/classes
or members/students, hence uses AdaptiveTest() = BSA.

Fig. 4 depicts our results about Community 2 and for
p 2 [0.4, 0.8]. Both versions of Algorithm 1 need significantly
fewer tests compared to classic BSA, while staying below
the counting bound. This indicates the potential benefits from
the community structure, even when the number of infected
members is unknown. More interestingly, when R = M , Algo-
rithm 1 performs close to the lower bound in most realistic
scenarios p 2 [0.5, 0.8] (as also explained in Section V-A).
The relevant result in the high-infection regime, was slightly
worse: 50-70 tests above the lower bound. Last, the grey line
shows the tests needed by our nonadaptive algorithm; even that
algorithm can perform better than BSA, when p > 0.55 and
small FP rates are tolerated.

(ii) Noiseless testing – Average error rate: We here quantify
the additional cost in terms of error rate, when one goes
from a two-stage adaptive algorithm that achieves zero-error
identification to much faster single-stage nonadaptive algo-
rithms. In each run, we first run a two-stage algorithm (that
is similar to Algorithm 1, but uses a classic constant-column-
weight, non-adaptive test design at each part, i.e., in the place
of AdaptiveTest() at lines 4 and 13) and we measure the
number of tests it requires to achieve zero errors. Then, we use
the same number of tests to infer the members’ infection
status through 2 nonadaptive algorithms that account for the
community structure either at the test matrix (encoding) part
or the decoding and a traditional one that does not consider it
at all: “COMP with C-encoder” is our nonadaptive algorithm
that uses a COMP decoder as described in Section V-B;
“C-LBP with NC-encoder” is an algorithm that uses classic
constant-column-weight test design combined with our LBP
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Fig. 5. Noiseless non-overlapping case: Average error rate (fixed T ).

Fig. 6. Noiseless non-overlapping case: Average error rate (p = 0.6).

decoder form Section VII; and “COMP with NC-encoder” is a
traditional nonadaptive algorithm, that we use as a benchmark
and uses a constant-column-weight test matrix with a COMP
decoder. “C” denotes that the community is taken into account,
while “NC” denotes that it is ignored. It is important to note
that the number of tests needed by the two-stage algorithm
(and therefore all other algorithms) gets lower as p gets large,
something that affects the results (as discussed further below).

Fig. 5 depicts the FP and FN error rates (averaged over
500 runs) as a function of p 2 [0.3, 0.9] for Community 1.
FN rate is the percentage of infected individuals identified
as negative and vice versa for FP. We observe that any
community-aware nonadaptive algorithm performs better than
traditional nonadaptive group testing (red line) when p >
0.4—the absolute performance gap ranges from 0.4% (when
p = 0.3) to 5.5% (when p = 0.9). “COMP with C-encoder”
has a stable FP rate across for all p values that was close to
1%, and a zero FN rate by construction. Our LBP decoder,
may yield both FN and FP errors. Also, being an approximate
inference algorithm, it may produce worse results than COMP
when p 2 [0.42, 0.67], but performs better when the infection
rate is higher.

Fig. 6 examines the effect of the number of tests. Starting
from the average number of tests used by the two stage
algorithm when p = 0.6, we compute the FP and FN
rates for larger numbers of tests. Our experiment shows a
transition around T = 240, after which point “C-LBP with
NC-encoder” performs better than “COMP with C-encoder”.
In fact, “COMP with C-encoder” seems to converge to zero
FP errors much slower. This result was common for other p

Fig. 7. Noisy non-overlapping case: Average error rate (p = 0.8).

Fig. 8. Non-overlapping asymmetric case: Ratio of the number of tests
needed to the lower bound (4).

values, the transition just occurred at different T . We thus
conclude that one may use our “COMP with C-encoder” if
the available tests are limited or if they just want to use a
simple decoder; otherwise if the testing budget is larger, one
would prefer “C-LBP with NC-encoder”.

(iii) Noisy testing: Assuming the Z-channel1 noise with
parameter z = 0.15, we evaluate the performance of our
community-based LBP decoder of Section VII against a LBP
that does not account for community—namely its factor graph
has no Xe nodes. Fig. 7 depicts our results for Community 1
and for a selected p = 0.8 and a number of tests as given
from the two-stage algorithm of the previous experiments.
We observe that the knowledge of the community structure (in
C-LBP) reduces both FP and FN rates achieved community-
unaware NC-LBP. Especially, FN error rates drop significantly
(up to 80% when tests are few), which is important in our
context since FN errors lead to further infections. Our results
were similar for other p values.

Experimental setup II: Asymmetric. In our asymmetric
setup, infections follow again the probabilistic model (II), but
this time for each community e , |Ve | and pe are selected
uniformly at random from the intervals [5, 50] and [0.4, 0.8],
respectively. Fig. 8 is a boxplot depicting our results for the
low-infection regime (q = 3%) over 500 random instances,
generated as described above. The middle line of each box
represents the mean, the edges represent the lower and upper

1In a Z-channel noise model, a test output that should be positive, flips and
appears as negative with probability z , while a test output that is negative
cannot flip. Thus: P(Y⌧ = 1|U�⌧ ) =

⇣W
i2�⌧

Uv

⌘
(1� z ).
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quartile, and the crosses represent outlier points. BSA needs
on average 5.23⇥ (that can reach up to 13⇥) more tests
compared to the probabilistic bound, while the two versions
of Algorithm 1 with R = 1 and R = M need only 2.4⇥
and 1.11⇥ (that can reach up to 9.85⇥ and 1.8⇥) more tests,
respectively. Also, the smaller range between the 25-th and
75-th percentiles for Algorithm 1 indicates a more predictable
performance compared to BSA.

B. General (Overlapping) Case

Experimental setup. We generate 100 random community
structures, each having n = 3000 members participating in
about 200 overlapping communities, by using the following
rules: the size of each community is selected uniformly at
random from the range [15, 25], and each member is randomly
allocated in at most 4 communities with a probability that
decreases exponentially with the number of communities (such
that eventually, most members belong to a single commu-
nity and fewer member belong to more communities). Then,
the members become infected according to the probabilistic
model (II): each community e gets infected w.p. q = 0.05;
and if infected, then its infection rate pe is randomly chosen
from the interval [0.3, 0.9]. We remark that our experimental
setup yields a high-infection infection regime; the fraction of
infected members is about 5%. We preferred such a setup in
order to stress the performance of our algorithms, as group
testing generally shows less benefits in such regimes.

For the adaptive algorithms, we compare: the binary split-
ting algorithm (BSA) [11], which is the best traditional alter-
native when the number of infections is unknown; Algorithm 1
that assumes non-overlapping communities; and Algorithm 2
(with AdaptiveTest() = BSA).

For the non-adaptive test matrix designs, we compare:
G1G2, our proposed test design in Section VI-B; and
CCW, constant-column-weight algorithms, where each item
is included in a fixed number w of tests selected uniformly
at random. w is assumed to be of the form w = ↵T

k ,
where k is an estimate of the number of defectives in the
population. We exhaustively search to find the best value of
↵ 2 [0, 1]. We also compare LBP and COMP decoding: C-LBP
is our proposed algorithm in Section VII, that accounts for
the community structure. NC-LBP, does not take into account
the community structure, i.e., assumes that each individual is
i.i.d infected with the same probability piid. COMP, described
in [11], has a zero FN probability by design.

Results. (i) Adaptive test designs. For each community
structure, we measured the number of tests needed by each
algorithm to achieve zero-error identification. Since Algo-
rithm 2 depends on ✓, the threshold used at line 16, we evalu-
ated its performance for various values of ✓. Figure 9 depicts
the average performance of our algorithm (for each ✓, we aver-
age over 100 randomly generated structures). Algorithm 2 was
proved resilient to the choice of ✓ and needed on average
> 55% fewer tests than the other algorithms. Its performance
was also better than the counting bound, which is our best hope
with traditional group testing. Our findings were similar for
sparser infection regimes (see results in extended version [27]),

Fig. 9. General case: Average number of tests (n = 3000,
F ⇠ Uniform[15, 25], q = 0.05, pe ⇠ Uniform[0.3, 0.9].

Fig. 10. General case: average FN rate of various non-adaptive test designs.

Fig. 11. General case: average FP rate of various non-adaptive test designs.

and there were cases where our algorithm performed closer to
the community bound (1).

(ii) Non adaptive test designs. In our experiments, we mea-
sured the FN/FP rates achieved by the non-adaptive test
designs and the corresponding decoders. Fig. 10 and Fig. 11
depict FN and FP rates as a function of T 2 [300, 2100],
respectively. The key takeaways are:
• C-LBP with CCW attains zero FP and FN at 1200 tests

while COMP and NC-LBP with CCW (which are community-
agnostic) attain zero FP and FN only at 1800 and 2100 tests
respectively. This illustrates potential benefits of making the
decoder aware of the community structure.
• If we desire a zero FN rate (or if we would like to use

a simple decoder) and we are constrained to use less than
1000 tests, the G1G2 test design with COMP gives the lowest
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FP rates. This illustrates the benefit of designing tests matrices
that take into account the community structure.

IX. CONCLUSION

The new observation we make in this paper is that taking
into account infection correlations, as dictated by a known
community structure, enables to reduce the number of group
tests required to identify the infected members of a popu-
lation and can improve the identification accuracy when the
number of tests is fixed. We make this point assuming an
overlapping community structure (where an individual belongs
to one or more communities, and the infection probability
depends on the infected communities (s)he participates in),
a specific noise model and binary group testing. We considered
a combinatorial and probabilistic model, derived lower bounds
on the number of tests needed, explored adaptive, two-stage
and non-adaptive algorithms for the noiseless case, and we
evaluated our algorithms for the noisy case. Our algorithms
are not always optimal w.r.t. the lower bounds, but perform
significantly better than community-agnostic group testing; per
our experiments, they need up to 30 � 75% fewer tests (on
average) to achieve the same identification accuracy. We posit
that such benefits are possible in a number of other noise or
group test models. Understanding what are benefits in more
sophisticated community models remains as an open question.

APPENDIX A
THE LOWER BOUND

A. Proof of Theorem 1

Proof: There exist
�F
kf

�
·
Q

C2G
Q

d2DC

�|Vd |
kd

m

�
possible

combinations of infected members. This is because there are�F
kf

�
combinations of infected communities, each of which

has the same chance of occurring, and is associated with
a structure of connected components. In each disjoint set
d 2 DC of every connected component C 2 G, there are

�|Vd |
kd

m

�

possible combinations of infected members, each of which has
the same chance of occurring.2

To achieve zero-error identification, each combination of
infected members must give a different set of test results.
Given that there are only 2T possible results, we need: 2T

��F
kf

�
·
Q

C2G
Q

d2DC

�|Vd |
kd

m

�
, which completes the proof.

Similarly, in the non-overlapping case, there are
�F
kf

�
·

Qkf

e=1

�|Ve |
ke
m

�
possible sets of infected members that each

must give a different set of results. Thus, 2T
�

�F
kf

�
·

Qkf

e=1

�|Ve |
ke
m

�
.

B. Proof of Theorem 2

Proof: Let X be the indicator random vector for the infec-
tion status of all communities. By rephrasing [41, Theorem 1],
any probabilistic group testing algorithm using T noiseless
tests can achieve reconstruction of U with success probability

2Note that the product is over all disjoint sets instead of only the infected
ones, because

�|Vd |
kd

m

�
= 1, whenever kd

m = 0.

at least Psuc, only if T � PsucH (U). For the entropy term,
we have:

H (U) = H (X) + H (U|X)�H (X|U). (A.1)

The first term is: H (X) =
PF

e=1 H (Xe) = Fh2 (q).
The second term is calculated as:

H (U|X)
(a)
=

nX

v=1

H (Uv|XEv )

=
nX

v=1

X

x2{0,1}|Ev |

P(XEv = x)H (Uv|XEv = x)

(b)
=

nX

v=1

X

I✓Ev

q
|I|(1� q)|Ev |�|I|

· H (Uv|XI = 1,XEv\I = 0)

=
nX

v=1

X

I✓Ev

q
|I|(1� q)|Ev |�|I|

· h2 (
Y

e2I
(1� pe)),

where in (a), Ev refers to the set of communities member v

belongs to, and in (b) the subset I is the subset of infected
communities in Ev .

Finally, we upper bound the third term as:

H (X|U) 
FX

e=1

H (Xe |U) 
FX

e=1

H (Xe |USe)

=
FX

e=1

P(USe = 0)h2 (P(Xe = 0|USe = 0))

=
FX

e=1

(1� q + q(1� pe)|Se|)

· h2

✓
1� q

1� q + q(1� pe)|Se|

◆
,

where Se is the set of members who only belong to commu-
nity e . Combining all the 3 terms concludes the proof for the
general overlapping case.

In the non-overlapping case, the second term can be
expressed more concisely, while the third term can be com-
puted exactly.

The second term is calculated as:

H (U|X) =
nX

v=1

H (Uv|XEv )

=
nX

v=1

X

x2{0,1}

P(XEv = x)H (Uv|XEv = x)

=
nX

v=1

(qH (Uv|XEv = 1) + (1� q)H (Uv|XEv = 0))

=
nX

v=1

qh2 (pEv ) = q

FX

e=1

|Ve |h2 (pe),

where Ev is the community containing vertex v.
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The third term is:

H (X|U) =
FX

e=1

H (Xe |U)=
FX

e=1

H (Xe |UVe )

=
FX

e=1

P(UVe = 0)h2 (P(Xe = 0|UVe = 0))

=
FX

e=1

(1� q + q(1� pe)|Ve |)

· h2

✓
1� q

1� q + q(1� pe)|Ve |

◆

Combining all the 3 terms concludes the proof.

APPENDIX B
NON-OVERLAPPING CASE

A. Proof of Lemma 1
Proof: We start from the known performance guar-

antees about HGBSA and BSA: Given a problem with K
infected items in a population of size N , HGBSA is guar-
anteed to succeed using T = K log2

N
K + K tests, while

BSA is guranteed to succeed using T  K log2 N + K
[11], [12], [51].

Algorithm 1 performs testing at lines 4, 8, 13. Let the
expected numbers of tests at these lines be T̄4, T̄8 and T̄13,
respectively.
• At line 4, let K4 be the number of communities whose

mixed sample is positive (that is the number of “infected”
items in the population of F communities).

If HGBSA is used for AdaptiveTest(), we have:

T̄4 = E

K4 log2

F

K4
+ K4

�
 E[K4]

✓
log2

F

E[K4]
+ 1
◆

,

(B.1)

where the inequality holds because of Jensen’s inequality,
as f(x) = x

�
log2

F
x + 1

�
is a concave function of x (its

second derivative is f 00(x) = �
1

ln(2) x  0).
Similarly, if BSA is used for AdaptiveTest(), then:

T̄4  E[K4 log2 F + K4] = E[K4](log2 F + 1), (B.2)

• At line 8, the expected number of individual tests is:

T̄8 = E[K4 · M ] = ME[K4], (B.3)

regardless of whether AdaptiveTest() is HGBSA or BSA.
• At line 13, let the number of infected individuals and the

population size be K13 and N13, respectively.
If HSBSA is used for AdaptiveTest :

T̄13 = E

K13 log2

N13

K13
+ K13

�

(a)
= E


(k �K4km)

✓
log2

n �K4M

k �K4km
+ 1
◆�

(b)
 (k � E[K4]km)

✓
log2

n � E[K4]M
k � E[K4]km

+ 1
◆

, (B.4)

where (a) is because K13 = k � K4km and N13 =
n � K4M , and (b) holds because of Jensen’s inequality, as

f(x) = (k�xkm)
⇣
log2

n�xM
k�xkm

+ 1
⌘

is a concave function of
x for x � 0 and x  kf , kmx  k (the second derivative is
f 00(x) = �

(kmn�Mk)2

ln(2)(n�Mx)2(k�xkm)
 0).

If BSA is used for AdaptiveTest :

T̄13  E[K13 log2 N13 + K13]
(a)
= E [(k �K4km) (log2 (n �K4M ) + 1)]
(b)
 (k � E [K4] km) (log2 n + 1) (B.5)

where (a) is because K13 = k �K4km and N13 = n�K4M ,
and in (b) (n �K4M ) is upper-bounded by n .

We now compute E[K4] as follows: Let �c be the expected
fraction of infected communities whose mixed sample is
positive. Since SelectRepresentatives() is uniform random
sampling without replacement, we can compute �c when
1  R  M � km using the hypergeometric distribution
Hyper(M , km , R), as follows: the probability of a random
mixed sample x (re) being negative (i.e. all members of re

are negative) is given by the PMF of Hyper(M , km , R)
evaluated at 0, and it is therefore equal to

�M�km
R

�
/
�M

R

�, which
yields �c = 1 � �M�km

R

�
/
�M

R

�. We also define the following
for completeness: �c = 0 when R = 0 and �c = 1 when
M � km < R  M . Thus:

E[K4] = kf �c . (B.6)

To conclude, we add all the above terms (T̄4, T̄8, T̄13) that
are related to HGBSA or BSA, by also taking into account
that k = kf km , and the result follows.

B. Proof of Lemma 2
Proof: Similarly to the proof of Lemma 1, let �p be

the expected fraction of infected communities whose mixed
sample is positive. Then, because of the probabilistic setting,
�p = 1� (1� p)R.

Algorithm 1 performs testing at lines 4, 8, 13.
• At line 4, let K4 be the number of communities whose

mixed sample is positive (that is the number of “infected”
items in the population of F communities).

If BSA is used for AdaptiveTest(), then:

T̄4  E[K4 log2 F + K4] = E[K4](log2 F + 1), (B.7)

• At line 8, the expected number of individual tests is:

T̄8 = E[K4 · M ] = ME[K4]. (B.8)

• At line 13, let the number of infected individuals and the
population size be K13 and N13, respectively.

If BSA is used for AdaptiveTest :

T̄13  E[K13 log2 N13 + K13]
(a)
= E [(k �K4km) (log2 (n �K4M ) + 1)]
(b)
 E [(kf �K4) km ] (log2 n + 1)
= (E[kf ]� E[K4]) E [km ] (log2 n + 1) (B.9)

where (a) is because K13 = k �K4km and N13 = n�K4M ,
and in (b) (n �K4M ) is upper-bounded by n .
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To obtain the result, we add all the above terms (T̄4, T̄8, T̄13)
that are related to HGBSA or BSA, by also taking into account
the following: E[kf ] = Fq , E[K4] = Fq�p , E [km ] = Mp, and
n = FM .

A remark about upper-bounding (n�K4M ) by n in (B.5):
In the symmetric case (where |Ve | = M and k

e
m = km for

each community e), we practically consider two choices for
the number of representatives, R = M or R = 0 (for details,
see observation (b) in Section V-A and the discussion about the
selection of representatives in Section B-C). In these two cases,
upper bounding (n �K4M ) by n does not lose too much: If
R = 0, then K4 = 0—hence, Algorithm 1 just reduces to
classic BSA and at line 13 the size of the population under
testing is indeed n . If R = M , then K4 = kf —hence, T̄13

becomes 0 regardless of the log term.

C. Rationale for Algorithm 1

Group testing already has a rich body of literature with
near-optimal test designs in the case of independent infections,
we do not try to improve upon them. Instead, we adapt
these ideas to incorporate the correlations arisen from the
community structure. All test designs described in this section
are conceptually divided into two parts. This split is guided by
the community structure and attempts to identify the different
infection regimes inside the community, so that the best testing
method (individual or classic group testing) is used. We show
that such a two-part design is enough to significantly reduce
the cost of group testing and also achieve the lower bound in
some cases.

Two-part design: Two parts of Algorithm 1 serve compli-
mentary goals:

The goal of Part 1 is to detect the infection regime inside
each community e: i.e., to accurately estimate which of the
F communities have a high infection rate (“heavily” infected)
and which are have a low or zero infection rate (“lightly”
infected). Our interest in detecting the infection regime is
motivated by prior work [17], [18], which has shown that
group testing offers benefits over individual testing, only if
the infection rate is low (pe  0.38). This allows us to
define the two regimes as follows: In the combinatorial model
I (resp. probabilistic model II), a community is considered
heavily infected when ke

m/|Ve | � 0.38 (resp. pe � 0.38);
conversely, it is considered lightly infected community when
ke
m/|Ve | < 0.38 (resp. pe < 0.38).

For each community e , we regard Ûx(re) as an estimate of
the community’s infection regime. If Ûx(re) is positive, we
consider the community to be highly infected and therefore
perform individual testing for all of its members. Otherwise,
if Ûx(re) is negative, we consider the community to be lightly
infected and group test its members with all other lightly
infected communities. The challenge is therefore to produce
accurate enough regime estimates, such that the overall num-
ber of tests that are needed from Algorithm 1 to achieve exact
infection-status reconstruction for all members v = 1, . . . ,n
is minimal. We discuss this challenge further below.

Given all estimates Ûx(re) from Part 1, the goal of the
Part 2 is then to identify all infected members, by using

Fig. 12. Expected number of tests from (7) as a function of size of
representative set and probability of infection inside a community.

the appropriate testing method (group or individual testing)
according to the infection regime of each community (light
or heavy). In this way, at the end of Part 2, the algorithm
returns an estimate Ûv of the true infection status Uv of each
individual member v .

Selection of community representatives: Function
SelectRepresentatives() at line 2 refers to any sampling
function on a set of community members, as long as it returns
a fixed number of members from community e . That is,
one may use their own sampling function, as long as the
accuracy of Part 1 is well defined. In this paper, we consider
only random-sampling functions without replacement (i.e. |re |
members are randomly chosen from the community members
and each subset of that size has the same probability of
being selected as the representative subset). But perhaps,
more elaborate sampling functions may be considered in other
contexts. For example, if the internal structure of community
e can be represented through a contact graph, in which only
specific community nodes have external contacts with other
communities, it may make sense to include (some of) these
nodes into the representative group with certainty.

When only one mixed sample per community is used to
identify the heavily/lightly infected communities, the cardinal-
ity of the representative subset |re | is essential, but the optimal
choice of it is not trivial. |re | affects the accuracy of regime
estimate—hence the performance of our algorithm in terms
of the expected number of tests that it uses. Unfortunately,
choosing the number of representatives optimally is not easy
even in the symmetric case that is examined in Section V-A.
Ideally, in the symmetric case, we would like to choose
|re | = R such that the bounds in Lemmas 1 and 2 are
minimized. However, this requires solving equations of the
form yey = x, which is generally possible through Lambert
functions for x � �

1
e , but the latter does not hold in our

case. Fig. 12 demonstrates that there exists no unique R that
is optimal for any infection probability p in (0, 1) through
an example of F = 50 communities with M = 60 members
each. The figure plots the bound of Lemma 2 as a function
of p and R. As we can see, there is no single minimizer R?:
if p < 0.15, then R must be picked equal to 0 (which yields
traditional group testing); otherwise, if p > 0.15, then R must
be selected equal to M .
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Therefore, in order to optimally choose R, a rough estimate
about p has to be known a priori. If the latter is not possible,
then one may use a few more tests at the first stage of our
algorithm to better detect whether a community is heavily
infected. We provide such an optimization in the next section.

Function AdaptiveTest(): In both parts of our algorithm,
we make use of a classic adaptive-group-testing algorithm,
which we call AdaptiveTest(). This may be regarded as
an abstraction for any existing (or future) adaptive algo-
rithm in the group-testing literature. In our analysis, however,
we mostly focus on the classic binary splitting algorithm
because of its good performance in realistic cases, where the
numbers of infected communities and/or members (kf , k

e
m )

are unknown [22].
In this section, we consider only adaptive algorithms that

offer noiseless (zero-error) reconstruction. Note, however, the
fact that AdaptiveTest() offers exact reconstruction is not
enough to guarantee an accurate detection of any community’s
infection regime in Part 1. For example, consider the following
case, where the true infection rate within a community e is
not very low (say pe = 0.6), yet none of the community
representative in set re happened to be infected. Intuitively, the
error probability of detection in Part 1 should depend on the
number of selected representatives |re | from each community
e and the infection rate among its members pe . In our analysis,
we examine different scenaria w.r.t. these parameters and
discuss which parametrization (i.e. value of |re |) optimizes
the expected number of the tests required by our algorithm.

D. Modified/Optimized Versions of Algorithm 1

• One modification of our algorithm is the following: In Part 1,
instead of selecting only one representative group for each
community, we select ms representative subgroups, each of
size s, and we treat each of these subgroups as a single
“(super)-member”. That is, we identify whether each subgroup
is positive (has at least one positive member) or not, and
based on this information, using for example majority vote,
we can classify the community as heavily or lightly infected;
essentially we can solve an estimation problem as in [11] (see
Chapter 5.3), [56], [57]. In this regard, Algorithm 1 is just a
special case of this approach, with ms = 1 and s = |re |.

Intuitively, we expect that such a modification would
increase the estimation accuracy of p̂e and reduce the error
of the related hypothesis test, at the cost of few more tests.
As a result, it could need fewer tests on expectation than
Algorithm 1, hence perform better in some cases. However, the
potential improvement would depend on parameters such as
the community size - for instance for small size communities
it is not expected to be large. To keep things simple, we prefer
not to analyze this algorithm in this paper and defer it to future
work.
• Another modification could be the following: instead of
leveraging the community structure to perform individual tests
where needed, we could use it to improve traditional binary
splitting algorithm by running it on multiple testing groups that
are related to the community structure. For example, consider
a symmetric case where: we split all n = FM members into

M groups of F individuals (one from each community), then
run binary splitting to each of these groups.

This modification is also related to Hwang’s Generalized
Binary Splitting (HGBSA), but achieves only logarithmic ben-
efits compared to binary splitting, as opposed to our algorithm
that may perform much better in real cases (see Section V-A).
In fact, the expected number of tests needed by this modi-
fied algorithm would be at most k log2 (n/M) + O(k): each
group g has kg infected member and binary splitting needs
kg log2 (n/M)+O(kg) tests to identify all of them. By adding
together the number of tests for each group g, we deduce the
result.
• A last modification occurred to us after a related comment
of one of our reviewers, who we thank. As discussed in
Section V-A, even when a sparse regime holds for commu-
nities (i.e. kf = ⇥(F↵f ) for ↵f 2 [0, 1)) and a heavily
linear regime holds within each community (i.e. km ⇡ M ,
the benefits of Lemma 1 with regard to HGBSA cannot be
more than 1/ log(n/k). This is because, in the first term of
Eq. (5) we get an additive term kf �cM � kf �ckm = k�c ,
and in the second term, we get another additive term that is
no less than k(1��c). Thus, the ratio of the expected number
of tests of Algorithm 1 over the expected number of tests of
HGBSA is no less than 1/ log(n/k).

Nevertheless, in certain cases where km � M�km (i.e., the
infection regime inside each infected community3 is heavy),
in the second part of our algorithm it makes more sense to
look for non-infected members and stop testing once we find
them all. We next show that this results in higher benefits than
1/ log(n/k).

Consider a community of M members, with km infected and
M �km non-infected members, and suppose we test members
individually until we find a fixed number r = M � km

of non-infected members. The random variable K—i.e., the
number of infected items in the tests—follows a negative
hypergeometric distribution, and therefore the mean of K+r—
i.e., the expected number of tests until we find r = M � km

non-infected members—is equal to (M � km)( km
M�km+1 + 1).

Depending on the exact value of km , the latter can be less
than km , as km/M goes to 1. As a result, the overall expected
number of tests in the second part of our modified adaptive
algorithm becomes less than kf �ckm = kf km = k (if
we further assume that all heavily infected communities are
identified correctly in the first part—i.e., we use R = M so
that �c = 1). Hence, the overall benefits compared to HGBSA
can be better than 1/ log(n/k), in certain cases.

As an example, let km = M � 1. The expected number of
individual tests needed to find the non-infected member inside
each infected community is (M + 1)/2. Thus, the expected
number of tests in the second part of our modified adaptive
algorithm would be: kf (M + 1)/2 < kf (M � 1) = kf km =
k . Hence, in this particular regime, we could achieve higher
benefits than 1/ log(n/k).

In the more extreme case, where for each infected com-
munity km = M , all we need to do is to identify the

3The symmetric case is used here only for illustration purposes; the idea
is similar for the asymmetric case.
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infected communities. In that case, the benefit would be
approximately kf /k .

We remark that for the above technique to work, the
knowledge of the number of infected members per community
is necessary, but this is also the case for HGBSA. Also, the
offered benefits do get diminished as km goes away from M .

E. Rationale for the Structure of G2

Our goal is to design a non-trivial matrix G2 that can
identify almost all the infected members with high probability
and a small number of tests. Asking for zero-error require-
ments is not reasonable in our nonadaptive setting; e.g., in the
probabilistic case (model II), every sparsity pattern is possible
and thus zero-error recovery can be guaranteed for G2 only
with a number of tests that is at least equal to the number of
individuals. We next discuss two intuitive properties we would
like our designs to have to minimize the error probability.

Desirable Property 1: Use identity matrices as building
blocks.

Intuition: ideally, after removing the (F � kf )M columns
corresponding to the members in non-infected communities,
we would like the remaining columns to form an identity
matrix so that we can identify all the infected members
correctly. To reduce the number of tests, there should be
more than one member included in each test. Thus we
use overlapping identity matrices, one corresponding to each
community. We assume the index for the n members is
community-by-community, i.e., the indices for the members in
the same community are consecutive. Then each community
corresponds to an identity sub-matrix IM in G2. Now the
problem becomes how to arrange the identity sub-matrices.

Desirable Property 2: The identity matrices corresponding
to different communities either appear in the same set of M

rows (i.e. block row) in G2 or they do not appear in any shared
rows.

Intuition: Otherwise, a community would share tests with
more other communities, and therefore, the probability that
this community shares tests with infected communities would
become larger. This would increase the probability that
two infected communities share tests after removing all
the non-infected community columns, which in turn would
increase the FP probability.

F. Proof of Lemma 3
Proof: The probabilities can be explained as follows:

(i) For PI
covering in (8), the numerator gives the number

of possibilities that each block row contains at most
one infected community, which is obtained by randomly
choosing kf block rows (the summation) and then from
each chosen block row choosing one community to be
infected (ci possible choices for i-th block row). The
denominator is the total number of infection possibilities,
and then the fraction denotes the probability that each
block row contains at most one infected community.
Thus, PI

covering is obtained as the probability that there
is some block row that contains two or more infected
communities.

(ii) For PII
covering in (9), (1 � q)ci is the probability that

there is no infected community in the i-th block row,
and ciq(1 � q)ci�1 is the probability that there is only
one infected community in the i-th block row. The
multiplication

Q
denotes the probability that any one

block row contains at most one infected community.
Thus, PII

covering is obtained as the probability that there
is some block row that contains two or more infected
communities.

G. Proof of Lemma 4
Proof: In this proof, we show that symmetric choice of ci

(i.e. ci = c, 8i 2 {1, · · · , b}) is a minimizer of PI
covering and

PII
covering, even though it may not be unique.
Suppose that ci’s are not symmetric, then there exist i and

j such that: ci � cj + 1.
Let c

0
i = ci � 1 and c

0
j = cj + 1.

For the combinatorial model, using (8), PI
covering({ci}) �

PI
covering({c0i}) is given by:

X

|B|=kf :
B✓{1,2,··· ,b}

Y

`2B
c
0
` �

X

|B|=kf :
B✓{1,2,··· ,b}

Y

`2B
c` =

= (c0ic
0
j � cicj) · X

= (ci � cj � 1) · X � 0,

where X is a positive value independent of ci and cj . By
iterating this multiple times and across other pairs of such
indices, this implies that the symmetric case where all ci’s are
equal, i.e., ci = c for all i 2 {1, 2, · · · , b} is a minimizer (not
necessarily a unique one).

Similarly, using (9), the difference PII
covering({ci}) �

PII
covering({c0i}) is given by:

bY

`=1

h
(1� q)c

0
` + c

0
`q(1� q)c

0
`�1
i
�

bY

`=1

⇥
(1� q)c` + c`q(1� q)c`�1

⇤
=

= [(ci � cj)� (1� q)2]q2(1� q)ci+cj�2
· Y > 0,

where Y =
Q

` 6=i,j

⇥
(1� q)c` + c`q(1� q)c`�1

⇤
� 0 is

independent of ci and cj . By iterating this multiple times
and across other pairs of such indices, this implies that the
symmetric case where all ci’s are equal, i.e., ci = c for all
i 2 {1, 2, · · · , b} is a minimizer (not necessarily a unique
one).

H. Proof of Lemma 5
Proof: In the symmetric case, i.e., ci = c for all i 2

{1, 2, · · · , b}, the probabilities in (8) and (9) become

PI
covering = 1�

� b
kf

�
c
kf

�F
kf

� , (B.10)

PII
covering = 1�

�
(1� q)c�1(1� q + cq)

�b
. (B.11)
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In the symmetric combinatorial model, all infected commu-
nities have the same number of infected members: k

e
m =

km , 8e 2 E . If two communities appear in the same set
of M tests, the probability that all infected members of one
community share the same km tests with the infected members
of the other community (i.e., no false positive occurs) is
simply:

P(no FP|covering) =
1�M
km

� . (B.12)

Thus the probability that FPs happen is:

PFP = P(FP|covering) · PI
covering

=

"
1�

1�M
km

�
# "

1�

� b
kf

�
c
kf

�F
kf

�
#

. (B.13)

In the symmetric probabilistic model, all infected communities
have the same infection probability: pe = p, 8e 2 E . If two
communities appear in the same set of M tests, then there
are no false positives, only if the two communities have the
same number of infected members and the infected (non-
infected) members in one community appear in the same
set of tests as infected (non-infected) members of the other
community. The probability that two communities both have
i infected members is

⇥
p

i(1� p)M�i
⇤2, and the probability

that all infected members in one community share tests with
only infected members in the other community is simply 1

(M
i )

.
Thus, the probability that there are no false positives is given
by:

P(no FP|covering) =
MX

i=1

⇥
p

i(1� p)M�i
⇤2 1�M

i

� . (B.14)

Therefore, the probability that a false positive happens can be
obtained as

PFP = P(FP|covering) · PII
covering

=

"
MX

i=1

⇥
p

i(1� p)M�i
⇤2 1�M

i

�
#

·

h
1�

�
(1� q)c�1(1� q + cq)

�bi
. (B.15)

Replacing b by T2/M and c by FM /T2 completes the result.

I. Proof of Lemma 6 and Discussions
Proof: For the combinatorial model (I), it is hard to

explicitly calculate the expected error rate. The upper bound
in (11) is obtained by assuming that if there exist errors (FPs),
then all non-infected members in infected communities are
misidentified as infected in the decoding of G2. (Note that
all non-infected members in non-infected communities are
correctly identified by decoding of G1.)

For the probabilistic model (II), the upper bound for the
expected error rate in (13) is obtained by

RII(error) =
1
n
· b ·

"
cX

j=2

✓
c

j

◆
q

j(1� q)c�j

Fig. 13. System FP probability and FP error rate.

·

 
jX

i=1

✓
j

i

◆
p

i(1� p)j�i(j � i)

!
· M

#

(B.16)

=
bM

n
·

"
cX

j=2

✓
c

j

◆
q

j(1� q)c�j

·
�
j(1� p)� j(1� p)j

�
#

(B.17)

<
(1� p)T2

n
·

2

4
cX

j=2

✓
c

j

◆
q

j(1� q)c�j
· j

3

5

=
(1� p)T2

n
·
⇥
cq � cq(1� q)c�1

⇤
,

= (1� p)q
⇥
1� (1� q)c�1

⇤
, (B.18)

where the expression in the bracket in (B.16) for each j
denotes the expected number of FPs in one block row if
there are j communities infected in this block row, (B.17)
is obtained from the expected value of binomial distribution,
and (B.18) follows by substituting c = n

T2
.

We here make the following observation about the sys-
tem FP probability P(any-FP): As we explore further in
Section VIII-A, non-adaptive group testing requires more tests
than adaptive. Assume that kf = ⇥(F↵f ) for ↵f 2 [0, 1)
and choose R = M � 1 in Algorithm 1. Adaptive testing
allows to achieve zero error with kf log2 F + kf M tests; if
we use the same (order) number of tests with a non-adaptive
strategy, i.e., T1 = kf log2

F
kf

and T2 = kf (log2 kf + M ),
we get P(any-FP) in Lemma 5 approximately equal to
�
1� 1

M

�
"
1�

(T2/M
kf

)
⇣

T2/M
kf

⌘kf

(F/kf )
kf

(F
kf
)

#
which is bounded away

from 0. The latter can be seen as follows: i) T2/M ⇡ kf ⌧ F ;

ii) (n
k)

(n
k )k

� (n+m
k )

(n+m
k )k =

⇣
n

n+m

⌘k
·
Qm

i=1
n+i�k

n+i is decreasing with

m and can be very small when m � n.
Fig. 13 depicts P(any-FP) and R(error) for parameters F =

64, kf = 6, km = 4, M = 5, q = 1/8, and p = 0.8.

APPENDIX C
GENERAL (OVERLAPPING) CASE

A. Proof of Lemma 7
Proof: For a non-overlapped non-infected member v that

belongs to only one community, the probability that v is
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misidentified as infected is 1 � (1 � pq)c�1. For an over-
lapped non-infected member v that belongs to more than one
community, the probability that v is misidentified as infected
is 1 � (1 � pq)2(c�1). Note that we assume the decoding of
G1 has no errors, i.e., it identifies all non-infected outer sets
correctly. Then for the pairwise overlap structure in the exam-
ple, the infection status of all non-overlapped communities
and non-overlapped parts are identified correctly. The COMP
decoding of G2 has no FNs. The expected total number of
FPs N0 can be obtained as N0 

�
1� (1� pq)c�1

�
· N1 +�

1� (1� pq)2(c�1)
�
·N2, where the inequality is because the

RHS have not used the testing resluts of G1, N1 and N2 are
the expected number of non-overlapped and overlapped mem-
bers in infected communities, respectively. We can calculate
N1 as follows,

N1 = (F � 2Fo)q(1� p)M + 2Foq(1� p)(M �Mo),
(C.1)

where (F � 2Fo)q is the expected number of infected non-
overlapped communities, (1�p)M is the expected number of
non-infected members in each infected non-overlapped com-
munity, 2Foq is the expected number of infected overlapped
communities, and (1�p)(M �Mo) is the expected number of
non-infected members in each infected overlapped community.
Similarly, N2 can be calculated as

N2 = Fo

�
1� (1� q)2

�
(1� p)Mo, (C.2)

where Fo

�
1� (1� q)2

�
is the expected number of overlaps,

and (1� p)Mo is the expected number of non-infected mem-
bers in each overlapped part.

APPENDIX D
LOOPY BELIEF PROPAGATION ALGORITHM

A. LBP: Message Passing Rules
We here describe our loopy belief propagation algorithm

(LBP) and update rules for our probabilistic model (II). We use
the factor graph framework of [54] and derive closed-form
expressions for the sum-product update rules (see equations (5)
and (6) in [54]).

The LBP algorithm on a factor graph iteratively exchanges
messages across the variable and factor nodes. The messages
to and from a variable node Xe or Uv are beliefs about the vari-
able or distributions (a local estimate of P(Xe |observations)
or P(Uv |observations)). Since all the random variables are
binary, in our case each message would be a 2-dimensional
vector [a, b] where a, b � 0. Suppose the result of each test
is yt, i.e., Yt = yt and we wish to compute the marginals
P(Xe = x|Y1 = y1, Y2 = y2, . . . , YT = yT ) and P(Uv =
u|Y1 = y1, Y2 = y2, . . . , YT = yT ) for x, u 2 {0, 1}. The
LBP algorithm proceeds as follows:

1) Initialization: The variable nodes Xe and Uv transmit the
message [0.5, 0.5] on each of their incident edges. Each
variable node Y⌧ transmits the message [1�y⌧ , y⌧ ], where
y⌧ is the observed test result, on its incident edge.

2) Factor node messages: Each factor node receives the mes-
sages from the neighboring variable nodes and computes
a new set of messages to send on each incident edge. The

rules on how to compute these messages are described
next.

3) Iteration and completion. The algorithm alternates
between steps 2 and 3 above a fixed number of times
(in practice 10 or 20 times works well) and computes an
estimate of the posterior marginals as follows – for each
variable node Xe and Uv , we take the coordinatewise
product of the incoming factor messages and normalize
to obtain an estimate of P(Xe = x|y1 . . . yT ) and P(Uv =
u|y1 . . . yT ) for x, u 2 {0, 1}.

Next we describe the simplified variable and factor node
message update rules. We use equations (5) and (6) of [54] to
compute the messages.

Leaf node messages: At every iteration, the variable node
Y⌧ continually transmits the message [0, 1] if Y⌧ = 1 and
[1, 0] if Y⌧ = 0 on its incident edge. The factor node P(Xe)
continually transmits [1�q , q ] on its incident edge; see Fig. 14
(a) and (b).

Variable node messages: The other variable nodes Xe and
Uv use the following rule to transmit messages along the
incident edges: for incident each edge e, a variable node takes
the elementwise product of the messages from every other
incident edge e0 and transmits this along e; see Fig. 14 (c).

Factor node messages: For the factor node messages,
we calculate closed form expressions for the sum-product
update rule (equation (6) in [54]). The simplified expressions
are summarized in Fig. 14 (d) and (e). Next we briefly describe
these calculations.

Firstly, we note that each message represents a probability
distribution. One could, without loss of generality, normalize
each message before transmission. Therefore, we assume that
each message µ = [a, b] is such that a + b = 1. Now, the
the leaf nodes labeled P(Vj) perennially transmit the prior
distribution corresponding to Vj .

Next, consider the factor node P(Ui|XSi) as shown in
Fig. 14 (e). The message sent to Ui is calculated as

⌫0 =
X

{xe2{0,1}:e2Si}

P(Ui = 0|XSi = xSi)
Y

e2Si

s(e)
xe

=
X

{xe2{0,1}:e2Si}

Y

e2Si

(s(e)
xe

(1� pe)xe)

=
Y

e2Si

(s(e)
0 + s(e)

1 (1� pe)).

Similarly, ⌫1 can be computed to be ⌫1 = 1 � ⌫0. Now, the
message sent to each Xe is

µxe =
X

u20,1,
{xe02{0,1}:e02Si\{e}}

P(Ui = u|XSi = xSi)wu

Y

e02Si\{e}

s(e0)
xe0

=
X

{xe02{0,1}:e02Si\{e}}

⇣ Y

e02Si\{e}

s(e0)
xe0

⌘

·

⇣
w0

Y

e02Si

(1� pe0)xe0 + w1(1�
Y

e02Si

(1� pe0)xe0 )
⌘

= w0(1� pe)xe
Y

e0 6=e

(s(e0)
0 + s(e0)

1 (1� pe0))+

w1

h
1� (1� pe)xe

Y

e0 6=e

(s(e0)
0 + s(e0)

1 (1� p0e)
i
.
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Fig. 14. The update rules for the factor and variable node messages.
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Finally for the factor nodes P(Y⌧ |U�⌧ ) as shown in Fig. 14
(d), note that the messages to Y⌧ play no role since they are
never used to recompute the variable messages. The messages
to Ui nodes are expressed as

µu =
X

y2{0,1},
{ui02{0,1}:i02�⌧\{i}}

⇣
P(Y⌧ = y|U�⌧ = u�⌧ )

· (1� y⌧ )1�yyy
⌧

Y

i02�⌧\{i}}

s(i0)
ui0

⌘

= (1� y⌧ )

·

X

{ui02{0,1}:
i02�⌧\{i}}

⇣
P(Y⌧ = 0|U�⌧ = u�⌧ )

Y

i02�⌧\{i}}

s(i0)
ui0

⌘

+ y⌧

·

X

{ui02{0,1}:
i02�⌧\{i}}

⇣
P(Y⌧ = 1|U�⌧ = u�⌧ )

Y

i02�⌧\{i}}

s(i0)
ui0

⌘
.

From our Z-channel model, recall that P(Y⌧ = 0|U�⌧ =
u�⌧ ) = 1 if ui = 0 8 i 2 �⌧ and P(Y⌧ = 0|U�⌧ = u�⌧ ) = z
otherwise. Thus we split the summation terms into 2 cases –
one where ui0 = 0 for all i0 and the other its complement.
Also combining this with the assumption that the messages
are normalized, i.e., s(i)

0 + s(i)
1 = 1, we get

X

{ui02{0,1}:
i02�⌧\{i}}

⇣
P(Y⌧ = 0|U�⌧ = u�⌧ )

Y

i02�⌧\{i}}

s(i0)
ui0

⌘

= u=1z + u=0

n
1� (1� z)(1�

Y

i02�⌧

i0 6=i

s(i0)
0 )

o
,

and
X

{ui02{0,1}:
i02�⌧\{i}}

⇣
P(Y⌧ = 1|U�⌧ = u�⌧ )

Y

i02�⌧\{i}}

s(i0)
ui0

⌘

= u=1(1� z) + u=0

⇣
(1� z)(1�

Y

i02�⌧

i0 6=i

s(i0)
0 )

⌘
.

Substituting u = 0, and u = 1 we obtain the messages

µ0 = (1� y⌧ )
n

1� (1� z)(1�
Y

i02�⌧

i0 6=i

s(i0)
0 )

o

+ y⌧ (1� z)(1�
Y

i02�⌧

i0 6=i

s(i0)
0 ),

µ1 = (1� y⌧ )z + y⌧ (1� z).

For our probabilistic model, the complexity of computing the
factor node messages increases only linearly with the factor
node degree.
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