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HIGHLIGHTS GRAPHICAL ABSTRACT

o Rice straw particles (RSPs) were covered
with a doxycycline degrading bacterium
DD1.

e DD1l-covered RSPs had faster DC b — (& —
removal kinetics than DD1 biotransfor-
mation alone.
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ARTICLE INFO ABSTRACT
Handling Editor: Y Yeomin Yoon Doxycycline (DC) is a second generation tetracycline antibiotic and its occurrence in the aquatic environment
due to the discharge of municipal and agricultural wastes has called for technologies to effectively remove DC

Keywords: from water. The objective of the study was to characterize the synergistic benefits of adsorption and biotrans-
D°XYcY?1‘“e formation in removing DC from water using rice straw particles (RSPs) covered with DC degrading bacteria,
A,dsorptmn . Brevundimonas naejangsanensis strain DD1. First, optimal experimental conditions were identified for individual
Biotransformation

processes, i.e., hydrolysis, adsorption, and biotransformation, in terms of their performance of removing DC from
water. Then, synergistic effects between adsorption and biotransformation were demonstrated by adding DD1-
covered RSPs (DD1-RSPs) to DC-containing solution. Results suggest that DC was quickly adsorbed onto RSPs
and the adsorbed DC was subsequently biotransformed by the DD1 cells on RSPs. The adsorption of DC to DD1-
RSPs can be well described using the pseudo-second-order kinetics and the Langmuir isotherm. The DD1 cells on
RSPs converted DC to several biotransformation products through a series of demethylation, dehydration,
decarbonylation, and deamination. This study demonstrated that adsorption and biotransformation could work
synergistically to remove DC from water.
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1. Introduction

Tetracyclines (TCs) are a class of widely used antibiotics (Liu et al.,
2019). Compared to the first-generation TCs, doxycycline (DC) has
higher lipophilicity (Spina-Cruz et al., 2019), higher bioavailability,
shorter half-life, and stronger antibacterial potency (Yan et al., 2018).
Hence, DC has gradually become a safer alternative to other TCs (Heaton
et al.,, 2007), and has been frequently used on livestock (Widyasar-
i-Mehta et al., 2016) and aquaculture (Yan et al., 2018), as well as in
human therapy (2018). Because the DC ingested can be released from
excrement in its original form (Xu et al., 2021), DC has been detected in
various environments, such as rivers (18-82 ng L_l) (Deng et al., 2016),
groundwater (0-39 ng L™ (Ma et al., 201 5), wastewater (64-915 ng
L’l) (Lindberg et al., 2005), sludge (1.3-1.5 mg kg’l) (Lindberg et al.,
2005), sediments (0.23-0.32 pg kg’l) (Fuentes et al., 2019), and soils
(63-728 ug kgfl) (Ho et al., 2014). Residual DC can cause teratogenic
effects on aquatic organisms and promote the proliferation of resistance
gene among microbes (Fan et al., 2019; Shao and Wu, 2020). Therefore,
there is a need to develop treatment technologies to remove DC from
water.

Abiotic processes, such as hydrolysis (Zaranyika et al., 2015), pho-
tocatalysis (Adamek et al., 2016; Bolobajev et al., 2016; Liu et al., 2018;
Tong et al., 2019; Wang et al., 2019), advanced oxidation (Bolobajev
etal., 2016; Zhang et al., 2016a; Spina-Cruz et al., 2019), and adsorption
(Chao et al., 2014; Brigante and Avena, 2016; Zhang et al., 20164,
2016b; Liu et al., 2017, 2019; Abbas et al., 2018; Bai et al., 2018; Zeng
et al., 2018a, 2018b; Fan et al., 2019; Olusegun and Mohallem, 2019;
Wei et al., 2019), have been reported effective in removing DC from
water. Some novel adsorbents have been tested for their effectiveness in
adsorbing DC. For example, graphene-like layered molybdenum disul-
fide can remove 90% of DC from solution in 8 h (Chao et al., 2014), and
Cu(Il) impregnated biochar can adsorb 93% of DC from water within 24
h (Liu et al., 2017). It is worth noting that while the adsorption process is
simple and effective and can simultaneously remove multiple contami-
nants (Ahmed, 2016), it does not degrade DC (Gopal et al., 2020).

Biotransformation of antibiotic compounds have been reported.
Tetracycline can be biotransformed by mixed community (Liao et al.,
2021) and by pure culture (Leng et al., 2016). Biotransformation prod-
ucts of TC had lower antimicrobial potency than the parent compound
and the transformation products from abiotic processes (He et al., 2021).
So far, only a few papers reported the biotransformation of DC (Wen
et al., 2018; He et al., 2021). Compared to some abiotic processes, DC
biotransformation is a slower process and can be substantially affected
by environmental factors (e.g., carbon source, temperature, and pH) (He
et al., 2021).

Treatment processes that couple adsorption and biotransformation
have the potential to synergistically remove contaminants from water.
Such treatment processes have been successfully employed for water
treatment and environmental remediation. One good example is the use
of biologically active carbon to synergistically adsorb and biodegrade
contaminants from water. In addition to adsorption, the adsorbent also
provides a solid surface for biofilm growth (Xue et al., 2019), resulting in
longer cell retention times, better protection of cells against environ-
mental stress (e.g., pH and toxic compounds) (Lin et al., 2015), and
higher tolerance to inhibitors (Ruan et al., 2018). Microbes immobilized
on solid surface can biotransform the organic pollutants in water, such
as phenol (Zhang et al., 2019), sulfamethoxazole (Xie et al., 2020), and
TCs (Wu et al., 2020).

Some agricultural wastes are natural adsorbents (Dzionek et al.,
2016) for DC, such as rice husk (80% removal in 24 h) (Zeng et al.,
2018a), rice straw (88% in 24 h) (Zeng et al., 2018b), corn stalk (95% in
100 min) (Fan et al., 2019), and peanut shells (93% in 24 h) (Liu et al.,
2017). Among them, rice straw has a loose, porous structure and con-
tains reactive groups such as carboxyl and hydroxyl groups (Dai et al.,
2018). The global production of rice straw is 600-900 million tons every
year with most of it being burned in the field (Karimi et al., 2006).
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Hence, rice straw can be used as an abundant and environmentally
friendly adsorbent for DC removal.

The objective of the study was to characterize the synergistic benefits
of adsorption and biotransformation in removing DC from water using
rice straw particles (RSPs) covered with DC degrading bacteria. RSPs
and Brevundimonas naejangsanensis DD1, one of the first DC-
biodegrading bacterial strains isolated from the environment, were
used to make the bacteria-covered adsorbent, which was termed DD1-
RSPs in this study. Environmental conditions were optimized for DC
removal by DD1-RSPs (i.e., pH, background nutrient condition, and
initial DC concentrations). The synergistic effects of biotransformation
and adsorption in removing DC was characterized. The adsorption
mechanism of DC by RSPs was also investigated. Furthermore, the
biotransformation products of DC were identified and the biotransfor-
mation pathways were established. Finally, a conceptual model for the
fate of DC on and in DD1-RSPs was proposed. The findings from this
study demonstrate that DD1 covered RSPs can be an effective means to
remove DC from water.

2. Materials and methods
2.1. Reagents, culture medium, and microorganism

All reagents were purchased from Aladdin (Shanghai, China),
including analytical grade DC hydrochloride (MW = 480.90,
Ca2H24N20g-HCI, >99%), high performance liquid chromatography
(HPLC) grade methanol and acetonitrile. Rice straw was collected from a
paddy field in Jianghan Plain, Wuhan, Hubei. It was pulverized using a
straw pulverizer, filtered through 60 mesh sieves (aperture <0.25 mm),
washed 3 times using ultrapure water (Chen et al., 2017), and air dried.
The resulting RSPs were sterilized using autoclave. Lysogeny broth (LB)
medium contained 10 g ™! tryptone, 5 g L ™! yeast extract, and 5 g L™?
NaCl. Mineral medium (MM) solution contained 1.5 g L' K,HPO4, 1.0
g L7! NaCl, 0.5 g L™! KHPO4 and 0.2 g L™! MgS04+7H,0 (pH = 7.0)
(Leng et al., 2016). MM-D solution was prepared by amending MM so-
lution with 50 mg L™ DC. MM-T solution was prepared by supple-
menting MM with 10 g L™! tryptone, and MM-TD by amending MM-T
with 50 mg L™ DC. Brevundimonas naejangsanensis DD1 was isolated
in a previous study (He et al., 2021). The 16S rRNA gene sequence of
strain DD1 is deposited at GenBank under the accession number
MT809477 (He et al., 2021).

2.2. Preparation of DD1- RSPs

To prepare the biologically active adsorbent, 1 mL (ODggp = 1)
B. naejangsanensis DD1 was added to a 100-mL Erlenmeyer flask con-
taining 50 mL LB medium and 0.3 g sterilized RSPs. The mixture was
incubated on a shaker set at 150 rpm at 30 °C for 24 h to establish
bacterial attachment on the surface of RSPs. The DD1-covered RSPs
(DD1-RSPs) were washed three times using 0.85% NaCl solution and
stored at 4 °C until use.

2.3. Investigation of DC removal by individual processes

Batch reactors were assigned to three groups: control group (50 mL
MM-TD medium), adsorption group (50 mL MM-TD medium containing
0.3 g RSPs), and adsorption-biotransformation group (50 mL MM-TD
medium containing 0.3 g DD1-RSPs). Based on the results of pre-
liminary experiments, initial pH (i.e., 6, 7, 8, 9, 10), initial tryptone
concentration (i.e., 2,4,6,8,10 g L’l), and initial DC concentration (i.
e., 50, 100, 150, 200 mg L) were tested in separate experiments. All
experiments were conducted for 72 h in dark at 20 °C on a shaker set at
150 rpm. The reactor solution was sampled at 0, 12, 24, 36, 48, 60, 72 h
for analysis of residual DC concentrations. For all batch reactor tests, (1)
the initial DC concentration was 50 mg L~! unless stated otherwise; (2)
MM-TD medium and RSPs were sterilized; (3) all experiments were
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conducted under a biosafety cabinet; and (4) each experimental condi-
tion was tested with triplicate reactors.

2.4. Investigation of DC removal by DD1-RSPs

0.3 g DD1-RSPs were transferred to 100-mL Erlenmeyer flask con-
taining 50 mL MM-TD medium at optimal conditions (pH = 7, tryptone
=4gL™!, DC =50 mg L™!) based on the results from Section 2.3. The
mixture was incubated at 20 °C on a 150 rpm shaker in dark for 72 h. In
addition to the reactors containing DD1-RSPs (i.e., hydrolysis +
adsorption + biotransformation), three other groups of reactors were
also included as controls: (1) reactors containing MM-TD solution only
(hydrolysis group), (2) reactors containing MM-TD solution with 0.3 g
RSPs (adsorption group), and (3) reactors containing MM-TD solution
with 0.5 mL DD1 cells at ODggp = 1 (biotransformation group),
respectively. The MM-TD medium and RSPs were sterilized, and all
processes were operated in a biosafety cabinet. Liquid samples were
collected from the reactors at 0, 0.5, 5, 10, 20, 30 minand 1, 2, 3, 4, 5, 6,
12, 24, 48, 72 h.

2.5. Distribution of DC on and in DD1-RSPs

0.3 g DD1-RSPs was transferred to 100-mL Erlenmeyer flasks con-
taining 50 mL MM-TD medium. The operating conditions were the same
as those described in Section 2.4. Samples were collected at 0.017 h (1
min), 0.17 h (10 min), 0.5 h (30 min), 1 h, 6 h, 24 h, 48 h, and 72 h to
quantify DC in various portions of the solution. The methods for
recovering DC from various portions of the solution were adopted from
the literature (Song et al., 2016) and presented in Fig. 1. In brief, 3 mL of
well-mixed mixture was collected and stood for 20 min to allow
DD1-RSPs to settle. The suspension and the DD1-RSPs were further
processed to separate the DC molecules associated with different com-
partments of the mixture. This test was conducted in triplicate reactors.

2.6. Modeling of adsorption

Equations for the isotherm and the kinetics of DC adsorption to RSPs
are summarized in Table 1. The adsorption capacity was calculated via
Equation (1). Pseudo-first-order and pseudo-second-order models were
both tested to explain the kinetics of DC adsorption to RSPs. In addition,
the rate control steps and the mechanism of DC adsorbed on RSPs were
studied using the intra-particle diffusion model (Liu et al., 2017). The
adsorption isotherms were simulated using models such as Langmuir,
Freundlich and Temkin (Liu et al.,, 2017). Langmuir model assumes
single-layer surface adsorption and no interactions between adsorbed
molecules. Freundlich model is often used to analyze the adsorption
process on heterogeneous surfaces. Temkin model considers interactions
between adsorbed solutes.

- Centrifuge|

3 mL solution
stood for 20 min

DDI1-RSPs
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Table 1
Kinetics and equilibrium isotherm equations.
No.  Mechanism Equation
1 DC adsorbed on RSPs e = V(Co —C,) fm (20 et 21> 2019 g .
concentration of adsorbed DC at equilibrium
(mgg)
Co: initial DC concentration in medium (mg
LY
C,: residual DC concentration in medium at
equilibrium (mg L D)
V: the medium volume (L) m: the mass of rice
straw particles (g)
2 Pseudo-first-order “"*° <% In(q, — ;) = In g, — kit
2014 q¢: concentrations of adsorbed DC at time t
(mg g ™).
kq: DC adsorption rate constant of pseudo-
first-order kinetics (h™!)
t: time
3 Pseudo-second-order (“"*° t 1 t
et al, 2014) P W+ %
ko: DC adsorption rate constants of pseudo-
second-order kinetics (g mg~' h™1)
4 Intraparticle diffusion ¢ q =kt®5+ C
et al, 2017 zeng et al, 20180) kp: the constant of intra-particle diffusion rate
(mgg 1h1?)
C: intercept related to the thickness of the
boundary layer (mg g™!)
5 Langmuir (Liu et al., 2017;%\\«]\ KLque
et al., 2019) 4e = 1+K.C,
Qm: the maximum monolayer adsorption
capacity of adsorbent for DC (mg g~1)
Ki: the Langmuir constant related to the
energy of adsorption. (L mg™')
6 Freundlich ¢ ¢t 2 qe = KsCl!
2017;0“‘%\8““ and Mohallers, K¢ the Freundlich constant representing the
2019 relative adsorption capacity of adsorbent ((mg
¢ 1) (mg L) ™ n: the exponential
parameter indicative of adsorption intensity
or surface heterogeneity (dimensionless)
7 Temkin (V242 et b 2012) ¢. =BInAr+BInC,

Ar: Temkin isotherm equilibrium binding
constant (L g’l)

B: constant related to the heat of adsorption (J
mol 1)

2.7. Measurement of DC and identification of DC transformation
products

Liquid samples were centrifuged at 8000 g for 10 min, then filtered
through 0.22 pm filter and stored at —20 °C prior to DC measurements.
Detailed quantification procedure can be found in our earlier paper (He
et al., 2021). To identify transformation products, all samples were
purified and concentrated using the Oasisa HLB (6 cc/150 mg, Waters)
solid phase extraction column. All transformation products were iden-
tified using liquid chromatography mass spectrometry (Q Exactive sys-
tem, Thermo scientific, USA). Finally, the Xcalibur 2.1 software (Thermo

_-ﬂ' (1) Dissolved DC in
o
liquid
Crush,
Suspended | wash & .| (2) DC associated
cells centrifuge| with suspended DD1
Wash » (3) DC adsorbed to
DDI1-RSPs
Crush,
wash & | (4) DC residual on
Centrifuge "| and in DD1-RSPs

Fig. 1. The experimental procedure to separate the DC in the solution containing DD1-RSPs into portions associated with different compartments of the solution.
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Scientific) was used for mass spectra analysis. The transformation
products of DC were proposed based on the primary and secondary mass
spectra: predicted mass (m/z), measured mass (m/z), error between
predicted vs measured masses (<5 ppm), elemental composition, and
intensity.

3. Results
3.1. The SEMs of DD1-RSPs

Fig. 2 showed the SEM images of the B. naejangsanensis DD1 cells,
RSPs, and DD1-RSPs. DD1 cells had a rod shape and a length about 1 pm
(Fig. 2A). RSPs exhibited porous structures where bacteria could occupy
(Fig. 2B). For DD1-RSPs, DD1 cells are attached to the surface and pores
of RSPs (Fig. 2C).

3.2. Individual transformation processes

The impacts of environmental factors (i.e., pH, initial tryptone con-
centration, and initial DC concentration) on individual processes
involved in DD1-RSPs (i.e., hydrolysis, adsorption, and biotransforma-
tion) were tested. The raw DC concentration data from reactors con-
taining RSPs and DD1-RSPs are reported in Fig. S1. Data processed to
reflect the residual DC concentrations from individual processes are
reported in Fig. 3. First, within the pH range tested (pH 6 to 10), hy-
drolysis and adsorption increased with pH (Fig. 3A-i and 3A-ii), while
biotransformation decreased with increasing pH (Fig. 3A-iii). Second,
the adsorption of DC on RSPs decreased with the increasing tryptone
concentrations (Fig. 3B-ii). In contrast, hydrolysis and biotransforma-
tion of DC increased with increasing tryptone concentration (Fig. 3B-i
and 3B-iii). Third, within the range of the initial DC concentrations
tested (i.e., 50-200 mg L), the adsorption reached equilibrium quickly
(Fig. 3C-ii), while it took longer for the biotransformation to reach
equilibrium (Fig. 3C-iii). DC residual concentrations normalized to
initial concentrations reveal similar trends for the three mechanisms
(Fig. S2). Finally, based on the results presented in Figs. 3 and S1, pH 7
and initial tryptone concentration of 4 g L™! were chosen for future
experiments.

3.3. Synergistic removal of DC by DD1-RSPs

DD1-RSPs achieved superior DC removal performance over RSPs or
DD1 alone, in terms of both total removal and removal kinetics (Fig. 4).
With hydrolysis alone, only 8.94% (4.5 mg L™!) of DC was removed by
the end of the 72-hr experiment. When biotransformation was the only
mechanism, DD1 gradually reduced DC concentration from 50.0 mg L™}
to 13.9 mg L™ over the course of 72 h. When adsorption was the only
mechanism, DC concentration in solution was reduced from 50.0 mg L™}
to 12.8 mg L~! within the first 4 h of the experiment but could not be
further reduced in the remainder of the experiment. In comparison,

o B

DD1

O

3.0kV 8.6mm x20.0k SE(UL) 11/5/2018 09:55 '

The pore of rice straw
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when DD1-RSPs were used, DC removal followed a trend that combined
the removal patterns from both adsorption and biotransformation. In the
presence of DD1-RSPs, DC quickly dropped from 50.0 mg L™ to 7.5 mg
L~! within the first 6 h, and continued to decrease to 1.5 mg L™ by the
end of the 72-hr experiment.

3.4. Distribution of DC

The temporal change of DC in each compartment of the solution
mixture containing DD1-RSPs was characterized (Fig. 5). Prior to the
addition of DD1-RSPs, all of the DC was in the liquid phase. At the
beginning of the experiment (0.017 h, or 1 min), about half of the DC
became associated with the DD1-RSPs matrix. Within the DC associated
with the DD1-RSP matrix, some was adsorbed and could be washed off
from DD1-RSPs while the rest was more tightly associated and cannot be
washed off from DD1-RSPs. The DC dissolved in liquid and the DC
associated with suspected cells decreased over time (Fig. 5). The DC
adsorbed to DD1-RSPs remained nearly constant in the first hour of the
experiment and started to decrease after that. The residual DC on and in
DD1-RSPs slightly increased slightly first and then reduced later.

3.5. Adsorption mechanism of DC by RSPs

The adsorption of DC by RSPs reached equilibrium in the first 6 h
(Fig. 6A). Compared to the pseudo-first order kinetics, the pseudo-
second order kinetic model can better describe the adsorption kinetics
of DC to RSPs (Table S1, R?> = 0.9764). Besides, the intra-particle
diffusion model shows that there were three phases during the DC
adsorption onto RSPs (Fig. 6B and Table S2). The diffusion rate con-
stants for the three phases are 2.2868, 1.3890, and 0.2338, respectively
(Table S2). The adsorption process gradually slowed down and stabi-
lized. Finally, compared to the other two isotherm models tested
(Fig. 6C), the Langmuir model fitted the experimental data the best with
R? of 0.9933 (Table S3).

3.6. Transformation products

Transformation products of DC were identified (Table 2) and were
used to establish transformation pathways (Fig. 7). Three trans-
formation products were detected in reactors containing RSPs: DP-461,
DP-459, and DP-443. Nine transformation products were formed in the
presence of DD1-RSPs: DP-461, DP-443, DP-428, DP-417, DP-410, DP-
402, DP-400, DP-338, DP-323. The isomer (Iso-DC) and epimer (EDC)
of DC were the only transformation products found in reactors con-
taining no RSPs or DD1-RSPs, suggesting they were the hydrolysis
products of DC.

DC was biotransformed through three potential pathways. In the first
pathway, which was reported in our previous study (He et al., 2021), DC
was biotransformed to DP-417, DP-402, DP-338, to DP-323 (i.e., the
pathway shown in the top portion of Fig. 7). In the second pathway, DC

C

DDI1

BRI Tl
2.00um 3.0kV 9.5mm x5.00k SE(UL) 11/5/2018 09:32 10.0um 3.0kV 8.5mm x20.0k SE(UL) 11/5/2018 10:07

Fig. 2. SEM images of the pure culture of B. naejangsanensis strain DD1 (A), RSPs (B), and DD1-RSPs (C).
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Fig. 5. The DC distribution in four positions of the solution containing DD1-
RSPs. Error bars were standard deviations from triplicate experiments. The
procedure to measure DC in each compartment is presented in Fig. 1.

was converted to DP-428 by losing the amino group of the amide group
at C2. DP-428 was further converted to DP 410 by having the hydroxyl at
C5 removed or converted to DP-400 by having the carbonyl group at C1
removed. In the third pathway, the oxidation of DC at the C8-C9
resulted in the formation of DP-461. DP-461 lost the hydroxyl group at
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Fig. 6. The pseudo-first-order and pseudo-second-order kinetic models of DC adsorption on RSPs (A), the intra-particle diffusion kinetics (B), three different isotherm

kinetic models of DC adsorption on RSPs (C).

Table 2
Characteristics of the parent compound and the products from hydrolysis, adsorption and/or biotransformation of DC.
Time Name Compound Ion Predicted Measured Error Elemental Ring Double bond Intensity MS-MS
(min) Mass (m/ mass (m/z) (ppm) composition equivalent value
2) (RDB)
5.88 ISO-DC or EDC [M+H]" 445.1605 445.1608 0.67 Co2H2508N3 11.5 2.56e+008 428,
410
6.54 DC DC-445 [M+H] " 445.1605 445.1612 1.57 Co2Ho508N5 11.5 1.89e+008 428,
410

3.91 DP- [M+H+ 01" 461.1555  461.1556 0.22 Ca2Ha500N, 11.5 1.02e+006 388
461

3.80 DP- [M+ H + 0-2H] " 459.1398 459.1392 1.30 Co2H2309N, 12.5 1.28e+004 395
459

5.84 DP- [M + H + 0-H,0]* 4431449  443.1442 1.57 CgpH308N, 12.5 3.43+005 426
443

6.73 DP- [M + H-NH5]" or [M + H + 428.1340 428.1326 3.27 CooHo0N 12.5 1.24e+007 410,392
428 0-H,0-NH] "

4.02 DP- [M + H-CO]*" 417.1656 417.1652 0.96 C21H2507N5 10.5 1.26e+007 400,
417 382

6.34 DP- [M + H-NH3-H,0]" or [M + H + 410.1234 410.1237 0.73 Cg2H007N 13.5 2.38e+005 367,
410 0-H,0-NH-H,0]" 339

5.70 DP- [M 4+ H-CO-NH] " 402.1547 402.1542 1.24 Co1H240O7N 10.5 1.19e+006 384,
402 366

4.07 DP- [M + H-NH3-CO]" or [M + H + 400.1391 400.1383 2.00 C21H2207N 11.5 3.22e+005 382
400 0-H,0-NH-CO] "

7.62 DP- [M 4 H-CO-NH-CO-2H,0]" 338.1387 338.1391 1.18 CooH2004N 11.5 6.47e+004 -
338

8.03 DP- [M + H-CO-NH-CO-2H,0-CH,-OH + 323.1390 323.1389 0.31 C19H1903N> 11.5 1.84e+005 323,
323 NH,]" 277

C5 to form DP-443. Subsequently, DP-443 lost the amino group of the
amide group at C2 and was converted to DP-428. Further, the hydroxyl
at C12a was removed to form DP-410, or the carbonyl group at C1 or C2
was removed to form DP-400.

4. Discussion

4.1. Effects of pH & tryptone on the hydrolysis, adsorption and
biotransformation of DC

Hydrolysis and adsorption of DC increased with the increase of pH.
DC is an amphiphilic molecule with three acid dissociation constants
(pKa 3.50, 7.07, 9.13) and multiple ionizable functional groups
(Bolobajev et al., 2016). When the pH of the solution increased from 6 to
10, DC mainly existed in the form of zwitterions. Species with different
degrees of ionization dominated the solution at different pHs, resulting
in different hydrolysis rates (Chao et al., 2014; Liu et al., 2019). The
acidic condition is conducive to the stability of DC, while the alkaline
condition has the opposite effects (Pouliquen et al., 2007; Fu et al.,
2017). In addition, the main functional group of native RSPs is the hy-
droxyl group (Gong et al., 2006). Because DC competed with hydrogen
ions, which decreased in solution as pH increased, for adsorption sites on

RSPs, DC adsorption faced less competition and therefore gradually
increased as pH increased (Gong et al., 2006). In contrast, DC
biotransformation decreased as pH increased (Fig. 3A-iii), which may be
due to the inhibition of bacterial growth and enzyme activities at higher
pHs (Wu et al., 2019).

DD1 couldn’t use DC as a sole energy source to grow (Fig. S3). As the
primary substrate, tryptone provided carbon and nitrogen sources to
DD1 and promoted DC biotransformation. During co-metabolisms,
catabolic enzymes for non-growth substrate are produced in the pro-
cess of primary growth substrate. Hence, growth substrate concentra-
tions often affect the co-metabolism of non-growth substrate (Luo et al.,
2008). Unlike for biotransformation, tryptone had a negative effect on
the adsorption of DC onto RSPs (Fig. 3B-ii), as organic compounds likes
tryptone could compete with DC for adsorption sites on RSPs (Zhang and
He, 2013).

4.2. Kinetics and mechanisms of DC adsorption to RSPs

The pseudo-second-order model could better describe the kinetics of
DC adsorption to RSPs than the pseudo-first-order model. This finding is
consistent with previous findings that the pseudo-second-order model
could describe the adsorption kinetics of TCs to various adsorbents
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Fig. 7. Degradation pathways of DC in solution containing DD1-RSPs (A) and RSPs (B).

(Priya and Radha, 2017). The kinetic model suggests that DC was mainly
adsorbed onto the surface of RSPs by chemical interactions, such as
hydrogen bonding (Zeng et al., 2018b). Intraparticle diffusion kinetics
suggested that initially DC quickly adsorbed on the exterior of DD1-RSPs
and then the adsorption slowed down during the intraparticle diffusion
due to lower DC concentration, smaller pores and fewer adsorption sites
(Hameed et al., 2008). Moreover, because the curves of three stages
didn’t cross the origin (Fig. 6B), the intraparticle diffusion might not be
the only rate control step in the adsorption process (Hameed et al., 2008;
Liu et al., 2017; Wei et al., 2019). The fitting of the isotherm data with
the Langmuir model (Fig. 6C) suggests DC adsorbed on RSPs through
chemisorption (Priya and Radha, 2017) and formed a monolayer (Liu
et al., 2017). The Ky, of our study was 0.0469 + 0.0070 L mg ™, sug-
gesting that the adsorption between DC and RSPs was favorable (Tan
et al., 2016).

4.3. Synergistic removal of DC by adsorption and biotransformation

DC was adsorbed rapidly, because RSPs contained high surface areas
(e.g., 1.229 m%/g (Wang et al., 2016) and 1.533 m?%/g (Wi et al., 2013))
and porous structure (Fig. 1), allowing for DC adsorption both on the
surface and the interior of the pores (Rocha et al., 2009). Based on the
results presented in Figs. 4-6, we propose the following process where

adsorption and biotransformation worked synergistically to remove DC
from water (Kannan and Sundaram, 2001; Gong et al., 2006). The
first-order reaction rate constants for abiotic processes such as UV
treatment and advanced oxidation processes were reported to range
between 0.14 x 107! to 3.1 x 107! min~! (Bolobajev et al., 2016). In
comparison, the first-order reaction rate constant for the adsorption
process in this study is about 2.9 x 107! min~!. The kinetic of the
combined adsorption and biotransformation process was noticeably
faster than the adsorption process along (Fig. 4), as bacteria could
degrade adsorbed DC to free up more adsorption sites on RSP surface.
Moreover, compared to free cells, solid surface often provides a more
stable living environment for microorganisms (Xue et al., 2019). As
illustrated in the Graphic Abstract, dissolved DC in the solution first
adsorbed to the boundary layer of RSPs and diffused through the
boundary layer to reach the surface of RSPs. Second, DC adsorbed on the
active sites on the exterior and the pore of RSPs. Third, DC reached the
deeper portion of the pores of RSPs through intraparticle diffusion.
Fourth, DC was biotransformed by the DD1 cells on and in the DD1-RSP
matrix. Overall, the combined mechanisms of adsorption and biodeg-
radation synergistically and efficiently removed DC from water.
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4.4. Transformation products

TC antibiotics share similar transformation products and pathways
due to the similarities in their molecular structures. Between pH 6 and
10, hydrolysis can cause conversion of DC to its isomer or epimer
without forming other transformation products. Biotransformation
products were formed in the presence of DD1. The transformation
pathway that involved DP-417, DP-402, DP-338, DP-323 has been re-
ported in our previous study (He et al., 2021). The other two pathways,
which included conversion of DC to DP-428 and to DP-461, respectively,
are reported for the first time. In the pathway that involves DP-461, the
oxidation of C=C double bond between C8 and C9 resulted in DP-461
(Jeong et al., 2010). The sequential loss of the hydroxyl group on C5
and Cl2a was reported in a reaction where photocatalyst
Ag/AgCl-CdMo04 was used to treat DC (Wen et al., 2019).

In the pathway that involves DP-428, -NH3 at C2 was lost to form DP-
428. This process was also reported in the biotransformation of tetra-
cycline by S. maltophilia (Leng et al., 2016), by the catalysis of laccase
(De Cazes et al., 2014), and by mixed microbial community (Cai et al.,
2018). Similar to the degradation of oxytetracyline, the decarbonylation
reaction at C1 is similar to the degradation of oxytetracycline (Liu et al.,
2016). During the process, an a-cleavage occurred at the C1-C12a bond,
forming a diradical intermediate. The resulting diradical intermediate
then lost a carbonyl group and formed another diradical, which closed
the ring (i.e., DP-428 to DP-400).

5. Conclusions

In this study, rice straw particles and B. naejangsanensis DD1 were
mixed to make a cell-covered adsorbent, DD1-RSPs. Under the optimal
condition determined for individual processes, the removal of DC by
adsorption and biodegradation was characterized. Compared to the
slower kinetics of biotransformation by DD1 alone, DD1-RSPs could
quickly remove DC from water by adsorption within a few hours.
Compared to lower removal of DC by adsorption to RSPs alone, DD1-
RSPs could remove more DC from water. In addition, the adsorption
of DC to RSPs can be explained using the pseudo-second-order kinetics
and the Langmuir isotherm. Through a series of demethylation, dehy-
dration, and deamination, decarbonylation, DC was converted by the
DD1 cells on DD1-RSPs to biotransformation products DP-410, DP-400,
and DP-323. The findings of this study demonstrate the feasibility and
advantages of using DD1-RSPs to remove DC from water.
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