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Abstract

Motivation: Detection of structural variants (SVs) from the alignment of sample DNA reads to the reference genome is an important problem in
understanding human diseases. Long reads that can span repeat regions, along with an accurate alignment of these long reads play an important
role in identifying novel SVs. Long-read sequencers, such as nanopore sequencing, can address this problem by providing very long reads but
with high error rates, making accurate alignment challenging. Many errors induced by nanopore sequencing have a bias because of the physics
of the sequencing process and proper utilization of these error characteristics can play an important role in designing a robust aligner for SV de-
tection problems. In this article, we design and evaluate HQAlign, an aligner for SV detection using nanopore sequenced reads. The key ideas of
HQAlign include (i) using base-called nanopore reads along with the nanopore physics to improve alignments for SVs, (ii) incorporating SV-
specific changes to the alignment pipeline, and (iii) adapting these into existing state-of-the-art long-read aligner pipeline, minimap2 (v2.24), for ef-
ficient alignments.

Results: \We show that HQAIlign captures about 4%-6% complementary SVs across different datasets, which are missed by minimap2 align-
ments while having a standalone performance at par with minimap2 for real nanopore reads data. For the common SV calls between HQAlign
and minimap2, HQAlign improves the start and the end breakpoint accuracy by about 10%-50% for SVs across different datasets. Moreover,
HQAlign improves the alignment rate to 89.35% from minimap2 85.64% for nanopore reads alignment to recent telomere-to-telomere CHM13
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assembly, and it improves to 86.65% from 83.48% for nanopore reads alignment to GRCh37 human genome.
Availability and implementation: https://github.com/joshidhaivat/HQAlign.git.

1 Introduction

Structural variations (SVs) are genomic alterations of size at
least 50bp long, including insertions, deletions, inversions,
duplications, translocations, or a combination of these types
(Alkan et al. 2011). The study of these genetic variations has
an important role in understanding human diseases, including
cancer (The ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium 2020), and begins with the alignment of
reads sequenced from the sample genome back to the reference
genome. Accurate alignment of short reads from high through-
put sequencing poses a challenge, especially, in the repetitive
regions of the genome, which are also the hotspots of nearly
70% of the observed structural variations (Rowell et al. 2019).
Long-read sequencing technologies have addressed this
problem by producing reads that are longer than the repeat
regions, therefore, enabling the detection of variants in the re-
peat regions at the cost of higher error rates than short-read se-
quencing technologies. These high error rates in the long reads
lead to non-contiguous alignment, which poses a challenge in
variant detection problems, especially, in the repeat regions.
Nanopore sequencing (Mikheyev and Tin 2014, Deamer
et al. 2016) is a long-read sequencing technology that

provides reads (with average read length more than 10-kb
and the longest read sequenced more than 2-Mb long) that
can span these repetitive regions but it has a high error rate of
(average) 10%. These high error rates result in low accuracy
alignments (Krizanovi¢ et al. 2018) using state-of-the-art
methods including minimap2 (v2.24) (Li 2021), which is a
fast method designed for the computationally challenging
task of long sequence alignment. This problem is further am-
plified in the repetitive regions, such as variable-number tan-
dem repeats region that accounts for a significant fraction of
SVs (Chaisson et al. 2019, Ebert et al. 2021). However, these
errors in nanopore sequencing have a bias induced by nano-
pore physics, which is missed by many long-read aligners
since they consider the errors as independent insertions, dele-
tions, and substitutions. In nanopore sequencing, a DNA
strand migrates through the nanopore, and an ionic current
that is established in the nanopore changes according to the
nucleotide sequence in or near the nanopore. However, be-
cause of the physics and non-idealities of the nanopore se-
quencing, each current level recorded depends on a Q-mer
(https://nanoporetech.com/support/how-it-works) (a set of O
consecutive nucleotide bases, which influence the measure-
ment in the nanopore) (Laszlo et al. 2014, Mao et al. 2018).
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These current readings are translated back to nucleotide
sequences by base-calling algorithms. Therefore, the error
biases could be introduced in base-calling, especially, between
different Q-mers that have similar current levels. This similar-
ity in the current levels for different Q-mers is captured by the
QO-mer map as shown in Fig. 1a. A Q-mer map represents the
median current level and the standard deviation (as error
bars) for different Q-mers (Q = 6) for the nanopore flow cell.
It is evident from this figure that there is a significant overlap
between the current levels observed for different Q-mers mi-
grating the nanopore. We propose a new alignment method,
HQAlign [Hybrid-QAlign, which is based on QAlign (Joshi
et al. 2021)] and is designed specifically for detecting SVs
while incorporating the error biases inherent in the nanopore
sequencing process.

HQAlign takes the dependence of Q-mer map into account
to perform accurate alignment with modifications specifically
for the discovery of SVs. Figure 1b gives an example where a
DNA sequence (GCATGACAGG ) is sequenced incorrectly as
(CGGCAACCGA) due to the error bias in the nanopore se-
quencer. As shown in the figure, the sequences are different in
the nucleotide space but they are identical in the Q-mer map
space. It is important to note that no additional soft
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information is used to establish this identity, such as raw
nanopore current values for the nanopore reads. Instead, the
nucleotide sequences that have indistinguishable current levels
from the lens of the Q-mer map are mapped to a common
quantized sequence. A nucleotide sequence is converted to a
quantized sequence by first converting the nucleotide se-
quence to a sequence of current levels using the O-mer map
and then converting the sequence of (real-valued) current lev-
els to a (finite level) quantized sequence by hard thresholding
the current levels as shown in Fig. 1c. Therefore, the addi-
tional information about the raw current signals is not used in
the quantization process but only the Q-mer map is utilized.
Further, the quantization of current levels to finite discrete
levels (e.g. three levels) enables the use of existing software
pipelines for long-read aligners, such as minimap?2 as the core
seed and extend algorithm for the alignment of quantized
sequences.

HQAIlign is a hybrid mechanism with two steps of align-
ment. In the initial alignment step, the reads are aligned onto
the genome in the nucleotide space using minimap2 to deter-
mine the region of interest where a read can possibly align to.
In the hybrid step, the read is re-aligned to the region of inter-
est on the genome (determined from the initial alignment) in
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Figure 1. (a) O-mer map for Nanopore R9.4 1D flow cell (for Q = 6). It represents the physics of nanopore. The median current value along with the
standard deviation (as error bars) are plotted for all 6-mers in the Q-mer map for R9.4 1D nanopore flow cell (the Q-mers are sorted in increasing median
current levels). Note that the difference between the median current levels of any two consecutive Q-mers is very small, therefore, resulting in large
overlaps. (b) An example to illustrate the error biases in nanopore base-called reads, which can be resolved through the Q-mer map ability of HQAlign to
perform accurate alignment despite the errors (the edit distance used here is domain-specific and is used to demonstrate the accuracy of the alignment).
(c) An example of quantization method for translating the nucleotide sequences to the current-level sequences using O-mer map, and then quantizing the
(real-valued) current-level sequences to finite quantized sequences (e.g. three levels for HQ3). (d) An example from PromethlON R9.4.1 ONT data in the
neighborhood of an SV in repeat region shows the two different nucleotide sequences have similar current levels and therefore, the edit distance as
observed through the lens of quantized sequence is significantly lower in HQ3.
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the quantized space. The narrow focus on the region of inter-
est on target for the hybrid step leads to an accurate alignment
of the read-to-genome without dropping the frequently occur-
ring seed matches from the chain in minimap2 algorithm
while taking the error biases of nanopore sequencing into ac-
count through quantized sequences. The new modifications in
minimap2 (Li 2021) address this issue with a heuristic that
adds additional low occurrence minimizers to the chain if the
adjacent anchors in the chain are far apart, whereas the imple-
mentation of HQAlign has a different and complementary ap-
proach by focusing on a narrow region on target to enable
alignments with an improvement in chaining score over new
minimap2. Moreover, HQAlign pipeline enables the detection
of inversion variants unlike QAlign pipeline. In QAlign, the
quantized forward read and the quantized reverse comple-
ment read are aligned separately to the quantized genome,
therefore, an inversion within a read alignment is not detected
in QAlign (refer to Section 2.2 for details). The separate align-
ment of the forward and the reverse complement reads in
QAlign also results in a high false discovery rate for SV detec-
tion (as explained in Supplementary Section S1.3). It is be-
cause QAlign was not optimized for downstream SV callers,
such as Sniffles2 (Smolka er al. 2022). However, in HQAlign,
we have modified the minimap2 pipeline to enable simulta-
neous alignment of the quantized reverse complement read
along with the quantized forward read sequence to the quan-
tized genome. This helps not only in resolving the high false
discovery rate in QAlign but also in detecting inversions
within a read alignment. Further, HQAlign is optimized for
the downstream SV callers, and is more than 2.5 x faster than
QAlign (as shown in Supplementary Table S4) as the seed
search domain for the alignment of quantized sequences is re-
duced to a region of interest determined in the initial step of
the algorithm.

An example of the performance of HQAlign against mini-
map2 (v2.24) in detecting an insertion SV in a repeat region is
demonstrated in Fig. 1d. It shows alignment of a real ONT
read in a repeat region (note that a pattern of a few consecu-
tive nucleotide bases is repeated in the example) that is flank-
ing around an insertion SV. Minimap2 alignment of
nucleotide reference and read (both of length 356 from the re-
gion highlighted with a box) have an edit distance of 66
whereas the HQ3 alignment (HQ3 is an alignment from
HQAlign pipeline where the nucleotide sequences are trans-
lated to three level quantized sequences, as shown in the ex-
ample in Fig. 1c) of quantized reference and read sequences
from the same region have a significantly smaller edit distance
of seven. This is because the current-level sequence (by con-
verting the nucleotide sequences using the Q-mer map in
Fig. 1a) for the reference and the read sequences is very

similar. Therefore, the sequences that are far apart in nucleo-
tide space are inherently very similar in HQ3 space in terms
of the edit distance in the transformed space.

We show that HQAlign gives significant performance
improvements in the quality of read alignment across real and
simulated data. The well-aligned reads (a read is defined as
well-aligned if at least 90% of the read is aligned on the ge-
nome with a mapping quality more than 20) improve to
86.65% with HO3 from 83.48% with minimap2 (v2.24) for
the alignment of ONT reads from HG002 sample to GRCh37
human genome. The metric improves to 89.35% from
85.64% for HGOO02 reads alignment to T2T CHM13 assem-
bly (Rhie et al. 2022), and improves to 81.57% from 81.01%
for the simulated reads data. These results are presented in
Section 3.1.2 (Table 1).

In terms of SV detection, HQAlign has F1 score at par with
minimap2 (v2.24) with Sniffles2 (Smolka et al. 2022) as the
variant calling algorithm across both real and simulated data-
sets (Supplementary Table S6). However, both HQAlign and
minimap2 capture many complementary calls (4%-6%),
which are missed by the other method (as shown in Fig. 4 and
Supplementary Figs S8-S11). For instance, the complemen-
tary HQAlign calls are SVs that are uniquely called by
HQAlign or labeled missed in minimap2 due to breaking in
the SV and vice-versa for the complementary calls in mini-
map2. Further, the analysis of common true positive SV calls
in HQAlign and minimap2 against the truth set shows that
HQAlign has on average a significant improvement (10%-—
50%, from the slope of the regression line in Fig. 5, and
Supplementary Figs S12-S14, and weighted average improve-
ment across all datasets by 39%) in the breakpoint accuracy
than minimap2 for the calls with a difference in breakpoint
>50bp (breakpoint accuracy is determined from the differ-
ence in the start and end breakpoints of an SV with respect to
the match SV in truth set, therefore, lower the difference
higher is the breakpoint accuracy, refer to Section 2.3 for a
precise definition). Moreover, for the common true positive
calls, HQAlign has (on average) better SV length similarity
than minimap2 (when SV length similarity is <0.95, SV
length similarity is a measure of how similar is the length of
SV from an alignment method relative to the match SV in
truth set; refer to Section 2.3 for a precise definition) as shown
in Fig. 5 and Supplementary Figs S12-S14.

2 Materials and methods

The HQAlign strategy consists of two steps: (i) the initial
alignment of the standard base-called query sequence x to a
target sequence ¢ using Minimap2. This initial step identifies
the regions of interest on the target where x aligns. (ii) The

Table 1. Comparison for the percentage of well-aligned reads onto genome, and slope of the regression line from normalized edit distance comparison
plot of HQ3 versus minimap2 alignments with randomly sampled reads for each dataset (the reads are randomly sampled to reduce the amount of edit

distance computations).?

Dataset (no. of sampled reads)

Method of alignment

well-aligned reads (%) Slope of regression line

HGO002 R9.4.1 reads to CHM13 (50k) minimap2
HQ3

HGO002 R9.4.1 reads to GRCh37 (50k) minimap2
HQ3

Simulated reads from chr 8 & X of minimap2
CHM13 assembly (50k) HQ3

85.64 0.7940
89.35
83.48 0.8301
86.65
81.01 0.9860
81.57

? The slope of the regression line shows the average gain in the normalized edit distance over the subsampled reads in each dataset.
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hybrid step is re-aligning the query x only to the regions of in-
terest on the genome determined in the first step in the quan-
tized current-level space of the nanopore flow cell (refer to
Supplementary Section S1.1 for more details on the quantiza-
tion method and the choice of quantization level). However,
HQAIlign differs from QAlign method because of three key
reasons: (i) in the original implementation of minimap2 (Li
2018), it only uses the low occurrence minimizers during read
mapping, which leads to misalignments, especially, in the
highly repetitive regions. The new modifications in minimap2
(Li 2021) address this problem with a heuristic that adds ad-
ditional lowest occurrence minimizers to the chain if the two
adjacent anchors in the original chain are far apart. The im-
plementation of HQAlign also addresses this issue in a differ-
ent (and complementary manner) by focusing on a narrow
region on the reference to enable alignments with a better
chaining score, and the statistics to quantify the improvement
in HQAlign over the modifications in minimap2 (Li 2021) are
in Supplementary Section S1.3. (ii) QAlign has a high false
discovery rate for SV detection because it is not optimized for
the downstream SV callers (such as Sniffles), and was solely
designed for the purpose of accurate alignments of the nano-
pore reads using the current-level modeling (refer to
Supplementary Section S1.3 for statistics and more details).
(iii) Further, we have modified the minimap2 (v2.24) pipeline
for the simultaneous alignment of the quantized forward and
the quantized reverse complement read sequences to the quan-
tized region of interest on the genome in the hybrid step. This
enables resolving the high false discovery rate for SVs in
QAlign and the detection of the inversion variants within the
alignment using the quantized sequences. This is explained in
detail in Section 2.2. Further, HQAlign is more than 2.5x
faster than QAlign standalone as it narrows down the seed
search domain for lower alphabet size (e.g. three levels) in
QAlign. This strategy is explained in Fig. 2b, and mathemati-
cally in the following sections.

2.1 Initial alignment

The nucleotide query x is aligned to a nucleotide target se-
quence ¢ using minimap2. This is similar to aligning a read to
a genome with one chromosome. Here, we consider only one
chromosome in target ¢ for simplicity but the method general-
izes to multiple chromosomes in # such as # = (¢1,%2,...,8,)
(this generalization is explained in detail in Supplementary
Section S1.2). This step identifies the regions of interest on the
target t, say, £[s; : e;], where i € {1,2,3,...} represent one or
more alignments on ¢ and s; and ¢; are the corresponding start
and end location of each alignment i on target ¢, respectively.

2.2 Hybrid alignment

In this step, the query x is re-aligned to an extended region of
interest on the target ¢[s? : /] in the quantized current-level
space, where s] =s;—b; and el =e;+b;, bi=(1—-fi+
0.25)n is an appended extension of the region of interest on
target, f; = (e; — s;)/n is the fraction of read aligned in the ini-
tial step, and # is the length of the query x. The nucleotide
query x and the nucleotide extended target ¢[s] : e!] are con-
verted to the quantized query x7 and quantized extended tar-
get t1[s] : ¢l], respectively, using the quantization method
demonstrated in QAlign (refer to Supplementary Section S1.1
for more details on quantization process).

It is important to note that we do not use any additional
soft information, such as raw current signals from nanopore
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sequencing in the quantization process, instead, we translate
the base-called nucleotide reads to current levels using the
O-mer map (in Fig. 1a) and then hard threshold the current
levels to finite (e.g. three) levels to get the quantized (HQ3)
reads (in Fig. 1c). The choice on three levels of quantization is
because of the following reasons: (i) using a coarser quantiza-
tion to only two levels makes it difficult to accurately align low
complexity sequence in a repetitive region containing an SV,
therefore, it becomes hard for the variant caller to make a con-
fident call for such SVs due to high variance of the SV break-
points. (ii) Using higher level of quantization requires a match
in the current levels at a finer level for the alignment of sequen-
ces. As we observe from the O-mer map of R9.4 nanopore
flow cell (shown in Fig. 1a), the difference between the median
current values of the consecutive 6-mers is very small.
Therefore, a finer quantization leads to a higher rate of implied
substitution errors due to quantization. In this article, we show
that the coarse three level quantization (HQ3) is sufficient to
obtain good accuracy for SV calling as well as fast alignment.

These quantized sequences are then aligned using a modi-
fied pipeline of minimap2 (v2.24). We have modified mini-
map2 pipeline for this hybrid step to take the quantized
reverse complement query X7 as an input, which helps in iden-
tifying the inversion SVs within the contiguous alignment of
quantized sequences, which was not possible with the earlier
QAlign method as shown in Fig. 2a. QAlign uses the default
minimap2 pipeline for the alignment of quantized sequences.
While minimap2 can inherently compute and align the reverse
complement of a read in the nucleotide domain, the quantized
reverse complement sequence cannot be computed given only
the forward quantized sequence, therefore, QAlign separately
aligns both quantized forward and quantized reverse comple-
ment sequence. This method, however, fails to identify an
inverted alignment as shown in Fig. 2a, and also results in a
high false discovery rate for SV calling since it is not opti-
mized for the downstream SV callers, such as Sniffles2.
Therefore, in HQAlign, we have modified the minimap2 pipe-
line to enable alignment using both quantized forward and
quantized reverse complement sequences, simultaneously.
Note that the quantized alignment employs a different mini-
mizer length k=18 in minimap2 for ternary (HQ3)
quantization.

We define several metrics that are used for the performance
evaluation of HQAlign against minimap2 [some of these met-
rics are used from the earlier QAlign method (Joshi et al.

2021)].

i) well-aligned: Consider in Fig. 2c, Read 1 aligns at loca-
tion i1 through j; on the genome determined using nu-
cleotide alignment. We say that the read is well-aligned
if at least 90% of the read is aligned onto the genome
(i.e. j1 — i1 > 0.9(length(Read 1))), and has high map-
ping quality (>20). This metric quantifies the reads that
are mapped almost entirely to the reference.

ii) normalized edit distance: In order to compare the qual-
ity of the alignments at a fine-grained level, we further
define normalized edit distance. The normalized edit dis-
tance for nucleotide alignment is defined as

edit_distance{r; G[iy : j1]}
length(r)

(1)

and for quantized alignment is
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Figure 3. HG002 nanopore long DNA reads alignment onto T2T CHM13 genome. (a) Comparison of normalized edit distance for HG002 R9.4.1
PromethlON reads data. Smaller values for normalized edit distance are desirable as it represents better alignment. The slope of the regression line is
0.79 < 1, therefore, representing better alignments with HQ3 than minimap2 alignments for the same reads on average. (b) Comparison of normalized
alignment length for HG002 R9.4.1 PromethlON reads data. Normalized alignment length of 1 is desirable as it represents that the entire read is aligned.
The majority of the reads are above y = x line representing longer alignment length in HQ3 than minimap2 alignment.

(a)

Minimap2
15,396

True positives

(57%) [ 890

Out of 890 calls in minimap2:

(5.8%)

(6.7%)

HQ3

15,545
(58%)

1039

461: calls are captured by HQ3 at low SV length similarity
429: unique region calls

Out of 1039 calls in HQ3:
358: calls are captured by minimap2 at low SV length similarity
681: unique region calls

(b)

False positives

Minimap2

4870

HQ3
5319

Figure 4. Comparison of SV calls from HQ3 and minimap2 with HG002-to-CHM 13 dipcall as truth set. (a) Comparison of true positive calls. (b)

Comparison of false positive calls.
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comparing HG002 haplotype-resolved assembly to T2T CHM13 build. A smaller difference represents better breakpoint accuracy. Therefore, the slope of
the regression line 0.58 < 1 represents better accuracy of HQ3 than minimap2 on average. (b) Comparison of SV length similarity in HQ3 and minimap2
for common true positive calls. The slope of the regression line 0.76 < 1 represents better SV length in minimap2 than HQO3 on average, but the intercept
is high (0.23). However, this is due to a large density of SVs with length similarity > 0.95 in both minimap2 and HQ3. For length similarity <0.95, HQ3 has

better performance than minimap2.

edit_distance{r; G[#{ : /1]}
length(r)

; (2)

where #1,j; are the start and end location of alignment on
the genome in nucleotide space and i{,;] are the start and
end location of alignment on the genome in the quantized
space, r is the entire read and G is the genome. It is impor-
tant to note that for computing the normalized edit distance
for alignments in the quantized space, we only leverage the
information of the location of the alignment on genome
from quantized space, i.e. i and j{, but the edit distance be-
tween read and the aligned section on the genome is com-

puted on the nucleotide sequences. This metric gives a

measure of the distance similarity between two sequences,

especially, used for the real data where the truth of sequence
sampling location is not known.

iii) normalized alignment length: Another metric at the fine-
grained level is normalized alignment length, which is
the ratio of the length of the section on the genome
where a read aligns to the length of the read. It is

1—1

len(r) G)
for nucleotide alignment, and
q_a
J1i—HhH
len(rQ) )

for quantized alignment. A contiguous alignment tends
to have this metric as one. This metric gives a measure
of the contiguity of the alignment.

2.3 SV calling

The alignments from HQAlign and minimap2 in sorted bam
format are used to detect SVs using Sniffles2. These calls are
benchmarked against a truth set using Truvari (English et al.
2022). We have used the F1 score, precision, and recall as the
metric to analyze the performance of HQAlign and compare
them with minimap2. Precision (P) is defined as the fraction
of SVs detected by the algorithm in the truth set among the to-
tal SVs detected by the algorithm. Recall (R) is the fraction of
SVs detected by the algorithm in the truth set among the total
SVs in the truth set. F1 score is the harmonic mean of preci-
sion and recall (= lz,i—‘g). Further, we have observed that there
are many complementary SV calls made by both minimap2
and HQ3 that are missed by the other method. Therefore, we
have defined a union model, which takes a union of the SV
calls from both minimap2 and HQ3. The precision, recall,
and F1 score of the union model are also computed and
reported in Supplementary Table S6.

Further, the quality of the SVs for the common calls in min-
imap2 and HQAlign is evaluated by comparing the following
metrics w.r.t. the SVs in truth set

i) breakpoint accuracy: Breakpoint accuracy is measured
by taking an average of the difference in the start and
end breakpoint of the SV w.r.t. the SV in truth set. For
instance, as shown in Fig. 2d, i; and j; are the start and
the end point on the genome of SV in the truth set, and 7|
and j are the start and the end point of the same SV de-
termined by any alignment method (minimap2/HQ3),
then breakpoint score is calculated as

=l + 17 =7l

. , (5)
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where | - | is absolute value function. Therefore, the lower
the score higher the breakpoint accuracy of the SV deter-
mined by the alignment method.

ii) SV length similarity: SV length similarity is measured as
the ratio of minimum SV length in the truth set and from
the algorithm to the maximum of two values.
Mathematically, it is

min(jl — i],/’l — lll)
max(jy — i,/ —i))’

for the example shown in Fig. 2d.

3 Results

In this section, we demonstrate the results for (i) comparison
of alignments from HQ3 and minimap2 on real as well as
simulated data, and (ii) comparison of SV calls from HQ3
and minimap2 alignments using Sniffles2 as the variant caller
on real and simulated data.

3.1 DNA read-to-genome alignment

3.1.1 Datasets

We have used the publicly available R9.4.1 ONT
PromethION reads dataset from HGO002 sample (Ren and
Chaisson 2021). These reads are aligned to the recent
telomere-to-telomere assembly CHM13 and the human refer-
ence genome GRCh37. GRCh37 is used as the reference build
to map the real data so that the curated variants can be used
for accuracy analysis (Zook et al. 2020). Further, we have
also benchmarked the performance of HQAlign and mini-
map2 on simulated data for both alignments and SV calling.

3.1.2 Alignment results

The alignment of DNA reads to the genome is a primitive step
in SV calling pipelines (DePristo et al. 2011). HQ3 alignments
show an improvement over minimap2 alignments in terms of
contiguity measured by normalized alignment length and
alignment quality measured by normalized edit distance.

The results are illustrated in Fig. 3, Supplementary Figs S6
and S7, and Table 1. At a coarse level, the performance is
measured by the fraction of the reads that are well-aligned by
the algorithm. A read is well-aligned if at least 90% of the
read is aligned to the genome and has a high mapping quality
(see Section 2). HQAlign improves the fraction of well-
aligned reads than minimap2—in particular, in the HG002
R9.4.1 reads alignment to T2T CHM13 reference, this metric
improves to 89.35% from 85.64%, and for the alignments to
GRCh37 reference, this metric improves to 86.65% from
83.48%. Furthermore, there are 310036 reads (from the en-
tire dataset with 10.36M reads) with at least 1 kb additional
bases aligned using HQAlign compared to minimap2 align-
ments for T2T CHM13 reference, and there are 299 896
reads with at least 1kb additional bases aligned using
HQAlign compared to minimap2 for GRCh37 reference.

The results in Fig. 3 and Supplementary Fig. S6 compare
the quality of the alignments using minimap2 and HQAlign
at a fine-grained level for HG002 ONT reads alignment to
T2T CHM13 genome and GRCh37 genome, respectively.
Figure 3a and Supplementary Fig. S6a compare the normal-
ized edit distance for HQAlign and minimap2. The normal-
ized edit distance is the edit distance between the entire read

Joshi et al.

and the aligned section on the genome normalized by the
length of the read, in nucleotide domain for both minimap2
alignment and quantized alignment (HQ3). In the case of
HQ3, the information of the location of the alignment on the
genome is leveraged from the quantized read and the quan-
tized genome alignment, and the edit distance is computed be-
tween the corresponding nucleotide read and the aligned
region on the nucleotide genome (see Section 2 for details).
Intuitively, the normalized edit distance gives a measure of
how close the two sequences are. Therefore, the smaller the
normalized edit distance, the better the alignment.

Figure 3a shows that for alignments of the reads to T2T
CHM13 reference, the normalized edit distance is on average
smaller for HQ3 alignments than minimap2 alignments. The
better alignment in HQ3 is also evident from the slope of the
regression line in Fig. 3a. It shows that on average HQ3 align-
ments have 21% improvement in terms of the normalized edit
distance than the minimap2 alignments. Well-aligned reads
in both HQ3 and minimap2 are represented by blue circles in
Fig. 3, well-aligned reads in HQ3 only are represented in
black asterisks, well-aligned in minimap2 only are represented
in green diamonds, and reads that are not well-aligned in
both are represented in grey squares. Further, it is important
to note that for normalized edit distance <0.1, the alignments
are marginally better in the DNA space, but for normalized
edit distance higher than 0.1, the alignments are significantly
better in HQ3 space, especially, the 4% reads that are well
aligned in HQ3 and not well aligned in minimap2. This is be-
cause of the higher contiguity of alignments in HQO3 space
and signifies the improvement by HO3 when the error rates
are higher. For alignments to GRCh37 reference, HQ3 has an
average improvement of 17%, as shown in Supplementary
Fig. S6a.

The results for another fine-grained metric are shown in
Fig. 3b and Supplementary Fig. S6b, which compares the nor-
malized alignment length in HQO3 to the normalized align-
ment length in minimap2 alignments. The normalized
alignment length is the ratio of the length of the section on the
genome where a read aligns to the length of the read. In
Fig. 3b, there are 4% reads that are well-aligned in HQ3
only, and the normalized alignment length is close to one in
HQ3 but it is much <1 in minimap2, therefore, representing
several non-contiguous alignments in nucleotide domain that
are captured as contiguous alignment in HQ3. In
Supplementary Fig. S6b, there are 3.7% that are well-aligned
in HQ3 only.

We have also benchmarked the performance of HQAlign
with the simulated reads data and compared its alignment
performance with minimap2 in Supplementary Fig. S7. The
ONT reads are simulated from Chromosome 8 and X of
CHM13 T2T assembly using nanosim (Yang ef al. 2017)
with coverage of 40x, median and mean read length 4.5 and
14 kb, respectively. The results show that the alignment per-
formance of both HQAlign and minimap2 are at par with
each other.

3.2 SV calling
3.2.1 Dataset

Long-read sequencing plays an important role in detecting
structural variations. We evaluated SV detection using mini-
map2 and HQAlign with Sniffles2 as the variant calling algo-
rithm on both real and simulated data. We simulated 2000
INDELS and 200 Inversion SVs on Chromosome 8 and X of
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T2T CHM13 reference genome using SURVIVOR (Jeffares
et al. 2017) with SV length uniformly distributed between 50
and 10000 and the ONT reads are simulated using nanosim
with an average length of 14k, median length of 4.5k, and
maximum length 2.5Mbp at coverage of 40x. We have used
Truvari to benchmark the calls against the truth set. For real
data alignment with GRCh37 as the reference genome, the SV
calls are compared against the ground truth sets from (i)
Genome In A Bottle (GIAB) Tier 1 calls (Zook et al. 2020)
and (ii) another truth set is constructed by comparing the
haplotype-resolved assembly of HG002 against GRCh37 ref-
erence genome using dipcall (Li et al. 2018). For T2T
CHM13 reference genome, since the ground truth for SVs is
not available, we have constructed the truth set by comparing
the haplotype-resolved assembly of HG002 against CHM13
reference using dipcall. However, it is hard to establish
ground truth for the SV calls that are made in the centromere
regions, even though the assembly is likely to be correct.
Therefore, we have provided both the analysis including the
SV calls in centromere regions (in Figs 4 and 5) and the analy-
sis for SV calls excluding the centromere regions (in
Supplementary Figs S11 and S14).

3.2.2 SV calling results

The standalone performance of both HQO3 and minimap2 is
at par with each other across different references and truth set
used in this study for real data as well as for the simulated
data in terms of the F1 score. However, both HO3 and mini-
map2 detect complementary SV calls most likely in the repeat
regions where accurate alignment is difficult and therefore,
leads to many broken calls.

The analysis with comparison of SV calls from HQO3 and
minimap2 with GIAB Tier 1 truth set gives a precision, recall,
and F1 score of 0.94, 0.94, and 0.94, respectively, for both
minimap2 and HQ3. A union model of minimap2 and HQO3
can improve the recall rate at the same F1 score, and the
union model has a precision, recall, and F1 score of 0.93,
0.95, and 0.94, respectively. Moreover, out of 103 SV calls
that are made by HO3 only (Supplementary Fig. S8), 41 calls
are made by minimap2 alignments at a lower SV length simi-
larity, and 62 calls are unique region calls. Out of 105 SV
calls made by minimap2 only 51 are captured by HQO3 at a
lower SV length similarity and 54 are unique region calls.
HQ3 improves the breakpoint accuracy by 14.11% for calls
that have difference in breakpoints higher than 50 and it
improves the length similarity by 19.97% that have SV length
similarity lower than 0.95 (Supplementary Fig. S12a and b).

We have compared the SV calls made by HG002 reads
against T2T CHM13 reference genome using both minimap2
and HQO3 and benchmarked them against the truth set gener-
ated by comparing HG002 haplotype-resolved assembly to
T2T CHM13 assembly. The standalone performance has pre-
cision, recall, and F1 score of 0.77, 0.57, and 0.66, respec-
tively, for minimap2 and 0.75, 0.58, and 0.635, respectively,
for HQ3. However, because of the high number of comple-
mentary true positive calls in minimap2 and HQ3, the union
model has a significantly improved recall at the same F1 score
with precision, recall, and F1 score of 0.71, 0.61, and 0.66,
respectively. Out of 1039 (6.7%) calls that are made in HQ3
only 358 are captured by minimap2 at a lower SV length simi-
larity threshold and 681 are unique calls, whereas out of 890
(5.8%) calls that are made by minimap2 only 461 are cap-
tured by HQ3 at a lower SV length similarity threshold and

429 are unique (as shown in Fig. 4a). Further, for the com-
mon true positive calls in both minimap2 and HQ3, we
observe a similar pattern as the other datasets in the improve-
ment of breakpoint accuracy with HQ3 by 18.66% for calls
that have a difference in breakpoint >50, and improvement in
SV length similarity by 19.76% for calls with similarity
<0.95 (Fig. 5a and b).

SV calls from HGO002 reads alignment to GRCh37 are
benchmarked against the truth set generated by comparing
HGO002 haplotype-resolved assembly to GRCh37. Minimap2
has precision 0.78, recall 0.76, and F1 score 0.77 while HO3
has precision 0.79, recall 0.75, and F1 score 0.77. Out of
16462 true positive calls in HO3, 703 (4.27%) are made
only in HQ3 with SV length similarity to the truth set >0.7
(default parameter in Truvari). However, 376/703 calls that
are captured by minimap2 with SV length similarity <0.7 and
327/703 calls that are uniquely made by HQ3. Likewise, out
of 16 620 true positive calls in minimap2, 861 (5.18%) are
made only in minimap2 with SV length similarity >0.7.
However, 524/861 are captured by HQ3 with SV length simi-
larity <0.7, and 337/861 are uniquely made by minimap2. A
fine-grain analysis of the common true positive calls by mini-
map2 and HQ3 in Supplementary Fig. S13a shows that a
major density of SV calls (81.85%) have a difference in break-
point below 50 in both minimap2 and HQ3, and minimap2
has marginally better performance in terms of a lower differ-
ence in breakpoint of SVs that have a value below 50.
Whereas, for a large difference in the SV breakpoint (>50),
HOQ3 is better in terms of the breakpoint accuracy of the SV
calls (on average across all SV calls). Therefore, HO3
improves the SV breakpoint for the rest 18.15% calls that
have high differences in breakpoints. Further, Supplementary
Fig. S13b demonstrates that HQ3 has better SV length simi-
larity when the length similarity is below 0.95, which corre-
sponds to 21.82% calls.

4 Discussion

HQAIlign method is an alignment method designed for the de-
tection of SVs for nanopore sequencing reads. HQAlign pro-
vides alignment that outperforms the recent minimap2 aligner
in terms of the accuracy and quality of the alignments. The
SV calling from HQAlign is also at par with minimap2 in
terms of F1 score and it outperforms minimap2 SV calls in
terms of the quality of SVs measured in breakpoint accuracy
and SV length similarity. Moreover, there are many comple-
mentary SVs captured by HQAlign that are missed by mini-
map?2 alignments.

The reason for this improvement in the performance of
alignment and SV calling with HQAlign is that it takes into
account the underlying physics of nanopore sequencer
through the Q-mer map, which could be one of the major
causes of the high error rates in nanopore sequencing, and
also it focuses on a narrow region of the genome (where the
read aligns in nucleotide domain) for alignment with quan-
tized sequences. Further, this pipeline is adapted specifically
for the detection of SVs. We demonstrated how HQAlign uti-
lizes the bias of Q-mer map without accessing the raw current
signal of nanopore sequencer by translating the base-called
nucleotide sequences to quantized current-level (of finite al-
phabet size) sequences. This improvement helps in detecting
several SVs that are missed by minimap2 due to high error
rates in the nanopore reads. Further, the recall rate for SV
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detection can be improved by combining the complementary
calls from both HQ3 and minimap2 in the union model at the
same F1 score.
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