

Woody species grown under sun and shade present similar stomatal speed

Rafael S. Freitas · Leonardo A. Oliveira · Scott A. M. McAdam · Tracy Lawson · Fábio M. DaMatta · Amanda A. Cardoso D

Received: 22 May 2023 / Accepted: 4 July 2023 / Published online: 24 July 2023 © The Author(s), under exclusive licence to Brazilian Society of Plant Physiology 2023

Abstract Stomata are small epidermal pores responsible for the strict control of the amount of CO₂ that diffuses into the leaves while controlling the amount of water vapor lost to the atmosphere. The time required for the stomatal valve opening and closing is coordinated with an optimized hydraulic supply and strongly responds to the surrounding environment. We demonstrate that intense shading conditions promote high levels of plasticity in the woody species of *Podocarpus macrophyllus*, *Eucalyptus urophylla*, and *Capsicum chinense*, in a series of hydraulic, anatomical, and gas exchange traits—parameters that have been associated with optimized stomatal

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40626-023-00283-3.

R. S. Freitas · L. A. Oliveira · F. M. DaMatta Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil

L. A. Oliveira · A. A. Cardoso (☒)

Department of Crop and Soil Sciences, North Carolina

State University, Raleigh, NC 27695, USA
e-mail: aavilac@ncsu.edu

S. A. M. McAdam Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47906, USA

T. Lawson School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK kinetics. The high levels of plasticity expressed in these species, however, did not translate into alterations in the time to reach 90% of the maximum stomatal conductance (g_s) changes (t_{90}) when plants were exposed to dynamic changes in irradiance. In some cases, the growth light affected the maximum slope of g_s . This approach, however, was demonstrated not to be ideal for assessing stomatal speed in sun- and shade-acclimated plants as this method was largely dependent on maximum g_s . Our findings suggest that stomatal speed, as demonstrated by t_{90} , has low phenotypic plasticity and is most likely under a stronger genetic regulation than other leaf and stomatal anatomical traits.

Keywords Irradiance \cdot Leaf gas exchange \cdot Light acclimation \cdot Shade leaves \cdot Stomatal dimensions \cdot Stomatal speed \cdot Sun leaves

1 Introduction

Stomata are tiny pores surrounded by a pair of specialized guard cells that actively regulate the majority of gaseous diffusion between the leaf interior and the atmosphere (Franks and Farquhar 2007; Brodribb et al. 2020). The turgor pressure of guard cells adjusts to both internal and external environmental stimuli, ultimately determining the stomatal pore size, and thus the foliar porosity to water and CO_2 exchange (Brodribb and McAdam 2017; Matthews and Lawson

2019). Amongst all environmental cues regulating stomatal aperture, light appears as the most pervasive one—a step increase in irradiance induces stomatal opening and a step decrease causes stomata to close in nearly all vascular land plants (Deans et al. 2018). Light-induced changes in stomatal aperture are underpinned by complex signaling mechanisms combining blue light-specific and photosynthesis-mediated pathways (Shimazaki et al. 2007; Baroli et al. 2008; Inoue and Kinoshita 2017; Vialet-Chabrand et al. 2021).

In natural environments, the incident irradiance on leaves is not steady, constantly changing as clouds pass and higher leaves move shading the lower leaves and resulting in sun and shade flecks (Woods and Turner 1971). This naturally fluctuating light condition causes stomata and photosynthesis to continually respond to changes in solar radiation, with much faster photosynthetic than stomatal responses (Lawson et al. 2010; Vico et al. 2011; Lawson and Blatt 2014; McAusland et al. 2016; Deans et al. 2018). Therefore, following an increase in irradiance, leaves transiently miss out on potential increments in photosynthesis rates due to slow stomatal opening (Lawson et al. 2010, 2012). After a decrease in irradiance, leaves continue to lose water due to the slow stomatal closure without maintaining high rates of photosynthesis (Vico et al. 2011; Lawson and Blatt 2014; Deans et al. 2018), eroding intrinsic water use efficiency (McAusland et al. 2016; Faralli et al. 2019). These events highlight the importance of faster stomatal responses to dynamic changes in light to both minimize unnecessary water loss as stomata close and maximize photosynthesis as stomata open (Vico et al. 2011; Lawson and Blatt 2014; McAusland et al. 2016).

Across different plant species, a significant variation in the speed of stomatal responses to fluctuating light conditions is known to exist (Drake et al. 2013; Elliott-Kingston et al. 2016; Deans et al. 2018; Kardiman and Ræbild 2018; Eyland et al. 2021), but the mechanisms controlling stomatal speed are far from being understood (Lawson and Blatt 2014). Evidence from studies comparing several species correlates lower stomatal size (SS) with faster stomatal responses, likely due to their greater membrane surface area to volume ratio (Hetherington and Woodward 2003; Franks and Beerling 2009; Drake et al. 2013; Kardiman and Ræbild 2018). This hypothesis has been drawn based on the assumption that

transport activity of guard cells, likely controlling the speed of stomatal responses, remains constant on a unit-surface-area basis. Studies directly examining specific transport activities, however, indicate a substantial variation between species independently of surface area (Chen et al. 2012; Eisenach et al. 2012, 2014), which suggests that SS might be of secondary importance to the speed of stomatal movements.

Besides stomatal morphology and physiology, the ecological niches have also been associated with the speed of stomatal responses to light (Woods and Turner 1971; Deans et al. 2018; Kardiman and Ræbild 2018). Shade-tolerant species, for instance, have long been suggested to display faster stomatal opening times in response to light, a strategy to better utilize light flecks of short duration under a canopy (Woods and Turner 1971; Knapp and Smith 1987). Despite several studies comparing the speed of stomatal responses to changing light across species over the past decades, studies assessing the plasticity of stomatal speed in response to environmental conditions are much more recent and far less common (Gerardin et al. 2018; Kardiman and Ræbild 2018; Matthews et al. 2018). Results from these studies range from limited plasticity of stomatal dynamics in response to light (Kardiman and Ræbild 2018) to varying degrees of plasticity in the speed and magnitude of stomatal responses (Gerardin et al. 2018; Kardiman and Ræbild 2018; Matthews et al. 2018), suggesting a species-specific mechanism, not yet fully understood.

The present study aimed at investigating the plasticity in stomatal speed during dynamic increases and decreases in light across woody species grown under contrasting light regimes (sun and shade)—a condition known to profoundly change leaf anatomy and function, including stomatal traits (Scoffoni et al. 2008; Carins Murphy et al. 2012, 2016; Martins et al. 2014; Rodríguez-López et al. 2014). Three woody species, including a conifer [Podocarpus macrophyllus (Thunb.) D. Don (Podocarpaceae)] and two angiosperms [Eucalyptus urophylla S. T. Blake (Myrtaceae) and Capsicum chinense Jacq. (Solanaceae)—a shrub (Baruah and Lal 2020)] were selected. These species span a wide phylogenetic basis and they are able to grow under contrasting light irradiances. Specifically, we investigated whether growth lightinduced changes in stomatal morphology would result in changes in stomatal speed in plants exposed

to dynamic changes in light. Among these morphological changes, we focused on stomatal density (SD), stomatal length (SL), SS, and leaf hydraulic conductance ($K_{\rm leaf}$) (Scoffoni et al. 2008; Carins Murphy et al. 2016). Dynamic increases in $K_{\rm leaf}$ in response to increasing irradiance have been demonstrated for a number of species due to a higher expression and/or activation of aquaporins (Scoffoni et al. 2008). Stomatal speed was assessed using two methods: time to reach 90% of the maximum change in stomatal conductance (t_{90}) and maximal slope of stomatal conductance change ($Sl_{\rm max}$). Our main hypothesis was that sun-acclimated leaves would achieve higher SD and $K_{\rm leaf}$ as well as lower SS and SL, thus leading to a faster stomatal movement in response to light.

2 Material and methods

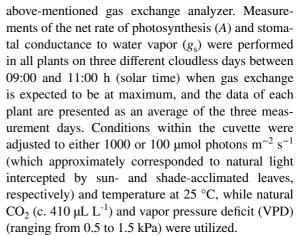
2.1 Plant material and experimental conditions

Plants of C. chinense were grown from seeds, while saplings of P. macrophyllus and E. urophylla were obtained from the nursery of the Department of Forest Engineering at the Universidade Federal de Viçosa, Viçosa, MG (20°45' S, 42°54' W, 650 m above sea level), Brazil. One-month-old seedlings of C. chinense and six-month-old saplings of P. macrophyllus and E. urophylla were transplanted into 20-L pots filled with a potting mix (3:3:1 mix of topsoil, washed river sand, and the commercial potting soil Tropstrato HT Hortaliças), supplemented with a slow-release fertilizer. Plants were next moved to the gardens of the Universidade Federal de Viçosa and randomly positioned, where they remained from June 2020 to March 2021. Four plants of each species were grown under either full sunlight (sun-acclimated) or 90% shade (shade-acclimated) using neutral-density black nylon nettings, which have been shown not to affect the light quality (Rodríguez-López et al. 2014). The photosynthetic photon flux density (PPFD) of both light conditions was weekly measured between 11:00 and 13:00 h (solar time) using two identical line quantum sensors (LI-191R; LI-COR, Lincoln, NE, USA) (Supplementary Fig. 1A). Plants grown at full sunlight received on average (±SE) a PPFD of $1120 \pm 70 \mu mol \text{ photons m}^{-2} \text{ s}^{-1}$, while plants under shade received a PPFD of c. 105 ± 10 photons µmol m⁻² s⁻¹, as measured at midday. All plants were daily irrigated and to make sure both sun- and shade-acclimated plants were well-watered, we assessed the predawn and midday water potentials of all plants during three cloudless days using a pressure chamber (Model 1000, PMS Instruments, Albany, OR, USA) (Supplementary Table 1). Temperature and relative humidity at which plants were grown were also weekly assessed and both sun and shade plants were exposed to similar conditions (Supplementary Fig. 1B). All measurements described below were performed using four completely expanded leaves (n=4) that were developed entirely in either full sunlight or shade.

2.2 Leaf morphology and anatomy

A leaf sample from each plant was scanned using a flatbed scanner to measure leaf area using Image Pro-Plus (Media Cybernetics, Rockville, MD, USA), and then further utilized to assess anatomical traits. Specific leaf area was obtained utilizing additional leaves from which leaf area and leaf dry mass were obtained. Leaf dry mass was obtained by oven-drying leaves at 70 °C for 72 h. For anatomy purposes, leaves were fixed in FAA70 (formaldehyde, acetic acid, and 70% ethanol) for 48 h and then stored in 70% (v/v) aqueous ethanol. Paradermal sections were obtained by a clearing and staining protocol (Strittmatter 1973) utilizing 2 cm² sections selected from the central regions of each leaf blade, taking care to avoid major veins. Briefly, sections were immersed in 10% NaOH (w $v^{-1})$ and bleached in 20% common house bleach solution (w v⁻¹). A stain solution composed of Safranin-O and Crystal violet was used in an oven at 60 °C to stain lignin-rich tissues. Sections were then dehydrated using graded ethanol series (50, 60, 70, 80, 90, and 100%) and immersed in ethanol-xylol series (3:1, 1:1 and 1:3; v v⁻¹). Sections were photographed using a light microscope (AX70 TRF, Olympus Optical, Tokyo, Japan) coupled with a digital camera (Zeiss AxioCam HRc, Göttingen, Germany). Five to ten fields of view (FOV) at 20x magnification for SD, SL, stomatal index (SI), and SS were photographed and images were analyzed using Image Pro-Plus. The SD was quantified as the number of stomata per mm² of leaf area, SL as the maximum length of stomata measured at the center, and SS as SL multiplied by the stomatal width of the closed guard cell pair (Franks and Beerling 2009). SL and SD were further calculated as the mean of all stomata of all images per

leaf sample. The SI was calculated as the ratio of the stomatal number divided by total number of stomata and epidermal cells.


2.3 Stomatal dynamics

Prior to analyses of stomatal responses to light, plants were transferred to the laboratory and maintained in the dark overnight. During the next morning, leaves were enclosed in a conifer chamber (6400-22 L, LI-COR, NE, USA) connected to a portable openflow gas exchange system (LI-6400XT, LI-COR, NE, USA) and then subjected to dark and natural conditions of temperature (c. 28 ± 0.7 °C), CO₂ (c. 410 µL L⁻¹) and vapor pressure deficit (VPD) (c. 1.4 ± 0.1 kPa). Leaves were kept under these conditions until steady-state g_s and A were reached, after which gas exchange parameters were logged every 30 s. After 10 min of steady-state measurements under darkness, PPFD was increased to 100 µmol photon m^{-2} s⁻¹ or 1000 μ mol photon m^{-2} s⁻¹ for shade- and sun-acclimated plants, respectively. Additional leaves of sun-acclimated plants were also subjected to 100 µmol photon m⁻² s⁻¹ and shade-acclimated plants to 1000 µmol photon m⁻² s⁻¹. Once a new steady-state gas exchange was reached, the light was turned off and the leaf gas exchange was logged until a new steady-state condition.

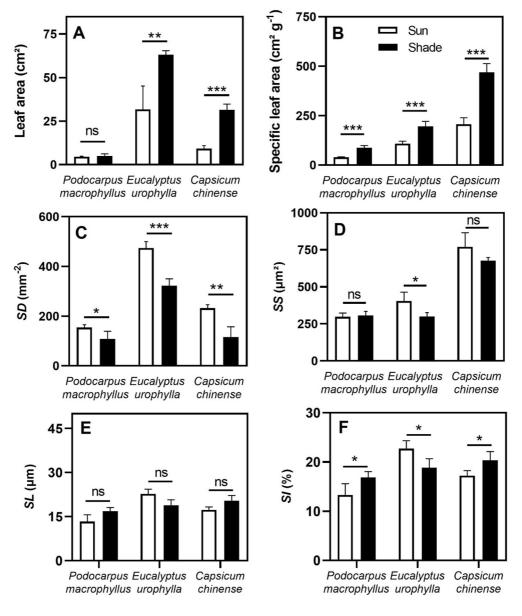
We calculated stomatal responses using two methods: time to reach 90% of the maximum change in g_s (t₉₀) (Deans et al. 2018) and maximal slope of g_s change (Sl_{max}) (McAdam and Brodribb 2015; Eyland et al. 2021) (Supplementary Fig. 2). The time to reach 90% of the maximum g_s increase ($t_{90\text{opening}}$) and the maximal slope of g_s increase (Sl_{opening}) were assessed following a step increase in light from dark to either low (100 µmol photon m⁻² s⁻¹) PPFD. The time to reach 90% of the maximum g_s decrease ($t_{90\text{closure}}$) and the maximal slope of g_s decrease ($t_{90\text{closure}}$) and the maximal slope of t_s decrease in light from either low (100 µmol photon m⁻² s⁻¹) or high (1000 µmol photon m⁻² s⁻¹) or high (1000 µmol photon m⁻² s⁻¹) PPFD to dark.

2.4 Stomatal and leaf hydraulic conductance under low and high light

Leaf gas exchange was measured *in situ* from leaves from the uppermost parts of the canopy using the

The K_{leaf} was measured using the same leaves later utilized for leaf area and anatomy using the evaporative flux method and flowmeter (Sack et al. 2002; Brodribb and Holbrook 2006). Leaves were excised under water, immediately attached to a custombuilt flowmeter, and placed in conditions to induce increased transpiration rates (i.e., under a light source and above a large cooler). The flowmeter measures the amount of water that is uptaken by leaves, which is a proxy for the amount of water that is lost through transpiration. Different sun- and shade-acclimated leaves were exposed to either 100 µmol photon m^{-2} s⁻¹ or 1000 µmol photon m^{-2} s⁻¹. Once leaves reached steady state in terms of the water absorption rate as measured though the flowmeter (less than 10% variation over 5 min), they were detached from the flowmeter, and had their water potential measured with a pressure chamber. The K_{leaf} was then calculated by dividing the water absorption rate at steadystate by the water potential. Values were standardized for leaf area and for the viscosity of water at 25 °C, using an empirical function based on data from Korson et al. (1969).

2.5 Experimental design and statistical analysis


The data were tested for normality using the one-sample Kolmogorov–Smirnov test. The parameters from sun- and shade-acclimated plants were tested using unpaired Student t-tests (P<0.05), and when normality assumptions were not found, Mann–Whitney U test was performed. Statistical analyses were performed, and plots were constructed using Graph-Pad Prism 7.0 (GraphPad Software, San Diego, CA, USA).

3 Results

Shading resulted in a larger leaf area in the two angiosperms, *E. urophylla* and *C. chinense*, but not in the conifer *P. macrophyllus* (Fig. 1). Shading also resulted in a higher specific leaf area in all three species. The *SD* of all three species decreased with

shading, however, SS remained similar between sunand shade-acclimated plants of P. macrophyllus and C. chinense. In E. urophylla, shading decreased the SS by over 25%. On leaf hydraulics, K_{leaf} was similar between sun and shade-acclimated plants of all three species when assessed under low PPFD (Table 1). When assessed under high PPFD, K_{leaf}

Fig. 1 A Leaf area, **B** specific leaf area, **C** stomatal density (SD), **D** stomatal size (SS), **E** stomatal length (SL), and **F** stomatal index (SI) of three woody species cultivated in either full sunlight (white bars) or shade (black bars). Data

are means \pm SD (n=4). Results of unpaired Student t-tests are indicated above columns (***P<0.001; **P<0.01; *P<0.05; ns, P>0.05)

was higher in shade-acclimated leaves of *P. mac-rophyllus* and *E. urophylla*, and in sun-acclimated leaves of *C. chinense*.

The t_{90opening} obtained from plants exposed to a step increase in light from dark to low PPFD was similar between sun- and shade-acclimated plants of all three species (Fig. 2A, C, E). The t_{90opening} obtained when plants were exposed to a step increase in light from dark to high PPFD was also similar between sun- and shade-acclimated plants of P. macrophyllus and E. urophylla. The t_{90closure} in response to low and high PPFD was also similar between sun- and shade-acclimated plants of P. macrophyllus and E. urophylla (Fig. 2B, D). Sunacclimated plants of C. chinense exhibit a lower t_{90closure} than their shade-acclimated counterparts from low PPDF to dark (Fig. 2E). Shade-acclimated plants of C. chinense were lost before stomatal curves at high PPFD could be performed.

Shade-acclimated P. macrophyllus exhibited a higher $Sl_{\rm opening}$ after a step increase to low PPFD than sun-acclimated plants (Fig. 3). Conversely, sun-acclimated E. urophylla exhibited a higher $Sl_{\rm opening}$ than shade-acclimated plants after a step increase to high PPFD. For stomatal closure, sun-acclimated P. macrophyllus exhibited a higher $Sl_{\rm closure}$ from high PPFD to dark, and sun-acclimated C. chinense, a higher $Sl_{\rm closure}$ from low PPFD to dark.

Neither the $t_{90\text{closure}}$ nor the $t_{90\text{opening}}$ correlated with maximum g_s (Fig. 4). However, while a wide range of $t_{90\text{opening}}$ was observed to occur in parallel with lower maximum g_s , only low values of $t_{90\text{opening}}$ were observed to occur in parallel with higher maximum g_s (Fig. 4C). Higher Sl_{opening} and Sl_{closure}

correlated closely with higher maximum g_s (Fig. 4B and D).

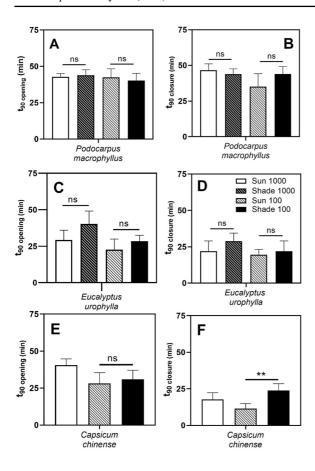
4 Discussion

4.1 Declines in SD with shading are independent of increases in SS

Like several other woody angiosperms (Carins Murphy et al. 2012, 2016; Martins et al. 2014), we observed an increase in the area of leaves that developed under shade in the two angiosperms (Fig. 1). Such foliar area increase is likely a result of expansion in epidermal cell size, which is consistent with the considerable decreases in SD. These decreases are expected to occur due to a passive dilution mechanism as epidermal cells get larger (Carins Murphy et al. 2012, 2016). Leaves of the conifer P. macrophyllus acclimated to sun and shade exhibited similar areas and yet, the shade-acclimated leaves exhibited lower SD than their sun-acclimated counterparts (Fig. 1). Given the similar area of sun- and shadeacclimated leaves of P. macrophyllus, the lower SD found in shade-acclimated P. macrophyllus plants cannot be explained by the passive dilution of stomata due to increases in epidermal cell size. Instead, we hypothesize that a lower stomatal initiation took place in P. macrophyllus under shade (Hronková et al. 2015; Lee et al. 2017; Wei et al. 2020), resulting in the lower SD of these plants over the sun-acclimated ones.

Unlike the consistently observed decrease in *SD* with shading, *SS* exhibited a more limited plasticity in response to growth PPFD (Fig. 1). Out of the

Table 1 Mean leaf hydraulic conductance (K_{leaf}) of three woody species cultivated at either full sunlight or shade conditions


Species	K_{leaf}			
	Sun 1000	Shade 1000	Sun 100	Shade 100
Podocarpus macrophyllus	2.8 ± 0.2	4.5 ± 1.3 *	2.5 ± 0.5	$2.8 \pm 0.6^{\text{ns}}$
Eucalyptus urophylla	11.9 ± 3.8	$18.7 \pm 1.1*$	6.8 ± 1.5	$4.4\pm0.8^{\rm ns}$
Capsicum chinense	28.1 ± 1.6	$15.3 \pm 2.5**$	8.0 ± 1.1	$5.0 \pm 3.5^{\mathrm{ns}}$

Results of unpaired Student *t*-tests between sun and shade under each light conditions are indicated (**P<0.01; *P<0.05; ns, P>0.05)

The responses of sun and shade-acclimated plants were assessed at both low (100 μ mol photons m⁻² s⁻¹) and high photosynthetic photon flux density (PPFD) (1000 μ mol photons m⁻² s⁻¹)

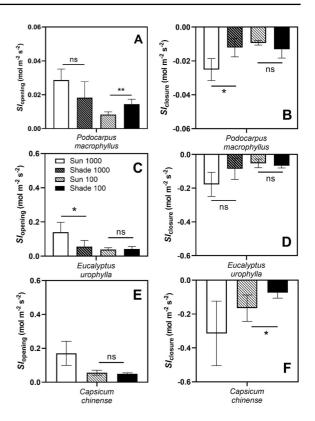

Data are means \pm SD (n=4)

Fig. 2 A, C, E Time to reach 90% of maximum g_s increase $(t_{90\text{opening}})$ and **B, D, F** time to reach 90% of maximum g_s decrease $(t_{90\text{closure}})$ of three woody species cultivated at either full sunlight or shade conditions. The responses of sun (white background bars) and shade-acclimated plants (black background bars) were assessed at low (100 µmol photons m⁻² s⁻¹) (black hatch to bars) or high photosynthetic photon flux density (PPFD) (1000 µmol photons m⁻² s⁻¹) (white hatch to bars). Data are means \pm SD (n=4). The original curves are in Supplementary Figs. 3 and 4. Shade-acclimated plants of C chinense were lost before stomatal curves at high PPFD could be performed. Results of unpaired Student t-tests are indicated above columns (***P<0.001; **P<0.01; *P<0.05; ns, P>0.05)

three species, only *E. urophylla* exhibited significant changes in *SS* with shading (a decrease in *SS* by c. 26%), while *SS* did not vary significantly in the other two species in response to PPFD. In addition, none of the three species exhibit significant plasticity in guard cell length in response to growth PPFD (Fig. 1). The insensitivity of *SS* to changes in PPFD has been previously documented in woody and herbaceous species (Carins Murphy et al. 2012, 2016; Martins et al.

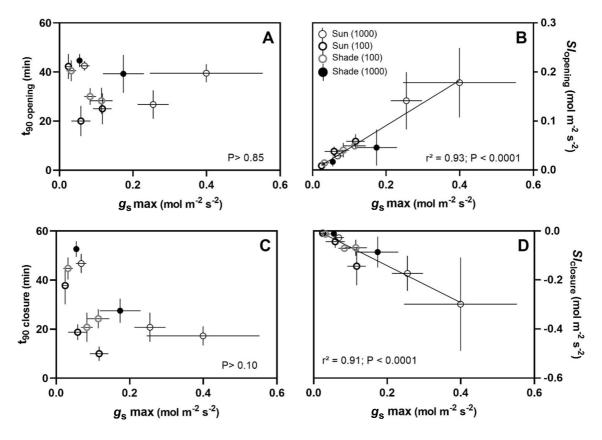


Fig. 3 A, C, E The maximal slope of g_s increase ($Sl_{opening}$) and **B, D, F** the maximal slope of g_s decrease ($Sl_{closure}$) of three woody species cultivated at either full sunlight or shade conditions. The responses of sun (white background bars) and shade-acclimated (black background bars) plants were assessed at both low (100 µmol photons m⁻² s⁻¹) (black hatch to bars) and high photosynthetic photon flux density (PPFD) (1000 µmol photons m⁻² s⁻¹) (white hatch to bars). Data are means \pm SD (n=4). The original curves are in Supplementary Figs. 3 and 4. Shade-acclimated plants of *C. chinense* were lost before stomatal curves at high PPFD could be performed. Results of unpaired Student *t*-tests are indicated above columns (***P<0.001; **P<0.01; **P<0.05; ns, P>0.05)

2014; Kardiman and Ræbild 2018), while smaller stomata have also been observed in response to shading in herbaceous ferns and angiosperms (Carins Murphy et al. 2016, 2017). Along with results from the aforementioned studies, our findings demonstrate that the plasticity in SS in response to light is species-specific, yet the mechanisms underlining either the maintenance or reduction in SS remain elusive.

It is noteworthy that declines in SD with shading were either uncoupled from changes in SS (P. macrophyllus and C. chinense) or coupled with the decreases in SS (E. urophylla) (Fig. 1), adding to

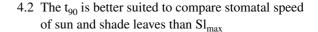


Fig. 4 Correlations between time to reach 90% of maximum g_s increase and decrease ($t_{90\text{opening}}$ and $t_{90\text{closure}}$) and maximum stomatal conductance (g_s) **A**, **C** and the maximal slope of g_s increase and decrease (Sl_{opening} and Sl_{closure}) and maximum g_s **B**, **D** of three woody species cultivated at either full sun-

light or shade conditions. The responses of sun- and shade-acclimated plants were assessed at both low (100 μmol photons $m^{-2}\ s^{-1}$) and high photosynthetic photon flux density (PPFD) (1000 μmol photons $m^{-2}\ s^{-1}$). Maximum g_s were obtained from each of the original curves

a growing body of evidence that the interspecific alterations of both traits in response to light are independent (Supplementary Fig. 5) (Carins Murphy et al. 2012, 2016, 2017; Martins et al. 2014; Kardiman and Ræbild 2018). Particularly in the case of E. urophylla, the lack of positive correlation between SD and SS contrasts with that found in E. globulus across environmental gradients (Franks et al. 2009) but agrees with studies that show no relationship between these two parameters across a range of species (McAusland et al. 2016). This finding reinforces the idea that changes in the size of epidermal cells occur independently of changes in guard cells, possibly because the final SS takes place well before the final expansion of the leaf (Schoch et al. 1980; Zwieniecki et al. 2004; Carins Murphy et al. 2012).

The results obtained by the two methods selected to assess stomatal speed (t_{90} and Sl_{max}) did not entirely agree (Figs. 2 and 3). However, this is not entirely surprising given that the two methods are based on different traits of the stomatal opening and closure curves (Supplementary Fig. 2). The t_{90} simply accounts for the time to reach 90% of the maximum change in stomatal aperture (Drake et al. 2013; Deans et al. 2018). The Sl_{max} considers the changes in g_s over the time of linear response, which relies on the magnitude of maximum leaf gas exchange rates (Wong et al. 1979; Deans et al. 2018; Lawson et al. 2012; McAusland et al. 2016; Wall et al. 2022). The maximum gas exchange rate, in turn, relies on

stomatal function (dynamic aperture of the stomatal pore) and leaf anatomy (SS and SD). Our findings clearly support the strong dependence of Sl_{max} for stomatal opening and closure on maximum g_s through the thigh correlation between higher maximum g_s with higher modulus of Sl_{opening} and Sl_{closure} (Fig. 4). Conversely, the t₉₀ was shown not to linearly rely on maximum leaf gas exchange rates (Fig. 4), confirming that this trait better suited to assess stomatal speed than Sl when comparing leaves with different gas exchange capacities (Deans et al. 2018). Interestingly, higher maximum g_s was never observed to occur in parallel to higher t_{90closure}, suggesting that leaves with higher transpiration rates always close their stomata faster, thus preventing excessive water loss and declines in water potential.

Leaves expanded in sun achieve higher SD than leaves expanded in shade (Fig. 1), and that can potentially result in different gas exchange capacities (Supplementary Table S2). Therefore, one can expect sun-acclimated leaves to achieve higher Sl_{max} than shade-acclimated leaves even if with identical changes in stomatal pore aperture. Therefore, results from t₉₀ are more appropriate to assess changes in stomatal speed between sun- and shade-acclimated leaves. For instance, the higher Sl_{opening} of sun-acclimated E. urophylla was observed without changes in $t_{90\text{opening}}$, such that the higher Sl_{opening} is likely a result of the higher maximum g_s due to a higher SD (Supplementary Table S2) rather than a faster dynamic pore aperture (Figs. 2 and 3). A similar explanation is also likely true for the higher $Sl_{
m closure}$ decouple from changes in t_{90closure} of sun-acclimated P. macrophyllus from high PPFD to dark (Figs. 2 and 3).

4.3 Leaves expanded either in sun or shade present similar t ₉₀

The t_{90} was similar for nearly all species and conditions, except for C. chinense closure from low PPFD to dark, where shade-acclimated leaves took longer (higher t_{90}) to close their stomata in dark than sunacclimated leaves (Fig. 2). This data was accompanied by a lower $Sl_{closure}$ in shade-over sun-acclimated leaves. It is noteworthy that stomata respond to a myriad of environmental stimuli—in terms of SD and aperture—but intra-specific variation in stomatal speed to light is limited. This result is especially surprising if we consider that sun-acclimated

leaves achieve considerably higher SD than shadeacclimated ones. So far, studies on the environmental impact on the speed of stomatal movements are restricted to a few species (Gerardin et al. 2018; Kardiman and Ræbild 2018; Matthews et al. 2018) and contrasting results are found among species, throughout the time of the day, and between opening and closing responses. Overall, the speed of stomatal opening is less affected than the speed of stomatal closure. This pattern was also observed in the present study. However, neither of these studies could explain why variations across species are substantially larger than within species. Altogether, this demonstrates that our understanding on the acclimation of the speed of the stomatal conductance response is far from elucidated.

Faster stomatal kinetics have long been associated with greater SD and reduced SS. Our results on sun- and shade-leaves with very contrasting SD, however, challenge the idea that changes in SD itself can functionally explain the stomatal aperture speed of individual pores. Instead, the positive correlation between greater SD and stomatal speed can only be functionally explained when the method to assess stomatal speed takes into consideration the maximum leaf gas exchange associated with the higher SD (see discussion on Sl_{max} above). Conversely, changes in SSare more likely to result in changes in the behavior of individual pores. Smaller stomata present greater membrane surface area to volume ratio (Hetherington and Woodward 2003; Franks and Beerling 2009; Drake et al. 2013; Kardiman and Ræbild 2018), which facilitates the exchange of water and solutes between stomata and the cells around them (Lawson and Blatt 2014). The SS of sun- and shade-acclimated leaves of the three species evaluated in the study were similar, and different environmental or genetic manipulations are necessary to drive higher intra-specific changes in SS, so that changes in t_{90} can be tested in response to SS.

Additionally, a higher ability of leaves to move water through their tissues (i.e., K_{leaf}) could potentially lead to faster stomata. Higher PPFD—both dynamic and during leaf expansion—lead to higher K_{leaf} (Table 1), but that was not enough accompanied by changes in t_{90} . In addition to SS, SD, and K_{leaf} , it is possible that additional factors defining stomatal speed are essentially unaffected by PPFD during leaf expansion. Amongst these factors, we can cite

biochemical, structural, and molecular components of guard cells and vacuolar ionic dynamic transport (Medeiros et al. 2019; Lawson and Matthews 2020; Eyland et al. 2021). Previous studies have tried to elucidate how vacuolar channels and transporters command stomatal movements (Eisenach and Angeli 2017), and how changes in the activity of these channels impact the speed of stomatal opening and closure (Medeiros et al. 2016; Yang et al. 2020), but questions remain regarding the response of these components when exposed to contrasting light irradiance.

5 Conclusions

We demonstrate that the light condition at which woody species are grown results in a consistent variation in morphoanatomical and hydraulic properties in leaves. The time to reach 90% of the maximum change in g_s , however, is essentially insensitive to the changes in the leaf structure induced by the light condition during growth. These results suggest that stomatal speed has low phenotypic plasticity, likely being under stronger genetic regulation than other leaf and stomatal anatomical properties.

Author contributions AAC and TL designed the study; RSF, LAO, and AAC carried out the experiments; RSF and AAC analyzed the data and wrote the manuscript with revisions from FMD, SAMM, and TL; all authors read and approved the final version of the manuscript.

Funding This study was supported by the USDA National Institute of Food and Agriculture, Hatch Project 7003279 (AAC). FMD acknowledges research fellowships granted by the National Council for Scientific and Technological Development, Brazil (CNPq, Grant 305327/2019-4) and the Foundation for Research Assistance of Minas Gerais State, Brazil (FAPEMIG, Project CRA-RED-00053-16; APQ01512-18).

Declarations

Conflict of interest The authors have no conflicts of interest to declare.

References

Baroli I, Price GD, Badger MR, Von Caemmerer S (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol 146(2):737–747. https://doi.org/10.1104/pp.107.110924

- Baruah J, Lal M (2020) *Capsicum chinense* Jacq.: ethnobotany, bioactivity and future prospects. In: Singh B (ed) Botanical leads for drug discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-5917-4_1
- Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ 29(12):2205–2215. https://doi.org/10.1111/j.1365-3040.2006.01594.x
- Brodribb TJ, McAdam SAM (2017) Evolution of the stomatal regulation of plant water content. Plant Physiol 174(2):639–649. https://doi.org/10.1104/pp.17.00078
- Brodribb TJ, Sussmilch F, McAdam SAM (2020) From reproduction to production, stomata are the master regulators. Plant J 101(4):756–767. https://doi.org/10.1111/tpj.14561
- Carins Murphy MR, Jordan GJ, Brodribb TJ (2012) Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ 35(8):1407–1418. https://doi.org/10.1111/j.1365-3040.2012.02498.x
- Carins Murphy MR, Jordan GJ, Brodribb TJ (2016) Cell expansion not cell differentiation predominantly coordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Ann Bot 118(6):1127–1138. https://doi.org/10.1093/aob/mcw167
- Carins Murphy MR, Jordan GJ, Brodribb TJ (2017) Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms. PLoS ONE 12(9):e0185648. https://doi.org/10.1371/journal.pone.0185648
- Chen ZH, Eisenach C, Xu XQ, Hills A, Blatt MR (2012) Protocol: optimised electrophyiological analysis of intact guard cells from *Arabidopsis*. Plant Methods 8:1–11. https://doi.org/10.1186/1746-4811-8-15
- Deans RM, Brodribb TJ, Busch FA, Farquhar GD (2018) Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis. New Phytol 222(1):382–395. https://doi.org/10.1111/nph.15572
- Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64(2):495–505. https://doi.org/10.1093/jxb/ers347
- Eisenach C, Angeli A (2017) Ion transport at the vacuole during stomatal movements. Plant Physiol 174(2):520–530. https://doi.org/10.1104/pp.17.00130
- Eisenach C, Chen ZH, Grefen C, Blatt MR (2012) The trafficking protein SYP121 of *Arabidopsis* connects programmed stomatal closure and K + channel activity with vegetative growth. Plant J 69(2):241–251. https://doi.org/10.1111/j. 1365-313X.2011.04786.x
- Eisenach C, Papanatsiou M, Hillert EK, Blatt MR (2014) Clustering of the K⁺channel GORK of *Arabidopsis* parallels its gating by extracellular K⁺. Plant J 78(2):203–214. https://doi.org/10.1111/tpj.12471
- Elliott-Kingston C, Haworth M, Yearsley JM, Batke SP, Lawson T, McElwain JC (2016) Does size matter? Atmospheric CO₂ may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO₂. Front Plant Sci 7:1253. https://doi.org/10.3389/fpls. 2016.01253
- Eyland D, Wesemael JV, Lawson T, Carpentier S (2021) The impact of slow stomatal kinetics on photosynthesis and

- water use efficiency under fluctuating light. Plant Physiol 186(2):998–1012. https://doi.org/10.1093/plphys/kiab114
- Faralli M, Cockram J, Ober E, Wall S, Galle A, Rie JV, Raines C, Lawson T (2019) Genotypic, developmental and environmental effects on the rapidity of g_s in wheat: impacts on carbon gain and water-use efficiency. Front Plant Sci 10:492. https://doi.org/10.3389/fpls.2019.00492
- Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO>2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106(25):10343–10347. https://doi.org/10.1073/pnas.090420910
- Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143(1):78–87. https://doi.org/10.1104/pp.106.089367
- Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using *Eucalyptus globulus*. Plant Cell Environ 32(12):1737–1748. https://doi.org/10.1111/j.1365-3040.2009.002031.x
- Gerardin T, Douthe C, Flexas J, Brendel O (2018) Shade and drought growth conditions strongly impact dynamic responses of stomata to variations in irradiance in *Nicotiana tabacum*. Environ Exp Bot 153:188–197. https://doi. org/10.1016/j.envexpbot.2018.05.019
- Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908. https://doi.org/10.1038/nature01843
- Hronková M, Wiesnerová D, Šimková M, Skůpa P, Dewitte W, Vráblová M, Zažímalová E, Šantrůček J (2015) Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves. J Exp Bot 66(15):4621–4630. https://doi.org/10.1093/jxb/erv233
- Inoue SI, Kinoshita T (2017) Blue light regulation of stomatal opening and the plasma membrane H⁺-ATPase. Plant Physiol 174(2):531–538. https://doi.org/10.1104/pp.17.00166
- Kardiman R, Ræbild A (2018) Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiol 38(5):696–705. https://doi.org/10. 1093/treephys/tpx149
- Knapp AK, Smith WK (1987) Stomatal and photosynthetic responses during sun/shade transitions in subalpine plants: influence on water use efficiency. Oecologia 74(1):62–67. https://doi.org/10.1007/BF00377346
- Korson L, Drost-Hansen W, Millero FJ (1969) Viscosity of water at various temperatures. J Phys Chem 73(1):34–39. https://doi.org/10.1021/j100721a006
- Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164(4):1556–1570. https://doi.org/10.1104/pp.114.237107
- Lawson T, Matthews J (2020) Guard cell metabolism and stomatal function. Annu Rev Plant Biol 29(71):273–302. https://doi.org/10.1146/annurev-arplant-050718-100251
- Lawson T, von Caemmerer S, Baroli I (2010) Photosynthesis and stomatal behaviour. In: Lüttge UE, Beyschlag W, Büdel B, Francis D (eds) Progress in botany. Springer, Berlin, pp 265–304. https://doi.org/10.1007/978-3-642-13145-5_11

- Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23(2):215–220. https://doi.org/10.1016/j.copbio.2011.12.012
- Lee JH, Jung JH, Park CM (2017) Light inhibits COP1mediated degradation of ICE transcription factors to induce stomatal development in *Arabidopsis*. Plant Cell 29(11):2817–2830. https://doi.org/10.1105/tpc.17.00371
- Martins SCV, Galmés J, Cavatte PC, Pereira LF, Ventrella MC, DaMatta FM (2014) Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. PLoS ONE. https://doi.org/10.1371/journal.pone.0095571
- Matthews JSA, Lawson T (2019) Climate change and stomatal physiology. Annu Plant Rev 2(3):1–39. https://doi.org/10.1002/9781119312994.apr0667
- Matthews JSA, Vialet-Chabrand S, Lawson T (2018) Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant Physiol 176(3):1939–1951. https://doi.org/10.1104/pp.17.01809
- McAdam SAM, Brodribb TJ (2015) The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiol 167(3):833–843. https://doi.org/10.1104/pp.114.252940
- McAusland L, VialetChabrand S, Davey P, Baker NR, Brendel O, Lawson T (2016) Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol 211(4):1209–1220. https://doi.org/10.1111/nph.14000
- Medeiros DB, Martins SCV, Cavalcanti JHF, Daloso DM, Martinoia E, Nunes-Nesi A, DaMatta FM, Fernie AR, Araújo WL (2016) Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance. Plant Physiol 170(1):86–101. https://doi.org/10.1104/pp.15.01053
- Medeiros DB, Luz LM, Oliveira HO, Araújo WL, Daloso DM, Fernie AR (2019) Metabolomics for understanding stomatal movements. Theor Exp Plant Physiol 31:91–102. https://doi.org/10.1007/s40626-019-00139-9
- Rodríguez-López NF, Martins SCV, Cavatte PC, Silva PEM, Morais LE, Pereira LF, Reis JV, Ávila RT, Godoy AG, Lavinski AO, DaMatta FM (2014) Morphological and physiological acclimations of coffee seedlings to growth over a range of fixed or changing light supplies. Environ Exp Bot 102:1–10. https://doi.org/10.1016/j.envexpbot. 2014.01.008
- Sack L, Melcher PJ, Zwieniecki MA, Holbrook NM (2002) The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. J Exp Botany 53(378):2177–2184. https://doi.org/10.1093/jxb/erf069
- Schoch PG, Zinsou C, Sibi M (1980) Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of *Vigna sinensis* L. J Exp Botany 31(5):1211–1216. https://doi.org/10.1093/jxb/31.5.1211
- Scoffoni C, Pou A, Aasamaa K, Sack L (2008) The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ 31(12):1803–1812. https://doi.org/10.1111/j.1365-3040. 2008.01884.x

- Shimazaki KI, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247. https://doi.org/10.1146/annurev.arplant.57. 032905.105434
- Strittmatter CGD (1973) Nueva técnica de diafanización. Bot Soc Argent Bot 15(1):126–129
- Vialet-Chabrand S, Matthews JS, Lawson T (2021) Light, power, action! Interaction of respiratory energy and blue light-induced stomatal movements. New Phytol 231(6):2231–2246
- Vico G, Manzoni S, Palmroth S, Katul G (2011) Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytol 192(3):640–652. https://doi.org/10.1111/j.1469-8137.2011.03847.x
- Wall S, Vialet-Chabrand S, Davey P, Van Rie J, Galle A, Cockram J, Lawson T (2022) Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat. New Phytol 235(5):1743–1756. https://doi.org/10.1111/nph.18257
- Wei H, Kong D, Yang J, Wang H (2020) Light regulation of stomatal development and patterning: shifting the paradigm from *Arabidopsis* to grasses. Plant Commun 1(9):100030. https://doi.org/10.1016/j.xplc.2020.100030
- Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737):424–426

- Woods DB, Turner NC (1971) Stomatal response to changing light by four tree species of varying shade tolerance. New Phytol 70(1):77–84. https://doi.org/10.1111/j.1469-8137. 1971.tb02512.x
- Yang J, Li C, Kong D, Guo F, Wei H (2020) Light-mediated signaling and metabolic changes coordinate stomatal opening and closure. Front Plant Sci 11:601478. https:// doi.org/10.3389/fpls.2020.601478
- Zwieniecki MA, Boyce CK, Holbrook NM (2004) Hydraulic limitations imposed by crown placement determine final size and shape of *Quercus rubra* L. leaves. Plant Cell Environ 27(3):357–365. https://doi.org/10.1111/j.1365-3040.2003.01153.x

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

