Downloaded via UNIV OF TEXAS AT AUSTIN on May 11, 2022 at 15:22:03 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

THE JOURNAL OF

PHYSICAL
CHEMISTRY

A JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JPCB

Prediction and Optimization of lon Transport Characteristics in
Nanoparticle-Based Electrolytes Using Convolutional Neural

Networks

Published as part of The Journal of Physical Chemistry virtual special issue “Carol K. Hall Festschrift’.
Sanket Kadulkar, Michael P. Howard, Thomas M. Truskett,* and Venkat Ganesan*

Cite This: J. Phys. Chem. B 2021, 125, 4838-4849

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations ‘

@ Supporting Information

ABSTRACT: We develop a convolutional neural network (CNN) model
to predict the diffusivity of cations in nanoparticle-based electrolytes and use
it to identify the characteristics of morphologies that exhibit optimal
transport properties. The ground truth data are obtained from kinetic
Monte Carlo (kMC) simulations of cation transport parametrized using a
multiscale modeling strategy. We implement deep learning approaches to
quantitatively link the diffusivity of cations to the spatial arrangement of the
nanoparticles. We then integrate the trained CNN model with a topology
optimization algorithm for accelerated discovery of nanoparticle morphol-
ogies that exhibit optimal cation diffusivities at a specified nanoparticle
loading, and we investigate the ability of the CNN model to quantitatively
account for the influence of interparticle spatial correlations on cation
diffusivity. Finally, by using data-driven approaches, we explore how simple
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descriptors of nanoparticle morphology correlate with cation diffusivity, thus providing a physical rationale for the observed optimal
microstructures. The results of this study highlight the capability of CNNs to serve as surrogate models for structure—property
relationships in composites with monodisperse spherical particles, which can in turn be used with inverse methods to discover

morphologies that produce optimal target properties.

1. INTRODUCTION

Nanocomposites comprising spherical nanoparticles dispersed
in polymeric matrices or liquid hosts have emerged as a
promising class of materials for a broad range of applications.
The introduction of nanoparticles can enhance the ionic
conductivity,l’2 mechanical strength,‘g_5 optoelectronic proper-
ties,”” and separation performance® '® of the host material.
Because the mechanisms underlying the observed property
improvements remain poorly understood,'""'? there is interest
to find new approaches to predict the nanoparticle loading and
microstructure characteristics that optimize the properties of
interest.

Although nanoparticle loading is known to be an important
factor influencing nancomposite properties, experimental and
theoretical studies have found that the spatial organization of
the nanoparticles also strongly influences macroscopic
behavior. For instance, Jana and co-workers reported
polybenzimidazole nanocomposite systems with morphology-
dependent proton conduction'*~"> and storage modulus'*
properties at a fixed nanoparticle loading. In their studies, the
characteristic structure of the dispersed nanoparticles was
altered by modifying the nanoparticle surface with various
functional groups. Similarly, Akcora et al.'® reported tunability
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in mechanical properties of polymer nanocomposites at a fixed
nanoparticle volume fraction by varying the grafting density
and molecular weight of tethered chains and attributed such
behavior to the resulting modulation of the nanoparticles’ self-
assembled structure. A recent mesoscale simulation study of
ours'” highlighted the potential for modifying nanoparticle
microstructure to significantly influence the tracer diffusivity
through nanocomposite gels in the presence of interface-
assisted transport pathways.

A key challenge in any of these efforts is to determine
specific nanoparticle microstructures that are optimal for
targeted macroscopic properties. Knowledge of such micro-
structures could provide new mechanistic insights and in
addition facilitate discovery of nanoparticle interactions that
are most promising for experimental realization of the
microstructures by using inverse methods.'®"” Because of the
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Figure 1. Flowchart for CNN-assisted prediction and optimization of cation diffusivity in nanoparticle-based electrolytes.

high-dimensional nature of the relevant search spaces, which in
principle includes all possible configurations of the nano-
particles, experimental screening of candidate microstructures
is often practically intractable. An attractive alternative is to
solve for the microstructures by using a topology optimization
algorithm™ ™’ that leverages structure—property predictions
from a computationally tractable surrogate model.

In this context, data-driven models have recently emerged as
a promising approach for quantifying the structure—property
relationships in two-phase composites. Specifically, machine
learning approaches have been employed to develop surrogate
models for quantitative prediction of macroscopic properties
with binary composite microstructure as input, represented
either by low-dimensional structural descriptors or as
representative volume elements. In the studies pertaining to
the former, hand-crafted features representing the micro-
structure are linked to an associated property by using a
regression-based model”* ™" or an artificial neural net-
work.?"** For the latter case, convolutional neural networks
(CNNGs)** are employed to extract important features from the
digitized images of composite microstructures, generated by
stochastic growth of grains®*™** or by random assignment of
numbers in the uniformly voxelized grids,”~*' to predict the
effective property of interest.

Motivated by the above advances, we hypothesize that
machine learning techniques can be similarly applied to
correlate the properties of nanocomposites reinforced with
spherical nanoparticles to their microstructure. In addition,
integrating such structure—property linkages with micro-
structure optimization algorithms could significantly accelerate
the exploration of the relevant high-dimensional configuration
spaces to identify nanoparticle morphologies possessing
optimal characteristics.

In this study, we demonstrate the above strategy by the
application of deep learning approaches for predicting the
diffusion coefficient of cations in single-ion conducting
nanoparticle-based electrolytes. The choice of the system was
inspired by a recent study of ours*’ probing the mechanistic
bases for ion transport observations reported in these
electrolytes. Our results in such a context were consistent
with the reported experimental behavior of electrolytes
comprising silica nanoparticles, cofunctionalized with poly-
(ethylene glycol) ligands and tethered anionic species coupled
to Li* ions, dispersed in ion-conducting tetraglyme solvent.*>**
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Our simulation results suggested that ionic conductivity in
such systems is primarily controlled by cation diffusion along
functionalized nanoparticle surfaces. With such mechanistic
findings, the connectivity of the cation diffusion pathways is
hypothesized to be dependent on the spatial arrangement of
the nanoparticles, and it would be desirable to identify the
morphologies that exhibit optimal cation diffusivities.

In this work, we develop a three-dimensional (3D) CNN
model to capture the nonlinear mapping between the
nanoparticle microstructure and the resulting cation diffusivity.
The structure—property linkages established by using the
CNN model exhibit better accuracy for predicting diffusivities
compared to that by using other deep learning models based
on physics-inspired approaches. We then use the trained CNN
model to perform topology optimization for identifying
nanoparticle configurations that can potentially exhibit a
wider range of diffusivities. We explore the extent to which
the deep learning model captures the relevant physical
information influencing cation diffusivity based on the CNN
predictions for microstructures with different nanoparticle
volume fractions. Lastly, by analyzing the influence of physics-
inspired structural descriptors on cation diffusivity, we discuss
the structural characteristics of the optimal microstructures and
provide a physical rationale for the optimal cation diffusivities
exhibited by these structures. While this study is inspired by
the nanoparticle-based electrolyte system, the methods and
ideas presented in this work can be easily adapted to establish
quantitative structure—property relationships and identify
optimal morphologies in other nanoparticle-based systems.

The rest of the article is organized as follows. Details of the
data set generation, training of the CNN model, and topology
optimization algorithm are provided in Section 2. The results
pertaining to the predictive performance of the model, and its
ability to discover optimal microstructures when integrated
with a topology optimization algorithm, are presented in
Section 3. By modifying the inputs to the CNN model, we
provide a physical interpretation of its learning aspects in
Section 4. We report on the correlation of physics-inspired
structural descriptors with cation diftusivity by using the data-
driven approaches in Section 5. Section 6 concludes the paper
with a summary of our findings and provides an outlook
regarding the generality of our methodology to train CNN
models for exploring structure—property relationship in two-
phase composites doped with spherical nanoparticles.
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2. DATA SETS AND METHODS

Figure 1 illustrates the workflow implemented in this study. In
this section, we discuss the methodologies adopted to generate
the training data set, train the CNN-based deep learning
model, and integrate the CNN model with the topology
optimization algorithm for prediction and optimization of
cation diffusivity in nanoparticle-based electrolytes.

The ground truth data used in the training process are
generated via a multiscale simulation framework which
computes the cation diffusivities for a large data set of diverse
microstructures at a fixed nanoparticle loading. Section 2.1
describes the physics-inspired strategy employed to generate
the data set of diverse microstructures at a fixed nanoparticle
loading to span a wide range of cation diffusivities for training
the machine learning models. Section 2.2 discusses the
methodology to compute ground truth cation diffusivity for a
given nanoparticle microstructure. The details pertaining to the
CNN architecture and the topology optimization are presented
in sections 2.3 and 2.4, respectively. An improved predictive
model is developed by appending the structures identified by
using the optimization strategy (as well as the corresponding
simulated cation diffusivities) to the initial training data set and
subsequently retraining the CNN model as discussed in section
2.5.

2.1. Generation of Microstructure Data Set. Training a
CNN model to predict the diffusivity of cations in nano-
particle-based electrolytes requires generating a large data set
of diverse nanoparticle topologies exhibiting a wide range of
cation diffusivities. The data set itself includes thousands of
configurations of nanoparticles, represented in the form of 3D
digitized images, and the values of the associated cation
diffusivities, calculated by using the mesoscale kMC simu-
lations discussed in section 2.2.

The number of nanoparticles considered for the micro-
structures in the data set should be large enough to capture the
wide variety of possible topologies spanning length scales
relevant for cation transport. At the same time, the micro-
structures should be small enough such that the ground truth
diffusivities for a large number of distinct particle config-
urations can be calculated at a reasonable computational cost.
In our study, we balance these considerations by using
configurations of N = 91 identical nonoverlapping nano-
particles of diameter oyp in a cubic box of size L with periodic
boundary conditions. The nanoparticle volume fraction
Nrowp®/(6L3) is fixed to be 0.1 for all the structures. Such a
choice of volume fraction allows for realizing a variety of
nanoparticle configurations exhibiting broad range of cation
diffusivities.

To achieve high prediction accuracy for a wide variety of
morphologies in the configurational space screened during the
topology optimization runs, a large training data set containing
diverse microstructures and a large variation of cation
diffusivities is required. However, only a relatively narrow
distribution of cation diffusivities was obtained for the
configurations generated by using the random sequential
adsorption (RSA) algorithm™® (supporting results in section S2
of the SI) which ensures nonoverlap between nanoparticles in
the microstructure. Accordingly, we modify the standard RSA
algorithm with the addition of physics-based modifications
described below to ensure that configurations corresponding to
a wide range of cation diftusivities are included.
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For the ion transport model considered here, we previously
reported”” that the average nearest particle distance and
percolation of the nanoparticles are significant aspects
influencing diffusivity. Briefly, the former dictates the
“connectivity” between adjacent nanoparticles and correspond-
ingly the mobility of cations while hopping from the surface of
a nanoparticle to that of its neighbor. In the model, there exists
an ideal range for the distance between adjacent particles to
facilitate cation transport; separations too large disrupt
“contact” between neighboring nanoparticle surface regions,
and separations too close result in interdigitation of nano-
particle surface functional groups that reduce cation mobility.
Percolation, which characterizes the spatial extent of particle
connectivity and thereby the corresponding surface transport
pathways, correlates positively with cation diffusivity.

Given these physical considerations, we modify the standard
RSA algorithm to generate different microstructures that
represent a wide range of average nearest particle distances and
extents of percolation. Specifically, we generate 5304 structures
by randomly inserting each new particle within a specified
range of distances from the previous particle. (In the
Supporting Information, section S2, we present more details
on what different constraint distances were used.) A total of
2166 additional configurations were generated by using the
RSA algorithm with a further constraint that explicitly
disrupted percolation in one or more dimensions of the
simulation box (more details in the Supporting Information,
section S2). The data set also includes 722 structures
generated by using the standard RSA algorithm with no
constraints. The configuration data are then split randomly
into training, validation, and test data sets with 4916, 1638, and
1638 microstructures, respectively.

2.2. Model and Simulation Methodology to Generate
Ground Truth Labels for Microstructures. Because
simulations of nanoparticle-based electrolytes using atomisti-
cally detailed molecular models are computationally prohib-
itive, we use the multiscale simulation framework from our
recent study’” to compute the cation diffusivities for
microstructures in the training data set.

In brief, this multiscale simulation strategy involves using
coarse-grained molecular dynamics (MD) simulations to probe
the region between two adjacent functionalized nanoparticles.
Such simulations provide means for characterizing the effective
pair interactions between functionalized nanoparticles as well
as the spatial distribution of the cations and their local (i.e.,
position-dependent) diffusivities. This information serves as
input for an on-lattice, mesoscale model of the nanoparticle-
based electrolyte in which kinetic Monte Carlo (kMC)
simulations are used to simulate transport of cations through
the given nanoparticle configuration. The bulk diffusivity of
cations Dy is then calculated from the resulting cation
trajectories by using the Einstein—Smoluchowski relation

.1 2
where ([r,(t) — r,(0)]*) is the mean-squared displacement of
cations at time ¢.

Because of the large separation of time scales between
diffusion of cations and nanoparticles, the nanoparticles are
treated as immobile obstacles in the simulations. Further
details about the coarse-grained MD and mesoscale kMC
simulations are provided in section S1 of the Supporting
Information.
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In the present work, cation diffusion coefficients computed
for the microstructures in the training data set by using kMC
simulations parametrized with a fixed set of cation local
diffusivities and cation—nanoparticle affinities, determined
from the coarse-grained MD simulations of our previous
study,” serve as the ground truth labels. To emphasize the
efficacy of employing the combination of the CNN model and
the topology optimization algorithm to identify nonintuitive
microstructures with high diffusivities, we define a dimension-
less number, Difc = Diyuc/Dg, where Dy is the maximum value
of ground truth cation diffusivity in the originally generated
data set.

2.3. Convolutional Neural Network Model. The
convolutional neural network (CNN) is a widely used deep
learning approach for computer vision tasks*® that utilizes
image-like data as input. A typical CNN architecture includes
the following different layers: convolutional layers, pooling
layers, activation functions, and fully connected layers.
Convolutional layers extract the spatial features of the input
image by applying filters learned from the training data set. An
activation function is usually applied after the convolutional
layer to introduce nonlinearity into the network and capture
the complex relationship between the inputs and outputs.
Pooling layers are added after the activation functions to
reduce the dimensions of the feature map outputs from the
convolutional layer. Finally, the objective of the fully
connected layers is to predict the output value based on the
nonlinear combinations of the feature maps from a series of
convolution and pooling layers.

The resolution of the CNN input in every direction was
chosen to be S times lower than the grid size adopted for the
on-lattice kMC simulations. Such a resolution sufficiently
mitigates discretization effects while maintaining a small
enough input size to the CNN models for computational
efficiency. Accordingly, all microstructures are first converted
to 75 X 75 X 75 binary images, where voxels corresponding to
the region occupied by the nanoparticles are denoted as 1, and
0 is used to index the empty voxels (more details in the
Supporting Information, section S3). Although the on-lattice
kMC simulation models cation transport through the nano-
particle microstructure using periodic boundary conditions, the
convolutional layers in the CNN are incapable of capturing the
periodic boundary conditions on the spatial volume unless the
input image explicitly reflects the periodicity. Because the
relevant length scales influencing the transport of cations are
typically larger than the dimensions of the nanoparticle
microstructure considered in this study, every binary image
constructed from the nanoparticle configuration in the cubic
box is repeated three times in all three directions, and the
resulting binary image of size 225 X 225 X 225 is provided as
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input to the CNN model to better capture the effect of
periodic boundary conditions. (Results for the inferior CNN
model performance without the repetition of binary image are
presented in the Supporting Information, section S5.1.)

The diameter of a single nanoparticle is approximately the
length of 10 voxels in the input image, and convolutional filters
of size comparable to multiple nanoparticles are needed to
capture interparticle spatial correlations. Convolutional layers
with such large filter size also require a relatively large number
of filters to effectively account for spatial features incorporating
multiple nanoparticles. However, the training process of such
CNN models with large data sets is computationally
intractable. Instead, we employ a deeper network comprising
multiple layers while choosing the convolutional filter size for
every layer to be smaller than that of a single nanoparticle, as
illustrated in Figure 2. We fix the convolutional filter size to be
3 X 3 X 3 for all the layers. The CNN architecture considered
for this study consists of four composite layers, each consisting
of a convolution layer, a rectified linear unit (ReLU) activation
function, and an average pooling layer, followed by two fully
connected layers. The numbers of convolutional filters and
neurons in the fully connected layers were decided based on
the accuracy of testing set predictions for the respective CNN
architectures (results for different CNN architectures pre-
sented in the Supporting Information, section SS5.2).

The CNN models were trained on four NVIDIA Tesla V100
GPUs with 16 GB RAM for each GPU by using the Keras
library"” built on top of Tensorflow implemented in Python
3.7. The hyperparameters used to train the CNN models are
reported in section S4 of the Supporting Information.

2.4. Topology Optimization Using Simulated Anneal-
ing. Simulated annealing (SA) is an effective, heuristic
algorithm that stochastically searches for the global optimum
of an objective function on a landscape where many local
optima may be present. The approach has analogies to physical
annealing, where a material avoids getting trapped in local
energy minima (e.g., defective crystals or glasses) and
eventually realizes its lowest energy state (ie, crystal) by
slowly cooling it from high to low temperature. Earlier studies
have utilized SA for solvin% structural optimization problems
with discrete variables.**™° In this article, we integrate the
trained CNN model with an SA algorithm to navigate the
morphological space and identify microstructures exhibiting a
wide range of diffusivities. From a design perspective, one may
be interested in identifying structures with high diffusivities.
However, discovery of low-diffusivity microstructures is also
essential for progressively improving the CNN model through
their incorporation in the training process as discussed in
section 2.5. Toward these objectives, two independent SA
algorithms were employed to find microstructures that
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maximize (and minimize) the cation diffusivities, naturally
leading to the discovery of microstructures with higher (and
lower) simulated diffusivities than those for structures in the
originally generated data set.

At each step of the SA algorithm, the center of a
nanoparticle is randomly moved to a neighboring voxel in
the binary image while ensuring nonoverlap of nanoparticles.
When the SA algorithm is used to maximize diffusivity, the
probability of accepting the move/transition from structure i to
structure j (p;) is given by

L,

Din () = Denn(i)
Xp i
Dk

DékNN(]) 2 DgNN(l)

p_:

y

, Din(i) < Dy (i)

@)

where Dgun(j) is the diffusivity for structure j, estimated by
using the CNN model and normalized by Dy, and Df is a
dimensionless control parameter chosen for the kth cycle of
the SA algorithm. A geometric cooling profile was adapted for
D§, k =2, 3, ..., ky,y described by the formula

Di = aD;_, (3)
where a = 0.9 and D¥ = 9.8 X 107>, A similar condition as in
eq 2 is applied to advance the SA algorithm for minimizing
diffusivity, except the diffusivities are replaced by their negative
values. The total number of cycles (k) in the SA algorithms
used to maximize and minimize diffusivity was SO and 100,
respectively. A total of 2500 steps of the SA algorithm were
performed for each cycle. To ensure that microstructures from
different domains of the structural landscape were screened, we
performed 10 independent runs for both SA algorithms with a
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different initial morphology for each run, generated by using
the RSA algorithm.

2.5. Retraining the CNN Model. Because of the limited
microstructural domains featured in the data set generated by
using the methodology discussed in section 2.1, augmenting
the microstructures with those identified by integrating the
CNN model with the SA algorithm, and subsequently
retraining the CNN model with the expanded data set, is
expected to improve diffusivity predictions for a wider range of
nanoparticle morphologies.”">* To this end, cation diffusivities
for the structures identified from the topology optimization
runs were calculated by using our kMC simulation method-
ology. Specifically, from the structures evaluated during the SA
algorithm for maximizing diffusivity, 5000 configurations with
uniform distribution of CNN-predicted diffusivities higher
than the maximum diffusivity value in the original data set were
chosen randomly, analyzed by using the kMC simulations and
added to the data set. Similarly, 2280 structures from the ones
explored by using the SA algorithm for minimizing diffusivity
were evaluated by using kMC simulation and appended to the
data set as well. The numbers of training, validation, and test
data points for the new data set were 9712, 3240, and 3240,
respectively. Following the retraining of the CNN model, the
topology optimization process described in section 2.4 was
repeated by using the updated CNN model.

3. RESULTS AND DISCUSSION

3.1. CNN Model Performance. In this section, we present
results demonstrating the ability of the CNN model to
accurately predict cation diffusivity values. The performance of
the CNN model is compared with other deep learning models
based on physics-inspired approaches. The accuracy of a model

https://doi.org/10.1021/acs.jpcb.1c02004
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Figure 5. Bar graph for the MSE and MAPE of the predictive models for structures in the originally generated (a) training and (b) testing sets.
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Figure 7. Predictions of retrained CNN model for expanded data set. Parity plots comparing kMC and CNN-predicted diffusivity for (a) training
and (b) testing sets. (c) Parity plots comparing kMC and CNN-predicted diffusivity for randomly chosen structures evaluated during the topology

optimization SA runs with the retrained CNN model.

is reported by using the mean-squared error (MSE) and mean
absolute percentage error (MAPE), which are defined as

1 N
MSE=—) (» —5)
NE’ 4)

Y =7

| X 100%
J

1N
MAPE = —
NZ’ ()

where y; is the value predicted by the model, and J; is the
ground truth value.

Figure 3 shows a parity plot between the diffusivities
predicted by using the best-performing CNN and those
calculated by using the kMC simulations. We observe that the
CNN model predicts the cation diffusivity for the unseen
microstructures in the testing set with high accuracy.
Moreover, the trained CNN model predicts the cation
diffusivity with computational cost of roughly 3 orders
magnitude lower than the kMC simulations.

Next, we compare the performance of the CNN model with
other physics-inspired deep learning models (Figure 4) created
to establish quantitative structure—property linkages. In the
absence of a preexisting analytical model for predicting
transport properties in nanoparticle-based composites (for
which nanoparticle-surface transport pathways have a strong
influence), artificial neural network models were trained with
simple, structural descriptors as input features. In one of the
methods, we use the average nearest particle distance, reported
to be a measure that correlates well with the cation diffusivity
for the ion transport model considered in this study.”* We also
explored another surrogate model with nanoparticle—nano-
particle radial distribution function as the input feature to
predict cation diffusivity. Although other two-point (particle—
particle) correlation functions have been employed as
structural descriptors for predicting properties of composites
with granular and continuous phases,”””"****7>? we observe
the radial distribution functions to be a more relevant
descriptor for the microstructures in our case with uniformly
sized nanoparticles (supporting results in the SI, section S6.2).
Further details on the architecture of the deep artificial neural
networks adopted for the above physics-inspired approaches
are provided in section S6.1 of the Supporting Information.
The performance of such models is evaluated on the same
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training and testing set generated by using the methodology
discussed in section 2.1.

From the results displayed in Figure S, the CNN model can
furnish more accurate predictions than the physics-inspired
models. This suggests that the physics-based descriptors, which
do not contain information pertaining to many-body spatial
correlations, may be insufficient for identifying the most
relevant microstructural features influencing cation diffusivity.
For the CNN model, although the convolutional filter size is
smaller than the size of a nanoparticle, the spatial correlations
between multiple nanoparticles can be captured by the deeper
network implemented in this study with four convolutional
layers.®”®" More specifically, the CNN filters can effectively
capture the relevant three-point and higher-order spatial
correlations* influencing transport in ways not possible from
deep-learning models based on the simpler physics-inspired
descriptors.

The quantitative agreement between the CNN predictions
and the ground truth diftusivities provides evidence that CNNs
are a promising tool for predicting macroscopic properties of
two-phase composites comprising spherical nanoparticles. In
addition, since predicting diffusivity using the CNN model is
faster than running brute-force kMC simulations, it can be an
efficient proxy in frameworks that require many evaluations of
cation diffusivity. We therefore integrate the CNN models with
the topology optimization algorithms which requires calculat-
ing cation diffusivity at each step to help discover new
composite materials with desired characteristics and develop
even more accurate predictive tools as discussed below.

3.2. Topology Optimization for Diffusivity Using the
CNN Model. Next, we explore the efficacy of using SA
optimization with the CNN model to identify a diverse array of
microstructures with diffusivities outside the bounds of those
observed for structures in the originally generated data set.

We show results pertaining to two of the 20 independent
runs for the SA algorithms used to find microstructures that
maximize (or alternatively minimize) cation diffusivity as
discussed in section 2.4. For the SA algorithm to maximize
diffusivity, the CNN-predicted diffusivities converge to an
optimal value as shown in Figure 6a. From the results displayed
in Figure 6b, it is seen that the control parameter Df is
changed slowly enough such that the acceptance rate steadily
decreases from an initial value of 1 to 0, indicating convergence
to the optimal solution. Similarly, the results presented in
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Figure 6¢,d indicate a converged solution for the SA algorithm
to minimize diffusivity.

Figure 6e shows the comparison between diffusivities
predicted by the CNN model and those computed by using
the kMC simulations for the randomly chosen structures
evaluated during the optimization process (as discussed in
section 2.5). It is apparent that, although these diverse
microstructures with a wide range of diffusivities were not
included in the training data set, the CNN model estimates the
diffusivity for such structures with reasonable accuracy.
Furthermore, a Pearson’s R (as a measure of linear
correlation)® of 0.975 between the CNN-predicted and
ground truth diffusivities demonstrates the ability of the
trained CNN model to identify the relevant spatial features
influencing diffusivity and thereby successfully progress toward
optimal microstructures by integrating with the SA algorithm.

3.3. Performance of Retrained CNN Model. In this
section, we present results for the performance of the CNN
model revised using the expanded training data set comprising
the original data set along with the microstructures identified
from the topology optimization runs with CNN-predicted
diffusivities outside the bounds of those in the originally
generated data set (as discussed in section 2.5).

Figure 7 shows parity plots comparing diffusivity computed
from kMC simulations to that predicted from the retrained
CNN model. We observe excellent agreement with an MSE/
MAPE of 8.978 X 107*/3.147% and 1.164 X 107%/3.632% for
structures in the modified training and testing sets,
respectively. We further report the model predictions for the
structures discovered on repeating the topology optimization
runs using SA (as described in section 2.4) with the revised
CNN model to estimate diffusivities. From the results shown
in Table 1, we observe improved accuracy with the revised

Table 1. Comparison of Prediction Accuracy for Structures
Evaluated during the SA Algorithm Runs
MSE/MAPE

3.611 X 107%/15.634%
5.739 X 1073/7.133%

model

CNN model trained with original data set
CNN model retrained with expanded data set

CNN model for the structures screened during the SA runs for
topology optimization. In addition, a Pearson’s R close to one

(R = 0.985) is observed between the predicted and ground
truth values.

In the next section, we present results which explore the
extent to which the CNN model encodes information about
the presence of nanoparticles by testing its ability to predict
cation diffusivities for microstructures with nanoparticle
volume fractions lower and higher than those in the training
data set.

4. CNN PREDICTIONS FOR DIFFERENT
NANOPARTICLE LOADINGS

The success of the CNN model studied here for predicting
cation diffusivity in nanocomposites with spherical nano-
particles clearly hinges on its ability to detect how nanoparticle
positions and the related positional interparticle correlations
influence diffusivity. Here, by modifying the types of
microstructures we input into the revised CNN model, we
aim to examine whether the CNN filters can adequately
recognize and account for the impact of added or deleted
nanoparticles and accordingly predict the corresponding cation
diffusivity.

Based on the ion transport model considered in this study,
the cation diffusivity is expected to be significantly influenced
by the nanoparticle volume fraction.*” Because the effect of
nanoparticle volume fraction on the cation diffusivity was not
explicitly introduced to the CNN model during the training
process, we interpret what the model learns by studying the
accuracy of the CNN model predictions for microstructures of
different volume fractions. To that end, nanoparticles were
randomly added to (removed from) each structure in the
testing set to generate microstructures with a nanoparticle
volume fraction of 0.15 (0.05) while ensuring nonoverlap
between nanoparticles. Figure 8 shows parity plots comparing
the CNN-predicted and kMC-calculated diffusivities for the
modified input structures. For the microstructures with 15%
nanoparticle volume fraction, although the volume occupied by
the nanoparticles is higher than that for the structures in the
training data set (leading to increase in the activation of the
model due to the increase in the number of voxels
representated as 1s in the image), excellent agreement is
observed (Table 2). This suggests that the convolutional filters
in the multiple layers of the deep network can accurately
identify the location of nanoparticles in the microstructures
and characterize the relevant spatial correlations between
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Figure 8. Predictions of retrained CNN model for different nanoparticle (NP) loadings. Parity plots comparing kMC and CNN-predicted
diffusivity for microstructures with (a) 15% NP loading and (b) 5% NP loading, by volume.
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Table 2. Prediction Accuracy for Structures at Different
Nanoparticle Loadings

nanoparticle volume fraction MSE/MAPE Pearson’s R
0.15 2.95 X 1073/5.008% 0.967
0.05 2.863 X 107%/37.069% 0.928

multiple nanoparticles influencing cation diffusivity. We
hypothesize the overpredicted diffusivity values for structures
with 5% nanoparticle volume fraction to be a result of the
inability of the learned CNN filters to quantify the effect of
large voids in the microstructure due to particle deletions,
which are not prevalent in the training structures with 10%
nanoparticle volume fraction.

Nonetheless, the Pearson’s R values for the modified
structures, combined with the reasonable prediction accuracy
(Table 2), demonstrate the potential for integrating the CNN
model with topology optimization algorithms to accurately
identify optimal microstructures at different nanoparticle
loadings. However, we do acknowledge that the prediction
accuracy at different nanoparticle volume fractions is expected
to be better if the CNN model is explicitly trained by using
microstructures with those corresponding nanoparticle load-
ings.

5. EFFECT OF STRUCTURAL FEATURES ON CATION
DIFFUSIVITY

Although the CNN and other deep learning models based on
physics-inspired approaches present an avenue for quantitative
structure—property linkage, understanding the relationship
between the structural descriptors and the property of interest
is difficult due to the “black box” nature of the deep learning
models. In this section, we probe the influence of the structural
descriptors on cation diffusivity using data-driven approaches,
and we examine whether there are physical mechanisms
underlying the optimal microstructures obtained by using the
combination of the CNN model and the topology optimization
algorithm.

We first qualitatively comment on the structural character-
istics of the optimal morphologies from a visual perspective.
Figure 9 depicts snapshots of nanoparticle configurations
exhibiting maximum and minimum diffusivity. Explicitly, we
observe the structure with maximum cation diffusivity to
possess a stringlike network of nanoparticles, percolated in all

three directions. The individual particles in the network are
separated from their nearest neighbors by spacings favorable
for interparticle transport (at ~14 voxels) according to the
underlying cation transport model. In contrast, the config-
uration with minimum cation diffusivity displays an unperco-
lated microstructure with isolated clusters of nanoparticles
where the adjacent particles are separated by a distance smaller
than 14 voxels, configurations previously shown in the cation
transport model to exhibit si§niﬁcant interdigitation of the
surface-functionalizing ligands.™

To provide a more quantitative dependence of cation
diffusivity on structural features, we perform principal
component analysis (PCA) on a data set consisting of
nanoparticle—nanoparticle radial distribution function g(r)
(computed using the central voxel of each nanoparticle) of the
microstructures probed in this study. The radial distribution
functions are evaluated for integer r values from 0 to 38 voxels.
The maximum value of r corresponds to half the length of the
cubic box (L) comprising the microstructure. The ith principal
component (PC;) is given by a linear combination of the
original features g(r), r = 0, 1, ..., 38

38
PCi = Z wirg(r)

r=0 (6)

where ®,, denotes the weight of the feature g(r) for PC,. Based
on PCA, the first and second principal components (PC, and
PC,) capture approximately 67% and 13% of the total variance,
respectively. Figure 10a clearly displays a negative correlation
between the PC; value of a structure and its corresponding
cation diffusivity with a Pearson’s R of 0.93. However, no
significant correlation is observed between the cation
diffusivity and any of the other principal components, with a
maximum absolute Pearson’s R of 0.57 for PC, (Figure 10b).
We observe both positive and negative feature weights for PC,
as shown in Figure 10c depending on the nanoparticle
separation. Because there exists a strong negative correlation
between the PC, value and the cation diffusivity, and g(r) > 0,
the features with negative (positive) weight can be interpreted
as important structural characteristics that correspond to high
(low) cation diffusivity.

Figure 10d shows the comparison of g(r) values for
structures corresponding to both the highest 10% and the
lowest 10% of diffusivities. Accordingly, for the high and low

(a)

Figure 9. Snapshots of nanoparticle configurations with (a) maximum and (b) minimum ground truth diffusivity. The nanoparticle volume fraction
is 0.1. For visual clarity, nanoparticles within the same cluster (identified by optimal separation distance of ~14 voxels between neighboring
particles) are shown by the same color to highlight the resulting percolating network of nanoparticles in (a) and the isolated clusters of relatively

closely spaced nanoparticles in (b).
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Figure 10. Correlation between the ground truth (i.e., kMC simulation) diffusivities and (a) PC, and (b) PC, for all the structures probed in this
study. (c) Feature weights for PC; and (d) g(r) values for the high and low diffusivity structures.

diffusivity structures, significant peaks are observed for the
structural features with negative and positive weights,
respectively. From a physical perspective, such trends can be
understood based on the cation transport model considered in
this study.”” Specifically, the initial features with negative
weights for PC; correspond to the narrow range of
nanoparticle separations where cations at the surface of one
particle can readily transport to the surface of a neighboring
particle via diffusion. The initial features with positive weights
for PC, reflect the relatively slower cation transport from one
particle to another that occurs when adjacent particles are
separated by a distance smaller than the optimal interparticle
spacings.

To summarize, application of PCA to the data set of
microstructure radial distribution functions from this topology
optimization study, together with direct visualization of
optimal microstructures, allows us to identify that for the
cation transport model considered in this study nearest-
neighbor spacing and percolation of nanoparticles are the main
structural characteristics significantly influencing the cation
diffusivity. However, we recall the results of section 3.1 which
established that three- and higher-particle correlations have
signiﬁcant consequences for cation transport. Hence, our
results in this study point to the observation that while physics-
based models can be useful in understanding and predicting
the morphology dependencies of different properties, CNN-
based deep learning models can potentially expand such
capabilities and allow us to probe configurations which may
not be subsumed within a purely physics-based approach.

6. CONCLUSIONS

We have developed a CNN-based deep learning model for
predicting the cation diffusivity through a 3D microstructure
consisting of monodisperse spherical nanoparticles. The CNN
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approach not only achieves a high prediction accuracy but also
outperforms other physics-inspired deep learning models. We
surmise that the latter is due to the ability of CNN filters to
capture the relevant many-body spatial correlations not
accounted for in the simple physics-based descriptors. On
combining the trained CNN model with a simulated annealing
algorithm for topology optimization, we achieve accelerated
discovery of microstructures exhibiting ground truth diffusiv-
ities outside the domain of those observed for structures in the
generated training data set. Incorporating these additional
observations to retrain the CNN model leads to further
improvement in the prediction accuracy for a wide range of
nanoparticle microstructures screened during the topology
optimization runs. We observe a 41.3% increase in the
maximum diffusivity compared to that in the initial training
data set generated using a combination of a stochastic
algorithm and physically intuited biasing. Applying PCA to
the data set of structures revealed important physical features
influencing cation diffusivity, thus providing a physical
rationale for the performance of optimal morphologies. Such
a data-driven analysis allows for a better interpretation of the
quantitative effect of the cation transport model on the
property of interest, i.e., cation diffusivity.

Overall, this work demonstrates the potential of CNN as a
feature-engineering-free, high-accuracy deep learning model to
quantitatively link the complex structure—property relation-
ships in composites with uniformly sized spherical particles.
The strategy adopted in this study of combining the CNN-
based deep learning model with a topology optimization
algorithm can be generalized for accelerated prediction and
optimization of nanocomposite properties if sufficient
computational or experimental material data are available to
train the model. In addition, such an approach to identify the
optimal structures can be subsequently combined with inverse
methods to determine the nanoparticle interactions or building
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blocks that promote self-assembly of the corresponding target
structures. Broadly, our work demonstrates the potential of
deep learning-based strategies to efficiently navigate the high-
dimensional design space to discover/design materials with
target properties.
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