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Slip of soft permeable particles near a wall

Monica E. A. Zakhari and Roger T. Bonnecaze *

The slip and stick of soft permeable particles sliding near a smooth surface is determined by computing

flow, pressure and shape of a particle pressed against a surface due to the osmotic pressure of the

surrounding suspension and its translation at constant velocity parallel to the surface. We present a

poro-elastohydrodynamic lubrication theory that accounts for the interplay of the viscous pressure force

on the elastic deformation of the particle and the flow through the particle pores. At high particle

velocities, the particles move along an elastohydrodynamic film of fluid causing the particles to slip on

the surface. For finite particle permeability, there is a critical particle velocity determined by the

permeability relative to the thickness of the film and a ratio of the viscous and elastic forces that cause a

portion of the particle to contact the surface and stick. In this case the magnitude of pressure in the

lubricated film is lower compared to their impermeable counterpart sliding against a smooth surface at

the same speed. The particle pores offer an alternative route for the fluid in the film, reducing the

lubrication pressure resulting in the particle contacting the surface. A universal function is deduced to

predict this transition for a range of poro-elastohydrodynamic interactions. The drag force of the

particle sliding along the surface up to the contact is also determined and found to follow a universal

function. These results demonstrate the possibility of dynamic stick-slip transitions via control of particle

properties instead of wall surface treatments.

1 Introduction

Complex fluids are materials that are sophisticated in their
complexity on a multitude of length scales. Colloidal systems
are exceptionally attractive from fundamental, industrial, and
technological perspectives. The ability to tailor macroscopic
behavior of colloidal suspensions by tuning the individual
particle properties makes colloidal systems ubiquitous for
several industrial applications, such as in functional
coatings,1–3 pharmaceuticals,4,5 and foods.6–8 Exploiting these
materials in industrial applications necessitate processing
them in confined spaces, such as by extrusion and 3D
printing,9 which makes them susceptible to wall slip near
smooth surfaces. The behavior of concentrated colloidal
suspensions is strongly affected by their interaction with the
bounding surfaces.

The presence of slip hampers accurate characterization of
rheological behavior of these materials. Slip originates from a
lack of adhesion between the sheared particle-suspension and
bounding surfaces. The presence of slip results in a thin layer
of fluid that is depleted from the suspended particles, which
results in non-uniform macroscopic properties. Slip alters the
resulting flow field and leads to errors in macroscopic flow

measurements such as relations between shear stress and shear
rate, especially the yield stress.10–12 In the absence of slip, i.e.
under no-slip conditions, the flow of concentrated suspensions
of soft particles is characterized by a yield stress sy, while when
slip is present, the material exhibits an apparent yield stress ssy
(osy), also known as slip yield stress below which particle tend
to stick to the wall.12 Slip-stick in concentrated colloidal
suspensions and the resulting flow gradient discontinuity has
significant implications and is unavoidable during processing
of these materials. Boundary effects can also lead to the
development of flow instabilities similar to those developed
in extruded polymer melts, such as secondary-flow
instabilities13 and melt fracture.14–16

Slip is often desirable in applications where transport
efficiency is crucial, inspired by many biological and natural
processes. Slip is essential for the transport of foods through-
out the digestive tract,17 the motion of red blood cells through
microvascular networks to deliver oxygen and nutrients,18 and
intracellular flows in large plant cells, i.e. cytoplasmic streaming,
for fast and efficient transport of nutrients and other chemicals
within the cell.19 Furthermore, mucus acts as biological
lubricant for organs such as the eye; it protects the eye by
allowing slip to rapidly expel foreign particles.20 The efficient
transport promoted by slip as observed in several biological
systems can also be exploited in industrial applications, such
as microfluidic devices,21,22 sewage treatment,23 oil extraction,24
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and food processing.25,26 All of these applications require control
over slip-stick transitions, which can be achieved by regulating
bounding surface properties.

Wall-slip can be suppressed by manipulating wall surface,
physically and/or chemically. Physical implementation of
surface asperities, i.e. roughening the wall surface, can disrupt
the thin lubricated layer and suppress slip. Rough surfaces have
been achieved by sandblasting,27,28 machining,29,30 creating
surface features by serrated tools for example.31 The effect of
roughness degree on the slip behavior is examined in detail in
ref. 32 and 33. Inhibiting slip by surface roughness requires
creating surface features that are much larger that the particle
size or the largest dominating heterogeneity. This criterion is the
reason why it is difficult to suppress slip by surface roughness in
colloidal gels, in which case aggregates coarsen as the gel ages.34

While surface roughness is often successful to prevent slip, an
increased surface roughness has been found to result in
fracture.32 Seth et al. (2008)35 proposed controlling slip-stick
behavior via chemical modifications of the surface. The idea
originates from the observation that lubricating films are often
on the order of 2–10 nm.11,28 Over this short length scale, short-
range interactions between particle and wall become more
relevant. Attractive forces originate from van der Waals
interactions with the wall or more generally the hydrophobic
nature of the surface, which result in sticking behavior rather
than slip. Repulsive forces are a consequence of hydrophilic
surfaces and this leads to slip of particles when sheared against
it.12,35,36 In general, it is demonstrated that slip can be effectively
suppressed by the physical and/or chemical surface treatment,
controlling the degree of slip-stick is more challenging using this
approach.37

In this paper, we propose controlling the slip-stick behavior
by tuning particle properties rather than wall surface properties.
Recent studies suggest that surface features of soft impermeable
particle strongly influence its adhesion to a rigid wall when sliding
against it.38 However, the interrelationship between particle inter-
nal structure and confinement effects remains an unexplored
territory.39 Based on their architecture, soft permeable particles
can be broadly classified as microgels and star polymers.39 The
softness and deformability of these particles are well-regulated by
the degree of crosslink density and the number of arms for
microgels and star polymers, respectively.39,40 When compressed,
soft particles are able conform in shape and size by expelling
solvent from their interior. The conformability of soft particles is a
direct consequence of their internal structure. An effective
description of the particle internal structure for different particle
architecture remains an experimental challenge.39 However,
numerical simulations can have a unique contribution, where
the effect of the particle internal structure can be incorporated by
an effective permeability.41,42 The particle permeability effectively
regulates the flow through the particle pores. Here, we extend
the non-contact elastohydrodynamic lubrication theory initially
presented in ref. 11 and 28, and modified later to account for
short-range interactions with the wall in ref. 35. This theory
explains the slip behavior in soft impermeable particles by
coupling the elastic deformation of the particle due to bulk

osmotic pressure and gap hydrodynamics. With the aim of investi-
gating the slip behavior of soft permeable particle suspensions, we
derive a model that accounts for fluid flow through the particle pore
as it slides near the wall. The presented model is then used to
examine the interplay between particle internal structure, i.e. its
permeability, and its slip-stick behavior near a wall.

The remainder of this paper is organized as follows. The
microscopic theory for slip of permeable particles near the
wall – the poro-elastohydrodynamic theory – is presented in
both dimensional and dimensionless forms in Section 2. In
Section 2, we also present the model parameters used in the
numerical simulations. This is followed by a description of
the numerical procedure used to solve the resulting set of
equations in Section 3. The obtained numerical results are
presented in Section 4. Finally, the paper is concluded with a
discussion in Section 5.

2 Microstructural theory for slip in
permeable particle suspensions

In this section, we present an extension of elastohydrodynamic
lubrication theory that accounts for the poroelastic nature of
the particles, which originates from their permeable structure.
Soft permeable particles such as microgels, star-polymers, and
supramolecular particles can be modeled as poroelastic
particles with permeability k.

Consider a concentrated suspension of randomly-arranged
soft poroelastic particles moving parallel to a smooth rigid wall
due to a shear or pressure-driven flow. The suspension volume
fraction, f, is higher than random close packing fraction of
hard-sphere systems, i.e. f 4 0.64. At such high densities,
particles are trapped in tight cages by their neighboring
particles and the wall, on the one hand. Therefore, particle
displacements relative to other particles and particle migration
are neglected. On the other hand, particles are compressed and
deformed on all sides by particle–particle contacts and a
particle–wall contact. The wall is assumed to be perfectly rigid,
since it has a much higher modulus than the soft particles
considered here. A particle near the wall is compressed against
the rigid wall due to the surrounding particles. Particles near
the wall can hence be assumed to only translate and not rotate
or migrate due the confinement of the surrounding particles.
When the particle is at rest, Hertzian contact pressure acts on
the particle and a facet develops. When the particle is moving, a
lubricating film is formed and the fluid pressure in the gap creates
the facet. In this case, the pressure field is not axisymmetric and so
the facet is not circular. The suspension moves with some velocity
distribution that varies normal to the wall and the particles near
the wall can move at a finite velocity due to the elastohydro-
dynamic lubrication of the particle-wall contact. The particle
experiences non-contact elastohydrodynamic lift and drag forces,
FL and FD, due to interactions with the wall.

Specifically, let us consider the behavior of single particle of
radius R pressed against the smooth wall by the bulk osmotic
pressure of the suspension. The particle translates horizontally
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at a constant applied sliding speed U as depicted in Fig. 1.
Assuming no bulk rearrangements, the particle will remain
locked in its place relative to the wall by its neighbors with an
overlap with the wall of h0 + d. This deformation results in a
facet of radius r0.

2.1 Theory of poro-elastohydrodynamic slip

The present model extends the elastohydrodynamic theory
presented by Meeker and co-workers11,28 for impermeable soft
particles to a porous, permeable soft particles. The original
model couples Reynolds lubrication equation43 in the gap with
the general integral equation for contact mechanics.44 This
earlier model was later modified to account for short-range
attraction and repulsion with the wall.35 Here, we extend the
original model by allowing flow through the internal structure
of the porous particle through an additional coupling via
Darcy’s law.45 The resulting governing equations, which
describe the long-time, steady-state behavior are

r�(d3rp) = �6ZsUqxd + 12Zsu (x, y), (1a)

dðx; yÞ ¼ �h0 þ
x2 þ y2

2R
þ uzðx; yÞjz¼0; (1b)

uzðx; yÞjz¼0¼
1� n2

pE

ð1
�1

ð1
�1

pðx; yÞ

ðx� xÞ2 þ ðy� yÞ2ð Þ
1
2

dxdy; (1c)

where p is the hydrodynamic pressure in the gap between the
particle and the wall, and it is measured with respect to the
far-field fluid pressure away from the wall. In eqn (1a), Zs is the
solvent viscosity, U is the particle velocity as shown in Fig. 1.
The operatorr is the derivative taken over the two-dimensional
Cartesian coordinates (x, y), where the origin is located at the
wall and beneath the center of the particle. Eqn (1a) is coupled
with the gap height, which is given by eqn (1b). Eqn (1b)
described the particle profile as the summation of the
undeformed particle shape approximated by a parabola, �h0 +
(x2 + y2)/2R, and the particle elastic deformation uz(x, y)|z=0.

46

This elastic deformation depends on the hydrodynamic
pressure in the gap acting on the particle, and this relation is
described by eqn (1c). Eqn (1c) describes the long-time solution

of Hertz contact problem for a poroelastic particle approaching
a semi-infinite plane.44,47 In eqn (1c), E is the particle modulus,
n is Poisson’s ratio, and (x, y) are the integration variables in
Cartesian coordinates. Finally, the vertical fluid velocity in the
gap, u, describes the velocity by which the fluid enters
the particle pores near the wall, and hence defines the net
fluid flow from/to the particle. At steady state, the rate of
deformation of the elastic structure vanishes and does not
influence the flow in the porous particle.

Since we only investigate the steady state slip behavior of
permeable particles, flow from/to the particle is governed by
Darcy’s law.45,48 From the particle perspective, the amount of
fluid flowing from/to the particle must be conserved. In order
to calculate the vertical fluid velocity in the gap u and satisfy
mass conservation for the fluid and Darcy’s law, we seek
solutions of the Laplace equation for the pressure which is
valid throughout the entire particle O,

r2p = 0 for (x, y, z) A O. (2)

It is to be noted that, according to the lubrication theory,43 the
pressure in the gap is constant in the z-direction, leading to
vanishing vertical fluid velocity in the gap, however the
pressure is not constant inside the particle. The mutual
coupling of lubrication theory, Darcy’s law, and particle elastic
deformation is the origin of the vertical fluid velocity at the
particle surface.

In order to calculate the vertical fluid velocity u, only the
pressure gradient at the surface of the particle is required. In
this case, a boundary integral representation49,50 of eqn (2) is
convenient, where the particle is approximated by a semi-
infinite domain. A fundamental solution of the Laplace equation

at a point x in three-dimensions is given by pðxÞ� � 1

4pr
, where

r = 8x � y8 and y A O.51 This solution satisfies the Laplace
equation everywhere in the domain O except at the singularity
location at x = y. Using this solution, the boundary value
problem described by eqn (4) can be cast in a boundary integral
formulation, that is suitable for Boundary Element Method
(BEM),49–51 as

pðxÞ ¼ 1

4p

ð
@O

pðyÞ@y
1

r
� @ypðyÞ

1

r

� �
� ndS x 2 O (3)

where @y
1

r
¼ �ðy� xÞ

�
r3. In the derivation of eqn (3), Green’s

second identity is used.
Finally, once the pressure field at the surface of the particle

is obtained, the vertical fluid velocity can be calculated according
to Darcy’s law as

u ¼ �Zs
k
rp � ez for ðx; y; zÞ 2 O; (4)

where k is the particle permeability and ez is the unit vector in
the z-direction.

2.2 Dimensionless form of the governing equations

Eqn (1a)–(1c) are non-dimensionalized as follows. Dimensionless
or rescaled variables are denoted by their corresponding capital

Fig. 1 Schematic of a soft particle of radius, R, compressed against a
smooth rigid wall and sliding against it with a velocity U. The particle
forms a contact facet of radius r0 ¼

ffiffiffiffiffiffiffiffi
Rh0

p
at rest, where h0 is the initial

compression of the particle. The deformed particle surface is denoted by
d(x, y). The particle experiences non-contact elastohydrodynamic lift and drag
forces, FL and FD, due to interactions with the wall. The origin of the Cartesian
coordinate system is fixed at the wall below the center of the particle.
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letters. Length scales in the plane of the wall, x and y, and
derivatives thereof are scaled by the contact radius r0 (see
Fig. 1), as

X ¼ x

r0
; Y ¼ y

r0
;

@

@x
¼ 1

r0

@

@X
;

@

@y
¼ 1

r0

@

@Y
:

The contact radius is the radius of the flattened surface parallel

to the wall at rest, r0 ¼
ffiffiffiffiffiffiffiffi
Rh0

p
.44 Length scales normal to the

plane of the wall, such as the gap height and the particle
deformation in the z-direction are scaled with the initial deforma-
tion, h0, that is

H ¼ h

h0
; UZ ¼ uz

h0
:

Applying these scaling to the governing equations, the following
non-dimensional forms are obtained

r�(H3rP) = �qxH + V, (5a)

HðX;YÞ ¼ �1þ X2 þ Y2

2
þUZðX;YÞjZ¼0; (5b)

UZðX ;YÞjZ¼0¼ l
ð1
�1

ð1
�1

PðX;YÞ

ðX � XÞ2 þ ðY �YÞ2ð Þ
1
2

dXdY (5c)

Far from the wall, the hydrodynamic pressure is given by the
analytical expression of a rigid particle moving parallel to a
smooth wall52 as

PjX!1;Y!1¼ X

5H2
; (5d)

In eqn (5), the flow parameter l is defined as l = 6ZsUR/(Gph0
2),

where Gp = pE/(1 � n2). The boundary integral eqn (3)
becomes

PðXÞ ¼ 1

4p

ð
@O

PðYÞ@Y
1

�r
� @YPðYÞ1

�r

� �
� nd �S X 2 O (6a)

where @Y
1

�r
¼ �ðY � XÞ

�
�r3, %r = 8X � Y8, and d%S = r0

2dS. The
dimensionless vertical fluid velocity is given by,

V ¼ �12kR1=2

h
5=2
0

@YP � ez: (6b)

It is to be noted that the pressure at the particle surface
denoted by qO is equal to the hydrodynamic in the gap from
eqn (5), which is independent of the gap height as dictated by
the lubrication theory;43

P|XAqO = P(X,Y) (6c)

In eqn (5) and (6), the pressure is scaled with the characteristic
hydrodynamic pressure in the gap Pc is given by

Pc ¼
6ZsUR1=2

h
3=2
0

; (7)

and the vertical fluid velocity, V = u/Vc, is scaled with the

characteristic velocity

Vc ¼
Uh

1=2
0

2R1=2
: (8)

2.3 Dimensionless groups specification

To proceed with simulations, realistic estimates of particle and
fluid properties are to be specified. Simulations are fully
described in terms of the flow parameter l, and the dimensionless
permeability �k = k/h0

2. A summary of the simulation parameters is
given in Table 1. Representative values for a microgel particles are
used to obtain the results in Section 4. In the absence of flow, the
effect of system density and the resulting osmotic pressure acting
on the particle is expressed by the initial overlap, h0, and the
initial contact radius, r0. The particle compression ratio, z0 = h0/R,
is related to the volume fraction of the system as53

z0 ¼ 1� fRCP

f

� �1
3
; for f4fRCP; (9)

where fRCP = 0.64 is the volume fraction at random close packing.
Similar properties to those used in ref. 11 and 35 are employed in
the present study. Microgel particles of R = 220 nm and an initial
overlap h0 = 22 nm, which corresponds to a overall system volume
fraction of f E 88%. The particle is suspended in water, Zs =
1 mPa s. The mechanical properties of these particles are
described by Gp B 105 Pa. Estimates of particle permeability
available in literature are limited. The permeability of microgels
also depend on polymer concentration, cross-link density, and
the permeating fluid velocity.54 However, one can estimate the
pore-size and permeability based on the particle size. It is
reasonable to assume that the pore-size lpore is at least a couple
of orders of magnitude lower than the particle size, i.e. lpore B
0.01R. The permeability is proportional to square of the pore
size k B lpore

2, hence the permeability can be estimated as
k B 10�18 m2.

3 Numerical solution

The numerical procedure for solving the coupled eqn (5) and (6)
is presented in detail in this section.

3.1 Computation of the vertical component of fluid velocity

The vertical fluid velocity at the particle surface V is required to
solve eqn (5a)–(5c). As explained in Section 2.1, Boundary
Element Methods (BEM) can be used in this case as expressed
in eqn (6).49,50

Table 1 Model parameters and range of values

Parameter Symbol Physical value

Solvent viscosity Zs 1 mPa s
Particle modulus Gp 105 Pa
Particle radius R 220 nm
Initial overlap h0 22 nm
Flow parameter l [0.0001–5]
Dimensionless permeability �k {0, 0.207, 1.03, 2.07, 4.13} � 10�3
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To solve eqn (6) numerically using BEM, the surface of the
particle is discretized into Np patches. Assuming that the
pressure and its gradient are constant over each patch k,
eqn (6a) can be rewritten, for each patch m, as

Amk @Yk
P

� 	
¼

XNp

k¼1

BmkPk: (10a)

where

Amk ¼
1

4p

ð
@O

1

Xm � Ykk k � nkd
�S; (10b)

Bmk ¼ � 1

4p

ð
@O

Yk � Xm

Xm � Ykk k3d
�S: (10c)

The solution can be obtained as follows: given the pressure
field P and the particle shape H, the midpoint coordinates and
outward normal to each patch are calculated. For each patch m,
the integrals Amk and Bmk for all patches k are calculated using
Gaussian 2D quadrature. Finally, we solve eqn (6a) for qYkP as

qYk
P = Amk

�1BmkPk. (11)

These values are used to obtain the vertical fluid velocity to the
surface according to eqn (6b).

3.2 Numerical solution of poro-elastohydrodynamic
equations

Eqn (5a)–(5c) are simultaneously solved for pressure P, gap
height H, and particle deformation UZ(X, Y)|Z=0 over a planar
domain (X, Y) parallel to the wall. This domain is discretized
into equal-sized square elements in each direction, NX and NY,
respectively. This domain is chosen to be large enough, so that
the particle deformation is UZ(X, Y)|Z=0 = 0 and consequently
H = �1 + (X2 + Y2)/2 at the boundaries. The boundary condition
eqn (5d) is applied at the perimeter of the computational
domain.

An iterative scheme is used to solve eqn (5). With an initial
guess for the pressure P0, eqn (5c) is solved using numerical
integration scheme, namely the trapezoidal rule, for
UZ(X,Y)|Z=0, which is used to compute the gap height H from
eqn (5b). Finite difference approximations of eqn (5a) are used
to obtain an updated hydrodynamic pressure P. Convergence is
reached when the norm of the difference in pressure at each
point in the domain is less than 10�7, or when the drag and lift
force between iterations is the same up to the fifth decimal
point. The drag and lift forces are calculated as

FD ¼ �
ðð

P@XH þH

2
@XP� 1

6H
dXdY ; (12a)

FL ¼ R

h0

� �1
2
ðð

PdXdY ; (12b)

where these forces are scaled by 6ZsRu. Finally, to ensure
smooth convergence, under-relaxation is employed for
UZ(X,Y)|Z=0 in order to avoid unrealistically large particle dis-
placements per iteration step, specially in the case of highly
permeable particles.

4 Results

The wall-slip behavior of permeable particles is presented and
compared with impermeable particles of similar properties.
Simulations are performed at different sliding speeds, charac-
terized by the flow parameter, l, and different permeability
values, described by, �k.

4.1 Slip behavior of permeable particle

The behavior of permeable particle is discussed in comparison
with that of impermeable particle of the same properties,
subject to same sliding speed. Fig. 2 shows the particle profile
at the centerline of impermeable and permeable particles in the
direction of motion. In the case of impermeable particle, the
particle shows an asymmetric deformation at the centerline of
the particle. Underneath the particle center the particle facet is
almost uniform, while upstream the particle is protruded close
to the wall. This asymmetry is in fact a result of the pressure
profile in the lubricated layer of fluid between the particle and
the wall. Fig. 3 shows the pressure profile at the centerline of
impermeable and permeable particles in the direction of
motion. The pressure underneath the particle is positive
everywhere except at the rear of the particle. The negative
pressure underneath the protruded surface and at the rear of
the particle leads to fluid being pulled in the gap. This pressure
gradient created by the negative pressure maintains flow in the
lubricated fluid film between the particle and the wall.

The pressure profile of a permeable particle sliding near a
wall with the same speed is also plotted in Fig. 3. The overall
pressure profile in the gap is lower than the pressure developed
beneath the impermeable particle sliding near the wall to
maintain flow in the narrow gap. The permeable particle moves
closer to the wall as a result of this pressure profile. In order to
understand this behavior, the flow through the particle is
examined.

The vertical fluid velocity V is plotted in Fig. 4a for the case
of permeable particle. It is to be noted that the vertical fluid
velocity is vanishing for impermeable particles as shown by the
black line in Fig. 4b. Positive values of V indicate fluid flow to
the particle, while negative values denote flow from the particle.

Fig. 2 The particle profile along X-axis – the sliding direction – of an
impermeable particle (black filled symbols), i.e. �k = 0, and permeable
particle (red open symbols), �k = 2.07 � 10�3. Both particles are sliding
against the wall with a speed characterized by l = 0.5455. The dashed line
indicates the shape of the undeformed particle.
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Fig. 4b shows that fluid flows from inside the particle to the gap
at the rear of the particle, while fluid flows to the particle at the
particle front.

A permeable particle sliding close to a wall is closer than its
impermeable counterpart with the same properties and sliding
at the same speed. This behavior is a result of the coupling
between the fluid properties in the lubricated film and fluid
flow through permeable particle. A sketch depicting the major
differences in slip behavior between impermeable and permeable
particles is shown in Fig. 5. When a permeable or impermeable
particle slides near a wall a thin film of fluid forms at the facet
between the particle and the wall. A pressure gradient forms
within this film. This pressure gradient acts to maintain the
lubricated layer in the gap, and this effect is explained as follows.
For impermeable particles, far-field fluid is drawn to the negative
pressure side of gap at the rear of the particle. The fluid is expelled
from the positive pressure side of the gap at the front of the
particle, see Fig. 5a. In the case of permeable particles, an
additional flow contribution emerges due to the ability of the
particle to draw in and expel fluid through its pores. The negative
pressure at the particle rear draws fluid to the film from the
far-field fluid and from within the particle pores. Fluid is expelled
from the gap at the particle front and to the particle pores, see red
arrows in Fig. 5b. This additional flow contribution from and to
the particle pores at the negative and positive fluid pressure sides
in the gap, respectively, results in the lower overall pressure

compared to the case of impermeable particle sliding near the
wall. As a result, slip is less pronounced in permeable than
impermeable particles–permeable particles tend to stick to
the wall.

4.2 Influence of sliding speed on the behavior of permeable
particles near a wall

The effect of sliding speed on the sticky behavior of permeable
particles is studied in detail in this section.

Fig. 6a shows the particle profile at different sliding speeds.
The slower the sliding speed, the closer the particle gets to the
wall. This behavior is also observed for soft impermeable
particles sliding against a rigid wall,35 and rigid particles
sliding against a soft impermeable wall.55 The corresponding
pressure profiles at the centerline beneath the particle is shown
in Fig. 6b. The slower the sliding speed, the higher the
magnitude of the pressure in the gap in both the negative
and positive pressure regions.

Fig. 3 Pressure contour plots (lines and bands) beneath (a) an impermeable
particle, �k = 0, and (b) a permeable particle, �k = 2.07 � 10�3, sliding against
the wall at a speed characterized by l = 0.5455. (c) Pressure profile beneath
both impermeable (black filled symbols) and permeable (red open symbols)
particle center-line and along the sliding direction denoted by the red lines in
(a) and (b), respectively.

Fig. 4 (a) Pressure contour line superimposed on vertical fluid velocity
contour bands beneath a permeable particle, �k = 2.07 � 10�3, sliding
against the wall at a speed characterized by l = 0.5455. (c) Vertical fluid
velocity profile beneath both impermeable (black filled symbols) and
permeable (red open symbols) particle center-line and along the sliding
direction denoted by the red lines in (a). Note that the vertical fluid
velocity is zero for impermeable particles as shown by the black curve
in (b). The net flow in the permeable particle case is calculated as
�Q ¼

Ð
SVdS ¼ 0:1295.
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The pressure profile in the gap has a direct effect on the
fluid flow to and from the particle. Fig. 7 shows the effect of the
sliding speed on the vertical fluid velocity and resulting net
flow. The magnitude of fluid velocity to and from the particle
increases as the sliding speed decreases. Integrating the fluid
velocity over the entire domain gives the net flow, %Q, through
the particle. Positive %Q values denote net flow to the particle
and negative values denote net flow from the particle. This net
flow is plotted in the inset of Fig. 7 as a function of sliding
speed. The net flow is positive for all sliding speeds, i.e. the net

flow is to the particle pores on the underside of the particle.
This fluid of course leaves the particle on its far side and its exit
is of no consequence to the sliding near the wall. The inset in
Fig. 7 shows that the net flow increases as the sliding
speed decreases as a result of the higher pressure magnitude
at lower l.

4.3 Influence of permeability on slip-stick behavior

In Section 4.2, we showed that the flow through the particle
pores underlies the difference in slip behavior between permeable
and impermeable particles sliding near a wall. In this section, the
effect of permeability on the sticky behavior of permeable
particles is examined. In order to efficiently study this behavior,
the particle profile is characterized by the minimum height of the
particle, i.e. the closest point to the wall. The net flow is plotted as
a measure of the vertical fluid velocity. Finally, The pressure in the
gap results in a drag force on the particle, hence it is plotted
instead of the full pressure profile.

Fig. 8 shows the minimum gap height, denoted by Hmin, for
particles of different permeability values �k sliding at different
speeds l. The balance between hydrodynamic forces on the

Fig. 5 Sketch of the major differences in slip behavior between (a) an impermeable and (b) a permeable particle sliding near a rigid wall. The colored
sections indicate the pressure in gap. The black arrows show the flow from/to far-field fluid, while the red arrows, in the case of permeable particles in (b),
show flow of from/to particle pores.

Fig. 6 Effect of the sliding speed of a permeable particle, characterized
by l, on the (a) particle profile and the (b) pressure in the gap beneath
the particle, along the sliding direction, i.e. X-axis. Arrows indicate the
direction of increasing the sliding speed.

Fig. 7 Effect of the sliding speed of a permeable particle, characterized by
the flow parameter l, on the vertical fluid velocity at the particle surface
plotted along the sliding direction, i.e. X-axis. Arrows indicate the direction
of increasing the sliding speed. Inset shows the net flow to the particle as a
function of the flow parameter, given by the specific discharge �Q ¼

Ð
SVdS.
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particle and resistance forces from single particle deformation
and osmotic pressure from the bulk dictate the extent of
particle deformation. The stronger the flow, i.e. high l, the
larger the lift force experienced by the particle, which leads to
more particle deformation and higher gap heights. Fig. 8 shows
exactly this effect – the higher the sliding speed, l, the larger
the minimum gap height, Hmin, for both impermeable and
permeable particles. For large particle velocities, the minimum
gap height appears to be independent of permeability; this is
not the case for low particle velocities. For these cases, i.e. low
l, the minimum gap height depends on the permeability.
For impermeable particles, i.e. �k = 0, the minimum gap height
decreases with decreasing sliding speed. For permeable
particles, i.e. �k a 0, the minimum gap height continues to
decrease with decreasing sliding speed, until a critical value,
ls – the sticking point. Beyond this sticking point, the
minimum gap height becomes negative, which indicates that
the lowest surface point of the particle comes in contact with
the wall. The sticking point can be defined as

ls = l|minH(X,Y) = 0, 8(X, Y). (13)

Fig. 8b shows that the minimum gap height depends on the
sliding speed following a power law with exponent that is
independent of the permeability value, HminB (l � ls)

0.50.
The sticking point, however, decreases with decreasing
permeability, and it’s vanishing for impermeable particles.
The dependence of sticking point on the permeability value
follows a power law of type, ls B �k0.65, as shown in Fig. 8b.
The minimum gap height when plotted against the difference
between the flow parameter and the sticking point (see Fig. 9),
l � ls results in the collapse of the data for different
permeability on a universal curve that can be fitted to a power
law with these average fitting parameter shown in Fig. 8b.
The critical speed of the particle at the onset of sticking, Us,
is determined from the sticking flow parameter, ls, as

Us ¼
Gph0

2ls
6ZsR

: (14)

The values of the critical speeds corresponding to the sticking
points at different values permeability are shown in Table 2.
In practice, the value of the critical speed describes the value
below which the effect of slip on suspension rheological
properties cannot be neglected.11 The critical speed can define
the operating speeds in rheological experiments, such as the
cone speed in a cone-plate rheometer. In suspensions of
permeable particles, the critical flow speed increases with increas-
ing permeability, which suggests that wall effects are dominant
for a wider range of flow speeds with increasing permeability.

The sticky behavior of permeable particles originates from
the ability of fluid to flow through their pores. To examine this
behavior and how it is influenced by the permeability, the net
flow through the particle is investigated. Fig. 10 shows the net

Fig. 8 Effect of particle permeability, �k, on the minimum gap height, Hmin.
(a) Minimum gap height along the sliding direction, i.e. X-axis of
impermeable and permeable particles with different permeability
values as a function of flow parameter l. Lines are power-law fits of type
Hmin = a(l � ls)

b. (b) Minimum gap height fitting parameter. The pre-factor
a and exponent b are almost identical for all permeability values and
their average values are �a = 0.59, and �b = 0.50. The dependence of
the flow parameter on the permeability follows the power law,
�ls = 14.64�k0.65.

Fig. 9 Minimum gap height along the sliding direction, i.e. X-axis of
impermeable and permeable particles with different permeability values
plotted against the difference between the flow parameter and the sticking
point, l � ls. Dashed line is a power law fit using the average values of the
fitting parameters in Fig. 8b.
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fluid flow through the pores, %Q, of particles with different
permeability values, �k, sliding near a wall at different speeds
l. As discussed earlier in Section 4.2, positive %Q denote flow to
the particle, negative %Q denote flow from the particle. Fig. 10a
shows that the net flow is to the particle for all values of
permeability. The net flow to the particle increases with

decreasing sliding speed, as shown earlier in Fig. 7. The net
flow to the particle increases with increasing permeability at
the same sliding speed, as shown in Fig. 10a. A universal curve
can be obtained by scaling the net flow with the corresponding
permeability (see Fig. 10b). The dependence of the scaled net
flow on the flow characteristic parameter in the gap l obeys a
power law %Q/�k B l�0.80.

Particles sliding against the wall experience a fluid resistance
force that is proportional on the fluid pressure – the drag force.
Fig. 11a shows the drag force, FD, on a particle with different
permeability values, �k, sliding near a wall at different speeds l.
Fig. 11a shows that the drag force increases with decreasing
sliding speed characterized by the flow parameter l. The
dependence on sliding speed dominates in comparison with
the dependence on the permeability. It is to be noted that the
drag force is an average quantity over the entire particle surface,
while permeability dependence is most significant at closest

Table 2 Critical speeds calculated as Us = Gph0
2ls/(6ZsR) for different

values of dimensionless permeability, �k, using parameters listed in Table 1
and the values of the sticking point, ls, also listed in the table

Permeability, �k
Sticking
point, ls

Critical flow speed,
Us (mm s�1)

0 0 0.0
0.21 � 10�3 0.047 1.7
1.03 � 10�3 0.166 6.1
2.07 � 10�3 0.276 10.1
4.13 � 10�3 0.401 14.9

Fig. 10 Effect of particle permeability, �k, on the net flow from the particle,
%Q. (a) Net flow from particles of different permeability values. (b) Scaling
the net flow by the dimensionless permeability results in a collapse of the
data on a universal curve. The net flow scaled with permeability scales with
the flow parameter as %Q/�k B l�0.8. Inset in (b) shows the same data on
linear axes.

Fig. 11 Effect of particle permeability, �k, on the drag force, FD. (a) Drag
force impermeable and permeable particles with different permeability
values as a function of flow parameter l. (b) Drag force plotted as a
function of the difference of flow parameter and sticking point, l � ls.
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point of the surface to the wall (see e.g. Fig. 2). The dependence
on the permeability is nonetheless obvious by the lower limit of l
that is set by the sticking point ls, i.e. ls(�k)o l. Similar to Fig. 9,
plotting the drag force against the difference in flow parameter
from the sticking point, l � ls, the data collapse on a universal
curve that follows (l � ls)

�0.50 at low speeds and deviates from it
at high speeds, (l � ls)

�0.25, as shown in Fig. 11b. By fitting
the data in Fig. 11a using power-law fits of type FD = al�0.5 +
b(ldh0/R)

2 ln(ldh0/R)
2, where ld is the domain size, and a and b are

the fitting parameters, it is found that the leading order term
governing the drag force scales as a(�k)l�0.50. The fitting
parameter a is found to be independent of the domain size
and the flow parameter, but dependent on the permeability.
The value of a for impermeable particles is a|�k=0 = 0.54, while
for permeable particles a|�ka0/a|�k=0 = {1.89, 2.27, 2.52, 2.55} for
�k = {0.207, 1.03, 2.07, 4.13} � 10�3, respectively.

5 Discussion and concluding remarks

In this work, we present a model of permeable particle sliding
against a smooth rigid wall. The particle is pressed against the
wall by the effect of the bulk system density. The model
captures the flow details in the lubricated gap between the
particle and the wall, and through the particle pores. The gap
fluid and particle are coupled by the fluid pressure in the gap,
the particle deformation, and the normal fluid velocity at the
surface of the particle closest to the wall. Using this model, we
study the behavior of particles with different permeability
sliding at different speeds against a smooth rigid wall.

A pressure gradient develops in the lubricated layer between
the wall and a deformable particle sliding against it, for both
impermeable and permeable particles. A negative pressure
develops at the particle rear which draws fluid to the gap and
fluid is expelled from the gap in front of the particle, where
positive pressure is developed. This pressure gradient serves to
maintain the lubricated layer. A permeable particle is found to
approach the wall more than an impermeable particle sliding
near the wall at the same speed. The fluid pressure in the gap is
lower in magnitude than the pressure developed in the case of
impermeable particles. This pressure reduction is primarily
due to the excess fluid flow from and to the particle pores at
the negative and positive pressure region, respectively.

The flow through the particle pores underlies the difference
in slip behavior between permeable and impermeable particles
sliding near a wall and it is regulated by the permeability. The
effect of permeability can be summarized as follows. The net
flow to the particle is found to increase with increasing
permeability. At a certain permeability, the minimum gap
height decreases with decreasing sliding speed until a critical
point ls – the sticking point – where the particle first makes
contact with the wall. This sticking point is found to increase
with increasing permeability as ls B �k0.65. The pressure
developed in the lubricated layer result in a drag force on the
particle. The drag force is dominated by the sliding speed.
However, the sliding speed itself is implicitly dependent on the

permeability via the dependence of the sticking point on the
permeability. These results reveal the strong coupling between
the fluid dynamics in the gap and the fluid flow through the
permeable particle. All of these results and the fact that
permeable particles tend to get closer to the wall than their
impermeable counterparts sliding at the same speed, and that
impermeable-particle systems can slip with much lower speeds
without sticking, confirm that permeable particles are sticky.

The sticky behavior of permeable particle is similar to the
behavior observed in ref. 35, of impermeable particle with short-
range attraction with the wall. Wall slip is known to depend on
the smooth-surface chemistry.12,35,56,57 Typical gap height values
are on the order of 2–10 nm,11,28,35 in this range wall–particle
interactions can be important. Short-range attractive forces
originate from attractive van der Waals forces, and/or the
hydrophobic nature of the surface, which favor weak particle–
surface attractions. In principle, one can predict the wall-slip
behavior of permeable particles by constructing an attractive
pressure acting across the film.12,35 For example, the perme-
ability can acts as an effective Hamaker constant in van der
Waals pressure.35 This procedure is efficient and effective in
predicting the gap height and the general slip behavior, but fails
to predict the flow details and its effect on the gap fluid pressure.

The flow of the gap fluid through the particle pores effectively
suppresses wall-slip and instead sticking occurs at ls depending
on the permeability. This result supports the recent findings that
particle-scale features are necessary and sufficient to effectively
predict wall slip in dense soft microgel suspensions;58 here, we
describe particle-scale features with the particle permeability. In
fact, the permeability offers an alternative way to avoid wall-slip,
in lieu of suppressing slip via the introduction of wall roughness.
Former studies assert that slip is suppressed when surface
asperity height Ra is of the same order as particle radius R, i.e.
R/Ra r 1.32,59 Let us assume the following; the suppression of slip
in permeable particles to originate from particle-surface rough-
ness instead of wall roughness. In this case, we can characterize
the surface roughness of the particle in terms of its permeability;
that is Ra o

ffiffiffi
k

p
. We estimate the particle radius-to-asperity ratio

as R/Ra 4 102. This observation confirms that slip can be
suppressed at even much finer particle-surface features than the
minimum required wall-surface features for slip suppression.

The model presented in this paper and the presented results
offer ample opportunities to explore particle permeability to
control slip-stick behavior and consequently bulk mechanical
properties. The permeability of soft particles, such as microgels
and star polymers, can be tuned by several external stimuli
such as applied deformation,42,60–62 pH,63,64 temperature,63,65

or magnetic fields.66–68 An area that is yet to be explored is
using such external stimuli to trigger stick or slip behavior even
at the same sliding speed.
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