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In-plane magnetic field induced density wave states near quantum spin Hall phase transitions
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We study the influence of an in-plane magnetic field and Coulomb interactions on the physics of quantum spin
Hall insulators, like those in InAs/GaSb and HgTe/CdTe quantum wells. Using a Hartree-Fock mean-field theory
approximation, we calculate phase diagrams as functions of the band gap, band hybridization, and magnetic
field strength. We show that when the band hybridization is weak, the system is unstable against the formation
of density-wave states. As the strength of the in-plane magnetic field increases, the density-wave region of the
phase diagram expands and distinct density-wave states appear. We discuss possible experimental implications
of our results.
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I. INTRODUCTION

The quantum spin Hall (QSH) insulator is a topologically
nontrivial state of matter characterized by gapless helical edge
states protected by time-reversal symmetry [1,2]. It was first
realized in HgTe/CdTe quantum wells [3,4], and later also
in other systems like InAs/GaSb quantum wells [5–7]. The-
oretically the physics of QSH insulators is captured by the
Bernevig-Hughes-Zhang (BHZ) model [3], which is a single-
particle theory that ignores interactions and works well in the
limit of strong band hybridization. Interactions become im-
portant when the BHZ model band hybridization parameter A
is small, as can be appreciated by considering the limit A → 0,
where coherence between conduction and valence bands, or
exciton condensation, occurs spontaneously when the band
gap is smaller than the exciton binding energy [8–15]. Re-
cent experiments [16–18] have shown excitonic behavior in
InAs/GaSb quantumwells. The interplay between interactions
and topology can lead to interesting new phases near the QSH
phase transition [19–22], which have so far been only lightly
explored.

In this paper we study how an in-plane magnetic field mod-
ifies the phase diagram studied in Ref. [22], which contains
time-reversal symmetry-breaking electron nematic phases.
Due to the spatial separation between electron and hole layers,
an in-plane magnetic field shifts the conduction and valence
bands in opposite directions in momentum space. Intuitively
this opposite shift effectively increases the band gap and re-
duces the hybridization between the electron and hole bands.
When interactions are neglected, an in-plane magnetic field
drives the system into a semimetallic state. Using a Hartree-
Fock mean-field theory, we show that the nematic states
instead break translational symmetry and become density-
wave states. At stronger tunneling an in-plane magnetic field
can drive the system through a variety of different phases,
including quantum anomalous Hall states with and without
density-wave order.

This paper is organized as follows: In Sec. II we formulate
the mean-field theory we use to describe interaction effects,
and explain how we allow the possibility of translational
symmetry breaking. In Sec. III we summarize our results by
presenting phase diagrams that depend on three parameters:
band gap, hybridization, and the strength of in-plane magnetic
field. Finally in Sec. IV we discuss the relationship between
our work and potential future experiments, and its relationship
to excitonic density-wave states that have been identified,
often controversially, in bulk three-dimensional crystals.

II. MEAN-FIELD THEORY

We use a four-band BHZ model [3,5] to describe the
InAs/GaSb quantum wells. The field operators are four-
component spinors ψk = (ac↑k, av↑k, ac↓k, av↓k )T , where c
and v denote the conduction and valence bands, and ↑ and
↓ denote two opposite spins. The single-particle physics of
the system under an in-plane magnetic field is described by
the modified BHZ Hamiltonian [21,23]

HBHZ =
∑
k

ψ
†
k

(
h↑(k) 0

0 h↓(k)

)
ψk, (1)

where the two 2 × 2 matrices h↑ and h↓ can be explicitly
expressed as

h↑(k) =
(

h̄2

2me

(
k − Q

2

)2 + Eg

2 A(kx + iky)

A(kx − iky) − h̄2

2mh

(
k + Q

2

)2 − Eg

2

)
,

h↓(k) =
(

h̄2

2me

(
k − Q

2

)2 + Eg

2 −A(kx − iky)

−A(kx + iky) − h̄2

2mh

(
k + Q

2

)2 − Eg

2

)
. (2)

me and mh are the effective masses of electrons and holes, Eg

is the band gap, A is the strength of hybridization between the
conduction and valence bands, and Q is the momentum shift
due to the in-plane magnetic field. Without the magnetic field,
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Q = 0 and h↑, h↓ are time-reversal partners:

h↑(k) = h∗
↓(−k). (3)

When an in-plane magnetic field B = Bŷ is applied to electron
and hole layers separated by an interlayer distance d , the
conduction and valence bands are shifted in momentum by
∓Q = ∓(eBd/h̄)x̂ by Peierls substitution. The in-plane mag-
netic field breaks the time-reversal symmetry of the system
and induces orbital moments. The electrons and holes interact
via the Coulomb interaction

HI = 1

2S

∑
bb′ss′

∑
kk′q

Vbb′ (q)a†bsk+qa
†
b′s′k′−q

ab′s′k′absk, (4)

where S is the area of the two-dimensional system, b, b′
and s, s′ are band and spin indices, respectively, Vcc(q) =
Vvv (q) = V (q) = 2πe2/εq is the intralayer Coulomb in-
teraction, Vcv (q) = Vvc(q) = U (q) = V (q) exp(−qd ) is the
interlayer Coulomb interaction at interlayer distance d , and ε

is the dielectric constant of the surrounding three-dimensional
material.

Anticipating the possibility of translational symmetry
breaking [21] along the direction of Q, we divide momentum
space into slabs separated by Q. Then apart from the band and
spin indices (b, s), the basis states are labeled by an integer n
and a quasimomentum k (|k| < |Q|/2) that lies within the first
quasi-one-dimensional Brillouin zone. Together n and k refer
to the plane-wave state with momentum nQ + k.

We use a Hartree-Fock mean-field theory to describe the
Coulomb interaction. The Hartree term is

�H = 1

S

∑
bb′
ss′

∑
nn′n′′
kk′

Vbb′ ((n′ − n)Q)

× ρb′s′ n′′+n′−n
b′s′ n′′ (k′)a†bsn′kabsnk, (5)

where the density matrix ρ is defined relative to the density
matrix with valence bands filled and conduction bands empty:

ρbsn
b′s′n′ (k) = 〈a†b′s′n′kabsnk〉 − δbb′δbvδss′δnn′ . (6)

For n′ = n, the Hartree term accounts for the electrostatic
potential energy difference 4πe2nxd/ε between the electron
and hole layers, where

nx = 1

S

∑
snk

ρcsn
csn (k) = −1

S

∑
snk

ρvsn
vsn (k) (7)

is the exciton density. The Fock term

�F = −1

S

∑
bb′
ss′

∑
nn′n′′
kk′

Vbb′ ((n′′ − n)Q + k′ − k)

× ρb′s′ n′′+n′−n
bs n′′ (k′)a†b′s′n′kabsnk (8)

accounts for the exchange interaction. Together, the system is
described by the mean-field Hamiltonian

HMF = HBHZ + �H + �F . (9)

Below we express lengths and energies in terms of charac-
teristic scales a∗

B = ε h̄2/me2 and Ry∗ = e2/2εa∗
B, where m =

memh/(me + mh) is the reduced effective mass. This model
approximates InAs/GaSb quantum wells if we choose me =

0.023me,mh = 0.4m0, and ε = 15 [24], which implies that
a∗
B = 36.5 nm and Ry∗ = 1.3 meV. We assume the interlayer
distance d = 0.3a∗

B ≈ 10 nm. For an in-plane magnetic field
of strength B = 1 T, the momentum shift Q = 0.606(a∗

B)
−1.

For simplicity in Eq. (2) we neglect the particle-hole asym-
metry which does not affect the ground state physics, and
perform numerical calculations with me = mh = 2m.

III. PHASE DIAGRAMS

Given Eg, A, and Q, the ground state of the system
can be obtained by solving the Hartree-Fock equations self-
consistently and finding the lowest-energy solution. The Q =
0 case has been studied in detail in Ref. [22], and the phase
diagram is reproduced in Fig. 1(a). At A = 0 the number of
particles in the conduction and valence bands are conserved
separately. When the bare energy gap Eg is reduced below
the 1s exciton binding energy, the excitons condense and co-
herence is established spontaneously between the conduction
and valence bands. This order survives at finite A, where
it breaks rotational symmetry by establishing coherence be-
tween s-conduction and p-valence electrons, and also breaks
time-reversal symmetry by doing so in a spin-dependent man-
ner. In Fig. 1 we refer to this state as the nematic insulator
state. At large A, single-particle physics dominates and the
system undergoes a topological phase transition between the
QSH and normal insulators as Eg varies. At moderate values
of A, the transition between QSH and normal insulators occurs
via an intermediate quantum anomalous Hall (QAH) state
with broken time-reversal symmetry and a nonzero Chern
number [26].

When an in-plane magnetic field is applied, the QSH state
is no longer protected by time-reversal symmetry. In the
simplified BHZ Hamiltonian (1) that we use here, the two
spins are decoupled and a spin Chern number can be defined
to distinguish QSH and normal insulators [27]. In the more
general case where spin is not a good quantum number, it has
been shown that [28–30] the spin Chern number can remain
well defined as a robust topological invariant. For this reason
the QSH-normal insulator transition still exists. In order to
distinguish these two cases we refer to the finite-B QSH state
as a time-reversal symmetry-breaking (TRSB) QSH state [29].

At small hybridization A the momentum-shifted con-
duction and valence bands tend to establish coherence by
breaking translational symmetry to achieve better Fermi sur-
face nesting, forming density-wave (DW) states with wave
vector Q. We find that at small but finite A the energetically
preferred state is one in which pairing is between opposite
spins, so the order parameter is ρcs1

vs̄0(0) where s̄ denotes the
spin opposite to s. At A = 0 the density matrix element ρbs1

b′ s̄0 is
nonzero only for b = c, b′ = v. When the band-hybridization
parameter A is nonzero, on the other hand, it is nonzero for
any b and b′, although the exciton condensate order parameter
(b = c, b′ = v) is always much larger than the other three
(b = b′ = v, b = b′ = c, and b = v, b′ = c) density-matrix el-
ements. When the magnetic field is weak, the DW state exists
only near A = 0 and undergoes a first-order phase transition
to the nematic insulator state, which does not have finite-Q
pairing, as A increases [see Fig. 1(b)]. The nematic insula-
tor phase is characterized by the order parameter ρcs0

vs̄0(0);
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FIG. 1. Phase diagrams in (A,Eg) planes at several fixed magnetic fields: (a) Q = 0; (b) Qa∗
B = 0.6; (c) Qa∗

B = 1.2; (d) Qa∗
B = 1.8. Solid

and dotted lines distinguish first-order and continuous phase transitions. The gray dots in (d) specify the parameter values used to calculate the
individual phase properties presented in Figs. 2 and 3. For adjacent InAs and GaSb quantum wells with thicknesses dInAs = dGaSb = 10 nm,
we use the hybridization strength [25] A = 0.37 eVÅ = 0.78a∗

BRy
∗. This value is labeled by blue diamonds on the horizontal axes. Smaller

values of A are accessible by inserting a layer of AlSb. The energy gap Eg can be tuned experimentally by applying vertical electric field. For
HgTe/CdTe quantum wells with thickness dHgTe = 7 nm, the hybridization strength A = 3.65 eVÅ = 7.7a∗

BRy
∗, outside the most interesting

region of the phase diagrams. The properties of the different phases identified here are described in the main text.

the coherence that is established does not accommodate the
momentum-space shifts of the conduction and valence bands.
We retain the term nematic insulator used at Q = 0 even
though rotational symmetry has already been explicitly bro-
ken by the in-plane magnetic field.

The boundary between the magnetic-field-stabilized DW
state and the nematic insulator state moves rapidly to the right
as the magnetic field strength increases, eventually squeezing
the nematic insulator state out of the phase diagram as shown
in Fig. 1(c). Near the DW phase boundary neighboring the
TRSB-QSH and QAH phase regions, two new phases appear
[31] that also break translational symmetry along the x̂ di-
rection. These two states are connected to the TRSB-QSH
and QAH states via continuous phase transitions, and we
label them as QSH/DW and QAH/DW states, respectively, for
reasons that will become clear later. Like the DW state, both
the QSH/DW and QAH/DW states have order parameters of
the form ρbs1

b′ s̄0(0). Unlike the DW state, however, the largest
pairing terms in the QSH/DW state are between conduction
and conduction, and valence and valence bands, yielding or-

der parameters ρvs1
vs̄0 (0) [= ρcs0

cs̄1̄ (0)]. The QAH/DW state has

different up-to-down and down-to-up spin pairings: ρ
b↓1
b′↑0 �=

ρ
b↑1
b′↓0, with one, say ρ

b↓1
b′↑0, resembling the DW state with

the largest element appearing at b = c, b′ = v, and the other
(ρb↑1

b′↓0) resembling the QSH/DW state with the largest element
at b = b′ = v. The transitions between the DW, QAH/DW,
and QSH/DW states are all first-order transitions.

As Q continues to increase, the three density-wave re-
gions keep expanding and the QAH region shrinks as shown
in Fig. 1(d). While the transitions between the TRSB-QSH,
QAH, and normal insulator states stay largely unchanged, the
phase boundaries slowly move toward larger A and smaller Eg

as Q increases, consistent with the intuition that the momen-
tum shift between conduction and valence bands effectively
increases the band gap and weakens the band hybridization.

For A = 0, the ground states are true exciton condensates
and ordering does not lead to charge density variations in
either layer even if it occurs at Q �= 0. For A �= 0, the situation
changes. The charge densities in the electron and hole layers
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FIG. 2. Spatial distribution of the charge density (in units of
−e) in the electron layer ne at Qa∗

B = 1.8 and (i) Eg = 0.1Ry∗,A =
0.3a∗

BRy
∗ (DW, yellow); (ii) Eg = 0.1Ry∗,A = 0.5a∗

BRy
∗ (QAH/DW,

green); (iii) Eg = −0.4Ry∗,A = 0.5a∗
BRy

∗ (QSH/DW, blue).

(in units of −e) are related to the density matrices ρ by

ne(r) = 1

S

∑
snn′k

ρcsn
csn′ (k)e−i(n′−n)Q·r,

nh(r) = 1

S

∑
snn′k

ρvsn
vsn′ (k)e−i(n′−n)Q·r. (10)

At A = 0, the only nonzero n′ �= n density-matrix elements
in Eq. (10) are ρvs n

cs̄ n+1, so the charge density is uniform in
each layer. When A �= 0, ρbs n

bs n±1 still vanishes because only
opposite spins in neighboring Brillouin zones are coupled.
However, ρbs n

bs n±2 can be nonzero when A �= 0, so the charge
density in each layer oscillates periodically in space, with
periodicity π/Q. Figure 2 shows the charge density distribu-
tion in the electron layer of the three density-wave states. We
see that the QSH/DW state has larger spatial charge density
fluctuations than the other density-wave states, as expected be-
cause of its conduction-to-conduction and valence-to-valence
band couplings. In our calculation with me = mh, the charge
density in the hole layer is exactly the opposite of that in the
electron layer due to the particle-hole symmetry present for
this parameter choice. In the general me �= mh case there is
partial cancellation between the charge densities in the two
layers, resulting in a weak total charge density oscillation in
space.

The topological properties of these phases can be studied
by performing Wilson loop calculations [32,33]. Our results
are shown in Fig. 3. For each kx, we calculate the product
D(kx ) of the Berry connection matrices Fm,n

i,i+1 = 〈umi |uni+1〉
along ky, where i labels steps along ky and m, n label occu-
pied states. We then calculate the phase angles θ (kx ) of the
eigenvalues of the matrix D(kx ). The topological properties
of the system can be read from the winding behavior of the
phase angles. For example, the Chern number is equal to the
net number of times (upward minus downward) the evolution
curves of θ cross a constant reference line parallel to the kx
axis. The results show that the phase angles of the normal
insulator [Fig. 3(a)] and DW [Fig. 3(d)] states always stay
near zero, so these two states are both topologically trivial.
In the QAH state [Fig. 3(b)] one of the spins undergoes
band inversion, and the phase angle θ jumps by 2π as kx
sweeps from −Q/2 to Q/2. Interestingly, the Wilson loop of
the QAH/DW state [Fig. 3(e)] shows very similar winding

FIG. 3. Wilson loop calculations at (a) Eg = 1Ry∗,A =
0.9a∗

BRy
∗ (normal insulator); (b) Eg = 0.1Ry∗,A = 0.8a∗

BRy
∗

(QAH); (c) Eg = −0.4Ry∗,A = 0.9a∗
BRy

∗ (TRSB-QSH); (d) Eg =
0.1Ry∗,A = 0.3a∗

BRy
∗ (DW); (e) Eg = 0.1Ry∗,A = 0.6a∗

BRy
∗

(QAH/DW); (f) Eg = −0.4Ry∗,A = 0.6a∗
BRy

∗ (QSH/DW).

behavior to that of the QAH state. We conclude that both
the QAH and QAH/DW states are topologically nontrivial,
characterized by Chern number |C| = 1. For the TRSB-QSH
state [Fig. 3(c)] the two decoupled spin bands are both in-
verted and the Wilson loops exhibit nontrivial but opposite
winding along kx, resulting in zero total Chern number. In the
QSH/DW state [Fig. 3(f)], however, the two spins are coupled
via density-wave order, and the degeneracy at kx = ±Q/2 is
lifted. Despite certain similarity to that of the QSH state, the
Wilson loop of the QSH/DW state suggests that the system is
topologically trivial [34]. In fact, the QSH/DW state we find is
very similar to the topological charge density wave state dis-
covered in Ref. [21], except that in Ref. [21] the density-wave
order parameter is between the same spins, whereas we find
the system has lower energy when the coupling is between
opposite spins. It is the coupling between different spins that
lifts the degeneracy at kx = ±Q/2 and gives rise to a trivial
Wilson loop as shown in Fig. 3(f).

The evolution of phase diagrams with Q opens up the
possibility of tuning between different phases by applying an
in-plane magnetic field. Figure 4 shows two phase diagrams
in which the in-plane field parameter Q is along one axis.
Figure 4(a) shows the phase diagram in the (A,Q) plane at
fixed Eg = 0.5Ry∗. At small A, increasing the magnetic field
turns the nematic insulator phase into the DW phase. At large
A, the magnetic field drives the QSH state into the normal
insulator state. The QAH state shows up at intermediate A.
Figure 4(b) shows the phase diagram in (Q,Eg) plane at
fixed A = 0.6a∗

BRy
∗. At large positive Eg, the system stays

in the normal insulator state. At small or negative Eg, the
system starts from the QAH or QSH state and ends up in
one of the three density-wave states as the magnetic field
gets stronger.

IV. DISCUSSION

This paper describes a study of the influence of in-
plane magnetic fields on the many-electron ground states of
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FIG. 4. Phase diagram (a) in (A,Q) plane at fixed Eg = 0.5Ry∗; (b) in (Q,Eg) plane at fixed A = 0.6a∗
BRy

∗.

two-dimensional electron gas systems with a conduction band
in one layer hybridized with a valence band in a nearby layer.
The interesting regime is one in which the spatially indirect
gap is smaller than the corresponding exciton binding energy.
At temperatures much lower than the characteristic energy
scale Ry∗ ∼ 15 K, excitons can be viewed as weakly inter-
acting bosons, which have two-dimensional superfluid ground
states that are accurately described by mean-field theory, at
least on the boson side of the BEC-BCS crossover [35–37].
When hybridization is added these states evolve into nematic
states. The role of an in-plane field is to associate a momen-
tum boost with interlayer tunneling processes, and to convert
nematic weak-hybridization states into density-wave states
that break translational symmetry and dominate our phase
diagrams. Because of the close relationship between exciton
condensates and our nematic and density-wave states, we ex-
pect mean-field theory to be accurate at small values of the
hybridization A. As the hybridization strength increases, the
physics of exciton condensation competes with single-particle
physics that prefers a different band hybridization pattern.
It is this competition that yields the rich phase diagram we
find. The phase diagrams we present in this work are for
temperature T = 0. The critical temperatures of the states
in our phase diagrams are controlled by the stiffness energy
kBTc ∼ πρ/2 where the stiffness ρ is given in the limit of
weak hybridization by ρ ∼ h̄2n/M [38] with carrier density
n and exciton mass M = me + mh.

The phase diagrams we construct as a function of the
energy gap Eg and the hybridization strength A can in principle
be tested experimentally by fabricating devices containing
interfaces between InAs and GaSb, or other materials com-
binations with appropriate band lineups, and using dual gates
to tune Eg at fixed electron density. In the InAs/GaSb case
the hybridization strength A can be reduced by inserting an
AlSb barrier layer [17,18] between the InAs and GaSb lay-
ers. Our study builds on earlier work [22] which studied
the influence of interactions on the phase transition between
ordinary and quantum spin Hall insulators in the absence of
a magnetic field, and on work [21] which studied InAs/GaSb

interfaces in the presence of a perpendicular field but did not
identify all competing ordered phases. Some related experi-
mental progress has already been reported in recent transport
experiments by Du and collaborators [16–18]. Our rich the-
oretical phase diagrams suggest that there is much more
to discover.

In a noninteracting electron theory, an in-plane magnetic
field closes the hybridization gaps that appear for Eg < 0 and
converts the neutral system from insulators into semimetals.
The magnetic field strength needed to close the gap increases
with the strength of the hybridization parameter A. When
interactions are included, the ground state remains insulating
at all magnetic fields, by breaking translational symmetry
to establish coherence between electron and hole states that
have been boosted to different momenta. The observation
of a gap under a strong in-plane magnetic field in experi-
ment [16,18] is likely to be of many-body origin, and can
be attributed to the density-wave states studied here. In the
parameter range studied in this work, the semimetal state is
never stable against the formation of density waves. More
direct evidence for density-wave states could come from
transport measurements that show nonlinear current-voltage
characteristics [39–42].

Charge density wave states are often observed experimen-
tally in bulk three-dimensional narrow gap semiconductors or
semimetals in which conduction band minima and valence
band maxima occur at different wave vectors. Recent exam-
ples include TiSe2 and Ta2NiSe5 [43–46]. There is typically
some debate about the origin of charge density wave states
in this type of system. We take the view that they can almost
all be regarded as exciton insulators [47], in the same sense
as the charge density wave states studied in this paper can be
regarded as exciton insulators. The use of this terminology
to classify the type of charge density wave state is meant
to suggest that if only the band gap of the system could
be varied, the ordered state would appear when the mini-
mum energy of the excitonic collective modes, always present
below the interband particle-hole continuum, vanishes. The
bilayer hybridized electron-hole systems studied in this paper
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have the advantage that the key microscopic parameters of
excitonic charge density wave systems, the energy gap and
the ordering wave vector, can indeed be varied. Their exper-
imental study therefore has the potential to draw a clear line
connecting this type of charge density wave to ideal exciton
condensates.
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