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Ultrastrong magnon–magnon coupling dominated
by antiresonant interactions
Takuma Makihara 1, Kenji Hayashida2,3, G. Timothy Noe II2, Xinwei Li 2, Nicolas Marquez Peraca1,

Xiaoxuan Ma4, Zuanming Jin5, Wei Ren 4, Guohong Ma4, Ikufumi Katayama6, Jun Takeda 6, Hiroyuki Nojiri7,

Dmitry Turchinovich 8, Shixun Cao 4✉, Motoaki Bamba 9,10,11✉ & Junichiro Kono 1,2,12✉

Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics sys-

tems with ultrastrong light-matter interactions. Their ground states are predicted to be

vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms

in the Hamiltonian. However, such predictions have not been realized because antiresonant

interactions are typically negligible compared to resonant interactions in light-matter sys-

tems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons

that is analytically described by a unique Hamiltonian in which the relative importance of

resonant and antiresonant interactions can be easily tuned and the latter can be made vastly

dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of anti-

resonant interactions, greatly exceed analogous frequency shifts from resonant interactions.

Further, we theoretically explored the system’s ground state and calculated up to 5.9 dB of

quantum fluctuation suppression. These observations demonstrate that magnonic systems

provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in

ultrastrongly coupled light-matter systems.
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The interaction of light with solids can exhibit high values of
coupling strength, unachievable in atomic and molecular
systems, due to large dipole moments and cooperative

many-body interactions characteristic of condensed matter. For
example, Dicke cooperativity1, a quantum optical phenomenon
where N dipoles coupled to a single electromagnetic field
experience a light-matter coupling strength enhanced by a factor
of

ffiffiffiffi
N

p
, becomes drastic in condensed matter. Leveraging coop-

erative many-body interactions enables observations of the exotic
ultrastrong coupling (USC) regime2,3.
In the USC regime, the light-matter coupling strength becomes

comparable to the bare frequencies of the system. In this regime,
the rotating-wave approximation (RWA) breaks down, leading to
antiresonant interactions from the so-called counter-rotating
terms (CRTs) and A2 terms in the Hamiltonian, which allow
access to counter-intuitive and unexplored physics. In the past
decade, USC has been realized in diverse physical platforms,
including intersubband polaritons4,5, Landau polaritons6–8, and
superconducting circuits9–12. However, traditional polariton
systems are restricted by one fixed coupling strength, and reso-
nant effects, such as vacuum Rabi splitting (VRS), dominate
antiresonant effects, such as vacuum Bloch–Siegert shifts
(VBSSs)13, which are the hallmark of active CRTs. Thus, the
counter-intuitive physics predicted in this regime, such as the
superradiant phase transition14,15, Casimir photon emission16–18,
and ground-state electroluminescence19, has largely remained
unexplored. Experimental studies are largely limited to reports of
giant VRS, and there have only been a few unambiguous
demonstrations of the VBSS20. Therefore, there is a growing
demand for platforms with superior tunability and dominant
antiresonant interactions for exploring the exotic predictions of
the USC regime.
Here, we demonstrate matter-matter USC in YFeO3, a rare-

earth orthoferrite21, that is analytically described by a unique
cavity quantum electrodynamics (QED) Hamiltonian with tun-
able coupling strengths and dominant counter-rotating interac-
tions. We systematically examined how the quasi-ferromagnetic
(qFM) and quasi-antiferromagnetic (qAFM) magnon modes
modes interact with each other by characterizing their resonance
frequencies at different applied magnetic field strengths and
directions. We were able to use the applied magnetic field to tune
the VRS and VBSSs, and in certain geometries, the frequency
shifts of the coupled modes were dominated by the VBSSs and
not the vacuum Rabi splitting-induced shifts (VRSSs). A well-
established microscopic spin model of this material system22

accurately reproduced our observed resonances without any
adjustable parameters. We show that this lightless spin model can
be precisely mapped to a polariton model described by an ani-
sotropic Hopfield Hamiltonian in which the magnon–magnon
coupling strengths are easily tunable and the CRTs dominate the
co-rotating terms, consistent with our observation of giant VBSSs.
Finally, we theoretically investigated the ground state of our
system and demonstrate that it is intrinsically squeezed, con-
sisting of a two-mode squeezed vacuum as expected in the USC
regime23–25, with quantum fluctuation suppression as large as
5.9 dB.

Results
Terahertz time-domain magnetospectroscopy. To interrogate
magnons in YFeO3, we used terahertz time-domain spectroscopy
(THz TDS). In THz TDS studies of rare-earth orthoferrites, free-
induction decay signals from precessing spins are measured
directly in the time domain, the Fourier transform of which reveal
the precessional (magnon) frequency26. We combined two
unique experimental apparatuses: a table-top, 30 T pulsed

magnet27 and single-shot THz detection28,29, illustrated in
Fig. 1a. THz pulses were focused onto the samples, and the
transmitted THz waveform was detected using a single-shot
technique based on a reflective echelon that separates an optical
probe pulse into time-delayed beamlets that overlap with the THz
waveform in our ZnTe detection crystal28,29. Figure 1b displays a
THz waveform transmitted through YFeO3 and detected using
single-shot detection. Coherent oscillations are observed for t > 0,
whose Fourier transform reveals the magnon frequency (inset).
Figure 1c shows the magnetic field profile, the detection optical
pulses, and the sampled magnetic field strengths, as well as the
THz waveforms measured at the sampled field strengths.

Demonstration of ultrastrong magnon–magnon coupling. In
the absence of an applied external magnetic field (HDC= 0),
YFeO3 crystallizes in an orthorhombic perovskite structure. Its
magnetic structure is described by the Γ4 phase, where the two
Fe3+ spin sublattices (S1 and S2) order antiferromagnetically
along the a-axis, with a slight canting towards the c-axis due to
the Dzyaloshinskii–Moriya interaction. Figure 2 shows results of
THz magnetospectroscopy studies of YFeO3. We studied five
different single crystals of YFeO3 cut such that the applied
magnetic field, HDC, was directed at angles of θ= 0∘, 20∘, 40∘, 60∘,
and 90∘ with respect to the c-axis in the b-c plane. The mea-
surements were conducted at room temperature in the geometry
shown in Fig. 2a. The THz radiation propagated parallel to HDC,
and the incident THz electric field ETHz was linearly polarized
along the a-axis. In general, the emitted THz electric fields were
elliptically polarized30, so THz electric fields polarized parallel to

Fig. 1 Unique combination of table-top, 30 T pulsed magnet and single-
shot THz detection. a Schematic of pulsed magnet surrounding single
crystals of YFeO3. Note that although the sample is held on a sapphire pipe
mounted on the cold finger of a liquid helium cryostat, no liquid helium was
used in this study. Single-shot detection (shown in inset) is based on a
combination of a zinc telluride (ZnTe) crystal and a unique reflective
echelon. b Sample THz electric field waveform transmitted through a
YFeO3 crystal. Time-domain oscillations for t > 0 from coherent spin
precessions (magnons) are Fourier transformed to yield the magnon
frequency (inset). c Pulsed magnetic field profile (solid black line), optical
pulses used to generate/detect THz waveforms (solid red line), and
sampled magnetic field strengths (blue dots) with transmitted THz
waveforms measured at the sampled magnetic field strength shown in the
inset. The optical pulses are detected using a photodiode that measures
scattered light.
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the a-axis (Ea
THz) and polarized in the b-c plane (Eb�c

THz) were both
measured to fully characterize the magnetic resonances26,30.

Figure 2b displays an example THz waveform and its Fourier
transform for an applied field strength of 12.60 T at θ= 20∘.
Beating in the time domain, and correspondingly two peaks in the
frequency domain, indicate the simultaneous excitation of two
magnon modes. Figure 2c displays an example of the two magnon
frequencies extracted by Fourier transforming Eb�c

THz for θ= 20∘

and 40∘ at different magnetic fields (see Methods for all
measurements). Figure 3a plots the observed resonance frequen-
cies (black dots) versus magnetic field for all measured θ. We
observe anticrossing between the two frequencies whose splitting
increases with increasing θ, illustrating strong coupling between
the two magnons with tunable coupling strengths. Further, the
frequency splitting is comparable to the bare magnon frequencies,
indicating ultrastrong magnon–magnon coupling.

We first interpret our observed magnon–magnon coupling by
considering the symmetry of the spin dynamics in the qFM and
qAFM modes. Figure 3b displays the crystal and magnetic
structure of YFeO3. Figure 3c qualitatively illustrates the spin
precessions in the qFM and qAFM modes for HDC= 0. In this
geometry, or when HDC is applied along the c-axis (θ= 0∘), S1
and S2 maintain π rotational symmetry about the c-axis, and the
qFM and qAFM modes do not hybridize due to opposite parities
under this symmetry: the qAFM mode is unchanged whereas the
qFM mode gains a π phase shift31,32. However, this symmetry is
broken when the spins possess a component along the b-axis,
allowing the qFM and qAFM modes to hybridize. We employ a
tilted HDC in the b-c plane to prepare an equilibrium spin
configuration where S1 and S2 posses components along the b-
axis, as in Fig. 3b, and enable hybridization.

Microscopic spin model. To quantitatively illustrate the hybri-
dization between the qFM and qAFM modes, we numerically
analyzed the spin dynamics in a tilted magnetic field. We started
from a microscopic spin model describing interactions between
S1 and S2, including the symmetric exchange, the antisymmetric
exchange, the single-ion anisotropies, and the Zeeman
interaction22. The model contains no fitting parameters; the
inputted magnetic parameters are well-known for YFeO3

33. By
solving the Landau–Lifshitz–Gilbert equation, we obtained the
spin dynamics in a tilted magnetic field. Figure 3a plots the
resonance frequencies (solid red lines), which excellently repro-
duce our experimental results (black dots). We observe that for
nonzero θ, the resonance frequencies display anticrossing, indi-
cating mode hybridization consistent with the broken π rotational
symmetry mentioned above. The two coupled modes are labeled
as the upper mode (UM) and lower mode (LM) for the higher
and lower frequency branches, respectively. We do not excite the
qAFM mode when θ= 0∘ and we do not excite the LM when θ=
90∘ due to magnon excitation selection rules (see Methods).

We calculated the dynamics of the decoupled qFM and qAFM
modes in a tilted magnetic field, which are uniquely defined by
opposite parities under π rotation about the c-axis, by neglecting
coupling between these independent spin precessions in the
equations of motion. The decoupled magnon frequencies are
plotted as black dashed-dotted lines in Fig. 3a for nonzero θ. Note
that for θ= 0∘, the qFM and qAFM modes solve the full equations
of motion. For θ= 20∘, 40∘, and 60∘, we observe that the UM is
higher in frequency than the qFM and qAFM modes. This is
precisely what one expects for hybridization within the RWA; for
the UM, the VRSS (exclusively from the co-rotating interaction)
is always a blue-shift. However, we observe that for θ= 90∘, the
UM is lower in frequency than the qAFM mode, indicating an
additional red-shift of the coupled magnon frequencies. This
dominant red-shift, which is a direct consequence of the counter-
rotating term, is the dominant VBSS. Due to giant VBSSs, we
observe that the UM and LM, whose dynamics are qualitatively
illustrated in Fig. 3c for θ= 90∘, not only hybridize the qFM and
qAFM modes but also contain the time-reversed dynamics of the
qFM and qAFM modes (see Methods). Additional calculations
showing the transition from θ= 60∘ to θ= 90∘ are shown in
Supplementary Fig. 11.

Quantum mechanical model. To evaluate the magnon–magnon
coupling strengths, we rewrite our microscopic spin model in
terms of the creation and annihilation operators of the qFM and
qAFM magnons:

H ¼ _ω0a âyâþ 1
2

� �
þ _ω0b b̂

y
b̂þ 1

2

� �
þ i_g1 âb̂

y � âyb̂
� �

þ i_g2 âyb̂
y � âb̂

� �
;

ð1Þ
where â (ây) annihilates (creates) a qFM magnon with frequency

ω0a, and b̂ (b̂
y
) annihilates (creates) a qAFM magnon with fre-

quency ω0b, where ω0a and ω0b are the frequencies of the
decoupled qFM and qAFM modes discussed in the previous
paragraph. Expressions for the co-rotating coupling strength (g1)
and the counter-rotating coupling strength (g2), which are
derived in the absence of adjustable parameters, are provided in
the Methods. Our Hamiltonian resembles the Hopfield
Hamiltonian34, which is related to the paradigmatic Dicke
Hamiltonian by a Holstein–Primakoff transformation. However,
unlike the Hopfield Hamiltonian and analogous light-matter
Hamiltonians, such as the quantum Rabi model or the Dicke
Hamiltonian, our system is not restricted to g1= g2. Although

Fig. 2 Magnon signals in time and frequency domains. a Schematic of THz
magnetospectroscopy studies of YFeO3 in a tilted magnetic field. HDC was
applied in the b−c plane at an angle of θ with respect to the c-axis, with
kTHz//HDC and HTHz polarized in the b−c plane. b Transmitted THz
waveform for θ= 20∘ at HDC= 12.60 T displaying beating in the time-
domain and two peaks in the frequency domain corresponding to the
simultaneous excitation of both magnon modes in YFeO3. c Magnon power
spectra for θ= 20∘ and θ= 40∘ at different HDC displaying larger frequency
splitting for larger θ.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23159-z ARTICLE

NATURE COMMUNICATIONS | (2021)12:3115 | https://doi.org/10.1038/s41467-021-23159-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


similar anisotropic Hamiltonians, such as the anisotropic quan-
tum Rabi model, have been theoretically proposed35 and
experimentally realized in superconducting circuits36, our con-
densed matter system can simulate many-body Hamiltonians. For
example, the Hopfield Hamiltonian is typically used in studies of
USC in condensed matter systems, such as intersubband
polaritons25 and exciton-polaritons37,38.
Figure 4a plots values of ∣g1∣ and ∣g2∣ versus applied magnetic

field for θ= 20∘, 40∘, 60∘, and 90∘ (see Supplementary Fig. 13 for
plots of ∣g1∣ and ∣g2∣ versus θ for different applied magnetic fields).
We find that g1 and g2 exactly vanish when the applied magnetic
field vanishes and when θ= 0∘ (not shown). Importantly, Fig. 4a
demonstrates tunable, anisotropic co-rotating and counter-
rotating coupling strengths, with the latter always dominating
the former, indicating an extreme breakdown of the RWA. This
observation builds on recent experiments39 to demonstrate that
magnonic systems can not only achieve tunable ultrastrong
coupling, but antiresonant ultrastrong coupling with tunable
anisotropy, in a material compatible with ultrafast coherent
control. Further, we observed that ∣g2∣ monotonically increase
with θ. We found that the anisotropy between g1 and g2 depends
on magnetic parameters through the spin canting angle, and that
the coupling becomes more anisotropic as the canting angle
decreases (see Supplementary Note 6, Supplementary Fig. 12). For
θ= 60∘ and 90∘, Fig. 4b plots the qFM and qAFM modes (black
dashed-dotted lines), the LM and UM (red solid lines), and the
co-rotating coupled magnon frequencies (green dashed lines) that
are obtained by setting g2= 0. The VBSSs are indicated by the
shaded areas between the red solid lines and the green dashed
lines. We see that for θ= 60∘, the VBSSs are small relative to the
VRSSs (differences between green dashed lines and black dashed-
dotted lines), but that the opposite is true when θ= 90∘. For the
UM, the VBSS even becomes dominant when θ= 90∘, consistent
with the increase of ∣g2∣ relative to ∣g1∣ with increasing θ. Our
observation of a dominant VBSS for the UM is unique to the
anisotropic Hopfield Hamiltonian and can only be achieved for
∣g2∣ > ∣g1∣ (see Methods). Figure 4c plots figures of merit referred
to as normalized coupling strengths for 0∘ ≤ θ ≤ 89∘ (the case for
90∘ is discussed in Methods). The normalized coupling strength,

defined as the ratio of the coupling strength to the frequency
where the decoupled qFM and qAFM modes cross (ω0),
determines whether a system is in the USC regime2,3. In a
system characterized by one coupling strength g, the USC regime
has been defined as when g/ω0 > 0.1. Thus, we observe that our
system can be continuously tuned between no coupling and USC
as a function of θ, with the maximum experimentally accessible
normalized coupling strengths occurring at θ= 58∘ for 30 T, and
are given by ∣g1∣/ω0= 0.26 and ∣g2∣/ω0= 0.39.
Our observation of large counter-rotating interactions is

expected to amplify the two-mode vacuum squeezing of the
ground state that was discussed in the earliest theoretical study of
USC in an isotropic Hopfield Hamiltonian25. To demonstrate the
capabilities of using YFeO3 to realize a magnonic two-mode
squeezed vacuum, we evaluate the quantum fluctuations in our
system. We first define a generalized magnon annihilation
operator ĉ ¼ αâþ βb̂ and its corresponding quadrature
X̂ĉ;ϕ ¼ ð̂ceiϕ þ ĉye�iϕÞ=2. The standard quantum limit for the

fluctuation of X̂ĉ;ϕ, defined as its variance when evaluated in the
decoupled magnon vacuum, is given by 1/4. We numerically
investigated the minimum fluctuation in X̂ĉ;ϕ evaluated in the
ground state of our coupled magnon system and observed a clear
suppression below the standard quantum limit.
Figure 4d illustrates this fluctuation suppression below the

standard quantum limit of 0 dB, where we numerically searched
for the parameters α, β, and ϕ that minimize this fluctuation. An
orthogonal operator to ĉ also demonstrating squeezing is
discussed in the Methods section. We observed that the
maximum experimentally achievable squeezing is 5.9 dB, which
occurs at 30 T for θ= 90∘. This strong degree of squeezing is a
direct consequence of our large CRTs. Figure 4d demonstrates
that the degree of squeezing in our system is easily tunable with
applied magnetic field strength and direction, going beyond
previous works studying antiferromagnetic magnon squeezing
due soley to intrinsic material properties40. We note that the
squeezing is related to magnetic parameters through g2 as the
counter-rotating interaction is the source of squeezing. Therefore,
increasing the anisotropy between g2 and g1 (see Supplementary

Fig. 3 Evidence for dominant vacuum Bloch-Siegert shifts. a Experimentally measured magnon frequencies for θ= 0∘, 20∘, 40∘, 60∘, 90∘ versus HDC

(black dots) with calculated resonance magnon frequencies (solid red lines) and decoupled quasi-ferromagnetic (qFM) and quasi-antiferromagnetic
(qAFM) magnon frequencies (black dashed-dotted lines). The upper mode (UM) frequency becomes lower than the qAFM frequency at θ= 90∘, indicating
a dominant VBSS compared to the VRSS. Error bars are 1/T where T is the Fourier-transformed time-window and is limited by our THz detection. b Crystal
and magnetic structure of YFeO3. c Spin dynamics in the decoupled qFM and qAFM modes, as well as the UM and lower mode (LM).
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Note 6, Supplementary Fig. 12), leading to stronger counter-
rotating interactions, could further amplify the squeezing. We
also observed that the quadrature fluctuations approach zero as θ
approaches 90∘ when evaluated at the field strength where the
qFM and qAFM modes cross (see Supplementary Fig. 10),
suggesting that our system reaches a critical point. We
numerically found that complete quadrature fluctuation suppres-
sion (i.e., perfect squeezing) is obtained at a critical coupling
strength above which the LM becomes gapless, suggesting a
magnonic superradiant phase transition.
Our observation of tunable, anisotropic coupling strengths

with the CRTs dominating the co-rotating terms demonstrates
that magnons in rare-earth orthoferrites serve as an ideal
platform for studying many-bodied quantum optical phenomena
in extreme regimes of coupling strengths that are inaccessible to
traditional photonic systems. In particular, the magnonic ground
state describable as a two-mode squeezed vacuum may lead to a
pathway for decoherence-free quantum information technology.
Perfect magnon squeezing, predicted for a magnonic superradiant
phase, will produce a platform of many-body physics to explore
the correlation between the quantum phase transitions and the
exotic quantum fluctuations.

Methods
Sample preparation. Polycrystalline YFeO3 was synthesized by conventional solid
state reaction using Y2O3 (99.9%) and Fe2O3 (99.9%) powders. According to
stoichiometric ratios, original reagents were weighted and pulverized with mod-
erate anhydrous ethanol in an agate mortar. Mixtures were sintered at 1300 ∘C for
1000 min, then furnace cooled down to room temperature. We continued to grind
the presintered sample into powder, pressed it into sheets, reduced the gap between
the powder particles, and conducted the second sintering. The sintering

temperature and duration were the same as the pre-firing process. The secondary
sintered pellets were thoroughly reground, and the polycrystalline powders were
pressed into a rod that is 70–80 mm in length and 5–6 mm in diameter by a
Hydrostatic Press System under 70 MPa, and then sintered again at 1300 ∘C.

Single crystals were grown in the optical floating zone furnace (FZT-10000-H-
VI-P-SH, Crystal Systems Corp; Heat source: four 1 kW halogen lamps). During
the crystal growth process, we used a YFeO3 single crystal as a seed crystal. The
molten zone moved upwards at a rate of 3 mm/h with the seed rod (lower shaft)
and the feed rod (upper shaft) counter rotating at 30 rpm in airflow by 3 L/min.

We characterized our obtained crystals with a back-reflection Laue camera and
X-ray diffraction (XRD). The results show that the sample is a high quality single
crystal without impurity phase. We further prepared sheet samples of YFeO3 single
crystals along the three crystal axis directions for XRD measurement to ensure the
accuracy of the crystal directions.

THz time-domain magnetospectroscopy. We performed THz time-domain
magnetospectroscopy by combining 30-T pulsed magnetic fields with THz TDS.
The output from an amplified Ti:Sapphire laser (1 kHz, 150 fs, 775 nm, 0.8 mJ,
Clark-MXR, Inc., CPA-2001) is divided between THz generation and detection
paths. Intense THz is generated using the tilted-pulse-front excitation method41 in
LiNbO3 and is detected using free-space electro-optic (EO) sampling in ZnTe. The
incident THz electric field was linearly polarized parallel to the a-axis using a wire-
grid polarizer. Transmitted THz electric field components parallel (Ea

THz) and
perpendicular (Eb�c

THz) to the incident radiation were identified using a second wire-
grid polarizer, then focused onto the detection crystal.

Magnetic fields up to 30 T were generated in the Rice Advanced Magnet with
Broadband Optics (RAMBO), a table-top pulsed magnet that combines strong
magnetic fields with diverse spectroscopies27. A schematic of RAMBO is illustrated
in Supplementary Fig. 1 and is discussed in Supplementary Note 1.

Because our magnetic field changes with time, we must rapidly sample the
entire THz waveform. We achieve this by implementing single-shot THz detection
using a reflective echelon that separates a reflected optical probe pulse into time-
delayed beamlets, thereby stretching the optical pulse front28. This linearly
polarized stretched pulse front overlaps with the entire THz waveform in our
detection crystal. The detection crystal is followed by a quarter-wave plate, a
Wollaston prism, and imaging optics to separate orthogonal polarization

Fig. 4 Extreme breakdown of rotating-wave approximation and vacuum squeezing. a Co-rotating (∣g1∣/2π, blue dotted line) and counter-rotating
(∣g2∣/2π, red solid line) coupling strengths for θ= 20∘, 40∘, 60∘, 90∘ displaying dominance of the counter-rotating term. b Theoretical illustration of
the quasi-ferromagnetic (qFM) mode, quasi-antiferromagnetic (qAFM) mode, lower mode (LM), upper mode (UM), and co-rotating coupled magnon
frequencies that are obtained by setting g2= 0, for θ= 60∘ and 90∘. The vacuum Bloch–Siegert shifts (VBSSs) are highlighted by the shaded area.
c Normalized co-rotating (∣g1∣/ω0, blue dotted line) and counter-rotating (∣g2∣/ω0, red solid line) coupling strengths displaying ultrastrong
magnon–magnon coupling and dominance of the counter-rotating terms (CRTs). ω0 is the frequency at which the qFM and qAFM modes cross, as
illustrated in b. d Fluctuation suppression in X̂ĉ;ϕ evaluated in the ground state of the coupled magnon system for θ= 20∘, 40∘, 60∘, and 90∘ demonstrating
squeezing. For θ= 90∘, suppression reaches 5.9 dB for 30 T.
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components of the probe, which we use to generate two images of the reflective
echelon on a CMOS camera. Supplementary Fig. 2a displays images of the reflective
echelon without (top) and with (bottom) THz radiation propagating through the
detection crystal. The red dashed box highlights the position of the large-amplitude
THz electric field pulse corresponding to t= 0 in the time-domain. We describe
how we obtain the THz electric field from these images in the Supplementary
Note 2.

For quantitative measurements of the THz electric field, we analyze images both
in the presence and absence of the THz electric field, yielding a signal and a
reference, respectively. Supplementary Fig. 2b displays the signal and reference
obtained from the echelon images in Supplementary Fig. 2a, as well as the
waveform, obtained by taking the difference of the signal and the reference.

Magnon mode excitation and characterization. When using linearly polarized
incident THz radiation, there are polarization selection rules for the excitation of
the two magnon modes: the qFM mode is excited when a component of the THz
magnetic field (HTHz) is perpendicular to the weak ferromagnetic moment (F), and
the qAFM mode is excited when a component of HTHz is parallel to F22. These
selection rules are derived from solutions to the equations of motion for S1 and S2.
To extend this analysis to the coupled modes, we numerically investigated the spin
dynamics for the LM and UM. Notably, for θ= 90∘, we found that the dynamics of
the qFM mode when HDC= 0 and the dynamics of the LM when HDC ≠ 0 are
almost identical (see Supplementary Fig. 6a, h for a similar comparison). Given that
the excitation of the former is forbidden by the selection rule, we also expect the
latter to be forbidden.

In general, the transmitted THz electric fields are elliptically polarized30 owing
to the spin dynamics and the birefriengence of YFeO3

42. In a tilted magnetic field,
whether a magnon mode emits predominantly Ea

THz or E
b�c
THz polarized light is

further complicated by the coupled spin dynamics and the angled cut of the crystal.
Therefore, for a given θ, whether Ea

THz or E
b�c
THz was used to characterize a magnon

mode’s frequency as a function of magnetic field depended on which polarization
gave a larger signal.

Transmitted THz electric fields at nonzero HDC are obtained by taking the
difference between (i) the signal measured at nonzero magnetic field and (ii) a
reference, where the signal and reference are defined in the previous section. This
yields a waveform in the time-domain, the Fourier transform of which reveals the
magnon frequency at nonzero HDC. This method of data analysis was used to
characterize all magnon modes discussed in the main text, with the exception of the
lower mode (LM) for θ= 60∘. To study this weak oscillation, the subtracted
reference was taken with THz transmitting through the YFeO3 crystal at zero
magnetic field, as opposed to without THz transmitting through the crystal. This
method can be more sensitive because contributions from the large amplitude ETHz

pulse at t= 0 are subtracted out. However, because the difference was taken
between two THz waveforms that both propagated through the YFeO3 crystal, one
at zero HDC and one at nonzero HDC, the analyzed THz waveform contains
oscillations from magnons measured at both zero and at nonzero HDC. This limits
the ability to characterize the LM at nonzero HDC because its frequency will
eventually overlap with the upper mode’s (UM’s) zero-field frequency.

Supplementary Fig. 3 shows the complete set of THz magnetospectroscopy
measurements for each YFeO3 crystal taken at applied field strengths up to 30 T.
Each plot indicates the θ and the magnon mode being identified. The spectra
corresponding to different HDC are vertically offset with increasing field strength.
The open circles indicate the qFM magnon frequency, the black circles indicate the
UM frequency, and the black triangles indicate the LM frequency. The resonance
frequencies and their corresponding magnetic fields are plotted in Fig. 3a of the
main text. The spectra were zero-padded for smoothing; the frequency resolution
of the measurements (1/T where T is the Fourier-transformed time range) is
indicated by error bars in Fig. 3a of the main text.

Equations of motion and hamiltonian. We start from a microscopic spin model
quantitatively describing interactions between the two Fe3+ spin sublattices,
including symmetric and antisymmetric exchange interactions, single-ion aniso-
tropies, and the Zeeman interaction22. In Supplementary Note 3, we derive the
equations of motion in terms of F=R1+ R2 and G=R1− R2, where Ri are the
two spin-sublattice unit vectors. The equations of motion for small displacements
of F and G, given by δF and δG are derived as:

δ _Fx

δ _Fy

δ _Gx

δ _Gy

2
66664

3
77775 ¼ 2γ sin βz

0 2Ay Dyx 0

�2Ax 0 0 �Dxy

Dxy 0 0 2By

0 �Dyx �2Bx 0

2
6664

3
7775

δFx

δFy

δGx

δGy

2
6664

3
7775 ð2Þ

which yield two magnonic eigenfrequencies:

ω2
± ¼ ð4γ sin βzÞ2

2
AxAy þ BxBy �

1
2
DxyDyx

�

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AxAy þ BxBy �

1
2
DxyDyx

� �2

� 4 AxBy �
1
4
D2
xy

� �
AyBx �

1
4
D2
yx

� �s �
;

ð3Þ

where γ is the gyromagnetic ratio, βz is the angle between Ri and the a-b plane, and
analytical expressions for Ax, Ay, Bx, By, Dxy, and Dyx in terms of magnetic para-
meters are provided in the derivation in Supplementary Note 3.

One can show that when HDC is parallel to the c-axis, Dxy and Dyx exactly
vanish. In this geometry, the equations of motion for δFx,y and δGx,y oscillations
decouple, becoming the well-known qFM and qAFM modes22, respectively. We
calculate the generalized, decoupled qFM and qAFM modes in a tilted magnetic
field by neglecting Dxy and Dyx. To calculate the magnon frequencies plotted in
Fig. 3a of the main text, we input magnetic parameters from previous studies of
magnons in YFeO3

33.
To fully understand the magnonic interactions, we derive the following

quantized Hamiltonian from the microscopic spin model in Supplementary Note 3:

H ¼ _ω0a âyâþ 1
2

� �
þ _ω0b b̂

y
b̂þ 1

2

� �
þ i_g1 âb̂

y � âyb̂
� �

þ i_g2 âyb̂
y � âb̂

� �
ð4Þ

where ½â; ây� ¼ ½b̂; b̂y� ¼ 1, and ω0a and ω0b are the decoupled qFM and qAFM
magnon frequencies in a general, tilted magnetic field. These are expressed in terms
of the parameters in Eq. (2) as:

ω0a ¼ 4γ sin βz
ffiffiffiffiffiffiffiffiffiffiffi
AxAy

q
ð5Þ

ω0b ¼ 4γ sin βz
ffiffiffiffiffiffiffiffiffiffi
BxBy

q
ð6Þ

and g1 and g2 are the co-rotating and counter-rotating coupling strengths,
respectively, expressed as:

g1 ¼ γ sin βz Dxy

AyBx

AxBy

 !1=4

�Dyx

AxBy

AyBx

 !1=4
2
4

3
5 ð7Þ

g2 ¼ γ sin βz Dxy

AyBx

AxBy

 !1=4

þDyx

AxBy

AyBx

 !1=4
2
4

3
5 ð8Þ

Importantly, the coupling strengths exactly vanish when the applied magnetic field
vanishes or is directed along the c-axis. The coupled magnon eigenfrequencies can
be derived in terms of g1, g2, ω0a, and ω0b from the equations of motion for the
Hamiltonian in Eq. (4), which are provided in Supplementary Note 3. These
magnon eigenfrequencies are given by:

Ω2
± ¼ 1

2
2g21 � 2g22 þ ω2

0a þ ω2
0b ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g21ðω0a þ ω0bÞ2 þ ðω2

0a � ω2
0bÞ2 � 4g22ðω0a � ω0bÞ2

q� �
ð9Þ

where Ω+ (Ω−) is the UM (LM) eigenfrequency, and can be calculated and found
to agree exactly with the previously calculated values, thereby confirming our
quantized Hamiltonian.

Symmetry of equations of motion. When HDC is applied along the c-axis, Eq. (2)
becomes block diagonal, and the eigenmodes are given by the well-known qFM and
qAFM modes. This block diagonal matrix commutes with:

Σ ¼

�1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 ð10Þ

which represents a π rotation about the c-axis followed by sublattice exchange32.
Therefore, the qAFM mode is unchanged under the operation of Σ, whereas the
qFM mode gains a π phase shift. However, when HDC is tilted in the b-c plane, the
π rotational symmetry of S1 and S2 is broken, corresponding to nonzero βy in
Supplementary Fig. 4. Accordingly, Σ no longer commutes with the Eq. (2) due to
nonzero Dxy and Dyx.

As described in the previous section, the generalized qFM and qAFM modes in
a tilted magnetic field are defined as independent precessions of δFx,y and of δGx,y,
respectively, calculated in the absence of Dxy and Dyx in Eq. (2). Thus, they are also
eigenstates of Σ and their parities (phases) are identical to those for the decoupled
qFM and qAFM modes.

Spin dynamics. We numerically solve the equations of motion for F and G spe-
cified in Eq. (2) for several geometries, which we transform back to the dynamics
for the spin sublattice unit vectors R1 and R2. The dynamics for Ri take a simpler
form when transformed from Cartesian coordinates (Xi, Yi, Zi) to the local, right-
handed coordinate system (Si;Ti;Y

0) wherein Ri has components (1, 0, 0) in
equilibrium. The transformation is illustrated in Supplementary Fig. 4 and is dis-
cussed in Supplementary Note 3. Supplementary Fig. 5 shows the spin dynamics
for θ= 0∘ in the qFM and qAFM modes at applied field strengths of 5 T and 20 T
(a–d), and for θ= 20∘ in the qFM mode, qAFM mode, LM, and UM at an applied
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field strength of 5 T (e–h). Supplementary Fig. 6 displays the spin dynamics for θ
= 90∘ at applied field strengths of 5 T and 20 T in the qFM mode, qAFM mode,
LM, and UM. The spin dynamics in each mode for an applied field strength of 5 T
are qualitatively illustrated in plots c, f, i, and l, with the position of each spin on its
trajectory indicated in plots a, d, g, and j, respectively.

Hopfield–Bogoliubov transformation. We perform a Hopfield–Bogoliubov
transformation to diagonalize our Hamiltonian, Eq. (4). We introduce coupled
magnon annihilation operators B̂LðB̂U Þ describing the LM (UM), which are
expressed in terms of the generalized qFM (qAFM) operators â (b̂) by:

B̂j ¼ Wjâþ Xjb̂þ Yjâ
y þ Zjb̂

y ð11Þ

for j= L,U. The coefficients are solutions to an eigenvalue problem discussed in
Supplementary Note 4. The Hamiltonian can be rewritten as:

H ¼ _Ω�B̂
y
LB̂L þ _ΩþB̂

y
U B̂U ð12Þ

and the ground state 0j i of our coupled magnon system must satisfy:

B̂j 0j i ¼ 0 ð13Þ

Time-reversed components in lower and upper modes. As shown in Supple-
mentary Fig. 6, the qFM and LM precessions are almost identical. However, the
major axes of the qAFM precessions are canted to the T1,2 axes, while those of the
UM are along the Y 0

1;2 axes. Due to the presence of both co-rotating and the
counter-rotating interactions, the coupled magnon dynamics should be a super-
position of not only the decoupled qFM and qAFM modes, but also their time-
reversals. In the following, we try to understand qualitatively how the time-reversed
dynamics are included in the UM.

As seen in Supplementary Fig. 6, the Y 0
1;2 oscillations (dashed curves) are

similar between the qAFM and UM. Thus, we must consider how the small T1,2

oscillations (solid curves) in the UM are obtained by superposing the qAFM and
qFM modes. The UM’s small T1,2 oscillations (π/2 phase-shifted from Y 0

1;2

oscillations) are already included in the qAFM. They are seen as the small left-
shifted T1 and right-shifted T2 oscillations in the qAFM. Then, by eliminating the
overall large oscillations of T1,2 (roughly 0 or π phase-shifted oscillation from Y 0

1;2),
we get the UM dynamics.

If we eliminate the qAFM’s overall T1,2 oscillation simply by superposing the
dynamics of the qFM, the qFM’s Y 0

1;2 oscillations (dashed curves) are also added.
They are in-phase with each other. However, the UM’s Y 0

1;2 oscillations are out-of-
phase with each other. So, the simple superposition of the qAFM and qFM cannot
reproduce the UM dynamics.

The solution is the superposition not only with the qFM but also with the time-
reversed qFM. The superposition of the qFM and its time-reversal (1→2→3→4
and 3→2→1→4) has only the T1,2 oscillations (Y 0

1;2 oscillations are eliminated).
Then, by superposing both the qFM and its time-reversal, the qAFM is
transformed to the UM.

We quantitatively check the weight of the time-reversed qFM in the UM by
evaluating the coefficients from the Hopfield–Bogoliubov transformation Eq. (11).
Supplementary Fig. 7a shows the weights of the qFM (∣WU∣2) and qAFM (∣XU∣2)
modes, and Supplementary Fig. 7b shows those of the time-reversed qFM (∣YU∣2)
and time-reversed qAFM (∣ZU∣2) modes, all in the UM as functions of the applied
field strength for θ= 90∘. The qFM mode (∣WU∣2) and its time-reversal (∣YU∣2) have
the same weight, consistent with the above discussion.

Supplementary Fig. 7c, d show the same weights in the LM. While the spin
dynamics of the qFM and LM are quite similar as discussed above, we observe that
the LM also contains large time-reversed components. The Y 0

1;2 amplitudes in the
LM are in fact slightly larger (about 4%) than those in the qFM. The time-reversed
qFM and qAFM are required for reproducing this difference.

Squeezing. To demonstrate that 0j i satisfying B̂L 0j i ¼ B̂U 0j i ¼ 0 is an intrinsically
quantum vacuum squeezed state, we first introduce two orthogonal, generalized
annihilation operators:

ĉ ¼ αâþ βb̂ ð14Þ

d̂ ¼ β�â� αb̂ ð15Þ
where α 2 R, β 2 C and they satisfy α2+ ∣β∣2= 1. With respect to these gen-
eralized annihilation operators, we define the following quadratures:

X̂ĉ;ϕ ¼ ð̂ceiϕ þ ĉye�iϕÞ=2 ð16Þ

X̂d̂;ϕ ¼ ðd̂eiϕ þ d̂
y
e�iϕÞ=2 ð17Þ

The standard quantum limit for both of these operators is given by 1/4.

The variances of X̂ĉ;ϕ and X̂d̂;ϕ can be easily evaluated in 0j i by inverting the

Hopfield–Bogoliubov transformation and rewriting the quadratures in terms of B̂j .
Expressions for these variances are provided in Supplementary Note 5. Using these
expressions, we minimized the quadrature variances by numerically searching
for the optimal α, β, and ϕ. Supplementary Fig. 8 shows the fluctuation suppression
for θ= 20∘, 40∘, 60∘, and 90∘. Note that we did not observe squeezing for the case
when θ= 0∘.

Squeezing and phase transition. To evaluate the contribution of g2 to the
squeezing, we numerically calculated the minimum quadrature variance

h0jðΔX̂ĉ;ϕÞ
2j0i while artificially changing ∣g2∣ and keeping the other parameters as

obtained at θ= 90∘ and 30 T. In Supplementary Fig. 9a, the minimum

h0jðΔX̂ĉ;ϕÞ
2j0i is plotted as a function of ∣g2∣. The minimum quadrature variance is

increased to 0.25 (0 dB) at ∣g2∣= 0. By increasing ∣g2∣, one can find that the
minimum quadrature variance drops to zero at ∣g2∣= 2π × 0.763 THz.

This condition corresponds to the superradiant phase transition when we
transform our anisotropic Hopfield Hamiltonian, Eq. (4), into the anisotropic
Dicke Hamiltonian, given by:

H ! _ω0a âyâþ 1
2

� �
þ _ω0b Ŝz þ

N
2

� �
þ i_g1ffiffiffiffi

N
p ðâŜþ � ây Ŝ�Þ þ

i_g2ffiffiffiffi
N

p
�
ây Ŝþ � âŜ�

�
ð18Þ

Here, Ŝx;y;z are the spin-
N
2 operator, and Ŝ± � Ŝx ± iŜy are the raising and lowering

operators. The phase transition is obtained in this Hamiltonian when the LM’s
eigenfrequency becomes zero, indicating an instability of the normal phase. This
condition is derived from Eq. (9) as:

1þ ðg21 � g22Þ2
ω2
0aω

2
0b

� 2ðg21 þ g22Þ
ω0aω0b

¼ 0 ð19Þ

In the isotropic case g1= g2= g, this is reduced to the well-known condition 4g2=
ω0aω0b of the superradiant phase transition in the isotropic Dicke Hamiltonian.

The drop condition ∣g2∣= 2π × 0.763 THz of the minimum quadrature variance
in Supplementary Fig. 9a satisfies Eq. (19). In this way, the minimum quadrature
variance becomes zero at the superradiant phase transition.

Comparison of VBSS and VRSS. We define the VBSS and VRSS for the UM as:

VBSS ¼ Ωþðg1 ≠ 0; g2 ¼ 0Þ � Ωþðg1 ≠ 0; g2 ≠ 0Þ ð20Þ

VRSS ¼ Ωþðg1 ≠ 0; g2 ¼ 0Þ �maxðω0a;ω0bÞ ð21Þ
Here, we assume that maxðω0a;ω0bÞ ¼ ω0b , but similar results can be derived for
maxðω0a;ω0bÞ ¼ ω0a .

The condition for VBSS > VRSS is derived from Eq. (9) as:

2ω0aω0bðg21 þ g22Þ< ðg22 � g21Þ ðg22 � g21Þ þ 2ω2
0b

	 
 ð22Þ
We can immediately identify that this cannot be satisfied in the isotropic case
where g21 ¼ g22. The condition for the normal phase, from Eq. (19), is given by:

g21 � g22 <ω0aω0b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g22ω0aω0b

q
ð23Þ

Under the assumption that ∣g1∣ > ∣g2∣, one can only satisfy Eq. (22) if:

g21 � g22 >ω0bðω0a þ ω0bÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g22ω0aω0b þ ω2

0bðω0a þ ω0bÞ2
q

ð24Þ

Thus, for ∣g1∣ > ∣g2∣, one cannot achieve VBSS > VRSS for the UM in the normal
phase. However, for ∣g2∣ > ∣g1∣, the condition for VBSS > VRSS can be derived as:

g22 > g21 � ω0bðω0b � ω0aÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0bðω0b � ω0aÞ2 þ 4ω0aω0bg

2
1

q
ð>g21Þ ð25Þ

which can be satisfied in the normal phase.

Discontinuity for θ= 90∘. To calculate normalized coupling strengths presented
in Fig. 4c of the main text, we require the magnetic field Hcross at which the
generalized qFM and qAFM mode frequencies cross. Supplementary Fig. 10a plots
calculated values of Hcross for all 0∘ ≤ θ ≤ 90∘.

We observe that at an applied field strength of 1284 T for θ= 90∘, a
magnetically driven phase transition occurs, where S1 and S2 become perfectly
aligned along the b-axis. We also find that the generalized qFM and qAFM magnon
frequencies, as well as the coupling strengths g1 and g2, are unstable at this point
and change discontinuously, leading to a discontinuity in the normalized coupling
strengths, illustrated in Supplementary Fig. 10b.

Data availability
Source data are provided with this paper. All other data that support the plots within this
paper and other findings of this study are available from the corresponding authors upon
reasonable request.
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