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MXenes are a large class of materials that are chemically exfoliated from metal-aluminum-carbon (MAX)
bulk crystals into low-dimensional sheets. While many MXenes have been theoretically predicted, the
careful balance required in the exfoliation between breaking the inter-layer bonds without damaging
the intra-layer bonds of the sheets has limited synthesis and experimental study. Here, we developed the
synthesis of Cr,C from its parent Cr,AIC MAX phase and showed the etching is optimized using sodium
fluoride and hydrogen chloride with a modified minimally intensive layer delamination (mMILD) method
in a cold environment of 9 C. We further optimized the intercalation and delamination using sonication
and washing methods. The resulting Cr,C crystal structure was characterized. These results open up Cr,C
to experimental study, including of its predicted emergent magnetic properties, and develop guidelines

for synthesizing new MXene materials.

MXenes are a large class of two-dimensional (2D) layered transi-
tion metal carbides and/or nitrides, discovered in 2011 [1], with
the general formula M, 41X, Ty,. They are derived by the selec-
tive removal of the A layers from MAX phases, which are ternary
carbides, nitrides, or carbonitrides with the general formula
M 11AX, (n = 1 — 3); where M = an early transition metal, e.g.
Ti, V, Cr, and Mo; A = a group 13 or 14 element; X = C or N;
and T}, is a surface functional group, e.g. OH, O or F. The MAX
phase is structured such that the stacks of M, 41X, nanosheets
are interleaved with A layers which can be chemically etched
out. This results in weakly bonded M, X, layers which can
be exfoliated into MXenes, as illustrated in Fig. 1 using Vesta
visualization software.

MZXenes have been shown and predicted to have numer-
ous useful mechanical and electronic properties [2, 3], and have
found applications in electrode materials [4-6], sensors, cataly-
sis [7], energy storage [5, 6, 8-11], and carbon capture [12].
MZXenes can also have magnetic properties [13]. For example,
from theory, pristine Ti,C and Ti,N are nearly half-metallic
ferromagnets, Cr,N is antiferromagnetic, and Cr,C is a half-
metallic ferromagnet which can undergo ferromagnetic metallic

to anti-ferromagnetic insulating state transitions [13]. However,
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work needs to be done to synthesize these MXene species to test
and use their predicted properties.

In particular, the Cr,C MXene, which has a trigonal crystal
structure and P3m1 [164] space group, is produced by selectively
etching Al atoms from the MAX phase Cr,AlC with a hexagonal
crystal structure and P6,/mmc [194] space group [11, 14-17].
Two-dimensional Cr,C MXenes have been predicted, using den-
sity functional theory calculations, to have ferromagnetic behav-
ior in which the itinerant Cr d electrons are 100% spin polarized
around the Fermi surface, resulting in intrinsic half-metallicity
with a gap as large as 2.85 eV [15]. This half-metallicity in Cr,C
MZXenes is completely intrinsic, in contrast to low-dimensional
materials such as graphene or transition metal dichalcogenides
which need strong external electric field or carefully selective
doping to induce half-metallicity [15]. Cr,C has also been pre-
dicted to demonstrate a ferromagnetic-to-antiferromagnetic
transition accompanied by a metal-to-insulator transition when
the surface is functionalized with E, OH, H, or Cl groups due to
the localization of the Cr d electrons [15]. The energy gap is also
tunable by the choice of the functional group [15]. This makes
Cr,C MXenes potentially attractive for nanoscale spintronics
applications if Cr,C MXene nanosheets could be reliably pro-

duced experimentally.
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Figure 1: MAX and MXene crystal structure. Cartoon images of: (a) The MAX phase; the view along the ¢ direction is shown in the inset. (b) Unetched
MAX phase along the a direction, with elements identified as transition metal M (Cr in this case), group Ill element A (Al in this case), and carbon or
nitrogen X (carbon in this case) to form Cr,AIC. The Aatoms are chemically etched to produced Cr,C MXenes, shown in (c) in the ¢ direction after
etching. (d) Cr,C MXene sheet in the a direction after surface functionalization, where T is an F, O, H or OH radical.

There are three main methods seen in literature for deriving
MZXenes from the corresponding MAX phase: the use of hydro-
fluoric (HF) acid, the use of a fluoride salt and an acid, or the
use of ammonium bifluoride [2, 18]. In this experiment, fluoride
salts and hydrochloric acid were used as the etchant due to the
high yield and milder nature of the resulting reaction compared
to the use of HF [2, 3, 18]. In addition, it is considered to be a
safer method when compared to direct handling of HF [2, 18].
The chemical reaction equation to derive Cr,C from Cr,AIC is

given as follows:

ield
2Cr, AIC(s) + 6XE(s) + 6HCI(1) 255 2CryC(s)

+ 2AlF; (aq) 4 6XCl + 3H; (g)

where X is a cationic element such as Na or Li; (s), (1), (aq),
and (g) imply the materials are in solid, liquid, aqueous, and
gaseous states, respectively.

Here, we develop a chemical exfoliation process to reduce
the Cr,AlC MAX phase into Cr,C MXene. To achieve optimal
etching results, we varied the fluoride salt used, the reaction
environment temperature, the concentration of the reactants,
and the after-etch extraction procedure (including speed of cen-
trifugation, method of product separation, and delamination
technique), as described subsequently. We discuss how chang-
ing these different parameters affect the characteization results,
including scanning electron microscopy (SEM) images, electron
dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD),
and x-ray photoelectron spectroscopy (XPS) measurements
done both on the bulk and exfoliated samples. We also identify

the Raman signature and the transmission electron microscopy
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(TEM) structure of the synthesized Cr,C. The results show that
the best exfoliation, i.e. highest yield, lowest byproduct, fastest
etch time, and largest area sheets, was acheived using a modified
MILD (mMILD) method with sodium fluoride (NaF) salt and
hydrochloric acid (HCI) in a 9 °C environment.

Physical morphology

Figure 2a and b show the physical structure of the unetched
Cr,AlC under SEM. Using LiF and HCl as etchant at room tem-
perature after 72 h of etch, the Cr,C MXene sheets began to
become visible as the Cr,AlC bulk blocklike structure began
to transform into an accordion structure as though a book is
drenched in water, taken out, and dried. This structure is shown
in Fig. 2c and d. After 96 h the MXene was fully etched, shown
in Fig. 2e and f where example stacks of MXene sheets are sur-
rounded by byproducts.

The etch results were further improved, to achieve higher
yield, lower byproduct, and shorter etch time, by using the
mMILD technique, a cold environment of 9 °C, and using
NaF + HCl as the etchant, with results shown in Fig. 3. The
mMILD technique used was an adaptation of the MILD method
that has proven successful for etching titanium-based MXenes,
where the concentration of the fluoride salt and acid is increased
and sonication is decreased [2, 10, 18-22]. Here, the concen-
tration of the fluoride salt and acid was kept lower than in the
original MILD method, since too high a concentration damaged
the MXene sheets.

www.mrs.org/jmr

Issue 10 May 2021

Volume 36

Journal of Materials Research

1981



B IMC o

Figure2: Etch process over time. SEM images of (a), (b) unetched Cr,AIC MAX phase. (c), (d) Cr,C MXenes after 72 h of etching, and (e), (f) Cr,C MXenes
after 96 h of etching, all in a mixture of LiF and HCI. The accordion-shaped structure signifies that the inter-MXene Aluminum layer has been etched off
by the fluoride salt and hydrochloric acid mixture. (c) shows how the structure looks midway through the etch. Arrows indicate example Cr,C sheets.
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Figure 3: Optimized etch conditions comparing etchants. All images show the etch product after 45 h of etching in 9 °C environment using the mMILD
method. (a) Using LiF etchant. (b) Using NaF etchant. (c) Larger area using NaF etchant, with yellow box area shown in (d). Arrows indicate example
Cr,C sheets.
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When the reaction temperature was swept between 9 °C,
room temperature, and 50 °C, we found the optimized etch time
was 45 h, 96 h, and 120 h, respectively. Since the reaction is
exothermic, reducing the temperature will drive the reaction
more towards the product side. The benefit of cold temperature
is contrary to what has been observed in other works, where
better etch results were reported at higher temperatures [23-26],
since the increased temperature increases the solubility of the
fluoride salts, liberating more of the fluoride ions to take part in
the reaction while the cations can take part in the intercalation.
Here, since the mMILD method already provided high molar
concentrations of the fluoride salts, the higher temperature was
not needed, and the low temperature helped to drive the reac-
tion forward.

Figure 3 compares the use of LiF and NaF. In Fig. 3a, LiF is
used as the etchant, which produces accordion structures, but
with fluorine residue visible as a fuzzy surface on the crystals,
confirmed by EDX. We expect less residue using NaF, since NaF
solubility is 4.13 g/L compared to LiF solubility of 1.34 g/L [27].
Hence, at the end of the reaction there will be four times less
undissolved NaF in the solution. These fluorine atoms and radi-
cals can adhere to the surface of the MXene product.
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Figure 3b-d show the results using NaF. Figure 3b shows an
example of a clean, low-residue accordion structure achieved
with this optimized method, looking like pages of a book. This
structure gives proof of successful reduction of the MAX phase
Cr,AIC to Cr,C MXene sheets. Figure 3c shows a larger area
with many accordion structures visible, showing the high yield.
Figure 3d highlights the yellow box area to show an example
structure in more detail. Washing the etch product in HCI before
washing in DI water further helped reduce residual salts and
byproducts in the etch product mix.

In Fig. 4, the process was further optimized to increase
delamination, increase yield, and reduce byproduct. Tetrabu-
tylammonium hydroxide (TBAOH) was used to attempt to
further delaminate the sheets [2, 19, 20, 28-30], but as can be
seen in Fig. 4a, it introduced more organic impurities into the
mix. These organics adhered to the dangling bonds left as the
result of the etch, visible as smears of amorphous material on
the MXene products. Figure 4b shows the effect of not using
TBAOH at all. The cation in the fluoride salt is sufficient for
intercalation and delamination of the MXene sheets. Washing to
a pH of about 7 ensures that most of the salt has been removed
and that the cations are well-intercalated in-between the MXene

Figure 4: Optimized etch conditions using NaF etchant. (a) SEM image of the etch products after using TBAOH, showing increased amorphous material
on the surfaces. (b) Etch product without using any TBAOH. (c) Etch product when sonication and HCl wash steps are added, which show improved
delamination and yield and reduced byproduct, using the in-lens detector and (d) using secondary electron detector.
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sheets. Sonicating the reaction for an hour at the beginning of
the etching reaction helps in mixing the reactants and further
aids in the intercalation process. It should also be noted that the
choice of the centrifuging speed plays a role in preserving the
integrity of the MXene sheets. We noticed that using a 2000 rpm
rather than a 3500 rpm centrifuging speed helped to produce
better quality products.

Figure 4c and d show example SEM images with improved
delamination, high yield, and low byproduct wherein sonication
was added in the first hour of the etch to promote delamination,
and the reaction product was washed in HCI before washing
with DI water. Because salts have lower solubility in lower pH
conditions, this helped precipitate the excess unreacted fluo-
ride salts and salt byproducts in the solution, leading to lower
byproduct for both salts. The images show better sheet-like
structures compared to Fig. 4b.

Chemical analysis

Figure 5 shows the initial elemental analysis using EDX for (a-b)
unetched Cr,AlC, (c-d) LiF-etched Cr,C MXene, and (e-f) NaF-
etched Cr,C MXene. The Al counts are lower for the etched prod-
ucts vis-a-vis the Cr counts, as compared to that of the unetched
material, indicating the Al has been significantly removed. There
are also more significant fluorine counts for the LiF-etched Cr,C
MZXene in Fig. 5d when compared to the NaF-etched counterpart
in Fig. 5f, corroborating the SEM images that show amorphous
fluorine on the MXene surface using the LiF etchant. This is an
indication that etching with NaF salt gives a cleaner etch result.
Since the Cr La and the O Ka energies are very close, a more
accurate method is required for the elemental analysis.
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XPS was carried out on the dried MXene samples to analyze
the elements present before and after etching and to determine
the regions and components of the various binding energies
identified in the survey profile in Supplementary Fig. S1. Before
measurement, the sample was sputtered for 30 s to remove sur-
face impurities.

Figure 6 shows the XPS signal intensity vs. binding energy
before and after the optimized etching for the energy regions
of (a) Cr, (b) Al, (c) O, and (d) C. The XPS data shows the etch
product has reduced Al and that new binding energies are vis-
ible for Cr and C, confirming formation of Cr,C. In Fig. 6a, Cr
2p shows up as a doublet Cr 2p1/2 and Cr 2p3/2. After etching,
the Cr signal is stronger, indicating some looseness between the
layers as a result of stripping off the interlayer Al atoms making
more surface Cr atoms available. In Fig. 6b, after etching the
intensities for the Al 2s region peaks reduced considerably and
shifted. This signifies that the bulk of the Al component of the
Cr,AlC was removed and some of the remaining Al formed new
compounds as shown in the supplementary Fig. S2. In Fig. 6¢,
after etching the O 1s peaks did not change significantly in
intensity but did slightly shift to higher binding energies also
signifying the formation of new oxides.

In Fig. 6d, after etching the intensities of the C 1s peaks
increased and shifted, showing that new compounds of carbon
were formed in the etching process. The C 1s etched data is fur-
ther analyzed in Fig. 6e. As shown by the orange, light green, and
blue traces, a major contributor to the intense C peak is adven-
titious carbon with the C-C bond, the C-O bond group, and
the C=0 bond group at binding energies 284.67 eV, 285.85 eV,
and 288.02 eV, respectively. These are labeled with C, B, and A,
respectively. This is expected because breaking off the Al bonds
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Figure 5: EDX analysis. SEM images of (a) unetched Cr,AIC MAX phase, (c) Cr,C MXene after etching in LiF and HCl for 45 h, and (e) Cr,C MXene after
etching in NaF and HCl for 45 h, with corresponding EDX plots in (b), (d), and (f), respectively.
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Figure6: X-ray photoelectron spectroscopy of the unetched Cr,AIC MAX phase (green trace) compared to optimized etched Cr,C MXene (purple trace).
The data are overlayed with an envelope function. (a) Energy region for Cr 3/2p and Cr 1/2p doublets. (b) Energy region for Al 2s. The Al 2p lines are
very close to the Cr 3s lines, so the Al 2s lines were observed. (c) Energy region for O 1s. (d) Energy region for C 1s. (e) XPS measurement plots for the C
1s region overlayed with the envelope function (purple trace) and showing different components of Cr,C;, Cr,C/CrC, the C-C adventitious carbon, the
C-0 bond group, and the C=0 bond group, as marked by E, D, C, B, A, respectively. (f) XPS measurement plots for the Cr 2p region overlayed with the
envelope function (purple trace) and showing different components of Cr 2p1/2 and Cr 2p3/2 doublets. The binding energy peaks indicative of Cr,C;,

Cr,Cand CrC are indicated by C, B, and A, respectively.

in the Cr,AlC created more dangling bonds on the Cr for the
adventitious C and CO group to latch onto. In addition, the
creation of Cr,C nanosheets creates more exposed surface area
for new surface chemistry. The peak D at 282.88 eV is expected
to correspond to that of Cr,C, while peak E at 281.86 eV is char-
acteristic of Cr,C; [31, 32].

The Cr XPS signal from Fig. 6a is further analyzed in Fig. 6f.
The binding energy peaks are identified to the nearest 0.2 eV as
Cr,C; at 574.18 eV (peak C) and 583.38 eV. The peak B is conjec-
tured to be a mix of Cr,C and CrC at 575.23 eV repeating itself at
584.43 eV, while the peak A at 575.63 eV is thought to be CrC also
repeating at 584.83 eV [31, 33-40]. It should be noted that that the
peak for CrC shows up more intensely similar to our XRD analysis
data. Further work needs to be done to separate out the Cr,C and
CrC etch products. Additional analysis of the XPS regions and

components are included in Supplementary Information.

Phase analysis

Figure 7 shows powder XRD peaks for unetched and etched
samples. Peaks for Cr,C are marked by red crosses, Cr,AIC by
blue diamonds, Cr,C; by gold triangles, and CrC by black cir-
cles. The diffraction peaks for the starting Cr,AlIC MAX phase
material are shown by the black trace in Fig. 7a. The peaks indi-
cating Cr,AlC are clear and distinct although there are a few
Cr,C; phases also showing up as well.

When the etch is done with NaF and HCI using the mMILD
method at 9 °C, more Cr,C phases at 27.86°, 37.44°, 40.61°,
74.96°, 81.25° and 82.70° appear as shown in Fig. 7b [38, 39,
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Figure7: Powder X-ray diffraction (XRD) peaks for unetched and etched
samples. Peaks for Cr,C (red crosses), CrC (black circles), Cr,C; (gold
triangles), and Cr,AIC (blue diamonds) are marked. (a) Black trace shows
the scan of the starting Cr,AlC MAX phase material showing distinct
peaks for Cr,AlC and some trace of Cr,C;. (b) Orange trace shows the
result after etched with NaF and HCl at 9 °C for 45 h using the mMILD
method. More phases for Cr,C are seen [38, 39, 41-44], as well as fewer
impurities (unmarked peaks which are mostly impurities from APt Na*,
CI” or F7) and fewer phases of Cr,AlC (blue diamonds) [48] and Cr,C;
(gold triangles) [49]. Although intense peaks for CrC also show up [50],
lower intensities of Cr,AIC indicate that the etch is more successful.

41-44], compared to other methods (see supplementary Infor-
mation) [41, 45-47]. Since there is limited reliable XRD analysis
of Cr,C, the peaks identified are conjectured based on what is
available. In addition, the intensities for Cr,AlC [48] and Cr,C;
[49] reduced compared to the rest of the methods. The comple-
mentary appearance of prominent CrC phases [50] in addition
to this indicates that after 45 h of etching most of the Al from
the starting Cr,AIC MAX phase has been etched out. See Sup-
plementary Information for additional XRD analysis of sample

degradation over a 2-year period.
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Additional analysis and discussion

Figure 8a shows the Raman spectra for the etched MXenes.
The Raman modes show a D peak at 1327 cm ™), a G peak at
1564 cm ™!, and a 2D peak at 2642 cm ™. These peaks in addition
to those showing up at 513.7 cm™' and 962.2 cm™ are believed
to be characteristic of chromium carbides [51-53].

The acquired TEM images are shown in Fig. 8b. The struc-
tures in (i) and (ii), as identified by the arrow, show striations
indicating delaminated MXene sheets. In (iii) and (iv) the

boundaries of different layers of the MXene sheets are visible.

While many MXenes have been theoretically predicted, the
careful balance required in the exfoliation between breaking
the inter-layer bonds without damaging the intra-layer bonds
of the sheets has limited synthesis and experimental study. We
have developed a chemical exfoliation process that derives Cr,C
MXenes from the parent Cr,AIC MAX phase. Our results show
that the best exfoliation, i.e. highest yield, lowest byproduct, fast-
est etch time, and largest area sheets, was acheived using our
mMILD method with NaF salt and HCl in a 9 °C environment.
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Figure8: (a) Raman spectrum for the etched Cr,C MXene. (b) STEM
images for the etched Cr,C MXene.
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In addition, sonicating for the first hour of the reaction and
washing in an acid medium before washing in DI water up to
a pH of 7 further helped the intercalation and delamination
process. Having a proper choice of centrifuging speed helps to
preserve the quality of the flakes. A series of analysis including
SEM, EDX, XPS and XRD confirm our findings.

The XRD and XPS data shows that a significant amount of
CrC is being produced in addition to the intended Cr,C MXene,
showing further work needs to be done to separate the Cr,C
from CrC. Overall, these results open up Cr,C to experimental
study, including of its predicted emergent magnetic properties,

and develop guidelines for synthesizing new MXene materials.

Etch procedures

Using two fluoride salts

We carried out two separate reactions to compare using Lith-
ium Fluoride (LiF) and Sodium Fluoride (NaF). In two separate
beakers, 3 ml of 12 M concentrated Hydrochloric Acid (HCI,
J.T. Baker, 37% CMOS grade) was added to 3 ml of DI water to
dilute. Then, 0.919 g of LiF (Alfa Aesar, 98.5%) was added to
one of the beakers, whereas 1.521 g of NaF (Alfa Aesar, 99%)
was added to the other beaker. The two beakers were shaken
vigorously for a minute or two to ensure that the fluoride salts
dissolve optimally in the acid. Afterwards, 1.728 g of ball-
milled Chromium Aluminum Carbide (Cr,AlIC, ACI Alloys,
purity >99.9%) with average grain size of 1 mm was gradually
added to each of the beakers containing the acid-salt solution.
On addition of the Cr,AlC, the reaction heats up showing exo-
thermicity, there is a release of Hydrogen gas molecules, and the
mixture turns dark green as expected.

The reaction sat at room temperature and samples were col-
lected from the reaction after 48 h, 72 h, and 96 h. These samples
were washed through five cycles using distilled water and cen-
trifuged at a speed of 3500 rpm for 10 min per cycle. After each
cycle, the solute mix was decanted off and fresh distilled water

was added for the next cycle.

Varying the temperature of the reaction environment

To determine the effect of reaction temperature, we put two
beakers, one containing HCl + NaF + Cr,AlC and the other con-
taining HCI + LiF + Cr,AlC, in a heating bath at 50 °C. Another
two beakers each with NaF or LiF were put in a cold environ-
ment at 9 °C. The reaction sat for 96 h and sampled every 24 h.
Cleaning procedures were carried out as described above.
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Varying reactant concentration using the mMILD method

To observe the effect of varying the reactant concentration,
we used a modified minimally intensive layer delamination
(mMILD) method [19]. This involved slightly increasing the
concentration of the acid and the fluoride salt to release more
cations for intercalation and delamination. In two separate beak-
ers, 3 ml of DI water was added to 3 ml of HCI to dilute. Then,
0.783 g of LiF was added to one of the beakers while 1.268 g of
NaF was added to the other beaker. The two beakers were shaken
vigorously for a minute or two to dissolve the fluoride salts in
the acid. Afterwards, 0.576 g of Cr,AlC was gradually added to
each of the beakers containing the acid-salt solution.

Achieving better separation and delamination after etching
reaction

For better etch quality, the reaction products were first washed in
up to 50 ml of HCI before going on to wash with DI water. Wash-
ing the etch product in HCI helps to precipitate the remaining
fluoride salts and other salt byproducts while the MXene prod-
uct remains dispersed in acid. The MXene-acid colloid was then
decanted into a separate beaker diluted in water and centrifuged
to extract the MXene which had settled to the bottom of the
centrifuge tube. Afterwards, the supernatant was decanted and
the MXene mass was washed several times in DI water until
a pH of about 7. In addition, the samples were centrifuged at
2000 rpm for 15 min rather than 3500 rpm for 10 min that was
earlier used.

We also tested the effect of delamination with Tetrabutyl-
ammonium hydroxide (TBAOH). After washing the etch reac-
tion in DI water until a satisfactory pH is achieved, 12.5 ml of
TBAOH was added to 1 g of the etched MXene and made to mix
on a rotator for 4 h. After, the products are washed in DI water

until a pH of about 7.

Sample characterization

After the supernatant from the reaction had reached pH of
between 6 and 7, the samples were drop-casted on a 1 cm? sili-
con chip and dried on a hotplate at about 500 °C. The physical
structure of the samples was observed using scanning electron
microscopy (SEM, Zeiss Neon 40) with 5 kV beam voltage and
the in-lens secondary electron detector.

Initial elemental analysis was carried out using the Bruker
electron dispersive X-ray spectrometer (EDX) attached to
the SEM. For further elemental analysis, some of the dried

©The Author(s), under exclusive licence to The Materials Research Society 2021

MZXene samples were put on a graphite tape and Kratos X-ray
Photoelectron Spectrometer was used to analyze the elements
present in the sample. After sputtering the surface for 30 s
to remove surface impurities, surveys and region scans were
made for Cr, O, Al, and C using a step size of 0.05 eV for 580
steps with a dwell time of 1.5 s and a characteristic energy of
1486.6 eV. Further data analysis was carried out with Casa
XPS software to identify the regions and components for the
various binding energies.

Powder X-ray diffraction (XRD) analysis was carried out
on dried samples using a Scintag X1 Theta-Theta Diffractom-
eter and a Rigaku R-Axis Spider Diffractometer, both with
monochromatic Cu Ka X-ray sources (wavelength 1.54 A).

Raman analysis was performed on the optimized-etched
Cr,C MXene using a Witec Micro-Raman Spectrometer Alpha
300 with an Ar laser (wavelength 514 nm). Scanning transmis-
sion electron microscopy (STEM) was performed for a closer
look into the structure of the etched MXene product, using a
JEOL NEOARM.
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