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Abstract
Near- term freshwater forecasts, defined as sub- daily to decadal future predictions 
of a freshwater variable with quantified uncertainty, are urgently needed to improve 
water quality management as freshwater ecosystems exhibit greater variability due to 
global change. Shifting baselines in freshwater ecosystems due to land use and climate 
change prevent managers from relying on historical averages for predicting future con-
ditions, necessitating near- term forecasts to mitigate freshwater risks to human health 
and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water- 
related recreation and tourism). To assess the current state of freshwater forecasting and 
identify opportunities for future progress, we synthesized freshwater forecasting papers 
published in the past 5 years. We found that freshwater forecasting is currently domi-
nated by near- term forecasts of water quantity and that near- term water quality fore-
casts are fewer in number and in the early stages of development (i.e., non- operational) 
despite their potential as important preemptive decision support tools. We contend that 
more freshwater quality forecasts are critically needed and that near- term water quality 
forecasting is poised to make substantial advances based on examples of recent pro-
gress in forecasting methodology, workflows, and end- user engagement. For example, 
current water quality forecasting systems can predict water temperature, dissolved oxy-
gen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued 
progress in freshwater quality forecasting will be greatly accelerated by adapting tools 
and approaches from freshwater quantity forecasting (e.g., machine learning modeling 
methods). In addition, future development of effective operational freshwater quality 
forecasts will require substantive engagement of end users throughout the forecast pro-
cess, funding, and training opportunities. Looking ahead, near- term forecasting provides 
a hopeful future for freshwater management in the face of increased variability and risk 
due to global change, and we encourage the freshwater scientific community to incor-
porate forecasting approaches in water quality research and management.
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1  |  INTRODUC TION

Ecological forecasts, defined here as future predictions of phys-
ical, chemical, or biological variables with quantified uncertainty 
(Dietze, 2017), are increasingly being developed to understand and 
predict the future of ecosystems (Lewis et al., 2022). Here, we focus 
on near- term forecasts, or forecasts of variables at sub- daily to 
decadal scales, the accuracy of which can be assessed with observa-
tional data on management- relevant time scales (Dietze et al., 2018). 
Near- term forecasts of future ecosystem conditions enable pre-
emptive interventions, allowing natural resource decision- makers to 
prevent or mitigate risk (e.g., Berthet et al., 2016; Fujisaki- Manome 
et al., 2022). Among ecosystems, near- term forecasts of freshwater 
ecosystems (i.e., lakes, rivers, wetlands) may be particularly valuable, 
as freshwaters have been more negatively impacted by human activ-
ities and global change than terrestrial or marine ecosystems (Albert 
et al., 2021; Moorhouse & Macdonald, 2015), necessitating new ap-
proaches for their management.

The acute threats to freshwater ecosystems from global change 
(Field et al., 2014; Maasri et al., 2022) highlight the potential of near- 
term freshwater forecasting for advancing water management and 
freshwater resource use, as well as our understanding of freshwa-
ter ecosystems (Bradford et al., 2018, 2020; Coreau et al., 2009). 
Recent advances in next- generation technology for environmental 
monitoring of a broad range of freshwater ecosystem variables via in 
situ sensors, satellites, and internet of things (IoT) networks (Hestir 
et al., 2015; Marcé et al., 2016; Singh & Ahmed, 2021); development 
of diverse modeling, data assimilation, and uncertainty propaga-
tion methods in ecological studies (e.g., Chen et al., 2021; Heilman 
et al., 2022; Varadharajan et al., 2022); and a growing community of 
practice around ecological forecasting (Dietze & Lynch, 2019) are 
synergistically facilitating the increased production of near- term 
freshwater forecasts.

These advances present opportunities for freshwater scientists to 
integrate new tools and skills into forecasting efforts. In this paper, 
we (1) introduce key concepts in freshwater forecasting (Figure 1, 
Table 1); (2) analyze the recent progress of freshwater forecast de-
velopment (i.e., the variables being forecasted and methods used, the 
performance of recently developed forecasts, and the application of 
forecasts for different end users); (3) identify future opportunities for 
advancing freshwater forecast production and use; and then (4) pro-
vide a unified conceptual framework with recommendations for galva-
nizing the freshwater quality forecasting community (Figure 2).

1.1  |  Motivation for freshwater forecasting

Recent efforts in near- term freshwater forecasting have been motivated 
in many cases by the increased variability of freshwater ecosystems due 
to global change (Bradford et al., 2018; Gilarranz et al., 2022; Reggiani 
et al., 2022). Unfortunately, the increased ecosystem variability experi-
enced by many freshwaters under global change precludes the use of 
historical baselines to inform our expectation of their future conditions 

(Bradford et al., 2018; Gilarranz et al., 2022; Millar & Woolfenden, 1999). 
Much of this variability is occurring on short time scales (days to sea-
sons) and is manifested across physical, chemical, and biological fresh-
water variables. For example, intense droughts and floods due to 
climate change are altering water quantity in lakes, rivers, and wetlands 
(Davenport et al., 2021). Similarly, dissolved oxygen concentrations, a 
key control on freshwater quality, are declining in temperate lakes world-
wide as water temperatures warm (Jane et al., 2021) and peak summer-
time algal bloom intensity increases (Ho et al., 2019). These examples are 
a few of the many physical, chemical, and biological changes that may 
lead managers to seek skillful forecasts providing actionable, decision- 
relevant information about future freshwater conditions.

Near- term forecasting provides critically needed opportunities 
for proactive, preemptive management of freshwater ecosystems to 
conserve and protect ecosystem health and services in response to in-
creased variability under global change (Bradford et al., 2018, 2020; 
Reggiani et al., 2022). For example, if managers had advance warn-
ing of a future flood, they could preemptively re- route traffic from 
low- lying areas or coordinate evacuations to minimize human risk  

F I G U R E  1  The near- term, iterative forecast cycle as 
implemented in a real- world setting for an operational forecasting 
system used by managers, decision- makers, or other end users 
(modified from Dietze, 2017). Freshwater forecast end users (e.g., 
managers, natural resource decision- makers) are engaged at the 
beginning of the forecast process (Step A) and a forecasting team 
is assembled and coordinated (Step B). The team will then work 
to develop the models, infrastructure, and workflows needed to 
produce forecasts (Step C), and begin obtaining input and validation 
data for forecasts (Step D). Before forecasts are generated, the 
uncertainty associated with the forecast should be quantified 
(Step E), and the most recent observational data can be used to 
update the model (Step F). Finally, a forecast is generated (Step G), 
disseminated to end users (Step H), assessed (Step I), and the cycle 
begins again by seeking end- user feedback to help improve the 
forecast and forecasting workflow (Step A).
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    |  1693LOFTON et al.

TA B L E  1  Definitions and examples of terms related to freshwater forecasting. Definitions are adapted from multiple sources (Carey 
et al., 2022; Dietze, 2017; Lewis et al., 2022; Lofton, Brentrup, et al., 2022; McClure et al., 2021; Thomas et al., 2020), with additional 
references for select terms provided in the table.

Term Definition Freshwater quality example

Automated workflow A forecasting system that produces new forecasts 
on a set schedule or in response to another 
automated action and does not require a 
person to manually initiate forecast generation

A lake water temperature forecast that is triggered to be 
issued every 6 h as new meteorological forecasts are 
available from US NOAA

Data assimilation Updating either initial conditions, model states, 
and/or model parameters through statistical 
comparison of model predictions to new 
observations not previously ingested by the 
model

Using a Kalman filter to update initial conditions in a 
weekly forecast of algal biomass concentrations

Data ingest The process of making data accessible to a model 
(e.g., for data assimilation)

Chlorophyll- a sensor data are wirelessly streamed to a 
server and assimilated into the forecast model on a 
daily time step

Ensemble Repeated model runs using different values of 
parameters, initial conditions, driver data, and/
or random processes

Running a model to predict tomorrow's zooplankton 
biomass 100 times using different draws from a 
distribution of possible zooplankton growth rate 
parameter values, possible current zooplankton 
biomass values, and possible forecasted water 
temperatures

Forecast Predictions of the future state of a physical, 
chemical, or biological freshwater variable that 
incorporates uncertainty

There is a 45% chance that dissolved iron concentrations 
will exceed a drinking water thresh next week

Forecast horizon How far into the future a forecast is issued A forecast of stream discharge 1 week into the future (a 
1- week horizon) versus 1 day into the future (a 1- day 
horizon)

Forecast skill The ability of a forecast to accurately predict real- 
world conditions

A forecast that predicts water temperature 1 week into 
the future with an RMSE of 1.4°C

Hindcast A prediction of a time period that has already 
happened with specified uncertainty but 
using data that was withheld from the model 
during calibration and validation. Importantly, 
hindcasts use hindcasted, not observational, 
driver data to obtain predictions (see Jolliffe & 
Stephenson, 2012 for further information)

Daily forecasts of dissolved oxygen in 2018 using a model 
calibrated with data from 2015– 2017 and archived 
meteorological forecasts from 2018

Iterative forecast The process of repeatedly validating forecasts, 
updating model initial conditions and 
parameters, and issuing new forecasts as new 
data become available

A monthly forecast of fish biodiversity that is validated, 
updated, and re- issued as fish surveys are conducted 
between forecasts

Kalman filter (also extended 
or ensemble Kalman 
filters)

A method for statistically comparing model 
predictions and new observations to update 
the initial conditions and parameters of a model 
while accounting for uncertainty in both model 
predictions and observations  
(see Evensen, 2003 for further information)

Using today's observation of surface water turbidity 
to correct yesterday's model prediction of today's 
conditions, while accounting for both uncertainty in 
model predictions and uncertainty in turbidity sensor 
observations

Operational forecast A forecast that is actively being updated and 
disseminated to end users

A 1- day- ahead water temperature forecast that is 
published online to inform community members and 
fishers

Prediction Estimates of the state of a physical, chemical, or 
biological freshwater variable that may or may 
not include uncertainty; here, we focus solely 
on predictions of future conditions

The dissolved iron concentration will be 2.5 mg L−1 next 
week

Projection A forecast based on a specific scenario that could 
or could not include specified uncertainty

A forecast of phytoplankton concentration next week 
assuming that algaecide will be applied by reservoir 
managers tomorrow

(Continues)

 13652486, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16590, W

iley O
nline Library on [20/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



1694  |    LOFTON et al.

(Berthet et al., 2016). Similarly, a forecast of potential water quality impair-
ment due to low dissolved oxygen levels or an intense algal bloom could 
allow managers to preemptively plan reservoir water releases, activate 
aeration systems (Quinn et al., 2005), or inform recreational beach clo-
sures (Choi et al., 2022). As much of the environmental variability currently 
exhibited in freshwater ecosystems is expected to intensify in the future 
under global change, it is critical to develop freshwater forecasts now.

1.2  |  Overview of the near- term, iterative 
forecasting cycle

Many near- term forecasting systems use the iterative forecasting 
cycle as their foundation (Figure 1; Dietze, 2017). Unlike climate 

forecasts that occur on multi- decadal (or longer) time scales and 
cannot easily be iteratively assessed during the typical span of an 
individual human's career, sub- daily to decadal ecological forecasts 
can be assessed and updated as soon as observational data of 
forecasted variables are available. While forecasts produced on 
daily or weekly versus decadal time scales are likely associated with 
substantially different management goals (e.g., mitigation of harmful 
algal blooms vs. eradication of invasive species, respectively), near- 
term forecasts as a whole are generally much more aligned with the 
time scales of environmental decision- making than multi- decadal or 
end- of- century projections (Dietze et al., 2018).

The near- term, iterative forecast cycle comprises several steps 
(Figure 1). Ideally, targeted freshwater forecast end users (e.g., 
managers, natural resource decision- makers) are engaged at the 

Term Definition Freshwater quality example

Uncertainty partitioning 
(variance decomposition)

Quantification of the uncertainty contribution 
from different sources (e.g., uncertainty in 
initial conditions vs. uncertainty in forecasts 
of model drivers); usually these contributions 
and their interactions are summed to estimate 
“total” forecast uncertainty (see Lofton, 
Brentrup, et al., 2022 for a freshwater example)

Quantifying the contributions of meteorological 
forecast uncertainty used to drive a model versus 
uncertainty in model parameters to forecasts of lake 
cyanobacterial density

Uncertainty propagation Quantitatively accounting for increased forecast 
uncertainty as the forecast progresses further 
into the future

The 95% predictive interval for tomorrow's forecasted 
water temperature is 15.1 to 15.8°C, while the 95% 
predictive interval for water temperature in 10 days is 
11.8 to 20.9°C

TA B L E  1  (Continued)

F I G U R E  2  Conceptual framework of 
our recommendations for advancing the 
field of freshwater quality forecasting 
and operational near- term freshwater 
quality forecasts. Effective forecasts lie 
at the intersection of freshwater science, 
end- user needs, and relevant tools and 
skills, all of which require funding support. 
Agenda items recommended to advance 
the field of near- term freshwater quality 
forecasting are in bold, with the italicized 
number corresponding to sections under 
“Opportunities to advance near- term 
freshwater quality forecasting” in the text.
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beginning of the forecast process to identify: (1) whether a forecast 
would assist in achieving end user goals; (2) if yes, then which fore-
casted variables are needed; and (3) the frequency and method of 
forecast dissemination (e.g., Berthet et al., 2016; Fujisaki- Manome 
et al., 2022; Gerst et al., 2020; Figure 1, Step A). If end users have de-
termined a freshwater forecast is needed, a forecasting team must 
be assembled and coordinated, likely including members with ex-
pertise in freshwater science, freshwater modeling, data collection 
(e.g., sensors, remote sensing), cyberinfrastructure, water manage-
ment, and end- user engagement (Carey et al., 2022; Figure 1, Step 
B). The team will then work to develop the models, infrastructure, 
and workflows needed to produce forecasts (e.g., calibrate a model 
for the forecast site, install in situ sensors, identify which software 
or protocols will be used for forecast automation; Figure 1, Step C), 
and begin obtaining input and validation data for forecasts (Figure 1, 
Step D). Before forecasts are generated, the uncertainty associated 
with the forecast should be quantified so that a level of confidence 
in future predictions can be communicated to end users (Figure 1, 
Step E), and the most recent observational data can update the 
model (i.e., data assimilation; Table 1) so that the model is as closely 
aligned with current conditions as possible (Figure 1, Step F). Finally, 
a forecast is generated (Figure 1, Step G), disseminated to end users 
(Figure 1, Step H), assessed with observations when data become 
available (Figure 1, Step I), and the cycle begins again by seeking end- 
user feedback to help evaluate and improve the forecast and fore-
casting workflow (Figure 1, Step A). Key terms associated with the 
near- term, iterative forecast cycle are defined in Table 1.

1.3  |  Importance of forecast 
uncertainty and assessment

A key component of the near- term iterative forecasting cycle is 
incorporating, quantifying, propagating, and reporting the un-
certainty associated with estimates of future ecosystem states 
(Jakeman et al., 2019; Reggiani et al., 2022). Consequently, we re-
serve the term “forecast” to refer only to future estimates that in-
clude uncertainty, and use the more general term “prediction” to 
refer to future estimates (deterministic or probabilistic) that may 
or may not include uncertainty. While predictions of future condi-
tions may or may not include uncertainty, forecasts always include 
uncertainty (Table 1). Uncertainty in near- term freshwater fore-
casts can arise from a variety of sources, including model structure, 
parameters, and driver variables, as well as estimates of current 
(initial) conditions used as the starting point for running forecast 
models (Jakeman et al., 2019). When a forecast is produced, these 
uncertainties propagate (e.g., error in forecasted model driver vari-
ables leads to error in forecast model output; Table 1), resulting in 
increased uncertainty as the forecast progresses farther into the 
future (Dietze, 2017). Specifying the uncertainty associated with 
a model's prediction of future conditions, summed from the un-
certainty sources listed above and their interactions, facilitates in-
formed decision- making by forecast end users.

Once a forecast has been generated and disseminated (Figure 1, 
Steps G, H), there are many ways in which forecast performance 
and uncertainty can be assessed (Figure 1, Step I; see Table S1 for 
examples of metrics developed to compare forecasts with obser-
vations and assess forecast uncertainty). In addition to comparing 
forecasts with observations, evaluation of forecasts using simple 
null or “naïve” models (e.g., Perretti et al., 2013) has been identi-
fied as a best practice to test whether the chosen forecast model 
outperforms naïve forecasts that assume the world is static (Harris 
et al., 2018; Lewis et al., 2022; White et al., 2019). For example, a 
naïve model might assume that tomorrow's conditions will resem-
ble today's conditions with added noise (a persistence forecast), 
or that they will be the same as historical day- of- year conditions 
summarized from previous observations (e.g., a historical mean 
forecast, or “climatology forecast” if enough years of data are 
available; Jolliffe & Stephenson, 2012). Finally, a newly developed 
forecasting model can also be compared with the previously best- 
performing forecasting model for a specific target variable (e.g., 
Jin et al., 2019).

1.4  |  Variations on the iterative forecasting 
cycle and forecasting- adjacent approaches

While the cycle depicted in Figure 1 contains all of the steps in near- 
term iterative forecasting (sensu Lewis et al., 2022), not all forecast-
ing systems implement each step. For example, near- term freshwater 
forecasts can be characterized depending on whether the forecast 
is produced with data assimilation (Figure 1, Step F; Table 1). Data 
assimilation can be conducted in multiple ways: for example, by re-
fitting a forecast model with the most recent observations, directly 
updating the initial conditions of the model to match recent obser-
vations, or using a statistical technique such as an ensemble Kalman 
filter or particle filter to adjust model future predictions to be con-
sistent with recent observations, given uncertainty in both model 
predictions and observations (Cho et al., 2020; Dietze, 2017). Data 
assimilation has been shown to improve the performance of fresh-
water future predictions (Cho et al., 2020), so it has much potential 
for improving forecast usability, but it is also computationally inten-
sive and requires cyberinfrastructure for connecting data to models 
for real- time forecasting.

Another way forecasting systems can be characterized is by 
their workflows (Figure 1, Step C). Forecast workflows can ei-
ther be manual (i.e., steps in the iterative forecasting cycle are 
completed by a human) or automated (i.e., steps are triggered 
via cyberinfrastructure and occur without human intervention), 
depending on the goals of the forecasting project, forecast hori-
zon, and frequency of data assimilation. For example, data ingest, 
defined as the process of making data accessible to the model, 
can be done manually (e.g., a researcher digitizes new data; White 
et al., 2019) or it can be automated (e.g., sensor data are wirelessly 
streamed to a server and assimilated into the forecast model via 
cloud computing; Daneshmand et al., 2021). Other components of 
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forecast workflows, including running models, creating forecast 
visualizations, and disseminating forecasts to end users, can also 
be automated (e.g., Baracchini et al., 2020). Automated, iterative 
workflows are often necessary for generating operational freshwa-
ter forecasts, defined as forecasts that are routinely produced and 
disseminated to the public and other end users (e.g., Ayzel, 2021; 
Emerton et al., 2018; Fry et al., 2020; Nicolle et al., 2020). Manual 
forecast workflows are sometimes produced in academic settings 
as a tool for answering freshwater science research questions 
(e.g., Zwart et al., 2019), model testing, or when the temporal fre-
quency of data collection and analysis is low enough or the fore-
cast horizon is long enough (seasonal to annual forecasts) that 
automated, iterative workflows are not needed (e.g., Messager 
& Olden, 2018). For example, if a forecasting system is making 
1 to 10- year- ahead forecasts of freshwater fish abundance using 
models run on an annual time step, there is likely no need for an 
automated system; in contrast, if a forecasting system is making 
hourly forecasts of floods, an automated iterative workflow would 
likely be critical.

The near- term iterative forecasting cycle (Figure 1) can also 
be applied to predictive approaches which are critical for sup-
plementing, advancing, and supporting forecasting system de-
velopment and operation. In particular, hindcasting and model 
projections can be highly informative for developing near- term 
freshwater forecasts and informing freshwater decision- making 
(Dietze, 2017; Jolliffe & Stephenson, 2012). Hindcasting, defined 
as developing forecasts for a time period which has already oc-
curred (Jolliffe & Stephenson, 2012), is often done to test new 
forecast models (Kelley, 2022) or evaluate how forecast models 
perform in new ecosystems (Woelmer et al., 2022). In a strict in-
terpretation of hindcasting (referred to as retroactive forecasting 
by Jolliffe & Stephenson, 2012), the only difference between fore-
casting and hindcasting workflows is that the date for which the 
prediction is produced is either in the future (forecast) or the past 
(hindcast), while all other components of the workflow (e.g., data 
assimilation, propagation of uncertainty, forecasted model driver 
data) are identical.

Model projections entail running models into the future using 
a set of underlying assumptions or scenarios, thereby predicting a 
future predicated on specific conditions. For example, Lewandoski 
and Brenden (2022) developed model projections of whether con-
tinued lampricide application at historical levels would achieve inva-
sive sea lamprey suppression targets in Lake Superior, USA, by 2040. 
While projections can include uncertainty and provide preemptive 
decision- making guidance, they cannot be used to make probabilistic 
statements about future events (unlike forecasts or hindcasts) since 
it is unknown which scenario is most likely to occur (Dietze, 2017). 
Hindcasting and model projection techniques can also be combined 
for assessing possible alternative management actions. For example, 
Bourgeaux et al. (2022) produced projections for a past time period 
to assess whether managed water releases from a floodplain lake 
could have achieved a target rate of escapement from the lake to 
downstream habitat for threatened European eels.

1.5  |  Water quantity versus water quality 
forecasting

Near- term forecasting of freshwater quantity (e.g., runoff, dis-
charge, water level) has been a focus within hydrology for dec-
ades (Jain et al., 2018; Troin et al., 2021). Progress in water 
quantity forecasting has been motivated by the substantial risk 
to human health and property posed by flooding and drought, 
which have both become more acute under global change (Han 
& Coulibaly, 2017; Jain et al., 2018; Kikon & Deka, 2022). These 
risks have prompted the creation of government- supported agen-
cies and public and private centers to support water quantity fore-
casting at local, regional, national, and international scales (Troin 
et al., 2021) and grassroots communities of practice focused spe-
cifically on water quantity forecasting (e.g., Schaake et al., 2007). 
These communities facilitate interdisciplinary collaboration and 
knowledge transfer, and subsequently enable the application of 
water quantity forecasting techniques at new sites.

The development of robust forecast systems for water quantity 
has been enabled in many cases by long- term government funding 
for sensor networks (Gunn et al., 2014) and well- established model-
ing approaches (Han & Coulibaly, 2017; Kikon & Deka, 2022; Mosavi 
et al., 2018; Troin et al., 2021). As a result, many water quantity fore-
casts are now automated and disseminated to water managers and 
the public at scales ranging from individual rivers or reservoirs to 
national and global scales (e.g., Ayzel, 2021; Baracchini et al., 2020; 
Emerton et al., 2018; Fry et al., 2020; Nicolle et al., 2020). Robust 
water quantity forecast systems have in turn enabled the assessment 
of forecast economic value and utility to managers in various ways, 
including identifying which reservoir inflow forecast horizons are most 
useful to managers (Turner et al., 2020), estimating profit for farm-
ers following forecast- informed water allocation (Giuliani et al., 2020), 
and assessing managers' ability to use streamflow forecasts to achieve 
a target reservoir level (Turner et al., 2017). Despite these advances 
in water quantity forecasting, more work is needed to fully integrate 
water quantity forecasts into management decision- making work-
flows (Rayner et al., 2005).

To date, the creation and public dissemination of freshwater 
quality forecasts have been less common than for water quantity. 
While much effort has been dedicated to future prediction of se-
lect water quality variables, for example, cyanobacterial density 
(Rousso et al., 2020) or water temperature (Baracchini et al., 2020; 
Ouellet- Proulx, St- Hilaire, & Boucher, 2017; Sadler et al., 2022; Zhu 
& Piotrowski, 2020), agency-  and/or center- based support and rou-
tine dissemination of water quality forecasts lags behind flood and 
stream/river discharge forecasting.

However, recent developments suggest that additional efforts in 
freshwater quality forecasting may lead to substantial advances in the 
near future. For example, the development of water quality monitor-
ing sensor networks and the ability to wirelessly stream water qual-
ity data to the cloud (Hestir et al., 2015; Marcé et al., 2016) permit 
updating of forecast models and forecasts in more remote locations 
and at higher resolution than was previously possible. Moreover, the 
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development of freshwater quality forecasts to inform natural re-
source management is now a priority for some government agencies 
(e.g., Bradford et al., 2020; NOAA, National Oceanic and Atmospheric 
Administration, 2014). Concurrently, interdisciplinary communities 
of practice, such as the Ecological Forecasting Initiative (Dietze & 
Lynch, 2019), are enabling idea generation and knowledge transfer 
among forecasters that could be used to advance the performance 
and utility of freshwater quality forecasts.

1.6  |  Study aims: Reviewing the state- of- the- art in 
freshwater forecasting

In sum, freshwater quality forecasting may be poised to advance rap-
idly in the near future, but the extent to which existing freshwater 
quality forecast workflows, methods, and performance compared with 
freshwater quantity forecasting remains unknown. To assess the field 
of near- term freshwater forecasting, we conducted a state- of- the- art 
literature review (sensu Grant & Booth, 2009) to synthesize and quan-
tify recent progress in near- term forecasting of freshwater quality. We 
specifically focused on water quality as an emerging field within eco-
logical forecasting to examine the progress in freshwater quality rela-
tive to freshwater quantity to date as well as identify potential future 
opportunities and challenges to overcome. Our questions centered 
around three focal areas:

 (1) Forecast variables, time scales, models, performance, and uncer-
tainty: Which freshwater variables and temporal scales are most 
commonly targeted for near- term forecasts, and what modeling 
methods are most commonly used to develop these forecasts? 
How is the performance of freshwater quality forecasts as-
sessed, and how skillful are forecasts? How is uncertainty typ-
ically incorporated into water quality forecast output?

 (2) Forecast infrastructure and workflows: Are automated, iter-
ative workflows commonly used in near- term freshwater 
quality forecasting? How often are forecasts validated and 
archived?

 (3) Human dimensions of forecasts: What are the stated motivations 
for creating near- term freshwater quality forecasts, and who are 
the most common end users (if any)? How are end users engaged 
in forecast development?

Below, we present our findings for each of these focal areas. We 
then synthesize across the focal areas with recommendations to ad-
vance the performance and scope of near- term freshwater quality 
forecasts and their utility to resource managers and other end users 
in an era of global change.

2  |  MATERIAL S AND METHODS

We conducted a state- of- the- art literature review (sensu Grant 
& Booth, 2009) of freshwater forecasting to assess the state of 

the field, recent progress, and ongoing challenges (Figure 3; see 
Text S1 for detailed methods). First, we conducted a search for 
peer- reviewed literature published in the last 5 years (since 1 
January 2017) that included four key concepts (freshwater, fore-
casting, freshwater forecast target variables, and a combined 
resource management/global change concept) using the Web of 
Science™ Core Collection database (see Text S1 and Tables S2, 
S3 for detailed methods). All papers were accessed before 17 
February 2022.

Second, we conducted a title screen for relevance. We then car-
ried out a full- text screen to select a subset of papers for in- depth 
analysis. During the full- text screen, we only included papers for 
in- depth analysis when (1) the paper presented a prediction into 
the future from the perspective of the model (meaning no environ-
mental observations were used as model input during the future 
prediction period); (2) the time scale of the future prediction was 
near- term (minimum forecast horizon ≤10 years; see Table 1 for 
the definition of forecast horizon) or long- term; (3) the prediction 
was a forecast, hindcast, or projection and included uncertainty; 
and (4) the target variable was freshwater quantity or quality. We 
included hindcasts and projections in addition to forecasts in the 
in- depth analysis because (1) the iterative, near- term forecasting 
cycle (Fig. 1) can be applied to all three predictive approaches; 
(2) both forecasts and model projections are used for freshwater 
management decision- making; and (3) we found that differentiat-
ing between forecasts and hindcasts was often not possible based 
on the information presented in peer- reviewed papers and their 
supplementary materials. During the full- text screen, we also cat-
egorized the modeling approach for all papers following the clas-
sifications in Table 2.

Third, we further analyzed each paper presenting a near- term 
freshwater quality forecast, hindcast, or projection with uncer-
tainty using a standardized set of questions with answers tabulated 
in matrix form (Table S3) that addressed our focal research ques-
tions. Finally, we used the data from both our full- text screen and 

F I G U R E  3  Freshwater forecasting state- of- art review workflow. 
All tabular data are available in the Environmental Data Initiative 
repository (Lofton et al., 2022b), and all analysis code is available in 
the Zenodo repository (Lofton et al., 2022a).
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standardized matrix analysis to assess the state of freshwater fore-
casting and identify areas of recent progress and ongoing challenges 
(see Text S1: Literature review methods for further details). While our 
focus was on water quality forecasts, we analyzed all papers describ-
ing future predictions of freshwater variables to compare the fields 
of freshwater quality versus quantity.

All data from the state- of- the- art literature review are available 
in the Environmental Data Initiative repository (Lofton et al., 2022b) 
and all analysis- related code is published in the Zenodo repository 
(Lofton et al., 2022a).

Two important caveats to our review are that operational 
near- term freshwater quality forecasts produced by government 
agencies and private entities may not be routinely published in 
peer- reviewed articles and that not all forecasting- relevant re-
search results in the production of near- term forecasts. For ex-
ample, the United States National Oceanic and Atmospheric 
Administration (NOAA) provides both annual forecasts of cyano-
bacterial bloom intensity (Stumpf et al., 2016) as well as near- term 
bloom position future predictions for Lake Erie (U.S. NOAA, Center 
for Operational Oceanographic Products and Services, 2018), but 

TA B L E  2  Definitions and examples of terms used during state- of- art review analysis. Definitions of prediction and forecasting modeling 
approaches are adapted from Lewis et al. (2022). Definitions of methods for incorporating uncertainty into forecasts are adapted from 
Dietze et al. (2021). References for definitions of forecast assessment metrics are provided in the table.

Term Definition Example

Prediction and forecasting modeling approaches

Empirical model 
(non- time series 
model)

Uses correlations or statistical relationships among variables 
to make predictions but does not explicitly account for 
time series attributes of the data

Multiple regression model

Empirical model 
(time series 
model)

Uses correlations or statistical relationships among variables 
to make predictions and explicitly accounts for time 
series attributes of the data such as autocorrelation and 
trends

Autoregressive integrated moving average (ARIMA) 
model

Machine learning 
model

Uses time series data of predictors and a target variable 
(predictand) to train an algorithm that predicts the value 
of the target variable one or more time steps into the 
future; predictors may include climate/meteorological 
variables, waterbody variables (e.g., the previous day's 
water temperature), and/or watershed variables (e.g., the 
previous day's stream nutrient loading)

Artificial neural network model

Process- based 
model

Explicitly attempts to simulate water quality processes but 
is not physically based and/or is simple enough to be 
solved analytically; can include representation of both 
internal (e.g., population growth) and/or watershed (e.g., 
nutrient loading) processes

Age- structured population model

Simulation model Explicitly attempts to simulate water quality processes 
for a physically based ecosystem or watershed and 
is too complex to solve analytically; can include 
representation of both internal (e.g., in- river biochemical 
oxygen demand) and/or watershed (e.g., stream inflow) 
processes

A coupled three- dimensional hydrodynamic- water 
quality model for a lake

Methods of incorporating uncertainty into forecasts

Assimilates The forecast system iteratively updates uncertainty in initial 
conditions and model parameters by comparing model 
predictions to new data as they become available

Using an ensemble Kalman filter to update the 
uncertainty around a phytoplankton growth rate 
parameter using the most recent observation of 
lake chlorophyll- a

Data- driven The forecast system contains the concept of uncertainty and 
the degree of uncertainty is informed by data

Confidence interval around a fitted multiple 
regression line that uses nutrient concentrations 
and water temperature to predict chlorophyll- a 
concentrations

Presents The forecast system contains the concept of uncertainty but 
values are not derived from data

Using different representative concentration pathway 
(RCP) scenarios as model drivers to predict the 
distribution of an aquatic invasive species in 
10 years

Propagates The forecast system translates uncertainty in inputs 
into uncertainty in forecasts, and quantifies how this 
uncertainty increases into the future

Running a model multiple times with different draws 
from distributions of parameters, driver data, and 
initial conditions (i.e., an ensemble) to predict 
dissolved oxygen from 1– 10 days into the future
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neither of these products were retrieved by our literature search. 
Moreover, in select cases information on operational near- term 
water quality forecast workflows may not be published for water 
security reasons, for example, risk of cyberattack on water distri-
bution infrastructure (Housh & Ohar, 2018). Finally, papers may 
report research that is important for advancing near- term fresh-
water quality forecasting but does not actually produce a forecast 
(e.g., Sadler et al., 2022; Zwart et al., 2019).

3  |  RESULTS

3.1  |  Forecast variables, time scales, models, 
performance, and uncertainty

Our literature search retrieved 963 papers, of which 507 were iden-
tified as describing future predictions of freshwater variables during 
our full- text screen (Figures 3 and 4). Below, we report results from 
all 507 “freshwater future prediction papers” to compare the fields 
of freshwater quality versus quantity. Altogether, 16 out of the 507 
papers presented near- term water quality forecasts, hindcasts, or 
projections with uncertainty and were analyzed using our standard-
ized set of questions (Table S3).

3.1.1  |  Water quantity dominates current 
freshwater future prediction efforts

Water quantity variables (defined as lake or reservoir inflow, stream 
or river discharge, water level, or flood risk) were much more com-
monly predicted than any other freshwater variables (83%, n = 424 
of 507 freshwater future prediction papers; Figure 4). The vast ma-
jority (94%) of these 424 water quantity papers presented future 
predictions at near- term (minimum forecast horizon ≤10 years) time 
scales. However, 50% of water quantity future prediction papers 
(n = 214 of 424) did not include uncertainty associated with future 
predictions.

Machine learning models (n = 191 of 424 papers) and sim-
ulation models (n = 130) were the most frequent model types 
identified among papers presenting water quantity future predic-
tions (Figure 4; see Table 2 for model type definitions). Machine 
learning models were the most common (140 of 231; 61%) model 
type in papers presenting near- term water quantity future pre-
dictions without uncertainty, while simulation models were the 
most common (88 of 235; 37%) model type for future predictions 
presented with uncertainty (Figure 4). Simulation models, typi-
cally including both internal (e.g., in- lake evaporation) and water-
shed (e.g., stream inflow) processes when relevant, were also the 
most popular choice (n = 18 of 27) among long- term (minimum 
horizon >10 years) water quantity future predictions (Figure 4). 
While most papers presented only one modeling approach, 13% 
of the water quantity future prediction papers (n = 57 of 424) 
used more than one modeling approach, with machine learning 

and empirical models being most commonly used in the same 
paper (n = 20 papers).

3.1.2  |  Water quality future predictions target 
diverse ecosystem variables

The 16% of papers (n = 83 of 507 freshwater future prediction pa-
pers) predicting a water quality variable (at either near- term or long- 
term horizons) targeted a wide diversity of water quality metrics 
(Figure 5). Popular target water quality variables spanned physical 
metrics (e.g., water temperature, n = 13 papers; sediment/turbidity, 
n = 9), chemical metrics (e.g., dissolved oxygen, n = 13; phosphorus 
or nitrogen concentrations, n = 10; conductivity/salinity, n = 8), and 
biological metrics (e.g., fish abundance or distribution, n = 11; phyto-
plankton abundance, n = 8). Among water quality future prediction 
papers, 64% (53 of 83 papers) did not incorporate uncertainty.

3.1.3  |  Most freshwater quality future 
predictions are near- term

The majority (73%; n = 61 of 83) of water quality papers presented fu-
ture predictions at near- term (minimum forecast horizon ≤10 years), 
rather than long- term, time scales (Figure 4). Papers presenting 
water quality future predictions at long- term horizons more often 
included uncertainty compared with those presenting water quality 
future predictions at near- term horizons (64% vs. 26%, respectively).

Among the 16 identified near- term water quality forecasts, 
hindcasts, or projections with uncertainty, minimum forecast 
horizons ranged from sub- daily (4 h) to decadal (10 years), with 
three papers presenting a maximum forecast horizon >10 years 
(Figure 6a,b; Table S4). Papers presenting water quality forecasts, 

F I G U R E  4  Results of the initial screen for state- of- art review. 
Water quantity is defined as lake or reservoir inflow, stream or 
river discharge, water level, or flood risk. Near- term is defined as 
having a minimum forecast horizon ≤10 years. Future predictions 
must have specified uncertainty to be considered a forecast; 
here, forecast includes forecasts, hindcasts, and projections. EMP, 
empirical non- timeseries model; ML, machine learning model; other, 
other model type; PROC, process- based model; SIM, simulation 
model; TS, time series model.
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1700  |    LOFTON et al.

hindcasts, or projections for lotic ecosystems tended to either 
have daily (<7 days) or decadal (≥10 years) maximum horizons, 
while forecasts in lentic ecosystems had horizons ranging from 
daily to monthly (30– 365 days) scales. There was no observ-
able pattern relating the type of water quality target variable 
(physical, chemical, biological, or multiple) to maximum forecast 
horizon.

3.1.4  |  Multiple modeling methods are being used 
to predict freshwater quality

Machine learning models (n = 34 of 83 papers), simulation mod-
els (n = 22), and empirical models (n = 22) were the most frequent 
model types identified among papers presenting future predictions 
of water quality (Figure 4, see Table 2 for model type definitions). 

Similar to water quantity future prediction papers, machine learn-
ing models were the most common model type in papers present-
ing near- term water quality future predictions without uncertainty, 
while simulation models, typically including both internal (e.g., in- 
lake algal growth) and external (e.g., watershed nutrient inputs) 
processes when relevant, were the most common model type for 
near- term water quality future predictions presented with un-
certainty (Figure 4). Empirical, non- time series models (defined in 
Table 2) were most often used for long- term water quality future 
predictions (Figure 4). Ten percent of water quality future predic-
tion papers (n = 8 of 83) used more than one modeling approach. 
However, we found that only 5 of 16 near- term freshwater quality 
forecasting papers compared two or more models, with only three 
papers comparing the primary forecast model with a null model (de-
fined as a persistence, historical mean, or first- order autoregressive 
forecast; Figure 7c).

F I G U R E  5  Frequency of water quality variables predicted in papers presenting freshwater future predictions. BOD/COD, biochemical 
oxygen demand/chemical oxygen demand; DO, dissolved oxygen; index, water quality index calculated from multiple freshwater variables; 
toxins/T&O compounds, toxins/taste and odor compounds.

F I G U R E  6  Near- term water quality 
forecast ecosystem type, target variable 
type, and maximum forecast horizon. 
Lentic = standing water  
(e.g., lake, reservoir); lotic = flowing water  
(e.g., stream, river). Each data point 
represents one study. See Table S4 for 
data underlying this figure.

 13652486, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16590, W

iley O
nline Library on [20/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  1701LOFTON et al.

3.1.5  |  Water quality forecast performance is 
usually assessed, but comparison of forecasts is 
challenging

Due to the wide variety of forecast target variables and assessment 
metrics presented among the near- term water quality papers we re-
viewed, we evaluated forecast performance based on the metrics pro-
vided by the authors in each paper. Five of sixteen water quality papers 

did not present a quantitative assessment of forecast performance. 
Of those that did provide quantitative assessment, root mean square 
error (RMSE; Table S1), reliability diagrams (Bröcker & Smith, 2007; 
Table S1), and continuous ranked probability score (CRPS; Table S1) 
were the most commonly used assessment metrics (Figure 7a).

Across studies, forecast performance varied among target variables 
and forecast horizons, and comparison among forecasts was often dif-
ficult due to differences in forecast assessment methodology (Table 3). 
However, three studies forecasting reservoir and river water tempera-
ture reported CRPS <1.1°C (see Table S1 for definition and interpreta-
tion of CRPS) for forecast horizons from one to 16 days into the future 
(Table 3; Ouellet- Proulx, Chimi Chiadjeu, et al., 2017; Ouellet- Proulx, 
St- Hilaire, et al., 2017; Thomas et al., 2020). An additional study re-
ported greater skill in seasonal (1-  to 4- month- ahead) forecasts of 
bottom water temperatures compared with surface waters across four 
lakes and reservoirs in Spain, Norway, Germany, and Australia (Table 3; 
Mercado- Bettín et al., 2021), which the authors attributed to greater 
thermal inertia in the bottom waters of lakes. Two studies provided 
forecasts of nitrogen (N) and phosphorus (P) concentrations with rea-
sonable skill up to 5 days ahead (Jin et al., 2019; Peng et al., 2020). 
Additional near- term water quality forecasts showed a reasonable 
skill for dissolved oxygen, methane ebullition emissions, turbidity, and 
conductivity (Table 3). While three studies presented near- term fore-
casts of phytoplankton in lakes, differences in both their forecast target 
variables and methodology precluded comparison (Liu et al., 2020; Mu 
et al., 2021; Page et al., 2018). Specifically, two studies assessed their 
forecasts by converting the forecast to binary predictions (occurrence/
non- occurrence of a bloom event; Mu et al., 2021) and one additional 
study provided probabilistic forecasts of chlorophyll- a concentrations 
up to 10 days into the future (Table 3; Page et al., 2018).

3.1.6  |  Less than half of water quality future 
predictions incorporate uncertainty

Notably, only 36% of papers (30 of 83) that presented predic-
tions of freshwater quality variables into the future incorporated 
uncertainty (Figure 4). Within near- term water quality forecasts, 
hindcasts, and projections with uncertainty (n = 16), multiple 
methods of uncertainty specification were used (Figure 7b). For 
example, some papers included the concept of uncertainty but 
did not quantify it (e.g., used different land use change scenarios 
as model drivers; Chen et al., 2020; these papers were catego-
rized in the “present” category for uncertainty inclusion methods 
following Table 2), whereas others quantified and propagated 
uncertainty while also iteratively assimilating new observations 
to constrain initial conditions (e.g., Baracchini et al., 2020; Liu 
et al., 2020; these papers were categorized in the “assimilates” 
category for uncertainty inclusion methods following Table 2; 
Figure 7b). Of the 16 near- term freshwater quality papers that re-
ported uncertainty, four were projections (i.e., used scenarios to 
generate future predictions) and 12 were forecasts or hindcasts. 
A majority (n = 7 of 12) of near- term freshwater quality forecasts 

F I G U R E  7  Frequency of (a) model calibration, validation, and 
forecast assessment metrics, (b) uncertainty specification methods, 
and (c) workflow attributes for near- term water quality forecasts. 
See Table S1 for definitions of forecast assessment metrics in 
(a); see Table 2 for uncertainty specification methods in (b); see 
Table 1 and Table S3 for definitions of workflow attributes in (c) and 
Table S4 for data underlying this figure.
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and hindcasts both propagated uncertainty and assimilated new 
observations (Figure 7b). All papers presenting projections were 
categorized as having uncertainty “present” or “data- driven” (see 
Table 2 for definitions of uncertainty categories).

3.2  |  Forecast infrastructure and workflows

Overall, while most of the near- term freshwater quality forecasts 
we analyzed were generated using the iterative forecasting cycle 
framework (n = 11 of 16; Figure 1, Table S4), only three papers 
representing two forecasting systems reported producing fore-
casts via automated workflows (Figure 7c; Baracchini et al., 2020; 
Carey et al., 2022; Thomas et al., 2020). In both cases, the authors 
described automated forecast workflows that included the steps of 
(1) retrieval of new observational data and meteorological forecasts 
to force a freshwater ecosystem forecasting model; (2) assimilation 
of observational data to inform model initial conditions and param-
eters; (3) model runs; and (4) delivery of the automated forecast to 
end users via a web interface or other web- based communication.

Archiving forecasts was also not a commonly reported practice 
among forecast papers (Figure 7c). Three papers reported archiving 
of forecasts, either by publishing data and forecasts retroactively to 
a data repository upon publication of the associated paper (McClure 
et al., 2021) or by providing them in real time via an open online 
platform or repository (Baracchini et al., 2020; Carey et al., 2022). In 
two cases, authors reported that the forecast- related code was also 
published with a digital object identifier (DOI; Carey et al., 2022; 
McClure et al., 2021). We note that information on infrastructure 
and workflows may be difficult to extract from academic research 
papers as the focus is often on forecast results and performance 
rather than methodology. In addition, as noted above, operational 
forecast workflows developed by government agencies or private 
entities may not be published in academic journals, or the availability 
of these workflows may be limited by ethical considerations or secu-
rity concerns (Hobday et al., 2019; Housh & Ohar, 2018).

3.3  |  Human dimensions of forecasts

3.3.1  |  Water quality forecasts are motivated by 
ecosystem services and increased variability

The development of many of the near- term freshwater quality 
forecasts we analyzed was motivated by the need for freshwater 
ecosystem services in the face of increased ecosystem variability 
due to global change. Researchers identified increased variability 
in management- relevant ecosystem variables such as water tem-
perature (Carey et al., 2022; Thomas et al., 2020), distribution of 
freshwater fishes (Fraker et al., 2020), invasive species (Messager 
& Olden, 2018), and algal biomass (Liu et al., 2020; Mu et al., 2021; 
Page et al., 2018) as motivation for forecast development. In all 
cases, the stated motivation for anticipating increased variability was 

coupled with a desire to preemptively inform freshwater manage-
ment and decision- making. Indeed, improving freshwater resource 
management was stated as motivation for forecast development in 
every freshwater quality forecast paper we analyzed (see Lofton 
et al., 2022a for complete list), save one (McClure et al., 2021). In 
addition to providing early warnings to resource managers and 
the public about global change, researchers mentioned improv-
ing forecasting methodology (Bhattacharyya & Sanyal, 2019; Peng 
et al., 2020) and understanding of ecological processes (McClure 
et al., 2021) as additional factors motivating forecast development.

3.3.2  |  End- user engagement is not often reported 
in water quality forecast papers

Despite that nearly all freshwater quality forecast papers stated im-
proved water resource management as motivation for forecast de-
velopment, only six of 16 papers, representing four distinct forecast 
systems, named any forecast end users. While end- user engagement 
was infrequently reported in near- term water quality forecast pa-
pers, it is possible that forecast teams were engaging end users but 
not reporting it, especially if the focus of the paper was to document 
other aspects of the forecast system, such as model development or 
forecast performance.

The papers that did specify end users generated future predictions 
for a small, temperate drinking water reservoir (Falling Creek Reservoir, 
U.S.; Carey et al., 2022; Thomas et al., 2020), a large north temperate 
lake (Lake Geneva, Switzerland; Baracchini et al., 2020), two north tem-
perate rivers (Miramichi and Nechako Rivers, Canada; Ouellet- Proulx, 
Chimi Chiadjeu, et al., 2017; Ouellet- Proulx, St- Hilaire, et al., 2017), and 
a Laurentian Great Lake (Lake Erie, U.S.; Liu et al., 2020). Incorporation 
of end users ranged from briefly mentioning that end users were asso-
ciated with a particular forecast site or variable (Liu et al., 2020; Ouellet- 
Proulx, Chimi Chiadjeu, et al., 2017; Thomas et al., 2020) to detailing 
multiple mechanisms for engaging end users in forecast development 
(Carey et al., 2022). Carey et al. (2022) described co- developing a water 
quality forecast with drinking water reservoir managers in southwest 
Virginia, U.S., by (1) working with managers to identify useful target 
variables for forecasting, (2) observing water treatment plant opera-
tions to better understand managers' daily activities, and (3) requesting 
feedback on forecast visualizations to improve their use for decision- 
making. Ouellet- Proulx, St- Hilaire, et al. (2017) also provided a specific 
management motivation for their target variable of water temperature: 
helping lake managers in British Columbia, Canada plan summer water 
releases to reduce thermal stress for downstream freshwater fish.

While most papers focused on resource managers as potential 
end users or did not specify end user identity, one paper reported 
on how forecasts were used by multiple user groups. Baracchini 
et al. (2020) documented the use of their hydrodynamics and water 
temperature forecast system by various members of the community 
surrounding Lake Geneva, Switzerland using data collected from 
their forecast dissemination website. The authors were able to ver-
ify forecast use and acceptance by the community (evidenced by 
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~1000 visitors to their website per day in the summer of 2019) and 
to differentiate three types of end users: scientists, lake profession-
als, and the public.

4  |  DISCUSSION AND SYNTHESIS: 
OPPORTUNITIES TO ADVANCE NE AR- TERM 
FRESHWATER QUALIT Y FOREC A STING

Our findings indicate that most near- term water quality forecasts 
published as peer- reviewed articles in the past 5 years are in an early 
stage of development, serving as “proofs- of- concept” rather than 
as operational forecasts. These results set the stage for additional 
work to be done to advance water quality forecasting. Nonetheless, 
the papers we analyzed demonstrate key areas of recent pro-
gress that will be critical to future development of operational 
near- term freshwater quality forecasts, including: quantitative, 
probabilistic forecasts of both abiotic and biotic variables (e.g., Jin 
et al., 2019; Liu et al., 2020; Page et al., 2018; Peng et al., 2020), 
forecasts at management- relevant time horizons (e.g., Mercado- 
Bettín et al., 2021), use of probabilistic forecast assessment metrics 
(e.g., Ouellet- Proulx, Chimi Chiadjeu, et al., 2017; Ouellet- Proulx, 
St- Hilaire, et al., 2017), comparison of forecasts with null models 
(e.g., McClure et al., 2021; Page et al., 2018; Thomas et al., 2020), 
uncertainty propagation and partitioning (e.g., McClure et al., 2021; 
Thomas et al., 2020), iterative, automated workflows (e.g., Baracchini 
et al., 2020; Thomas et al., 2020), co- development of forecasts with 
end users (e.g., Carey et al., 2022), and assessment of forecast use by 
a range of end users (e.g., Baracchini et al., 2020). Further advances 
in near- term freshwater quality forecasting will require continued 
development of forecasting tools and skills as well as more substan-
tive end- user engagement.

Here, we synthesize the results from the review to provide a list 
of seven recommendations comprising an agenda for developing 
the next generation of near- term freshwater quality forecasts, with 
an emphasis on building automated, operational forecast systems. 
The conceptual framework underpinning our recommendations to 
advance near- term freshwater quality forecasting is presented in 
Figure 2.

4.1  |  A definition of forecast that includes 
uncertainty

All forecasts are inherently uncertain as perfect knowledge of future 
events is impossible, and therefore a forecast should, by definition, 
specify uncertainty (Figure 2: quantified uncertainty; uncertainty 
specification, propagation, and analysis). Ultimately, the degree of 
confidence end users place in a forecast depends on both the ac-
curacy of the forecast (e.g., how well future predictions match ob-
servations) and the degree of forecast uncertainty. Underestimation 
or omission of uncertainty in future predictions can lead to over-
confidence in forecast accuracy, potentially affecting management 

decisions based on forecast output (Berthet et al., 2016). One com-
pelling example of the risks associated with the omission of uncer-
tainty from future predictions is the 1997 Red River flooding event 
in Grand Forks, ND, U.S., and East Grand Forks, MN, U.S., when the 
U.S. National Weather Service's future prediction of a 49 ft flood 
crest (with no quantitative uncertainty estimate associated with 
the flood crest height prediction) was incorrectly interpreted by 
decision- makers and community members as a maximum possible 
crest, leading to inundation and tremendous flood damage when the 
actual flood crest of 54.1 ft caused dikes protecting the cities to fail 
(Pielke, 1999).

In addition to improving decision- making outcomes, uncertainty 
quantification and partitioning can inform the most effective ways to 
improve forecast performance (e.g., Lofton, Brentrup, et al., 2022). 
For example, if uncertainty partitioning identifies that forecast 
model driver data is the biggest source of forecast uncertainty, then 
reducing uncertainty in driver data would be a logical next step for 
improving that forecast system (following Thomas et al., 2020). 
Importantly, reducing uncertainty in a forecast does not necessar-
ily improve forecast accuracy if the forecast is biased (e.g., tends 
to over-  or underestimate), and metrics that assess forecasts based 
on the degree of forecast uncertainty (e.g., sharpness; Table S1) are 
often predicated on the assumption that the forecast is sufficiently 
accurate (Gneiting, Balabdaoui, et al., 2005). Furthermore, even 
forecasts for which uncertainty is robustly characterized may not 
capture all possible future outcomes if an outcome occurs due to 
processes not included in the forecast model or has no historical 
analogue (Boettiger, 2022; NRC, 2010; Thompson & Smith, 2019). 
For example, a lake water quality model will likely fail to accurately 
predict future water quality if a new species that is not represented 
in the model invades the lake and alters water quality (e.g., an un-
expected invasion of the spiny water flea, Bythotrephes longimanus; 
Walsh et al., 2016).

Despite the importance of incorporating uncertainty into future 
predictions, our review revealed that only 36% of papers predict-
ing freshwater quality variables into the future specify uncertainty. 
Our findings highlight an opportunity for more robust specification 
and partitioning of uncertainty in freshwater forecasting efforts. 
Importantly, some freshwater forecasters are already successfully 
using sophisticated uncertainty specification techniques, evidenced 
by 7 of 12 near- term water quality forecasts and hindcasts which 
both propagate uncertainty and assimilate new observations to in-
form model initial conditions (Figure 7b).

Considering how a forecast or projection will be used for 
decision- making should guide methods for quantifying uncer-
tainty in freshwater quality future predictions. For example, if a 
manager is presented with a projection that includes uncertainty 
by running a model with multiple scenarios (e.g., different levels 
of capture effort for an invasive crayfish within a stream network 
over the next 5 years), but a range of uncertainty within each sce-
nario is not specified, that projection effectively is a deterministic 
future prediction with no uncertainty once a management deci-
sion is made.
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4.2  |  Integration of end users into the 
forecast process

Freshwater quality forecasts are developed by people, for people, 
and to date have been primarily intended for use by freshwater 
managers. It follows that the formation of forecaster- manager 
partnerships should be integral to forecast development and that 
managers and other end users should be engaged throughout the 
forecast process (Figure 2: end- user engagement). For example, 
during the early stages of forecast system development, end users 
can identify which target forecast variables are most useful (e.g., 
asking ship captains whether forecasts of lake ice concentration 
or ice thickness are more useful; Fujisaki- Manome et al., 2022), 
and over which time horizons forecasts should be provided 
(DeFlorio et al., 2021; Turner et al., 2020). During model devel-
opment, expert elicitation, a formal process of extracting expert 
knowledge while mitigating bias (Hemming et al., 2018), can be 
used to inform model structure (e.g., Bertone et al., 2016). End 
users should also be consulted regarding forecast dissemination 
methods to ensure correct interpretation of forecast output and 
maximize forecast utility (Berthet et al., 2016; Gerst et al., 2020; 
Theocharis et al., 2019). For example, interviews and focus groups 
with end users of NOAA's Climate Prediction Center climate out-
look visualizations guided updates of NOAA's air temperature and 
precipitation color maps for improved forecast interpretability 
(Gerst et al., 2020). Finally, feedback from managers and end users 
should be sought after forecast dissemination to determine if the 
forecast product is being successfully implemented for decision- 
making support (e.g., Jackson- Blake et al., 2022).

Of the 16 near- term freshwater quality forecasting papers 
analyzed, two emphasized end- user engagement, specifically 
co- development of forecasts with resource managers (Carey 
et al., 2022) and assessment of forecast acceptance and use 
(Baracchini et al., 2020). These examples illustrate the potential for 
co- development of additional operational freshwater quality fore-
casts suitable for management decision- making in the near future. 
As end- user engagement represents a critical component of fore-
cast system development, we encourage researchers to document 
it, even if briefly, in their academic papers.

4.3  |  More forecasts using diverse modeling 
approaches over multiple horizons

Advances in freshwater quality forecasting require the existence 
of initial forecast systems upon which to improve, serving as pre-
cursors for operational near- term water quality forecast systems 
(Figure 2: operational, near- term water quality forecasts). The domi-
nance of water quantity freshwater predictions (83% of freshwater 
future prediction papers) over water quality future predictions in our 
literature review underscores the critical need for developing ad-
ditional near- term freshwater quality forecasts, ideally using diverse 
modeling approaches over multiple forecast horizons. The wide 

diversity of water quality forecast target variables in our review 
(Figure 5) highlights that for any individual target variable, relatively 
few forecasts are being produced, limiting intercomparison of fore-
casting approaches.

Forecasts of a single target variable using multiple model-
ing techniques at many sites (e.g., Sadler et al., 2022) are needed 
to produce actionable forecasts and provide insight on freshwater 
ecosystem function. Using a wide diversity of modeling approaches 
is necessary to avoid the “forecast trap” (sensu Boettiger, 2022), 
wherein the most accurate available forecast does not lead to an 
optimal management outcome. The trap arises when the range of 
possible outcomes predicted by an ensemble of models is too nar-
row, providing managers with insufficient guidance about how 
their decisions might manifest in the real world (Boettiger, 2022; 
Thompson & Smith, 2019). Moreover, forecast end users typically 
integrate multiple forms of information when making decisions (e.g., 
Fujisaki- Manome et al., 2022). As a result, development of a diver-
sity of both quantitative (e.g., tomorrow's dissolved oxygen will be 
1.8 ± 0.5 mg L−1) and categorical (e.g., the risk of observing hypoxia 
tomorrow will be high) forecasts that incorporate model output and 
human expertise (Tetlock & Gardner, 2016) will likely be needed to 
support a variety of forecast end users in achieving optimal manage-
ment outcomes. Importantly, forecasters should also consider both 
simple and complex model structures, as simple models may prove 
the most effective for forecasting certain variables, such as verte-
brate population size forecasts (Ward et al., 2014), whereas complex 
process- based models may be better at forecasting conditions that 
fall outside of the range of historical conditions (Adler et al., 2020). 
Moreover, consideration of internal waterbody processes affect-
ing water quality (e.g., biochemical oxygen demand) and watershed 
processes (e.g., stream nutrient loading), in addition to meteorolog-
ical drivers, will likely be important for advancing freshwater qual-
ity forecast performance. However, comparison of more complex 
models against simple models (i.e., null or naïve models) is necessary 
to quantify the benefit of added model complexity (e.g., Perretti 
et al., 2013).

In addition to using diverse modeling approaches, production 
of forecasts at multiple time horizons is needed to ensure maxi-
mum forecast utility for end users. Near- term forecasts comprise 
a wide range of time scales (e.g., daily, weekly, seasonal, decadal), 
each of which is likely associated with different end- user goals 
and decisions. For example, a ship captain may be most inter-
ested in lake ice conditions over the next several hours to days 
when deciding whether to embark (Fujisaki- Manome et al., 2022), 
while a reservoir manager may look multiple months ahead when 
planning water releases downstream (Jackson- Blake et al., 2022; 
Turner et al., 2020). We observed a relative dearth of near- term 
freshwater quality forecasts at multi- month (seasonal) time scales 
(but see Mercado- Bettín et al., 2021; Figure 6), highlighting an 
opportunity for the development of additional forecasts at this 
horizon. Furthermore, assessment of forecasts across multiple 
horizons may lead to insights regarding the intrinsic predictabil-
ity of freshwater ecosystems (sensu Pennekamp et al., 2019), in 
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turn informing which modeling approaches are likely to be most 
successful for freshwater forecasting (Pennekamp et al., 2019; 
Petchey et al., 2015).

The development of forecasts of a single target variable at many 
sites with different environmental conditions can also provide in-
sight on the intrinsic predictability of water quality and the utility 
of forecasting for water quality management across ecosystems. 
Initiatives such as the National Ecological Observatory Network 
(NEON) Ecological Forecasting Challenge (Thomas, Boettiger, 
et al., 2022), which solicits participants to submit forecasts for 
multiple sites using standardized data collected by NEON and as-
sesses their skill, are a starting point to compare predictability across 
ecosystems and model types (e.g., Thomas, McClure, et al., 2022). 
However, the freshwater component of the NEON Challenge is lim-
ited to seven lakes and 27 streams occurring in the United States, 
and therefore lacks a suitably wide range of environmental condi-
tions to be globally relevant. Moreover, forecasts are evaluated for 
accuracy only, not for optimal management outcomes. Additional ef-
forts to develop multi- site forecasts are needed to assess freshwater 
ecosystem predictability under global change as well as ensure maxi-
mum forecast utility for water quality management.

4.4  |  Shared standards for workflows, file formats, 
metadata, archiving, and benchmarking

Building better models is not sufficient to improve near- term fresh-
water quality forecast performance and utility. Development of 
automated, portable, and reproducible workflows (e.g., Huang 
et al., 2019; White et al., 2019), standardized metadata and file for-
mats (e.g., Dietze et al., 2021), repositories for archiving forecasts 
(e.g., Reich et al., 2021), and consensus on methods for benchmark-
ing forecast skill (Dietze et al., 2018; Smith et al., 2015) are also 
needed (Figure 2: automated, iterative workflows, archiving and 
metadata, forecast assessment).

Portable, reproducible workflows permit replication of results 
whenever and wherever the workflow is run (e.g., avoiding the prob-
lem of obtaining a different result if a user's software has been up-
dated or across different operating systems) and are easily accessed 
by users (Vaillancourt et al., 2020). Examples of tools that facilitate 
the development of portable, reproducible forecast workflows in-
clude software containers, which can package, for example, fore-
casting code with all of the necessary dependencies and computing 
environment specifications into self- contained units for reproduc-
ible analyses (Cito et al., 2017) and cloud computing, which allows 
users to access, for example, forecast output from any device at a 
location and time of their choice, rather than requiring each user 
to have specialized infrastructure for running a forecast on a local 
computer (Sunyaev, 2020). The landscape of constantly evolving 
computing technologies available for use in water quality forecast 
workflows highlights the importance of (1) engaging interdisciplin-
ary expertise in forecast development teams, including computer 
science (Carey et al., 2019, 2022) and (2) developing accessible, 

community- based cyberinfrastructure tools and software (Boettiger 
et al., 2015; Fer et al., 2021).

Standardized file formats and data structures for observational 
data, forecast output, and metadata (e.g., Dietze et al., 2021) facili-
tate the use of shared tools for automated assimilation of data into 
forecast models (e.g., Huang et al., 2019; White et al., 2019), regular 
dissemination of forecasts to end users (e.g., Baracchini et al., 2020; 
Daneshmand et al., 2021), and forecast evaluation for quantitative 
intercomparison (e.g., Thomas, Boettiger, et al., 2022). Adoption of 
standardized data formats and metadata by freshwater research 
networks such as the Global Lake Ecological Observatory Network 
(GLEON; Weathers et al., 2013) could facilitate freshwater quality 
forecasting by providing databases with which multiple forecasting 
approaches could be tested at the global scale. While some initia-
tives have begun this work (e.g., Jennings et al., 2017), additional ef-
forts to produce intercomparable forecasts using shared standards 
are needed to advance freshwater quality forecasting.

Once file formats have been developed, archiving forecasts in 
real time promotes integrity in forecast benchmarking. However, the 
iterative nature of real- time forecast products raises several perti-
nent archiving challenges, including the development of repositories 
that permit automated, iterative updating of forecast output as ad-
ditional forecasts are produced; deciding how to publish real- time 
forecasts in peer- reviewed papers that require revising the forecasts 
months to years after being initially generated; and determining 
whether and how to assign DOIs to data products that will change or 
be updated every time a new forecast is issued. Recent efforts to de-
velop a discipline- agnostic archive specifically designed for predic-
tive products, with standardized data and metadata formats, scoring, 
and visualizations (Reich et al., 2021), illustrate that early integration 
of archiving into freshwater quality forecasting efforts could have 
long- term benefits for promoting forecast intercomparison.

In addition to formalizing community standards for data, fore-
cast outputs, and archiving, freshwater forecasters need to build 
consensus on how to assess forecast performance (Pappenberger 
et al., 2015). The properties of candidate benchmark assessment 
metrics should be carefully considered to ensure that the desired at-
tributes of freshwater quality forecasts (e.g., high accuracy) are ade-
quately rewarded and undesirable attributes (e.g., large uncertainty 
spread) are penalized. For example, sharpness penalizes forecasts 
with a large uncertainty spread but does not assess the distance of 
a forecast prediction from the observation (Gneiting, Balabdaoui, 
et al., 2005; Table S1), while the ignorance score heavily penalizes 
forecasts that fall far from observations (Roulston & Smith, 2002).

Fortunately, freshwater quality forecasters are starting to adopt 
methods of forecast assessment that facilitate benchmarking and 
intercomparison of probabilistic forecasts. For example, adoption 
of a probabilistic forecast assessment metric (CRPS) by multiple 
water temperature forecasters enabled us to compare forecast per-
formance for two forecasting systems in a reservoir and two rivers, 
respectively (Ouellet- Proulx, Chimi Chiadjeu, et al., 2017; Ouellet- 
Proulx, St- Hilaire, et al., 2017; Thomas et al., 2020). Based on the per-
formance of these two forecasts, future forecasts of surface water 
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temperature up to 16 days ahead could be benchmarked against a 
CRPS of ~1°C, the maximum CRPS observed in these studies. But 
overall, the wide variety of assessment metrics currently used to 
quantify water quality forecast performance (Figure 7a) makes in-
tercomparison of forecasts difficult. Efforts to reach a consensus 
on appropriate methods for benchmarking other important water 
quality variables (e.g., dissolved oxygen, chlorophyll- a) are needed 
to measure improvements in near- term freshwater quality forecast 
performance over time.

4.5  |  Integration of insights from other forecasting 
disciplines

Near- term freshwater quality forecasting will benefit by integrating 
and adapting tools and skills from more mature environmental fore-
casting disciplines, particularly weather, marine, and water quantity 
forecasting (Figure 2: tools and skills). Arguably the largest and most 
mature Earth system forecasting discipline, weather and climate 
forecasting offer methodological inspiration and guidance to water 
quality forecasters on a number of fronts, including data assimilation 
(reviewed in Lahoz & Schneider, 2014), uncertainty quantification 
(e.g., Yip et al., 2011), and forecast assessment (e.g., Gneiting, Raftery, 
et al., 2005; Hersbach, 2000). For example, the CRPS probabilistic 
forecast metric, which was used in four of 16 near- term water qual-
ity forecasts identified in our review, has been used in weather fore-
casting for decades (Gneiting, Raftery, et al., 2005; Hersbach, 2000). 
In addition, examining the benefits and disadvantages of the numer-
ous methods for public dissemination of weather forecasts, ranging 
from mobile phone applications (Zabini, 2016) to televised verbal 
interpretation by local, human forecasters (Compton, 2018), may be 
helpful for water quality forecasting teams to consider as they work 
to provide forecast output that meets end- user needs. Finally, the 
history of weather forecasting demonstrates that improvement in 
forecast skill over time is possible even if initial attempts are quite 
poor (Bauer et al., 2015; Blum, 2019), providing motivation to aspir-
ing freshwater quality forecasters to begin forecasting now, even in 
the face of incomplete knowledge (Dietze et al., 2018).

Freshwater quality forecasters can also apply lessons learned 
from marine and water quantity forecasters regarding, for example, 
model development (Varadharajan et al., 2022), forecast dissemina-
tion (Choi et al., 2022), and the ethical implications of providing op-
erational forecasts (Hobday et al., 2019; Record & Pershing, 2021). 
Moreover, insights from marine and freshwater quantity forecast-
ing may be particularly relevant to freshwater quality forecasting 
as all three disciplines involve aquatic ecosystems. For example, re-
searchers are now applying machine learning methods long popular 
in freshwater quantity forecasting to water quality forecasting (re-
viewed by Poh Wai et al., 2022), and several challenges informed by 
the use of machine learning models in water quantity have been iden-
tified, including the need for knowledge- guided machine learning, 
incorporation of uncertainty, transfer learning (i.e., models trained 
at data- rich sites are then applied at data- poor sites), and improved 

interpretability of model output (Khudhair et al., 2022; Poh Wai 
et al., 2022; Varadharajan et al., 2022). As another example, many of 
the lessons learned in the development and dissemination of predic-
tive water quality guidance at marine beaches may readily transfer to 
freshwater beaches, such as the utility of three- dimensional models 
for capturing diurnal fluctuations in water quality (Choi et al., 2022), 
methods for coordinating data collection among multiple agencies to 
assess urban water quality (Aznar et al., 2022), or the difficulty of de-
veloping adequate water quality predictive tools (e.g., Escherichia coli 
predictions) for beaches subject to frequent visits by large flocks of 
birds (U.S. EPA, 2016). Finally, ethical considerations relevant to op-
erational marine forecasts, such as the risk of driving lobster prices 
up or down based on lobster landing forecasts (Hobday et al., 2019), 
may have freshwater analogues, such as economic risks associated 
with providing freshwater fishery forecasts.

Forecasting techniques and ideas gleaned from other disciplines 
will likely require adaptation to account for unique attributes of water 
quality data and freshwater ecosystem processes before being ap-
plied in a freshwater quality forecasting context. For example, lake 
freshwater quality forecast models may need to account for water-
shed inputs that are integrated into lake water quality, particularly 
over seasonal or annual time scales. However, recent innovations in 
freshwater quality forecasting methodology, including embedding 
freshwater- relevant physical processes into machine learning model 
architectures (Daw et al., 2020; Read et al., 2019) and data assim-
ilation of multiple freshwater quality data streams with different 
attributes (Abdul Wahid & Arunbabu, 2022; Chen et al., 2021; Cho 
et al., 2020; Cobo et al., 2022), illustrate the benefits of adopting 
practices from other disciplines for water quality forecasting.

4.6  |  Financial support for near- term water quality 
forecasting

Most of the near- term freshwater quality forecasts that we analyzed 
are still in the early stages of development, indicating that funding 
to support the collection of data, development of automated, itera-
tive workflows, advancement of modeling and uncertainty analysis 
methods, robust forecast archiving, and assessment of forecast 
performance and utility to managers are needed (Figure 2: funding 
support). Some freshwater quality forecasting efforts could leverage 
existing data collection programs run by agencies and sensor net-
works (e.g., NEON, U.S. Geological Survey); however, to date, there 
has been much more standardized sensor infrastructure investment 
in water quantity monitoring than quality monitoring.

Unprecedented efforts in freshwater future prediction are 
underway, requiring broad investments that span regional/state 
and national agencies as well as academic research portfolios. 
Freshwater quality forecasting can and should be explicitly identified 
as a priority to support essential agency mandates, for example, in 
the context of supporting fisheries, water quality, the Blue Economy 
(e.g., Petrea et al., 2021) or preventing waterborne disease out-
breaks (e.g., Nusrat et al., 2022). Funding opportunities for academic 
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researchers that explicitly encourage the cross- disciplinary collabo-
ration required to build automated, operational forecasting systems 
with end- user engagement will be most helpful in facilitating the de-
velopment of robust water quality forecast systems. Importantly, in-
definitely maintaining an operational forecast system is outside the 
scope of most academic research programs, as it requires infrastruc-
ture maintenance and investment in personnel extending beyond 
the timespan of most academic research grants (Carey et al., 2022; 
Hobday et al., 2019). As a result, additional funding will be required 
to facilitate the transition of operational forecast systems from aca-
demic teams to industry and government agencies.

4.7  |  Further development of educational 
resources and communities of practice

Ultimately, generating accurate freshwater quality forecasts requires 
extensive training of the forecasting team. Obtaining training in a multi- 
disciplinary, emerging field like ecological forecasting can be challeng-
ing (Woelmer et al., 2021), motivating the need for broad sharing of 
educational materials (Moore et al., 2022; Willson, 2022) and open- 
source tools and software (e.g., Boettiger et al., 2015; Daneshmand 
et al., 2021; Hipsey et al., 2019; Moore et al., 2021) within active com-
munities of practice (Figure 2: educational resources; communities 
of practice). Communities of practice may occur within government 
agencies, originate from a specific project such as the Hydrological 
Ensemble Prediction EXperiment (HEPEX; Schaake et al., 2007), take 
the form of grassroots networks such as the Ecological Forecasting 
Initiative (EFI; Dietze & Lynch, 2019), exist as formal professional soci-
eties, or be housed at academic institutions.

To help train new forecasters, forecasting communities of prac-
tice should help create and facilitate sharing of resources, such as 
teaching modules focused on fundamental forecasting concepts 
(Moore et al., 2022), curated lists of freely available forecasting ed-
ucational resources (Willson, 2022), and community- based develop-
ment of software (Boettiger et al., 2015). In addition, education in 
freshwater quality forecasting would be enhanced by introducing 
forecasting (and uncertainty) at earlier educational stages (e.g., in 
K- 12 education; Rosenberg et al., 2022) and development of formal 
curricula in freshwater forecasting specifically (Moore et al., 2022).

5  |  CONCLUSIONS

Near- term freshwater quality forecasts are urgently needed as fresh-
water ecosystems are experiencing increasing variability on near- term 
time scales due to global change, causing substantial risk to human 
safety, environmental health, and ecosystem services. Water quality 
forecasting is primed to make considerable advances over the next 
decade, as evidenced by a wide diversity of potential applications and 
recent progress in forecasting methodology. Continued progress re-
quires the development of more forecasts: to robustly measure gains 
in forecast performance, we must be able to compare forecasts of the 

same variables across a wide diversity of sites, modeling approaches, 
and forecast horizons. Such a multi- faceted forecasting effort will re-
quire the concomitant development of community standards regarding 
forecast metadata, file formats, archiving, and benchmarking to permit 
forecast intercomparison. As we develop freshwater quality forecasts, 
we should avail ourselves of lessons learned in other forecasting disci-
plines, whether it be innovative methods of incorporating uncertainty 
into machine learning models adapted from water quantity forecast-
ing or taking inspiration from the continuous improvement in weather 
forecast performance made over decades. Finally, we must remember 
that operational freshwater quality forecasts are developed by people, 
for people, and thus require both comprehensive training opportuni-
ties for forecasters and meaningful end- user interaction throughout 
the forecast process. Given the promise of freshwater forecasting for 
improving management in the face of increased variability and risk due 
to global change, we urge freshwater scientists to engage with end 
users, assemble interdisciplinary teams, and get started on building 
operational near- term water quality forecasts.
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