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We show that the insulating states of magic-angle twisted bilayer graphene support a series of collective modes
corresponding to local particle-hole excitations on triangular lattice sites. Our theory is based on a continuum
model of the magic angle flat bands. When the system is insulating at moiré band filling v = —3, our calculations

show that the ground state supports seven low-energy modes that lie well below the charge gap throughout the
moiré Brillouin zone, one of which couples strongly to THz photons. The low-energy collective modes are
faithfully described by a model with a local SU (8) degree of freedom in each moiré unit cell that we identify
as the direct product of spin, valley, and an orbital pseudospin. Apart from spin and valley-wave modes, the

collective mode spectrum includes a low-energy intraflavor exciton mode associated with transitions between

flat valence and conduction band orbitals.
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I. INTRODUCTION

The insulating phases [1-8] that occur at integer moiré
band filling v = nAj, in magic-angle twisted bilayer graphene
(MATBG) are unusually rich. (Here n is carrier density and
Ay is the moiré pattern unit cell area.) Depending on the value
of v they can be translationally invariant Chern insulators
[3,9-21] or unusual commensurate magnetization-density-
wave states [22-24]. The insulating states are always in
a gate-proximity-dependent competition with metallic states
that can be superconducting [4,25-28]. The proximity of
superconducting and insulating states is reminiscent of the
behavior of high-temperature superconductors, in which the
nature of the insulating state is often thought [29-31] to
be important in explaining superconductivity. The goal of the
present work is to advance understanding of the properties of
MATBG insulators by studying their low-energy particle-hole
(p-h) collective excitations.

The traditional approach to understanding the collective
excitations of an insulator is to start from a lattice model
in which electrons can occupy one of a small set of atomi-
clike Wannier states associated with each lattice site. In the
simplest case of a one-band Hubbard model, for example,
only two-spin states are available on each lattice site. That
approach is not available in the MATBG case because of the
topological properties [32-37] of MATBG’s valley-projected
bands, which present an obstruction to the identification of
useful Wannier orbitals. Instead one must either start from
a model with many Wannier orbitals for each MATBG flat-
band or from a continuum model that does not restrict orbital
wave functions. In this work, we develop a continuum model
theory [38] of the low-energy collective particle-hole exci-
tations that can be applied to any insulating state and is
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similar to the time-dependent mean-field approaches used
previously [39-41] to calculate the spin-wave excitations of
spin-polarized insulating states. The continuum model ap-
proach has the incidental advantage that it is possible to
account for long-range Coulomb interactions without trun-
cation [42]. We focus specifically on the insulating state at
v = —3 carriers per moiré unit cell where the insulating
ground state is fully spin and valley polarized and all band
degeneracies are lifted by the broken spin and valley symme-
try [42]. We note that our results apply for the v = 3 insulator
as well which is more commonly seen experimentally [1-4],
since the model we study is nearly particle-hole symmetric
[32,38]. We retain both both valence and conduction flat
bands, and show that this is essential to capture qualitative
aspects of the excitation spectrum.

The main question we set out to answer is this. Are there
collective excitations that lie below the continuum of inter-
band particle-hole excitations throughout the moiré pattern’s
Brillouin zone? Any such collective excitation is expected
to act like a bosonic degree of freedom that lives on the
moiré pattern’s triangular lattice. These modes, if present, will
control the dynamical response and thermal fluctuation prop-
erties of the insulating states at energies below their gaps. The
ground state spin and valley pseudospin quantum numbers of
the v = —3 insulating state are S, = N/2 and T, = N/2, with
N being the total electron number. By explicit calculation we
find seven collective excitations with zone-boundary energies
~2meV, well below the threshold for interband particle-hole

excitations at ~10 meV: two spin waves (S, = —1, T, = 0),
two spin-valley waves (S, = —1, T, = —1), two-valley waves
(S; =0, T, = —1) and one intraflavor exciton mode (S, = 0,

T. = 0). The respective spectra are plotted in Fig. 1(c).
To a very good approximation, these excitations corre-
spond to particle-hole pairs localized within the same moiré
unit cell, and correlated across the two-dimensional system.
Even though it is not possible to use a Wannier-function
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FIG. 1. (a) The charge degree of freedom is frozen at low energies allowing an effective local SU (8) spin-x-valley- x-orbital desciption.
(b) Active band schematic illustrating various collective modes. The spin of the electrons is denoted by arrows, valley +/— by blue/red filling,
and valence/conduction bands by yellow/green, respectively. The mean-field energies in the — valley are spin-degenerate, and therefore, only
spin 1 is depicted. The intraflavor exciton mode consists of transitions to the dressed conduction band of the occupied spin/valley, whereas the
spin-wave and valley-wave modes include transitions to two empty bands. The intraflavor mode couples strongly to light which is indicated by
the wavy line. (c) Spectra of all the low-energy collective modes versus mode momentum Q. (d) A comparison of the real part of the optical
longitudinal conductivity calculated within TDHFA and directly using the SCHF bands (see Appendix A 1). Gy = 2¢*/h is the conductance
quantum. The TDHFA plot shows a significant peak due to the intraflavor mode in the THz frequency range.

lattice model to describe the fermionic charged quasiparti-
cles of the insulating state, the collective excitations map
to those of a triangular lattice model with an eightfold
spin- x -valley- x-orbital degree of freedom on each site that
is analogous to the SU(8) degree-of-freedom within the
N = 0 Landau level of Bernal bilayer graphene. The orbital
degree-of-freedom in MATBG is connected to the property
that flat bands always occur in conduction/valence pairs,
but is more complicated than the orbital degree of freedom
in Bernal quantum Hall bilayers, because both conduction
and valence band continuum model spinors exhibit complex
wave-vector-dependent entanglement between bilayer sublat-
tice and orbital degrees of freedom.

II. ACTIVE-BAND PROJECTED SELF-CONSISTENT
HARTREE-FOCK

Before beginning our description of the details of the cal-
culation, we comment on the symmetries of MATBG and
on the residual symmetries of the self-consistent Hartree-
Fock (SCHF) ground state. The symmetries satisfied by
the continuum-model band Hamiltonian are six-fold ro-
tational symmetry (Cs), y <> —y mirror symmetry (M,),
time-reversal invariance, and separate charge conservation
and spin-rotational symmetry in the two valleys. Long-range
Coulomb interactions satisfy SU(4) spin-valley invariance.
The total internal symmetry is therefore U(2); x U(2)_,
where + and — label the two valleys. The mean-field ground
state at v = —3 breaks time-reversal symmetry and U (2),
down to U(1); x U(1)4 to achieve a fully spin and val-
ley polarized insulating state without breaking the moiré
pattern’s translational symmetry, but does break C; rota-
tional symmetry [42]. In order to faithfully capture the
low-energy collective modes of this ferromagnet, considering
for practical reasons only particle-hole excitations within the
active flat-band subspace, we must project the self-consistent
Hartree-Fock mean-field ground state calculation onto the

active bands as well. This point is discussed explicitly for
the Goldstone spin-wave mode in Appendix C, and is a rea-
sonable approximation for the interaction strengths that we
consider. We then calculate collective excitations, restricting
to the eight (two per flavor) active SCHF bands retained
employing the time-dependent Hartree-Fock approximation
(TDHFA) (also known as the generalized random phase
approximation) [43,44].

The starting point of our study is a continuum model [38]
single-particle Hamiltonian # gy, that describes the twisted bi-
layer in terms of spatially periodic sublattice-dependent local
tunneling between graphene layers with Dirac-cone spectra.
Following Refs. [45,46], we incorporate the effects of lat-
tice relaxation on the electronic band structure by taking
the ratio of the strength of the interlayer hopping between
AA sites and AB sites to be 0.8. The resulting electronic
structure isolates two relatively flat low-energy active bands
(labeled A below) from a set of well-separated higher en-
ergy remote (R) bands. The active-band projected SCHF
calculation is then conveniently described in the eigenba-
sis of the continuum model Hamiltonian Hppy: [V mk)s
where p is flavor (spin and valley), m € A/R is band,
and k is momentum in the moiré Brillouin zone. We seek
single-Slater-determinant (HF) states with one filled active
band, which corresponds to v = nAy = —3 since neutral-
ity is reached when four of the eight active bands are
occupied.

Assuming that the ground state does not mix flavors,
the band density-matrix for flavor p and wave vector
kis

pm,n(kv M) = Zzi:m,kZL,n,k’ (1)

where zj“mk is the quasiparticle wave function for band i, and
i is summed over all occupied bands with flavor p, includ-
ing remote bands whose wave functions are frozen at their
single-particle values. It follows that the the Hartree-Fock
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self-energy

1
Sumun®) = =3 Y {Viha; K. 130, 0)pi(q, 0)

5 q,0 i,jeR/A

— Vinin; (&, 134, 0)pi j(q, 0)}, 2
where A, is the ﬁnite—sizq system area, and
Vn[;]jnj(kv M q, O) = <wu,m,kv wo,i,q|v|¢’u,n,kv I/fa,j,q> and anfjnj
kK, u;q,0) = <I//p,,m,k7 wo,i,q|‘7|wo,]’,qa 1ﬂu,n,k> are  two-
particle matrix elements calculated using the the long-range
Coulomb interaction V. Since we assume that interaction
dressing is included in the Dirac Hamiltonian of isolated
neutral graphene sheets (with density matrix pjs), We
regularize the self-energy by setting p — p — piso. When
frozen, the remote bands contribute a term XX to the
HF self-energy that acts as a band-mixing external field.
The HF self-energies are diagonal in flavor () because of
the flavor independence (SU (4) invariance) of the long-range
Coulomb interactions and the flavor-diagonal nature of the
SCHF ground state. The two-particle matrix elements are
evaluated from the plane-wave expansions of the band wave
functions. In the plane-wave basis, the two-dimensional
Coulomb interaction is V(q) = 2we?/eq where q is the
momentum transfer, and € is an effective dielectric constant.
For the explicit illustrative calculations presented below we
set the twist angle 6 = 1.1° and choose ¢~! = 0.06. (It is
important to recognize that the appropriate values of these
two parameters are device dependent.)

The SCHF eigenstates are then obtained by self-
consistently diagonalizing the Hamiltonian:

Hurlpl = Heu + 25 + 2401 3)

Figure 2 shows a plot of the SCHF band structure at v = —3,
for the fully spin and valley polarized ground state. For our
subsequent analyses, we define the fermion annihilation op-
erator for the active SCHF states as f, , k, where & denotes
flavor, and b = ¢, v is a band index with v referring to the
occupied lower energy state and c referring to one of the
higher energy unoccupied states.

III. COLLECTIVE MODES

With the SCHF band structure in hand, we now turn to
the computation of collective modes. First, we describe our
method of computation in general, and then focus on the col-
lective excitations within the active-band subspace illustrated
in Fig. 1.

We look for collective excitations with momentum Q over
the ground state |0) of the form:

D (0 Qs o funrk + VR QU i fonrk—0)10).  (4)

L.k

where I is an excitation label, and we have combined the
flavor index with the band index by using p(I) and h(l)
to label particle (empty) and hole (filled) states correspond-
ing to the excitation label /. Here, |0) is the ground state
of the system which includes one and two p-h fluctuations
over the SCHF ground state. Even though its precise form is
not known a priori, we can determine the amplitude of p-h

E (meV)

FIG. 2. Active-band projected Hartree-Fock band structure.
(a) Valley +: Filled bands are indicated by filled circles. (b) Valley —:
Bands are empty and spin degenerate. Time-reversal symmetry
breaking gaps the Dirac points in the filled flavor sector and yields
bands with nonzero Chern numbers.

excitations u(Q), and de-excitations v(Q), starting from |0)
within TDHFA. Large [v(Q)/u(Q)] is indicative of strong p-h
fluctuations in |0). In our calculations, we find it to be small
(£ 0.015). The coefficients u, v, and the energy of the collec-
tive mode w(Q) are obtained by solving the non-Hermitian
eigenvalue problem (Appendix A provides a derivation from
linear response theory):

3 A Qi (Q) + BY (Qul(Q)

TK
= (0(Q) - 2LQ) Q).
Z AV (= Q) vl (Q) + (BY 1 (— Q) 1y (Q)

JK

= —(0(Q) + AL(—Q))vi(Q), S)

where AL(Q) = €,)k+q — €n) x> €rx is a Hartree-Fock
ground state eigenvalue, and A and B are matrix el-
ements of the Coulomb interaction in the HF eigen-
basis: A} (Q) = (Qfunicfou i+ fr ol |2 and

Bf({k/(Q) = (Q|f/’l(1),kfh(]),k/‘/.f;(l),k+pr|(j)’k’7Q|Q>' HCFG |Q>
is the vacuum state. The matrix A couples a p-h (de-)excitation
with a (de-)excitation, and B couples a p-h excitation with a
de-excitation. The above equation can be recast in a concise
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way as
AQ)+ AQ) B(Q) u(Q)
—-B(—Q)* —A(-Q)" - A(-Q)][v(Q)
_ u(Q)
= w(Q)[U(Q)], ©)

where A is present only in the diagonal. The matrices
A(Q) and B(Q) satisfy: AY,(Q) = (4]! ,(Q))*, B\ (Q) =
B! . (—Q): Eq. (6) thus represents a non-Hermitian eigen-
value problem. However, the collective mode energies w(Q)
are guaranteed to be real, as we now show.

We discuss in Appendix B that the matrix

A(Q) + AQ) B(Q) _ ~ T
[ B(—Q)* A(—Q)* + A(_Q)} =5(Q)=5Q)

(N

is the Hessian of the total SCHF ground state energy func-
tional E[p] = Tr(Hyrp), which is positive definite for a
converged SCHF solution. Therefore it admits a Cholesky de-
composition: § = TT", where T is a lower triangular matrix.
We can then map Eq. (6) to a Hermitian eigenvalue problem
by defining the eigenvector £T(Q) = [u(Q), v(Q)],and lin-
ear operators X and Z that are Pauli matrices acting on the
collective excitation/de-excitation degree-of-freedom:

T(Q)'ZT(Q)(T(Q)'E(Q)) = w(Q)(T(Q)'E(Q)).  (8)

Thus, the problem reduces to diagonalizing the Hermitian
matrix T7(Q)ZT(Q). In this notation, the non-Hermitian
problemis: ZS(Q)(£(Q)) = w(Q)(£(Q)). This solution, how-
ever, introduces an artificial doubling of the Hilbert space
of collective excitations, analogous to the particle-hole re-
dundancy in the Bogoliubov—de Gennes formalism: The
eigenvalues of 77(Q)ZT (Q) occur in positive and negative
pairs at momenta Q and —Q, since XZS(Q) = —ZS5*(—Q)X.
For a given Q, we thus keep only the positive eigenvalues.

We now apply this method to calculate the excitation spec-
tra of MATBG insulators.

Since total spin (S,) and valley (7;) components along the
polarization direction are conserved quantities, we can Bloch
diagonalize T7(Q)ZT (Q) and classify excitations depending
on the S, and T, quantum numbers of the collective modes.

A. Intraflavor modes

We first consider collective excitations of the form

A
D Qo wrofirtok

k
F QS 1 i fit1.0x-0)10), ©)

which preserve flavor. For v = —3 the intraflavor modes with
wave vector Q are constructed from transitions between the
occupied active band states at wave vector k and the unoc-
cupied states of the same flavor at wave vector k 4+ Q. The
number of excitations with a given wave vector Q is equal
to the number of k’s in the moiré Brillouin-zone, i.e., it is
equal to the number of moiré unit cells in the system. As we
discuss below, only one of these modes has an energy that
is well below the inter-band particle-hole continuum. We can

[Coa(r)] [1/Am] Arg[Cos(r)] /7
3.0 1 3.0 1
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FIG. 3. The Cy; component of the real space wave function of
the intraflavor mode. The left and right panels plot the magnitude
and the phase of Cy; as a function of electron-hole center-of-mass
position. The black solid lines mark a moiré unit cell with AA sites
on its corners.

convert these wave functions, evaluated at zero electron-hole
separation, from a wave vector Q representation to a real
space representation by Fourier transforming with respect to
excitation wave vector:

W R) =Y w(Qe Ry, oMV pi(r),  (10)
k.Q

where R is a triangular lattice vector, V¢ q k()=
(o, F|[W(s.4.c/v)k)> and o, B are combined sublattice x
layer indices. W* can be decomposed by Pauli matri-
ces into sublattice and layer dependent contributions: Cy =
Do 5(03 T1)ap \Il‘i’k (r). Figure 3 plots the coefficient, Cy3, which
has the largest weight, of the R = 0 wave function. The most
important property of this excitation is that it is localized
within one unit cell of the moiré pattern. The low-energy
mode is constructed from correlated local rotations in the
SU(2) orbital space on different lattice lattice sites. These
excitation energies are much smaller than the charge gaps of
the insulator, the energy needed to add distant uncorrelated
electron-hole pairs, because the latter include the energy cost
of doubly occupying a moiré unit cell, whereas the former do
not.

B. Spin and valley waves

We now solve for spin waves within the 4 valley, and
valley waves within the spin-4 sector. Since there are no hole
states with spin | and valley — in the SCHF ground state,
these collective modes do not contain p-h de-excitations. This
can also be seen by noting that the matrix B = 0 for these
cases, due to the SU(4) symmetry of long-range Coulomb
interactions. The spin-wave collective modes therefore, take
the form:

o) £t
D@ |y xsofiton

k

g QS| o xsofcr1.0x)10). (11)
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FIG. 4. (a)—(c) Comparison of low-energy collective excitation energies with the Hartree-Fock mean-field bandgaps show a large separation
of energy scales. The unoccupied mean field bands are shifted by interactions with the occupied states, but these energies are qualitatively
reduced when an electronic state is rotated within its SU(8) space, instead of being added to the system. (d) A 2d plot of the lowest-energy
gapless spin-wave spectrum is mirror symmetric but breaks C; symmetry. k, and k, are shown in units of the moiré€ reciprocal lattice vectors.

The calculation of the coefficients u and the spin-wave energy
w(Q) using Eq. (5) now turns into a Hermitian eigenvalue
problem (with no redundant solutions):

> AL Qi (Q) = (0(Q) — ALQ))uf (Q).

JK

12)

The valley-wave and the spin-valley-wave calculations pro-
ceed analogously; we diagonalize the corresponding A
matrices to obtain the collective mode dispersions shown in
Fig. 4. Spin-wave, valley-wave, and spin-valley wave modes
are all doubled because of the additional orbital degree of
freedom present in the low-energy Hilbert space.

IV. DISCUSSION

In MATBG eight low-energy flat bands are spectrally iso-
lated from higher energy bands. The many-electron Hilbert
space is therefore closely analogous to that of the Bernal
bilayer graphene in a strong magnetic field where the N = 0
Landau level has an eight-dimensional vector space available
to electrons at each guiding center [47]. In both cases the
eight-dimensional space is the direct product of spin, valley,
and an additional two-dimensional space spanned by two
orthogonal spinors with components on the four sublattices
of the honeycomb bilayer. In the N = 0 Landau level case
the two spinors are very simple—they are localized almost
entirely on a single sublattice and have the orbital struc-
ture of either n =0, or n = 1, free-particle Landau levels
[47]. Experiments have shown that insulating quantum Hall
states occur at all integer Landau level filling factors v, and

also at many fractional filling factors, between v = —4 and
v = 4 [48-50]. The integer filling factor insulating ground
states are particularly simple, and are well approximated by
single-Slater-determinant states in which spin, valley, and the
additional orbital degree-of-freedom are polarized [51-53].
The orbital degree of freedom in the moiré superlattice case
is much more subtle since both valence and conduction band
spinors have strongly entangled sublattice and orbital de-
pendences that change with wave vector in the moiré band.
Insulating states can appear at all integer filling factors for
v € (—4,4), but are more likely to appear at some v’s than
at others. (The appearance or absence of particular insulating
states seems to have a dependence on twist-angle and gate-
proximity that seems consistent with simple Stoner criteria
[42]). It is nevertheless true that experiments [54-57] are,
however, beginning to paint a clear picture that when insu-
lators do occur, their ground states are well approximated
by single-Slater-determinant states in which spin, valley, and
orbital pseudospins are polarized in a way that minimizes the
ground state energy. Even though the flat bands do have some
dispersion [22,42], interactions play as important a role as the
single-particle Hamiltonian in determining the k-dependent
orbital polarization of the insulating states. This manuscript
addresses the collective excitations of these insulating states.
As in the quantum Hall bilayer case [58], the number of
low-energy collective modes when M = v + 4 bands are oc-
cupied is M(8 — M), corresponding to transitions between
all occupied bands and all empty bands. Although we pre-
form explicit calculations only for M = 1, our main goal
is to reach conclusions that are independent of twist-angle
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and interaction strengths in a particular device, and of the
particular band filling factor and the spin, valley, and orbital
polarizations of its ground state. Our main finding is that
there is a single collective mode for each interband transition
that remains well below the gapped particle-hole continuum
throughout the Brillouin zone. This property implies, as we
show by calculating the center-of-mass wave functions of the
excitations, that the excitations represent local changes in the
spin/valley/orbital state within a given moiré unit cell that
avoid changing the number of electrons per period in any unit
cell.

In our explicit calculations for v = —3, we find seven rela-
tively flat (bandwidth 1 meV) low-energy collective modes
below ~2meV, which for the interaction strength used in
these calculations is an order of magnitude smaller than the
charge gap ~10meV. Therefore, at very low energies, there
are seven independent magnon-like degrees of freedom at
each Q, or equivalently, for each moiré unit cell in real space.
We plot all the nondegenerate low-energy collective modes in
Fig. 4 along with the lowest energy single-particle transition
energy for each Q. The property that all collective modes
have real positive energies indicates the stability of the fully
spin and valley polarized SCHF ground state for the model
parameters considered here; it is not possible for the system
to lower its energy in any of the collective p-h excitation
channels. Valley polarization in insulating states at odd moiré
band filling factors is consistent with the reported quantum
anomalous Hall effect [3,11].

Our results strongly suggests that the low-energy physics
of the v = —3 correlated insulator is captured by an effective
SU (8) spin model having one eight-component generalized
spin per moiré unit cell that incorporates real spin, valley, and
orbital degrees of freedom. Including the conduction active
bands is essential to faithfully capture all the low-energy col-
lective modes. The spin-wave spectrum consists of a gapless
mode which is the Golstone mode corresponding to SU (2)+
to U (1) symmetry breaking. The valley-wave spectrum has
a small gap ~0.2 meV even though the interactions are SU (4)
spin-valley invariant because the single-particle Hamiltonians
of the two valleys are different, breaking the SU (4) symmetry
down to SU(2); x SU2)- x U(1),. The U(1), symmetry
corresponds to the conservation of valley polarizaton—the
difference between the numbers of electrons in the two val-
leys or total T, but the total valley-angular momentum is
not conserved. This property is responsible for the gap in
the valley-wave spectrum. The dispersion of the valley wave
mode provides a measure of the sensitivity of energy to spatial
configurations of the valley pseudospin, and hence an estimate
of the temperature to which valley order can survive. The
spin-valley-wave modes are degenerate with the valley-wave
modes because the Hamiltonian is invariant under indepen-
dent spin-rotations in either valley; electrons in one valley
are insensitive to the spins of electrons in the other valley.
The generalized anisotropy energies of the SU (8) degrees of
freedom of insulating MATBG, are more complex when the
orbital degrees of freedom is involved, although our calcula-
tions show that the energy scales of spin, valley, and orbital
dependent interactions are similar. Because the splitting be-
tween conduction and valence bands is small at most wave
vectors in the moiré Brillouin zone, its contribution to the

localized state Hamiltonian plays the role of a weak external
field that contributes to the SU (8) anisotropy landscape.

It is clear from experiment [26,54-57,59,60] that the
broken spin and valley flavor symmetries that character-
ize MATBG insulating ground states persist through broad
fractional filling factor intervals. The charge gaps that are
common at fractional filling factors in the quantum Hall case
are so far absent in MATBG experiments. Instead experi-
ments show robust two-dimensional metallic states in some
regions of filling factor, and properties that remain obscure in
some other regions. We anticipate that the collective modes
discussed in this paper, including the intraflavor interband
excitionic collective mode, will remain sharp in the metal-
lic state. It remains to see if they are responsible for the
strange metal behavior evident in the temperature dependence
of the resistivity [61,62] and for the superconductivity, which
in most cases emerges from metals with broken spin/valley
flavor symmetries.

Note added in proof. Recently we learned of closely related
work that provides a complementary point of view on the
collective modes of MATBG [63-65].
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APPENDIX A: COLLECTIVE MODES WITHIN TDHFA
FROM LINEAR RESPONSE

Here we review linear response theory within the TDHFA,
to a generic one-body time-periodic perturbation #(¢), using
which we will obtain Eq. (5) in the main text for the collective
modes. The TDHFA is essentially that, under the external
perturbation, the many-body wave function stays a Slater de-
terminant at all times. The single-particle density matrix p
corresponding to a Slater determinant wave function satisfies

p*=p; Tro=N, (A1)
where N is the total number of particles. The time evolution
within the TDHFA is given by [43]:

10,0 = [Hurlpl +Hi(@), pl.

Starting with the static SCHF ground state p;, which
satisifes [Hyrlool, po] = 0, we wish to study the linear re-
sponse of the system to a small #;(¢), which is periodic
with frequency w: H;(t) = Hie ™" + H.c. Assuming that the
response of the density matrix is linear in #,(¢), we can write

(A3)

(A2)

p(t) = po + pre™ + ple ',

However, the constraints on p(t) specified by Eq. (Al),
imply that p; introduces only p-h fluctuations over py and not
p-p fluctuations at leading order in the external perturbation:

(o) .xl P11 pay i) = 0. (A4)
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In order to describe the dependence of p; on H;, we first
define the matrix elements of p; and H;:

1 (Q) = (Vpy ksl o] [¥n 1),
ve(Q) = (Vi .kl o] 1 piy k—0)
fi Q) = Wy aro Hil¥nax)
Q) = (WYnoy k[ Ha [¥p) x—q)-

Using the TDHFA equation of motion [Eq. (A2)], to leading
order in the external perturbation, we get the linear response
equation:

(A (Q) — @Bk 81,11l (Q) + B (Qui(Q) = —£(Q),
(AL (—Q)" + bk 817 ) i (Q) + By (—Q) 141, (Q)
= —2,(Q).

We rewrite the linear response equation [(Eq. (A6)] in a
compact form:

([A(Q) + AQ) B(Q) } _ w[l 0 D
B(—Q)* A(-Q)" + A(-Q) 0 -1

wQ | _ [ fQ)
v(Q) 8Q) |
Now we define the response function R(w, Q) that relates the

change in the density matrix to the external perturation, by
inverting Eq. (A7):

w(@Q)| _ f(Q)
[v(Q)] =R, Q)[g@)]
The poles of R correspond to the collective excitations of the

system, and they are precisely given by Eq. (6) of the main
text.

(A5)

(A6)

(AT)

(A8)

Optical conductivity

Here we calculate the electric current in response to a
weak, spatially uniform and time-periodic external electric
field, within TDHFA. The electric current operator is given by
Ji= —ea?k‘j’” , and since the momentum dependence of Hpy
purely comes from the Dirac part, Jiis diagonal in flavor and
momentum. Consider an electric field along the x direction
corresponding to a gauge potential A = iwE,x. This couples
to the current operator in the Hamiltonian giving the term

H(t) = JrAe™ ™ (A9)

Since J* is diagonal in momentum and flavor, it only couples
SCHEF states at the same momentum, and same flavor. There-
fore, only the intraflavor collective mode at Q = 0 contributes
to the system’s response to the electric field. We drop the Q
label in the following description for simplicity. Defining the
matrix elements of J* in the HF basis:

Jk = e ro kW 1o k)

We now express the conductivity oy, = (J*)/E, in terms
of the current matrix elements. Introducing a decay rate y
(that causes broadening of the peaks at the collective mode
energies that are otherwise delta functions), the real part of

(A10)

the conductivity is
sgn(w')

_r
Reo, (w) = ” Z P

i, \* iy \*
X[”k(”"’) "{?(vﬁf')*}[fg} (A1)

Uk (”i«)* Uk (Uk/)

where o' and u’, v’ are the eigenvalue and the eigenvector
corresponding to the collective mode labeled by i at Q = 0.
Figure 1(d) shows the optical conductivity calculated using
Eq. (All) for y = 0.4 meV.

For comparison, we also calculate Re(oy, ) by assuming no
interactions between the SCHF states. In this case the poles
of the response function R are at energies corresponding to
energy differences between the SCHF states, and the conduc-
tivity simplifies to

Y |k |*
Q Zk: (w

— (€ 100k — € k) + ¥
(A12)

v YU A

k,k’

Reoy, (w) =

A comparison of the conductivities calculated using
Egs. (All) and (A12) is shown in Fig. 1(d). The TDHFA
calculation shows a strong peak at the lowest intraflavor col-
lective mode energy which is absent in the SCHF version
since it does not incorporate the contribution from the col-
lective modes. Detection of this intraflavor collective mode,
which is in the THz frequency range, in spectroscopy experi-
ments is a tantalizing prospect.

APPENDIX B: STABILITY OF SCHF GROUND STATES

Given a converged SCHF ground state pp, here we derive
the Hessian of the HF energy functional, and hence, desribe
the quadratic fluctuations about the ground state. We do this
for a generic system by labeling the SCHF eigenstates by
a single index: |i), and thereby, suppressing momentum and
band labels used in the main text. All matrix elements below
are in the SCHF eigenbasis.

For an infinitesimal perturbation §p about py, Eq. (Al)
implies,

(po + 8p)* = po + 8p, (B1)
and therefore,

po((8p)* 4 8p)po = 0,

00((8p)* — 8p)op = 0, (B2)

where oy = 1 — py is a projector on the empty band subspace,
since pg is a projector on the filled band subspace. Labeling
empty states by p and filled states by 4, Eq. (B2) implies

- Z 5/0h,p8pp,h’y
p

= Z Spp,haph,p“
h

The elements 80, , are hence the leading order variations
of the density matrix. We now expand the total HF energy

Spnw =

8pp.p (B3)
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functional E[p] to quadratic order in 80, 5. For a general p,
1
Elp] = ZGi,Oi,i + 3 Z Vi — Vi) pripr, j» (B4)
i ijkl
where € are the SCHF eigenstate energies and Vi =

(i, jIV |k, 1). Expanding E[p] about py:

SE
Elpo +dp] — E[po] ~ E <—> 8pj.i
Lo

i 8pi,j
8°E
() i
ijkl 801,j8pk.1/ 4,
(BS)
From Eq. (B4), we have ((S‘;—Eh)po = (S‘Sp—f)po = 0. Therefore,
P, P

the first term in Eq. (BS) only gets contributions from 80, ,
and 8pj;, and the second term from 8p,;, and §p; ,. Using
Eq. (B3),

D _€doi =) (ep — €n)3Ppidonp. (B6)
i ph

Adding this to the contribution from the interaction matrix ele-

ments in the second term of Eq. (B5) and using §p,, , = § ,o,j‘, »

we get

Elpo+8p] —Elpol ~ Y [8p;, 80}4]
hph' p/

Bphp’h’ 5;0h’ V4
2, (B7
A+ Ao | 80w | B7
where Ay = Vo pie — Vo pis Bpnpe = Vppiw — Vs and
Aphpw = (€p — €4)8p, 184y Having obtained the Hamiltonian
for quadratic fluctuations about the SCHF ground state, the
condition for the stability of the SCHF ground state is that the

matrix
_|A+A B
sPat n]

[(A + D)y
;hp/h/

is positive-definite, which we make use of in the main text.

APPENDIX C: GAPLESS SPIN WAVE

The spin-wave spectrum contains a quadratically dispers-
ing gapless mode, as expected for an SU(2) ferromagnet.

Because we choose the basis for the collective modes to be
the active-band subspace, the existence of the gapless mode
relies crucially on freezing the remote bands in our SCHF
calculation, as we now show.

We begin by deriving a necessary condition on the Q = 0
gapless spin-wave (magnon) wave function within TDHFA.
Physically, the zero-energy magnon mode corresponds to a
uniform spin rotation of all spins in the ground state, because
of the SU(2); symmetry. Separating the spin part |yx,) of
the SCHF eigenstates: |[(+, 5, b), K) = |¥(4.5.5)k) ® [Xs), WE
perform an infinitesimal spin-rotation on the occupied spin-1
states: |x4) — |x4) + o)), which corresponds to a change
in the density matrix §p given by

(1), K|8p|p(T), K) = a(Yuay k| ¥prk) = g, (C1)
where [/ is an excitation label for spin-flip excitations within
the + valley, as in Eq. (11) of the main text. The HF self-
energy X corresponding to the modified density matrix can
be written in terms of the matrix A as

(D). KIZIpd). k) = ) AL@Q=0)f. (€D
J.K

The HF Hamiltonian in the rotated spin basis to O(«?):

(' (D), k[Hur|p' (1), k)

= a(Aﬁ(Q =0)ck+ ) Ak (Q= 0>cﬁf)- (C3)

J. K

The diagonal elements are unchanged and are the SCHF
eigenvalues. Now we impose the condition that the off-
diagonal elements of the HF Hamiltonian do not change as
well because of the SU(2); symmetry, which implies that
ul (Q =0) = cf is a spin-wave solution of Eq. (12) of the
main text with w(Q = 0) = 0. This result establishes that a
uniform spin rotation does indeed correspond to a zero-energy
spin-wave mode, and that its wave function c is given by the
overlap between the spatial parts of the majority and the mi-
nority spin states. It relies on SU (2), symmetry, and crucially,
having the same basis for the possible spin-flip excitations in
the calculation for the spin waves within TDHFA and those
associated with a uniform spin rotation of the SCHF ground
state. In our case, since we consider collective excitations only
within the active-band subspace, it is necessary to freeze the
remote bands in the SCHF calculation.
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