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Key Points: 16 

• Sulfur isotopes in a Greenland ice core show that passive volcanic degassing contributes 17 

66% of preindustrial Arctic sulfate 18 

• The volcanic inventory used by most climate models underestimates passive degassing, 19 

possibly due to missing hydrogen sulfide emissions 20 

• Elevated preindustrial passive volcanic degassing reduces the estimated cooling effect of 21 

anthropogenic sulfate in the Arctic  22 
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Abstract 23 

The Arctic is warming at almost four times the global rate. Cooling caused by anthropogenic 24 

aerosols has been estimated to offset sixty percent of greenhouse-gas-induced Arctic warming, 25 

but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in 26 

estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur 27 

isotope measurements in a Greenland ice core show that passive volcanic degassing contributes 28 

up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state-of-the-29 

art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated 30 

by up to a factor of three, possibly because many volcanic inventories do not include hydrogen 31 

sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic 32 

Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m-2), suggesting that 33 

underestimating passive volcanic sulfur emissions has significant implications for 34 

anthropogenic-induced Arctic climate change. 35 

Plain Language Summary 36 

Sulfate aerosols are particles in the atmosphere that have a net cooling effect on the climate. One 37 

of the most uncertain aspects of climate modeling is the abundance of sulfate aerosols during the 38 

preindustrial era. Without knowing the amount of sulfate aerosols during the preindustrial, it is 39 

difficult to estimate how much anthropogenic sulfate aerosols have offset warming from 40 

anthropogenic greenhouse gases. In this study, we examine preindustrial sulfate aerosols in a 41 

Greenland ice core. We find that sulfate aerosols from passive (i.e. non-eruptive) volcanic 42 

degassing contribute almost two thirds of preindustrial Arctic sulfate aerosols in years without 43 

major volcanic eruptions. We compare this result to a state-of-the-art global model and find that 44 

most climate models use a volcanic emissions inventory that underestimates preindustrial passive 45 

volcanic sulfur emissions. That volcanic inventory only includes one type of sulfur emission 46 

(sulfur dioxide), but studies have shown that volcanoes emit hydrogen sulfide, which can also 47 

form sulfate aerosols. We show that higher emissions of volcanic sulfur during the preindustrial 48 

era decrease the estimated cooling effect of anthropogenic aerosols during the industrial era. 49 

Thus, the underestimate of preindustrial volcanic emissions in current climate models has 50 

significant implications for anthropogenic climate change in the Arctic. 51 

1 Introduction 52 

Anthropogenic aerosols have a net cooling effect on global climate and partially offset 53 

warming from greenhouse gases, but represent the largest uncertainty in estimating total 54 

anthropogenic radiative forcing (RF) from 1850-2019 (Szopa et al., 2021). Aerosol RF results 55 

from aerosol-radiation interactions (RFari), including scattering solar radiation (Twomey, 1967), 56 

and aerosol-cloud interactions (RFaci), including changing cloud albedo (Twomey, 1977). Other 57 

aerosol effects such as impacts on cloud fraction and lifetime are uncertain, but may be 58 

significant in the Arctic (Shindell et al., 2013). Sulfate aerosols have the largest cooling effect of 59 

any aerosol and their contribution to RF also has the largest uncertainty (Szopa et al., 2021).  60 

The magnitude of aerosol RF depends on preindustrial aerosol abundance due to the 61 

nonlinear relationship between aerosols and cloud albedo: as aerosol abundance increases, cloud 62 

sensitivity to aerosol decreases. Thus, one of the largest sources of uncertainty in aerosol RF is 63 

poorly constrained natural emissions of aerosol precursors (Carslaw et al., 2013; Gettelman, 64 
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2015), especially emissions of volcanic sulfur dioxide (SO2) and marine dimethyl sulfide (DMS), 65 

which are dominant natural sources of Arctic sulfate aerosol (Abbatt et al., 2019; Legrand et al., 66 

1997; Patris et al., 2002; Wasiuta et al., 2006). Other potential sources of sulfate aerosol, 67 

including carbonyl sulfide, dust, and biomass burning, are negligible in the Arctic (Abbatt et al., 68 

2019; Kjellström, 1998; Legrand et al., 1997; Patris et al., 2002; Wasiuta et al., 2006). Although 69 

volcanic eruptions garner more attention in the climate literature, passive emissions of SO2 are 70 

currently estimated to be about ten times the typical annual emissions of SO2 from eruptions 71 

(Carn et al., 2017). 72 

Satellites provide global daily observations of volcanic SO2 emissions from eruptive and 73 

passive degassing (Carn et al., 2015, 2017). Ground-based observations show that these satellite 74 

observations provide a lower-end estimate on volcanic SO2 emissions because satellite detection 75 

limits are too high to reliably detect passive emissions from weakly degassing volcanoes (Fischer 76 

et al., 2019). Furthermore, volcanic SO2 emissions inventories are primarily derived from UV 77 

satellite measurements, which have data gaps at high latitudes in the winter months (Carn et al., 78 

2017). In addition to underestimating SO2 emissions, these inventories exclude emissions of 79 

other sulfur species such as hydrogen sulfide (H2S), which is difficult to measure from space due 80 

to a lack of characteristic absorption bands in the near UV and an overlap of IR absorption bands 81 

with those of water vapor (Clarisse et al., 2011). Estimates of volcanic H2S emissions range from 82 

1 to 35 Tg S yr-1 (Halmer et al., 2002); the upper end of this range is three times the estimated 83 

global annual mean eruptive plus passive volcanic SO2 flux of 11-13 Tg S yr-1 (Carn et al., 2015, 84 

2017). After emission, H2S is oxidized to SO2 on the timescale of 1-3 days (D’Alessandro et al., 85 

2009; Kourtidis et al., 2008; Pham et al., 1995), by which point it is too dispersed to be detected 86 

by satellite. Thus, satellite observations underestimate volcanic sulfur emissions (Carn et al., 87 

2017; Fischer et al., 2019), but the magnitude of the underestimate and the contribution of 88 

volcanic sulfur to the global sulfur burden remains unquantified. 89 

2 Quantifying preindustrial sources of ice core sulfate 90 

We quantify volcanic and DMS-derived biogenic contribution to preindustrial (1200 to 1850 91 

C.E.) Arctic sulfate aerosols by measuring sulfate concentrations (SO4
2-) and sulfur isotopic 92 

composition (δ34S(SO4
2-)) in ice core samples from Summit, Greenland (see Text S1 for details 93 

on measurement methods). We select samples from years without influence from large volcanic 94 

eruptions (Figure 1, Cole-Dai et al., 2013; Gautier et al., 2019).  95 

To estimate the relative contribution of volcanic and DMS-derived biogenic sulfate to total 96 

ice core non-sea salt sulfate (nssSO4
2-), we assume that δ34S(nssSO4

2-) is a concentration-97 

weighted average of the mean biogenic sulfate isotopic composition (δ34Sbio) and mean volcanic 98 

sulfate isotopic composition (δ34Svolc):  99 

fbio + fvolc = 1, and 100 

fbio δ
34Sbio + fvolc δ

34Svolc = δ34S(nssSO4
2-), 101 

where fbio is the fraction of DMS-derived biogenic sulfate and fvolc is the fraction of volcanic 102 

sulfate. δ34Sbio is well constrained by measurements of sulfur isotopic composition of marine 103 

biogenic compounds at δ34Sbio = +18.8 ± 0.3‰ (Table S1 and Figure S1). Observations of sulfate 104 

from an inland Antarctic ice core far from the marine biogenic source show δ34Sbio = +18.6 ± 105 

0.9‰ (Patris et al., 2000), suggesting minimal fractionation due to transport and oxidation of 106 

marine biogenic sulfur (Text S2).  107 

We estimate δ34Svolc using two methods. First, we estimate δ34Svolc by applying a Monte 108 

Carlo routine to a Keeling Plot (Keeling, 1958; Keeling et al., 1989; Pataki et al., 2003) of the ice 109 
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core observations to determine δ34Svolc = +4.1 ± 0.5 ‰ (Figure S2 and Table S3) using similar 110 

assumptions and methods as in Patris et al. (2000, 2002) (Text S2). Second, we use direct δ34S 111 

observations of volcanic gas and ash from 367 measurements of volcanic δ34S(H2S), δ34S(SO4
2-), 112 

δ34S(SO2), and δ34S(bulk S) from 38 volcanoes around the world (Table S2) to yield δ34Svolc = 113 

+3.8 ± 0.7 ‰, where the standard error of the mean is determined using a bootstrapping method 114 

(Figure S1 and Text S2). Both estimates of δ34Svolc (+4.1 ± 0.5 ‰ and +3.8 ± 0.7 ‰) result in 115 

similar values for mean ice core fvolc (66% and 64%, respectively; Text S3), but we focus on 116 

δ34Svolc = +4.1 ± 0.5 ‰ because this value more likely represents a regional signature and also 117 

incorporates any fractionation effects on δ34Svolc during transport to Summit. 118 

Figure 1 shows ice core 34S(nssSO4
2-) and nssSO4

2- concentration between 1200 and 1850 119 

C.E. The mean 34S(nssSO4
2-) is +9.2 ‰, indicating that the isotopically lighter volcanic sulfur 120 

contributes about twice as much on average as the biogenic sulfur source. Figure 2 shows that 121 

the mean volcanic sulfate concentration (19.1  7.1 µg kg-1) is 2.0 ± 1.7 times larger than the 122 

mean DMS-derived biogenic sulfate concentration (9.4  3.0 µg kg-1) and that the mean fraction 123 

of sulfate from volcanoes (fvolc) is 66 ± 10%. Using δ34Svolc = +2.5 ‰ from a small number of 124 

observations from volcanoes near Greenland also yields a dominant contribution from volcanic 125 

sulfate (fvolc = 59%) (Text S3). We also consider how our estimate for fvolc is affected by 126 

including a continental source of sulfur (e.g. H2S emissions from vegetation, salt marshes, 127 

tropical forests, soils, and wetlands) based on Watts (2000), which results in fvolc = 58 to 60% 128 

(Text S4). These numbers are similar to a previous estimate of fvolc = 57% from Legrand et al. 129 

(1997) in a Summit, Greenland ice core, which was estimated by subtracting an assumed DMS-130 

derived contribution to ice core sulfate based on the summertime peak in nssSO4
2-.  131 

 132 
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Figure 1. Decadal and sub-decadal ice core δ34S(nssSO4
2-) (‰, black symbols) and annual mean 133 

nssSO4
2- concentration (µg kg-1, gray line). Thick colored bars show the isotopic signatures of 134 

volcanic sulfur (δ34Svolc = +4.1 ± 0.5 ‰) and DMS-derived biogenic sulfur (δ34Sbio = +18.8 ± 0.3 135 

‰). The δ34S(nssSO4
2-) samples were selected as one 2-year sample per decade from 1200-1750 136 

C.E. and one 1-year sample every four years from 1750-1850 C.E. from years where nssSO4
2- 137 

was not influenced by large tropospheric or stratospheric eruptions (Cole-Dai et al., 2013; 138 

Gautier et al., 2019). Data from Patris et al. (2002) is also shown (circle). Error in δ34S(nssSO4
2-) 139 

measurements is estimated based on replicate analysis of whole-process standards.  140 

 141 

 142 
Figure 2. Volcanic and DMS-derived biogenic sulfate concentrations and volcanic fraction in ice 143 

core samples from preindustrial years (1200-1850 C.E.) without large volcanic eruptions. (a) 144 

Volcanic (orange) and DMS-derived biogenic (blue) sulfate concentrations (µg kg-1) calculated 145 

with δ34Svolc = +4.1 ± 0.5 ‰. (b) Volcanic fraction of ice core nssSO4
2- in each sample during the 146 

preindustrial (1200 to 1850 C.E.). Dashed gray line shows the mean volcanic fraction of ice core 147 

nssSO4
2- (fvolc = 66%). Dashed red line shows the GEOS-Chem simulated volcanic sulfur fraction 148 

(fvolc = 34%) in the air-mass source region of Summit with the default volcanic SO2 emissions 149 

from Carn et al. (2015, 2017). Error bars were determined by propagating the uncertainty in 150 

isotopic source signatures and sample measurement error in both a and b. 151 

3 Comparing ice core sulfate to a global model 152 

To evaluate current estimates of the relative importance of volcanic and DMS-derived 153 

biogenic sulfate aerosol abundance in global models, we use the GEOS-Chem global 3-D 154 

chemical transport model (version 13.2.1, Text S5) described in Bey et al. (2001) driven by 155 

assimilated meteorology from MERRA-2. Volcanic SO2 emissions are from Carn et al. (2015, 156 
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2017), updated annually in (Carn, 2022). The Carn et al. (2015, 2017) SO2 emissions inventory is 157 

used in many global models and is the upper end of volcanic SO2 emissions in Climate Model 158 

Intercomparison Project (CMIP6) models. The Carn et al. (2015, 2017) inventory includes 159 

passive and eruptive volcanic SO2 emissions measured by the Ozone Monitoring Instrument 160 

(OMI) since 2005. Model DMS emissions are based on Lana et al. (2011). To simulate a 161 

preindustrial atmosphere, all anthropogenic emissions are turned off (Zhai et al., 2021). We use 162 

meteorology and volcanic SO2 emissions from the year 2013, during which passive and eruptive 163 

volcanic SO2 emissions in regions affecting the Arctic (i.e., Kamchatka, Alaska, and Iceland) 164 

were similar to the 2004-2017 median. To compare model results to ice-core derived estimate of 165 

fvolc, the average fvolc of the modeled tropospheric burden of SO2 and sulfate is computed in the 166 

Summit, Greenland air-mass source region (120°W‒30°E, 42°‒90°N) based on the 5-day 167 

average aerosol lifetime in the Arctic and HYSPLIT backward trajectory analysis (Zhai et al., 168 

2021). The modeled fvolc is similar when calculated with other methods, including fvolc of 169 

modeled sulfur deposition in the ice core region (Figure S3), and when modeled with 170 

meteorology from the year 2007 (Text S5). 171 

Figure 3a shows that the modeled preindustrial fvolc over the Summit, Greenland air-mass 172 

source region using the SO2 emissions reported by Carn et al. (2015, 2017) is 34%, which is 3.2 173 

standard deviations lower than the mean ice core fvolc. The modeled volcanic sulfur contribution 174 

(fvolc = 34%) is lower than the observed fvolc in all 74 ice core samples representing 123 years 175 

between 1200 and 1850 C.E. (Figure 2b).  176 

 177 

 178 
Figure 3. Modeled tropospheric fvolc in two preindustrial simulations. (a) Tropospheric fvolc in the 179 

preindustrial simulation with the default scenario volcanic emissions. (b) Tropospheric fvolc in the 180 

preindustrial simulation with emissions from the H2S 1.7 scenario. Dotted black lines outline the 181 

5-day back trajectory region (120˚W–30˚E, 42˚–90˚N) for the Summit, Greenland ice core 182 
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(location marked with “+”) as described in Zhai et al. (2021). The mean fvolc of the sulfur (SO2 + 183 

SO4
2-) burden for the air-mass source region are shown in the bottom left. 184 

4 Discussion  185 

4.1 Biogenic and continental sulfur emissions and chemistry 186 

A model underestimate in fvolc relative to the ice-core derived estimate fvolc could be explained 187 

by an overestimate in modeled DMS emissions or an underestimate in modeled volcanic 188 

emissions. Modeled preindustrial DMS emissions would have to be overestimated by a factor of 189 

three for DMS emissions to explain the model underestimate in fvolc. Ice core records show 190 

declining concentrations of methanesulfonic acid, an oxidation product of DMS, since the 191 

preindustrial (Osman et al., 2019), indicating that it is unlikely that present-day DMS flux is 192 

three times higher than that of the preindustrial. It is also unlikely that DMS emissions in the 193 

Arctic are overestimated by a factor of three; in fact, GEOS-Chem modeled atmospheric DMS 194 

concentrations are biased low in the Arctic (Text S6; Mungall et al., 2016). Although modeled 195 

DMS oxidation chemistry is simplified, uncertainty in modeled DMS chemistry cannot explain 196 

the discrepancy between modeled and observed fvolc (Text S6).  197 

It is possible that other sources of sulfur not considered in global climate models could 198 

contribute to Arctic sulfate. For example, continental emissions of H2S (e.g. vegetation, salt 199 

marshes, tropical forests, soils, and wetlands) contribute approximately 1.5 Tg S yr-1 globally 200 

(Watts, 2000). However, even if we assume this source contributes up to 4% of ice core sulfate, 201 

thereby lowering ice core fvolc to 58-60% from 66% (Text S4), the model would still 202 

underestimate fvolc in the Summit, Greenland back trajectory region.   203 

4.2 Underestimate in passive volcanic degassing emissions 204 

Given the low likelihood of an overestimation of DMS-derived sulfate in the Arctic, the 205 

discrepancy between modeled and ice core fvolc is best explained by an underestimate in passive 206 

volcanic sulfur emissions, which is consistent with comparisons between satellite and ground-207 

based observations of SO2
 (Fischer et al., 2019) and the omission of volcanic H2S emissions in 208 

models. It is also possible that preindustrial passive volcanic degassing was elevated relative to 209 

the present day. The sampled time period (1200-1850 C.E.) is during the “Little Ice Age” (LIA), 210 

usually defined as a period of relatively cool climate starting in the mid-thirteenth century and 211 

ending around 1850 C.E. (Grove, 2001). A driving factor in cooling observed during the LIA 212 

was an increased frequency of volcanic eruptions (Newhall et al., 2018). It is conceivable that 213 

passive volcanic degassing, which increases prior to and following volcanic eruptions (Carn et 214 

al., 2017), was also elevated during the preindustrial relative to the present day, which would 215 

exacerbate the underestimate in passive sulfur degassing emissions in the preindustrial. Elevated 216 

passive sulfur degassing around periods of increased eruption frequency has been suggested to 217 

explain differences between early and late 19th-century δ34S(nssSO4
2-) in Antarctic ice cores 218 

(Takahashi et al., 2022). 219 

To quantify and understand the factors contributing to the underestimate in preindustrial 220 

volcanic emissions, three volcanic emissions scenarios were prescribed in the model in place of 221 

the Carn et al. (2015, 2017) inventory: we label them the 371 scenario, the H2S scenario, and the 222 

H2S 1.7 scenario (summarized in Table S4). These emissions scenarios have increased passive 223 
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degassing of SO2 relative to Carn et al. (2015, 2017) while leaving eruptive emissions 224 

unchanged. In the 371 scenario, volcanic SO2 emissions are based on comparison between 225 

satellite and ground-based passive volcanic sulfur emissions from Fischer et al (2019) for 226 

volcanoes included in the Carn et al. (2015, 2017) SO2 inventory. The 371 scenario also includes 227 

SO2 fluxes from the 371 volcanoes identified as degassing by Fischer et al. (2019) that are not 228 

included in the Carn et al. (2015, 2017) SO2 inventory. These 371 volcanoes are classified as 229 

either “hydrothermal” or “magmatic” and fluxes are assigned to be 3 or 7 t S day-1 (0.001 or 230 

0.003 Tg S year-1), respectively (Fischer et al., 2019). This includes 16 Icelandic volcanoes each 231 

emitting 3 t S day-1 (0.017 Tg S year-1 in total). The 371 scenario results in a modest increase in 232 

fvolc in the Greenland air mass region from 34% in the default scenario to 36%, still three 233 

standard deviations below the mean ice core fvolc of 66% (Figure 2b).  234 

In the H2S scenario, we hypothesize that preindustrial and present-day simulations are 235 

missing a significant volcanic sulfur source due to the omission of H2S from volcanic emissions 236 

inventories. Here, H2S contribution is represented by increasing modeled SO2 emissions due to 237 

the short 1- to 3-day lifetime of H2S against oxidation to SO2
 (D’Alessandro et al., 2009; 238 

Kourtidis et al., 2008; Pham et al., 1995). Accordingly, SO2 emissions are multiplied by a factor 239 

based on measured or predicted SO2 to H2S ratios (Halmer et al., 2002; Table S5). The H2S 240 

scenario results in a fvolc of 46%, which is 2 standard deviations below the mean ice core fvolc of 241 

66%. 242 

In the H2S 1.7 scenario, we multiply the SO2 emissions from the H2S scenario by 1.7 for each 243 

volcano. We choose the factor of 1.7 to approximate the mean ice core fvolc of 66%. As expected 244 

and shown in Fig. 3b, the H2S 1.7 scenario produces fvolc of 61%, which approximately aligns 245 

with the mean ice core fvolc of 66%. This scenario implies that current estimates of preindustrial 246 

volcanic emissions are underestimated due to the omission of H2S emissions and/or that passive 247 

volcanic degassing has decreased since the preindustrial. 248 

We also consider a scenario where only Icelandic volcanoes have increased sulfur emissions 249 

and that these emissions are much larger than Icelandic emissions in the three aforementioned 250 

emissions scenarios (Text S7). SO2 emissions from Iceland were 5.1 Tg S yr-1 in this scenario, 251 

which is 30 times larger than sulfur emissions from Iceland in the H2S 1.7 scenario (0.16 Tg S yr-252 
1), but both scenarios are within the estimated range of sulfur emissions from Icelandic volcanoes 253 

based on observations from Icelandic hot springs (Text S7; Supplementary Data File 2).  254 

Icelandic volcanic sulfur emissions of this magnitude reconcile the discrepancy between the 255 

model and ice core (Text S7). Given the recent studies indicating that passive volcanic degassing 256 

CO2 emissions in Iceland might be significantly underestimated (e.g., Ilyinskaya et al., 2018), it 257 

is possible that underestimated Icelandic volcanic sulfur emissions could explain most or all of 258 

the discrepancy between the ice core and modeled fvolc. This possibility also has significant 259 

radiative forcing implications (Text S7), and highlights the large uncertainty and 260 

disproportionate impact of Icelandic volcanic emissions in the North Atlantic and Greenland. 261 

4.3 Radiative forcing implications 262 

Models indicate that the cooling effect of anthropogenic aerosols would be lower than 263 

previously thought if the preindustrial sulfate aerosol abundance was higher because of the 264 

nonlinear relationship between aerosols and RFaci: as preindustrial aerosol abundance increases, 265 

cloud albedo becomes less sensitive to anthropogenic aerosols (Carslaw et al., 2013; Gettelman 266 

et al., 2015). To explore the potential RF implications of our emissions scenarios, we consider 267 

three possibilities. First, we assume that the default volcanic emissions inventory from Carn et al. 268 
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(2015, 2017) accurately estimates present-day emissions, but underestimates passive volcanic 269 

sulfur emissions in the preindustrial. Second, we assume that passive volcanic sulfur emissions 270 

have not changed since the preindustrial, and that both preindustrial and present-day passive 271 

degassing emissions are underestimated. Overlapping volcanic and anthropogenic sulfur isotopic 272 

source signatures preclude quantifying volcanic sulfate in post-1850 ice core samples 273 

(Ghahremaninezhad et al., 2016; Patris et al., 2002; Wasiuta et al., 2006), therefore we cannot 274 

use post-1850 ice core measurements to evaluate this possibility. A third possibility is a 275 

combination of the first two: volcanic sulfur emissions in both present-day and preindustrial are 276 

underestimated and volcanic passive sulfur emissions were higher in the preindustrial relative to 277 

the present day. The RF implications of this third possibility will fall in between the first two.  278 

To quantify the RF implications of an underestimate in passive volcanic degassing emissions 279 

in the preindustrial (first possibility) or both the preindustrial and present day (second 280 

possibility), we estimate RF for each possibility (RF = RFari + RFaci), where RFari is calculated 281 

using GEOS-Chem (Text S5) and RFaci is calculated using the simple heuristic model described 282 

by Wood 2021 (Text S8). We estimate RF by subtracting RF with the Carn et al. (2015, 2017) 283 

inventory from RF with elevated passive degassing emissions representing the first or second 284 

possibility (Table S6). We quantify RF for the first possibility by using the H2S 1.7 scenario in 285 

the preindustrial and using the default scenario in the present day. We quantify RF for the 286 

second possibility by using the H2S 1.7 scenario in both the preindustrial and present day. We 287 

focus on the H2S 1.7 scenario because it results in a preindustrial modeled fvolc (61%) 288 

approximately equal to the ice core fvolc (66%). The resulting RF for both possibilities are 289 

summarized in Table 1. RF ranges from +0.29 W m-2 (RFari = +0.03 W m-2, RFaci = +0.26 W 290 

m-2; Table 1, Figure S4) where only preindustrial emissions are underestimated, to +0.11 W m-2 291 

(RFari = 0.0 W m-2, RFaci = +0.11 W m-2; Table 1, Figure S4) where both preindustrial and 292 

present-day emissions are underestimated. We estimate that underestimating Icelandic passive 293 

volcanic sulfur emissions could have an equally large or larger impact on radiative forcing (RF 294 

= +0.55 W m-2) (Text S7). This analysis neglects the effects of cloud adjustments to aerosol (i.e., 295 

impacts on cloud fraction, cloud lifetime, and semi-direct aerosol effects). Nevertheless, these 296 

calculations show that the impact of underestimating volcanic emissions on RF calculations is 297 

potentially large. Future studies using fully coupled atmosphere-ocean global climate models 298 

with enhanced volcanic emissions will be useful for more accurately quantifying RF implications 299 

and uncertainty. 300 

 301 

Table 1. Radiative forcing (RF) estimates for different present-day and preindustrial volcanic 302 

scenarios.  303 
Emissions 

Scenario 

Volcanic Emissions 

Scenario in  

Present Day (fvolc of 

natural nssSO4
2-) 

Volcanic Emissions 

Scenario in 

Preindustrial (fvolc 

of natural nssSO4
2-) 

Arctic aerosol SW 

TOA RF a (RFari
 b + 

RFaci
 c) between 

present day and in 

preindustrial (W m-2)  

Difference between 

default Arctic RF and 

emissions scenario 

Arctic RF (W m-2) 

(RFari
 +  RFaci) 

Default Default (fvolc = 34%) Default (fvolc = 34%) −0.55 (−0.10 + −0.45)  

Possibility 1 Default (fvolc = 34%) H2S 1.7 (fvolc = 61%) −0.26 (−0.07 + −0.19) +0.29 (0.03 + 0.26) 

Possibility 2 H2S 1.7 (fvolc = 61%) H2S 1.7 (fvolc = 61%) −0.44 (−0.10 + −0.34) +0.11 (0.00d + 0.11) 
a The total shortwave (SW) top-of-atmosphere (TOA) radiative forcing (RF) is estimated as the sum of the RF from 304 
aerosol-radiation interactions (RFari) and RF from aerosol-cloud interaction (RFaci). 305 
b Difference between present-day radiative effect from aerosol-radiation interactions and preindustrial radiative 306 
effect from aerosol-radiation interactions.  307 
c Estimated present-day RF from aerosol-cloud interactions (Text S8). 308 
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d RFari between the default possibility and possibility 2 is negligible compared to RFaci 309 

5 Conclusions 310 

Our results indicate that passive volcanic degassing sulfur emissions influencing the Arctic 311 

are underestimated by up to a factor of three. We show that increased volcanic sulfur emissions 312 

from passive degassing results in estimated Arctic anthropogenic aerosol cooling that is up to a 313 

factor of two lower in magnitude. An overly strong anthropogenic aerosol cooling due to 314 

underestimated passive volcanic sulfur degassing could at least partially explain excessively 315 

strong aerosol cooling in CMIP6 climate models (Dittus et al., 2020) and the underestimates of 316 

modeled Arctic amplification compared to observations (Rantanen et al., 2022).  317 

Quantifying passive volcanic sulfur degassing emissions is critical for constraining 318 

anthropogenic aerosol forcing. More observations of SO2 emissions from passive volcanic 319 

degassing are required to constrain the magnitude of the underestimate in the passive volcanic 320 

SO2 emissions inventory based on satellite measurements in Carn et al. (2015, 2017). 321 

Additionally, H2S, which is typically neglected in volcanic emissions inventories used in global 322 

climate models, should be considered a potentially important contributor to the global 323 

atmospheric sulfur budget and thus climate. 324 
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