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Key Points:

e Sulfur isotopes in a Greenland ice core show that passive volcanic degassing contributes
66% of preindustrial Arctic sulfate

e The volcanic inventory used by most climate models underestimates passive degassing,
possibly due to missing hydrogen sulfide emissions

e FElevated preindustrial passive volcanic degassing reduces the estimated cooling effect of
anthropogenic sulfate in the Arctic
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Abstract

The Arctic is warming at almost four times the global rate. Cooling caused by anthropogenic
aerosols has been estimated to offset sixty percent of greenhouse-gas-induced Arctic warming,
but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in
estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur
isotope measurements in a Greenland ice core show that passive volcanic degassing contributes
up to 66 + 10% of preindustrial ice core sulfate in years without major eruptions. A state-of-the-
art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated
by up to a factor of three, possibly because many volcanic inventories do not include hydrogen
sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic
Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m™), suggesting that
underestimating passive volcanic sulfur emissions has significant implications for
anthropogenic-induced Arctic climate change.

Plain Language Summary

Sulfate aerosols are particles in the atmosphere that have a net cooling effect on the climate. One
of the most uncertain aspects of climate modeling is the abundance of sulfate aerosols during the
preindustrial era. Without knowing the amount of sulfate aerosols during the preindustrial, it is
difficult to estimate how much anthropogenic sulfate aerosols have offset warming from
anthropogenic greenhouse gases. In this study, we examine preindustrial sulfate aerosols in a
Greenland ice core. We find that sulfate aerosols from passive (i.e. non-eruptive) volcanic
degassing contribute almost two thirds of preindustrial Arctic sulfate aerosols in years without
major volcanic eruptions. We compare this result to a state-of-the-art global model and find that
most climate models use a volcanic emissions inventory that underestimates preindustrial passive
volcanic sulfur emissions. That volcanic inventory only includes one type of sulfur emission
(sulfur dioxide), but studies have shown that volcanoes emit hydrogen sulfide, which can also
form sulfate aerosols. We show that higher emissions of volcanic sulfur during the preindustrial
era decrease the estimated cooling effect of anthropogenic aerosols during the industrial era.
Thus, the underestimate of preindustrial volcanic emissions in current climate models has
significant implications for anthropogenic climate change in the Arctic.

1 Introduction

Anthropogenic aerosols have a net cooling effect on global climate and partially offset
warming from greenhouse gases, but represent the largest uncertainty in estimating total
anthropogenic radiative forcing (RF) from 1850-2019 (Szopa et al., 2021). Aerosol RF results
from aerosol-radiation interactions (RFar), including scattering solar radiation (Twomey, 1967),
and aerosol-cloud interactions (RFaci), including changing cloud albedo (Twomey, 1977). Other
aerosol effects such as impacts on cloud fraction and lifetime are uncertain, but may be
significant in the Arctic (Shindell et al., 2013). Sulfate aerosols have the largest cooling effect of
any aerosol and their contribution to RF also has the largest uncertainty (Szopa et al., 2021).

The magnitude of aerosol RF depends on preindustrial aerosol abundance due to the
nonlinear relationship between aerosols and cloud albedo: as aerosol abundance increases, cloud
sensitivity to aerosol decreases. Thus, one of the largest sources of uncertainty in aerosol RF is
poorly constrained natural emissions of aerosol precursors (Carslaw et al., 2013; Gettelman,
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2015), especially emissions of volcanic sulfur dioxide (SO2) and marine dimethyl sulfide (DMS),
which are dominant natural sources of Arctic sulfate aerosol (Abbatt et al., 2019; Legrand et al.,
1997, Patris et al., 2002; Wasiuta et al., 2006). Other potential sources of sulfate aerosol,
including carbonyl sulfide, dust, and biomass burning, are negligible in the Arctic (Abbatt et al.,
2019; Kjellstrom, 1998; Legrand et al., 1997; Patris et al., 2002; Wasiuta et al., 2006). Although
volcanic eruptions garner more attention in the climate literature, passive emissions of SO» are
currently estimated to be about ten times the typical annual emissions of SO» from eruptions
(Carn et al., 2017).

Satellites provide global daily observations of volcanic SO, emissions from eruptive and
passive degassing (Carn et al., 2015, 2017). Ground-based observations show that these satellite
observations provide a lower-end estimate on volcanic SO emissions because satellite detection
limits are too high to reliably detect passive emissions from weakly degassing volcanoes (Fischer
et al., 2019). Furthermore, volcanic SO, emissions inventories are primarily derived from UV
satellite measurements, which have data gaps at high latitudes in the winter months (Carn et al.,
2017). In addition to underestimating SO emissions, these inventories exclude emissions of
other sulfur species such as hydrogen sulfide (H2S), which is difficult to measure from space due
to a lack of characteristic absorption bands in the near UV and an overlap of IR absorption bands
with those of water vapor (Clarisse et al., 2011). Estimates of volcanic H>S emissions range from
1to 35 Tg S yr'! (Halmer et al., 2002); the upper end of this range is three times the estimated
global annual mean eruptive plus passive volcanic SO flux of 11-13 Tg S yr'! (Carn et al., 2015,
2017). After emission, H>S is oxidized to SO> on the timescale of 1-3 days (D’Alessandro et al.,
2009; Kourtidis et al., 2008; Pham et al., 1995), by which point it is too dispersed to be detected
by satellite. Thus, satellite observations underestimate volcanic sulfur emissions (Carn et al.,
2017; Fischer et al., 2019), but the magnitude of the underestimate and the contribution of
volcanic sulfur to the global sulfur burden remains unquantified.

2 Quantifying preindustrial sources of ice core sulfate

We quantify volcanic and DMS-derived biogenic contribution to preindustrial (1200 to 1850
C.E.) Arctic sulfate aerosols by measuring sulfate concentrations (SO4?) and sulfur isotopic
composition (5>*S(SO4%)) in ice core samples from Summit, Greenland (see Text S1 for details
on measurement methods). We select samples from years without influence from large volcanic
eruptions (Figure 1, Cole-Dai et al., 2013; Gautier et al., 2019).

To estimate the relative contribution of volcanic and DMS-derived biogenic sulfate to total
ice core non-sea salt sulfate (nssSO4>), we assume that §3*S(nssSO4%) is a concentration-
weighted average of the mean biogenic sulfate isotopic composition (8°*Spio) and mean volcanic
sulfate isotopic composition (8**Syorc):

fi)io +ﬁolc = 1, and

ﬁio 834Sbio +ﬁolc 634SVOIC = 634S(HSSSO42-),
where f»i, 1s the fraction of DMS-derived biogenic sulfate and f,.. is the fraction of volcanic
sulfate. 5>*Spio is well constrained by measurements of sulfur isotopic composition of marine
biogenic compounds at $**Spio = +18.8 = 0.3%o (Table S1 and Figure S1). Observations of sulfate
from an inland Antarctic ice core far from the marine biogenic source show §**Spi, = +18.6 =
0.9%o (Patris et al., 2000), suggesting minimal fractionation due to transport and oxidation of
marine biogenic sulfur (Text S2).

We estimate 8°*Syolc using two methods. First, we estimate 5>*Svoic by applying a Monte
Carlo routine to a Keeling Plot (Keeling, 1958; Keeling et al., 1989; Pataki et al., 2003) of the ice
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core observations to determine 8°*Syoic = +4.1 £ 0.5 %o (Figure S2 and Table S3) using similar
assumptions and methods as in Patris et al. (2000, 2002) (Text S2). Second, we use direct 5°*S
observations of volcanic gas and ash from 367 measurements of volcanic §>*S(H2S), §>*S(SO04%),
5345(S0y), and §**S(bulk S) from 38 volcanoes around the world (Table S2) to yield §**Syorc =
+3.8 = 0.7 %o, where the standard error of the mean is determined using a bootstrapping method
(Figure S1 and Text S2). Both estimates of 8**Svolc (+4.1 £ 0.5 %o and +3.8 £ 0.7 %o) result in
similar values for mean ice core foic (66% and 64%, respectively; Text S3), but we focus on
53*Svolc = +4.1 £ 0.5 %o because this value more likely represents a regional signature and also
incorporates any fractionation effects on §**Syoic during transport to Summit.

Figure 1 shows ice core §**S(nssS0O4%") and nssSO4* concentration between 1200 and 1850
C.E. The mean &**S(nssSO4%) is +9.2 %o, indicating that the isotopically lighter volcanic sulfur
contributes about twice as much on average as the biogenic sulfur source. Figure 2 shows that
the mean volcanic sulfate concentration (19.1 + 7.1 pg kg') is 2.0 + 1.7 times larger than the
mean DMS-derived biogenic sulfate concentration (9.4 + 3.0 ug kg'!) and that the mean fraction
of sulfate from volcanoes (fyoic) is 66 + 10%. Using §**Syoic = +2.5 %o from a small number of
observations from volcanoes near Greenland also yields a dominant contribution from volcanic
sulfate (froic = 59%) (Text S3). We also consider how our estimate for fio:c is affected by
including a continental source of sulfur (e.g. H>S emissions from vegetation, salt marshes,
tropical forests, soils, and wetlands) based on Watts (2000), which results in fyoc = 58 to 60%
(Text S4). These numbers are similar to a previous estimate of fi..c = 57% from Legrand et al.
(1997) in a Summit, Greenland ice core, which was estimated by subtracting an assumed DMS-
derived contribution to ice core sulfate based on the summertime peak in nssSO4>".

20 = §°*S(nssS03 ) (this study)

o 6*S(nssS03 ) (Patris et al., 2002)
6%Sp, = +18.8 = 0.3%o
53*S,0c = +4.1 £ 0.5%0
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Figure 1. Decadal and sub-decadal ice core §**S(nssSO4>) (%o, black symbols) and annual mean
nssSO4%" concentration (ug kg'!, gray line). Thick colored bars show the isotopic signatures of
volcanic sulfur (8**Svoic = +4.1 £ 0.5 %o0) and DMS-derived biogenic sulfur (8**Spio = +18.8 £ 0.3
%o). The 6°**S(nssSO4*) samples were selected as one 2-year sample per decade from 1200-1750
C.E. and one 1-year sample every four years from 1750-1850 C.E. from years where nssSO4>"
was not influenced by large tropospheric or stratospheric eruptions (Cole-Dai et al., 2013;
Gautier et al., 2019). Data from Patris et al. (2002) is also shown (circle). Error in §**S(nssSO4%")
measurements is estimated based on replicate analysis of whole-process standards.
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Figure 2. Volcanic and DMS-derived biogenic sulfate concentrations and volcanic fraction in ice
core samples from preindustrial years (1200-1850 C.E.) without large volcanic eruptions. (a)
Volcanic (orange) and DMS-derived biogenic (blue) sulfate concentrations (ug kg™') calculated
with §3*Syolc = +4.1 £ 0.5 %o. (b) Volcanic fraction of ice core nssSO4> in each sample during the
preindustrial (1200 to 1850 C.E.). Dashed gray line shows the mean volcanic fraction of ice core
nssSO04% (froic = 66%). Dashed red line shows the GEOS-Chem simulated volcanic sulfur fraction
(fvoie = 34%) in the air-mass source region of Summit with the default volcanic SO emissions
from Carn et al. (2015, 2017). Error bars were determined by propagating the uncertainty in
isotopic source signatures and sample measurement error in both a and b.

3 Comparing ice core sulfate to a global model

To evaluate current estimates of the relative importance of volcanic and DMS-derived
biogenic sulfate aerosol abundance in global models, we use the GEOS-Chem global 3-D
chemical transport model (version 13.2.1, Text S5) described in Bey et al. (2001) driven by
assimilated meteorology from MERRA-2. Volcanic SO2 emissions are from Carn et al. (2015,
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2017), updated annually in (Carn, 2022). The Carn et al. (2015, 2017) SO> emissions inventory is
used in many global models and is the upper end of volcanic SO> emissions in Climate Model
Intercomparison Project (CMIP6) models. The Carn et al. (2015, 2017) inventory includes
passive and eruptive volcanic SO> emissions measured by the Ozone Monitoring Instrument
(OMI) since 2005. Model DMS emissions are based on Lana et al. (2011). To simulate a
preindustrial atmosphere, all anthropogenic emissions are turned off (Zhai et al., 2021). We use
meteorology and volcanic SO, emissions from the year 2013, during which passive and eruptive
volcanic SO2 emissions in regions affecting the Arctic (i.e., Kamchatka, Alaska, and Iceland)
were similar to the 2004-2017 median. To compare model results to ice-core derived estimate of
frolc, the average froic of the modeled tropospheric burden of SO> and sulfate is computed in the
Summit, Greenland air-mass source region (120°W-30°E, 42°-90°N) based on the 5-day
average aerosol lifetime in the Arctic and HYSPLIT backward trajectory analysis (Zhai et al.,
2021). The modeled fyoic 1s similar when calculated with other methods, including fyoi of
modeled sulfur deposition in the ice core region (Figure S3), and when modeled with
meteorology from the year 2007 (Text S5).

Figure 3a shows that the modeled preindustrial f,.. over the Summit, Greenland air-mass
source region using the SO2 emissions reported by Carn et al. (2015, 2017) is 34%, which is 3.2
standard deviations lower than the mean ice core f,0... The modeled volcanic sulfur contribution
(fvoic = 34%) is lower than the observed foic in all 74 ice core samples representing 123 years
between 1200 and 1850 C.E. (Figure 2b).

fvolc = 34%

fvoic = 61%

Figure 3. Modeled tropospheric f,oic in two preindustrial simulations. (a) Tropospheric fioic in the
preindustrial simulation with the default scenario volcanic emissions. (b) Tropospheric foic in the
preindustrial simulation with emissions from the H>S 1.7 scenario. Dotted black lines outline the
5-day back trajectory region (120°W-30°E, 42°-90°N) for the Summit, Greenland ice core
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(location marked with “+”) as described in Zhai et al. (2021). The mean f,.. of the sulfur (SO> +
SO4>) burden for the air-mass source region are shown in the bottom left.

4 Discussion
4.1 Biogenic and continental sulfur emissions and chemistry

A model underestimate in f,.. relative to the ice-core derived estimate f,..c could be explained
by an overestimate in modeled DMS emissions or an underestimate in modeled volcanic
emissions. Modeled preindustrial DMS emissions would have to be overestimated by a factor of
three for DMS emissions to explain the model underestimate in f,.. Ice core records show
declining concentrations of methanesulfonic acid, an oxidation product of DMS, since the
preindustrial (Osman et al., 2019), indicating that it is unlikely that present-day DMS flux is
three times higher than that of the preindustrial. It is also unlikely that DMS emissions in the
Arctic are overestimated by a factor of three; in fact, GEOS-Chem modeled atmospheric DMS
concentrations are biased low in the Arctic (Text S6; Mungall et al., 2016). Although modeled
DMS oxidation chemistry is simplified, uncertainty in modeled DMS chemistry cannot explain
the discrepancy between modeled and observed fyoic (Text S6).

It is possible that other sources of sulfur not considered in global climate models could
contribute to Arctic sulfate. For example, continental emissions of H2S (e.g. vegetation, salt
marshes, tropical forests, soils, and wetlands) contribute approximately 1.5 Tg S yr'! globally
(Watts, 2000). However, even if we assume this source contributes up to 4% of ice core sulfate,
thereby lowering ice core fioic to 58-60% from 66% (Text S4), the model would still
underestimate fyoic in the Summit, Greenland back trajectory region.

4.2 Underestimate in passive volcanic degassing emissions

Given the low likelihood of an overestimation of DMS-derived sulfate in the Arctic, the
discrepancy between modeled and ice core fioc 1s best explained by an underestimate in passive
volcanic sulfur emissions, which is consistent with comparisons between satellite and ground-
based observations of SO» (Fischer et al., 2019) and the omission of volcanic H>S emissions in
models. It is also possible that preindustrial passive volcanic degassing was elevated relative to
the present day. The sampled time period (1200-1850 C.E.) is during the “Little Ice Age” (LIA),
usually defined as a period of relatively cool climate starting in the mid-thirteenth century and
ending around 1850 C.E. (Grove, 2001). A driving factor in cooling observed during the LIA
was an increased frequency of volcanic eruptions (Newhall et al., 2018). It is conceivable that
passive volcanic degassing, which increases prior to and following volcanic eruptions (Carn et
al., 2017), was also elevated during the preindustrial relative to the present day, which would
exacerbate the underestimate in passive sulfur degassing emissions in the preindustrial. Elevated
passive sulfur degassing around periods of increased eruption frequency has been suggested to
explain differences between early and late 19™-century §°*S(nssSO4>) in Antarctic ice cores
(Takahashi et al., 2022).

To quantify and understand the factors contributing to the underestimate in preindustrial
volcanic emissions, three volcanic emissions scenarios were prescribed in the model in place of
the Carn et al. (2015, 2017) inventory: we label them the 371 scenario, the H>S scenario, and the
H>S 1.7 scenario (summarized in Table S4). These emissions scenarios have increased passive
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degassing of SO, relative to Carn et al. (2015, 2017) while leaving eruptive emissions
unchanged. In the 371 scenario, volcanic SOz emissions are based on comparison between
satellite and ground-based passive volcanic sulfur emissions from Fischer et al (2019) for
volcanoes included in the Carn et al. (2015, 2017) SO; inventory. The 371 scenario also includes
SO; fluxes from the 371 volcanoes identified as degassing by Fischer et al. (2019) that are not
included in the Carn et al. (2015, 2017) SO» inventory. These 371 volcanoes are classified as
either “hydrothermal” or “magmatic” and fluxes are assigned to be 3 or 7 t S day™! (0.001 or
0.003 Tg S year™!), respectively (Fischer et al., 2019). This includes 16 Icelandic volcanoes each
emitting 3 t S day! (0.017 Tg S year™! in total). The 371 scenario results in a modest increase in
froic in the Greenland air mass region from 34% in the default scenario to 36%, still three
standard deviations below the mean ice core fi0.c of 66% (Figure 2b).

In the HaS scenario, we hypothesize that preindustrial and present-day simulations are
missing a significant volcanic sulfur source due to the omission of H>S from volcanic emissions
inventories. Here, H>S contribution is represented by increasing modeled SO emissions due to
the short 1- to 3-day lifetime of H2S against oxidation to SOz (D’ Alessandro et al., 2009;
Kourtidis et al., 2008; Pham et al., 1995). Accordingly, SO> emissions are multiplied by a factor
based on measured or predicted SO to H»S ratios (Halmer et al., 2002; Table S5). The H>S
scenario results in a fyoic of 46%, which is 2 standard deviations below the mean ice core fioic of
66%.

In the H2S 1.7 scenario, we multiply the SO2 emissions from the H>S scenario by 1.7 for each
volcano. We choose the factor of 1.7 to approximate the mean ice core fyoic of 66%. As expected
and shown in Fig. 3b, the H>S 1.7 scenario produces fioic of 61%, which approximately aligns
with the mean ice core fi0c of 66%. This scenario implies that current estimates of preindustrial
volcanic emissions are underestimated due to the omission of H>S emissions and/or that passive
volcanic degassing has decreased since the preindustrial.

We also consider a scenario where only Icelandic volcanoes have increased sulfur emissions
and that these emissions are much larger than Icelandic emissions in the three aforementioned
emissions scenarios (Text S7). SOz emissions from Iceland were 5.1 Tg S yr! in this scenario,
which is 30 times larger than sulfur emissions from Iceland in the H>S 1.7 scenario (0.16 Tg S yr°
1), but both scenarios are within the estimated range of sulfur emissions from Icelandic volcanoes
based on observations from Icelandic hot springs (Text S7; Supplementary Data File 2).
Icelandic volcanic sulfur emissions of this magnitude reconcile the discrepancy between the
model and ice core (Text S7). Given the recent studies indicating that passive volcanic degassing
CO; emissions in Iceland might be significantly underestimated (e.g., Ilyinskaya et al., 2018), it
is possible that underestimated Icelandic volcanic sulfur emissions could explain most or all of
the discrepancy between the ice core and modeled f.0. This possibility also has significant
radiative forcing implications (Text S7), and highlights the large uncertainty and
disproportionate impact of Icelandic volcanic emissions in the North Atlantic and Greenland.

4.3 Radiative forcing implications

Models indicate that the cooling effect of anthropogenic aerosols would be lower than
previously thought if the preindustrial sulfate aerosol abundance was higher because of the
nonlinear relationship between aerosols and RF.i: as preindustrial aerosol abundance increases,
cloud albedo becomes less sensitive to anthropogenic aerosols (Carslaw et al., 2013; Gettelman
et al., 2015). To explore the potential RF implications of our emissions scenarios, we consider
three possibilities. First, we assume that the default volcanic emissions inventory from Carn et al.



269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

manuscript submitted to Geophysical Research Letters

(2015, 2017) accurately estimates present-day emissions, but underestimates passive volcanic
sulfur emissions in the preindustrial. Second, we assume that passive volcanic sulfur emissions
have not changed since the preindustrial, and that both preindustrial and present-day passive
degassing emissions are underestimated. Overlapping volcanic and anthropogenic sulfur isotopic
source signatures preclude quantifying volcanic sulfate in post-1850 ice core samples
(Ghahremaninezhad et al., 2016; Patris et al., 2002; Wasiuta et al., 2006), therefore we cannot
use post-1850 ice core measurements to evaluate this possibility. A third possibility is a
combination of the first two: volcanic sulfur emissions in both present-day and preindustrial are
underestimated and volcanic passive sulfur emissions were higher in the preindustrial relative to
the present day. The RF implications of this third possibility will fall in between the first two.

To quantify the RF implications of an underestimate in passive volcanic degassing emissions
in the preindustrial (first possibility) or both the preindustrial and present day (second
possibility), we estimate RF for each possibility (RF = RFai + RFaci), where RFay is calculated
using GEOS-Chem (Text S5) and RF.; is calculated using the simple heuristic model described
by Wood 2021 (Text S8). We estimate ARF by subtracting RF with the Carn et al. (2015, 2017)
inventory from RF with elevated passive degassing emissions representing the first or second
possibility (Table S6). We quantify ARF for the first possibility by using the H>S 1.7 scenario in
the preindustrial and using the default scenario in the present day. We quantify ARF for the
second possibility by using the HoS 1.7 scenario in both the preindustrial and present day. We
focus on the H>S 1.7 scenario because it results in a preindustrial modeled fioic (61%)
approximately equal to the ice core fioic (66%). The resulting ARF for both possibilities are
summarized in Table 1. ARF ranges from +0.29 W m? (ARFari = +0.03 W m2, ARFqei = +0.26 W
m%; Table 1, Figure S4) where only preindustrial emissions are underestimated, to +0.11 W m™
(ARF4i = 0.0 W m™2, ARF,ei =+0.11 W m™%; Table 1, Figure S4) where both preindustrial and
present-day emissions are underestimated. We estimate that underestimating Icelandic passive
volcanic sulfur emissions could have an equally large or larger impact on radiative forcing (ARF
=+0.55 W m) (Text S7). This analysis neglects the effects of cloud adjustments to aerosol (i.e.,
impacts on cloud fraction, cloud lifetime, and semi-direct aerosol effects). Nevertheless, these
calculations show that the impact of underestimating volcanic emissions on RF calculations is
potentially large. Future studies using fully coupled atmosphere-ocean global climate models
with enhanced volcanic emissions will be useful for more accurately quantifying RF implications
and uncertainty.

Table 1. Radiative forcing (RF) estimates for different present-day and preindustrial volcanic
scenarios.

Emissions Volcanic Emissions Volcanic Emissions Arctic aerosol SW Difference between
Scenario Scenario in Scenario in TOA RF?* (RFari® + default Arctic RF and
Present Day (fioic of Preindustrial (fior RFaci ©) between emissions scenario

natural nssSO4*) of natural nssSO4>) present day and in Arctic RF (W m?)
preindustrial (W m?)  (ARFari+ A RFac)

Default Default (fioic = 34%)  Default (fior. = 34%) —0.55 (=0.10 +—0.45)

Possibility 1~ Default (fioe = 34%) HsS 1.7 (frote = 61%) —0.26 (~0.07 +—0.19)  +0.29 (0.03 + 0.26)

Possibility 2 HoS 1.7 (fioie = 61%)  HaS 1.7 (froe = 61%)  —0.44 (=0.10 +—0.34)  +0.11 (0.00¢ + 0.11)

2 The total shortwave (SW) top-of-atmosphere (TOA) radiative forcing (RF) is estimated as the sum of the RF from
aerosol-radiation interactions (RFai) and RF from aerosol-cloud interaction (RFqci).

b Difference between present-day radiative effect from aerosol-radiation interactions and preindustrial radiative
effect from aerosol-radiation interactions.

¢ Estimated present-day RF from aerosol-cloud interactions (Text S8).
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4 ARF.i between the default possibility and possibility 2 is negligible compared to ARF,i

5 Conclusions

Our results indicate that passive volcanic degassing sulfur emissions influencing the Arctic
are underestimated by up to a factor of three. We show that increased volcanic sulfur emissions
from passive degassing results in estimated Arctic anthropogenic aerosol cooling that is up to a
factor of two lower in magnitude. An overly strong anthropogenic aerosol cooling due to
underestimated passive volcanic sulfur degassing could at least partially explain excessively
strong aerosol cooling in CMIP6 climate models (Dittus et al., 2020) and the underestimates of
modeled Arctic amplification compared to observations (Rantanen et al., 2022).

Quantifying passive volcanic sulfur degassing emissions is critical for constraining
anthropogenic aerosol forcing. More observations of SO> emissions from passive volcanic
degassing are required to constrain the magnitude of the underestimate in the passive volcanic
SO, emissions inventory based on satellite measurements in Carn et al. (2015, 2017).
Additionally, H>S, which is typically neglected in volcanic emissions inventories used in global
climate models, should be considered a potentially important contributor to the global
atmospheric sulfur budget and thus climate.
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