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Abstract. Consider a three-dimensional partially hyperbolic diffeomorphism. It is proved
that under some rigid hypothesis on the tangent bundle dynamics, the map is (modulo
finite covers and iterates) an Anosov diffeomorphism, a (generalized) skew-product or the
time-one map of an Anosov flow, thus recovering a well-known classification conjecture
of the second author to this restricted setting.
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1. Introduction and main results

Let M be a manifold. One of the central tasks in global analysis is to understand the
structure of Diff" (M), the group of diffeomorphisms of M. This is of course a very
complicated matter, so to be able to make progress it is necessary to impose some
reductions. Typically, as we do in this article, the reduction consists of studying meaningful
subsets in Diff” (M) and trying to classify or characterize elements on them.

We will consider partially hyperbolic diffeomorphisms acting on 3-manifolds. We
choose to do so due to their flexibility (linking naturally algebraic, geometric and
dynamical aspects) and because of the large amount of activity that this particular research
topic has nowadays. Let us spell out the precise definition that we adopt here and refer the
reader to [CRHRHU17, HP16] for recent surveys.

o
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Classification of partially hyperbolic diffeomorphisms 2771

Definition 1. A diffeomorphism of a compact manifold f : M — M is partially hyper-
bolic if there exist a Riemannian metric on M and a decomposition TM = E* @ E¢ & E*
into non-trivial continuous bundles satisfying for every x € M and every unit vector
v e E°, 0 =s,c,uU:

o [[DefHIl <1, IDxf)I > 15

o |[IDef)II < IDx fW) < I1Dx f .

The set of partially hyperbolic diffeomorphisms on M is a C! open set in Diff" (M).
From now on, let M be a three-dimensional compact orientable+ manifold.
We briefly recall some different classes of examples.
e Algebraic and geometric constructions. Including:
— hyperbolic linear automorphisms in the 3-torus;
— skew-products or more generally circle extensions of Anosov surface maps. By
this we mean that there exists a smooth fibration 7 : M — T2 with typical fiber
S', f preserves fibers and the induced map by f on T2 is Anosov; or
— time-one maps of Anosov flows that are either suspensions of hyperbolic surface
maps or mixing flows, as the geodesic flow acting on (the unit tangent bundle of)
an hyperbolic surface;
e surgery and blow-up constructions (which include the construction of non-algebraic
Anosov flows; see [BPP16, BGP16]).

The motivating question is the following.

Question 1. Are the above examples essentially all possible ones, at least modulo
isotopy classes? More precisely, is it true that if f : M — M is a partially hyperbolic
diffeomorphism, then it has a finite cover f : M — M (necessarily partially hyperbolic)
that is isotopic to one of the previous models?

Observe that forgetting the surgery constructions, the first two classes have simple
representatives, namely maps whose derivative is constant (with respect to the invariant
directions). For example, when S is a compact surface of negative sectional curvature its
tangent bundle is an homogeneous space M = I'\PSL(2, R) and the geodesic flow on M
is given by right multiplication by

exp(—%t) 0
0 exp(%t) ’

so the derivative of each time-f map is constant.

In this note we make a contribution to answering the previous question and classify
smooth partially hyperbolic maps with constant derivative or, more generally, with constant
exponents. A tentative classification of some sort is highly desirable, even in this simplified
setting. In that direction, a classification conjecture by the second author was formulated
in 2001 (cf. [BWO0S5]) and extended by a modified (weaker) classification conjecture in
2009 due to the third author, J. Rodriguez-Hertz and Ures (see [CRHRHU17]). Both
conjectures turned out to be false as proven recently by Bonatti e al [BPP16, BGP16], but,

T By passing to a double cover, this is no loss of generality.
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as a byproduct of the proof, a new zoo of examples was discovered giving another impulse
to the research in the topic. Our objective in this paper is then two-fold: on the one hand,
to prove the above-mentioned conjecture in some rigid context and, from there, to propose
a new possible scheme to classify partially hyperbolic diffeomorphisms on 3-manifolds,
and, on the other hand, leave open some questions that may lead to interesting answers.
Given f : M — M partially hyperbolic, modulo a finite covering one has that E? (x)
is generated by a unit vector field x — e, (x) € R3 for o = s, ¢, u; in other words, there
is a finite covering M such that each sub-bundle lifts to an orientable one and therefore
the derivative of the lift of f to M acting on TM (that we keep denoting by f) can be
diagonalized and so the derivative cocyle x — D, f is a cocycle of diagonal elements
of GI(3, R). We denote by As(x), A-(x), A, (x) the associated eigenvalues. We say that f
has constant exponents if these eigenvalues do not depend on x. Observe that the there
are examples of Anosov diffeomorphisms, skew-products over Anosov and hyperbolic
flows (either as suspensions of an Anosov diffeomorphisms or as Anosov geodesic flows)
satisfying that their eigenvalues are constant and having smooth (C°°) distributions.

Remark 1. Notice that our definition of f having constant exponents depends on the
chosen metric (A(fx) = Dy f(es(x))). It was pointed out to us by the referee that one can
make the definition metric independent by requiring that the (logarithm of the) exponents
(differentiably) cohomologous to a constant. In any case we will work with the metric
making all the exponents constant.

THEOREM 1. Let f be a partially hyperbolic C* diffeomorphism on a compact orientable
3-manifold M with constant exponents and smooth invariant distributions.
o If|i| > 1, thenfis C*® conjugate to a linear Anosov diffeomorphism on T3,
o If|A.| = 1 and fis either transitive or real analytic, then there is a finite covering of
M such that an iterate of the lift of f is:
—  C®™ conjugate to a circle extension of an Anosov linear map; or
— a time-t map of an Anosov flow of the one following types:
*  the suspension of a two-dimensional smooth Anosov map; or
* a C™ leaf conjugate to the geodesic flow of a surface with constant negative
curvature, meaning that there exists a smooth diffeomorphism sending the
orbits of this Anosov flow to the orbits of the diagonal action ont F\§]:(2, R)
for some co-compact lattice T'.

A sketch of the proof is presented at the beginning of the next section.

Remark 2. The above theorem implies that under its hypotheses Question 1 has an
affirmative answer.

Question 2. Can we get a similar theorem assuming (only) smoothness of the foliations?

Our theorem reveals some inherent rigidity of systems with constant exponents. The
reader should compare Theorem 1 with [AVW15, Gogl7, GKS19, SY19], where rigidity

+ Here éi(Z, R) denotes the universal covering of SL(2, R).
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results are obtained for some perturbations of the listed maps (time-one maps of geodesic

flows, Anosov diffeomorphisms and skew-products).

About the tentative classification without any extra assumption beyond partial hyper-
bolicity, the following has been proved recently (see also [Pot18]).

e Partially hyperbolic diffeomorphisms in Seifert and hyperbolic manifolds are conju-
gate to a discretized topological Anosov flow (see [BFFP19]); also it was announced
by Ures when M = T''S (S is a surface) assuming that f is isotopic to the geodesic
flow through a path of partially hyperbolic diffeomorphisms.

e If M is a manifold with (virtually) solvable fundamental group an f-invariant center
foliation, then (up to finite lift and iterate) it is leaf conjugate to an algebraic example
(see [HP14, HP15]).

e In [BPP16, BGP16], using surgery there was constructed a large family of new
partially hyperbolic examples that are not isotopic to any one in the thesis of
Theorem 1. See also the blow-up constructions in [Gog18].

Question 3. How does Theorem 1 relate to the above-mentioned recent results?+

Related to a general classification, would it be possible that the rigid ones are kinds of
‘building blocks’ from where any three-dimensional partially hyperbolic one ‘is built’?

Question 4. Given an compact orientable 3-manifold M and f: M — M partially
hyperbolic, is it true that M ‘can be cut’ into finitely many (manifold with boundary) pieces

My, ..., My such that M; is an open submanifold in a compact 3-manifold M; carrying
fi € PH(M;) with constant exponents and so that f|M; is isotopic (relative to M;) to
filM;?

2. Proof of the main result

To avoid repetition, from now on we assume that all the sub-bundles are orientable and
that we are working in the corresponding lift (as was mentioned before its statement, the
main theorem holds up to a finite covering).

Since the distributions E° are differentiable, they are uniquely integrable to one-
dimensional foliations F° of C* leaves. Consider the orthonormal invariant (ordered)
base B(x) = {e“(x), €°(x), e°(x)} referred in the introduction and denote by A(x) the
associated matrix to D, f in the bases B(x), B(fx). By the hypotheses A(x) = A €
GI(3, R) is diagonal and hence it is partially hyperbolic with determinant £1 and thus
is an hyperbolic matrix or it has one eigenvalue of modulus one. In the former case f is
Anosov, while in the latter f acts as an isometry on its center.

Let ¢, ¢7, ¢/ be the flows that integrate the bundles E¥, E€, E* parameterized by arc
length (in short, we refer to them as ¢ with o = s, ¢, u). By the hypotheses, these are C*°
flows.

Question 5. Is the smoothness hypothesis on the bundles necessary in the presence of
constant exponents?

+ After completing this manuscript we received a preprint from Bonatti and Zhang, where they obtained a C°
rigidity result assuming neutral center [BZ20].
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The proof of the theorem goes as follows. If |A.| # 1, f is Anosov and there are
constructed global C* coordinates to show that f is C* conjugate to a linear Anosov
map; if |A.| = 1, by the commutation of ¢; and f (see equations 1 and 2) it follows that
D¢y is constant in the corresponding f-invariant base (see Lemma 2) and therefore it is
either the identity or partially hyperbolic. In the first case all the center leaves are compact
and then f is an extension of a two-dimensional Anosov diffeomorphism (see Proposition
1), while in the second ¢; is an Anosov flow and there is T such that f = ¢ (see Lemma
5). Moreover, by [Ghy87] we have that ¢; is (modulo coverings and reparametrizations)
the geodesic flow of a surface with constant negative curvature or the suspension of a
linear Anosov map with constant time. We point out that in [BWO05] it is concluded
that under transitivity, a three-dimensional partially hyperbolic diffeomorphism is either a
skew-product, or its center foliation carries an expansive flow, assuming the existence of
a certain type of periodic trajectories for ¢; and some properties of the dynamics of the
homoclinic points associated to these periodic orbits.

For perturbations of the linear Anosov map, the same result may also be obtained
by using the first theorem in [SY19] once it is shown that the exponents of the
Anosov diffeomorphism and its linear part are the same, which can be deduced from
quasi-isometry of the foliations. A different approach to prove smooth conjugacy to a
linear Anosov model was developed in [Var18] that uses smoothness of the center foliation
plus extra requirements about the stable/unstable holonomies; to apply that approach one
may have to establish that the hypotheses of our main theorem imply the requirements of
[Var18], which does not seem to be direct. Another result related to the case that |A.] = 1
is the one proved in [AVW15]: any partially hyperbolic diffeomorphism (that preserves a
Liouville probability measure) close to the time-one map of a geodesic flow of a negatively
curved surface with a smooth center foliation is the time-one map of a flow (close to the
geodesic flow).

Given x, since f preserves the 3-foliations, we have

fodf(x) =97 ;0 f(0),
where ), is the eigenvalue of Df along E°. The same equations lead to
"ol (x) =¢urso0 f1(x). )]
In particular, we have
Dyg () /" © Dy = D pn(x)$5n ; © D f" )
Differentiating (2) with respect to ¢, we get the following equation:
9 Dyg (x) f" © Dxy + Dgg (x) [" 0 0 Dxyy = A5.0;D pr(xy$n ; © D f"

and hence if we denote by B?(x, t) the associated matrix to Dy ¢y in the bases B(x),
B(¢7 (x)) we obtain, using that the representation of Dy f" (= A") is independent
of time,

A" 3,B% (x, 1) = A0, B° (f™(x), A1) - A",
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Therefore, by fixing ¢y, we have
A" - 9; B (x, f)|t=to/kg CAT = )»ﬁazB”(f"(X), Bli=1o- 3)

Since D@7 (E?) = E°, the two non-diagonal terms of the corresponding column of
B (x, t) are zero and thus the same is true for 9, B® (x, t).
We divide the argument into cases depending on whether A, > 1 or A, = 1.

2.1. Xc > 1 Anosov case. First we consider the case A, > 1. Clearly, f is Anosov and
therefore it is conjugate (in the C° category) with its linear part L : T> — T3; i.e. there
exists L € SL(3, Z) with invariant bundles E;, E{, E} and exponents y; < 1 < y. < yy
conjugate to f. The goal is to show that the conjugacy with the linear part is actually
smooth. To do that, we revisit the classical result of Franks [Fra68] that uses the foliations
to build the conjugacy along the following steps:

e there is considered the lift of f to R? for which, after conjugating by a translation, it
can be assumed that f(0) = 0 and the lifts of the foliations that integrate the invariant
sub-bundles; those foliations provide a C* system of coordinates; i.e., any point x
can be written as (x*, x¢, x*) with x? € F°(0) (the invariant leaves at the point
(0,0,0));

e it is shown that f can be ‘linearized’, in the sense that f can be written as
Fx5, x4 x") = (fS(x%), fC(x©), f4(x")), where f7 : F°(0) — F°(0) is a smooth
diffeomorphism;

e cach one-dimensional diffeomorphism f° is C* conjugate to L|E] by a C*
diffeomorphism 4° : F°(0) — E7;

e the C* diffeomorphism h = (h*, h¢, h") is a conjugacy between f and L.

For the first item, we first remark that as a consequence of the classical stable manifold
theorem, the bundle E€ @ E* is also integrable to an f-invariant foliation ", the center
unstable foliation. In the lift to R3, for any point x there are unique points x* € F*(0)
and x* € F“(0) such that x € F“(x*) N F*(x*) and for any point x“* € F<“(0) there
are unique points x¢ € F¢(0) and x* € F*(0) such that x* € F*(x) N F°(x*). In this
way, there is obtained a C*° system of coordinates and any point can be written as
(x*, x€, x*).

For the second item, first observe that using the linear coordinates it follows that f
is expressed as f(x®, x¢, x") = (f*(x%, x¢, x*), fE(x*, x€, x*), f*(x%, x¢, x")); so, the
goal is to show that £ only depends on the x? coordinate. For that, it is enough to show
that all the holonomies preserve the invariant sub-bundles and this is done by showing
that the derivative of ¢/ is the identity. We will consider o = ¢, as the other cases
are completely analogous. Writing d; B€(x, t) |t:t0/xg = (a;j), 0B (f"(x), t)|t:t0 = (alfj)
and using (3), one gets

a b )" ap O
1 — ] -ai
Ag ’ ’

A\ ap dap 0
= - djl ann 0 = )»? aél aéQ 0
)\u a/ a/ a/
Ac\” A\ 31 32 33
T - asy T +aszz  asz
Ay Ag
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Observe that the coefficients a,-j,alfj are bounded with n, while 9;Dy¢f lr=to/2n =
0; Dx¢f ;=0 uniformly as n — oo; using this and the relation A, <1 < A, < X,, one
deduces that 9, D¢y |;=¢ is the zero matrix. Finally, it is well known that f has dense
orbits and hence by taking one of these we deduce that d; B°(x, t)|;=;, = 0 for every
x € M, tp € R. This implies that B°(x, ) is the identity matrix for every ¢, x and in
particular D¢f(E°) = E°, 0 =u, s, c.

The argument above works similarly for the flows ¢“, ¢, interchanging A, by A, Ag
(which are different from one), thus establishing the second item.

To prove the third item, it is enough to show that the eigenvalues of L are the same as
those of f.

CLAIM 1. We have y,, = Ay, Ve = Acy, Vs = Ag.

Proof. Since the topological entropies of f and L are the same, we obtain y; = Ay, ¥, +
Ye = Au + A. Using that the conjugacy between f and L sends F¢ to {E{ + x}, T3, one
deduces that y. = A., which finishes the claim. [l

Now, one can define h% : F°(0) — EJ by
h?(x) = oriented arc length in W (0) of the shortest interval between 0 and x.

Each h° is a C* diffeomorphism and, since all holonomies corresponding to invariant
foliations of f are the identity, they assemble to a C* diffeomorphism 4 : R? — R3. By
the previous claim, 4 conjugates the action of f with L, concluding that fis C* conjugate
to its linear part.

Remark 3. If one assumes that f has constant derivative (i.e. the invariant bundles are
constant), then the above argument is simplified, concluding that f = L.

2.2. Ac = 1 Generalized skew-products. Now we consider the case A, = 1. As in the
previous case, it is shown that D¢y preserves the sub-bundles; however, since now the
center eigenvalue is one, a different proof is needed.

LEMMA 1. We have D¢;(E°) = E° foro =u, s, c.

Proof. We consider the case o = u only, as the argument for o = s is completely
analogous (while 0 = ¢ is a direct consequence of E¢ being tangent to flow lines).
Fix x € M, y = ¢;(x) and take v = D, ¢; (" (x)). By integrability of E* ® E°, we can
write v = ae’(y) + be€(y). Using (2) with n > 0 and since distances along centers are
preserved, we get

A1 :
D fniy @y <A—n€”(f_" (X))) = ;—ne”(f_” () + be (f " (y).

This gives a contradiction for n large, unless b = 0. O
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As in the previous part, denote by B°(x, t) the associated matrix to D,¢; in the
corresponding invariant bases. By (2), A" - B(x,t) - A" = B°(f"(x), t) and, since all
matrices are diagonal, this implies that B¢(x, t) = B(f"(x), t) for all n.

LEMMA 2. Iffis transitive or real analytic, then B€(x, t) is constant in x.

Proof. This follows directly by the previous equality (invariance of B(x, ) in the orbit
of x), either by taking a dense orbit (in the transitive case) or a recurrent trajectory (which
exists by Birkhoff’s recurrence theorem) in the real analytic case, by the zero’s theorem for
analytic functions. U

We deduce that for ¢ fixed the map ¢; is conservative with constant exponents and hence
B¢(x, t) is either:
e the identity; or
e partially hyperbolic (a center eigenvalue equal to one, one larger and another smaller).
In this case ¢; is an Anosov flow.

The case when B€(x, t) = Id is the simpler one.

PROPOSITION 1. If B¢(x,t) = Id, then:
o all the center leaves are closed; and
e fis C* conjugate to a circle extension of a linear Anosov map in T?.

We will prove this through a series of lemmas.
LEMMA 3. If B(x, t) = Id, then there is a closed center leaf (i.e. a circle tangent to E€).

Proof. Taking a recurrent point, one can find p such that /7, is invariant by f k for some
k. We claim that 7, is closed. Assuming otherwise, /7, is homeomorphic to the real line
and so f*: f; — ]-"; is either the identity or a translation. Observe that for a partially
hyperbolic diffeomorphism, two periodic points of the same period that are sufficiently
close have to belong to the same local center manifold. But, if ]-'IC7 is not closed and f* |~7:f,
is the identity, there are periodic points of f with the same period, arbitrarily close one
to each other and that do not share the same local center leaf. In the case that f k|]—']‘,'
is a translation, i.e. f¥(x) = x 4+ « along the center leaf, one can take a point z and ¢
arbitrarily large such that z, ¢;(z), ¢2.+(z) are close to each other and arcs Iy, I, I, with
length 4.« inside ]:; and containing in the middle the points z, ¢; (), ¢5,(z), respectively;
since ¢ is large, the three arcs are disjoint. Let n be the smallest positive integer such that
k() € I, which exists because f* restricted to the center is a translation by « and the
arcs have length 4.cc. From the commutative property, we also have that f>K”(z) € I; in
particular, f5"(Ip) NI # @ and £ (1)) N I, # . Since £ is partially hyperbolic, the
unstable distance of I to I} is A* times the distance from I to Iy. On the other hand, since
o7 (lp) = I and ¢; (I1) = I and D¢y is the identity, we have that the unstable distance of
I, to I is equal to the distance from Iy to Iy. This is a contradiction. U

LEMMA 4. If B(x, t) = 1d, then all center leaves are closed.
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Proof. By the previous lemma, there exists a closed center leaf and thus there is a periodic
point x of ¢f. Let us consider two local transversal sections £’ C ¥ to the flow containing
x and let R be the first-return map from X’ to X. The transversal section can be taken in
such a way that T, ¥ = Ny, where N, is the orthogonal plane to the flow direction at y.
In that case, Dy R, the derivative of R at a point y € X, coincides with qgr(w(y), the linear
Poincaré flow at y with r(y) being the return time of y to X by the flow ¢;. Therefore, for
any y € X', the derivative of the return map is the identity and, since R has a fixed point,
then R is the identity in X’. In particular, this implies that any center leaf intersecting X’
is a closed leaf with trivial holonomy. In this way we prove that the set of points having a
closed center leaf is an open set. Since the center eigenvalue of f is one, we deduce that for
a point p having a compact center leaf all other leaves inside W< (p), W (p) are circles
with uniformly bounded length and this implies that for a given closed center leaf there
exists an open set of bounded below diameter where all other center leaves are closed.
Since the recurrent points of f are dense (because f is conservative), we deduce that every
center leaf is closed. ]

Proof of Proposition 1. By the lemma above, F¢ is a C* foliation by compact leaves
without holonomy and so M/F° is a smooth compact surface and M — M/F° is a
smooth fibration. By standard arguments it follows that M is a nilmanifold (see, for
example, Theorem 3 in [RHRHTU12]). The map f induces an hyperbolic diffeomorphism
f T M/F¢ — M/F€ that has constant exponents in the base obtained by projecting
{B(x)}. By the same arguments used in the case A, > 1 we deduce that M /F° is the
two-dimensional torus and f is C*™ conjugate to a linear Anosov map L. By extending
the aforementioned conjugacy to M as the identity in the fibers, we conclude that f is C*
conjugate to an extension of L. (]

Question 6. In the skew-product case, M = T? and f is conjugate to a map of the form
L x gy, L(x,0)=(L-x,0+ a(x)). It was asked by the referee which type of properties
can be deduced from « if we assume further that the invariant bundles are smooth, so we
leave the problem for the interested reader.

2.3. Ac =1 Anosov flow case. It remains for us to analyze the case where D,¢; is
partially hyperbolic.

LEMMA 5. If D¢ is partially hyperbolic, then ¢f is either the suspension of a C*°
Anosov map in T2 or, modulo finite covering and C™ conjugacy, the geodesic flow acting
on a surface of constant negative sectional curvature.

Proof. We already saw that ¢; is an Anosov flow with C*° stable and unstable distribu-
tions. Either ¢y is a suspension (necessarily of a C** Anosov surface map) or, by [Ghy87],
there exists a smooth diffeomorphism sending the orbits of ¢; to the orbits of the diagonal
flow on a homogeneous space F\§i(2, R). (]

PROPOSITION 2. If D¢y is partially hyperbolic, then there exists an iterate f K that is the
time-t map of an Anosov flow.
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D

<

O(p) O(p)

FIGURE 1. Construction of DS, D". Here A = A, = A;l.

We first note the following.

LEMMA 6. If Dy¢; is partially hyperbolic, then there are an iterate f K and a closed
center leaf O (p) such that modulo a C* reparametrization of ¢, we have:
e  O(p) has length one;
o if Wi (O(p),d;), Wio.(O(p), ¢;) are the local stable and unstable manifolds of
O(p) with respect to ¢y, then:
= [AWiee (0(p). ) € Wioo(0(p). 7): and
- RWEO(p). ¢F)) C WE(O(p)., ¢f).

Proof. As noted above, ¢; is conservative. Since ¢; is a hyperbolic flow, there exists
at most finitely many shortest closed orbits. Let O(p) be one of these shortest closed
curves. Since f(O(p)) is a compact leaf of the same length, O(p) is a periodic
curve of f. It follows that there is a positive integer k such that fk(O(p)) = 0(p).
We reparametrize the flow so that O(p) has length one, i.e. ¢{(z) =z for all z €
O(p). Since the only f*-invariant sets near O(p) are Wi (P, %) and Wioe(p, Fa)
(the center stable and center unstable manifolds of p), we have that f¥ permutes the
set {Wi.(O(p), ¢7), Wi .(O(p), ¢7)}; hence, by changing ¢ by —t if necessary, we
can assume that f*(W (O (p), ¢f)) C Wi, .(O(p), ¢f) and [~ (Wi (O(p), ¢f)) C

W (O (p). ). O

We continue working with O(p) given in the lemma and assume that f(O(p)) =
O(p) (so, the actual result is about £ and not f). Note that both W*(O(p), ¢;) and
WH*(O(p, ¢7)) are cylinders over O(p). We introduce (linearizing) coordinates (6, x)
in W (O(p), ¢7) and (6, y) in W (O(p), ¢;) with 0 € R/Z and x,y € [~y Ayl.
Consider the curves y; = {(0, x) : x = 1}, y, = {(@, x) : y = A} and note that they are
transverse to ¢; . Finally, consider the fundamental domains D* C W (O(p), ¢7), D" C

Wie(0(p), ¢;) delimited by s, f(ys) and yu, f(yu) respectively. See Figure 1.
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In the (x, t) coordinates the flow ¢; is the solution to the differential equation 6 =
1, X = ax and similarly for the (8, y) coordinates. We deduce that ¢; is given by

O—0+t "
{x — xe%! in Wi, . (0(p), ), “4)
O0— 0+t 5
{y > yeP! in Wioe (0(p), ). )

On the other hand, the diffeomorphism f acts in the vertical coordinates simply by
multiplying by A, Ag,

f(e’ x) = (9/’ }‘*le)’ (6)
O, 9) =" rp). )

We now consider the homoclinic trajectories of ¢y connecting f(y,) with y;.
LEMMA 7. Any such homoclinic trajectory is fixed by f.

Proof. For a homoclinic trajectory O(g) as before, we denote X(q) € f(yy) N O(q),
L(g) = the smallest time such that Y (q) = ¢(4)(X(g)) € y; and we observe that given
M > 0, the number of homoclinic trajectories O(q) with L(g) < M is finite; hence, as f
is an isometry in the flow direction, it suffices to show that the possible L(q) are bounded.

Take an homoclinic curve O(gg) of minimal length and denote by xg, yo the second
coordinates of X (qo), Y (qo). Let kg € Z be the smallest integer such that f(;‘ (X (q0)) € D*
and define Y| = fé‘ (X(gqo)) and X the point in f(y,) N O(Y1) of minimal length, which
we denote by L (i.e. ¢, (X1) = Y1). Similarly, x1, y; denote the second coordinates of
X1, Y1, respectively.

The oriented orbit segment joining Y1 = 0 (X() with £%0(X) is completely contained
in W (O(p), ¢7) and has length L (because f is an isometry in the flow direction); thus,

loc
we deduce that
A_koyo = yePlo,

On the other hand and arguing analogously, the oriented orbit segment joining
f‘ko (X1) with X¢ is completely contained in Wl’gC(O(p), ¢;) and has length L; hence,

xoePtt = Ry
thus, combining the two previous equations, we deduce that

M Lo — 20 pL1 _y B(Li—Lo) _ X1VT
Yo X1 X0Y0

We now argue inductively (with the natural definition for x;, y;) and obtain

Lj — Lj_l = a(lnxjyj — lnxj_lyj_l)

= Lj—Lo=oa(nx;y; —Inxpyy) forallj> 1.

Noting that x;y; € [1, 12] for every j, we obtain that L is bounded in j, as claimed. U]
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We are ready to finish the proof of Proposition 2.

Proof of Proposition 2. It follows that f fixes an orbit O(g) # O(p) homoclinic to
O(p). It follows that there is a T (positive) such that ¢7(Xo) = f ko(X() and hence
AX.y0 = exp(B.T) - yo, which implies that A; = exp(8.T/k), and, using that A, = A; !,
we get A, = exp(«.T). Finally, using the linearizing coordinates, we deduce that Df =
De5 Jk and, since f fixes two orbits in these coordinates, f = ¢7 Jk in W*(O(p), ¢7) U
W*(O(p), ¢;), which implies, since the stable and unstable manifolds of O(p) are dense,
thatf:(pf}/k on M. O
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