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Abstract. Consider a three-dimensional partially hyperbolic diffeomorphism. It is proved

that under some rigid hypothesis on the tangent bundle dynamics, the map is (modulo

finite covers and iterates) an Anosov diffeomorphism, a (generalized) skew-product or the

time-one map of an Anosov flow, thus recovering a well-known classification conjecture

of the second author to this restricted setting.
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1. Introduction and main results
Let M be a manifold. One of the central tasks in global analysis is to understand the

structure of Diffr(M), the group of diffeomorphisms of M. This is of course a very

complicated matter, so to be able to make progress it is necessary to impose some

reductions. Typically, as we do in this article, the reduction consists of studying meaningful

subsets in Diffr(M) and trying to classify or characterize elements on them.

We will consider partially hyperbolic diffeomorphisms acting on 3-manifolds. We

choose to do so due to their flexibility (linking naturally algebraic, geometric and

dynamical aspects) and because of the large amount of activity that this particular research

topic has nowadays. Let us spell out the precise definition that we adopt here and refer the

reader to [CRHRHU17, HP16] for recent surveys.
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Definition 1. A diffeomorphism of a compact manifold f : M → M is partially hyper-

bolic if there exist a Riemannian metric on M and a decomposition T M = Es ⊕ Ec ⊕ Eu

into non-trivial continuous bundles satisfying for every x ∈ M and every unit vector

vσ ∈ Eσ , σ = s, c, u:

• ‖Dxf (vs)‖ < 1, ‖Dxf (vu)‖ > 1;

• ‖Dxf (vs)‖ < ‖Dxf (vc)‖ < ‖Dxf (vu)‖.

The set of partially hyperbolic diffeomorphisms on M is a C1 open set in Diffr(M).

From now on, let M be a three-dimensional compact orientable† manifold.

We briefly recall some different classes of examples.

• Algebraic and geometric constructions. Including:

– hyperbolic linear automorphisms in the 3-torus;

– skew-products or more generally circle extensions of Anosov surface maps. By

this we mean that there exists a smooth fibration π : M → T
2 with typical fiber

S
1, f preserves fibers and the induced map by f on T

2 is Anosov; or

– time-one maps of Anosov flows that are either suspensions of hyperbolic surface

maps or mixing flows, as the geodesic flow acting on (the unit tangent bundle of)

an hyperbolic surface;

• surgery and blow-up constructions (which include the construction of non-algebraic

Anosov flows; see [BPP16, BGP16]).

The motivating question is the following.

Question 1. Are the above examples essentially all possible ones, at least modulo

isotopy classes? More precisely, is it true that if f : M → M is a partially hyperbolic

diffeomorphism, then it has a finite cover f̃ : M → M (necessarily partially hyperbolic)

that is isotopic to one of the previous models?

Observe that forgetting the surgery constructions, the first two classes have simple

representatives, namely maps whose derivative is constant (with respect to the invariant

directions). For example, when S is a compact surface of negative sectional curvature its

tangent bundle is an homogeneous space M = Ŵ\PSL(2, R) and the geodesic flow on M
is given by right multiplication by

(
exp(− 1

2
t) 0

0 exp( 1
2
t)

)
,

so the derivative of each time-t map is constant.

In this note we make a contribution to answering the previous question and classify

smooth partially hyperbolic maps with constant derivative or, more generally, with constant

exponents. A tentative classification of some sort is highly desirable, even in this simplified

setting. In that direction, a classification conjecture by the second author was formulated

in 2001 (cf. [BW05]) and extended by a modified (weaker) classification conjecture in

2009 due to the third author, J. Rodriguez-Hertz and Ures (see [CRHRHU17]). Both

conjectures turned out to be false as proven recently by Bonatti et al [BPP16, BGP16], but,

† By passing to a double cover, this is no loss of generality.
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as a byproduct of the proof, a new zoo of examples was discovered giving another impulse

to the research in the topic. Our objective in this paper is then two-fold: on the one hand,

to prove the above-mentioned conjecture in some rigid context and, from there, to propose

a new possible scheme to classify partially hyperbolic diffeomorphisms on 3-manifolds,

and, on the other hand, leave open some questions that may lead to interesting answers.

Given f : M → M partially hyperbolic, modulo a finite covering one has that Eσ (x)

is generated by a unit vector field x → eσ (x) ∈ R
3 for σ = s, c, u; in other words, there

is a finite covering M̂ such that each sub-bundle lifts to an orientable one and therefore

the derivative of the lift of f to M̂ acting on T M̂ (that we keep denoting by f ) can be

diagonalized and so the derivative cocyle x → Dxf is a cocycle of diagonal elements

of Gl(3, R). We denote by λs(x), λc(x), λu(x) the associated eigenvalues. We say that f
has constant exponents if these eigenvalues do not depend on x. Observe that the there

are examples of Anosov diffeomorphisms, skew-products over Anosov and hyperbolic

flows (either as suspensions of an Anosov diffeomorphisms or as Anosov geodesic flows)

satisfying that their eigenvalues are constant and having smooth (C∞) distributions.

Remark 1. Notice that our definition of f having constant exponents depends on the

chosen metric (λ(f x) = Dxf (eσ (x))). It was pointed out to us by the referee that one can

make the definition metric independent by requiring that the (logarithm of the) exponents

(differentiably) cohomologous to a constant. In any case we will work with the metric

making all the exponents constant.

THEOREM 1. Let f be a partially hyperbolic C∞ diffeomorphism on a compact orientable
3-manifold M with constant exponents and smooth invariant distributions.

• If |λc| > 1, then f is C∞ conjugate to a linear Anosov diffeomorphism on T
3.

• If |λc| = 1 and f is either transitive or real analytic, then there is a finite covering of
M such that an iterate of the lift of f is:

– C∞ conjugate to a circle extension of an Anosov linear map; or
– a time-t map of an Anosov flow of the one following types:

⋆ the suspension of a two-dimensional smooth Anosov map; or
⋆ a C∞ leaf conjugate to the geodesic flow of a surface with constant negative

curvature, meaning that there exists a smooth diffeomorphism sending the
orbits of this Anosov flow to the orbits of the diagonal action on† Ŵ\S̃L(2, R)

for some co-compact lattice Ŵ.

A sketch of the proof is presented at the beginning of the next section.

Remark 2. The above theorem implies that under its hypotheses Question 1 has an

affirmative answer.

Question 2. Can we get a similar theorem assuming (only) smoothness of the foliations?

Our theorem reveals some inherent rigidity of systems with constant exponents. The

reader should compare Theorem 1 with [AVW15, Gog17, GKS19, SY19], where rigidity

† Here S̃L(2, R) denotes the universal covering of SL(2, R).
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results are obtained for some perturbations of the listed maps (time-one maps of geodesic

flows, Anosov diffeomorphisms and skew-products).

About the tentative classification without any extra assumption beyond partial hyper-

bolicity, the following has been proved recently (see also [Pot18]).

• Partially hyperbolic diffeomorphisms in Seifert and hyperbolic manifolds are conju-

gate to a discretized topological Anosov flow (see [BFFP19]); also it was announced

by Ures when M = T 1S (S is a surface) assuming that f is isotopic to the geodesic

flow through a path of partially hyperbolic diffeomorphisms.

• If M is a manifold with (virtually) solvable fundamental group an f -invariant center

foliation, then (up to finite lift and iterate) it is leaf conjugate to an algebraic example

(see [HP14, HP15]).

• In [BPP16, BGP16], using surgery there was constructed a large family of new

partially hyperbolic examples that are not isotopic to any one in the thesis of

Theorem 1. See also the blow-up constructions in [Gog18].

Question 3. How does Theorem 1 relate to the above-mentioned recent results?†

Related to a general classification, would it be possible that the rigid ones are kinds of

‘building blocks’ from where any three-dimensional partially hyperbolic one ‘is built’?

Question 4. Given an compact orientable 3-manifold M and f : M → M partially

hyperbolic, is it true that M ‘can be cut’ into finitely many (manifold with boundary) pieces

M1, . . . , Mk such that Mi is an open submanifold in a compact 3-manifold M̂i carrying

fi ∈ PH(M̂i) with constant exponents and so that f |Mi is isotopic (relative to Mi) to

fi |M̂i?

2. Proof of the main result
To avoid repetition, from now on we assume that all the sub-bundles are orientable and

that we are working in the corresponding lift (as was mentioned before its statement, the

main theorem holds up to a finite covering).

Since the distributions Eσ are differentiable, they are uniquely integrable to one-

dimensional foliations Fσ of C∞ leaves. Consider the orthonormal invariant (ordered)

base B(x) = {eu(x), es(x), ec(x)} referred in the introduction and denote by A(x) the

associated matrix to Dxf in the bases B(x), B(f x). By the hypotheses A(x) = A ∈

Gl(3, R) is diagonal and hence it is partially hyperbolic with determinant ±1 and thus

is an hyperbolic matrix or it has one eigenvalue of modulus one. In the former case f is

Anosov, while in the latter f acts as an isometry on its center.

Let φs
t , φc

t , φu
t be the flows that integrate the bundles Es , Ec, Eu parameterized by arc

length (in short, we refer to them as φσ
t with σ = s, c, u). By the hypotheses, these are C∞

flows.

Question 5. Is the smoothness hypothesis on the bundles necessary in the presence of

constant exponents?

† After completing this manuscript we received a preprint from Bonatti and Zhang, where they obtained a C
0

rigidity result assuming neutral center [BZ20].
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The proof of the theorem goes as follows. If |λc| 6= 1, f is Anosov and there are

constructed global C∞ coordinates to show that f is C∞ conjugate to a linear Anosov

map; if |λc| = 1, by the commutation of φc
t and f (see equations 1 and 2) it follows that

Dφc
t is constant in the corresponding f -invariant base (see Lemma 2) and therefore it is

either the identity or partially hyperbolic. In the first case all the center leaves are compact

and then f is an extension of a two-dimensional Anosov diffeomorphism (see Proposition

1), while in the second φc
t is an Anosov flow and there is T such that f = φc

T (see Lemma

5). Moreover, by [Ghy87] we have that φc
t is (modulo coverings and reparametrizations)

the geodesic flow of a surface with constant negative curvature or the suspension of a

linear Anosov map with constant time. We point out that in [BW05] it is concluded

that under transitivity, a three-dimensional partially hyperbolic diffeomorphism is either a

skew-product, or its center foliation carries an expansive flow, assuming the existence of

a certain type of periodic trajectories for φc
t and some properties of the dynamics of the

homoclinic points associated to these periodic orbits.

For perturbations of the linear Anosov map, the same result may also be obtained

by using the first theorem in [SY19] once it is shown that the exponents of the

Anosov diffeomorphism and its linear part are the same, which can be deduced from

quasi-isometry of the foliations. A different approach to prove smooth conjugacy to a

linear Anosov model was developed in [Var18] that uses smoothness of the center foliation

plus extra requirements about the stable/unstable holonomies; to apply that approach one

may have to establish that the hypotheses of our main theorem imply the requirements of

[Var18], which does not seem to be direct. Another result related to the case that |λc| = 1

is the one proved in [AVW15]: any partially hyperbolic diffeomorphism (that preserves a

Liouville probability measure) close to the time-one map of a geodesic flow of a negatively

curved surface with a smooth center foliation is the time-one map of a flow (close to the

geodesic flow).

Given x, since f preserves the 3-foliations, we have

f ◦ φσ
t (x) = φσ

λσ .t ◦ f (x),

where λσ is the eigenvalue of Df along Eσ . The same equations lead to

f n ◦ φσ
t (x) = φλn

σ .t ◦ f n(x). (1)

In particular, we have

Dφσ
t (x)f

n ◦ Dxφ
σ
t = Df n(x)φ

σ
λn

σ .t ◦ Dxf
n. (2)

Differentiating (2) with respect to t, we get the following equation:

∂tDφσ
t (x)f

n ◦ Dxφ
σ
t + Dφσ

t (x)f
n ◦ ∂tDxφ

σ
t = λn

σ .∂tDf n(x)φ
σ
λn

σ .t ◦ Dxf
n

and hence if we denote by Bσ (x, t) the associated matrix to Dxφ
σ
t in the bases B(x),

B(φσ
t (x)) we obtain, using that the representation of Dxf

n (= An) is independent

of time,

An · ∂tB
σ (x, t) = λn

σ ∂tB
σ (f n(x), λn

σ .t) · An.
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Therefore, by fixing t0, we have

An · ∂tB
σ (x, t)|t=t0/λ

n
c
· A−n = λn

σ ∂tB
σ (f n(x), t)|t=t0 . (3)

Since Dφσ
t (Eσ ) = Eσ , the two non-diagonal terms of the corresponding column of

Bσ (x, t) are zero and thus the same is true for ∂tB
σ (x, t).

We divide the argument into cases depending on whether λc > 1 or λc = 1.

2.1. λc > 1 Anosov case. First we consider the case λc > 1. Clearly, f is Anosov and

therefore it is conjugate (in the C0 category) with its linear part L : T3 → T
3; i.e. there

exists L ∈ SL(3, Z) with invariant bundles Es
L, Ec

L, Eu
L and exponents γs < 1 < γc < γu

conjugate to f. The goal is to show that the conjugacy with the linear part is actually

smooth. To do that, we revisit the classical result of Franks [Fra68] that uses the foliations

to build the conjugacy along the following steps:

• there is considered the lift of f to R
3 for which, after conjugating by a translation, it

can be assumed that f (0) = 0 and the lifts of the foliations that integrate the invariant

sub-bundles; those foliations provide a C∞ system of coordinates; i.e., any point x
can be written as (xs , xc, xu) with xσ ∈ Fσ (0) (the invariant leaves at the point

(0, 0, 0));

• it is shown that f can be ‘linearized’, in the sense that f can be written as

f (xs , xc, xu) = (f s(xs), f c(xc), f u(xu)), where f σ : Fσ (0) → Fσ (0) is a smooth

diffeomorphism;

• each one-dimensional diffeomorphism f σ is C∞ conjugate to L|Eσ
L by a C∞

diffeomorphism hσ : Fσ (0) → Eσ
L;

• the C∞ diffeomorphism h = (hs , hc, hu) is a conjugacy between f and L.

For the first item, we first remark that as a consequence of the classical stable manifold

theorem, the bundle Ec ⊕ Eu is also integrable to an f -invariant foliation Fcu, the center

unstable foliation. In the lift to R
3, for any point x there are unique points xs ∈ F s(0)

and xcu ∈ Fcu(0) such that x ∈ Fcu(xs) ∩ F s(xcu) and for any point xcu ∈ Fcu(0) there

are unique points xc ∈ Fc(0) and xu ∈ Fu(0) such that xcu ∈ Fu(xc) ∩ Fc(xu). In this

way, there is obtained a C∞ system of coordinates and any point can be written as

(xs , xc, xu).

For the second item, first observe that using the linear coordinates it follows that f
is expressed as f (xs , xc, xu) = (f s(xs , xc, xu), f c(xs , xc, xu), f u(xs , xc, xu)); so, the

goal is to show that f σ only depends on the xσ coordinate. For that, it is enough to show

that all the holonomies preserve the invariant sub-bundles and this is done by showing

that the derivative of φσ
t is the identity. We will consider σ = c, as the other cases

are completely analogous. Writing ∂tB
c(x, t)

∣∣
t=t0/λ

n
c

= (aij ), ∂tB
c(f n(x), t)

∣∣
t=t0

= (a′
ij )

and using (3), one gets



a11

(
λu

λs

)n

· a12 0
(

λs

λu

)n

· a21 a22 0
(

λc

λu

)n

· a31

(
λc

λs

)n

· a32 a33




= λn
c




a′
11 a′

12 0

a′
21 a′

22 0

a′
31 a′

32 a′
33


.
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Observe that the coefficients aij , a′
ij are bounded with n, while ∂tDxφ

c
t |t=t0/λ

n
c
⇒

∂tDxφ
c
t |t=0 uniformly as n → ∞; using this and the relation λs < 1 < λc < λu, one

deduces that ∂tDxφ
c
t |t=0 is the zero matrix. Finally, it is well known that f has dense

orbits and hence by taking one of these we deduce that ∂tB
c(x, t)|t=t0 = 0 for every

x ∈ M , t0 ∈ R. This implies that Bc(x, t) is the identity matrix for every t , x and in

particular Dφc
t (E

σ ) = Eσ , σ = u, s, c.

The argument above works similarly for the flows φu, φs , interchanging λc by λu, λs

(which are different from one), thus establishing the second item.

To prove the third item, it is enough to show that the eigenvalues of L are the same as

those of f.

CLAIM 1. We have γu = λu, γc = λc, γs = λs .

Proof. Since the topological entropies of f and L are the same, we obtain γs = λs , γu +

γc = λu + λc. Using that the conjugacy between f and L sends Fc to {Ec
L + x}x∈T3 , one

deduces that γc = λc, which finishes the claim. �

Now, one can define hσ : Fσ (0) → Eσ
L by

hσ (x) = oriented arc length in W σ (0) of the shortest interval between 0 and x.

Each hσ is a C∞ diffeomorphism and, since all holonomies corresponding to invariant

foliations of f are the identity, they assemble to a C∞ diffeomorphism h : R3 → R
3. By

the previous claim, h conjugates the action of f with L, concluding that f is C∞ conjugate
to its linear part.

Remark 3. If one assumes that f has constant derivative (i.e. the invariant bundles are

constant), then the above argument is simplified, concluding that f = L.

2.2. λc = 1 Generalized skew-products. Now we consider the case λc = 1. As in the

previous case, it is shown that Dφc
t preserves the sub-bundles; however, since now the

center eigenvalue is one, a different proof is needed.

LEMMA 1. We have Dφc
t (E

σ ) = Eσ for σ = u, s, c.

Proof. We consider the case σ = u only, as the argument for σ = s is completely

analogous (while σ = c is a direct consequence of Ec being tangent to flow lines).

Fix x ∈ M , y = φc
t (x) and take v = Dyφ

c
t (e

u(x)). By integrability of Eu ⊕ Ec, we can

write v = aeu(y) + bec(y). Using (2) with n > 0 and since distances along centers are

preserved, we get

Df −n(x)φ
c
t

(
1

λn
u

eu(f −n(x))

)
=

a

λn
u

eu(f −n(y)) + bec(f −n(y)).

This gives a contradiction for n large, unless b = 0. �
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As in the previous part, denote by Bc(x, t) the associated matrix to Dxφ
c
t in the

corresponding invariant bases. By (2), An · Bc(x, t) · A−n = Bc(f n(x), t) and, since all

matrices are diagonal, this implies that Bc(x, t) = Bc(f n(x), t) for all n.

LEMMA 2. If f is transitive or real analytic, then Bc(x, t) is constant in x.

Proof. This follows directly by the previous equality (invariance of Bc(x, t) in the orbit

of x), either by taking a dense orbit (in the transitive case) or a recurrent trajectory (which

exists by Birkhoff’s recurrence theorem) in the real analytic case, by the zero’s theorem for

analytic functions. �

We deduce that for t fixed the map φc
t is conservative with constant exponents and hence

Bc(x, t) is either:

• the identity; or

• partially hyperbolic (a center eigenvalue equal to one, one larger and another smaller).

In this case φc
t is an Anosov flow.

The case when Bc(x, t) = Id is the simpler one.

PROPOSITION 1. If Bc(x, t) = Id, then:

• all the center leaves are closed; and
• f is C∞ conjugate to a circle extension of a linear Anosov map in T

2.

We will prove this through a series of lemmas.

LEMMA 3. If Bc(x, t) = Id, then there is a closed center leaf (i.e. a circle tangent to Ec).

Proof. Taking a recurrent point, one can find p such that Fc
p is invariant by f k for some

k. We claim that Fc
p is closed. Assuming otherwise, Fc

p is homeomorphic to the real line

and so f k : Fc
p → Fc

p is either the identity or a translation. Observe that for a partially

hyperbolic diffeomorphism, two periodic points of the same period that are sufficiently

close have to belong to the same local center manifold. But, if Fc
p is not closed and f k|Fc

p

is the identity, there are periodic points of f with the same period, arbitrarily close one

to each other and that do not share the same local center leaf. In the case that f k|Fc
p

is a translation, i.e. f k(x) = x + α along the center leaf, one can take a point z and t
arbitrarily large such that z, φt (z), φ2.t (z) are close to each other and arcs I0, I1, I2 with

length 4.α inside Fc
p and containing in the middle the points z, φc

t (z), φc
2.t (z), respectively;

since t is large, the three arcs are disjoint. Let n be the smallest positive integer such that

f k.n(z) ∈ I1, which exists because f k restricted to the center is a translation by α and the

arcs have length 4.α. From the commutative property, we also have that f 2.k.n(z) ∈ I2; in

particular, f k.n(I0) ∩ I1 6= ∅ and f k.n(I1) ∩ I2 6= ∅. Since f k is partially hyperbolic, the

unstable distance of I2 to I1 is λu times the distance from I1 to I0. On the other hand, since

φc
t (I0) = I1 and φc

t (I1) = I2 and Dφc
t is the identity, we have that the unstable distance of

I2 to I1 is equal to the distance from I1 to I0. This is a contradiction. �

LEMMA 4. If B(x, t) = Id, then all center leaves are closed.
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Proof. By the previous lemma, there exists a closed center leaf and thus there is a periodic

point x of φc
t . Let us consider two local transversal sections 6′ ⊂ 6 to the flow containing

x and let R be the first-return map from 6′ to 6. The transversal section can be taken in

such a way that Ty6 = Ny , where Ny is the orthogonal plane to the flow direction at y.

In that case, DyR, the derivative of R at a point y ∈ 6, coincides with φ̂r(y)(y), the linear

Poincaré flow at y with r(y) being the return time of y to 6 by the flow φc
t . Therefore, for

any y ∈ 6′, the derivative of the return map is the identity and, since R has a fixed point,

then R is the identity in 6′. In particular, this implies that any center leaf intersecting 6′

is a closed leaf with trivial holonomy. In this way we prove that the set of points having a

closed center leaf is an open set. Since the center eigenvalue of f is one, we deduce that for

a point p having a compact center leaf all other leaves inside W cs(p), W cu(p) are circles

with uniformly bounded length and this implies that for a given closed center leaf there

exists an open set of bounded below diameter where all other center leaves are closed.

Since the recurrent points of f are dense (because f is conservative), we deduce that every

center leaf is closed. �

Proof of Proposition 1. By the lemma above, Fc is a C∞ foliation by compact leaves

without holonomy and so M/Fc is a smooth compact surface and M → M/Fc is a

smooth fibration. By standard arguments it follows that M is a nilmanifold (see, for

example, Theorem 3 in [RHRHTU12]). The map f induces an hyperbolic diffeomorphism

f̂ : M/Fc → M/Fc that has constant exponents in the base obtained by projecting

{B(x)}. By the same arguments used in the case λc > 1 we deduce that M/Fc is the

two-dimensional torus and f̂ is C∞ conjugate to a linear Anosov map L. By extending

the aforementioned conjugacy to M as the identity in the fibers, we conclude that f is C∞

conjugate to an extension of L. �

Question 6. In the skew-product case, M = T
3 and f is conjugate to a map of the form

L ⋊ gx , L(x, θ) = (L · x, θ + α(x)). It was asked by the referee which type of properties

can be deduced from α if we assume further that the invariant bundles are smooth, so we

leave the problem for the interested reader.

2.3. λc = 1 Anosov flow case. It remains for us to analyze the case where Dxφ
c
t is

partially hyperbolic.

LEMMA 5. If Dxφ
c
t is partially hyperbolic, then φc

t is either the suspension of a C∞

Anosov map in T
2 or, modulo finite covering and C∞ conjugacy, the geodesic flow acting

on a surface of constant negative sectional curvature.

Proof. We already saw that φc
t is an Anosov flow with C∞ stable and unstable distribu-

tions. Either φc
t is a suspension (necessarily of a C∞ Anosov surface map) or, by [Ghy87],

there exists a smooth diffeomorphism sending the orbits of φc
t to the orbits of the diagonal

flow on a homogeneous space Ŵ\S̃L(2, R). �

PROPOSITION 2. If Dxφ
c
t is partially hyperbolic, then there exists an iterate f k that is the

time-t map of an Anosov flow.
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FIGURE 1. Construction of Ds , Du. Here λ = λu = λ−1
s .

We first note the following.

LEMMA 6. If Dxφ
c
t is partially hyperbolic, then there are an iterate f k and a closed

center leaf O(p) such that modulo a C∞ reparametrization of φc
t , we have:

• O(p) has length one;
• if W s

loc(O(p), φc
t ), Wu

loc(O(p), φc
t ) are the local stable and unstable manifolds of

O(p) with respect to φc
t , then:

– f k(W s
loc(O(p), φc

t )) ⊂ W s
loc(O(p), φc

t ); and
– f −k(Wu

loc(O(p), φc
t )) ⊂ Wu

loc(O(p), φc
t ).

Proof. As noted above, φc
t is conservative. Since φc

t is a hyperbolic flow, there exists

at most finitely many shortest closed orbits. Let O(p) be one of these shortest closed

curves. Since f (O(p)) is a compact leaf of the same length, O(p) is a periodic

curve of f. It follows that there is a positive integer k such that f k(O(p)) = O(p).

We reparametrize the flow so that O(p) has length one, i.e. φc
1(z) = z for all z ∈

O(p). Since the only f k-invariant sets near O(p) are W cs
loc(p, f k) and W cu

loc(p, f k)

(the center stable and center unstable manifolds of p), we have that f k permutes the

set {W s
loc(O(p), φc

t ), Wu
loc(O(p), φc

t )}; hence, by changing t by −t if necessary, we

can assume that f k(W s
loc(O(p), φc

t )) ⊂ W s
loc(O(p), φc

t ) and f −k(Wu
loc(O(p), φc

t )) ⊂

Wu
loc(O(p), φc

t ). �

We continue working with O(p) given in the lemma and assume that f (O(p)) =

O(p) (so, the actual result is about f k and not f ). Note that both W s(O(p), φc
t ) and

Wu(O(p, φc
t )) are cylinders over O(p). We introduce (linearizing) coordinates (θ , x)

in W s
loc(O(p), φc

t ) and (θ , y) in Wu
loc(O(p), φc

t ) with θ ∈ R/Z and x, y ∈ [−λu, λu].

Consider the curves γs = {(θ , x) : x = 1}, γu = {(θ , x) : y = λu} and note that they are

transverse to φc
t . Finally, consider the fundamental domains Ds ⊂ W s

loc(O(p), φc
t ), Du ⊂

Wu
loc(O(p), φc

t ) delimited by γs , f (γs) and γu, f (γu) respectively. See Figure 1.
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In the (x, t) coordinates the flow φc
t is the solution to the differential equation θ̇ =

1, ẋ = αx and similarly for the (θ , y) coordinates. We deduce that φc
t is given by

{
θ 7→ θ + t

x 7→ xeαt
in Wu

loc(O(p), φ), (4)

{
θ 7→ θ + t

y 7→ yeβt
in W s

loc(O(p), φ). (5)

On the other hand, the diffeomorphism f acts in the vertical coordinates simply by

multiplying by λu, λs ,

f (θ , x) = (θ ′, λux), (6)

f (θ , y) = (θ ′, λsy). (7)

We now consider the homoclinic trajectories of φc
t connecting f (γu) with γs .

LEMMA 7. Any such homoclinic trajectory is fixed by f.

Proof. For a homoclinic trajectory O(q) as before, we denote X(q) ∈ f (γu) ∩ O(q),

L(q) = the smallest time such that Y (q) = φL(q)(X(q)) ∈ γs and we observe that given

M > 0, the number of homoclinic trajectories O(q) with L(q) ≤ M is finite; hence, as f
is an isometry in the flow direction, it suffices to show that the possible L(q) are bounded.

Take an homoclinic curve O(q0) of minimal length and denote by x0, y0 the second

coordinates of X(q0), Y (q0). Let k0 ∈ Z be the smallest integer such that f k
0 (X(q0)) ∈ Ds

and define Y1 = f k
0 (X(q0)) and X1 the point in f (γu) ∩ O(Y1) of minimal length, which

we denote by L1 (i.e. φL1
(X1) = Y1). Similarly, x1, y1 denote the second coordinates of

X1, Y1, respectively.

The oriented orbit segment joining Y1 = f k0(X0) with f k0(X0) is completely contained

in W s
loc(O(p), φc

t ) and has length L0 (because f is an isometry in the flow direction); thus,

we deduce that

λ−k0y0 = y1e
βL0 .

On the other hand and arguing analogously, the oriented orbit segment joining

f −k0(X1) with X0 is completely contained in Wu
loc(O(p), φc

t ) and has length L1; hence,

x0e
βL1 = λ−k0x1;

thus, combining the two previous equations, we deduce that

y1

y0
eβL0 =

x0

x1
eβL1 ⇒ eβ(L1−L0) =

x1y1

x0y0
.

We now argue inductively (with the natural definition for xj , yj ) and obtain

Lj − Lj−1 = α(ln xjyj − ln xj−1yj−1)

⇒ Lj − L0 = α(ln xjyj − ln x0y0) for all j ≥ 1.

Noting that xjyj ∈ [1, λ2] for every j, we obtain that Lj is bounded in j, as claimed. �
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We are ready to finish the proof of Proposition 2.

Proof of Proposition 2. It follows that f fixes an orbit O(q) 6= O(p) homoclinic to

O(p). It follows that there is a T (positive) such that φc
T (X0) = f k0(X0) and hence

λk
s .y0 = exp(β.T ) · y0, which implies that λs = exp(β.T /k), and, using that λu = λ−1

s ,

we get λu = exp(α.T ). Finally, using the linearizing coordinates, we deduce that Df =

Dφc
T /k and, since f fixes two orbits in these coordinates, f = φc

T /k in Wu(O(p), φc
t ) ∪

W s(O(p), φc
t ), which implies, since the stable and unstable manifolds of O(p) are dense,

that f = φc
T /k on M. �
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