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1. Introduction
1.1. Background
Let p be an integer greater or equal to 2. Let T}, be the times-p map,
Tp(x) =p-z mod 1, z € R.

A number z € R is called p-normal, or normal to base p, if its orbit {7, i(x)} keN equidis-
tributes for the Lebesgue measure on [0, 1]. We call  absolutely normal if it is p-normal
for all integers p > 2. In 1909 Borel proved that Lebesgue almost every x is absolutely
normal. It is believed that this phenomenon should continue to hold true for typical
elements of well structured sets with respect to appropriate measures, in the absence of
obvious obstructions. Thus, we will call a Borel probability measure v on R pointwise
absolutely normal if v almost every x is absolutely normal. One of the main purposes of
this paper is to specify a large and natural class of fractal measures that are pointwise
absolutely normal. Additionally, we will indicate a large family of fractal sets that are
typically Lebesgue null, such that set of absolutely normal numbers intersects them with
full Hausdorff dimension.

There are two known general techniques to study whether a given Borel probability
measure g on R is supported on numbers normal to a given base p: The first method
involves establishing sufficiently fast decay of the L?(u) norms of certain trigonometric
polynomials as in Weyl’s criterion. This method was famously used by Cassels and
Schmidt [55,14] independently to show that if p is the Cantor-Lebesgue measure on
the middle—% Cantor set, then g almost every x is p-normal whenever p is independent
of 3, that is, 1282 ¢ Q. Henceforth, we will write a ~ b to indicate that a and b are

7 log3
independent, and a ~ b otherwise. An essentially sharp condition for a measure to be

supported on numbers that are p-normal in terms of these L? norms was later formulated
by Davenport-Erdés-LeVeque [18], and was used by several authors including Brown,
Pearce, Pollington, and Moran [47,10,11]. An excellent exposition to this subject is given
in Bugeaud’s book [13].

The Davenport-Erdds-LeVeque Theorem is closely related to the decay rate of the
Fourier transform of Borel probability measures on R: Let v be such a measure. For
every q € R the Fourier transform of v at ¢ is defined by

Fq(v) = /exp(?m'qx)du(x).

The measure v is called a Rajchman measure if limg_ o F¢(v) = 0. By the Riemann-
Lebesgue Lemma, if v is absolutely continuous then it is Rajchman. On the other hand,
by Wiener’s Lemma if v has an atom then it is not Rajchman. For measures that are
both continuous (no atoms) and singular, determining whether or not v is a Rajchman
measure may be a challenging problem. The Rajchman property and, when available,
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further information about the rate of decay of F4(v), have various consequences on the
geometry of v [41]. Returning to the Davenport-Erd8s-LeVeque Theorem, it ensures that
if e.g. there is some oo = a(v) > 0 such that

1
F)| <O ——F—1, as|q| = ©
7,0) (HOglOg'q'Ha) 4

then v is pointwise absolutely normal. We note, however, that such bounds are usually
hard to obtain (if they are true at all) in concrete situations, even for naturally defined
measures. The third objective of this paper, which arises in conjuncture with the number
theoretic framework discussed above, is to establish the Rajchman property for a class
of dynamically defined measures.

In 2015 Hochman and Shmerkin [29] introduced a new method, giving a fractal geo-
metric condition that is sufficient for a measure to be supported on p-normal numbers.
This condition applies to a wide class of measures that arise from some dynamical or
arithmetic origin. One of the virtues of this method is that it can be used regardless of
knowledge on the behaviour of the Fourier transform of the underlying measure. Instead,
one needs to understand the so-called scenery of the measure at typical points [29, Sec-
tion 1.2]. In order to compute the scenery in specific examples, one usually works with
measures such that their small “pieces” have mild (or no) overlaps, and this computa-
tion can become difficult in the presence of complicated overlaps. Many of the results
of Hochman-Shmerkin still remain the state of the art on the subject, and we will recall
them as we compare them to our results.

In this paper we introduce a new dynamical condition for a self-conformal measure
(defined below) to be both a Rajchman measure and pointwise absolutely normal. A
rate of decay is only established in some special cases, so in general we cannot invoke
Davenport-Erdés-LeVeque to get absolute normality. Thus, we will prove pointwise ab-
solute normality directly, regardless of the decay rate of the Fourier transform. This
provides many new examples of both Rajchman measures and of pointwise absolutely
normal measures, and allows us to extend results' of Hochman-Shmerkin, as detailed
below. We then proceed to show that self similar sets intersect the set of absolutely
normal numbers with full Hausdorff dimension, unless an obvious obstruction is present.

Self-conformal measures are defined as follows: Let ® = {f1, ..., f»} be a finite set of
strict contractions of a compact interval I C R (an IFS), such that every f; is differen-
tiable. We say that ® is C'“ smooth if every f; is at least C* smooth for some o > 1. It
is well known that there exists a unique compact set ) # K = Kg C I such that

! Hochman and Shmerkin can work with more general 3 transformation, that is, maps of the form z — Sz
mod 1 for certain 8 > 1. We will compare this to our method in Section 1.4.
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The set K is called a self-conformal set, and the attractor of the IFS {f1, ..., f»}. In the
special case where each f; is affine, i.e. fi(x) =r; -2+t and 0 < |r;| < 1, we call K a
self-similar set. We always assume that there exist ¢ # j such that the fixed point of f;
is not equal to the fixed point of f;. This ensures that K is infinite. We call ® uniformly
contracting if

0<inf{|f'(z)|: fe®,xel} <sup{|f(x): fed,zel}<].

Finally, following Hochman-Shmerkin [29], we say that ® is regular if it is uniformly
contracting, and the intervals f;(I) are disjoint except possibly at their endpoints (so
that, in particular, the so-called open set condition is satisfied).

Next, let p = (p1, ..., pn) be a strictly positive probability vector, that is, p; > 0 for all
iand ), p; = 1. It is well known that there exists a unique Borel probability measure v
such that

n
v= Z pi - fiv,  where f;v is the push-forward of v via f;.
i=1

The measure v is called a self-conformal measure, and is supported on K. If every f;
is affine then v is called a self-similar measure. Since K is always assumed to infinite,

the assumption that p; > 0 for every i implies that v is non-atomic. In particular, all
self-conformal measures in this paper are non-atomic.

1.2. Pointwise normality and Fourier decay for self conformal measures

1.2.1. Main technical Theorem

We first formulate a general condition that ensures a given self conformal measure is
both Rajchman and pointwise absolutely normal. Let ® = {f,..., f,} be an IFS on an
interval I such that each f; is differentiable. For every w € {1, ..., n}N and m € N let

Sl = Jwr 000 fou,-
Fix ¢ € I. Then we have a surjective coding map {1,...,n}N — K defined by

N

we Al ..,n}" =z, = lim f, (7o)
m—r o0

Assuming the IFS is uniformly contracting and C'*7 smooth, let p := (supfeq, [ /] \Oo)ﬂ{ €
(0,1), and define a metric on {1,...,n}Y via
min{n: wn;ﬁw;}.

dy(w,w’) :=p

Let p be a strictly positive probability vector on {1,...,n}, and let v be the corre-
sponding self conformal measure. Let P = pN be the product measure on {1,...,n}Y.
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Then v is the push-forward of P via w — x,. Also, for every 1 < a < n let
ta {1, ...,n}N = {1,....,n}N be the map

La(w17w27"') = (G,WhWQ,"').

Let G to be the free semigroup generated by the family {¢, : 1 < a < n}. We define the
derivative cocycle ¢ : G x {1,...,n}N — R via

c(a,w) = —log | fz(xw)].

Choose some k € (0,1] and let H* denote the space of x-Holder continuous maps
{1,....,n}N = C, and define A. C R via

A, = {0 : There exists ¢p € H" with |¢g| = 1 and uy € S* such that (1)
B9(ta(w)) = ug - 7109 L po(w),  for all (a,w) € {1,...,n} x {1,...,n}N}.

It is clear that 0 € A.. If A, = {0} then the cocycle ¢ is aperiodic in the sense of
Benoist-Quint [3, Equation (15.8)], and this will be used in an essential way to prove the
following Theorem:

Theorem 1.1. Let ® be a uniformly contracting C'T7 smooth IFS for some v > 0, and
let v be a self conformal measure. If A, = {0} then:

1. v is a Rajchman measure, that is, lim|q o0 Fy(v) = 0.
2. v is pointwise absolutely normal.

Note that the conditions of Theorem 1.1 are invariant under conjugation by C'*7
maps with non-vanishing derivative, a useful feature in applications. Before turning to
these applications, we say a few words about what goes into the proof: For part (1), the
most important ingredient is Theorem 3.7, a conditional local limit Theorem for certain
random variables resembling stopping times that are related to a random walk driven by
the derivative cocycle. That is, this local equidistribution property holds up to condition-
ing on “good” cells of suitable partitions of the space {1, ..., n}N. These good cells are
produced via a central limit theorem for cocycles, and the local equidistribution follows
from a local limit theorem for aperiodic cocycles, both proved by Benoist-Quint [3, The-
orem 12.1 and Theorem 16.15]. This is the only part of the proof where the assumption
A. = {0} is used. The rest of the proof consists of subtle linerization arguments and an
adaptation of a Lemma of Hochman [27], regarding oscillatory integrals that arise at the
end of the proof. See Section 4 for more details.

For part (2), fixing a v typical point z and an integer base p, we first employ a
martingale argument in the spirit of Hochman-Shmerkin [29, Theorem 2.1] and a further
linearization step. This reduces the problem to that of proving the Rajchman property
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with the same rate for a countable family of measure that arise as T}'-magnifications of
increasingly small pieces of the measure about the point . The treatment of the Fourier
transform of these measures relies on a similar scheme as in part (1), but the additional
steps further complicate the already delicate analysis involved. This necessitates the
introduction of several new ideas. The most important one is Theorem 3.8, another
conditional local limit Theorem that is tailored to this situation. See Section 5 for more
details.

1.2.2. Applications and related results

We proceed to describe some applications of Theorem 1.1. Before doing so, we in-
troduce two new definitions: Let ® be a self similar IFS with corresponding contraction
ratios {r1, ..., }. We say that ® is periodic if there exists some r € R such that

{log |r1]|, ..., log |rn|} C rZ

otherwise, we say that ® is aperiodic. Note that ® is aperiodic if and only if there are

i # j such that :Zgllﬂ ¢ Q. We call ® Diophantine if there are [, C > 0 such that

C
inf d(log |r;| - WA
inf pax dloglril -+, 2) 2 7

for all € R large enough in absolute value.
(2)
Notice that if ® is Diophantine then it is aperiodic, but the converse is false in general.
This Diophantine condition is adopted from Breuillard’s work [7, Section 3.1]. It is generic
in the sense that it holds if n > 3 and we draw {log|r1], ...,log|r,|} according to the
Lebesgue measure on R™ [1, Proposition 2.4], and is met if e.g. log|ry|,...,log|r,| are
rationally independent algebraic numbers [1, Proposition 2.7]. See also Section 6.3 for a
family of examples related to the work of Moser [42]. We are now ready to summarize

some corollaries of Theorem 1.1:

Corollary 1.2. Let ® be a uniformly contracting C**7 smooth IFS for some v > 0, and
let v be a self conformal measure.

1. Suppose that for every t,r € R, the set

{log|f' ()| = where f(y) =y, fe€}

is not included in the set t + rZ. Then v is both pointwise absolutely normal and
Rajchman.

2. Suppose that ® is an aperiodic self similar IFS (so v is a self similar measure), and
let g: I — R be a C*Y smooth map, where v > 0. If g does not vanish then gv is
both pointwise absolutely normal and Rajchman.
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If ® is Diophantine then there exists some oo = a(v) > 0 such that

1
llog |q||*

|F,(v)] <O ( ) , as |q| — oo.

3. Suppose that ® is C* smooth, or that it is C? and K¢ is an interval. If v is not
pointwise absolutely normal or not Rajchman then ® is C¥ or C? (depending on the
smoothness of ®) conjugate to a periodic self similar IFS.

We emphasize that no separation condition is imposed on ®. The deduction of Corol-
lary 1.2 from Theorem 1.1 relies on the study of the derivative cocycle under these
assumptions, and this analysis is carried out in Section 6.

Part (1) of Corollary 1.2 should be compared with a result [29, Theorem 1.4] of
Hochman-Shmerkin: For a given p, if

® is regular and some element of {f’ (y) : where f(y) =y, f € ®} is independent of p

then v almost every point is p-normal for every self conformal measure v. Notice that
the assumption in part (1) implies this arithmetic condition holds for every p. So, in its
setting, part (1) extends the result of Hochman-Shmerkin by removing the separation
assumption from the IFS. Furthermore, [29, Theorem 1.4] remains true when pushing
the measure v forward via any real diffeomorphism g. Corollary 1.2 part (1), in contrast,
remains true when pushing the measure forward via a C't7 diffeomorphism, but we
don’t know if this is true for C'* diffeomorphisms. Finally, we remark that [29, Theorem
1.4] holds for a more general class of transformations and measures, and we will discuss
this in Section 1.4.

The normality assertion of part (2) should be compared with another result [29,
Theorem 1.7] of Hochman-Shmerkin, where they prove that for every self similar measure
with respect to a regular self similar IFS, its push-forward under a non-affine C* map
is pointwise absolutely normal. So, [29, Theorem 1.7] does not require the IFS to be
aperiodic, but does require a more restrictive regularity (separation) assumption. In
addition, the smoothness assumption on the perturbing map in part (2) is less restrictive
than [29, Theorem 1.7]. For example, let v be any self conformal measure with respect
to the aperiodic self similar IFS

r x+1 x+1
{5 3 7 5 g

Corollary 1.2 part (2) implies that f(x) is absolutely normal for v almost every z and
any diffeomorphism f € C**7(R). Notice that since the IFS is not regular and the map
f might not be C*¥ [29, Theorem 1.7] does not apply in this situation. On the other hand,
consider the Cantor-Lebesgue measure p on the middle—% Cantor set. By [29, Theorem
1.7] 2% is absolutely normal for 1 almost every x. Notice that since the underlying regular
IFS
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r r+2

5!

is not aperiodic, Corollary 1.2 part (2) does not apply here.

The Rajchman assertion of part (2) should be compared with a recent Theorem of Li-
Sahlsten [40, Theorem 1.2] (see also [6]): They proved that for an orientation preserving
aperiodic self similar IFS any self-similar measure is a Rajchman measure. So, Part
(2) extends the Li-Sahlsten Theorem to all C'*7 smooth images. Corollary 1.2 part
(2) also complements a classical Theorem of Kaufman [34] that was later extended by
Mosquera-Shmerkin [43] (see also [15]) about polynomial Fourier decay for C? images of
homogeneous (i.e. r; = r; for all 4, j) self similar measures. We thus partially answer a
folklore open question (see e.g. [52]) about the existence of a Kaufman Theorem in the
non homogeneous setting.

The quantitative assertion of part (2) should be compared with another Theorem
of Li-Sahlsten [40, Theorem 1.3] where a similar logarithmic decay rate was obtained,
but under a different Diophantine assumption. In Section 6.3 we will give a family of
Diophantine IFS’s that do not satisfy the conditions of [40, Theorem 1.3] since 2% 7]

log 7|
is either rational or a Liouville number for all ,j. Thus, via Corollary 1.2 part (é)

we obtain many new examples of self similar measures with logarithmic Fourier decay.
Finally, we will discuss the problem of getting an effective decay rate for non-linear IFS’s
in Section 1.4.

The Rajchman question for self similar measures is a classical problem that has re-
ceived much attention over the years: Consider, for example, the family of Bernoulli con-

volutions {v },¢(0,1): For every 0 < r < 1 we define the self similar IFS {r-z—1,7-2+1}
11
272
r € ($,1) is v, is absolutely continuous. A celebrated result of Erdés [21] says that if r—?

with the probability vector p = (3, 5). It is a fundamental problem to determine for which
is a Pisot number then v, is not a Rajchman measure and consequently is not absolutely
continuous. Recall that a Pisot number is a real algebraic integer greater than one whose
Galois conjugates all lie inside the unit disc. Later, Salem [53] completed the picture
in terms of the Rajchman property, by showing that v, is not Rajchman only if r—! is
Pisot (see also the related works of Piatetski-Shapiro [67] and Salem and Zygmund [54]).
We remark that through some ground breaking recent papers (e.g. [26], [58], [8], [65]
to name a few) the geometric properties of v, are now far better understood. However,
the question of absolute continuity remains open. More general self similar measures
were studied by Strichartz [61], [62]: He proved that their Fourier transforms decay on
average, with a recent large deviations estimate on this decay given by Tsujii [64] (see
also [63] for a related paper about self conformal measures). However, these papers do
not establish the Rajchman property, since they exclude certain frequencies.

Very recently, as we have already mentioned, Li-Sahlsten [40] proved the Rajchman
property in the presence of independent contractions. In the complementary case, when
all contractions are powers of some r € (0,1), Brémont [6] proved that a self-similar
measure can fail to be Rajchman only if »—! is Pisot. In fact, Brémont fully characterised
the IFS up to affine conjugation, and this will play a crucial role later in this paper.
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Another proof of this fact was given by Varji-Yu [66]. Finally, we note that Li and
Sahlsten [39] also generalized their results to self affine measures in higher dimensions.

The problem of quantitative Fourier decay for self similar measures is also a classical
one: For Bernoulli convolutions, it follows from the works of Erdds [22] and Kahane [32]
that v, has polynomial decay outside a set of zero Hausdorfl dimension (see also [16],
[12] [17] for rates in some explicit examples of r). In the complementary case to the
aforementioned effective result of Li-Sahlsten [40, Theorem 1.3], when all contractions
are powers of some r € (0, 1), Varji-Yu [66] proved logarithmic decay as long as 7~! is not
a Pisot or a Salem number. Finally, Solomyak [60] has recently established polynomial
decay for all self-similar measures except for a zero Hausdorff dimensional exceptional
set of contraction ratios.

Next, the normality assertion of Corollary 1.2 part (3) is related to another Theorem
of Hochman-Shmerkin [29, Theorem 1.6], where a similar result is proved for regular C*
IFS’s that contain non-affine maps. Apart from removing the separation assumption, the
C? case and the classification of the conjugated IFS as in part (3) seem to be completely
new.

The Rajchman assertion of part (3) gives many new examples of self conformal Rajch-
man measures. [t also provides a unified proof to several pre-existing results regarding
the Rajchman property for C“ IFS’s that are not conjugate to a self similar IF'S. These
include those of Sahlsten-Stevens [52] (for a class of regular C* self-conformal measures
that are not conjugate to linear), and in some cases those of Li [37,36] (Furstenberg
measures for SL(2,R) cocycles under mild assumption - see [69,2] for conditions en-
suring that such measures satisfy the conditions of part (3)). Part (3) is also closely
related to the work of Bourgain-Dyatlov [5] (who study Patterson-Sullivan measures for
convex cocompact Fuchsian groups, see also [38]). However, we do not recover the poly-
nomial decay rate proved in [5,37,52]. Finally, generalizing the work of Kaufman [33] and
later Queffélec-Ramaré [48], Jordan-Sahlsten [31] and later Sahlsten-Stevens [51] proved
polynomial decay for certain Gibbs measures for the Gauss map x — % mod 1 on the
interval. These can be considered as self-conformal measures with respect to an IFS with
countably many maps, see also [29, Theorem 1.12].

1.8. Dimension of absolutely normal numbers inside self similar sets

Let us now specialize to self similar sets. Let A denote the Lebesgue measure on R,
and recall that Borel’s normal number Theorem asserts that A-a.e. x is absolutely nor-
mal. However, Borel’s Theorem gives no information about absolutely normal numbers
inside sets that are Lebesgue null. The following rigidity result says that absolutely nor-
mal numbers have full Hausdorff dimension inside a given self similar set, unless the
underlying IFS has a very specific structure. We use the standard notation dim X for
the Hausdorff dimension of a set X, and

dim g = inf{dim X : u(X) > 0}
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for the (lower) Hausdorff dimension of a Borel probability measure . Now, given an
orientation preserving self similar IFS ® let ®; := ®, and for every integer m > 2,

1 1
®,, :=1{g:9=¢10...0¢, such that ¢, € ®,¢'(0) < - and (¢10...0¢s_1) (0) > E}
Observe that for every m € N, K¢ , = Kg, i.e. all these IF'S’s have the same attractor

as O.

Theorem 1.3. Let ® be an orientation preserving self similar IFS with attractor K. If

dim K N {z : z is absolutely normal } < dim K (3)

then there exists some m € N such that the IFS ®,, = {g;(x) = r;x+t;} has the following
structure:

(i) There is an integer n > 2 such that every r; = n=% and the k; € N are relatively
prime.
(ii) BEwveryt; is not n-normal. If there exist v, # r; and @, is reqular then every t; € Q.

If ® admits a self similar measure p with dimp = dim K then this holds for m = 1.
That is, the original IFS ® already has this structure.

For example, if ® is regular and admits two different contraction ratios, then (3)
implies that all contraction ratios are powers of some integer n > 2 and all translations
are rational. In general, if ® does not have exact overlaps (i.e. the semi-group generated
by its maps is free), and if the exact overlaps conjecture [59] holds true, then one can
always find a self similar measure p with dim g = dim K. Hochman [26, Theorem 1.1]
verified this conjecture under very weak regularity conditions, that hold true if e.g. all
parameters of ® are algebraic [26, Theorem 1.5] (Rapaport [49] recently showed that it
suffices to assume only the contraction ratios are algebraic). The conjecture was also fully
resolved for Bernoulli convolutions by the combined efforts of Hochman [26], Breuillard-
Varja [8], and finally Varji [65] (see also [50]). Thus, in all the cases listed above, if ®
does not satisfy (i) and (ii) as in Theorem 1.3, then

dim K N {z : x is absolutely normal } = dim K.

It is interesting to compare this with a result [9] of Broderick et al. (that extends a
Theorem of Schmidt [56]): The set of real numbers not normal to any integer base
intersects any infinite self-similar in a set of full Hausdorff dimension in the fractal.

The proof of Theorem 1.3 relies on the following Theorem, which is a bi-product of
the argument proving Theorem 1.1:
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Theorem 1.4. Let p be a self similar measure. If 1 is a Rajchman measure then it is
pointwise absolutely normal.

This is a significant improvement to the Davenport-Erd6s-LeVeque criterion, since no
decay rate is required. Once Theorem 1.4 is established, we proceed to prove Theorem 1.3
by first showing that, under its assumptions, there is some m and a self similar measure
on ®,, that is not Rajchman. We then combine the results of Li-Sahlsten [40] and those
of Brémont [6] to prove that ®,, is affinely conjugated to an IFS in so-called Pisot
form [6, Definition 2.2]. We then show that the underlying Pisot number is in fact an
integer, and characterize the affine conjugating map by appealing to the recent results
of Dayan-Ganguly-Weiss [19]. See Section 7 for more details.

1.4. Some further remarks

It is natural to ask for a condition similar to (2) that would yield a quantitative decay
rate for the Fourier transform of self conformal measures with respect to non-linear
IFS’s. To this end we require effective versions of the central and local limit Theorem
for cocycles from [3], that are used to prove the Rajchman property. Now, in the self-
similar case the random walk driven by the derivative cocycle is a classical random walk
on the line. Thus, here we can substitute the central limit Theorem [3, Theorem 12.1]
for the Berry-Esseen inequality [23], and the local limit Theorem [3, Theorem 16.15] for
Breuillard’s effective local limit Theorem [7, Théoréme 4.2], which is why we require
the Diophantine condition. Since the arguments of Breuillard [7] and of Benoist-Quint
[3, Chapter 16] are closely related, it might be possible to prove an effective local limit
Theorem for the derivative cocycle under a suitable Diophantine condition. We plan to
study this problem in the near future.

Also, the method of Hochman-Shmerkin [29] for pointwise normality works for a
broader class of 8 transformations of the form Tz(z) = Sz mod 1, when 8 > 1 is a
Pisot number. In its current form, our method seems less suitable to treat 73 for non-
integer 8. The main issue is that the identity 7} = T}, which is used several times in
our proof (e.g. in Claim 5.7) and is trivial for integers p > 2, is not true for T3 when
is not an integer. We remark that it might be possible to substantially refine our proof
to get around this issue, and leave this to future research.

The method of Hochman-Shmerkin also works for a broader class of measures. This
class of measures is what they refer to as quasi-product measures, which is a more general
class than Gibbs measures for Holder potentials. We expect that our results extend to a
broader class of measures as well, but do not pursue this goal in the present paper.

Finally, the referee has suggested that by incorporating ideas from renewal theory
into the proof of the conditional local limit Theorem 3.7, one might be able to relax the
aperiodicity assumption made in Theorem 1.1 into a more arithmetic assumption. We
plan to explore this possibility in a future project.
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Organization. After some preliminaries in Section 2, the local limit Theorems previously
alluded to are formulated and proved in Section 3. The subsequent Sections 4 and 5
contain the proof of Theorem 1.1 parts (1) and (2), respectively. After that, in Section 6
we derive Corollary 1.2 from Theorem 1.1 and provide some examples of Diophantine
IFS’s. The final Section 7 contains the proof of Theorem 1.3, and related constructions.

Acknowledgments. The inspiration for this work came from Hochman’s recent proof [27]
of Host’s equidistribution Theorem [30]. We thank Mike Hochman for providing us with
a preprint of his work, and for some illuminating discussions about it. We also thank
Tuomas Sahlsten and Connor Stevens for interesting discussions regarding the Rajchman
property. We are grateful to Peter Varji and the anonymous referee for their helpful
remarks, that in particular allowed us to weaken our previous definition of aperiodicity
for self similar IFS’s to its current form, and thus strengthen Corollary 1.2. Finally, we
thank the referee for suggesting an alternative proof of Theorem 1.1 part (2) using the
tools of this paper that is outlined in Remark 5.6, and for pointing out a certain possible
simplification of our Diophantine condition, discussed in Remark 6.7.

2. Preliminaries

Throughout this section we work with an IFS as in Theorem 1.1, and follow the
notation introduced in Section 1.2.1. We also use the notation A = {1, ...,n}. By uniform
contraction there exists D, D’ € R such that

0<D:=min{—log|f (z)|:f € D,z € I}, D' :=max{—log|f'(z)|:f € P,z €I} < 0.
(4)

Equivalently, for every f € ® and z € I,
0<e P <|f(x) <e P <1
We also define, for P a.e. w and any fixed x € I,

—log |f;\n($0)|
n

X := lim >0
n
the corresponding Lyapunov exponent.

2.1. Basic geometry of self-conformal measures

Here, we recall two useful and well known results. The first is the bounded distortion
property, which holds in our situation since every f; is at least C'*7 smooth and strictly
contracting. We refer e.g. to [46, The discussion about equation (1.3)] for more details.
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Theorem 2.1. There exists some L = L(®) > 1 such that: for any k € N and for any
word n € AF

L M)

b= |1 ()]

<L, foranyax,yel.

The second is another standard result, about the non-atomicity of self-conformal mea-
sures. It follows from e.g. [25, Proposition 2.2]:

Lemma 2.2. Let v be a self conformal measure as in Theorem 1.1. Then v is not atomic.
That is, for every e > 0 there is a § > 0 such that for any y € I,

v(Bs(y)) < e
where Bs(y) is the open ball about y of radius 6 > 0.

Notice that here we using our standing assumptions that K¢ is infinite and that p is
a strictly positive probability vector on A = {1,...,n}.

2.2. Linearization lemmas
Recall that @ is a family of differentiable contractions I — I satisfying
0<e ™ <lffeo e <1, |flern <C, Vi
for some D, D’ > 0,7 € (0,1) and C > 0. Define
" i={g10---0dy: @1, ,hn € O}
We shall require the following C° linearization lemma:

Lemma 2.3. For every 8 € (0,7) there exists € € (0,1) such that for alln > 1, g € &*"
and x,y € I satisfying | — y| <,

lg(z) — g(y) — g W) (@ — )| < g/ W)] - |z — y|"".

What Lemma 2.3 means is that for every y € B.(z) the function g may be approxi-
mated exponentially fast on B.(z) by an affine map with similarity ratio ¢’(y).

Proof. For the purpose of this proof only, it will be convenient to use the notation

0<w i=e P <|¢lco <r:=eP <1, Voed.
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Now, for all z,y € I and ¢ € ®, there is an intermediate value z between x and y such
that

|p(x) — d(y) — ¢'(y)(z — y)| =|¢'(2)(z —y) — &' (¥)(z — v)|
<|¢'(2) = o' W)z — yl < Clz —y["|x — y| (5)
<Clz —y|**.

Define a sequence 3y > 81 > f2 > -+ by Bo = 7, Bn = Bn_1 — b&(» D7, where the
constant b := (1 — k7)(y — B) > 0 is chosen such that lim 3, = 3. Choose ¢ € (0, 1)

Te

sufficiently small, such that

4C 1
767_ﬁ1 < min(1 — > g) (6)
We will prove inductively that:
Ifn>0, |z —y| <€ and g € P", then
l9(2) = 9(y) = ¢ W) (= —y)| < 1g' ()] - |z —y["TFn. (7)

For the n = 0 case, assume |z — y| < € and g € ®*0 = {Id}, then |g(z) — g(y) —

9 W)@ = y)| =@ -y)— (@ y)| = 0and (7) holds.
Assume n > 1 and the lemma holds for n — 1. Suppose |x —y| =0 < € and g € *.
Then g = ¢ o §j where ¢ € ® and § € ®*(*~_ and

|9(2) = 3(y) = §' (y) (@ —y)| < |7 (y)|g"+2. (8)

In particular, it follows that

19(2) = 3(y)| < 15 ()I6(L +6%1). (9)

Combining (5) and (9), we get

(10)



A. Algom et al. / Advances in Mathematics 393 (2021) 108096 15

Because 0 < § < € < 1, we know (10) is bounded by:

l9(z) — 9(y) — (Dyg)(z — v)]
<4015 ()| - 13 ()87 + 1g'(y)|o* P

= (4C1/ @I 15 @) 8 4 P ) g ()31 )

AC (n-1)y 57—Bn n1—Bn 146,
S(—/H(" )7 §7=Bn 4 §Pn B'>|g’(y)|5 +68n

K

To complete the induction, it suffices to prove

4
_?K(n—l)vgv—ﬁn + §Pn—1=Bn <1. (12)
K

We distinguish between the cases log% 235 and log% < ﬁ

If log% > m, then ¢Pr—17Fn < l. Moreover, by (6), ‘;—%("—Uvm—ﬁn <
i—QeV’ﬁl <1—2. Thus (12) holds in this case.

Assume now log 5 < ﬁ Since e~* < 1 — 3t on [0,1], we know

65%—1_ﬁn :e_(h)g %)(ﬁn—l_ﬁn)

<1- —(IOg )(ﬁn 1= Bn) <1— %(ﬁn,l —By)=1- %Zm(n—l)y

<1-— gﬁ(n—l)vev—ﬂl <1- gﬁ(n—l)vm—ﬁn'
K

R

Here we used the facts that 0 < § < e < %, Brn < P1 < 7 and assumption (6). Hence (12)
holds in this case as well.

We have established the inductive statement (7). As 8 < 5, and |z — y| < € < 1, the
lemma then follows. O

An important ingredient in the proof of the second local limit Theorem 3.8, discussed
in Section 3, is the following (much easier) C'! counterpart:

Lemma 2.4. For alln>1, g€ & and z,y € I,

|log g (z)| —log|g' (W) Se |z —y|”.

Remark 2.5. By the notation A <¢ B we mean that the number A is smaller than C'- B,
where the multiplicative constant C' = C(®) depends only on ®. Similar notation is used
throughout the paper.

Proof. Fix n € N, and let g € ®*". Then there is some i € A* such that g = f,. By our
assumptions on the maps in ®, we have
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|log |g/ ()] —log lg'(W)I| < D [log | £, (fo s @)I =1og | f7, (fap . (W))]]
m=1

NE

i W s (] = 1 Ut )

«miner |f)

m

’
€D

NE

f;;m (f77|m—1($>) - frl;m (f’fﬂm—l(y>)|

1

3
Il

C-eP

NE

fn|m71 (I) - f7]|7n71 (y) |’Y

1

3
Il

IN

n
C-e” 3 e P e~y < Cola -yl
m=1

for some global constant Cy that is independent of n, completing the proof. O
2.8. The Fourier transform of scaled measures

The following Lemma is adapted from a recent paper of Hochman [27]. For any s,z € R
let My(z) = s - denote the multiplication map, and for any metric space X let P(X)
denote the space of Borel probability measures on X.

Lemma 2.6. [27, Lemma 3.2] Let 0 € P(R), k> 0 and x, D as in the previous Sections.
Then for any r > 0 and q # 0,

k-x+D’

/ | Fy(M,—0)]*dt < D’ - (

k-x

2

[ +/0(Bexk~r(y))d0(y)) :

€

r.

In fact, Hochman’s Lemma states that for any § € P(R), any r > 0, an any m # 0,

1

/|fm(Mpt9)|2dt <
0

+ / 0(B, (y))d6(y)

r-|m|-logp

where here p > 1.
In the context of Lemma 2.6, we apply this result for p = e~! and the measure M, 6
between the scales 0 and D’. Then the same proof yields

k:-X+D/ D/
/ |fm(Me—t9)|2dt:/|}—m(Me—t (M,—ix0))|?dt
k-x 0

<D/.< €2m| +/MekX9(BT(y))dMekX9(y)>

|
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2
SV /9 Boxx o
(5 + [ B tan)
which is Lemma 2.6.

3. Two local limit theorems

We continue to work with an IFS @ as in Theorem 1.1, and follow the notation intro-
duced in Sections 1.2.1 and 2. The purpose of this Section is to establish two local limit
Theorems: Theorem 3.7, which will be used to prove the Rajchman part of Theorem 1.1,
and Theorem 3.8 which will be used to prove the normality part of Theorem 1.1. Our
analysis relies on the central and local limit Theorems for cocycles with target proved
by Benoist-Quint [3].

3.1. Statements of the local limit theorems

We define the following functions and stopping times on AN:
Sn(w) = —log|f;, (Ton(w))l; Ti(w) =min{n : Sy (w) > kx};

Slw) = —logmax |y (2)]; 7u(w) = minn : 5,(w) >

In the definitions above n is a positive integer but k is allowed to take positive non-
integer values. S,, will be shown to arise from a random walk driven by the derivative
cocycle. Also, note that 7 is a stopping time. Both S,, and S,, are strictly increasing in
n.

Definition 3.1. Let X; : AN — R be the random variable
X1 (w) = c(wr,0(w)) = = log | £, (Ta(w))]-
For every integer n > 1 we define
X, (w) = —log|an (.Ta-n(xw)) | = X;00m L

Let 0 be the law of the random variable X;. Recall the definition of D and D’ from
(4). Then for every n, X, ~ 6. Moreover, § € P([D, D']). In particular, the support of
6 is bounded away from 0. These are immediate from Definition 3.1 and equation (4).
The following Lemma is a direct consequence of the chain rule:

Lemma 3.2. For every k > 0 and w € AN we have

Sp(w) = Z X;(w)



18 A. Algom et al. / Advances in Mathematics 393 (2021) 108096

and

—log [fo) o (@omi ()] = Sy (W) € [kx, kx + D).

7 (@)
Next, we introduce some partitions of the space AN:
Definition 3.3. Given a finite word 7 = (11, -+ , 1) € A"
1. Denote by A, C AN the set of infinite words that begin with 1,
Ay ={w: (wi,...,wr) =7}
2. For h € [0,00), let A" be the partition of AN according to the function

S (wi,--- ,w;h(w)).

This is a finite partition, and each set in it is a cylinder set of the form A,,.
3. Let 1’ be another finite word. We define the event

Apyy ={wed,: ™=@ w)eA,}.

4. Given k,h,h/ > 0 we denote by AZ’h/ the finite partition of AN according to the
map

= (@), (O w)).
Note that every cell of the partition AZ’}L/ has the form Ay ;.

Given k,h,h' > 0 and w € AN we write .AZ’h/ (w) for the unique AZ’h/ cell that
contains w. For P-a.e. w, we denote the conditional measure of P on the corresponding
Cell by P.AZ'h/ (w

in the partition A" that contains w. Recall that )\ is the Lebesgue measure on R.

X Similarly, P 4 (,,) denotes the conditional measure of P on the cylinder

Definition 3.4. Let k € N and let 1, ' be finite words. Assuming P (A ,,/) > 0, we
define a probability measure I's, , on [kx, kx + D'] by

Ja,, Mkt 1 w01 dP (@)
fA , Xq(w')dP (')
n

FAk,n,n’ =

Note that there is actually no dependence on 7; We use this notation for later conve-

nience.
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Lemma 3.5. If P(Agy,) > 0 then FAMW, <K Afkx,kx+D’] with a densily that depends
only on p, such that its morm is bounded above by % independently of all parameters,
including k,n,n'.

Proof. We write I" instead of La,, .- Itis clear that I" < Afgy ky+p7)- Next, assuming
x € supp(I'), we need to bound

I'(B
L TB@r) . T(B@r)
r—0 A[kX)kX+D'] (B(.’lf7 ’I") r—0 2’/‘

assuming z is not an endpoint of [kx, kx + D'] (which we may assume). Then for every
W' € Ak

A <[/<:x, kx + X1 (w")] ﬂ B(x, r)) <2r

SO

T(B(w,r) Ja, ANFxkx+ X (@) N Bz, 7)) dP (w) 1
27" ZT'EAk,n,n/ (Xl) S EAk-,n,n’ (Xl)

Finally, by equation (4) we know that X;(w) > D for every w. We conclude that the
density of I" is bounded by %7 independently of all parameters. 0O

Notation 3.6. We will use superscripts such as 0¥ ~°°(-) in O(+) and o(-) to such bounds
take place as which variables are being varied. The variables on which the implied con-
stants depend on will be written in subscripts. The implied constant is absolute when
no subscript is present.

The following local limit Theorem is one of the main keys to the proof of Theorem 1.1.
It is the only place where the assumption A. = {0} from Theorem 1.1 is used.

Theorem 3.7. Fiz hg > 0. For all k,h’ > 0, 0 < h < hg, and A, € AP there exists a
subset EZZ, C A, such that:

(i) (A > P(4,) - (1 - of 720 (1)).
(ii) for all € € AP P(APY(€)) > 0.

(iii) for all € € ZXZZ/ and for any sub-interval J C [kx, kx + D],

k—o0
P_szh’(g)(sm € J) = FAZW'(&)(']) + Oho—fp (1)
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We emphasize that all bounds are uniform in h’. We remark that to prove Theorem 1.1
part (1) we only need the case’ hg = 0 which means that A, is the full symbolic space.
However, this more general version is needed to obtain the following upgraded version
of Theorem 3.7, which is what we require for Theorem 1.1 part (2):

Theorem 3.8. For all k,h',h > 0 and A, € A", there exists a subset ZZZ C A, such
that:

. —h,h’ min(h,k—h)—oco
() P(A ) > P(4,) - (1—op™ ™77 (1)).
(i) for all € € AL, P(AM (€)) > 0,
(iii) for all & € Z:Z and for any sub-interval J C [kx, kx + D],
P

i e (S € ) =T g () + o m==oe(1),

The difference between Theorem 3.8 and Theorem 3.7 lies in the role of h: In Theo-
rem 3.7 it is assumed to be bounded by some uniform hg. There is no such restriction

in Theorem 3.8, but the “price” is that the error is now oglin(h’k_h)ﬁoo(l) instead of

oﬁ:go(l). So, to make this error small, we need both h and k — h to go to oo simultane-
ously.
We proceed to prove Theorem 3.7. Afterwards, we prove Theorem 3.8 using the result

of Theorem 3.7 as a black box and the C' linerization Lemma 2.4.
3.2. Proof of Theorem 3.7

3.2.1. Benoist and Quint’s central and local limit Theorems for cocycles with target

The proof of Theorem 3.7 relies on two limit Theorems due to Benoist-Quint [3]. Before
stating them, we need some preliminaries. First, notice that the indicator function 14,
is a locally constant function on AN. For the following Claim, recall the definition of the
maps ¢, from Section 1.2.1 and the choice of our metric d := d, on AN

Claim 3.9. For every a € {1,...,n} the following statements hold true:
1. The map tq is uniformly contracting:

d(ta(w); ta(n)) = pd(w,n).

2. The cocycle c(a,w) is uniformly bounded, Lipschitz in w, with a uniformly bounded
Lipschitz constant as a € {1,...,n} varies.

2 The referee has pointed out to us that this special case is related to the work of Kesten [35, Theorem
1]. Indeed, when ho = 0 one may deduce a weaker version of Part (iii) of Theorem 3.7 from Kesten’s result.
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This is standard, since all the maps in ® are C'* smooth and by equation (4). We
are now ready to state a consequence of the central limit Theorem for cocycles with
target, proved by Benoist-Quint:

Theorem 3.10. /3, Theorem 12.1. part (i)] Let A, be as in Theorem 3.7. There exists a
variance r = r(p) > 0 such that:
For every R € R the function 1 = 14, X 1|g o) satisfies that

[Sn(w) —n - x|
n

P <w €A,: > R) =P(A,))(N(0,7*) > R)(1 4 0} 7>°(1))
where (N(0,72) > R) stands for the probability that a Gaussian random variable with
mean 0 and variance r? is larger than R.

We remark that [3, Theorem 12.1. part (i)] applies here since by Claim 3.9, the cocycle
c(-,-) satisfies the bounded moment conditions [3, (11.14),(11.15)] and is not constant.
We also remark that for Theorem 3.10 we do not need the assumption that A. = {0}
made in Theorem 1.1. However, this assumption is crucial for the local limit Theorem
for cocycles with target, also proved by Benoist-Quint:

Theorem 3.11. [3, Theorem 16.15] Let A, be as in Theorem 3.7. Then for every w' € AN,
e>0,meN and w € Ry such that |w — my| < 4xv/mlogm,

]P’rm({w,})(w €4, Snw)e [w,erex]) = Gﬁr(w —mx)-P(A,) ex-(1+07% (1))

€;ho.p

where G(-) stands for the density of the Gaussian law N(0,s?), and r = r(p) is as in

m—r OO

Chep (1) depends only on ex, hy and p, and is uniform

Theorem 3.10. The decay rate in o
inw,w.

To be precise, a-priori the decay rate depends only on ey, A, and p. Hence it only
depends on €, hg, and p as there are only finitely many possible choices for A,,. In this
case, as in Theorem 3.10, Claim 3.9 implies that our cocycle ¢(-, ) satisfies the bounded
moment conditions [3, (11.14),(11.15)]. It is aperiodic in the sense of [3, Equation (15.8)]
by the assumption that A, = {0}. By aperiodicity, the cocycle é defined by [3, Equation
(16.9)] is equal to c. So [3, Theorem 16.15] applies with, in the notations therein, X = AN,
@ = 14,, the convex set C' being [0, ex], the translation v,, = w — my and v, = 0, and
finally z = w’.

3.2.2. Proof of Theorem 3.7
For every r € R let U,(z) = z + r be the translation map. In addition, for every k we
define the interval

I = [k — \/klogk, k + \/klog k. (13)
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To begin the proof of Theorem 3.7, we decompose the left hand side in (iii) as

Py o)(Sm € 1) = D Bypw g (me =m+ 1,55, € J)
mel
&1 (14)
Z]P)hh/(i) erl,S.,-kGJ)
mely

The two terms are respectively treated by Proposition 3.13 and Proposition 3.12
below, and the Theorem follows.

Proposition 3.12. In the setting of Theorem 3.7, there exists a set Zn such that claims
(i) and (i) hold and for all € € A,,

P yn o (T = 1 ¢ Iiy) = o (1).
Notice that we are using the abbreviated notation Zn instead of EZZ/
Proof. We first prove the following claim:
Ba, (ri — 1 ¢ Ii) = o (1), for every 1. (15)
For the function b = b(k) = klogk — 1, suppose that |m(w) — k| > b = b(k). We

also fix a small € > 0. Without loss of generality, suppose first that 7(w) — k > b. This
implies that

S\ kgp) (W) < kx

and therefore

1S ksb) (@) = x - [k + 0] > [S|pqp) (W) — Ex — bx — x| > bx.

Let r > 0 be as in Theorem 3.10, and let R = R(r, €) > 0 be such that (N(0,7%) > R) = e.
Then by Theorem 3.10 applied for the corresponding 1, we get

P (w € Ayt |Spy (@) — Lk +b)x| > bx)
. |SLk+bJ(w) Lk‘f'b X’ bx )

V0k+ Lk + 0]

‘SLkerJ(w) - Lk‘f'bJX’ > R>

V0Ek+0b]
=P (4,)(N(0,7%) > R)(1+ ol>>(1))

=€+ 05700;(1)

SP(WEAU:
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Here we used that \/ﬁ — o0 as k — oo. Since € is arbitrary, it follows that

P(rp(w) —k>0b) <P (’SLkerJ (W) — |k + bjx‘ > bx) = O,I?L:I;x’(l).
A similar argument shows
P (ri(w) — k < =b) < P (|Stp_py(w) — [k = blx| > bx) = 05, 5> (1).

The claim (15) then follows by combining the two inequalities above.
The deduction of the proposition from (15) is standard. Indeed, it suffices to set

A, = {g €A, PAM () >0, Py (6 = 1 & 1) < \/PAn (s —1¢ Ik)}~

Then PA TI\A < \/I[DA T — 1 % Ik) = OZO_;;)Q(I). O
We now take care of the second term in (14):

Proposition 3.13. In the setting of Theorem 3.7, for all & in the set ﬁn from Proposi-
tion 3.12,

k— 00
> P gt ok =m+ 1,8, €J) =T o (J) + 045 (1).

mely

Proof. Let 1’ be the finite word such that .AZ’h/ (&) = Ay, We first notice that

> Pa,,, (e=m+1,5, €J)

mely
_ZmelkP(w S Akmn , Tk =m-=+1, Spy1 € J)
(Akynn)

Each summand in the numerator can be written as

(16)

]P’(wGAk,nm/, e =m+ 1, Sm+1€J)
=Pwe A, No""(Ay), Sm <kX, Smi1€J)

= ]P)me({w/}) ((.d S An, Sm < kx, Sm+1 S J)dIP(O’im({w/}))

Aﬂ/

(17)
= / Po—m(fw) (W € Ay, Sm <kx, Sm+X1(w) € J)dP(w)

!
A’;,

= / ]P)g—m({w/}) (w € AW? Sm € J”/)d]P’(w’)

k!
A",
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where the interval J* is defined by

I = Ty — X1 (W), kx) N U_x, . (18)

Fix an arbitrarily small € > 0. Since m € I then by Theorem 3.11 for all translates
W C J“ of the form [w, w + €x),

Pa_m({w,})(w €Ay, Sn € W) = Gmr(w —myx)-P(A,) -ex-(1+ 02’},3;0(1)) (19)

where we recall that G(-) stands for the density of N (0, s?), r > 0 is as in Theorem 3.10),

k— o0
€,ho,p

m — oo if and only if & — oo, so we know by Lemma 3.14 below that

and o (1) in (19) depends only on €, hg, and p, and is uniform in w’. Because m € Iy,

Po‘*m(w’)(w S Ana S’H’L € W) = G\/Er((m —k+ ﬂ)X) : IP(AT]) CEX (1 + OI:,;OO,;(l))

for all ' € A,y, m € Iy and 8 € [0,1) as k — 0.

A(J; )J disjoint intervals of the form [w,w + €x)

Now, since the interval J w'

and is covered by ( O )} such intervals, we know that for all m € I, and g8 € [0, 1),

Py mwy(@ € Ay, Sp o€ J¥)

Gyl —k+ 80 Py (D

=G /5, (m =k + B)x) - P(Ay) - (MJ*) + O(ex) + oF 223(1)),

+O() - ex- (1+okpn(1)  (20)

where the implied constant in the O(ey) is 1: the term represented by O(ey) is of absolute

k— 00

value bounded by ex. The error term o¢3'* (1) is uniform in J, w’ and B.

Integrating (20) inside (17) leads to

P(OJEAk)n)n/, w=m+1, Spi1€J)

- / G ((m— k+ B)X) - P(Ay) - (M) + O(ex) + oF 75 (1)) dP ()
An/

=G /i ((m =k +B)x) - P(Ay) - P(Ay) - (Eurea, AT*) + Oex) + of 225 (1)).



A. Algom et al. / Advances in Mathematics 393 (2021) 108096 25

By summing over m € Ij, and integrating over 3 € [0,1), we obtain

Z P(weAk,nm/, T =m—+1, Sm+1€J)

mely
k++v/klogk+1
= G g (= k)Xt
k—vklogk
P(Ay)P(Ay) - (Euwrea, (M) + Oex) + of 1225 (1))

€ho,p

G ()t | - P(A)P(Ay) - (Ewea, (AIY)) + Olex) + ok irp (1))

[ Guloadt | - PP - (Buen, () + 000 + ki)

— 0y (1)) - P(Ag)P(Ay) - (Ewrcay (A(T*)) + O(ex) + ol 1i75(1))

e
a
®

B
+
sk

1 (A)I o0
—P(A)P(Ay) - (TEwrea () + 01 + o)
(21)
as k — 0o. The term represented by O(e) is uniformly bounded by € in absolute value.
As e > 0 is arbitrary, this implies that for all intervals J C [kx, kx + D’),

Z P(wEAk,n,n/, w=m+1, Spi1€J)

mely

—P(A,)P(Ay) - (iEA AT + 0’;;3;”(1)> ,

k—o00
ho,p

Consider the special case of J = [k, kx+D'), where J* = [kx—X1(w'), kx). Because
the event {7, =m + 1,5, € [kx,kx + D’)} coincides with {7, = m + 1}, we obtain

where J“ is defined by (18) and the error term o (1) is uniform in J, w’ and .

> P(w€ Appy e =m+1)

mely
—P(A,)P(A,)- (iEA (Akx — X2 (). k) + ozml)) (23)

1
=P(4,)P(Ay)- (;Ew'EAn«XM) + o5 <”> '
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Therefore, by (16), (22) and (23),

Z Pa, ., (e =m+1,8, €.J)

mely
_Emefk P(w € Ak)""’f’Tk =m+1, Sm+1 € J) . Zmelk P(w € Ak,n,n’aTk =m+ 1)
ZmEIk P (w € Ak?,T],ﬂ’aTk =m+ 1) ]P)(Akﬂ?ﬂ?/)
1 ! k—>oo
_Ew rea,, (AJ)) + of 7°(1)
: A —1€l
_Ew ‘€A /Xl( ) k%oo( ) Ak’ﬂwn (Tk k)
LBuea, A ) Hob= ()
_ _Ew rea,, X1(w') + Zo_(%o( 0 (11— Oho'p (1)) (since & € A and Ay = AS" (€))

Ew’GAn/ (JUJ) k—s k
= =7 - )] (1— o701 i 0<D<Egea, X1 <D
<EM,GAW,X1W> +oray )]+ (17 ohpm) (ince <D < Burea, Jll) < D)

’

_ IE“’/GA'/'IA(JM—) + Okﬁoo(l)
“Euea, Xi(w) MR VT

Ew/eA ,)\(J‘” )

To conclude, it suffices to notice that B X s exactly I'a, (J). O

weA/

Lemma 3.14. For m € I, w € [kx — D', kx] and B € [0,1),

Gy (W — myx)

-1 <p k™ z(logk)? as k — oc.
Gyplm kg | e osh)

Proof. Recall G4(z) =
So as k — oo,

\/—m exp(—3 ) and log Gs(z) = —log v2m —logs — 55

|1ogG\/mT(w —mx) —logG s, (w — mx)‘

w—m 2
<] tog(mr) ~ log(VEn)| + (T L

272
<Log ) 4 (b D m_y
<7 -1+ W“Hk 1] 5 og k)| — 1]
saogk)\/l&’? k™% (log k)2,

where the implied constant depends only on x, D’ and r, and hence only on p.
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Moreover,

| log G . (w —my) —log G s, ((m —k + B)X)‘

:2,37,2 |(w —mx)* = (kx — mx + Bx)?|
ZQ;Q “|w —=kx = Bx[ - [2(k —m = B)x + (w — kx = Bx)|
§2klr2 (D" + Bx) - (2(Vklogk + 1)x + (D' + Bx))

<k 3 (logk)?,

where the implied constant similarly depends only on p.
Combining the two inequalities above shows
1 3
2

|log G /iy (w — mx) —log G /. ((m — k + B)x)| < k™2 (logk)?,

which in turn implies the lemma. O
3.8. Proof of Theorem 3.8

3.3.1. Fizing parameters and preliminary steps

Fix € > 0 and choose £ = {(¢, p) such that e~ X < ¢> . In this proof, we will view €, p
and / as fixed inputs, while k and h are varying.

Suppose

min(h,k —h) > £
and fix A, € A" Decompose n = n#n* where A, € A"~*. Then
— log max | fo(@)] € [€x — Op(1), £x + Op(1)]

by bounded distortion (Theorem 2.1). Define real values h* = h*(e,p,n,h) and k* =
k*(e,p,n, h, k) by

—logmaxgey | f. (2)] .
X

. log maxaer |4 (fo ()] — Ce?

X

h* = [t = Op(1), £+ Op(1))];

E* =k

€lk—h+0—0p(1),k—h+0+O0p(1)],

where C' = C(p) stands for the implied constant in Lemma 3.15 below.

It is important that h* is uniformly bounded even though it depends on 7 and h. It
follows that k* — (k — h) = O p(1), and that k* < k if h > O p(1).

We will keep the value h'.
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Note that A, =n# - A,-, where we use the notation
0-Y={60":0"€cY}.
Moreover, by the choice of h*, A, € A"

Lemma 3.15. For all £ € A,-

2
Sp €.

0 < logmax|fy4(fi (2))| = log | £} (z¢-)
We denote the implied constant by C' = C(p).

Proof. The inequality 0 < is obvious because of the max. For the second inequality, since
T = fre(Tym*1¢+), by bounded distortion (Theorem 2.1),

_ 2
|zex — fn*(x)| < |fn*(I)‘ Spe X < ev,

The Lemma follows by an application of Lemma 2.4. O

3.8.2. Specifying the exceptional set ZZZ
Let EZ* Z/ be given by Theorem 3.7, for the corresponding parameters as in Sec-

tion 3.3.1 (here it is important that A* is uniformly bounded). For clarity, we repeat the
properties satisfied by this set:

(i) P(App) 2 P(Ag) - (1= 0,320 p(1) = P(Aye) - (1= obgh=(1)).

(ii*) For all w* € Ap. ", P(AL" (")) > 0.
(iii*) For all w* € AZZ* and for any sub-interval J C [kyx, kx + D],

PAZ:’h/(w*)(STk* S J) - FAZ:’h/(w*)(J) + Of,;hi)oo(l).

Define an exceptional subset by
2 =g € A s mnPE) # |+ e (€0)):

Lemma 3.16. P(Z,"") < P(A,-) - (Op(e?) + of 5> (1)).

&P

Proof. We need to show Py . (ZZ:]L) < Op(€?) + o 7°°(1). Since Pa,. (ZZZ) >
1 — of ;h=o0(1), it suffices to show Pa, . (A0, N Zy" ) < Op(€?) + of 5h ().

B b
k*’,r]*7

Now, as A, is AZ*’h -measurable, it suffices to show that for every w* € A

Th B N —heoo
P e oy (A e N Z107) < Op(€) + 05" (1).
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Suppose £* € AZ*Z/ N Zl?:v}zll‘ For simplicity write a = |n#| and b = 74+ (£*), then
Sp_1(€%) < k* < Sp(€¥). Since 74 (n#¢*) # a + b then one of the following holds:
Case 1: Sqip_1(n"&*) > k, which implies

—1 ! *
M =Sa (7€) = Sayp 1 (7€) — Sp1(€7)

—logmaxyes |f], (fy- (2))] + O
- .

>k — k' =

Comparing with Lemma 3.15, we know this case cannot happen.
Case 2: Su1p(n7€*) < k, which implies

-1 / *
w =Sa(*€") = Sars(1#€7) — S(€7)

~logmax,er |1, (fyr (2)] + O
- .

<k—-k* =

Comparing with Lemma 3.15, we know Sy(£*) € [k*,k* + C€?). Since 'a,, . , is abso-

SN LM
lutely continuous with a uniformly bounded density (Lemma 3.5),

Cape o (5K +Ce%)) Sp €

’

uniformly. The lemma follows from property (iii*) of the set ;12 z* O

Next, set

Shih' ) e A
Ziw =we Ay P, 0 Z00) 2 Pa (Z00)5)

* h,h' h,h'\1
Un# {w*€A,y: P (Zyn ) = Pa . (Z0 )2 )

* ’
AZ*’h (w=*)

Because Py, (7 - ZZ:;L/) =Pa,. (Zg:,) and n#- sends P, to P,, we have

~h,h' h,h/\ L _
]P)A'r/ (Zk,n ) S ]P)An* (Zk,n )2 = Op(e) + 0/:yph—>00(1)’

since this bound holds for both components in ZZL : y

—h,h'
The set A, can be now defined as

—h,h’ Th* R\ hh Shoh!
A’C,n = (77# ’ (Ak*’n*\Zk,n ))\ka :
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3.8.8. Proof of Theorem 3.8
For property (i), it suffices to prove that if min(h, k—h) is sufficiently large (depending

P(Ap, )
only on € and p), then ]P,(A’:) >1— Op(€). Indeed,

—h.h Th* R\ h,h' ~h,h'
]P)(Ak,n ) _ ]P(Ak*m*\ka ) P(Zk,n )

P(An) B ]P(An*) - P(An)

> (1= 07 (1)) = (Op(e) + ok 5" (1))) = (Op(e) + ok (1))

&P &P

=1—(Op(e) + 05" 7> (1)).

&P

This implies the claim.

For property (ii): This property is a formality and always holds after omitting a null
set (in fact, we don’t need to omit a null set based on the construction here).

The proof of property (iii) will requires more effort. By adjusting the threshold on
min(h, k — h) based on e, it suffices to prove that

P (ST EJ)ZF
k (W) k

4 (J) + Ope) + o= (1)

AR (w)
for all w € ZZZ . In fact, proving > instead of = is enough, by applying to both J and

Je.
In particular, it suffices to show

hoh'y . —h—soo
PAZ‘h,(w)({g € 77# : {A"?* \Zk,n } ' Srk(f) € J}) > F.AZ’M(W)(J) - OP(G) - Ol:,ph*) (1)
(25)
In the following Lemmas we take a closer look at n# - {A,,*\Z,?_”:; +

Lemma 3.17. Ifw € Z:g , then
h,h/ B,/ BB 1 s\\ R
Ay (w)\(n# ) Zk,n )= - (A" (w )\Zk,n )-

Proof. The C direction: Suppose ¢ € AZ’h/(w)\(n# . Zﬁ’s/), then both &,w € n# -
(An*\ZZ:f; ). Write them respectively as 7 ¢* and n#w*, then

(&) = = (€%) = | = Te(w) — = (W), (26)
Hence,

O_Tk*(f*)é-* — O.Tk(ﬁ)é‘ EA}L’ O.Tk(UJ)w — O'Tk*(w*)w*,
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This shows that ¢* € AZ:’h/ (w*), meaning AZ’h/ (W)\(n* - Zﬁ’:"/) C n#*. AZ:’h/ (w*). In
fact:

AP @\ - 20 ) St - (AR (WNZE).

The O direction: Keep the notations and assume £* € AZ:7h/ (WNZ ,}; : " The equality
(26) still holds, showing that

O-Tk(f)é' _ U‘Fk*(ﬁ*)g* = oThe (@) yF = gTR(W)
Hence n? - (.AZ:’h/ (w*)\Z,};s,) - AZ’h/ (w), or more precisely,
R*R ) sy hh! h,h! h,h/
" (A" (WNZ ) S AR @\ ® - 2. D
Lemma 3.18. If w = n”w* € ZZ,’; and & =n7EF € AZ’h/ (W)\ (0 - ZZ":;,), then

C 2
Sr(€) = Sp (€5) €[k — k" — 7% — k)

where C is as in Lemma 3.15.

Proof. By the proof of the previous lemma,

S0 (€) = Sy (€7)

—log ! (z¢-)
X

o msser fy ()] —logmaaer |y (r(2)] +C€

)

X X

2
k- - ok o
X

=Sy (§) =

We proceed to compute a few auxiliary bounds:
Zhih!

Since w ¢ Z,","

’ ’ g S o)
P it o (A" @N# - Z100)) 2 1= P, (Z7)% 21 Op(e) —okg>(1).  (27)
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Moreover, by Lemma 3.17, Lemma 3.18 and property (iii*),

b hoh'y
Py won ez y ({8 € AL @\ - Z057) 2 Sy € T3)
hoh! hoh/y
ZPU#‘AZ:JL/(W*) ({g € Ak (W)\(U# : Zk;,n ) . STk(&) € J})

N h,h'y .
ZP,]#.AZQMW)({& et (A NZgy )

Sroe(er) € (J—(k—k*— C:2)) N(J—(k—k%))}) (28)

* h,h/
ZPAZ:’M(W*)(ST"* eJ ) - PAZ::h/(w*)(Zk,n )

>(r

* — 00 h,h'\1
AZ:*’“(w*)(‘] ) - Ol:,ph_> (1)) - PAn* (Zk,n )2

>r (J%) = Ople) — 5" (1).

ARTH (@)

Here J* denotes, provided that J is a subinterval of [kx, kx + D’], the interval

2
T = (] = (k=K — 076)) N(J = (k—E))}) C[k*x, k*x + D'
Since ](J— (k= k*))\J*| < 0762,
FAZ:’hl(w*)(J*) > FAZ:’h,(w*)('] — (k _ k*)) _ Op(€2)

by the uniform absolute continuity of the probability distribution I' Lem-

Azt @
ma 3.5).

Finally, since o™ @ )w* = 7@y, (i.e. the A’ components are the same 7n’), one
can check by construction that FAZI*’”'(UJ*) = U—(k—k*)XFAQ*h'(w)’ where for x € R,
U, : R — R is the translation by z. So

r

(J9) =T J) = Op(€?). (29)

AR (@) A

To obtain (25), plug (29) into (28), then multiply by (27). This completes the proof
of Property (iii).
Theorem 3.8 is established.

4. Proof of Theorem 1.1 part (1)

In this Section we prove Theorem 1.1 part (1). We require a preliminary step, which
is an adaptation of Theorem 3.7 for Fourier modes. This is the content of the next
subsection:
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4.1. Application of Theorem 3.7 to Fourier modes

Fix a Borel probability measure p € P(R). For every ¢ € R we define a function
9q,0 : R = R via

9a.p(t) = |Fy (Me*fp)|2

where we recall that M,(x) = s -z for any s,z € R.

Next, fixing hg = 0 in Theorem 3.7 and assuming k € N, we define the sequence
o = 0’5;"0. Notice that the assumption hg = 0 means that A, is the entire symbolic
space AN (since the only word of length 0 is the empty word). The following Theorem
is needed in conjunction with Theorem 3.7, since in practice we will need a version of
Theorem 3.7 for functions rather than intervals.

Theorem 4.1. Let q be large, let C > 1, and let k = k(q) be defined implicitly as an
integer satisfying

lg| = 6¢ (0;ie(k+hf)x) (30)
where h' = \Vk. Let p € P(R) be a measure such that
diam (supp (p)) = O(e™""™X).

Then for every £ € Zzgl C AN as in Theorem 3.7, recalling that here h = hy = 0, we
have
kx+D’

EAZ”L’(g) [gq,p(s'rk(w))] - / gq,p<x)dr,4£,h’(§)(37) <O(o
kx

ST

).

Proof. We first claim that the function g, ,(t) is 4mge~** - diam (supp (p)) Lipschitz,
whenever t € [kx, kx + D’]. Indeed, since the complex exponential is a 1-Lipschitz func-
tion, for any z,y € supp(p) and ¢, s € [kx, kx + D'] we have

|exp(2mige™" (x — y)) — exp(2mige™*(z — y))| < [2mq(z —y)| - [e™" — €|

< 4mgdiam (supp (p)) - e X,

Since the L! norm is always bounded by the L> norm, and since

Gup(t) = |Fy (Moo p)|? = // exp(2rige™(z — y))dp(x)dp(y)

the Claim follows.
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Recalling that k = k(q) satisfies

1

qg=0¢ (0;16(k+h/)><)
and that
diam (supp (p)) = O(e™")
it follows that the function
t € [kx,kx + D'l = gq,(t)

_1
is 0, * Lipschitz (up to a constant universal multiplicative factor). Therefore, there exists
a step function v : [kx, kx + D’] — R such that:

_z2
1. 1 consists of o, * steps (indicators of intervals).

2. ||t — gq.p|loc < 0f on the interval [kx, kx + D'].

Thus,

kx+D'

]E-AZ’M(S) [gq,p(STk(w))] — / gq’p(x)dFAZ"h/(g)(z)
kx

S ’E.AZ’M(&) I:g%P(STk(w))] — ]EAZ’h/(f) |:¢(STk(w)):|‘ (31)
kx+D’

HE oo WG] = [ 9@y (@) (32)
kx

kX+D/ kX-‘rDl

+ / w(x)dFAZ,h,’(é)(I)— / gq7p(m)dFAZ,h/(5)(ac) ) (33)
kx

kx

1
Now, the terms in (31) and (33) are bounded by o} by point 2 above.
_2
Finally, the term in (32) is bounded by o, * - o) since by point 1 above there are at most
2

0, * steps in ¢, and since by Theorem 3.7 each such step introduces an error of at most
op. 0O

In the context of Theorem 4.1, it is natural to ask about the existence of integers k
that satisfy (30) with respect to some uniform C > 1. This is the content of the following
Lemma:
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Lemma 4.2. By potentially making o go to zero slower, we may assume that there exists
a constant C > 1 such that for every q large there exists k = k(q) € N such that

lq| = O¢ <O;ie(k+ﬂ)x) :
Proof. We first make the following assumptions on the sequence oy:

1. o > % Otherwise, we move to the sequence a = max{o, %} Then o, < a; and
still ap — 0.

2. Tt is monotonic decreasing. Otherwise, for every k define vy = sup{o, : n > k}. Then
o < vg, v is decreasing, and it is clear that vy — 0.

3. For every k we have i-ok < 0g+1 < 0k. Otherwise, we move to the recursively defined
sequence by, where

br—
b1 = 01, bk = max{ok, %}

Then by, > o > % and

b
Zk < b1 < by, b —0.

Now, let g : R — R be a smooth monotonic decreasing function such that g(k) =
oi. Let g be large. Find x € R such that

gl = g() 75 - eETVOX,

Notice that

|ilogm+(x+\/§)x—ilogﬁ—([ﬂ*‘\/H)X‘

<Iqlog X +1(o + va - o] - VED
L g(la] )
< i|log4| + 3x.

It follows that
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We thus choose, for every ¢ large, our k as [z]. It follows that there is some uniform
C > 1 such that

c'< L <C
O;Ze(k'i‘\/E)X

which is what we claimed. O
4.2. Proof of Theorem 1.1 part (1)
Let v be as in Theorem 1.1. Our goal is to show that

lim F,(v) =0.

lg|—o0

So, let € > 0, let |g| be large, and choose k = k(q) € N as in Lemma 4.2. Recall that this
means that for some C' > 1,

q=06c¢c (0;% : e(k+h/)x)
where our standing assumption is that
W = k.

By Lemma 4.2 (and its proof), any requirement that k be large translates to a require-
ment on ¢ being large. In the notation of Theorem 3.7, we let k be large, and fix hg = 0.
Recall that hg = 0 means that h = 0 and so A, = AN. We also define an auxiliary
stopping time S, : AN — N by

Bi(w) = min{m : | (x0)] < e~ *+Mx) (34)
where we recall that x¢ € I is our prefixed point as in Section 1.2.1.
Lemma 4.3. For every k € N,
v= ]E(fwmk(w)y).

Proof. This is standard, and follows since v is self-conformal. See e.g. [4, Lemma
2.24]. O

So, by Lemma 4.3 and Jensen’s inequality we obtain

Fo0)? = | Fo®fu,, )|
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= ’IE (fq (fwlﬁkw)y)) ‘2
o)

Next, appealing to Theorem 3.7 with our choice of k, hg, h/, there is a subset that we
denote by A, C AN with P(A4,) > 1 — ox(1) such that

e (|7 (o)) =

2
- / Eapr | (fwlékw”)‘ () + / B

EEAN\A, ¢cA,

Fo(futan?) ]2 dP(€).

2
Combining this with the previous equation array, and using that ‘fq ( fw‘ék(w)y) ‘ <1
uniformly in all parameters, we conclude that

F ) < /IEAZ,M(E) o (Fa )| @2+ 0x(0). (35)
te4d,

Next, we take a closer look at the maps fw‘ﬁk(w):

Lemma 4.4. There exists some integer P > 1 such that:
For all k large enough, and for every w, letting n' be such that Ay .y = .AZ’h (w), we
have

|Br(w) = mi(w) = /|| < P.

Proof. We first observe that, by the definition of 3j, from (34),

= [e) 3 = ] i .
fw‘ﬁk(w) fwhk(w) fwf}’:fj?’ and f“’hk(w)ﬂy,/\ fw\Tk(w) fn’ since w € Akmm/

So, either w\f ]’j((j)) is a prefix of 7/, or vice versa. By the last displayed equation, for any
rel,

!
X
“"Bkw)( ‘

= |f;|,;k(w)(x)\.
! (fwlﬁk(w) (93)) ‘ Tl

@l Th(w)

Now, it is a consequence of Theorem 2.1 (bounded distortion), the definition of B, and
of the definition of 74, (Section 3), that for some L > 1 and all y € I,
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L—l _e—(k+h,)x—D/ <

£ (y)‘ < Leem(HNOX [l hxD <

wlgy @) =

fi;\fkw (y)‘ < Le™™,

(36)
Combining the last two displayed equations, we see that there some constant C’ > 1
such that

|f:1|[§’“(w)(x)| = B¢ (e*hlx) , Vexel. (37)

Tk (@)

On the other hand, by the definition of the event Ay, ,» and by Theorem 2.1
f(2)] = L (e*h/X) , Vzel. (38)

Therefore, combining equation (38) with (37) (and noting that the constants C”, L are

uniform), that either w\f :((:j)) is a prefix of 7’ or vice versa, and equation (4), the Lemma
follows. O

Let P be as in Lemma 4.4. For every word 7’ € {1,...,n}* of length |n’| > P we define
=1 |- p

That is, i is the prefix of 1’ of length |1)| — P. Tt is now a corollary of Lemma 4.4 that
for any w, if n = n’(w) is as in Lemma 4.4, then there is a word p,, , such that

fwl,;k(w> = fw‘Tk.(w) Ofﬁ/ o fpw,lc

and |pw,k| <2P.
With this information, we revisit equation (35). Recall that M(t) = s - t.

Claim 4.5. Fiz 5 € (0,7). Then for all k large enough,

2

dP ()

2< | E  uw M - woM =
|]:q(y)| - ARt 74 e ST ()0 sign(.f:” ) )(mgfk(w)(w))> Ofn Ofpwyky
é'EA‘.” TR (z

+ O(q - e~ FHIX=FRX) 4 g (1)
where for every & € A, recalling that AZ’h,(ﬁ) = A pay, ' s defined as ' =1/ (€).

Proof. Fix ¢ € /[,7. Assuming AZ’h’(g) = Apy, let 7' be this ' = n/(§). Assume
w € Apg .. Then we have seen that there is a word p,, ;. such that

fw|5k(w) = fw\Tk(w) o fﬁ/ o fpw,k (39)

and |py x| < 2P. It follows from the proof of Lemma 4.4 (specifically, equation (37)) that
there some constant C’ > 1 such that
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| (f 0 Founr) (@) = Oc (e"’x) , VYzel. (40)

Also, it is a consequence of (39) that there exists some 2 € I with f, o f, ,(2) =
Lo (@) (w) -

Now, plug into the C© linearization Lemma 2.3 the parameters g = fw\f,c(ww y =
fip © fpu i (2) and for z € I we plug in f o f,, . (). Then, by (39) and assuming k (and
therefore h') are large enough,

Fotayr @~ Fatryr Uit oG = oy oy (B T ) i @B @) =i 0 ()|
<UL (F o frn D | 0 fpun @) = f 0 fo ()]

|"k(W)

And, by the definition of 7, since f; o fp,, . (2) = Z ;7.0 (), and by (40)

|fw|Tk(w) ( fpm k( )) | < e—kX’ |fﬁ’ ofﬂw,k(x) - fﬁ/ ofpw,k( )’ < O( —h'x )

Now, for every w € Ay, v we define a smooth map S, v : I = R via

Sk () =

fzr Cvofk(“)(w))’ SlgIl (f;

ITk(LA))

(Fgrar)) * fiy © foun(®) (A1)

_fciz )(xa"k(w)(w)) : xaTk(w)(w) + fw

7y, (w

I T (W)

(CCO_Tk (w) (UJ))

g, ()

T}‘lhis map is affine in sign ( U/J\rk,(w (xafkm(w))) “ [ © fpu s (x). Then we have just shown
that

fts, ) = Swbarllcom) < O (e~ (+R)X=BR'x).
So, since Fy(-) is a 2mg-Lipschitz function,
‘]:q (fw\gk(w)V) - F, (Sm,n,y)) < O(q - e~ bFkIX=BK"x),
Therefore
1 (Fatsy ) B = 1o (Suarv) P| < O(g - emG400010),

and so for every event Ay, we have

‘]EA/CJLW’

2 ! !
7, (f%k(w)u)‘ —Ea, |7, (sm,n,yﬂz' < O(g- e FHIX-BVY) (49)

Finally, recall equation (35), and recall the definition of the maps S, k. from (41).
Note that

g [ £, (o) ()] = =Sz () (W)

‘T (w)
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by Lemma 3.2. The Claim follows from (35) and (42), since the translation of S, x ./
does not affect the absolute value of F,(-), by integrating over all £ € A, (using that the
bounds we got are uniform in §). O

Corollary 4.6. There is some K1 = K1(€) such that for all k > K,

FP < Y [ By [P (Moo S0 )| @+ (@)

<op. ”.
lpI< ccA,

where P is the constant from Lemma 4.J. Furthermore, there is some global constant
C'" > 1 such that for alln’ and p as above

| (fr Ofp)/($)| = B¢ (efhlx) , VYxel.

Remark 4.7. For notational convenience, in this Corollary and the subsequent argument,

we make the assumption that we always have f/ | (Tym@) (wy) > 0. Otherwise, we

TR ()

simply make the sum on the right hand side of (43) larger, by including the possibility
that it is negative. Since there are uniformly finitely many such options, still the sum
above is over uniformly finitely many terms, and the proof follows through.

Proof. For every k large enough, for every & € A, and every w € AZ’h/ (&), as |pw.i| < 2P

2 2
‘]:q (Mefsfk(m(“’) (¢] fﬁ’ [¢] fpw,ky)‘ S Z ‘]‘—q (MefsTk(w)w) o fﬁ' o fpl/)’

lpl<2P

and so, by Claim 4.5, assuming f‘:‘ (

)(ngk(w(w)) > 0 is always true,
e

2
2
FIP S [ B g |2 (Moo 0 By o )| B0
¢eA,

+0(q- e—(k+h')x—ﬁ-h’x) + o(1)

2
< > /]EAL“’“@ ’fq (Me*57k<w><w>ofﬁ’°fﬂ”)‘ dP (&)

lPI<2P g
+O(q - e FHPIX=BRx) 4 o, (1).

Recalling the choice of k = k(q) (which is as in Lemma 4.2),

O(q - e~ kFhx=5h"x) = O(oki LB,

So, since oy decays in at most a polynomial rate (by e.g. Lemma 4.2), there is some K7 =
K (e) as we claimed. The last assertion is a consequence of equation (38), Theorem 2.1
(bounded distortion), that |p| < 2P, and of equation (4). O
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Now, fix some p with |p| < 2P and consider the corresponding term in (43)

2
[ gl (e 1) v

EEA,
/(5 ) separately. To do this, we notice

We next appeal to Theorem 4.1 for every event Ay,
that by Corollary 4.6, for every f. o f, involved

diam (supp (f, o fov)) = O( —hx),

1
Notice that the error term in Theorem 4.1 is O(o; ) independently of the event At €)

So,
2
/ E e |Fa (M S @ © fip ofpu)‘ dP ()
EcA,
kx+D’
2 1
/ / | Fg (M= 0 fr 0 fov)] ) h’(g)(x) dP(€) + O(0} ).

ceA, kx
1
4 < €
= [Hp:lp|<2P}]"

Let Ky = Kj(e) be large enough to ensure that if & > K, then O(o})
Then, since this is true for every p with |p| < 2P, we see that for k > max{Ks, K;},

putting this into (43) we get
kx+D'
2
/ |'FZI( e Iofﬁ’ofpy)} dFAZ’*’L’(g)(z)dP(€)+2€

IFa@)P < Y

‘pISQPEEAn kx

Recall that by Lemma 3.5, the probability measure I" A (€) is absolutely continuous
with respect to the Lebesgue measure on [ky, kx + D], such that the norm of its density
L~ 0 independently of all parameters. Using this

function is uniformly bounded by
fact, as long as k > max{Ki, K>},

kx—i-D/

FwlEs Y [ [ 1B e syo i)l pas | ape 420

‘plSZPSEAT, Ex

We now invoke Lemma 2.6. Taking the measure(s) to be f o f,v, for any r > 0, we
get the inequality (as long as k is large enough)

<> / s (W* / fyofo Bexk‘xy))d(f,;,ofpu(y)))dmg)+ze.

PI<2Pg;



42 A. Algom et al. / Advances in Mathematics 393 (2021) 108096

By Corollary 4.6, all the maps (fﬁ, o fp)_l as above are O(eh/X) Lipschitz (with the
implied constant in the O(-) being uniform). Therefore, there is some 7" > 1 such that
for every n’ and y € I,

(fﬁ’ © fp)_l (Bexk#“(fﬁ' © fp(y)) - BT~eX(k+h/)'r(y)

so, for a fixed r > 0 we can relax the dependence on both p and £, and get

!

62
F0P <pslol <2P) - (5 [vBr o, i) - F+2e (@

By Lemma 2.2 there exists some § = d(e) > 0 such that

e-D
2-D - [{p:]pl <2P}|

v(Bs(y)) < Yy € R. (45)

Now, we choose r so that T - eX(*t+) . = § This implies that V(B oxtktn . (y)) <

.D 1 T.ex(th)) _ -1 k+h/
W for every y. Therefore, = %. SO, as |q‘ = @C (Ok) 1. 6( )x 5
2 k+h' k+h' 2
e O ey Sy T
T R et <%

So, as long as k > K3 = Ks(e),

e? < e-D
relgl = 2-D"-[{p:|pl < 2P}

(46)
Finally, if & > max{K;, K2, K3}, plugging (45) and (46) into (44),
[Fa(w)[? < 3e
which implies the Theorem.
5. Proof of Theorem 1.1 part (2)
5.1. Some reductions

We continue to assume the condition of Theorem 1.1, and use the notation introduced
in Sections 1.2.1, 2, 3. Fix an integer p > 2. We aim to prove the following Theorem:

Theorem 5.1. Let v be a measure as in Theorem 1.1. Then for v almost every x,

L
h]{,n N 1; 0T () = Aj0,1]
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where Ao 1) is the Lebesgue measure on [0, 1].

Since p is arbitrary, Theorem 5.1 implies Theorem 1.1 part (2). We will need the
following definitions: let 7 : R — T =R/Z ~ [0, 1) be the projection

m(x) =z mod 1.

Let Tp : T — T be the continuous map

T,(y) =p-y mod L.
Notice that for any € R and any n € N we have
Tyom(x)=noT)(x)=p" o mod 1. (47)

Our first step is to reduce to the following statement, where we make use of the fact
that v is the push-forward of P under w +— x,,.

Theorem 5.2. For every € > 0 there exists ¢* = q*(¢) € N such that for all integers q
with |q| > ¢* and for P almost every w,

( Z 5Tn(%)>

Proof that Theorem 5.2 implies Theorem 5.1. Let w be a P typical point, and let v
be a weak-* limit of the sequence

lim sup

1 N
¥ 2 0rp(an)
n=1

We will show that v is the Lebesgue measure on [0, 1]. It suffices to show that F,(ve) =
0 for every integer ¢ # 0. Consider the measure mvo, on T: It is a consequence of (47)
that mr., arises from the Tp orbit of 7(z,,), and so Ty is Tp invariant. Now, let € > 0.
Assuming Theorem 5.2 holds true, let n € N be large enough so that |g - p™| > ¢*(e).
Then

|]:q(V<>O)| = ‘J:q(m/w”
= ‘]:q(T;?ﬂ'VOO)l
= ‘]:qp”(ﬂ'VOO)‘

o (i)

< lim sup
N
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= lim sup
N

1
Fapn (N Z‘h’f(%)) |
k=1

<€

where we have made use several times of the fact that ¢ is an integer, that mr. is

Tp invariant, and in the last line of our choice of ¢. Since € was arbitrary we obtain
Fy(Voo) =0, and we are done. O

Theorem 5.2, in turn, reduces to the following statement. Recall the definition of the
stopping time 7 and the random variable 7 as in the beginning of Section 3.1.

Theorem 5.3. For alle > 0 and ' € (0,7) there is ¢* (e, p) € N such that for every q € Z
with [q| > q* (e, p):

There are values h(q, €, p), k(q,€,p), ' (q,€,p) > 0 such that, for alln € N and every
we AN,

2 ’
Eeean(w ]:qS(fﬁlT © fﬂg”)’ + |q|e(1+7 X < e

K (©)+7,,1 (TR (8 (€))

Where the partition A" is as in Definition 5.3 part (2), and:
7’:77/ O, (UJ)

1. W =w(nw)=0 R (w).

2. s =s(w,n,h)=p"- fU'J‘ (fw%h(w,)(zo)), where xg € I is our prefived point.

Frnlogp (W)

In particular, s,s~* = O(1) where this O(1) depends only on the IFS.
3. The word p¢ for § € AN s defined as the unique word satisfying

§|Tk(f)+‘?h/(07k(5)(5)) *pe = gl%h(§)+7:k+h/—h+Q(Uﬁl(é)g)

for some global QQ > 0 that only depends on the IFS. Furthermore, there exists some
global P > 0 such that |p¢| < P for all €.

We remark that the word pg also depends on the parameters k, h, b/, Q, but we sup-
press this in our notation. Both the proof of Theorem 5.3 and the proof that it implies
Theorem 5.2 are not trivial. Thus, we dedicate the next Section to the proof that Theo-
rem 5.3 implies Theorem 5.2. The subsequent Section contains the proof of Theorem 5.3.

So, all in all, once these two assertions are established, Theorem 5.1 is proved and we
are done.

5.2. Proof that Theorem 5.3 implies Theorem 5.2

5.2.1. The martingale argument
In this Section we employ a deep observation that was originally made by Hochman
and Shmerkin [29, Theorem 2.1], and was recently further refined by Hochman [27].
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Recall that if C is a partition of a space X and p is a probability measure on X, then
for any = € supp(u) we denote by C(z) the atom of C containing x, and by pc(,) the
conditional measure of p on this atom.

Theorem 5.4. [27, Theorem 2.2] Let T : X — X be a continuous map of a compact
metric space, and let u be a Borel probability measure on X. Let {Cp,}nen be a refining
sequence of Borel partitions. Suppose that

lim sup{diam(T"A): A € Cpyx,u(4) >0} =0. (48)

k—oo peN

Then for pu almost every x,

1 1 Y
in the weak-* sense.

That is, as long as the partitions {C,},en are compatible with the dynamics of T
in the sense of (48), the orbits of u typical points are Cesaro equivalent to the 7™-
magnifications of the conditionals of y on their A™ atoms.

Now, let 0 < h < 1 be a fixed parameter, and consider the stopping time 3, , defined
by

- - %n o} (w)
Brn(w) = Fasoes @) + (0 X" w).

Note that in the stopping time 3, ;, we let n vary but keep h fixed.

Theorem 5.5. For P almost every w and for every integer q € Z,

1 N—-1 1 N-—-1
A Ty (N 2 5T;<rw>> -7 (N 2T fwlﬁn,hw> = 0.

Proof. Equip the compact space X = AN x T with the usual metric on each coordinate
and the sup metric on the product space. For every n let C,, ;, be the partition of X given
by

(w,ﬂ'(ZEw)) ~Cn,n (T],7T($,7)) — (wh "'7an,h(w)) = (7717 "'777Bn,h(17))7

and if x # 7(2y,),y # 7(xy) then (w,x) ~c,, (,Y).

Notice that we are grouping all the elements of X that are not of the form (w,n(z,,))
into a single partition cell, which we denote by B.
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Let p be the probability measure on X defined by

pA) =P ({w:  (w,m(z)) € A}).

Notice that the projection of p to T is 7v, and that p(B) = 0. To complete the setup,
let T: X — X be the continuous map

T(w,z) = (w, Tp(x)).

We now verify that (48) holds true: Let n,k € N and let A € C,1,, be such that
w(A) > 0. Then for any w with (w,z,) € A, recalling the metric on AN defined in
Section 1.2.1,

1)< () (107 (5

Tk logp (W)
< max{p e ,p "} = 0 as k — oo uniformly in n and w.

Thus, we may apply Theorem 5.4: For i almost every (w, 7(z,,)) letting i, , (w x(z.)) De
the conditional measure of p on the atom Cy p(w, x.,), we get

li ! N_lé ! N_lTk =0 49
Jm ﬁ];) Tk(wm(a:wn—ﬁkz_o Hepnwm(za)) | = 0- (49)

Notice that the projection of pc, , (w,n(z,)) to T is ﬂ-ofw‘ﬁk LoV So, projecting equation
(49) to T and using this observation, for P almost every w

1 Nl | Nl
. B Tk _
dn (X St = X T ome ) =0
k=0 k=0
Finally, let ¢ € Z. Invoking (47), for every k > 1,
Fi (0rsenony) = Fa (Orse) » and Fy (T omo fupy, ) = Fo (T o fuyy ) -
So, combining the last two displayed equations, the Theorem is proved. O

Remark 5.6. As pointed out to us by the anonymous referee, once Theorem 5.5 is estab-
lished there is another way to prove Theorem 1.1 part (2): Via a slight modification of
Theorem 5.5, it is enough to show that for v as in Theorem 1.1,

For every C,Cy > 0, limsup{|F,(gv)| : g € C**7 : ||g||c1++ < Co, inf|g'| > C1} = 0.
q

That is, the rate of decay of |F,(gv)| is uniform in g € C'*7, as long as its C**7 norm
and inf |¢’| are uniformly bounded. We believe this Claim to be true, and it should follow
by verifying that:
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1. The rates in Theorems 3.10 and 3.11 are uniform in g.
2. The other estimates as in Section 4 are uniform in g.

Taking this approach allows one to circumvent the use of Theorem 3.8, thus possibly
shortening the proof. However, since we hope to have other applications for our method
that do make use of Theorem 3.8 (e.g. for higher dimensions or dimension theory), and
since it is one of the goals of this paper to show how local limit Theorems may be adapted
to study the geometry of self conformal measures, we present the proof of Theorem 1.1
in its original form.

5.2.2. First linearization and stopping time argument

Our next step is to linearize the maps appearing in Theorem 5.5, in the following sense:
Fix an integer frequency ¢ # 0 € Z. We want to estimate J,(-) for the push-forward of
v via the map

mn __mn
Tp © fw"en,h(“’) - Tp © fw‘

?nlo; (w)+7p (o
X

Tnlogp (@)
X w)

The idea is use the first Tnisp (w) digits to cancel out the 7' factor. The price is a

uniformly bounded defect s in the frequency, and a controllable error term that relies on
h and ¢:

Claim 5.7 (First linearization). For everyw € AN, ¢ #0€ Z, n € N, and h > 0 that is
large enough in manner dependent only on ' € (0,7)

n —(1+9")h
H]:" (TP Ofw\aw,hmy)‘ a ’}—qs (f“’"mw/)’/)H < lglem

Fnlogp (W)
where we recall that o' = o %" (w) and for our prefixed xo € 1

s =s(w,n,h)=p" - f] <fw 0. (w/)( )) =0(1), and also s = O(1)

nlogp ()
X
where this O(1) only depends on the IFS.

Proof. We use the notation w’ as in the statement of the Claim. Plugging in g =

ol

preﬁxed xo €1

. into Lemma 2.3, as long as h = h(v'") is large enough, for any x and our
n ogp

| fuol+ furly, o (@ )) fol

nlok Q(W) (

fetloy oy (0)) (50)

n logg (w) (

L\;MO o (qu;h(wl)(xo)) : (fw/|;h(w,)(ff) - fw/\;h(w,)(ﬂ?o)) |
X
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! 149
<
= fwl’”’nlo (w)<fw ‘T (w’) IO ‘fw ITh(WI) ) fw/|,;h(w/)(x0)
X
Se—%% Ce— x4+ — p - e~ hx(1+7")

Denote tg = L’U|~ “ (fw,|_’( ,)(xo)) and ¢ = (1 —tg) - f“"‘h( ,,(@o). Using that F,
* logp (9 (w o (w
X
is |¢|-Lipschitz and (50),

mn
q (Tp o fw|/3n1h(w)y)‘ -

F, (T; (to : fw’l;h(w’)y>)H

_ n o n .
= fq Tp o fw| o p () 14 ‘./_'.q <Tp o <t0 fw/l;h(w/) —+ tl) V)‘
Tnlogp (W) +7h (o X w)
X
S ]:qpn fw| i log p (@) v — fqpn <<t0 . f‘*’/‘rh(w’) + tl) V)
Tnlogp (W+7h (o X w)
X
n
<lqlp™ - || fu - o —\to- o o T t) oo
nlogp («) Th(w’)
Tnlogp (W) +7h (o x w)
X
n hx(1+4") _ (1+v)hx

<lglp"-p™"-e” = |qle”

Finally, using bounded distortion (Theorem 2.1), set s = p"tg and note that

sl = [p" - £, (furl,y o (@0))

€ [Cy,1], where 0 < Cy < 1is a global constant.

Tnlogp (@)
X

Then the result follows since, as ¢ is an integer,

7 (75 (10 foteyon) )| = [Famia (o) = e (7] 2

The next Claim, which is the final ingredient in the proof that Theorem 5.3 implies
Theorem 5.2, is about writing measures of the form f,,.
measures of the form

V@S A certain average of

fel o fpey  where £ € AM(w), and k+h > h

T (&) 47, (e TR (E) (&)

where p¢ is a word of uniformly bounded length. This is crucially important for our
argument, since the local limit Theorem 3.8 applies for the random variable 73, but not
necessarily for the stopping time 7.

Claim 5.8 (Relating stopping time with cocycle). There is some P > 0 such that:
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For every w € {1,...,n}N, h, W' k>0 with h < k+h

f‘“l*h@’)y = Eeear@) (fglm(é)Jr?h/(oTk(‘g)(E)) ° Joe V)

where pe = pe k.h,n,q 15 the unique random word satisfying

§ |m(£)+m(o*k<f)<s)) *pe=¢ |%h(5>+%k+h/_h+cg(o*hr“)&)

for some global Q > 0 that only depends on the IFS, so that |p¢| < P for all ¢ € AN.

Proof. Since v is self conformal and 7 is a stopping time, for any fixed @ > 0 (to be
chosen later)

V= E(fm%k“ v)

'—h+Q

SO

forrprV = Enlforny © oty o io¥) = Beear@)(Feln o t0in_nso(em @) (51)
Now, by bounded distortion (Theorem 2.1), there is global C' > 0 such that for every &

/ _ @C(ef(h+k:+h’7h+Q)x) _ @C(ef(kJrh'JrQ)x)

€|+;L<a)+%k+h/_h+Q (o7 (&)¢)

on the other hand, for every &

’ —(k+h'
fEI © =Oc(e e )X)'
T (&) 47y, (TR (E) (&)

It follows that we can choose ) based only on C' such that for every &,

76 (&) + Fn (07 (€)) < Fn(€) + Fhtn—htq (Umg)i) < 7€) + A (0O (€) + P

where P has uniformly finite length. Therefore, there is a word p¢ of length < P with

§|Tk(£)+7:h’(o'Tk(§)(f)) *pe = g‘%h(f)‘i‘%kJrh’—thQ(U;h“)g).

Plugging this equality into (51), the Claim is proved. O

5.2.3. Proof that Theorem 5.3 implies Theorem 5.2

Let € > 0. Suppose that for every integer ¢ with |¢| > ¢*(¢,p) there are values
h(q,€e,p), k(g,e,p) and h'(q,¢,p) satisfying the conclusion of Theorem 5.3. Then, for
P almost every w, by applying successively Theorem 5.5 and Claim 5.7 with this h,
Claim 5.8 with these h, h’, k and w’, Jensen’s inequality, and finally Theorem 5.3, we get
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Z 6T"mw

nl

S

’]-' ( ”Ofw\ﬁ ) >’+0N(1)

2=

==

iM= ilM=

\/ 130 gy, ov)| +on()

2
‘qu (f“/\m(wwy)‘ + lgle= (X + o (1)

3
Il
_

2
+|q|ef(1+7 Yhx

2% =S
hE
Q

1
M-
P—

Fas (Efe““h(“’) (fg‘mmwhl<a*k<5>(s>> °foe l/>)

\/EgeAh (@)
+ ON(l)

< V2 + on(1).

1

_|_
Q
2

Fas (e, © foe)| +lale= (11 0mx

-5
M= =

T (&) 7, (0 TR (8) (£))

Taking N — oo, Theorem 5.2 is proved.
5.8. Proof of Theorem 5.3

The proof has two stages. First, for a fixed w € AN and n € N, we let ¢ € Z and
h,h',k > 0 be arbitrary, and use them to bound

OfpsV>‘2

Eecanw|Fas(fe

()47, (TR (E) (£))
with the notation w’ = w’(n,w) and s(w, n,h) as in Theorem 5.3. The resulting bound
will be a sum of several error terms, depending variously on |g|, k, h, k' up to universal
constants. These errors are produced by running a similar argument to the one proving
Theorem 1.1 part (1) as in Section 4. In the second stage of the proof, we let € > 0 be
small and show that we may choose specific parameters h, h’, k such that all of these
error terms can be made arbitrarily small simultaneously, as long as |¢| is large in a
manner that only depends on e. This will give Theorem 5.3.

5.8.1. Collecting error terms

Fix w and n and let  be such that A"(w') = A,, and let s be as in Theorem 5.3.
From this point forward, we can forget about n,w and just work with the cylinder A,
and the frequency gs. We do recall that s,s~* = O(1) uniformly in n and w, and this
will be used implicitly throughout the proof. Let k, h, h’ > 0 be any parameters, and let
q € Z. For notational convenience, we assume ¢q - s,q > 0 - otherwise, whenever they
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appear 1n81de a bound, an absolute value should be applied. By Theorem 3.8, there exists

a subset Ak n C© Ay such that

—h,h min — o)
P(Ay ) = P(Ay) - (1= opnik=i=ee())

and (ii)-(iii) of Theorem 3.8 hold for it. In particular,

OfpsV)F:EéeAn’]:qs(fﬁ\ Ofps’/)‘Q

]E h ’ f
geAr (W) qs(f£|fk<a>+%h/<o*k<5>(a)) T ()47, (0 TR(E) (&)

< / E i | Fas(fo) o fou)|? dP(€) + oin(k=h = (1) (52)

h,h'
k,m

T (@)+7y (TR () (@)
¢eA

Here we made use of the fact that | F,4(-)| < 1. So, our first error term is ogm(h e h)—wo(l).

Our next step is to linearize once more, in order to set the stage for the application

of the upgraded local limit Theorem 3.8:

Claim 5.9 (Second linerization). We have

2
/ EAZ’”(&)“Fqs(fwlTk(w)#h/<a*k<“’)<w>)Ofp“l/)‘ dP ()

—h,h’/

5 Ak ,n
2
< E  nn F M _ wy o M o f, 0 1% P
= / AP () |7 a8 ( e (@) ) slgn< Wl (1)( m(w)(w))) fn fpu, ) ©)
gean

+0(q - e B xe=7"hx)
where for every € € ZZ”,};/, recalling that AZ’h/ (&) = Appy, 0 is defined as ' =n'(§).
Proof. This is, up to minor changes, Claim 4.5. O
So, our next error term is q- e~ *T)Xe=7""'X (up to multiplying by a global constant
that we omit from notation, and recalling our assumption that ¢ > 0). With the help of

the following Corollary, we can remove the randomness of the word pe.

Corollary 5.10. Let P > 0 be as in Claim 5.8. Then

/ g

EEAh '

2

P ()

Fys M*ST (w)(“’)OM o fyr o fp,v
sign wlr (@) T (@) ()

<y / E g o[ Fas (M, orpir 0 £ o 1) [ aB ()

lp|< PE hh’
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Recalling that |p,| < P for all w, this is analogues to Corollary 4.6 and Remark 4.7 via
an assumption (without the loss of generality) that all maps are orientation preserving.
We are now ready to apply Theorem 3.8:

Claim 5.11 (Application of local limit theorem). For every p as in the sum in Corol-
lary 5.10,

2
/ E v g) ‘f as (Mefsfwwwfnfofpu)‘ dP ()

—h,h’

geAk,n

kx+D’
< / / | Fas (Mo 0 fo o for)|* dTa, . () (2)dP (€)
geAph kx

2 - ! min —
o (mﬂqe ()2 pinink ”H“(l))-

Proof. This follows from Theorem 3.8 in a similar manner to the derivation of Theo-
rem 4.1 from Theorem 3.7 in Section 4. O
So, the next error term added to our list is m + (qe—(k+h/)x)2ognn(h,k7h)aoo(1)
(again, up to a universal multiplicative constant that we ignore).
Next, using the uniform norm on the density of the measure I'4, o () (Lemma 3.5)

we get
kx+D’
> [ [ Fe ety e sl s, o@d©
‘p|S2P§EZZ::,LI kx
kx+D’
<> [ | [ Fe@iososmP s | dp),
|p|§2P5622::/ Ex

So, we have reduced our problem to a sum of oscillatory integrals, that has uniformly
bounded many terms. This will give rise to the final error term:

Claim 5.12 (Oscillatory integral). For every p in the sum above, and for every § > 0,

kx+D’
1 1
/ / | Faes (Me== 0 fyr o fp”)\2 : de dP(§) < O(W + S‘;P V(Bé(y)))'

geAph \ kx

Proof. This is analogues to the application of Lemma 2.6 at the end of the proof of
Theorem 1.1 part (1) in Section 4. O
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So, our last error term is W +sup,, v (Bs(y)), for any 6 > 0 (to be chosen later

s
at our convenience). Yet again, we ignore the underlying global multiplicative constant.

5.8.2. Conclusion of the proof of Theorem 5.3
Let us first recall the error terms we collected in the previous Section:
List of error terms:
Every bound below is in the sense of <p. Recall that 4 € (0,7).
Local limit Theorem (Claim 5.11), and (52)

2

qeGrix T (ge (BHIIX)2gmin(nk=h) oo (1),

i

Second linearization (Claim 5.9):

_ k-‘rh/ _ /h/ .
ge~ FHRIx =7 R X,

Oscillatory integral (Claim 5.12): For every § > 0,
1 B )
Sqe—(kx T Sup v(Bs(y));

First linearization (Claim 5.7):

ge~(H)hx

Our goal is to show that for every € > 0 there is some ¢*(¢) € N such that for all
integer |g| > ¢*, there exists a choice of h, k, h’ based only on € and ¢, so that every term
in the list above is at most €. Recall that we are assuming, without the loss of generality,
that ¢ > 0. We will also be minded to take care of the other constraints: h needs to be
large in a manner dependent on the prefixed parameter ' (Claim 5.7), and h < b/ + k
(Claim 5.8).

Choices of parameters:

1. Fix 6 = d(e, p) such that sup, v(Bs(y)) <p €. Here we use Lemma 2.2.

2. Fix I’ = '(e, p) such that e=7""'X = §¢2,

3. Fix h* = h*(e, p) such that if min(h,k — h) > h*, then the o ™"F~M=(1) term
in Theorem 3.8 is < 62€3.

4. Fix h = h(e,p,q) > %(h* + h®) > h* for some properly chosen h™ = h®(e,p) > 0
(arising from Claim 5.13 below) such that ge~HY)hx — ¢ This can be done if ¢ > ¢*
for some ¢* = ¢* (¢, p).

5. Fix k = k(e, p, q) such that ge~FTh)x = §=1¢=1,

Claim 5.13. If ¢ > ¢* for a sufficiently large ¢* = (¢,p), then k — h > h*.
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Proof. We have
_ ’ o 1+ L
e = §e2e =X = (§¢2) 77

Thus k — h = v'h — O p(1). Denote this last O, ,(1) by h**. Then k — h > h* following
the choice of h above. O

Note. To employ Claim 5.8, we need that k + h’ > h. But this clearly follows from
Claim 5.13. Also, to use Claim 5.7 we need h to be large enough in a manner dependent

on +/, but this can clearly be arranged in step (4) by potentially making ¢ larger.

With these parameters, all errors are simultaneously small:
Local limit Theorem:

2

w + (qe—(k+h/)X)2og1in(h7k—h)~>OO(1) <<p 5 - €+5_26_2 . 6263 S 26,
qe—

Second linearization:
’ AN
ge~ FHRIXe=7hIX — =171 5e2 = ¢

Oscillatory integral:

1 1
Sqe—Fhx + Sgp v(Bs(y)) <p = +e <K 2¢
First linearization:

qe*(1+v’)h>< — e

Thus, recalling that

Ofpgl/)f

Eecanw)|Faes (fel

TR (E) 47y, (TR (E) ()

was shown to be bounded by the sum of the first three error terms mentioned above,

2 ’
E¢ean ()| Faes (fe| o foer)|” + qeM T < Cpe

(Ot (0 TR (E) (£))
for uniform Cj, which is what we want.

Thus, Theorem 5.3 is proved. We have shown that it implies Theorem 5.1, and since
p was arbitrary, this implies Theorem 1.1 part (2).
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6. Proof of Corollary 1.2
6.1. Proof of Corollary 1.2 part (1)

Let ® be a C'*7 IFS, and let ¢(+, -) be the derivative cocycle. Recall that A = {1, ...,n}
let H* denote the space of xk-Hélder continuous maps AN — C. Recall that we define

A= {6 : 3¢y € H* with |¢g| = 1 and ug € S* such that ¥(a,w) € A x AN,
Do (ta(w)) = ug exp(—if - c(a,w)) - po(w)}.

Following® Benoist and Quint [3] we say that c¢ is an aperiodic cocycle if
A. = {0}.
Next, writing ® = {f1, ..., fn}, we define
Fp = {log|f] (y;)| - where fi(y;) =y;, i€ A}.
Notice that Fg is precisely the set that appears in Corollary 1.2 part (1).

Lemma 6.1. If ¢ is not aperiodic (i.e. it is periodic) then Fg belongs to a translation of
a lattice.

Proof. The assumption that ¢ is not aperiodic means that there exists 0 # 6 € A.. So,
there exists ¢ € H" with |¢| = 1 and u € S* such that for all (a,w) € A x AN,

P(ta(w)) = u - exp(—if - c(a,w)) - p(w).

Now, fix 1 < a < n and let w = (a,q,a....) € AN Plugging these into the equation
above, we obtain

1 = wexp(—if - (~ log £, (x.,)))-

This equation implies that Fg belongs to a translation (determined by ) of the lattice
21

£L7. O

0

Proof of Corollary 1.2 part (1). This is immediate from Lemma 6.1 and Theorem 1.1
part (1).

3 1In fact, aperiodic cocycles are defined in [3, equation (15.8)] in a different way, by a certain spectral gap
property. However, it is a consequence of [3, Lemma 15.3] that the two definitions are equivalent.
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6.2. Proof of Corollary 1.2 part (2)

Let ® = {fi(x) = r; - © + t; }ica be an aperiodic self-similar IFS. Recall that @ is
aperiodic if there are 4,5 € A such that % ¢ Q. Without the loss of generality, we
assume i = 1 and j = 2. The following Lemma shows that from & we may construct an
IFS ¥ such that Fiy does not belong to a translation of a lattice (and so its derivative
cocycle is aperiodic), and such that every self similar measure with respect to ® is also

a self similar measure with respect to W.
Lemma 6.2. Let U = {fy o fitiea U{fi}i=2,..n. Then:

1. The set Fy does not belong to a translation of a lattice.

2. Let v be a self similar measure with respect to ® and the probability vector p. Then
there exists a probability vector q such that v is a self similar measure with respect
to q and the IFS V.

Proof. For part (1), since ® and ¥ are self similar, if Fy belongs to a translation of a
lattice then for every ej,es,es € R,eq # e3, that arise by taking the log of contraction
ratios of ¥, we have

€1 — €2

€ Q.

€3 — €2
So, taking e; =log|ry - r1],es =log|re - 1|, e3 = log |ra| we obtain

log|ry - r1] —log|ra - 71|

€Q

log |ra| —log[ra - 1]
which implies that

log|ra| . log|ri| —log|rs|

1= c Q.
fog [r] Tlogln| . < 2

This contradicts our assumption that r1 »~ 79, and concludes the proof of part (1).
For part (2), one may verify that v is a self similar measure with respect to ¥ and
the probability vector

= (p},P1 P2, DL Py P2, P35 - Pn)
which is strictly positive since p is strictly positive. 0O
We need one more standard Lemma:

Lemma 6.3. Let ® be an aperiodic self similar IFS on the interval I, and let ¥ be the
induced IFS as in Lemma 6.2. Let g : I — g(I) be a C*T7(I) map with non vanishing
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derivative. Then every self conformal measure with respect to the conjugated IFS go®og™?

is also a self conformal measure with respect to the IFS © = go W o g~'. Furthermore,
the derivative cocycle of the IFS © is aperiodic.

Proof. It is elementary that under these assumptions Fy = Fg. So, Fg equals Fy that
does not lie on a translation of a lattice by Lemma 6.2 part (1), and so Fg does not lie
on a translation of a lattice. By Lemma 6.1 this means that the derivative cocycle of ©
is aperiodic. The Claim about the self conformal measures is an immediate consequence
of Lemma, 6.2 part (2), since every self conformal measure v with respect to go®og~! is

equal to gu, where p is a self similar measure with respect to ® with the same weights. O

Finally, let ® be an aperiodic self similar IFS and let g : I — g(I) be a C'™7(I) map
with non vanishing derivative. Then by Lemma 6.3 any self conformal measure with

1 is also a self conformal measure with respect

respect to the conjugated IFS go ® o g~
to a uniformly contracting C'*7 IFS © such that its derivative cocycle is aperiodic.
So, applying Theorem 1.1, this concludes the proof of the normality and the Rajchman

assertions of Corollary 1.2 part (2).

6.2.1. Proof of the quantitative assertion of Corollary 1.2 part (2)

Here we assume that ® is a Diophantine self similar IFS (recall the definition from
(2)). Let v be a self similar measure with respect to the probability vector p. Our goal
is to show that there exists some o = a(v) > 0 such that

1
70 < 0 (ot )« sl = o
! llog |q/ |
Let {r1,...,m,} denote the contraction ratios of ®, and let p be the distribution p induces
on {—log|ri,..., —log|ryp|}. Our first observation is that in this case the random walk
Su(w) 1= —10g |f1 (on(u)| = —log ;. (w0)l, for any prefixed @ € I

as in Section 3, is in fact a classical random on R and its law is given by p*™, the n-fold
self convolution of p. Since for such random walks effective versions of the central and
local limit Theorems are available (which is why the Diophantine condition is imposed),
we can strengthen Theorem 3.7 by specifying a rate:

Theorem 6.4. There exists some § = §(p) > 0 such that for every k,h’ >0, h =0 and
n = the empty word:
There exists a subset AZZ C AN such that, as k tends to oo:

(i) PAPE) > 1 0p(3%).
(ii) for all & € AP PAP™ (£)) > 0.
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(iii) for all € € AZ:Z/ and for any sub-interval J C [kx, kx + D],

1

P (S € D) =T g () + Onl5)-

AL ©)

The difference between Theorem 6.4 and Theorem 3.7 is that the error term
oﬁzgo(l) = Op(75) is explicit (here we always take hg = 0). We proceed to explain
how Theorem 6.4 gives us the desired logarithmic decay rate for F,(v). Afterwards, we
explain how to obtain Theorem 6.4 by modifying the proof of Theorem 3.7.

Proof that Theorem 6.4 implies logarithmic decay. Let 6 > 0 be as in Theorem 6.4, fix
h = 0 and let ¢ be large. Find some C' > 0 such that for every ¢ large enough there exists
k > 0 with, letting &’ = V/k,

lg| = ©¢ (k% .e(k+h/)x> )

Notice that asymptotically k = log|q|. Following the argument in Section 4, we bound
|Fq(v)| by the sum of the following terms. As usual, every bound below is in the sense

of <p,

constants.

0 < v < 1, q is assumed to be positive, and we ignore global multiplicative

Linearization - Claim 4.5 (note that in the self-similar case this step can be easily
bypassed, but for consistency we still take this term into account):

_ k‘+h/ _ /h/ .
qe ( Xe=7 X:

Local limit Theorem - proof of Theorem 4.1 and the discussion following Corollary 4.6:

2

gty + (@

Here in equation (32) in the proof of Theorem 4.1 we use Theorem 6.4 instead of Theo-
rem 3.7.
Oscillatory integral: For every r > 0,

1
vt S (Br(y)).

Choice of parameters: Recall that h' = vk and fix r = k5. Then we get:
Linearization:

qe*(’”h,)xeﬂ/hl)‘ — ki e”’lﬂx, This decays exponentially fast in k.

Local limit Theorem:

2
qe_(k+h/)X

/ 1 2 1
+ (qe_(k+h )X)zﬁ = k_% + ke R This decays polynomially fast in k.
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Oscillatory integral: There is some d > 0 such that

kS _a
+supv(B,(y)) < i +k gé, This decays polynomially fast in k.
y

[
1

rqe‘(k"‘h/)x

Here we made use of [25, Proposition 2.2], where it is shown that there is some C' > 0
such that for every r > 0 small enough

supv(B,(y)) < Cre.
y

Finally, by summing these error terms we see that for some o = a(r) > 0 we have
|F4(v)] = O(3%). Since k ~ log |q| our claim follows.

Proof of Theorem 6.4. Recall that here S,, ~ p*". Thus, we follow the proof of The-
orem 3.7 essentially verbatim, only in the proof Proposition 3.12 we use the effective
Berry-Esseen inequality [23] instead of Theorem 3.10, and in the proof of Proposi-
tion 3.13 we use Breuillard’s effective local limit Theorem [7, Théoréme 4.2] instead
of Theorem 3.11. Indeed, recall that the Berry-Esseen inequality yields a rate of Op(%)
in the central limit Theorem for S,. So, it is straightforward to see that applying the
Berry-Esseen inequality instead of Theorem 3.10 in the proof of Proposition 3.12 yields
that the error term o} (1) = of;>°(1) decays polynomially in k. As for Proposi-
tion 3.13, we require the following Theorem of Breuillard. Recall that we are assuming
® is Diophantine in the sense that (2) holds true.

Theorem 6.5. [7, Théoréme 4.2 and Remarque 4.1] There exists a sequence €,(p) and
some § > 0 such that ¢, = o(n~?) and the centred distribution 0, where 0(A) := u(A—x),
satisfies:

Let r > 0 denote the variance of the Gaussian on R associated with w in the CLT,
and fiz R > 0. For x € R, s > 0 and the interval I = I, = [—s, s] we have, for n € N,

1
sup{’mﬁ*"(f—i—x) —AI)|: ||+ s <+/Rnlogn, s > n_é} < en(p)

where we recall that Gy(-) stands for the density of the Gaussian law N(0,t?).

We remark that the statement of [7, Théoréme 4.2] does not include Gy, but this ver-
sion of the Theorem follows easily by combining it with the arguments of Benoist-Quint
as in [3, Section 16.3], specifically with [3, Lemma 16.13]. Now, fix ¢ as in Theorem 6.5.

Instead of using Theorem 3.11 in equation (19), we use Theorem 6.5 and translates W of

n—>r 00
€,ho,p

Noting that Lemma 3.14 also holds with a polynomial rate, it is now a straightforward

diameter n_Té, so that the error term o (1) becomes the polynomially decaying €, (u).

versification that Proposition 3.13 holds with a polynomial rate. Theorem 6.4 is proved.
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6.3. Some examples of Diophantine IFS’s

Let @ be an orientation preserving self similar IFS with contraction ratios {ry,...,7,}.
Li and Sahlsten [40, Theorem 1.3] proved that every self similar measure has logarithmic
Fourier decay if the following condition holds:

log r;

There exist C' > 0,1 > 2 and 4, 7; such that |
logr;

C
—B\ZaforallpEZandqu.

(53)

Recall our Diophantine condition from (2). In this Section we will indicate a family of
IFS’s that are Diophantine in the sense of (2) but not in the sense of (53).

To this end, notice that any rational number fails the condition (53), and recall that

an irrational number is called Liouville if it fails (53). So, to produce the desired examples

it is clearly sufficient to find sets {vy,...,v,} of strictly positive real numbers such that:

(i) For every 4,j we have that ot is either rational or Liouville.
(ii) There are I,C > 0 such that

C
inf max d(v;-x+4y, Z)>—

7, for all z € R large enough in absolute value.
yeRi€{1,..n} ||

We require the following Theorem of Moser [42]:

Theorem 6.6. [/2, Theorem 2] For everyn > 2 and 7 > % there exists a set of the
cardinality of the continuum of vectors (aq, ..., ) € R™ such that:

1. There exists some D > 0 such that for every g € N we have

max dlg-a;,Z)>D-q .

i=1,...,
2. For every linearly independent vectors g, h € Z"+!

go + 9101 + ... + gnoy

The ratio
ho + hiay + ... + hpop,

is a Liouville number.

We proceed to construct {vy,...,v4} with properties (i) and (ii) as above. Let 7 > 2
and find (ay,@s) as in Theorem 6.6. Assuming without the loss of generality that both
a1, as > 0 we define

v=1 wv=2, v3=a1+1, va=as+1

(if a; < 0 for ¢ = 1,2 we define v;32 = 1 — o; and proceed with the same proof). B
Theorem 6.6 part (2) for every 4, j the ratio 7* is either rational or Liouville. Therefore
(i) holds. To verify (ii), let |z| > 1 and y € R We may assume that
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d(zv; +y,Z) < =1,2.

[af?7
So for i = 1,2 there are n; € Z and ¢; with |¢;| < ﬁ such that
TU; + Y = N + €;.

Note that this implies z = % = (n2 —n1) + (e2 — €1). So, for i = 3,4 and
any k € Z

|zv; +y + k| = |x(v; —v1) +n1 + k + €]

V; — U €9 — €
= (n2—n1) ¢ 1+n1+k+ 2 !
V2 — U1 U2 — V1
> |( YU k] - 2
No — N n —
= 2 11}2_1}1 1 EG
V; — U1 2
>d((ng —ny)——, 7Z) — .
= (( 2 1)1}2—’(}1’ ) |CC|27—

Finally since 2:=%
v2

—ob = for i = 3,4, and |z > Co|nz — n4| for some global Cy > 0 as

long as |z| is large enough, by part (1) of Theorem 6.6 we obtain:

i:3,}id( virrty, Z) > anlg)id( (ng — nl)H, Z)— |;27
= max d( (ny —n1)ay, Z) 2
i=1,2 |27
D 2 c’
T lnz =l BT T el

For some global constant C”, as long as |z| is large enough. This proves (ii) for {v1,...,v4}
as claimed. Finally, notice that essentially the same proof yields a wide class of further
examples of Diophantine IFS’s satisfying (2) but not (53) with arbitrarily many contrac-
tion ratios (in particular, more than 4).

Remark 6.7. As pointed out to us by the anonymous referee, if ® satisfies that there are
l,C > 0 such that

max d(log|r| -z, Z) > Q, for all z € R large enough in absolute value  (54)
i€{1,..n} ||
then the induced IFS ¥ as in Lemma 6.2 is Diophantine in the sense of (2). In general,
however, (54) does not imply (2) (but the converse is obviously true). To see this, let
z,y € R be such that y is a Liouville number and z is a Diophantine number in the sense
of [40, Equation (1.2)]. Then the vector v = (1, 2,14 (x —1)y) fails (2): Indeed, (2) holds
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forv=(x—1)-(0,1,y)+ (1,1,1) if and only if it holds for (0,1,y), and clearly (0,1,y)
fails (2). On the other hand, it can be shown that v satisfies (54) since x is Diophantine.

The main reason why we work with (2) rather than (54) is that in an upcoming paper
we will show that a certain analogue of it for C'*7 non-linear IFS’s implies effective
Fourier decay for self conformal measures. In this non-linear setting it is not clear that
if we assume an analogue of (54) then the induced IFS as in Lemma 6.2 will satisfy the
needed condition. We also note that (2) is consistent with the related works [7,20,1] that
we either make use of here, or plan to make use of in future works.

6.4. Proof of Corollary 1.2 part (3)

Let ® = {f1,..., fn} be a uniformly contracting C” smooth IFS on the interval I,
where either 7 = 2 or 7 = w. Suppose that there exists a self conformal measure v that
is not pointwise absolutely normal or not Rajchman. We can define a derivative cocycle
¢ directly on A x I by

c(i,x) = —log|f;(x)].

Notice that, unlike the symbolic version we have been working with so far, here we need
® to be at least C2 so that the cocycle ¢’ has a finite moment in the sense of [3, Equation
(11.15)]. This also implies for every fixed i the cocycle ¢’ is C* and therefore Lipschitz
continuous in « € I. Let L denote the space of Lipschitz continuous maps I — C, K be
the attractor of ®, and define

Ay = {0 : 3¢y € L with |¢p| = 1 and ug € S* such that V(a,z) € A x K,
bo(fa(z)) = ug exp(—if - ¢ (a, ) - do(z)}.

Claim 6.8. The assumptions of Corollary 1.2 part (3) imply that Ao # {0}.

Proof. If A, = {0} then the cocycle ¢’ is aperiodic. Therefore Benoist and Quint’s local
limit Theorem for cocycles [3, Theorem 16.15] applies to ¢’. The crucial observation here
is that, starting from a given point zy € I, the n-step random walk driven by the cocycle
¢ and the n-step random walk driven by the cocycle ¢’ have exactly the same law, which
is the corresponding push-forward of the distribution of P on the first n digits. It follows
that [3, Theorem 16.15] applies to ¢ as well, as long as the target ¢ = 1a, for some
cylinder A, (to see this, just work with the conjugated IFS f, o ®o f,° ! for which f,v is
self conformal). Therefore, Theorem 3.11 holds true as stated. Since this is the only use
we make of the assumption A. = {0}, it follows from the proof of Theorem 1.1 that v is
both Rajchman and pointwise absolutely normal. This contradicts our assumptions. O

So, there exists 0 # 6 € A.. The next Lemma now follows via a standard argument:
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Lemma 6.9. If ® is C? then there exists a C* function o : I — R and some o € R such
that for every (i,x) € Ax K,

o(fi(x)) = a+0-(=log|fi(x)]) +¢(z) mod 1.
Furthermore, if ® is C¥ then we may assume @ is also C¥.

The next Lemma is where the assumption that K is an interval when ® is C? comes
into play:

Lemma 6.10. Let ¢ and « be as in Lemma 6.9. If ® is C? and K is an interval then for
every 1 <1 < n there is some n; € Z such that for every x € 1

p(fi(x)) = a+0-(=log|fj(x)]) + o(z) + ni.

If ® is C¥ then every y € K admits a neighbourhood Ny in I and ny; € Z such that for
every x € Ny and every i

p(fi(x)) = a+0-(=log|fi(@)]) + ¢(x) + ny.;.

Notice that one difference between this Lemma and Lemma 6.9 is the set on which
the cohomological equation holds.

Proof. First, by Lemma 6.9, for every 1 <i¢ <mn and for all x € K

o(fi(x)) = (a+0- (=log|fi(x)]) + o(x)) € Z.

Assuming K is an interval, the function on the left hand side is a continuous function
taking values in Z, so it must be constantly n; € Z on K.

If ® is C¥ then so is . So, the function on the left hand side in the last displayed
equation is a C* function on K that takes values in Z. Since K is compact and infinite,
this Lemma follows. 0O

Proof of Corollary 1.2 part (3). Assume first that ® is C? smooth and that K is an
interval. Let ¢ be as in Lemma 6.10, and let h : I — R be a C? smooth function that is

a primitive of exp(#) on I. Now, for every i define

gi(x) = ho fioh™": h(I) = h(I)

and let ¥ be the IFS consisting of the maps g;. We claim that U is a periodic self similar
IFS. Indeed, by Lemma 6.10, for every ¢ and every y € h([I)
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gi(y) = (ho fioh™) (y)
_ W (fioh™ () - Fith™ ()
h'(h=1(y)
 xp (£ )

= exp (% + %) -sign (f/(h " (v))) -

Since by uniform contraction sign (f/(h~*(y))) is constant in y, ¥ is a self similar IFS.
Finally, ¥ must be periodic, since if it were aperiodic then by Corollary 1.2 part (2) the
measure ¥ would be both pointwise absolutely normal and Rajchman, contradicting our
assumptions.

If the IFS is C¥ smooth then the same proof shows that h(K) can be covered by
finitely many intervals on which every map in ¥ acts as an affine map, with contraction
ratios of the form r™. We leave the verification to the reader.

7. Proof of Theorem 1.3
7.1. Proof of Theorem 1.}

In this Section we prove Theorem 1.4, which is the key to the proof of Theorem 1.3.
We follow the same notations as before: Let ® = {f1,..., fn} be a self-similar IFS, and
let v be a self similar measure. Let p > 2 be an integer, and define a stopping time

Bn(w) = min{m : [f,, (0)] < e~mlogp
The following is a complete analogue of Theorem 5.5:

Theorem 7.1. For P almost every w, for every integer q

1 Nl | Nl
APy (ﬁ > 5T:<ww>> — 74 (N > Ty Ofwmnw/) =0.
n=0 n=0
Recall that our aim is to prove the following Theorem:
Theorem 7.2. If v is a Rajchman measure then it is pointwise normal to base p.

We need the following key Proposition.

Proposition 7.3. For every e > 0 there is some qo = qo(€) such that for all integer
lg| > qo, for P almost every w and every n,

Fy (T30 fup )| < e
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Proposition 7.3 implies Theorem 7.2: By appealing first to Theorem 7.1 and using the
relation between P and v, this is completely analogous to the implication Theorem 5.2
= Theorem 5.1.

Proof of Proposition 7.3. Let ¢ > 0 and let ¢ € Z. Fix w, a P typical point. For every n

and x € K, since @ is a self similar IFS (and so we may assume all maps are defined on
R)

T;;L o fw'Bn(W) (ZL’) = pn (f‘:)lﬁ”(u) (0) - X+ fw‘ﬂn(w) (0)) — Mg n, where My n €Z. (55)

Note: There is some global Cy > 0 such that 1o (o) (0)’ € [Cy, 1] for all n and w.
Let r(w,n) =p™ - f, (0). Then, by (55) and since g € Z

|81 ()

1B (T30 fut, )| = [Fartom @)

Since r(w, n) is now fixed and its norm is in [Cp, 1], and since v is assumed to be Rajch-
man, for all |g| > go(€, Coy) = qo(€) and every w,n

’ T(wn ‘ < €.

The proof is complete.
7.2. Reduction to IFS’s in integer form

We begin the proof of Theorem 1.3. Fix the self similar IFS ® = {f;(x) = a;x + b;},
where a; > 0 for all i. Recall the notation ®; := ® and for every integer m > 2,

1 1
P, :={g:9=¢10..0¢, such that ¢; € ®,¢'(0) < - and (¢10...0¢, 1) (0) > E}
and that for every m € N, K3 , = K, i.e. all these IFS’s have the same attractor as ®.

Let K denote this common attractor. We require the following Claim:
Claim 7.4. dim K = sup{dim p : p is a self similar measure w.r.t ®,,, m € N}.

Recall that in this paper self similar measures always correspond to a strictly positive
probability vector on the underlying IFS. While we have not been able to find the
statement of Claim 7.4 in the literature, it can nonetheless be inferred from a combination
of existing results. We thus postpone its proof to Section 7.4.

It will be convenient to introduce the notation

A = {z : x is absolutely normal }.
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So, if
dim K NA <dim K

then by Claim 7.4 there is some IFS ®&,, and a self similar measure p on it that is
not pointwise absolutely normal. Without the loss of generality, we assume that m = 1.
That is, ® already admits such a self similar measure. Notice that if there is a self similar
measure g with dim g = dim K then p cannot be pointwise absolutely normal, and we
can work with this measure.

So, let 1 be a non pointwise absolutely normal self similar measure. We first claim that
it is impossible that there exist contraction ratios a;, a; of maps in ® such that %gg—g; ¢ Q.
Indeed, if this is the case then it follows from [40, Theorem 1.2] that p is a Rajchman
measure. So, by Theorem 1.4 y is pointwise absolutely normal, a contradiction.

Therefore, we may assume that every a; is a rational power of some r > 0. Since pu
cannot be a Rajchman measure, following the work of Brémont [6, Theorem 2.3] the IF'S
® is affinely conjugated via a map h to an IFS ¥ = {g;(x) = r;z +t;} that is in so-called
Pisot form [6, Definition 2.2]. For the time being, we note that this means that for every
gi €V, gi(x) = r™x +t; where r~! is a Pisot number, and (n;) are relatively prime (the
t; also have an explicit form, but we postpone discussion about this to the next section).

We next claim that 7~! is an integer. Again, we argue via contradiction: Otherwise,

r~—! is a non-integer Pisot number, which in particular implies that r—*

is independent
of all integers p > 2. We require the following well known Lemma, which is adapted from

e.g. the work of Shmerkin-Peres [45, Proposition 6] and Shmerkin [57, Lemma 4.2]:
Lemma 7.5. For every € > 0 there exists an IFS A satisfying the following properties:

1. Every f € A is a composition of maps from .

2. Every f € A has the same contraction ratio, which must be of the form r=* for some
k € N by the structure of ® and (1).

3. A satisfies the strong separation condition: The union

Ky = f(Ka)

feAa

is disjoint. In particular, the IFS A is reqular.
4. Kpx C K and we have dim K < dim K + €.

Now, let € > 0 and produce an IFS A satisfying the conditions of Lemma 7.5. It is
well known that for such homogeneous IFS’s with separation there exists a self similar
measure v on K such that dimv = dim K. By [29, Theorem 1.4], since the IFS A is
regular and r~! is independent of all integer p > 2, v a.e. x is normal to all integer bases,
that is, ¥(A) = 1. Since K, C K, we find that
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dimANK >dimANKy >dimy =dim Ky > dim K —e.

Taking ¢ — 0 we find that dim A N K = dim K. This is a contradiction. We conclude
that 7—! has to be an integer.

7.8. Structure of the conjugating map and conclusion of proof

Let us recall what we have shown so far: The IFS & is conjugated via an affine map
h(z) = cx+dtoan IFS ¥ = {g;(x) = r;z+1;} that is in so-called Pisot form [6, Definition

2.2] for some integer Pisot number. This means that for every g; € U, g;(x) = r"iz + t;

1 1

where r~' = n is an integer, the (n;) are relatively prime, and, since r~! is an integer,

the translations ¢; have the form ¢; = 2% where z; € Z and s; € N U {0}.

In this section we complete the proof of Theorem 1.3 by showing that we must have

¢ € Q and that d is not an n-normal number. As we will see, this implies that every
translation in the original IFS is not n-normal. Afterwards, we show that under some
extra assumptions on ® each such translation must be rational. So, let X denote the
attractor of W. Since our IFS ® is conjugated by the affine map h(z) = cx + d to ¥, we
have

h(X)=K = Ks.
Let € > 0 and produce an IFS A as in Lemma 7.5 but for the IFS ¥. In particular,
dim X, >dim X — ¢

and all the maps in A have the same contraction n~* for some k& € N. Furthermore,
since all the maps in A are compositions of maps in W, the translations of the maps in
A retain the structure of those in ¥. We also note that h(X,) C K.

Consider the conjugated IFS © = {hol; o h™1}; cp: Every affine map f; € © has
the same contraction ratio n~*, and its translation f;(0) = b; satisfies, by the known
structure of the maps in A,

c-z

d
b, = d——, z €Z,s; e NU{0}.
nsl_+ % HELsi€ {0}

Now, since ® is non-trivial we may assume that so is ¥, and consequently A is non-trivial
(if € is small enough). So, there exist maps f;, f; € © with b; # b;. This implies that

Z; Zj

O#nk-bi—nk~bj:nk-c-< >7 2,25 € L, 85,85 € N.

nsi nsi

By the last displayed equation, if ¢ ¢ Q then

{n*b; —nFb; :i,j € ®} is not contained in a proper closed subgroup of T. (56)
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Now, let © be a self similar measure on h(X,) with respect to the conjugated IFS ©, such
that dim g = dim X». By [19, Theorem 4], which we may apply via (56), p is pointwise
n-normal. It is well known that this implies that u is pointwise normal to all integer bases
p such that p ~ n (see e.g. [55]). We also note that © satisfies the open set condition:
Since A has the strong separation condition, X, has positive Hausdorff measure in its
dimension. Therefore, the attractor of ©, h(X,), also has positive Hausdorff measure in
its dimension. Therefore, by [44, Theorem 1.1], © satisfies the open set condition. So,
since all maps in the regular IFS © have contraction #, we may appeal to [29, Theorem
1.4] to see that p is pointwise normal to all bases p > 2 such that p = n. Therefore,
#(A) =1, and we conclude that

dim KNA = dimh(X)NA > dim h(XA)NA > dimp = dim X, > dim X —e = dim K —e.

Taking ¢ — 0, we obtain a contradiction.

So far, we have established the structure of the conjugated IFS ¥, and found that
the conjugating map h(x) = cx + d must have ¢ € Q. We next show that d cannot be
n-normal. If d is n-normal, then every translation b; in the homogeneous IFS © as above
must be n-normal: Indeed, we have seen that

C-ZzZ;

nsi

b, = —i—d(l—%), zi € Z,s; € NU{0}
and so b; = s-d+t where s,t € Q and s # 0. This implies that b; is n-normal as proved
by Wall in his Ph.D. thesis [68]. We can now run the same argument as above, with the
only difference being that since b; —b; € Q and b; is n-normal for all 4, j, we can use [19,
Theorem 7] instead of [19, Theorem 4] to conclude that p is pointwise absolutely normal.
We have just shown that this leads to a contradiction. So, d cannot be n-normal.
Finally, we have shown that ® = {hog;oh '} cy where ¥ = {g;(z) = r;x + ¢} is
such that for every g; € ¥, g;(z) = —%; +t; where (k;) are relatively prime, and t; = %
where z; € Z and s; € N U {0}. We have also shown that h is an affine map such that
h'(0) = ¢ € Q and h(0) = d is not n-normal. So, every map ho g; o h™! in ® is of the

form
c- 2 d
T+ —— +d— —.
nki = psi nki
. s - e . . 2 d
Appealing to Wall’s thesis [68] once more, since d is not n normal and ¢ € Q, £ +d— -5;

is also not n-normal.
If furthermore there are two maps in ® with different contraction ratios % £ %J

then their translations t;,¢; satisfy that, since c € Q
nkit; — nkftj =q;; + (nkl — nkf) -d, where ¢;; € Q.

So, if d ¢ Q then n*it; —nkit; ¢ Q and thus
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{n*it; —n"t; . 4,j € ®} is not contained in a proper closed subgroup of T. (57)

Now, assuming that ® is regular, let © be a self similar measure such that dim p = dim K.
Then p a.e. z is n-normal by [19, Theorem 4] which applies via (57). Also, p a.e. = is
p-normal for all p » n via [29, Theorem 1.4], since ® is regular and all maps in ® have
contractions that are independent of p. It follows that u(A) =1 so dim K NA = dim K,
a contradiction. We conclude that in this situation d € Q, and with this the proof of
Theorem 1.3 is done.

7.4. Proof of Claim 7.4

We now prove Claim 7.4. We work with the same notations introduced before
Claim 7.4. Recall that for p, a probability vector on the IFS ® (which is a finite set), pp
is the corresponding self similar measure. By combining the results of Peres-Solomyak
[46] and of Feng-Hu [24] (or by [28]), we see that the map p — dim up is lower semi-
continuous. Notice that this holds true even if some of the entries in p are zero. Therefore,
if px — p then

lim inf dim pp, > dim pp.

Now, let € > 0. It follows from [57, Lemma 4.2] that there exists an IFS A with strong
separation such that every f € A is a composition of maps from ¢, and K, C K with
dim K, > dim K — €. Notice that unlike Lemma 7.5, here we do not require all the maps
in A to have the same contraction ratio. It is a consequence of the proof of [57, Lemma
4.2] that we can choose A by taking m large enough and choosing a subset of the maps
that make up the IFS ®,,. That is, A C ®,, for some m.

Since A has strong separation, we can always find a self similar measure pp, such that
dim K, = dim pp. Since A C @,,,, we can find a sequence p; — p such that each p;, is
a strictly positive probability vector on ®,,. By the lower semi-continuity alluded to in
the first paragraph, for every k large enough we thus have

dim pp, > dimpp — € = dim Ky — € > dim K — 2¢
which implies Claim 7.4.
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