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1. Introduction

1.1. Background

Let p be an integer greater or equal to 2. Let Tp be the times-p map,

Tp(x) = p · x mod 1, x ∈ R.

A number x ∈ R is called p-normal, or normal to base p, if its orbit {T k
p (x)}k∈N equidis-

tributes for the Lebesgue measure on [0, 1]. We call x absolutely normal if it is p-normal 

for all integers p ≥ 2. In 1909 Borel proved that Lebesgue almost every x is absolutely 

normal. It is believed that this phenomenon should continue to hold true for typical 

elements of well structured sets with respect to appropriate measures, in the absence of 

obvious obstructions. Thus, we will call a Borel probability measure ν on R pointwise 

absolutely normal if ν almost every x is absolutely normal. One of the main purposes of 

this paper is to specify a large and natural class of fractal measures that are pointwise 

absolutely normal. Additionally, we will indicate a large family of fractal sets that are 

typically Lebesgue null, such that set of absolutely normal numbers intersects them with 

full Hausdorff dimension.

There are two known general techniques to study whether a given Borel probability 

measure μ on R is supported on numbers normal to a given base p: The first method 

involves establishing sufficiently fast decay of the L2(μ) norms of certain trigonometric 

polynomials as in Weyl’s criterion. This method was famously used by Cassels and 

Schmidt [55,14] independently to show that if μ is the Cantor-Lebesgue measure on 

the middle−1
3 Cantor set, then μ almost every x is p-normal whenever p is independent 

of 3, that is, log p
log 3 /∈ Q. Henceforth, we will write a � b to indicate that a and b are 

independent, and a ∼ b otherwise. An essentially sharp condition for a measure to be 

supported on numbers that are p-normal in terms of these L2 norms was later formulated 

by Davenport-Erdős-LeVeque [18], and was used by several authors including Brown, 

Pearce, Pollington, and Moran [47,10,11]. An excellent exposition to this subject is given 

in Bugeaud’s book [13].

The Davenport-Erdős-LeVeque Theorem is closely related to the decay rate of the 

Fourier transform of Borel probability measures on R: Let ν be such a measure. For 

every q ∈ R the Fourier transform of ν at q is defined by

Fq(ν) :=

ˆ

exp(2πiqx)dν(x).

The measure ν is called a Rajchman measure if lim|q|→∞ Fq(ν) = 0. By the Riemann-

Lebesgue Lemma, if ν is absolutely continuous then it is Rajchman. On the other hand, 

by Wiener’s Lemma if ν has an atom then it is not Rajchman. For measures that are 

both continuous (no atoms) and singular, determining whether or not ν is a Rajchman 

measure may be a challenging problem. The Rajchman property and, when available, 
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further information about the rate of decay of Fq(ν), have various consequences on the 

geometry of ν [41]. Returning to the Davenport-Erdős-LeVeque Theorem, it ensures that 

if e.g. there is some α = α(ν) > 0 such that

|Fq(ν)| ≤ O

(
1

|log log |q||1+α

)
, as |q| → ∞

then ν is pointwise absolutely normal. We note, however, that such bounds are usually 

hard to obtain (if they are true at all) in concrete situations, even for naturally defined 

measures. The third objective of this paper, which arises in conjuncture with the number 

theoretic framework discussed above, is to establish the Rajchman property for a class 

of dynamically defined measures.

In 2015 Hochman and Shmerkin [29] introduced a new method, giving a fractal geo-

metric condition that is sufficient for a measure to be supported on p-normal numbers. 

This condition applies to a wide class of measures that arise from some dynamical or 

arithmetic origin. One of the virtues of this method is that it can be used regardless of 

knowledge on the behaviour of the Fourier transform of the underlying measure. Instead, 

one needs to understand the so-called scenery of the measure at typical points [29, Sec-

tion 1.2]. In order to compute the scenery in specific examples, one usually works with 

measures such that their small “pieces” have mild (or no) overlaps, and this computa-

tion can become difficult in the presence of complicated overlaps. Many of the results 

of Hochman-Shmerkin still remain the state of the art on the subject, and we will recall 

them as we compare them to our results.

In this paper we introduce a new dynamical condition for a self-conformal measure 

(defined below) to be both a Rajchman measure and pointwise absolutely normal. A 

rate of decay is only established in some special cases, so in general we cannot invoke 

Davenport-Erdős-LeVeque to get absolute normality. Thus, we will prove pointwise ab-

solute normality directly, regardless of the decay rate of the Fourier transform. This 

provides many new examples of both Rajchman measures and of pointwise absolutely 

normal measures, and allows us to extend results1 of Hochman-Shmerkin, as detailed 

below. We then proceed to show that self similar sets intersect the set of absolutely 

normal numbers with full Hausdorff dimension, unless an obvious obstruction is present.

Self-conformal measures are defined as follows: Let Φ = {f1, ..., fn} be a finite set of 

strict contractions of a compact interval I ⊆ R (an IFS), such that every fi is differen-

tiable. We say that Φ is Cα smooth if every fi is at least Cα smooth for some α ≥ 1. It 

is well known that there exists a unique compact set ∅ 
= K = KΦ ⊆ I such that

K =
n⋃

i=1

fi(K).

1 Hochman and Shmerkin can work with more general β transformation, that is, maps of the form x �→ βx
mod 1 for certain β > 1. We will compare this to our method in Section 1.4.
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The set K is called a self-conformal set, and the attractor of the IFS {f1, ..., fn}. In the 

special case where each fi is affine, i.e. fi(x) = ri · x + ti and 0 < |ri| < 1, we call K a 

self-similar set. We always assume that there exist i 
= j such that the fixed point of fi

is not equal to the fixed point of fj. This ensures that K is infinite. We call Φ uniformly 

contracting if

0 < inf{|f ′(x)| : f ∈ Φ, x ∈ I} ≤ sup{|f ′(x)| : f ∈ Φ, x ∈ I} < 1.

Finally, following Hochman-Shmerkin [29], we say that Φ is regular if it is uniformly 

contracting, and the intervals fi(I) are disjoint except possibly at their endpoints (so 

that, in particular, the so-called open set condition is satisfied).

Next, let p = (p1, ..., pn) be a strictly positive probability vector, that is, pi > 0 for all 

i and 
∑

i pi = 1. It is well known that there exists a unique Borel probability measure ν

such that

ν =

n∑

i=1

pi · fiν, where fiν is the push-forward of ν via fi.

The measure ν is called a self-conformal measure, and is supported on K. If every fi

is affine then ν is called a self-similar measure. Since K is always assumed to infinite, 

the assumption that pi > 0 for every i implies that ν is non-atomic. In particular, all 

self-conformal measures in this paper are non-atomic.

1.2. Pointwise normality and Fourier decay for self conformal measures

1.2.1. Main technical Theorem

We first formulate a general condition that ensures a given self conformal measure is 

both Rajchman and pointwise absolutely normal. Let Φ = {f1, ..., fn} be an IFS on an 

interval I such that each fi is differentiable. For every ω ∈ {1, ..., n}N and m ∈ N let

fω|m
= fω1

◦ ◦ ◦ fωm
.

Fix x0 ∈ I. Then we have a surjective coding map {1, ..., n}N → K defined by

ω ∈ {1, ..., n}N �→ xω := lim
m→∞

fω|m
(x0).

Assuming the IFS is uniformly contracting and C1+γ smooth, let ρ :=
(
supf∈Φ ||f ′||∞

)γ ∈
(0, 1), and define a metric on {1, ..., n}N via

dρ(ω, ω′) := ρmin{n: ωn �=ω′
n}.

Let p be a strictly positive probability vector on {1, ..., n}, and let ν be the corre-

sponding self conformal measure. Let P = pN be the product measure on {1, ..., n}N . 
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Then ν is the push-forward of P via ω �→ xω. Also, for every 1 ≤ a ≤ n let 

ιa : {1, ..., n}N → {1, ..., n}N be the map

ιa(ω1, ω2, · · · ) = (a, ω1, ω2, · · · ).

Let G to be the free semigroup generated by the family {ιa : 1 ≤ a ≤ n}. We define the 

derivative cocycle c : G × {1, ..., n}N → R via

c(a, ω) = − log |f ′
a(xω)|.

Choose some κ ∈ (0, 1] and let Hκ denote the space of κ-Hölder continuous maps 

{1, ...., n}N → C, and define Λc ⊆ R via

Λc = {θ : There exists φθ ∈ Hκ with |φθ| = 1 and uθ ∈ S1 such that (1)

φθ(ιa(ω)) = uθ · e−iθ·c(a,ω) · φθ(ω), for all (a, ω) ∈ {1, ..., n} × {1, ..., n}N}.

It is clear that 0 ∈ Λc. If Λc = {0} then the cocycle c is aperiodic in the sense of 

Benoist-Quint [3, Equation (15.8)], and this will be used in an essential way to prove the 

following Theorem:

Theorem 1.1. Let Φ be a uniformly contracting C1+γ smooth IFS for some γ > 0, and 

let ν be a self conformal measure. If Λc = {0} then:

1. ν is a Rajchman measure, that is, lim|q|→∞ Fq(ν) = 0.

2. ν is pointwise absolutely normal.

Note that the conditions of Theorem 1.1 are invariant under conjugation by C1+γ

maps with non-vanishing derivative, a useful feature in applications. Before turning to 

these applications, we say a few words about what goes into the proof: For part (1), the 

most important ingredient is Theorem 3.7, a conditional local limit Theorem for certain 

random variables resembling stopping times that are related to a random walk driven by 

the derivative cocycle. That is, this local equidistribution property holds up to condition-

ing on “good” cells of suitable partitions of the space {1, ..., n}N . These good cells are 

produced via a central limit theorem for cocycles, and the local equidistribution follows 

from a local limit theorem for aperiodic cocycles, both proved by Benoist-Quint [3, The-

orem 12.1 and Theorem 16.15]. This is the only part of the proof where the assumption 

Λc = {0} is used. The rest of the proof consists of subtle linerization arguments and an 

adaptation of a Lemma of Hochman [27], regarding oscillatory integrals that arise at the 

end of the proof. See Section 4 for more details.

For part (2), fixing a ν typical point x and an integer base p, we first employ a 

martingale argument in the spirit of Hochman-Shmerkin [29, Theorem 2.1] and a further 

linearization step. This reduces the problem to that of proving the Rajchman property 
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with the same rate for a countable family of measure that arise as T n
p -magnifications of 

increasingly small pieces of the measure about the point x. The treatment of the Fourier 

transform of these measures relies on a similar scheme as in part (1), but the additional 

steps further complicate the already delicate analysis involved. This necessitates the 

introduction of several new ideas. The most important one is Theorem 3.8, another 

conditional local limit Theorem that is tailored to this situation. See Section 5 for more 

details.

1.2.2. Applications and related results

We proceed to describe some applications of Theorem 1.1. Before doing so, we in-

troduce two new definitions: Let Φ be a self similar IFS with corresponding contraction 

ratios {r1, ..., rn}. We say that Φ is periodic if there exists some r ∈ R such that

{log |r1|, ..., log |rn|} ⊂ rZ

otherwise, we say that Φ is aperiodic. Note that Φ is aperiodic if and only if there are 

i 
= j such that log |ri|
log |rj | /∈ Q. We call Φ Diophantine if there are l, C > 0 such that

inf
y∈R

max
i∈{1,...n}

d( log |ri| · x + y, Z) ≥ C

|x|l , for all x ∈ R large enough in absolute value.

(2)

Notice that if Φ is Diophantine then it is aperiodic, but the converse is false in general. 

This Diophantine condition is adopted from Breuillard’s work [7, Section 3.1]. It is generic 

in the sense that it holds if n ≥ 3 and we draw {log |r1|, ..., log |rn|} according to the 

Lebesgue measure on Rn [1, Proposition 2.4], and is met if e.g. log |r1|, ..., log |rn| are 

rationally independent algebraic numbers [1, Proposition 2.7]. See also Section 6.3 for a 

family of examples related to the work of Moser [42]. We are now ready to summarize 

some corollaries of Theorem 1.1:

Corollary 1.2. Let Φ be a uniformly contracting C1+γ smooth IFS for some γ > 0, and 

let ν be a self conformal measure.

1. Suppose that for every t, r ∈ R, the set

{log |f ′ (y)| : where f(y) = y, f ∈ Φ}

is not included in the set t + rZ. Then ν is both pointwise absolutely normal and 

Rajchman.

2. Suppose that Φ is an aperiodic self similar IFS (so ν is a self similar measure), and 

let g : I → R be a C1+γ smooth map, where γ > 0. If g′ does not vanish then gν is 

both pointwise absolutely normal and Rajchman.
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If Φ is Diophantine then there exists some α = α(ν) > 0 such that

|Fq(ν)| ≤ O

(
1

|log |q||α
)

, as |q| → ∞.

3. Suppose that Φ is Cω smooth, or that it is C2 and KΦ is an interval. If ν is not 

pointwise absolutely normal or not Rajchman then Φ is Cω or C2 (depending on the 

smoothness of Φ) conjugate to a periodic self similar IFS.

We emphasize that no separation condition is imposed on Φ. The deduction of Corol-

lary 1.2 from Theorem 1.1 relies on the study of the derivative cocycle under these 

assumptions, and this analysis is carried out in Section 6.

Part (1) of Corollary 1.2 should be compared with a result [29, Theorem 1.4] of 

Hochman-Shmerkin: For a given p, if

Φ is regular and some element of {f ′ (y) : where f(y) = y, f ∈ Φ} is independent of p

then ν almost every point is p-normal for every self conformal measure ν. Notice that 

the assumption in part (1) implies this arithmetic condition holds for every p. So, in its 

setting, part (1) extends the result of Hochman-Shmerkin by removing the separation 

assumption from the IFS. Furthermore, [29, Theorem 1.4] remains true when pushing 

the measure ν forward via any real diffeomorphism g. Corollary 1.2 part (1), in contrast, 

remains true when pushing the measure forward via a C1+γ diffeomorphism, but we 

don’t know if this is true for C1 diffeomorphisms. Finally, we remark that [29, Theorem 

1.4] holds for a more general class of transformations and measures, and we will discuss 

this in Section 1.4.

The normality assertion of part (2) should be compared with another result [29, 

Theorem 1.7] of Hochman-Shmerkin, where they prove that for every self similar measure 

with respect to a regular self similar IFS, its push-forward under a non-affine Cω map 

is pointwise absolutely normal. So, [29, Theorem 1.7] does not require the IFS to be 

aperiodic, but does require a more restrictive regularity (separation) assumption. In 

addition, the smoothness assumption on the perturbing map in part (2) is less restrictive 

than [29, Theorem 1.7]. For example, let ν be any self conformal measure with respect 

to the aperiodic self similar IFS

{x

2
,

x + 1

3
,

x + 1

5
}.

Corollary 1.2 part (2) implies that f(x) is absolutely normal for ν almost every x and 

any diffeomorphism f ∈ C1+γ(R). Notice that since the IFS is not regular and the map 

f might not be Cω [29, Theorem 1.7] does not apply in this situation. On the other hand, 

consider the Cantor-Lebesgue measure μ on the middle−1
3 Cantor set. By [29, Theorem 

1.7] x2 is absolutely normal for μ almost every x. Notice that since the underlying regular 

IFS
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{x

3
,

x + 2

3
}

is not aperiodic, Corollary 1.2 part (2) does not apply here.

The Rajchman assertion of part (2) should be compared with a recent Theorem of Li-

Sahlsten [40, Theorem 1.2] (see also [6]): They proved that for an orientation preserving

aperiodic self similar IFS any self-similar measure is a Rajchman measure. So, Part 

(2) extends the Li-Sahlsten Theorem to all C1+γ smooth images. Corollary 1.2 part 

(2) also complements a classical Theorem of Kaufman [34] that was later extended by 

Mosquera-Shmerkin [43] (see also [15]) about polynomial Fourier decay for C2 images of 

homogeneous (i.e. ri = rj for all i, j) self similar measures. We thus partially answer a 

folklore open question (see e.g. [52]) about the existence of a Kaufman Theorem in the 

non homogeneous setting.

The quantitative assertion of part (2) should be compared with another Theorem 

of Li-Sahlsten [40, Theorem 1.3] where a similar logarithmic decay rate was obtained, 

but under a different Diophantine assumption. In Section 6.3 we will give a family of 

Diophantine IFS’s that do not satisfy the conditions of [40, Theorem 1.3] since log |ri|
log |rj |

is either rational or a Liouville number for all i, j. Thus, via Corollary 1.2 part (2) 

we obtain many new examples of self similar measures with logarithmic Fourier decay. 

Finally, we will discuss the problem of getting an effective decay rate for non-linear IFS’s 

in Section 1.4.

The Rajchman question for self similar measures is a classical problem that has re-

ceived much attention over the years: Consider, for example, the family of Bernoulli con-

volutions {νr}r∈(0,1): For every 0 < r < 1 we define the self similar IFS {r ·x −1, r ·x +1}
with the probability vector p = (1

2 , 12 ). It is a fundamental problem to determine for which 

r ∈ ( 1
2 , 1) is νr is absolutely continuous. A celebrated result of Erdős [21] says that if r−1

is a Pisot number then νr is not a Rajchman measure and consequently is not absolutely 

continuous. Recall that a Pisot number is a real algebraic integer greater than one whose 

Galois conjugates all lie inside the unit disc. Later, Salem [53] completed the picture 

in terms of the Rajchman property, by showing that νr is not Rajchman only if r−1 is 

Pisot (see also the related works of Piatetski-Shapiro [67] and Salem and Zygmund [54]). 

We remark that through some ground breaking recent papers (e.g. [26], [58], [8], [65]

to name a few) the geometric properties of νr are now far better understood. However, 

the question of absolute continuity remains open. More general self similar measures 

were studied by Strichartz [61], [62]: He proved that their Fourier transforms decay on 

average, with a recent large deviations estimate on this decay given by Tsujii [64] (see 

also [63] for a related paper about self conformal measures). However, these papers do 

not establish the Rajchman property, since they exclude certain frequencies.

Very recently, as we have already mentioned, Li-Sahlsten [40] proved the Rajchman 

property in the presence of independent contractions. In the complementary case, when 

all contractions are powers of some r ∈ (0, 1), Brémont [6] proved that a self-similar 

measure can fail to be Rajchman only if r−1 is Pisot. In fact, Brémont fully characterised 

the IFS up to affine conjugation, and this will play a crucial role later in this paper. 
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Another proof of this fact was given by Varjú-Yu [66]. Finally, we note that Li and 

Sahlsten [39] also generalized their results to self affine measures in higher dimensions.

The problem of quantitative Fourier decay for self similar measures is also a classical 

one: For Bernoulli convolutions, it follows from the works of Erdős [22] and Kahane [32]

that νr has polynomial decay outside a set of zero Hausdorff dimension (see also [16], 

[12] [17] for rates in some explicit examples of r). In the complementary case to the 

aforementioned effective result of Li-Sahlsten [40, Theorem 1.3], when all contractions 

are powers of some r ∈ (0, 1), Varjú-Yu [66] proved logarithmic decay as long as r−1 is not 

a Pisot or a Salem number. Finally, Solomyak [60] has recently established polynomial 

decay for all self-similar measures except for a zero Hausdorff dimensional exceptional 

set of contraction ratios.

Next, the normality assertion of Corollary 1.2 part (3) is related to another Theorem 

of Hochman-Shmerkin [29, Theorem 1.6], where a similar result is proved for regular Cω

IFS’s that contain non-affine maps. Apart from removing the separation assumption, the 

C2 case and the classification of the conjugated IFS as in part (3) seem to be completely 

new.

The Rajchman assertion of part (3) gives many new examples of self conformal Rajch-

man measures. It also provides a unified proof to several pre-existing results regarding 

the Rajchman property for Cω IFS’s that are not conjugate to a self similar IFS. These 

include those of Sahlsten-Stevens [52] (for a class of regular Cω self-conformal measures 

that are not conjugate to linear), and in some cases those of Li [37,36] (Furstenberg 

measures for SL(2, R) cocycles under mild assumption - see [69,2] for conditions en-

suring that such measures satisfy the conditions of part (3)). Part (3) is also closely

related to the work of Bourgain-Dyatlov [5] (who study Patterson-Sullivan measures for 

convex cocompact Fuchsian groups, see also [38]). However, we do not recover the poly-

nomial decay rate proved in [5,37,52]. Finally, generalizing the work of Kaufman [33] and 

later Queffélec-Ramaré [48], Jordan-Sahlsten [31] and later Sahlsten-Stevens [51] proved 

polynomial decay for certain Gibbs measures for the Gauss map x �→ 1
x mod 1 on the 

interval. These can be considered as self-conformal measures with respect to an IFS with 

countably many maps, see also [29, Theorem 1.12].

1.3. Dimension of absolutely normal numbers inside self similar sets

Let us now specialize to self similar sets. Let λ denote the Lebesgue measure on R, 

and recall that Borel’s normal number Theorem asserts that λ-a.e. x is absolutely nor-

mal. However, Borel’s Theorem gives no information about absolutely normal numbers 

inside sets that are Lebesgue null. The following rigidity result says that absolutely nor-

mal numbers have full Hausdorff dimension inside a given self similar set, unless the 

underlying IFS has a very specific structure. We use the standard notation dim X for 

the Hausdorff dimension of a set X, and

dim μ = inf{dim X : μ(X) > 0}
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for the (lower) Hausdorff dimension of a Borel probability measure μ. Now, given an 

orientation preserving self similar IFS Φ let Φ1 := Φ, and for every integer m ≥ 2,

Φm := {g : g = φ1 ◦ ... ◦φ	, such that φi ∈ Φ, g′(0) <
1

m
and (φ1 ◦ ... ◦ φ	−1)

′
(0) ≥ 1

m
}.

Observe that for every m ∈ N, KΦm
= KΦ, i.e. all these IFS’s have the same attractor 

as Φ.

Theorem 1.3. Let Φ be an orientation preserving self similar IFS with attractor K. If

dim K ∩ {x : x is absolutely normal } < dim K (3)

then there exists some m ∈ N such that the IFS Φm = {gi(x) = rix +ti} has the following 

structure:

(i) There is an integer n ≥ 2 such that every ri = n−ki and the ki ∈ N are relatively 

prime.

(ii) Every ti is not n-normal. If there exist rk 
= rj and Φm is regular then every ti ∈ Q.

If Φ admits a self similar measure μ with dim μ = dim K then this holds for m = 1. 

That is, the original IFS Φ already has this structure.

For example, if Φ is regular and admits two different contraction ratios, then (3)

implies that all contraction ratios are powers of some integer n ≥ 2 and all translations 

are rational. In general, if Φ does not have exact overlaps (i.e. the semi-group generated 

by its maps is free), and if the exact overlaps conjecture [59] holds true, then one can 

always find a self similar measure μ with dim μ = dim K. Hochman [26, Theorem 1.1]

verified this conjecture under very weak regularity conditions, that hold true if e.g. all 

parameters of Φ are algebraic [26, Theorem 1.5] (Rapaport [49] recently showed that it 

suffices to assume only the contraction ratios are algebraic). The conjecture was also fully 

resolved for Bernoulli convolutions by the combined efforts of Hochman [26], Breuillard-

Varjú [8], and finally Varjú [65] (see also [50]). Thus, in all the cases listed above, if Φ

does not satisfy (i) and (ii) as in Theorem 1.3, then

dim K ∩ {x : x is absolutely normal } = dim K.

It is interesting to compare this with a result [9] of Broderick et al. (that extends a 

Theorem of Schmidt [56]): The set of real numbers not normal to any integer base 

intersects any infinite self-similar in a set of full Hausdorff dimension in the fractal.

The proof of Theorem 1.3 relies on the following Theorem, which is a bi-product of 

the argument proving Theorem 1.1:
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Theorem 1.4. Let μ be a self similar measure. If μ is a Rajchman measure then it is 

pointwise absolutely normal.

This is a significant improvement to the Davenport-Erdős-LeVeque criterion, since no 

decay rate is required. Once Theorem 1.4 is established, we proceed to prove Theorem 1.3

by first showing that, under its assumptions, there is some m and a self similar measure 

on Φm that is not Rajchman. We then combine the results of Li-Sahlsten [40] and those 

of Brémont [6] to prove that Φm is affinely conjugated to an IFS in so-called Pisot 

form [6, Definition 2.2]. We then show that the underlying Pisot number is in fact an 

integer, and characterize the affine conjugating map by appealing to the recent results 

of Dayan-Ganguly-Weiss [19]. See Section 7 for more details.

1.4. Some further remarks

It is natural to ask for a condition similar to (2) that would yield a quantitative decay 

rate for the Fourier transform of self conformal measures with respect to non-linear 

IFS’s. To this end we require effective versions of the central and local limit Theorem 

for cocycles from [3], that are used to prove the Rajchman property. Now, in the self-

similar case the random walk driven by the derivative cocycle is a classical random walk 

on the line. Thus, here we can substitute the central limit Theorem [3, Theorem 12.1]

for the Berry-Esseen inequality [23], and the local limit Theorem [3, Theorem 16.15] for 

Breuillard’s effective local limit Theorem [7, Théorème 4.2], which is why we require 

the Diophantine condition. Since the arguments of Breuillard [7] and of Benoist-Quint 

[3, Chapter 16] are closely related, it might be possible to prove an effective local limit 

Theorem for the derivative cocycle under a suitable Diophantine condition. We plan to 

study this problem in the near future.

Also, the method of Hochman-Shmerkin [29] for pointwise normality works for a 

broader class of β transformations of the form Tβ(x) = βx mod 1, when β > 1 is a 

Pisot number. In its current form, our method seems less suitable to treat Tβ for non-

integer β. The main issue is that the identity T n
p = Tpn , which is used several times in 

our proof (e.g. in Claim 5.7) and is trivial for integers p ≥ 2, is not true for Tβ when β

is not an integer. We remark that it might be possible to substantially refine our proof 

to get around this issue, and leave this to future research.

The method of Hochman-Shmerkin also works for a broader class of measures. This 

class of measures is what they refer to as quasi-product measures, which is a more general 

class than Gibbs measures for Hölder potentials. We expect that our results extend to a 

broader class of measures as well, but do not pursue this goal in the present paper.

Finally, the referee has suggested that by incorporating ideas from renewal theory 

into the proof of the conditional local limit Theorem 3.7, one might be able to relax the 

aperiodicity assumption made in Theorem 1.1 into a more arithmetic assumption. We 

plan to explore this possibility in a future project.
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Organization. After some preliminaries in Section 2, the local limit Theorems previously 

alluded to are formulated and proved in Section 3. The subsequent Sections 4 and 5

contain the proof of Theorem 1.1 parts (1) and (2), respectively. After that, in Section 6

we derive Corollary 1.2 from Theorem 1.1 and provide some examples of Diophantine 

IFS’s. The final Section 7 contains the proof of Theorem 1.3, and related constructions.

Acknowledgments. The inspiration for this work came from Hochman’s recent proof [27]

of Host’s equidistribution Theorem [30]. We thank Mike Hochman for providing us with 

a preprint of his work, and for some illuminating discussions about it. We also thank 
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remarks, that in particular allowed us to weaken our previous definition of aperiodicity 

for self similar IFS’s to its current form, and thus strengthen Corollary 1.2. Finally, we 

thank the referee for suggesting an alternative proof of Theorem 1.1 part (2) using the 

tools of this paper that is outlined in Remark 5.6, and for pointing out a certain possible 

simplification of our Diophantine condition, discussed in Remark 6.7.

2. Preliminaries

Throughout this section we work with an IFS as in Theorem 1.1, and follow the 

notation introduced in Section 1.2.1. We also use the notation A = {1, ..., n}. By uniform 

contraction there exists D, D′ ∈ R such that

0 <D := min{− log |f ′(x)| :f ∈ Φ, x ∈ I}, D′ := max{− log |f ′(x)| :f ∈ Φ, x ∈ I} <∞.

(4)

Equivalently, for every f ∈ Φ and x ∈ I,

0 < e−D′ ≤ |f ′(x)| ≤ e−D < 1.

We also define, for P a.e. ω and any fixed x0 ∈ I,

χ := lim
n

− log |f ′
ω|n

(x0)|
n

> 0

the corresponding Lyapunov exponent.

2.1. Basic geometry of self-conformal measures

Here, we recall two useful and well known results. The first is the bounded distortion 

property, which holds in our situation since every fi is at least C1+γ smooth and strictly 

contracting. We refer e.g. to [46, The discussion about equation (1.3)] for more details.
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Theorem 2.1. There exists some L = L(Φ) > 1 such that: for any k ∈ N and for any 

word η ∈ Ak

L−1 ≤
∣∣f ′

η(x)
∣∣

∣∣f ′
η(y)

∣∣ ≤ L, for any x, y ∈ I.

The second is another standard result, about the non-atomicity of self-conformal mea-

sures. It follows from e.g. [25, Proposition 2.2]:

Lemma 2.2. Let ν be a self conformal measure as in Theorem 1.1. Then ν is not atomic. 

That is, for every ε > 0 there is a δ > 0 such that for any y ∈ I,

ν(Bδ(y)) < ε

where Bδ(y) is the open ball about y of radius δ > 0.

Notice that here we using our standing assumptions that KΦ is infinite and that p is 

a strictly positive probability vector on A = {1, ..., n}.

2.2. Linearization lemmas

Recall that Φ is a family of differentiable contractions I → I satisfying

0 < e−D′ ≤ ‖f ′‖C0 ≤ e−D < 1, ‖f‖C1+γ ≤ C, ∀f ∈ Φ

for some D, D′ > 0, γ ∈ (0, 1) and C > 0. Define

Φ∗n := {φ1 ◦ · · · ◦ φn : φ1, · · · , φn ∈ Φ}.

We shall require the following C0 linearization lemma:

Lemma 2.3. For every β ∈ (0, γ) there exists ε ∈ (0, 1) such that for all n ≥ 1, g ∈ Φ∗n

and x, y ∈ I satisfying |x − y| < ε,

∣∣g(x)− g(y)− g′(y)(x− y)
∣∣ ≤ |g′(y)| · |x− y|1+β .

What Lemma 2.3 means is that for every y ∈ Bε(x) the function g may be approxi-

mated exponentially fast on Bε(x) by an affine map with similarity ratio g′(y).

Proof. For the purpose of this proof only, it will be convenient to use the notation

0 < κ′ := e−D′ ≤ ‖φ′‖C0 ≤ κ := eD < 1, ∀φ ∈ Φ.
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Now, for all x, y ∈ I and φ ∈ Φ, there is an intermediate value z between x and y such 

that

∣∣φ(x)− φ(y)− φ′(y)(x− y)
∣∣ =
∣∣φ′(z)(x− y)− φ′(y)(x− y)

∣∣

≤|φ′(z)− φ′(y)||x− y| ≤ C|z − y|γ |x− y|
≤C|x− y|1+γ .

(5)

Define a sequence β0 > β1 > β2 > · · · by β0 = γ, βn = βn−1 − bκ(n−1)γ , where the 

constant b := (1 − κγ)(γ − β) > 0 is chosen such that lim βn = β. Choose ε ∈ (0, 1e )

sufficiently small, such that

4C

κ′ εγ−β1 < min(1− 1

e
,

β

2
). (6)

We will prove inductively that:

If n ≥ 0, |x − y| < ε and g ∈ Φn, then

∣∣g(x)− g(y)− g′(y)(x− y)
∣∣ ≤ |g′(y)| · |x− y|1+βn . (7)

For the n = 0 case, assume |x − y| < ε and g ∈ Φ∗0 = {Id}, then |g(x) − g(y) −
g′(y)(x − y)

∣∣ = |(x − y) − (x − y)| = 0 and (7) holds.

Assume n ≥ 1 and the lemma holds for n − 1. Suppose |x − y| = δ < ε and g ∈ Φ∗n. 

Then g = φ ◦ g̃ where φ ∈ Φ and g̃ ∈ Φ∗(n−1), and

∣∣g̃(x)− g̃(y)− g̃′(y)(x− y)
∣∣ ≤ |g̃′(y)|δ1+βn−1 . (8)

In particular, it follows that

|g̃(x)− g̃(y)| ≤ |g̃′(y)|δ(1 + δβn−1). (9)

Combining (5) and (9), we get

∣∣g(x)− g(y)− g′(y)(x− y)
∣∣

=
∣∣φ(g̃(x))− φ(g̃(y))− φ′(g̃(y))g̃′(y)(x− y)

∣∣

≤
∣∣φ(g̃(x))− φ(g̃(y))− φ′(g̃(y))(g̃(x)− g̃(y))

∣∣

+ |φ′(g̃(y))| ·
∣∣g̃(x)− g̃(y)− g̃′(y)(x− y)

∣∣

≤C|g̃(x)− g̃(y)|1+γ + |φ′(g̃(y))| · |g̃′(y)|δ1+βn−1

≤C
(
|g̃′(y)|δ(1 + δβn−1)

)1+γ
+ |g′(y)|δ1+βn−1 .

(10)
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Because 0 < δ < ε < 1, we know (10) is bounded by:

∣∣g(x)− g(y)− (Dyg)(x− y)
∣∣

≤4C|g̃′(y)| · |g̃′(y)|γδ1+γ + |g′(y)|δ1+βn−1

=
(

4C|φ′(g̃(y))|−1|g̃′(y)|γδγ−βn + δβn−1−βn

)
|g′(y)|δ1+βn

≤
(4C

κ′ κ(n−1)γδγ−βn + δβn−1−βn

)
|g′(y)|δ1+βn .

(11)

To complete the induction, it suffices to prove

4C

κ′ κ(n−1)γδγ−βn + δβn−1−βn ≤ 1. (12)

We distinguish between the cases log 1
δ ≥ 1

βn−1−βn
and log 1

δ < 1
βn−1−βn

.

If log 1
δ ≥ 1

βn−1−βn
, then δβn−1−βn ≤ 1

e . Moreover, by (6), 4C
κ′ κ(n−1)γδγ−βn ≤

4C
κ′ εγ−β1 < 1 − 1

e . Thus (12) holds in this case.

Assume now log 1
δ < 1

βn−1−βn
. Since e−t ≤ 1 − 1

2 t on [0, 1], we know

δβn−1−βn =e−(log 1
δ

)(βn−1−βn)

≤1− 1

2
(log

1

δ
)(βn−1 − βn) ≤ 1− 1

2
(βn−1 − βn) = 1− 1

2
bκ(n−1)γ

≤1− 4C

κ′ κ(n−1)γεγ−β1 ≤ 1− 4C

κ′ κ(n−1)γδγ−βn .

Here we used the facts that 0 < δ < ε < 1
e , βn ≤ β1 < γ and assumption (6). Hence (12)

holds in this case as well.

We have established the inductive statement (7). As β < βn and |x − y| < ε < 1, the 

lemma then follows. �

An important ingredient in the proof of the second local limit Theorem 3.8, discussed 

in Section 3, is the following (much easier) C1 counterpart:

Lemma 2.4. For all n ≥ 1, g ∈ Φ∗n and x, y ∈ I,

∣∣ log |g′(x)| − log |g′(y)|
∣∣ �Φ |x− y|γ .

Remark 2.5. By the notation A �Φ B we mean that the number A is smaller than C ·B, 

where the multiplicative constant C = C(Φ) depends only on Φ. Similar notation is used 

throughout the paper.

Proof. Fix n ∈ N, and let g ∈ Φ∗n. Then there is some η ∈ A∗ such that g = fη. By our 

assumptions on the maps in Φ, we have
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∣∣ log |g′(x)| − log |g′(y)|
∣∣ ≤

n∑

m=1

∣∣log |f ′
ηm

(fη|m−1
(x))| − log |f ′

ηm
(fη|m−1

(y))|
∣∣

≤
n∑

m=1

1

minz∈I |f ′
ηm

(z)|
∣∣|f ′

ηm
(fη|m−1

(x))| − |f ′
ηm

(fη|m−1
(y))|

∣∣

≤
n∑

m=1

eD′ ∣∣f ′
ηm

(fη|m−1
(x))− f ′

ηm
(fη|m−1

(y))
∣∣

≤
n∑

m=1

C · eD′ ∣∣fη|m−1
(x)− fη|m−1

(y)
∣∣γ

≤ C · eD′
n∑

m=1

e−D·m·γ |x− y|γ ≤ C0 |x− y|γ

for some global constant C0 that is independent of n, completing the proof. �

2.3. The Fourier transform of scaled measures

The following Lemma is adapted from a recent paper of Hochman [27]. For any s, x ∈ R

let Ms(x) = s · x denote the multiplication map, and for any metric space X let P(X)

denote the space of Borel probability measures on X.

Lemma 2.6. [27, Lemma 3.2] Let θ ∈ P(R), k > 0 and χ, D as in the previous Sections. 

Then for any r > 0 and q 
= 0,

k·χ+D′
ˆ

k·χ

|Fq(Me−tθ)|2dt ≤ D′ ·
(

e2

r · |q| +

ˆ

θ(Beχk·r(y))dθ(y)

)
.

In fact, Hochman’s Lemma states that for any θ ∈ P(R), any r > 0, an any m 
= 0,

1
ˆ

0

|Fm(Mptθ)|2dt ≤ 2

r · |m| · log p
+

ˆ

θ(Br(y))dθ(y)

where here p > 1.

In the context of Lemma 2.6, we apply this result for p = e−1 and the measure Me−kχθ

between the scales 0 and D′. Then the same proof yields

k·χ+D′
ˆ

k·χ

|Fm(Me−tθ)|2dt =

D′
ˆ

0

|Fm(Me−t (Me−kχθ))|2dt

≤ D′ ·
(

e2

r · |m| +

ˆ

Me−kχθ (Br(y)) dMe−kχθ(y)

)
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= D′ ·
(

e2

r · |m| +

ˆ

θ(Beχk·r(y))dθ(y)

)

which is Lemma 2.6.

3. Two local limit theorems

We continue to work with an IFS Φ as in Theorem 1.1, and follow the notation intro-

duced in Sections 1.2.1 and 2. The purpose of this Section is to establish two local limit 

Theorems: Theorem 3.7, which will be used to prove the Rajchman part of Theorem 1.1, 

and Theorem 3.8 which will be used to prove the normality part of Theorem 1.1. Our 

analysis relies on the central and local limit Theorems for cocycles with target proved 

by Benoist-Quint [3].

3.1. Statements of the local limit theorems

We define the following functions and stopping times on AN :

Sn(ω) = − log |f ′
ω|n

(xσn(ω))|; τk(ω) = min{n : Sn(ω) ≥ kχ};

S̃n(ω) = − log max
x∈I
|f ′

ω|n
(x)|; τ̃k(ω) = min{n : S̃n(ω) ≥ kχ}.

In the definitions above n is a positive integer but k is allowed to take positive non-

integer values. Sn will be shown to arise from a random walk driven by the derivative 

cocycle. Also, note that τ̃k is a stopping time. Both Sn and S̃n are strictly increasing in 

n.

Definition 3.1. Let X1 : AN → R be the random variable

X1(ω) := c(ω1, σ(ω)) = − log |f ′
ω1

(xσ(ω))|.

For every integer n > 1 we define

Xn(ω) = − log |f ′
ωn

(
xσn(xω)

)
| = X1 ◦ σn−1.

Let θ be the law of the random variable X1. Recall the definition of D and D′ from 

(4). Then for every n, Xn ∼ θ. Moreover, θ ∈ P([D, D′]). In particular, the support of 

θ is bounded away from 0. These are immediate from Definition 3.1 and equation (4). 

The following Lemma is a direct consequence of the chain rule:

Lemma 3.2. For every k > 0 and ω ∈ AN we have

Sn(ω) =

n∑

i=1

Xi(ω)
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and

− log |f ′
ω|τk(ω)

(xστk(ω)(ω))| = Sτk(ω)(ω) ∈ [kχ, kχ + D′].

Next, we introduce some partitions of the space AN :

Definition 3.3. Given a finite word η = (η1, · · · , η	) ∈ A	:

1. Denote by Aη ⊆ AN the set of infinite words that begin with η,

Aη := {ω : (ω1, ..., ω	) = η}.

2. For h ∈ [0, ∞), let Ah be the partition of AN according to the function

ιh : ω → (ω1, · · · , ωτ̃h(ω)).

This is a finite partition, and each set in it is a cylinder set of the form Aη.

3. Let η′ be another finite word. We define the event

Ak,η,η′ := {ω ∈ Aη : στk(ω)−1(ω) ∈ Aη′}.

4. Given k, h, h′ ≥ 0 we denote by Ah,h′

k the finite partition of AN according to the 

map

ιh,h′

k = (ιh(ω), ιh′
(στk(ω)−1(ω)).

Note that every cell of the partition Ah,h′

k has the form Ak,η,η′ .

Given k, h, h′ ≥ 0 and ω ∈ AN we write Ah,h′

k (ω) for the unique Ah,h′

k cell that 

contains ω. For P -a.e. ω, we denote the conditional measure of P on the corresponding 

cell by PAh,h′
k (ω)

. Similarly, PAh(ω) denotes the conditional measure of P on the cylinder 

in the partition Ah that contains ω. Recall that λ is the Lebesgue measure on R.

Definition 3.4. Let k ∈ N and let η, η′ be finite words. Assuming P (Ak,η,η′) > 0, we 

define a probability measure ΓAk,η,η′ on [kχ, kχ + D′] by

ΓAk,η,η′ :=

´

Aη′
λ|[kχ,kχ+X1(ω′)]dP (ω′)
´

Aη′
X1(ω′)dP (ω′)

.

Note that there is actually no dependence on η; We use this notation for later conve-

nience.
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Lemma 3.5. If P (Ak,η,η′) > 0 then ΓAk,η,η′ � λ[kχ,kχ+D′] with a density that depends 

only on p, such that its norm is bounded above by 1
D independently of all parameters, 

including k, η, η′.

Proof. We write Γ instead of ΓAk,η,η′ . It is clear that Γ � λ[kχ,kχ+D′]. Next, assuming 

x ∈ supp(Γ), we need to bound

lim
r→0

Γ(B(x, r))

λ[kχ,kχ+D′](B(x, r)
= lim

r→0

Γ(B(x, r))

2r

assuming x is not an endpoint of [kχ, kχ + D′] (which we may assume). Then for every 

ω′ ∈ Ak,η,η′

λ
(

[kχ, kχ + X1(ω′)]
⋂

B(x, r)
)
≤ 2r

so

Γ(B(x, r))

2r
=

´

Aη′
λ ([kχ, kχ + X1(ω′)]

⋂
B(x, r)) dP (ω)

2r · EAk,η,η′ (X1)
≤ 1

EAk,η,η′ (X1)
.

Finally, by equation (4) we know that X1(ω) ≥ D for every ω. We conclude that the 

density of Γ is bounded by 1
D , independently of all parameters. �

Notation 3.6. We will use superscripts such as ok→∞(·) in O(·) and o(·) to such bounds 

take place as which variables are being varied. The variables on which the implied con-

stants depend on will be written in subscripts. The implied constant is absolute when 

no subscript is present.

The following local limit Theorem is one of the main keys to the proof of Theorem 1.1. 

It is the only place where the assumption Λc = {0} from Theorem 1.1 is used.

Theorem 3.7. Fix h0 ≥ 0. For all k, h′ > 0, 0 ≤ h ≤ h0, and Aη ∈ Ah, there exists a 

subset Ãh,h′

k,η ⊆ Aη such that:

(i) P (Ãh,h′

k,η ) ≥ P (Aη) · (1 − ok→∞
h0,p (1)).

(ii) for all ξ ∈ Ãh,h′

k,η , P (Ah,h′

k (ξ)) > 0.

(iii) for all ξ ∈ Ãh,h′

k,η and for any sub-interval J ⊆ [kχ, kχ + D′],

PAh,h′
k (ξ)

(Sτk
∈ J) = ΓAh,h′

k (ξ)
(J) + ok→∞

h0,p (1).
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We emphasize that all bounds are uniform in h′. We remark that to prove Theorem 1.1

part (1) we only need the case2 h0 = 0 which means that Aη is the full symbolic space. 

However, this more general version is needed to obtain the following upgraded version 

of Theorem 3.7, which is what we require for Theorem 1.1 part (2):

Theorem 3.8. For all k, h′, h > 0 and Aη ∈ Ah, there exists a subset A
h,h′

k,η ⊆ Aη such 

that:

(i) P (A
h,h′

k,η ) ≥ P (Aη) · (1 − o
min(h,k−h)→∞
p (1)).

(ii) for all ξ ∈ A
h,h′

k,η , P (Ah,h′

k (ξ)) > 0.

(iii) for all ξ ∈ A
h,h′

k,η and for any sub-interval J ⊆ [kχ, kχ + D′],

PAh,h′
k (ξ)

(Sτk
∈ J) = ΓAh,h′

k (ξ)
(J) + omin(h,k−h)→∞

p
(1).

The difference between Theorem 3.8 and Theorem 3.7 lies in the role of h: In Theo-

rem 3.7 it is assumed to be bounded by some uniform h0. There is no such restriction 

in Theorem 3.8, but the “price” is that the error is now o
min(h,k−h)→∞
p (1) instead of 

ok→∞
h0,p (1). So, to make this error small, we need both h and k− h to go to ∞ simultane-

ously.

We proceed to prove Theorem 3.7. Afterwards, we prove Theorem 3.8 using the result 

of Theorem 3.7 as a black box and the C1 linerization Lemma 2.4.

3.2. Proof of Theorem 3.7

3.2.1. Benoist and Quint’s central and local limit Theorems for cocycles with target

The proof of Theorem 3.7 relies on two limit Theorems due to Benoist-Quint [3]. Before 

stating them, we need some preliminaries. First, notice that the indicator function 1Aη

is a locally constant function on AN . For the following Claim, recall the definition of the 

maps ιa from Section 1.2.1 and the choice of our metric d := dρ on AN :

Claim 3.9. For every a ∈ {1, ..., n} the following statements hold true:

1. The map ιa is uniformly contracting:

d(ιa(ω), ιa(η)) = ρd(ω, η).

2. The cocycle c(a, ω) is uniformly bounded, Lipschitz in ω, with a uniformly bounded 

Lipschitz constant as a ∈ {1, ..., n} varies.

2 The referee has pointed out to us that this special case is related to the work of Kesten [35, Theorem 
1]. Indeed, when h0 = 0 one may deduce a weaker version of Part (iii) of Theorem 3.7 from Kesten’s result.
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This is standard, since all the maps in Φ are C1+γ smooth and by equation (4). We 

are now ready to state a consequence of the central limit Theorem for cocycles with 

target, proved by Benoist-Quint:

Theorem 3.10. [3, Theorem 12.1. part (i)] Let Aη be as in Theorem 3.7. There exists a 

variance r = r(p) > 0 such that:

For every R ∈ R the function ψ = 1Aη
× 1[R,∞) satisfies that

P

(
ω ∈ Aη :

|Sn(ω)− n · χ|√
n

≥ R

)
= P (Aη)(N(0, r2) > R)(1 + on→∞

ψ (1))

where (N(0, r2) > R) stands for the probability that a Gaussian random variable with 

mean 0 and variance r2 is larger than R.

We remark that [3, Theorem 12.1. part (i)] applies here since by Claim 3.9, the cocycle 

c(·, ·) satisfies the bounded moment conditions [3, (11.14),(11.15)] and is not constant. 

We also remark that for Theorem 3.10 we do not need the assumption that Λc = {0}
made in Theorem 1.1. However, this assumption is crucial for the local limit Theorem 

for cocycles with target, also proved by Benoist-Quint:

Theorem 3.11. [3, Theorem 16.15] Let Aη be as in Theorem 3.7. Then for every ω′ ∈ AN , 

ε > 0, m ∈ N and w ∈ R+ such that |w −mχ| ≤ 4χ
√

m log m,

Pσ−m({ω′})

(
ω ∈ Aη, Sm(ω) ∈ [w, w + εχ]

)
= G√

mr(w−mχ) ·P (Aη) · εχ · (1 + om→∞
ε,h0,p (1))

where Gs(·) stands for the density of the Gaussian law N(0, s2), and r = r(p) is as in 

Theorem 3.10. The decay rate in om→∞
ε,h0,p (1) depends only on εχ, h0 and p, and is uniform 

in ω′, w.

To be precise, a-priori the decay rate depends only on εχ, Aη and p. Hence it only 

depends on ε, h0, and p as there are only finitely many possible choices for Aη. In this 

case, as in Theorem 3.10, Claim 3.9 implies that our cocycle c(·, ·) satisfies the bounded 

moment conditions [3, (11.14),(11.15)]. It is aperiodic in the sense of [3, Equation (15.8)]

by the assumption that Λc = {0}. By aperiodicity, the cocycle c̃ defined by [3, Equation 

(16.9)] is equal to c. So [3, Theorem 16.15] applies with, in the notations therein, X = AN , 

ϕ = 1Aη
, the convex set C being [0, εχ], the translation vm = w −mχ and vμ = 0, and 

finally x = ω′.

3.2.2. Proof of Theorem 3.7

For every r ∈ R let Ur(x) = x + r be the translation map. In addition, for every k we 

define the interval

Ik = [k −
√

k log k, k +
√

k log k]. (13)
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To begin the proof of Theorem 3.7, we decompose the left hand side in (iii) as

PAh,h′
k (ξ)

(Sτk
∈ J) =

∑

m/∈Ik

PAh,h′
k (ξ)

(τk = m + 1, Sτk
∈ J)

+
∑

m∈Ik

PAh,h′
k (ξ)

(τk = m + 1, Sτk
∈ J).

(14)

The two terms are respectively treated by Proposition 3.13 and Proposition 3.12

below, and the Theorem follows.

Proposition 3.12. In the setting of Theorem 3.7, there exists a set Ãη such that claims 

(i) and (ii) hold and for all ξ ∈ Ãη,

PAh,h′
k (ξ)

(τk − 1 /∈ Ik) = ok→∞
h0,p (1).

Notice that we are using the abbreviated notation Ãη instead of Ãh,h′

k,η .

Proof. We first prove the following claim:

PAη
(τk − 1 /∈ Ik) = ok→∞

h0,p (1), for every η. (15)

For the function b = b(k) =
√

k log k − 1, suppose that |τk(ω) − k| > b = b(k). We 

also fix a small ε > 0. Without loss of generality, suppose first that τk(ω) − k > b. This 

implies that

S
k+b�(ω) < kχ

and therefore

|S
k+b�(ω)− χ · �k + b�| ≥ |S
k+b�(ω)− kχ− bχ− χ| ≥ bχ.

Let r > 0 be as in Theorem 3.10, and let R = R(r, ε) > 0 be such that (N(0, r2) > R) = ε. 

Then by Theorem 3.10 applied for the corresponding ψ, we get

P
(
ω ∈ Aη :

∣∣S
k+b�(ω)− �k + b�χ
∣∣ ≥ bχ

)

=P

(
ω ∈ Aη :

∣∣S
k+b�(ω)− �k + b�χ
∣∣

√
�k + b�

≥ bχ√
�k + b�

)

≤P

(
ω ∈ Aη :

∣∣S
k+b�(ω)− �k + b�χ
∣∣

√
�k + b�

≥ R

)

=P (Aη)(N(0, r2) > R)(1 + ok→∞
ψ (1))

=ε + ok→∞
ε,h0,p(1).
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Here we used that bχ√

k+b� →∞ as k →∞. Since ε is arbitrary, it follows that

P (τk(ω)− k > b) ≤ P
(∣∣S
k+b�(ω)− �k + b�χ

∣∣ ≥ bχ
)

= ok→∞
h0,p (1).

A similar argument shows

P (τk(ω)− k < −b) ≤ P
(∣∣S�k−b
(ω)− �k − b�χ

∣∣ ≥ bχ
)

= ok→∞
h0,p (1).

The claim (15) then follows by combining the two inequalities above.

The deduction of the proposition from (15) is standard. Indeed, it suffices to set

Ãη =
{

ξ ∈ Aη : P (Ah,h′

k (ξ)) > 0, PAh,h′
k (ξ)

(τk − 1 /∈ Ik) ≤
√

PAη
(τk − 1 /∈ Ik)

}
.

Then PAη
(Aη\Ãη) ≤

√
PAη

(τk − 1 /∈ Ik) = ok→∞
h0,p (1). �

We now take care of the second term in (14):

Proposition 3.13. In the setting of Theorem 3.7, for all ξ in the set Ãη from Proposi-

tion 3.12,

∑

m∈Ik

PAh,h′
k (ξ)

(τk = m + 1, Sτk
∈ J) = ΓAh,h′

k (ξ)
(J) + ok→∞

h0,p (1).

Proof. Let η′ be the finite word such that Ah,h′

k (ξ) = Ak,η,η′ . We first notice that

∑

m∈Ik

PAk,η,η′ (τk = m + 1, Sτk
∈ J)

=

∑
m∈Ik

P
(
ω ∈ Ak,η,η′ , τk = m + 1, Sm+1 ∈ J

)

P (Ak,η,η′)
.

(16)

Each summand in the numerator can be written as

P
(
ω ∈ Ak,η,η′ , τk = m + 1, Sm+1 ∈ J

)

=P (ω ∈ Aη ∩ σ−m(Aη′), Sm < kχ, Sm+1 ∈ J)

=

ˆ

Aη′

Pσ−m({ω′})

(
ω ∈ Aη, Sm < kχ, Sm+1 ∈ J

)
dP (σ−m({ω′}))

=

ˆ

Ak′
η′

Pσ−m({ω′})

(
ω ∈ Aη, Sm < kχ, Sm + X1(ω′) ∈ J

)
dP (ω′)

=

ˆ

Ak′
η′

Pσ−m({ω′})

(
ω ∈ Aη, Sm ∈ Jω′)

dP (ω′)

(17)
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where the interval Jω′
is defined by

Jω′
:= [kχ−X1(ω′), kχ) ∩ U−X1(ω′)J. (18)

Fix an arbitrarily small ε > 0. Since m ∈ Ik then by Theorem 3.11 for all translates 

W ⊆ Jω′
of the form [w, w + εχ),

Pσ−m({ω′})

(
ω ∈ Aη, Sm ∈W

)
= G√

mr(w −mχ) · P (Aη) · εχ · (1 + om→∞
ε,h0,p (1)) (19)

where we recall that Gs(·) stands for the density of N(0, s2), r > 0 is as in Theorem 3.10, 

and ok→∞
ε,h0,p(1) in (19) depends only on ε, h0, and p, and is uniform in ω′. Because m ∈ Ik, 

m →∞ if and only if k →∞, so we know by Lemma 3.14 below that

Pσ−m(ω′)(ω ∈ Aη, Sm ∈W ) = G√
kr((m− k + β)χ) · P (Aη) · εχ · (1 + ok→∞

ε,h0,p(1))

for all ω′ ∈ Aη′ , m ∈ Ik and β ∈ [0, 1) as k →∞.

Now, since the interval Jω′
contains �λ(Jω′

)
εχ � disjoint intervals of the form [w, w + εχ)

and is covered by �λ(Jω′
)

εχ � such intervals, we know that for all m ∈ Ik and β ∈ [0, 1),

Pσ−m(ω′)(ω ∈ Aη, Sm ∈ Jω′
)

=G√
kr((m− k + β)χ) · P (Aη) ·

(λ(Jω′
)

εχ
+ O(1)

)
· εχ · (1 + ok→∞

ε,h0,p(1))

=G√
kr((m− k + β)χ) · P (Aη) ·

(
λ(Jω′

) + O(εχ) + ok→∞
ε,h0,p(1)

)
,

(20)

where the implied constant in the O(εχ) is 1: the term represented by O(εχ) is of absolute 

value bounded by εχ. The error term ok→∞
ε,h0,p(1) is uniform in J , ω′ and β.

Integrating (20) inside (17) leads to

P (ω ∈ Ak,η,η′ , τk = m + 1, Sm+1 ∈ J)

=

ˆ

Aη′

G√
kr((m− k + β)χ) · P (Aη) ·

(
λ(Jω′

) + O(εχ) + ok→∞
ε,h0,p(1)

)
dP (ω′)

=G√
kr((m− k + β)χ) · P (Aη) · P (Aη′) ·

(
Eω′∈A′

η
(λ(Jω′

)) + O(εχ) + ok→∞
ε,h0,p(1)

)
.
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By summing over m ∈ Ik and integrating over β ∈ [0, 1), we obtain

∑

m∈Ik

P (ω ∈ Ak,η,η′ , τk = m + 1, Sm+1 ∈ J)

=

⎛
⎜⎝

k+
√

k log k+1
ˆ

k−
√

k log k

G√
kr((t− k)χ)dt

⎞
⎟⎠

· P (Aη)P (Aη′) ·
(
Eω′∈A′

η
(λ(Jω′

)) + O(εχ) + ok→∞
ε,h0,p(1)

)

=

⎛
⎜⎝

√
k log k+1
ˆ

−
√

k log k

G√
kr(tχ)dt

⎞
⎟⎠ · P (Aη)P (Aη′) ·

(
Eω′∈A′

η
(λ(Jω′

)) + O(εχ) + ok→∞
ε,h0,p(1)

)

=

⎛
⎜⎝

√
log k+ 1√

k
ˆ

−
√

log k

Gr(tχ)dt

⎞
⎟⎠ · P (Aη)P (Aη′) ·

(
Eω′∈A′

η
(λ(Jω′

)) + O(εχ) + ok→∞
ε,h0,p(1)

)

=(
1

χ
− ok→∞

p (1)) · P (Aη)P (Aη′) ·
(
Eω′∈A′

η
(λ(Jω′

)) + O(εχ) + ok→∞
ε,h0,p(1)

)

=P (Aη)P (Aη′) ·
(

1

χ
Eω′∈A′

η
(λ(Jω′

)) + O(ε) + ok→∞
ε,h0,p(1)

)

(21)

as k →∞. The term represented by O(ε) is uniformly bounded by ε in absolute value.

As ε > 0 is arbitrary, this implies that for all intervals J ⊂ [kχ, kχ + D′),

∑

m∈Ik

P (ω ∈ Ak,η,η′ , τk = m + 1, Sm+1 ∈ J)

=P (Aη)P (Aη′) ·
(

1

χ
Eω′∈Aη′ (λ(Jω′

)) + ok→∞
h0,p (1)

)
,

(22)

where Jω′
is defined by (18) and the error term ok→∞

h0,p (1) is uniform in J , ω′ and β.

Consider the special case of J = [kχ, kχ +D′), where Jω′
= [kχ −X1(ω′), kχ). Because 

the event {τk = m + 1, Sτk
∈ [kχ, kχ + D′)} coincides with {τk = m + 1}, we obtain

∑

m∈Ik

P (ω ∈ Ak,η,η′ , τk = m + 1)

=P (Aη)P (Aη′) ·
(

1

χ
Eω′∈Aη′

(
λ([kχ−X1(ω′), kχ))

)
+ ok→∞

h0,p (1)

)

=P (Aη)P (Aη′) ·
(

1

χ
Eω′∈Aη′ X1(ω′) + ok→∞

h0,p (1)

)
.

(23)
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Therefore, by (16), (22) and (23),

∑

m∈Ik

PAk,η,η′ (τk = m + 1, Sτk
∈ J)

=

∑
m∈Ik

P
(
ω ∈ Ak,η,η′ , τk = m + 1, Sm+1 ∈ J

)
∑

m∈Ik
P
(
ω ∈ Ak,η,η′ , τk = m + 1

) ·
∑

m∈Ik
P
(
ω ∈ Ak,η,η′ , τk = m + 1

)

P (Ak,η,η′)

=

1
χ Eω′∈Aη′ (λ(Jω′

)) + ok→∞
h0,p (1)

1
χ Eω′∈Aη′ X1(ω′) + ok→∞

h0,p (1)
· PAk,η,η′ (τk − 1 ∈ Ik)

=

1
χ Eω′∈Aη′ (λ(Jω′

)) + ok→∞
h0,p (1)

1
χ Eω′∈Aη′ X1(ω′) + ok→∞

h0,p (1)
·
(
1− ok→∞

h0,p (1)
)

(since ξ ∈ Ãη and Ak,η,η′ = Ah,h′

k (ξ) )

=

(
Eω′∈Aη′ λ(Jω′

)

Eω′∈Aη′ X1(ω′)
+ ok→∞

h0,p (1)

)
·
(
1− ok→∞

h0,p (1)
)

(since 0 < D ≤ Eω′∈Aη′ X1(ω′) ≤ D′)

=
Eω′∈A′

η
λ(Jω′

)

Eω′∈Aη′ X1(ω′)
+ ok→∞

h0,p (1).

(24)

To conclude, it suffices to notice that 
Eω′∈A

η′ λ(Jω′
)

Eω′∈A
η′ X1(ω′) is exactly ΓAk,η,η′ (J). �

Lemma 3.14. For m ∈ Ik, w ∈ [kχ −D′, kχ] and β ∈ [0, 1),

∣∣∣∣
G√

mr(w −mχ)

G√
kr((m− k + β)χ)

− 1

∣∣∣∣ �p k− 1
2 (log k)

3
2 as k →∞.

Proof. Recall Gs(x) = 1√
2πs

exp(− x2

2s2 ) and log Gs(x) = − log
√

2π − log s − x2

2s2 .

So as k →∞,

∣∣ log G√
mr(w −mχ)− log G√

kr(w −mχ)
∣∣

≤
∣∣ log(

√
mr)− log(

√
kr)|+ (w −mχ)2

2r2

∣∣ 1

m
− 1

k

∣∣

≤1

2

∣∣ log
m

k

∣∣+
(|k −m|χ + D′)2

2mr2

∣∣m
k
− 1
∣∣

�
∣∣m

k
− 1

∣∣+
(
√

k log k + 1)2

k

∣∣m
k
− 1

∣∣ � (log k)
∣∣m

k
− 1

∣∣

�(log k)

√
log k√

k
= k− 1

2 (log k)
3
2 ,

where the implied constant depends only on χ, D′ and r, and hence only on p.
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Moreover,

∣∣ log G√
kr(w −mχ)− log G√

kr((m− k + β)χ)
∣∣

=
1

2kr2

∣∣(w −mχ)2 − (kχ−mχ + βχ)2
∣∣

=
1

2kr2
· |w − kχ− βχ| · |2(k −m− β)χ + (w − kχ− βχ)|

≤ 1

2kr2
· (D′ + βχ) ·

(
2(
√

k log k + 1)χ + (D′ + βχ)
)

�k− 1
2 (log k)

1
2 ,

where the implied constant similarly depends only on p.

Combining the two inequalities above shows

∣∣ log G√
mr(w −mχ)− log G√

kr((m− k + β)χ)
∣∣ � k− 1

2 (log k)
3
2 ,

which in turn implies the lemma. �

3.3. Proof of Theorem 3.8

3.3.1. Fixing parameters and preliminary steps

Fix ε > 0 and choose � = �(ε, p) such that e−	χ < ε
2
γ . In this proof, we will view ε, p

and � as fixed inputs, while k and h are varying.

Suppose

min(h, k − h) > �

and fix Aη ∈ Ah. Decompose η = η#η∗ where Aη# ∈ Ah−	. Then

− log max
x∈I
|f ′

η∗(x)| ∈ [�χ−Op(1), �χ + Op(1)]

by bounded distortion (Theorem 2.1). Define real values h∗ = h∗(ε, p, η, h) and k∗ =

k∗(ε, p, η, h, k) by

h∗ =
− log maxx∈I |f ′

η∗(x)|
χ

∈ [�−Op(1), � + Op(1)],

k∗ = k +
log maxx∈I |f ′

η#(fη∗(x))| − Cε2

χ
∈ [k − h + �−Op(1), k − h + � + Op(1)],

where C = C(p) stands for the implied constant in Lemma 3.15 below.

It is important that h∗ is uniformly bounded even though it depends on η and h. It 

follows that k∗ − (k − h) = Oε,p(1), and that k∗ < k if h > Oε,p(1).

We will keep the value h′.
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Note that Aη = η# ·Aη∗ , where we use the notation

θ · Y = {θθ∗ : θ∗ ∈ Y }.

Moreover, by the choice of h∗, Aη∗ ∈ Ah∗
.

Lemma 3.15. For all ξ∗ ∈ Aη∗

0 ≤ log max
x∈I
|f ′

η#(fη∗(x))| − log |f ′
η#(xξ∗)| �p ε2.

We denote the implied constant by C = C(p).

Proof. The inequality 0 ≤ is obvious because of the max. For the second inequality, since 

xξ∗ = fη∗(xσ|η∗|ξ∗), by bounded distortion (Theorem 2.1),

|xξ∗ − fη∗(x)| ≤ |fη∗(I)| �p e−	χ < ε
2
γ .

The Lemma follows by an application of Lemma 2.4. �

3.3.2. Specifying the exceptional set A
h,h′

k,η

Let Ãh∗,h′

k∗,η∗ be given by Theorem 3.7, for the corresponding parameters as in Sec-

tion 3.3.1 (here it is important that h∗ is uniformly bounded). For clarity, we repeat the 

properties satisfied by this set:

(i∗) P (Ãh∗,h′

k∗,η∗) ≥ P (Aη∗) · (1 − ok∗→∞
	+Op(1),p(1)) = P (Aη∗) · (1 − ok−h→∞

ε,p (1)).

(ii∗) For all ω∗ ∈ Ãh∗,h′

k∗,η∗ , P (Ah∗,h′

k∗ (ω∗)) > 0.

(iii∗) For all ω∗ ∈ Ãh∗,h′

k∗,η∗ and for any sub-interval J ⊆ [kχ, kχ + D′],

PAh∗,h′
k∗ (ω∗)

(Sτk∗ ∈ J) = ΓAh∗,h′
k∗ (ω∗)

(J) + ok−h→∞
ε,p (1).

Define an exceptional subset by

Zh,h′

k,η = {ξ∗ ∈ Aη∗ : τk(η#ξ∗) 
= |η#|+ τk∗(ξ∗)}.

Lemma 3.16. P (Zh,h′

k,η ) ≤ P (Aη∗) · (Op(ε2) + ok−h→∞
ε,p (1)).

Proof. We need to show PAη∗ (Zh,h′

k,η ) ≤ Op(ε2) + ok−h→∞
ε,p (1). Since PAη∗ (Ãh∗,h′

k∗,η∗) ≥
1 − ok−h→∞

ε,p (1), it suffices to show PAη∗ (Ãh∗,h′

k∗,η∗ ∩ Zh,h′

k,η ) ≤ Op(ε2) + ok−h→∞
ε,p (1).

Now, as Aη∗ is Ah∗,h′

k∗ -measurable, it suffices to show that for every ω∗ ∈ Ãh∗,h′

k∗,η∗ ,

PAh∗,h′
k∗ (ω∗)

(Ãh∗,h′

k∗,η∗ ∩ Zh,h′

k,η ) ≤ Op(ε2) + ok−h→∞
ε,p (1).
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Suppose ξ∗ ∈ Ãh∗,h′

k∗,η∗ ∩ Zh,h′

k,η . For simplicity write a = |η#| and b = τk∗(ξ∗), then 

Sb−1(ξ∗) < k∗ ≤ Sb(ξ∗). Since τk(η#ξ∗) 
= a + b then one of the following holds:

Case 1: Sa+b−1(η#ξ∗) ≥ k, which implies

− log |f ′
η#(xξ∗)|
χ

=Sa(η#ξ∗) = Sa+b−1(η#ξ∗)− Sb−1(ξ∗)

>k − k∗ =
− log maxx∈I |f ′

η#(fη∗(x))|+ Cε2

χ
.

Comparing with Lemma 3.15, we know this case cannot happen.

Case 2: Sa+b(η#ξ∗) < k, which implies

− log |f ′
η#(xξ∗)|
χ

=Sa(η#ξ∗) = Sa+b(η#ξ∗)− Sb(ξ∗)

<k − k∗ =
− log maxx∈I |f ′

η#(fη∗(x))|+ Cε2

χ
.

Comparing with Lemma 3.15, we know Sb(ξ
∗) ∈ [k∗, k∗ + Cε2). Since ΓAk∗,η∗,η′ is abso-

lutely continuous with a uniformly bounded density (Lemma 3.5),

ΓAk∗,η∗,η′ ([k
∗, k∗ + Cε2)) �p ε2

uniformly. The lemma follows from property (iii∗) of the set Ãh∗,h′

k∗,η∗ . �

Next, set

Z̃h,h′

k,η ={ω ∈ Aη : PAh,h′
k (ω)

(η# · Zh,h′

k,η ) ≥ PAη∗ (Zh,h′

k,η )
1
2 }

∪ η# · {ω∗ ∈ Aη∗ : PAh∗,h′
k∗ (ω∗)

(Zh,h′

k,η ) ≥ PAη∗ (Zh,h′

k,η )
1
2 }.

Because PAη
(η# · Zh,h′

k,η ) = PAη∗ (Zh,h′

k,η ) and η#· sends Pη∗ to Pη, we have

PAη
(Z̃h,h′

k,η ) ≤ PAη∗ (Zh,h′

k,η )
1
2 = Op(ε) + ok−h→∞

ε,p (1),

since this bound holds for both components in Z̃h,h′

k,η .

The set A
h,h′

k,η can be now defined as

A
h,h′

k,η =
(

η# · (Ãh∗,h′

k∗,η∗\Zh,h′

k,η )
)
\Z̃h,h′

k,η .
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3.3.3. Proof of Theorem 3.8

For property (i), it suffices to prove that if min(h, k−h) is sufficiently large (depending 

only on ε and p), then 
P(A

h,h′
k,η )

P(Aη) > 1 −Op(ε). Indeed,

P (A
h,h′

k,η )

P (Aη)
=

P (Ãh∗,h′

k∗,η∗\Zh,h′

k,η )

P (Aη∗)
−

P (Z̃h,h′

k,η )

P (Aη)

≥
(

(1− ok−h→∞
p

(1))− (Op(ε2) + ok−h→∞
ε,p (1))

)
− (Op(ε) + ok−h→∞

ε,p (1))

= 1− (Op(ε) + ok−h→∞
ε,p (1)).

This implies the claim.

For property (ii): This property is a formality and always holds after omitting a null 

set (in fact, we don’t need to omit a null set based on the construction here).

The proof of property (iii) will requires more effort. By adjusting the threshold on 

min(h, k − h) based on ε, it suffices to prove that

PAh,h′
k (ω)

(Sτk
∈ J) = ΓAh,h′

k (ω)
(J) + Op(ε) + omin(h,k−h)→∞

ε,p (1)

for all ω ∈ A
h,h′

k,η . In fact, proving ≥ instead of = is enough, by applying to both J and 

Jc.

In particular, it suffices to show

PAh,h′
k (ω)

({ξ ∈ η# · {Aη∗\Zh,h′

k,η } : Sτk(ξ) ∈ J}) ≥ ΓAh,h′
k (ω)

(J)−Op(ε)− ok−h→∞
ε,p (1).

(25)

In the following Lemmas we take a closer look at η# · {Aη∗\Zh,h′

k,η }:

Lemma 3.17. If ω ∈ A
h,h′

k,η , then

Ah,h′

k (ω)\(η# · Zh,h′

k,η ) = η# · (Ah∗,h′

k∗ (ω∗)\Zh,h′

k,η ).

Proof. The ⊆ direction: Suppose ξ ∈ Ah,h′

k (ω)\(η# · Zh,h′

k,η ), then both ξ, ω ∈ η# ·
(Aη∗\Zh,h′

k,η ). Write them respectively as η#ξ∗ and η#ω∗, then

τk(ξ)− τk∗(ξ∗) = |η#| = τk(ω)− τk∗(ω∗). (26)

Hence,

στk∗ (ξ∗)ξ∗ = στk(ξ)ξ ≡Ah′ στk(ω)ω = στk∗ (ω∗)ω∗.
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This shows that ξ∗ ∈ Ah∗,h′

k∗ (ω∗), meaning Ah,h′

k (ω)\(η# · Zh,h′

k,η ) ⊆ η# · Ah∗,h′

k∗ (ω∗). In 

fact:

Ah,h′

k (ω)\(η# · Zh,h′

k,η ) ⊆ η# · (Ah∗,h′

k∗ (ω∗)\Zh,h′

k,η ).

The ⊇ direction: Keep the notations and assume ξ∗ ∈ Ah∗,h′

k∗ (ω∗)\Zh,h′

k,η . The equality 

(26) still holds, showing that

στk(ξ)ξ = στk∗ (ξ∗)ξ∗ ≡Ah′ στk∗ (ω∗)ω∗ = στk(ω)ω.

Hence η# · (Ah∗,h′

k∗ (ω∗)\Zh,h′

k,η ) ⊆ Ah,h′

k (ω), or more precisely,

η# · (Ah∗,h′

k∗ (ω∗)\Zh,h′

k,η ) ⊆ Ah,h′

k (ω)\(η# · Zh,h′

k,η ). �

Lemma 3.18. If ω = η#ω∗ ∈ A
h,h′

k,η and ξ = η#ξ∗ ∈ Ah,h′

k (ω)\(η# · Zh,h′

k,η ), then

Sτk
(ξ)− Sτk∗ (ξ∗) ∈ [k − k∗ − Cε2

χ
, k − k∗]

where C is as in Lemma 3.15.

Proof. By the proof of the previous lemma,

Sτk
(ξ)− Sτk∗ (ξ∗)

=S|η#|(ξ) =
− log |f ′

η#(xξ∗)|
χ

∈[
− log maxx∈I |f ′

η#(fη∗(x))|
χ

,
− log maxx∈I |f ′

η#(fη∗(x))|+ Cε2

χ
]

=[k − k∗ − Cε2

χ
, k − k∗]. �

We proceed to compute a few auxiliary bounds:

Since ω /∈ Z̃h,h′

k,η ,

PAh,h′
k (ω)

(
Ah,h′

k (ω)\(η# · Zh,h′

k,η )
)
≥ 1− PAη∗ (Zh,h′

k,η )
1
2 ≥ 1−Op(ε)− ok→∞

ε,p (1). (27)
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Moreover, by Lemma 3.17, Lemma 3.18 and property (iii∗),

PAh,h′
k (ω)\(η#·Zh,h′

k,η )

(
{ξ ∈ Ah,h′

k (ω)\(η# · Zh,h′

k,η ) : Sτk(ξ) ∈ J}
)

≥P
η#·Ah∗,h′

k∗ (ω∗)

(
{ξ ∈ Ah,h′

k (ω)\(η# · Zh,h′

k,η ) : Sτk(ξ) ∈ J}
)

≥P
η#·Ah∗,h′

k∗ (ω∗)

(
{ξ ∈ η# · (Ah∗,h′

k∗ (ω∗)\Zh,h′

k,η ) :

Sτk∗ (ξ∗) ∈
(
J − (k − k∗ − Cε2

χ
)
)
∩
(
J − (k − k∗)

)
}
)

≥PAh∗,h′
k∗ (ω∗)

(Sτk∗ ∈ J∗)− PAh∗,h′
k∗ (ω∗)

(Zh,h′

k,η )

≥
(
ΓAh∗,h′

k∗ (ω∗)
(J∗)− ok−h→∞

ε,p (1)
)
− PAη∗ (Zh,h′

k,η )
1
2

≥ΓAh∗,h′
k∗ (ω∗)

(J∗)−Op(ε)− ok−h→∞
ε,p (1).

(28)

Here J∗ denotes, provided that J is a subinterval of [kχ, kχ + D′], the interval

J∗ =
(
J − (k − k∗ − Cε2

χ
)
)
∩
(
J − (k − k∗)

)
}
)
⊆ [k∗χ, k∗χ + D′].

Since 
∣∣(J − (k − k∗)

)
\J∗∣∣ ≤ Cε2

χ ,

ΓAh∗,h′
k∗ (ω∗)

(J∗) ≥ ΓAh∗,h′
k∗ (ω∗)

(
J − (k − k∗)

)
−Op(ε2)

by the uniform absolute continuity of the probability distribution ΓAh∗,h′
k∗ (ω∗)

(Lem-

ma 3.5).

Finally, since στk∗ (ω∗)ω∗ = στk(ω)ω (i.e. the h′ components are the same η′), one 

can check by construction that ΓAh∗,h′
k∗ (ω∗)

= U−(k−k∗)χΓAh,h′
k (ω)

, where for x ∈ R, 

Ux : R → R is the translation by x. So

ΓAh∗,h′
k∗ (ω∗)

(J∗) ≥ ΓAk,h′
k (ω)

(J)−Op(ε2). (29)

To obtain (25), plug (29) into (28), then multiply by (27). This completes the proof 

of Property (iii).

Theorem 3.8 is established.

4. Proof of Theorem 1.1 part (1)

In this Section we prove Theorem 1.1 part (1). We require a preliminary step, which 

is an adaptation of Theorem 3.7 for Fourier modes. This is the content of the next 

subsection:
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4.1. Application of Theorem 3.7 to Fourier modes

Fix a Borel probability measure ρ ∈ P(R). For every q ∈ R we define a function 

gq,ρ : R → R via

gq,ρ(t) = |Fq (Me−tρ)|2

where we recall that Ms(x) = s · x for any s, x ∈ R.

Next, fixing h0 = 0 in Theorem 3.7 and assuming k ∈ N, we define the sequence 

ok := ok→∞
0,p . Notice that the assumption h0 = 0 means that Aη is the entire symbolic 

space AN (since the only word of length 0 is the empty word). The following Theorem 

is needed in conjunction with Theorem 3.7, since in practice we will need a version of 

Theorem 3.7 for functions rather than intervals.

Theorem 4.1. Let q be large, let C > 1, and let k = k(q) be defined implicitly as an 

integer satisfying

|q| = ΘC

(
o

− 1
4

k e(k+h′)χ
)

(30)

where h′ =
√

k. Let ρ ∈ P(R) be a measure such that

diam (supp (ρ)) = O(e−h′χ).

Then for every ξ ∈ Ãh,h′

k,η ⊆ AN as in Theorem 3.7, recalling that here h = h0 = 0, we 

have

∣∣∣∣∣∣∣
EAh,h′

k (ξ)

[
gq,ρ(Sτk(ω))

]
−

kχ+D′
ˆ

kχ

gq,ρ(x)dΓAh,h′
k (ξ)

(x)

∣∣∣∣∣∣∣
≤ O(o

1
4

k ).

Proof. We first claim that the function gq,ρ(t) is 4πqe−χk · diam (supp (ρ)) Lipschitz, 

whenever t ∈ [kχ, kχ + D′]. Indeed, since the complex exponential is a 1-Lipschitz func-

tion, for any x, y ∈ supp(ρ) and t, s ∈ [kχ, kχ + D′] we have

| exp(2πiqe−t(x− y))− exp(2πiqe−s(x− y))| ≤ |2πq(x− y)| · |e−t − e−s|
≤ 4πqdiam (supp (ρ)) · e−kχ.

Since the L1 norm is always bounded by the L∞ norm, and since

gq,ρ(t) = |Fq (Me−tρ)|2 =

¨

exp(2πiqe−t(x− y))dρ(x)dρ(y)

the Claim follows.
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Recalling that k = k(q) satisfies

q = ΘC

(
o

− 1
4

k e(k+h′)χ
)

and that

diam (supp (ρ)) = O(e−h′χ)

it follows that the function

t ∈ [kχ, kχ + D′] �→ gq,ρ(t)

is o
− 1

4

k Lipschitz (up to a constant universal multiplicative factor). Therefore, there exists 

a step function ψ : [kχ, kχ + D′] → R such that:

1. ψ consists of o
− 2

4

k steps (indicators of intervals).

2. ||ψ − gq,ρ||∞ ≤ o
1
4

k on the interval [kχ, kχ + D′].

Thus,

∣∣∣∣∣∣∣
EAh,h′

k (ξ)

[
gq,ρ(Sτk(ω))

]
−

kχ+D′
ˆ

kχ

gq,ρ(x)dΓAh,h′
k (ξ)

(x)

∣∣∣∣∣∣∣

≤
∣∣∣EAh,h′

k (ξ)

[
gq,ρ(Sτk(ω))

]
− EAh,h′

k (ξ)

[
ψ(Sτk(ω))

]∣∣∣ (31)

+

∣∣∣∣∣∣∣
EAh,h′

k (ξ)

[
ψ(Sτk(ω))

]
−

kχ+D′
ˆ

kχ

ψ(x)dΓAh,h′
k (ξ)

(x)

∣∣∣∣∣∣∣
(32)

+

∣∣∣∣∣∣∣

kχ+D′
ˆ

kχ

ψ(x)dΓAh,h′
k (ξ)

(x)−
kχ+D′
ˆ

kχ

gq,ρ(x)dΓAh,h′
k (ξ)

(x)

∣∣∣∣∣∣∣
. (33)

Now, the terms in (31) and (33) are bounded by o
1
4

k by point 2 above.

Finally, the term in (32) is bounded by o
− 2

4

k · ok since by point 1 above there are at most 

o
− 2

4

k steps in ψ, and since by Theorem 3.7 each such step introduces an error of at most 

ok. �

In the context of Theorem 4.1, it is natural to ask about the existence of integers k

that satisfy (30) with respect to some uniform C > 1. This is the content of the following 

Lemma:
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Lemma 4.2. By potentially making ok go to zero slower, we may assume that there exists 

a constant C > 1 such that for every q large there exists k = k(q) ∈ N such that

|q| = ΘC

(
o

− 1
4

k e(k+
√

k)χ
)

.

Proof. We first make the following assumptions on the sequence ok:

1. ok ≥ 1
k . Otherwise, we move to the sequence ak = max{ok, 1k}. Then ok ≤ ak and 

still ak → 0.

2. It is monotonic decreasing. Otherwise, for every k define vk = sup{on : n ≥ k}. Then 

ok ≤ vk, vk is decreasing, and it is clear that vk → 0.

3. For every k we have 1
4 ·ok ≤ ok+1 ≤ ok. Otherwise, we move to the recursively defined 

sequence bk, where

b1 = o1, bk = max{ok,
bk−1

4
}.

Then bk ≥ ok ≥ 1
k and

bk

4
≤ bk+1 ≤ bk, bk → 0.

Now, let g : R+ → R+ be a smooth monotonic decreasing function such that g(k) =

ok. Let q be large. Find x ∈ R+ such that

|q| = g(x)− 1
4 · e(x+

√
x)χ.

Notice that

|1
4

log
1

g([x])
+ (x +

√
x)χ− 1

4
log

1

g(x)
− ([x] +

√
[x])χ|

≤ |1
4

log
g(x)

g([x])
|+ |(x +

√
x− [x]−

√
[x]) · χ|

≤ 1

4
| log

g([x] + 1)

g([x])
|+ 3χ

≤ 1

4
| log 4|+ 3χ.

It follows that

g(x)− 1
4 · e(x+

√
x)χ

g([x])− 1
4 · e([x]+

√
[x]χ

= exp

(
1

4
log

1

g([x])
+ (x +

√
x)χ− 1

4
log

1

g(x)
− ([x] +

√
[x])χ

)

= O(1).
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We thus choose, for every q large, our k as [x]. It follows that there is some uniform 

C > 1 such that

C−1 ≤ |q|
o

− 1
4

k e(k+
√

k)χ
≤ C

which is what we claimed. �

4.2. Proof of Theorem 1.1 part (1)

Let ν be as in Theorem 1.1. Our goal is to show that

lim
|q|→∞

Fq(ν) = 0.

So, let ε > 0, let |q| be large, and choose k = k(q) ∈ N as in Lemma 4.2. Recall that this 

means that for some C > 1,

q = ΘC

(
o

− 1
4

k · e(k+h′)χ
)

where our standing assumption is that

h′ =
√

k.

By Lemma 4.2 (and its proof), any requirement that k be large translates to a require-

ment on q being large. In the notation of Theorem 3.7, we let k be large, and fix h0 = 0. 

Recall that h0 = 0 means that h = 0 and so Aη = AN . We also define an auxiliary 

stopping time β̃k : AN → N by

β̃k(ω) = min{m : |f ′
ω|m

(x0)| < e−(k+h′)χ} (34)

where we recall that x0 ∈ I is our prefixed point as in Section 1.2.1.

Lemma 4.3. For every k ∈ N,

ν = E(fω|β̃k(ω)
ν).

Proof. This is standard, and follows since ν is self-conformal. See e.g. [4, Lemma 

2.2.4]. �

So, by Lemma 4.3 and Jensen’s inequality we obtain

|Fq(ν)|2 =
∣∣∣Fq(E(fω|β̃k(ω)

ν))
∣∣∣
2
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=
∣∣∣E
(
Fq

(
fω|β̃k(ω)

ν
))∣∣∣

2

≤ E

(∣∣∣Fq

(
fω|β̃k(ω)

ν
)∣∣∣

2
)

.

Next, appealing to Theorem 3.7 with our choice of k, h0, h′, there is a subset that we 

denote by Ãη ⊆ AN with P (Ãη) ≥ 1 − ok(1) such that

E

(∣∣∣Fq

(
fω|β̃k(ω)

ν
)∣∣∣

2
)

=

=

ˆ

ξ∈AN \Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
fω|β̃k(ω)

ν
)∣∣∣

2

dP (ξ) +

ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
fω|β̃k(ω)

ν
)∣∣∣

2

dP (ξ).

Combining this with the previous equation array, and using that 
∣∣∣Fq

(
fω|β̃k(ω)

ν
)∣∣∣

2

≤ 1

uniformly in all parameters, we conclude that

|Fq(ν)|2 ≤
ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
fω|β̃k(ω)

ν
)∣∣∣

2

dP (ξ) + ok(1). (35)

Next, we take a closer look at the maps fω|β̃k(ω)
:

Lemma 4.4. There exists some integer P > 1 such that:

For all k large enough, and for every ω, letting η′ be such that Ak,η,η′ = Ah,h′

k (ω), we 

have

∣∣β̃k(ω)− τk(ω)− |η′|
∣∣ ≤ P.

Proof. We first observe that, by the definition of β̃k from (34),

fω|β̃k(ω)
= fω|τk(ω)

◦ f
ω|β̃k(ω)

τk(ω)

, and fω|τk(ω)+|η′| = fω|τk(ω)
◦ fη′ since ω ∈ Ak,η,η′ .

So, either ω|β̃k(ω)
τk(ω) is a prefix of η′, or vice versa. By the last displayed equation, for any 

x ∈ I,

∣∣∣f ′
ω|β̃k(ω)

(x)
∣∣∣

∣∣∣∣f ′
ω|τk(ω)

(
f

ω|β̃k(ω)

τk(ω)

(x)

)∣∣∣∣
= |f ′

ω|β̃k(ω)

τk(ω)

(x)|.

Now, it is a consequence of Theorem 2.1 (bounded distortion), the definition of β̃k, and 

of the definition of τk (Section 3), that for some L > 1 and all y ∈ I,
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L−1·e−(k+h′)χ−D′ ≤
∣∣∣f ′

ω|β̃k(ω)
(y)
∣∣∣≤ L·e−(k+h′)χ, L−1·e−kχ−D′ ≤

∣∣∣f ′
ω|τk(ω)

(y)
∣∣∣≤ L·e−kχ.

(36)

Combining the last two displayed equations, we see that there some constant C ′ > 1

such that

|f ′
ω|β̃k(ω)

τk(ω)

(x)| = ΘC′

(
e−h′χ

)
, ∀x ∈ I. (37)

On the other hand, by the definition of the event Ak,η,η′ and by Theorem 2.1

|fη′(x)| = ΘL

(
e−h′χ

)
, ∀x ∈ I. (38)

Therefore, combining equation (38) with (37) (and noting that the constants C ′, L are 

uniform), that either ω|β̃k(ω)
τk(ω) is a prefix of η′ or vice versa, and equation (4), the Lemma 

follows. �

Let P be as in Lemma 4.4. For every word η′ ∈ {1, ..., n}∗ of length |η′| > P we define

η̄′ := η′||η′|−P

That is, η̄′ is the prefix of η′ of length |η′| − P . It is now a corollary of Lemma 4.4 that 

for any ω, if η′ = η′(ω) is as in Lemma 4.4, then there is a word ρω,k such that

fω|β̃k(ω)
= fω|τk(ω)

◦ fη̄′ ◦ fρω,k

and |ρω,k| ≤ 2P .

With this information, we revisit equation (35). Recall that Ms(t) = s · t.

Claim 4.5. Fix β ∈ (0, γ). Then for all k large enough,

|Fq(ν)|2 ≤
ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦M

sign

(
f ′

ω|τk(x)
(x

στk(ω)(ω)
)

)◦fη̄′ ◦fρω,k
ν

)∣∣∣∣∣

2

dP (ξ)

+ O(q · e−(k+h′)χ−β·h′χ) + ok(1)

where for every ξ ∈ Ãη, recalling that Ah,h′

k (ξ) = Ak,η,η′ , η′ is defined as η′ = η′(ξ).

Proof. Fix ξ ∈ Ãη. Assuming Ah,h′

k (ξ) = Ak,η,η′ , let η′ be this η′ = η′(ξ). Assume 

ω ∈ Ak,η,η′ . Then we have seen that there is a word ρω,k such that

fω|β̃k(ω)
= fω|τk(ω)

◦ fη̄′ ◦ fρω,k
(39)

and |ρω,k| ≤ 2P . It follows from the proof of Lemma 4.4 (specifically, equation (37)) that 

there some constant C ′ > 1 such that
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|
(
fη̄′ ◦ fρω,k

)′
(x)| = ΘC′

(
e−h′χ

)
, ∀x ∈ I. (40)

Also, it is a consequence of (39) that there exists some z ∈ I with fη̄′ ◦ fρω,k
(z) =

xστk(ω)(ω).

Now, plug into the C0 linearization Lemma 2.3 the parameters g = fω|τk(ω)
, y =

fη̄′ ◦ fρω,k
(z) and for x ∈ I we plug in fη̄′ ◦ fρω,k

(x). Then, by (39) and assuming k (and 

therefore h′) are large enough,

∣∣∣fω|β̃k(ω)
(x)−fω|τk(ω)

(
fη̄′ ◦fρω,k

(z)
)
−f ′

ω|τk(ω)

(
fη̄′ ◦fρω,k

(z)
)(

fη̄′ ◦fρω,k
(x)−fη̄′ ◦fρω,k

(z)
)∣∣∣

≤ |f ′
ω|τk(ω)

(fη̄′ ◦ fρω,k
(z))| ·

∣∣fη̄′ ◦ fρω,k
(x)− fη̄′ ◦ fρω,k

(z)
∣∣1+β

.

And, by the definition of τk, since fη̄′ ◦ fρω,k
(z) = xστk(ω)(ω), and by (40)

|f ′
ω|τk(ω)

(
fη̄′ ◦ fρω,k

(z)
)
| ≤ e−kχ,

∣∣fη̄′ ◦ fρω,k
(x)− fη̄′ ◦ fρω,k

(z)
∣∣ ≤ O(e−h′χ).

Now, for every ω ∈ Ak,η,η′ we define a smooth map Sω,k,η′ : I → R via

Sω,k,η′(x) =
∣∣∣f ′

ω|τk(ω)
(xστk(ω)(ω))

∣∣∣ · sign
(

f ′
ω|τk(ω)

(xστk(ω)(ω))
)
· fη̄′ ◦ fρω,k

(x) (41)

−f ′
ω|τk(ω)

(xστk(ω)(ω)) · xστk(ω)(ω) + f ′
ω|τk(ω)

(xστk(ω)(ω)).

This map is affine in sign
(

f ′
ω|τk(ω)

(xστk(ω)(ω))
)
· fη̄′ ◦ fρω,k

(x). Then we have just shown 

that

||fω|β̃k(ω)
− Sω,k,η′ ||C0(I) ≤ O(e−(k+h′)χ−βh′χ).

So, since Fq(·) is a 2πq-Lipschitz function,

∣∣∣Fq

(
fω|β̃k(ω)

ν
)
−Fq (Sω,k,η′ν)

∣∣∣ ≤ O(q · e−(k+k′)χ−βk′χ).

Therefore

∣∣∣|Fq

(
fω|β̃k(ω)

ν
)
|2 − |Fq (Sω,k,η′ν) |2

∣∣∣ ≤ O(q · e−(k+h′)χ−βh′χ),

and so for every event Ak,η,η′ we have

∣∣∣∣EAk,η,η′

∣∣∣Fq

(
fω|β̃k(ω)

ν
)∣∣∣

2

− EAk,η,η′ |Fq (Sω,k,η′ν)|2
∣∣∣∣ ≤ O(q · e−(k+h′)χ−βh′χ). (42)

Finally, recall equation (35), and recall the definition of the maps Sω,k,η′ from (41). 

Note that

log |f ′
ω|τk(ω)

(xστk(ω)(ω))| = −Sτk(ω)(ω)
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by Lemma 3.2. The Claim follows from (35) and (42), since the translation of Sω,k,η′

does not affect the absolute value of Fq(·), by integrating over all ξ ∈ Ãη (using that the 

bounds we got are uniform in ξ). �

Corollary 4.6. There is some K1 = K1(ε) such that for all k > K1,

|Fq(ν)|2 ≤
∑

|ρ|≤2P

ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦ fη̄′ ◦ fρν

)∣∣∣
2

dP (ξ) + ε (43)

where P is the constant from Lemma 4.4. Furthermore, there is some global constant 

C ′ > 1 such that for all η̄′ and ρ as above

|
(
fη̄′ ◦ fρ

)′
(x)| = ΘC′

(
e−h′χ

)
, ∀x ∈ I.

Remark 4.7. For notational convenience, in this Corollary and the subsequent argument, 

we make the assumption that we always have f ′
ω|τk(x)

(xστk(ω)(ω)) > 0. Otherwise, we 

simply make the sum on the right hand side of (43) larger, by including the possibility 

that it is negative. Since there are uniformly finitely many such options, still the sum 

above is over uniformly finitely many terms, and the proof follows through.

Proof. For every k large enough, for every ξ ∈ Ãη and every ω ∈ Ah,h′

k (ξ), as |ρω,k| ≤ 2P

∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦ fη̄′ ◦ fρω,k

ν
)∣∣∣

2

≤
∑

|ρ|≤2P

∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦ fη̄′ ◦ fρν

)∣∣∣
2

and so, by Claim 4.5, assuming f ′
ω|τk(x)

(xστk(ω)(ω)) > 0 is always true,

|Fq(ν)|2 ≤
ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦ fη̄′ ◦ fρω,k

ν
)∣∣∣

2

dP (ξ)

+ O(q · e−(k+h′)χ−β·h′χ) + ok(1)

≤
∑

|ρ|≤2P

ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦ fη̄′ ◦ fρν

)∣∣∣
2

dP (ξ)

+ O(q · e−(k+h′)χ−β·h′χ) + ok(1).

Recalling the choice of k = k(q) (which is as in Lemma 4.2),

O(q · e−(k+h′)χ−βh′χ) = O(o
− 1

4

k · e−βh′χ).

So, since ok decays in at most a polynomial rate (by e.g. Lemma 4.2), there is some K1 =

K1(ε) as we claimed. The last assertion is a consequence of equation (38), Theorem 2.1

(bounded distortion), that |ρ| ≤ 2P , and of equation (4). �
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Now, fix some ρ with |ρ| ≤ 2P and consider the corresponding term in (43)

ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦ fη̄′ ◦ fρν

)∣∣∣
2

dP (ξ).

We next appeal to Theorem 4.1 for every event Ah,h′

k (ξ) separately. To do this, we notice 

that by Corollary 4.6, for every fη̄′ ◦ fρ involved

diam
(
supp

(
fη̄′ ◦ fρν

))
= O(e−h′χ).

Notice that the error term in Theorem 4.1 is O(o
1
4

k ) independently of the event Ah,h′

k (ξ). 

So,

ˆ

ξ∈Ãη

EAh,h′
k (ξ)

∣∣∣Fq

(
M

e
−Sτk(ω)(ω) ◦ fη̄′ ◦ fρν

)∣∣∣
2

dP (ξ)

≤
ˆ

ξ∈Ãη

kχ+D′
ˆ

kχ

∣∣Fq

(
Me−x ◦ fη̄′ ◦ fρν

)∣∣2 dΓAh,h′
k (ξ)

(x) dP (ξ) + O(o
1
4

k ).

Let K2 = K2(ε) be large enough to ensure that if k ≥ K2 then O(o
1
4

k ) ≤ ε
|{ρ:|ρ|≤2P }| . 

Then, since this is true for every ρ with |ρ| ≤ 2P , we see that for k ≥ max{K2, K1}, 
putting this into (43) we get

|Fq(ν)|2 ≤
∑

|ρ|≤2P

ˆ

ξ∈Ãη

kχ+D′
ˆ

kχ

∣∣Fq

(
Me−x ◦ fη̄′ ◦ fρν

)∣∣2 dΓAh,h′
k (ξ)

(x)dP (ξ) + 2ε.

Recall that by Lemma 3.5, the probability measure ΓAh,h′
k (ξ)

is absolutely continuous 

with respect to the Lebesgue measure on [kχ, kχ + D′], such that the norm of its density 

function is uniformly bounded by 1
D > 0 independently of all parameters. Using this 

fact, as long as k ≥ max{K1, K2},

|Fq(ν)|2 ≤
∑

|ρ|≤2P

ˆ

ξ∈Ãη

⎛
⎜⎝

kχ+D′
ˆ

kχ

∣∣Fq

(
Me−z ◦ fη̄′ ◦ fρν

)∣∣2 · 1

D
dz

⎞
⎟⎠ dP (ξ) + 2ε.

We now invoke Lemma 2.6. Taking the measure(s) to be fη̄′ ◦ fρν, for any r > 0, we 

get the inequality (as long as k is large enough)

|Fq(ν)|2 ≤
∑

|ρ|≤2P

ˆ

ξ∈Ãη

D′

D
·
(

e2

r · |q| +

ˆ

fη̄′ ◦ fρν (Beχk·r(y)) d
(
fη̄′ ◦ fρν(y)

))
dP (ξ)+2ε.
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By Corollary 4.6, all the maps 
(
fη̄′ ◦ fρ

)−1
as above are O(eh′χ) Lipschitz (with the 

implied constant in the O(·) being uniform). Therefore, there is some T > 1 such that 

for every η′ and y ∈ I,

(
fη̄′ ◦ fρ

)−1 (
Beχk·r(fη̄′ ◦ fρ(y)

)
⊆ BT ·eχ(k+h′)·r(y)

so, for a fixed r > 0 we can relax the dependence on both ρ and ξ, and get

|Fq(ν)|2 ≤ |{ρ : |ρ| ≤ 2P}| ·
(

e2

r · |q| +

ˆ

ν(BT ·eχ(k+h′)·r(y))dν(y)

)
· D′

D
+ 2ε. (44)

By Lemma 2.2 there exists some δ = δ(ε) > 0 such that

ν(Bδ(y)) <
ε ·D

2 ·D′ · |{ρ : |ρ| ≤ 2P}| , ∀y ∈ R. (45)

Now, we choose r so that T · eχ(k+k′) · r = δ. This implies that ν(BT ·eχ(k+h′)·r(y)) ≤
ε·D

2·D′·|{ρ:|ρ|≤2P }| for every y. Therefore, 1
r = T ·eχ(k+h′)

δ . So, as |q| = ΘC

(
o

− 1
4

k · e(k+h′)χ
)

,

e2

r · |q| = e2 · T · eχ(k+h′)

δ · |q| ≤ C · e2 · T · o
1
4

k ·
eχ(k+h′)

δ · eχ(k+h′)
= o

1
4

k ·
e2 · T · C

δ
.

So, as long as k ≥ K3 = K3(ε),

e2

r · |q| ≤
ε ·D

2 ·D′ · |{ρ : |ρ| ≤ 2P}| . (46)

Finally, if k ≥ max{K1, K2, K3}, plugging (45) and (46) into (44),

|Fq(ν)|2 ≤ 3ε

which implies the Theorem.

5. Proof of Theorem 1.1 part (2)

5.1. Some reductions

We continue to assume the condition of Theorem 1.1, and use the notation introduced 

in Sections 1.2.1, 2, 3. Fix an integer p ≥ 2. We aim to prove the following Theorem:

Theorem 5.1. Let ν be a measure as in Theorem 1.1. Then for ν almost every x,

lim
N

1

N

N∑

n=1

δT n
p (x) = λ[0,1]
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where λ[0,1] is the Lebesgue measure on [0, 1].

Since p is arbitrary, Theorem 5.1 implies Theorem 1.1 part (2). We will need the 

following definitions: let π : R → T = R/Z � [0, 1) be the projection

π(x) = x mod 1.

Let T̄p : T → T be the continuous map

T̄p(y) = p · y mod 1.

Notice that for any x ∈ R and any n ∈ N we have

T̄ n
p ◦ π(x) = π ◦ T n

p (x) = pn · x mod 1. (47)

Our first step is to reduce to the following statement, where we make use of the fact 

that ν is the push-forward of P under ω �→ xω.

Theorem 5.2. For every ε > 0 there exists q∗ = q∗(ε) ∈ N such that for all integers q

with |q| ≥ q∗ and for P almost every ω,

lim sup
N

∣∣∣∣∣Fq

(
1

N

N∑

n=1

δT n
p (xω)

)∣∣∣∣∣ < ε.

Proof that Theorem 5.2 implies Theorem 5.1. Let ω be a P typical point, and let ν∞
be a weak-* limit of the sequence

1

N

N∑

n=1

δT n
p (xω).

We will show that ν∞ is the Lebesgue measure on [0, 1]. It suffices to show that Fq(ν∞) =

0 for every integer q 
= 0. Consider the measure πν∞ on T : It is a consequence of (47)

that πν∞ arises from the T̄p orbit of π(xω), and so πν∞ is T̄p invariant. Now, let ε > 0. 

Assuming Theorem 5.2 holds true, let n ∈ N be large enough so that |q · pn| ≥ q∗(ε). 

Then

|Fq(ν∞)| = |Fq(πν∞)|
= |Fq(T̄ n

p πν∞)|
= |Fqpn(πν∞)|

≤ lim sup
N

∣∣∣∣∣Fqpn

(
π

(
1

N

N∑

k=1

δT k
p (xω)

))∣∣∣∣∣
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= lim sup
N

∣∣∣∣∣Fqpn

(
1

N

N∑

k=1

δT k
p (xω)

)∣∣∣∣∣
< ε

where we have made use several times of the fact that q is an integer, that πν∞ is 

T̄p invariant, and in the last line of our choice of q. Since ε was arbitrary we obtain 

Fq(ν∞) = 0, and we are done. �

Theorem 5.2, in turn, reduces to the following statement. Recall the definition of the 

stopping time τ̃ and the random variable τ as in the beginning of Section 3.1.

Theorem 5.3. For all ε > 0 and γ′ ∈ (0, γ) there is q∗(ε, p) ∈ N such that for every q ∈ Z

with |q| ≥ q∗(ε, p):

There are values h(q, ε, p), k(q, ε, p), h′(q, ε, p) > 0 such that, for all n ∈ N and every 

ω ∈ AN ,

Eξ∈Ah(ω′)

∣∣Fqs(fξ|
τk(ξ)+τ̃

h′ (στk(ξ)(ξ))
◦ fρξ

ν)
∣∣2 + |q|e(1+γ′)hχ < ε.

Where the partition Ah is as in Definition 3.3 part (2), and:

1. ω′ = ω′(n, ω) = σ
τ̃ n log p

χ

(ω)
(ω).

2. s = s(ω, n, h) = pn · f ′
ω|τ̃ n log p

χ

(ω)

(
fω′|τ̃h(ω′)

(x0)
)

, where x0 ∈ I is our prefixed point. 

In particular, s, s−1 = O(1) where this O(1) depends only on the IFS.

3. The word ρξ for ξ ∈ AN is defined as the unique word satisfying

ξ|τk(ξ)+τ̃h′ (στk(ξ)(ξ)) ∗ ρξ = ξ|τ̃h(ξ)+τ̃k+h′−h+Q

(
στ̃h(ξ)ξ

)

for some global Q > 0 that only depends on the IFS. Furthermore, there exists some 

global P > 0 such that |ρξ| ≤ P for all ξ.

We remark that the word ρξ also depends on the parameters k, h, h′, Q, but we sup-

press this in our notation. Both the proof of Theorem 5.3 and the proof that it implies 

Theorem 5.2 are not trivial. Thus, we dedicate the next Section to the proof that Theo-

rem 5.3 implies Theorem 5.2. The subsequent Section contains the proof of Theorem 5.3. 

So, all in all, once these two assertions are established, Theorem 5.1 is proved and we 

are done.

5.2. Proof that Theorem 5.3 implies Theorem 5.2

5.2.1. The martingale argument

In this Section we employ a deep observation that was originally made by Hochman 

and Shmerkin [29, Theorem 2.1], and was recently further refined by Hochman [27]. 
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Recall that if C is a partition of a space X and μ is a probability measure on X, then 

for any x ∈ supp(μ) we denote by C(x) the atom of C containing x, and by μC(x) the 

conditional measure of μ on this atom.

Theorem 5.4. [27, Theorem 2.2] Let T : X → X be a continuous map of a compact 

metric space, and let μ be a Borel probability measure on X. Let {Cn}n∈N be a refining 

sequence of Borel partitions. Suppose that

lim
k→∞

sup
n∈N

{diam(T nA) : A ∈ Cn+k, μ(A) > 0} = 0. (48)

Then for μ almost every x,

lim
N→∞

(
1

N

N∑

n=1

δT n(x) −
1

N

N∑

n=1

T nμCn(x)

)
= 0

in the weak-* sense.

That is, as long as the partitions {Cn}n∈N are compatible with the dynamics of T

in the sense of (48), the orbits of μ typical points are Cesàro equivalent to the T n-

magnifications of the conditionals of μ on their An atoms.

Now, let 0 < h � 1 be a fixed parameter, and consider the stopping time βn,h defined 

by

βn,h(ω) = τ̃ n log p
χ

(ω) + τ̃h(σ
τ̃ n log p

χ

(ω)
ω).

Note that in the stopping time βn,h we let n vary but keep h fixed.

Theorem 5.5. For P almost every ω and for every integer q ∈ Z,

lim
N→∞

Fq

(
1

N

N−1∑

n=0

δT n
p (xω)

)
−Fq

(
1

N

N−1∑

n=0

T n
p ◦ fω|βn,h(ω)

ν

)
= 0.

Proof. Equip the compact space X = AN ×T with the usual metric on each coordinate 

and the sup metric on the product space. For every n let Cn,h be the partition of X given 

by

(ω, π(xω)) ∼Cn,h
(η, π(xη)) ⇐⇒ (ω1, ..., ωβn,h(ω)) = (η1, ..., ηβn,h(η)),

and if x 
= π(xω), y 
= π(xη) then (ω, x) ∼Cn,h
(η, y).

Notice that we are grouping all the elements of X that are not of the form (ω, π(xω))

into a single partition cell, which we denote by B.
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Let μ be the probability measure on X defined by

μ(A) = P ({ω : (ω, π(xω)) ∈ A}) .

Notice that the projection of μ to T is πν, and that μ(B) = 0. To complete the setup, 

let T : X → X be the continuous map

T (ω, x) = (ω, T̄p(x)).

We now verify that (48) holds true: Let n, k ∈ N and let A ∈ Cn+k,h be such that 

μ(A) > 0. Then for any ω with (ω, xω) ∈ A, recalling the metric on AN defined in 

Section 1.2.1,

diam (T nA) = max{diam
(

Aω|βn+k,h(ω)

)
, diam

(
T n

p ◦ π ◦ fω|βn+k,h(ω)
(K)

)
}

≤ max{ρ
τ̃ k log p

χ

(ω)
, p−k} → 0 as k →∞ uniformly in n and ω.

Thus, we may apply Theorem 5.4: For μ almost every (ω, π(xω)) letting μCk,h(ω,π(xω)) be 

the conditional measure of μ on the atom Ck,h(ω, xω), we get

lim
N→∞

(
1

N

N−1∑

k=0

δT k(ω,π(xω)) −
1

N

N−1∑

k=0

T kμCk,h(ω,π(xω))

)
= 0. (49)

Notice that the projection of μCk,h(ω,π(xω)) to T is π ◦fω|βk,h(ω)
ν. So, projecting equation 

(49) to T and using this observation, for P almost every ω

lim
N→∞

(
1

N

N−1∑

k=0

δT̄ k
p ◦π(xω) −

1

N

N−1∑

k=0

T̄ k
p ◦ π ◦ fω|βk,h(ω)

ν

)
= 0.

Finally, let q ∈ Z. Invoking (47), for every k ≥ 1,

Fq

(
δT̄ k

p ◦π(xω)

)
= Fq

(
δT k

p (xω)

)
, and Fq

(
T̄ k

p ◦ π ◦ fω|βk,h(ω)
ν
)

= Fq

(
T k

p ◦ fω|βk,h(ω)
ν
)

.

So, combining the last two displayed equations, the Theorem is proved. �

Remark 5.6. As pointed out to us by the anonymous referee, once Theorem 5.5 is estab-

lished there is another way to prove Theorem 1.1 part (2): Via a slight modification of 

Theorem 5.5, it is enough to show that for ν as in Theorem 1.1,

For every C, C0 > 0, lim
q

sup{|Fq(gν)| : g ∈ C1+γ : ||g||C1+γ < C0, inf |g′| ≥ C1} = 0.

That is, the rate of decay of |Fq(gν)| is uniform in g ∈ C1+γ , as long as its C1+γ norm 

and inf |g′| are uniformly bounded. We believe this Claim to be true, and it should follow 

by verifying that:
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1. The rates in Theorems 3.10 and 3.11 are uniform in g.

2. The other estimates as in Section 4 are uniform in g.

Taking this approach allows one to circumvent the use of Theorem 3.8, thus possibly 

shortening the proof. However, since we hope to have other applications for our method 

that do make use of Theorem 3.8 (e.g. for higher dimensions or dimension theory), and 

since it is one of the goals of this paper to show how local limit Theorems may be adapted 

to study the geometry of self conformal measures, we present the proof of Theorem 1.1

in its original form.

5.2.2. First linearization and stopping time argument

Our next step is to linearize the maps appearing in Theorem 5.5, in the following sense: 

Fix an integer frequency q 
= 0 ∈ Z. We want to estimate Fq(·) for the push-forward of 

ν via the map

T n
p ◦ fω|βn,h(ω)

= T n
p ◦ fω|

τ̃ n log p
χ

(ω)+τ̃h(σ

τ̃ n log p
χ

(ω)

ω)

.

The idea is use the first τ̃ n log p
χ

(ω) digits to cancel out the T n
p factor. The price is a 

uniformly bounded defect s in the frequency, and a controllable error term that relies on 

h and q:

Claim 5.7 (First linearization). For every ω ∈ AN , q 
= 0 ∈ Z, n ∈ N, and h > 0 that is 

large enough in manner dependent only on γ′ ∈ (0, γ)

∣∣∣
∣∣∣Fq

(
T n

p ◦ fω|βn,h(ω)
ν
)∣∣∣−

∣∣∣Fqs

(
fω′|τ̃h(ω′)

ν
)∣∣∣
∣∣∣ ≤ |q|e−(1+γ′)hχ

where we recall that ω′ = σ
τ̃ n log p

χ

(ω)
(ω) and for our prefixed x0 ∈ I

s = s(ω, n, h) = pn · f ′
ω|τ̃ n log p

χ

(ω)

(
fω′|τ̃h(ω′)

(x0)
)

= O(1), and also s−1 = O(1)

where this O(1) only depends on the IFS.

Proof. We use the notation ω′ as in the statement of the Claim. Plugging in g =

fω|τ̃ n log p
χ

(ω)
into Lemma 2.3, as long as h = h(γ′) is large enough, for any x and our 

prefixed x0 ∈ I

|fω|τ̃ n log p
χ

(ω)

(
fω′|τ̃h(ω′)

(x)
)
−fω|τ̃ n log p

χ

(ω)

(
fω′|τ̃h(ω′)

(x0)
)

(50)

−f ′
ω|τ̃ n log p

χ

(ω)

(
fω′|τ̃h(ω′)

(x0)
)
·
(
fω′|τ̃h(ω′)

(x)− fω′|τ̃h(ω′)
(x0)

)
|
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≤
∣∣∣∣∣f

′
ω|τ̃ n log p

χ

(ω)

(
fω′|τ̃h(ω′)

(x0)
)∣∣∣∣∣·
∣∣∣fω′|τ̃h(ω′)

(x)−fω′|τ̃h(ω′)
(x0)

∣∣∣
1+γ′

≤e− n log p
χ

·χ · e−hχ(1+γ′) = p−n · e−hχ(1+γ′).

Denote t0 = f ′
ω|τ̃ n log p

χ

(ω)

(
fω′|τ̃h(ω′)

(x0)
)

and t1 = (1 − t0) · fω′|τ̃h(ω′)
(x0). Using that Fq

is |q|-Lipschitz and (50),

∣∣∣
∣∣∣Fq

(
T n

p ◦ fω|βn,h(ω)
ν
)∣∣∣−

∣∣∣Fq

(
T n

p

(
t0 · fω′|τ̃h(ω′)

ν
))∣∣∣

∣∣∣

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Fq

⎛
⎜⎝T n

p ◦ fω|
τ̃ n log p

χ

(ω)+τ̃h(σ

τ̃ n log p
χ

(ω)

ω)

ν

⎞
⎟⎠

∣∣∣∣∣∣∣
−
∣∣∣Fq

(
T n

p ◦
(

t0 · fω′|τ̃h(ω′)
+ t1

)
ν
)∣∣∣

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
Fqpn

⎛
⎜⎝fω|

τ̃ n log p
χ

(ω)+τ̃h(σ

τ̃ n log p
χ

(ω)

ω)

ν

⎞
⎟⎠−Fqpn

((
t0 · fω′|τh(ω′)

+ t1

)
ν
)
∣∣∣∣∣∣∣

≤ |q|pn · ||fω|
τ̃ n log p

χ

(ω)+τ̃h(σ

τ̃ n log p
χ

(ω)

ω)

−
(

t0 · fω′|τh(ω′)
+ t1

)
||∞

≤ |q|pn · p−n · e−hχ(1+γ′) = |q|e−(1+γ′)hχ.

Finally, using bounded distortion (Theorem 2.1), set s = pnt0 and note that

|s| =
∣∣∣∣∣p

n · f ′
ω|τ n log p

χ

(ω)

(
fω′|τh(ω′)

(x0)
)∣∣∣∣∣∈ [C0, 1], where 0 < C0 < 1 is a global constant.

Then the result follows since, as q is an integer,

∣∣∣Fq

(
T n

p

(
t0 · fω′|τ̃h(ω′)

ν
))∣∣∣ =

∣∣∣Fqpnt0

(
fω′|τ̃h(ω′)

ν
)∣∣∣ =

∣∣∣Fqs

(
fω′|τh(ω′)

ν
)∣∣∣ . �

The next Claim, which is the final ingredient in the proof that Theorem 5.3 implies 

Theorem 5.2, is about writing measures of the form fω|τ̃h(ω)
ν as a certain average of 

measures of the form

fξ|
τk(ξ)+τ̃

h′ (στk(ξ)(ξ))
◦ fρξ

ν, where ξ ∈ Ah(ω), and k + h′ > h

where ρξ is a word of uniformly bounded length. This is crucially important for our 

argument, since the local limit Theorem 3.8 applies for the random variable τk, but not 

necessarily for the stopping time τ̃k.

Claim 5.8 (Relating stopping time with cocycle). There is some P > 0 such that:
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For every ω ∈ {1, ..., n}N , h, h′, k > 0 with h < k + h′

fω|τ̃h(ω)
ν = Eξ∈Ah(ω)

(
fξ|

τk(ξ)+τ̃
h′ (στk(ξ)(ξ))

◦ fρξ
ν

)

where ρξ = ρξ,k,h,h′,Q is the unique random word satisfying

ξ|τk(ξ)+τ̃h′ (στk(ξ)(ξ)) ∗ ρξ = ξ|τ̃h(ξ)+τ̃k+h′−h+Q

(
στ̃h(ξ)ξ

)

for some global Q > 0 that only depends on the IFS, so that |ρξ| ≤ P for all ξ ∈ AN .

Proof. Since ν is self conformal and τ̃ is a stopping time, for any fixed Q > 0 (to be 

chosen later)

ν = E(fη|τ̃
k+h′−h+Q

ν)

so

fω|τ̃h(ω)
ν = Eη(fω|τ̃h(ω)

◦ fη|τ̃
k+h′−h+Q

ν) = Eξ∈Ah(ω)(fξ|τ̃h(ξ)+τ̃k+h′−h+Q

(
στ̃h(ξ)ξ

)ν). (51)

Now, by bounded distortion (Theorem 2.1), there is global C > 0 such that for every ξ

f ′
ξ|

τ̃h(ξ)+τ̃
k+h′−h+Q

(
στ̃h(ξ)ξ

) = ΘC(e−(h+k+h′−h+Q)χ) = ΘC(e−(k+h′+Q)χ)

on the other hand, for every ξ

f ′
ξ|

τk(ξ)+τ̃
h′ (στk(ξ)(ξ))

= ΘC(e−(k+h′)χ).

It follows that we can choose Q based only on C such that for every ξ,

τk(ξ) + τ̃h′(στk(ξ)(ξ)) ≤ τ̃h(ξ) + τ̃k+h′−h+Q

(
στ̃h(ξ)ξ

)
≤ τk(ξ) + τ̃h′(στk(ξ)(ξ)) + P

where P has uniformly finite length. Therefore, there is a word ρξ of length ≤ P with

ξ|τk(ξ)+τ̃h′ (στk(ξ)(ξ)) ∗ ρξ = ξ|τ̃h(ξ)+τ̃k+h′−h+Q

(
στ̃h(ξ)ξ

).

Plugging this equality into (51), the Claim is proved. �

5.2.3. Proof that Theorem 5.3 implies Theorem 5.2

Let ε > 0. Suppose that for every integer q with |q| ≥ q∗(ε, p) there are values 

h(q, ε, p), k(q, ε, p) and h′(q, ε, p) satisfying the conclusion of Theorem 5.3. Then, for 

P almost every ω, by applying successively Theorem 5.5 and Claim 5.7 with this h, 

Claim 5.8 with these h, h′, k and ω′, Jensen’s inequality, and finally Theorem 5.3, we get
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∣∣∣∣∣Fq(
1

N

N∑

n=1

δT n
p xω

)

∣∣∣∣∣ ≤
1

N

N∑

n=1

∣∣∣Fq

(
T n

p ◦ fω|βn,h(ω)
ν
)∣∣∣+ oN (1)

=
1

N

N∑

n=1

√∣∣∣Fq

(
T n

p ◦ fω|βn,h(ω)
ν
)∣∣∣

2

+ oN (1)

≤
√

2

N

N∑

n=1

√∣∣∣Fqs

(
fω′|τh(ω′)

ν
)∣∣∣

2

+ |q|e−(1+γ′)hχ + oN (1)

=

√
2

N

N∑

n=1

√∣∣∣∣Fqs

(
Eξ∈Ah(ω′)

(
fξ|

τk(ξ)+τ̃
h′ (στk(ξ)(ξ))

◦fρξ ν

))∣∣∣∣
2

+|q|e−(1+γ′)hχ

+ oN (1)

≤
√

2

N

N∑

n=1

√
Eξ∈Ah(ω′)

∣∣Fqs(fξ|
τk(ξ)+τ̃

h′ (στk(ξ)(ξ))
◦fρξ

ν)
∣∣2+|q|e−(1+γ′)hχ

+ oN (1)

≤
√

2ε + oN (1).

Taking N →∞, Theorem 5.2 is proved.

5.3. Proof of Theorem 5.3

The proof has two stages. First, for a fixed ω ∈ AN and n ∈ N, we let q ∈ Z and 

h, h′, k > 0 be arbitrary, and use them to bound

Eξ∈Ah(ω′)

∣∣Fqs(fξ|
τk(ξ)+τ̃

h′ (στk(ξ)(ξ))
◦ fρξ

ν)
∣∣2

with the notation ω′ = ω′(n, ω) and s(ω, n, h) as in Theorem 5.3. The resulting bound 

will be a sum of several error terms, depending variously on |q|, k, h, h′ up to universal 

constants. These errors are produced by running a similar argument to the one proving 

Theorem 1.1 part (1) as in Section 4. In the second stage of the proof, we let ε > 0 be 

small and show that we may choose specific parameters h, h′, k such that all of these 

error terms can be made arbitrarily small simultaneously, as long as |q| is large in a 

manner that only depends on ε. This will give Theorem 5.3.

5.3.1. Collecting error terms

Fix ω and n and let η be such that Ah(ω′) = Aη, and let s be as in Theorem 5.3. 

From this point forward, we can forget about n, ω and just work with the cylinder Aη

and the frequency qs. We do recall that s, s−1 = O(1) uniformly in n and ω, and this 

will be used implicitly throughout the proof. Let k, h, h′ ≥ 0 be any parameters, and let 

q ∈ Z. For notational convenience, we assume q · s, q > 0 - otherwise, whenever they 
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appear inside a bound, an absolute value should be applied. By Theorem 3.8, there exists 

a subset A
h,h′

k,η ⊆ Aη such that

P (A
h,h′

k,η ) ≥ P (Aη) · (1− omin(h,k−h)→∞
p

(1))

and (ii)-(iii) of Theorem 3.8 hold for it. In particular,

Eξ∈Ah(ω′)

∣∣Fqs(fξ|
τk(ξ)+τ̃

h′ (στk(ξ)(ξ))
◦ fρξ

ν)
∣∣2 = Eξ∈Aη

∣∣Fqs(fξ|
τk(ξ)+τ̃

h′ (στk(ξ)(ξ))
◦ fρξ

ν)
∣∣2

≤
ˆ

ξ∈A
h,h′
k,η

EAh,h′
k (ξ)

∣∣Fqs(fω|
τk(ω)+τ̃

h′ (στk(ω)(ω))
◦ fρω

ν)
∣∣2 dP (ξ) + omin(h,k−h)→∞

p
(1). (52)

Here we made use of the fact that |Fq(·)| ≤ 1. So, our first error term is o
min(h,k−h)→∞
p (1).

Our next step is to linearize once more, in order to set the stage for the application 

of the upgraded local limit Theorem 3.8:

Claim 5.9 (Second linerization). We have

ˆ

ξ∈A
h,h′
k,η

EAh,h′
k (ξ)

∣∣Fqs(fω|
τk(ω)+τ̃

h′ (στk(ω)(ω))
◦ fρω

ν)
∣∣2 dP (ξ)

≤
ˆ

ξ∈A
h,h′
k,η

EAh,h′
k (ξ)

∣∣∣∣∣Fqs

(
M

e
−Sτk(ω)(ω) ◦M

sign

(
f ′

ω|τk(x)
(x

στk(ω)(ω)
)

) ◦ fη′ ◦ fρω
ν

)∣∣∣∣∣

2

dP (ξ)

+O(q · e−(k+h′)χe−γ′·h′χ)

where for every ξ ∈ A
h,h′

k,η , recalling that Ah,h′

k (ξ) = Ak,η,η′ , η′ is defined as η′ = η′(ξ).

Proof. This is, up to minor changes, Claim 4.5. �

So, our next error term is q ·e−(k+h′)χe−γ′·h′χ (up to multiplying by a global constant 

that we omit from notation, and recalling our assumption that q > 0). With the help of 

the following Corollary, we can remove the randomness of the word ρξ.

Corollary 5.10. Let P > 0 be as in Claim 5.8. Then

ˆ

ξ∈A
h,h′
k,η

EAh,h′
k (ξ)

∣∣∣∣∣Fqs

(
M

e
−Sτk(ω)(ω) ◦M

sign

(
f ′

ω|τk(x)
(x

στk(ω)(ω)
)

) ◦ fη′ ◦ fρω
ν

)∣∣∣∣∣

2

dP (ξ)

≤
∑

|ρ|≤P

ˆ

ξ∈A
h,h′
k,η

EAh,h′
k (ξ)

∣∣∣Fqs

(
M

e
−Sτk(ω)(ω) ◦ fη′ ◦ fρν

)∣∣∣
2

dP (ξ).
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Recalling that |ρω| ≤ P for all ω, this is analogues to Corollary 4.6 and Remark 4.7 via 

an assumption (without the loss of generality) that all maps are orientation preserving. 

We are now ready to apply Theorem 3.8:

Claim 5.11 (Application of local limit theorem). For every ρ as in the sum in Corol-

lary 5.10,

ˆ

ξ∈A
h,h′
k,η

EAh,h′
k (ξ)

∣∣∣Fqs

(
M

e
−Sτk(ω)(ω) ◦ fη′ ◦ fρν

)∣∣∣
2

dP (ω)

≤
ˆ

ξ∈A
h,h′
k,η

kχ+D′
ˆ

kχ

|Fqs (Me−x ◦ fη′ ◦ fρν)|2 dΓAk,η,η′ (ξ)(x)dP (ξ)

+O

(
2

qe−(k+h′)χ
+ (qe−(k+h′)χ)2omin(h,k−h)→∞

p
(1)

)
.

Proof. This follows from Theorem 3.8 in a similar manner to the derivation of Theo-

rem 4.1 from Theorem 3.7 in Section 4. �

So, the next error term added to our list is 2
qe−(k+h′)χ

+(qe−(k+h′)χ)2o
min(h,k−h)→∞
p (1)

(again, up to a universal multiplicative constant that we ignore).

Next, using the uniform norm on the density of the measure ΓAk,η,η′(ξ) (Lemma 3.5) 

we get

∑

|ρ|≤2P

ˆ

ξ∈A
h,h′
k,η

kχ+D′
ˆ

kχ

|Fqs (Me−x ◦ fη′ ◦ fρν)|2 dΓAk,η,η′ (ξ)(x)dP (ξ)

≤
∑

|ρ|≤2P

ˆ

ξ∈A
h,h′
k,η

⎛
⎜⎝

kχ+D′
ˆ

kχ

|Fqs (Me−z ◦ fη′ ◦ fρν)|2 · 1

D
dz

⎞
⎟⎠ dP (ξ).

So, we have reduced our problem to a sum of oscillatory integrals, that has uniformly 

bounded many terms. This will give rise to the final error term:

Claim 5.12 (Oscillatory integral). For every ρ in the sum above, and for every δ > 0,

ˆ

ξ∈A
h,h′
k,η

⎛
⎜⎝

kχ+D′
ˆ

kχ

|Fqes(Me−z ◦ fη′ ◦ fρν)|2 · 1

D
dz

⎞
⎟⎠dP (ξ) ≤ O

(
1

δqe−(k+h′)
+ sup

y
ν(Bδ(y))

)
.

Proof. This is analogues to the application of Lemma 2.6 at the end of the proof of 

Theorem 1.1 part (1) in Section 4. �
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So, our last error term is 1
δqe−(k+h′) + supy ν (Bδ(y)), for any δ > 0 (to be chosen later 

at our convenience). Yet again, we ignore the underlying global multiplicative constant.

5.3.2. Conclusion of the proof of Theorem 5.3

Let us first recall the error terms we collected in the previous Section:

List of error terms:

Every bound below is in the sense of �p. Recall that γ′ ∈ (0, γ).

Local limit Theorem (Claim 5.11), and (52)

2

qe−(k+h′)χ
+ (qe−(k+h′)χ)2omin(h,k−h)→∞

p
(1);

Second linearization (Claim 5.9):

qe−(k+h′)χe−γ′h′χ;

Oscillatory integral (Claim 5.12): For every δ > 0,

1

δqe−(k+h′)χ
+ sup

y
ν(Bδ(y));

First linearization (Claim 5.7):

qe−(1+γ′)hχ.

Our goal is to show that for every ε > 0 there is some q∗(ε) ∈ N such that for all 

integer |q| ≥ q∗, there exists a choice of h, k, h′ based only on ε and q, so that every term 

in the list above is at most ε. Recall that we are assuming, without the loss of generality, 

that q > 0. We will also be minded to take care of the other constraints: h needs to be 

large in a manner dependent on the prefixed parameter γ′ (Claim 5.7), and h < h′ + k

(Claim 5.8).

Choices of parameters:

1. Fix δ = δ(ε, p) such that supy ν(Bδ(y)) �p ε. Here we use Lemma 2.2.

2. Fix h′ = h′(ε, p) such that e−γ′h′χ = δε2.

3. Fix h∗ = h∗(ε, p) such that if min(h, k − h) ≥ h∗, then the o
min(h,k−h)→∞
p (1) term 

in Theorem 3.8 is � δ2ε3.

4. Fix h = h(ε, p, q) ≥ 1
γ′ (h∗ + h�) > h∗ for some properly chosen h� = h�(ε, p) > 0

(arising from Claim 5.13 below) such that qe−(1+γ′)hχ = ε. This can be done if q ≥ q∗

for some q∗ = q∗(ε, p).

5. Fix k = k(ε, p, q) such that qe−(k+h′)χ = δ−1ε−1.

Claim 5.13. If q ≥ q∗ for a sufficiently large q∗ = (ε, p), then k − h ≥ h∗.
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Proof. We have

ekχ−(1+γ′)hχ = δε2e−h′χ =
(
δε2
)1+ 1

γ′ .

Thus k − h = γ′h −Oε,p(1). Denote this last Oε,p(1) by h�. Then k − h ≥ h∗ following 

the choice of h above. �

Note. To employ Claim 5.8, we need that k + h′ > h. But this clearly follows from 

Claim 5.13. Also, to use Claim 5.7 we need h to be large enough in a manner dependent 

on γ′, but this can clearly be arranged in step (4) by potentially making q larger.

With these parameters, all errors are simultaneously small:

Local limit Theorem:

2

qe−(k+h′)χ
+ (qe−(k+h′)χ)2omin(h,k−h)→∞

p
(1)�p δ · ε + δ−2ε−2 · δ2ε3 ≤ 2ε;

Second linearization:

qe−(k+h′)χe−γ′h′χ = δ−1ε−1 · δε2 = ε;

Oscillatory integral:

1

δqe−(k+h′)χ
+ sup

y
ν(Bδ(y))�p

1

δ · δ−1ε−1
+ ε� 2ε;

First linearization:

qe−(1+γ′)hχ = ε.

Thus, recalling that

Eξ∈Ah(ω′)

∣∣Fqes(fξ|
τk(ξ)+τ

h′ (στk(ξ)(ξ))
◦ fρξ

ν)
∣∣2

was shown to be bounded by the sum of the first three error terms mentioned above,

Eξ∈Ah(ω′)

∣∣Fqes(fξ|
τk(ξ)+τ

h′ (στk(ξ)(ξ))
◦ fρξ

ν)
∣∣2 + qe(1+γ′)hχ ≤ C0ε

for uniform C0, which is what we want.

Thus, Theorem 5.3 is proved. We have shown that it implies Theorem 5.1, and since 

p was arbitrary, this implies Theorem 1.1 part (2).
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6. Proof of Corollary 1.2

6.1. Proof of Corollary 1.2 part (1)

Let Φ be a C1+γ IFS, and let c(·, ·) be the derivative cocycle. Recall that A = {1, ..., n}
let Hκ denote the space of κ-Hölder continuous maps AN → C. Recall that we define

Λc = {θ : ∃φθ ∈ Hκ with |φθ| = 1 and uθ ∈ S1 such that ∀(a, ω) ∈ A×AN ,

φθ(ιa(ω)) = uθ exp(−iθ · c(a, ω)) · φθ(ω)}.

Following3 Benoist and Quint [3] we say that c is an aperiodic cocycle if

Λc = {0}.

Next, writing Φ = {f1, ..., fn}, we define

FΦ = {log |f ′
i (yi)| : where fi(yi) = yi, i ∈ A} .

Notice that FΦ is precisely the set that appears in Corollary 1.2 part (1).

Lemma 6.1. If c is not aperiodic (i.e. it is periodic) then FΦ belongs to a translation of 

a lattice.

Proof. The assumption that c is not aperiodic means that there exists 0 
= θ ∈ Λc. So, 

there exists φ ∈ Hκ with |φ| = 1 and u ∈ S1 such that for all (a, ω) ∈ A ×AN ,

φ(ιa(ω)) = u · exp(−iθ · c(a, ω)) · φ(ω).

Now, fix 1 ≤ a ≤ n and let ω = (a, a, a....) ∈ AN . Plugging these into the equation 

above, we obtain

1 = u exp(−iθ · (− log f ′
a(xω))).

This equation implies that FΦ belongs to a translation (determined by u) of the lattice 
2π
θ Z. �

Proof of Corollary 1.2 part (1). This is immediate from Lemma 6.1 and Theorem 1.1

part (1).

3 In fact, aperiodic cocycles are defined in [3, equation (15.8)] in a different way, by a certain spectral gap 
property. However, it is a consequence of [3, Lemma 15.3] that the two definitions are equivalent.
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6.2. Proof of Corollary 1.2 part (2)

Let Φ = {fi(x) = ri · x + ti}i∈A be an aperiodic self-similar IFS. Recall that Φ is 

aperiodic if there are i, j ∈ A such that log |ri|
log |rj | /∈ Q. Without the loss of generality, we 

assume i = 1 and j = 2. The following Lemma shows that from Φ we may construct an 

IFS Ψ such that FΨ does not belong to a translation of a lattice (and so its derivative 

cocycle is aperiodic), and such that every self similar measure with respect to Φ is also 

a self similar measure with respect to Ψ.

Lemma 6.2. Let Ψ = {f1 ◦ fi}i∈A
⋃{fi}i=2,..,n. Then:

1. The set FΨ does not belong to a translation of a lattice.

2. Let ν be a self similar measure with respect to Φ and the probability vector p. Then 

there exists a probability vector q such that ν is a self similar measure with respect 

to q and the IFS Ψ.

Proof. For part (1), since Φ and Ψ are self similar, if FΨ belongs to a translation of a 

lattice then for every e1, e2, e3 ∈ R, e2 
= e3, that arise by taking the log of contraction 

ratios of Ψ, we have

e1 − e2

e3 − e2
∈ Q.

So, taking e1 = log |r1 · r1| , e2 = log |r2 · r1| , e3 = log |r2| we obtain

log |r1 · r1| − log |r2 · r1|
log |r2| − log |r2 · r1|

∈ Q

which implies that

log |r2|
log |r1|

− 1 =
log |r1| − log |r2|
− log |r1|

∈ Q.

This contradicts our assumption that r1 � r2, and concludes the proof of part (1).

For part (2), one may verify that ν is a self similar measure with respect to Ψ and 

the probability vector

q :=
(
p2

1, p1 · p2, ..., p1 · pn, p2, p3, ..., pn

)

which is strictly positive since p is strictly positive. �

We need one more standard Lemma:

Lemma 6.3. Let Φ be an aperiodic self similar IFS on the interval I, and let Ψ be the 

induced IFS as in Lemma 6.2. Let g : I → g(I) be a C1+γ(I) map with non vanishing 
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derivative. Then every self conformal measure with respect to the conjugated IFS g◦Φ ◦g−1

is also a self conformal measure with respect to the IFS Θ = g ◦ Ψ ◦ g−1. Furthermore, 

the derivative cocycle of the IFS Θ is aperiodic.

Proof. It is elementary that under these assumptions FΨ = FΘ. So, FΘ equals FΨ that 

does not lie on a translation of a lattice by Lemma 6.2 part (1), and so FΘ does not lie 

on a translation of a lattice. By Lemma 6.1 this means that the derivative cocycle of Θ

is aperiodic. The Claim about the self conformal measures is an immediate consequence 

of Lemma 6.2 part (2), since every self conformal measure ν with respect to g ◦Φ ◦g−1 is 

equal to gμ, where μ is a self similar measure with respect to Φ with the same weights. �

Finally, let Φ be an aperiodic self similar IFS and let g : I → g(I) be a C1+γ(I) map 

with non vanishing derivative. Then by Lemma 6.3 any self conformal measure with 

respect to the conjugated IFS g ◦ Φ ◦ g−1 is also a self conformal measure with respect 

to a uniformly contracting C1+γ IFS Θ such that its derivative cocycle is aperiodic. 

So, applying Theorem 1.1, this concludes the proof of the normality and the Rajchman 

assertions of Corollary 1.2 part (2).

6.2.1. Proof of the quantitative assertion of Corollary 1.2 part (2)

Here we assume that Φ is a Diophantine self similar IFS (recall the definition from 

(2)). Let ν be a self similar measure with respect to the probability vector p. Our goal 

is to show that there exists some α = α(ν) > 0 such that

|Fq(ν)| ≤ O

(
1

|log |q||α
)

, as |q| → ∞.

Let {r1, ..., rn} denote the contraction ratios of Φ, and let μ be the distribution p induces 

on {− log |r1|, ..., − log |rn|}. Our first observation is that in this case the random walk

Sn(ω) := − log |f ′
ω|n

(xσn(ω))| = − log |f ′
ω|n

(x0)|, for any prefixed x0 ∈ I

as in Section 3, is in fact a classical random on R and its law is given by μ∗n, the n-fold 

self convolution of μ. Since for such random walks effective versions of the central and 

local limit Theorems are available (which is why the Diophantine condition is imposed), 

we can strengthen Theorem 3.7 by specifying a rate:

Theorem 6.4. There exists some δ = δ(p) > 0 such that for every k, h′ > 0, h = 0 and 

η = the empty word:

There exists a subset Ah,h′

k,η ⊆ AN such that, as k tends to ∞:

(i) P (Ah,h′

k,η ) ≥ 1 −Op( 1
kδ ).

(ii) for all ξ ∈ Ah,h′

k,η , P (Ah,h′

k (ξ)) > 0.
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(iii) for all ξ ∈ Ah,h′

k,η and for any sub-interval J ⊆ [kχ, kχ + D′],

PAh,h′
k (ξ)

(Sτk
∈ J) = ΓAh,h′

k (ξ)
(J) + Op(

1

kδ
).

The difference between Theorem 6.4 and Theorem 3.7 is that the error term 

ok→∞
h0,p (1) = Op( 1

kδ ) is explicit (here we always take h0 = 0). We proceed to explain 

how Theorem 6.4 gives us the desired logarithmic decay rate for Fq(ν). Afterwards, we 

explain how to obtain Theorem 6.4 by modifying the proof of Theorem 3.7.

Proof that Theorem 6.4 implies logarithmic decay. Let δ > 0 be as in Theorem 6.4, fix 

h = 0 and let q be large. Find some C > 0 such that for every q large enough there exists 

k > 0 with, letting h′ =
√

k,

|q| = ΘC

(
k

δ
4 · e(k+h′)χ

)
.

Notice that asymptotically k ≈ log |q|. Following the argument in Section 4, we bound 

|Fq(ν)| by the sum of the following terms. As usual, every bound below is in the sense 

of �p, 0 < γ′ < 1, q is assumed to be positive, and we ignore global multiplicative 

constants.

Linearization - Claim 4.5 (note that in the self-similar case this step can be easily 

bypassed, but for consistency we still take this term into account):

qe−(k+h′)χe−γ′h′χ;

Local limit Theorem - proof of Theorem 4.1 and the discussion following Corollary 4.6:

2

qe−(k+h′)χ
+ (qe−(k+h′)χ)2 1

kδ
;

Here in equation (32) in the proof of Theorem 4.1 we use Theorem 6.4 instead of Theo-

rem 3.7.

Oscillatory integral: For every r > 0,

1

rqe−(k+h′)χ
+ sup

y
ν(Br(y)).

Choice of parameters: Recall that h′ =
√

k and fix r = k
−δ
8 . Then we get:

Linearization:

qe−(k+h′)χe−γ′h′χ = k
δ
4 · e−γ′√kχ, This decays exponentially fast in k.

Local limit Theorem:

2

qe−(k+h′)χ
+ (qe−(k+h′)χ)2 1

kδ
=

2

k
δ
4

+ k
δ
2 · 1

kδ
, This decays polynomially fast in k.
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Oscillatory integral: There is some d > 0 such that

1

rqe−(k+h′)χ
+ sup

y
ν(Br(y)) ≤ k

δ
8

k
δ
4

+ k
−d·δ

8 , This decays polynomially fast in k.

Here we made use of [25, Proposition 2.2], where it is shown that there is some C > 0

such that for every r > 0 small enough

sup
y

ν(Br(y)) ≤ Crd.

Finally, by summing these error terms we see that for some α = α(ν) > 0 we have 

|Fq(ν)| = O( 1
kα ). Since k ≈ log |q| our claim follows.

Proof of Theorem 6.4. Recall that here Sn ∼ μ∗n. Thus, we follow the proof of The-

orem 3.7 essentially verbatim, only in the proof Proposition 3.12 we use the effective 

Berry-Esseen inequality [23] instead of Theorem 3.10, and in the proof of Proposi-

tion 3.13 we use Breuillard’s effective local limit Theorem [7, Théorème 4.2] instead 

of Theorem 3.11. Indeed, recall that the Berry-Esseen inequality yields a rate of Op( 1√
n

)

in the central limit Theorem for Sn. So, it is straightforward to see that applying the 

Berry-Esseen inequality instead of Theorem 3.10 in the proof of Proposition 3.12 yields 

that the error term ok→∞
h0,p (1) = ok→∞

0,p (1) decays polynomially in k. As for Proposi-

tion 3.13, we require the following Theorem of Breuillard. Recall that we are assuming 

Φ is Diophantine in the sense that (2) holds true.

Theorem 6.5. [7, Théorème 4.2 and Remarque 4.1] There exists a sequence εn(μ) and 

some δ > 0 such that εn = o(n−δ) and the centred distribution θ, where θ(A) := μ(A −χ), 

satisfies:

Let r > 0 denote the variance of the Gaussian on R associated with μ in the CLT, 

and fix R > 0. For x ∈ R, s > 0 and the interval I = Is = [−s, s] we have, for n ∈ N,

sup

{∣∣∣∣
1

G√
nr(x)

θ∗n(I + x)− λ(Is)

∣∣∣∣ : |x|+ s ≤
√

Rn log n, s > n−δ

}
≤ εn(μ)

where we recall that Gt(·) stands for the density of the Gaussian law N(0, t2).

We remark that the statement of [7, Théorème 4.2] does not include Gt, but this ver-

sion of the Theorem follows easily by combining it with the arguments of Benoist-Quint 

as in [3, Section 16.3], specifically with [3, Lemma 16.13]. Now, fix δ as in Theorem 6.5. 

Instead of using Theorem 3.11 in equation (19), we use Theorem 6.5 and translates W of 

diameter n
−δ
4 , so that the error term on→∞

ε,h0,p(1) becomes the polynomially decaying εn(μ). 

Noting that Lemma 3.14 also holds with a polynomial rate, it is now a straightforward 

versification that Proposition 3.13 holds with a polynomial rate. Theorem 6.4 is proved.
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6.3. Some examples of Diophantine IFS’s

Let Φ be an orientation preserving self similar IFS with contraction ratios {r1, ..., rn}. 
Li and Sahlsten [40, Theorem 1.3] proved that every self similar measure has logarithmic 

Fourier decay if the following condition holds:

There exist C > 0, l > 2 and ri, rj such that | log ri

log rj
− p

q
| ≥ C

ql
for all p ∈ Z and q ∈ N.

(53)

Recall our Diophantine condition from (2). In this Section we will indicate a family of 

IFS’s that are Diophantine in the sense of (2) but not in the sense of (53).

To this end, notice that any rational number fails the condition (53), and recall that 

an irrational number is called Liouville if it fails (53). So, to produce the desired examples 

it is clearly sufficient to find sets {v1, ..., vn} of strictly positive real numbers such that:

(i) For every i, j we have that vi

vj
is either rational or Liouville.

(ii) There are l, C > 0 such that

inf
y∈R

max
i∈{1,...n}

d( vi · x + y, Z) ≥ C

|x|l , for all x ∈ R large enough in absolute value.

We require the following Theorem of Moser [42]:

Theorem 6.6. [42, Theorem 2] For every n ≥ 2 and τ > 2
n−1 there exists a set of the 

cardinality of the continuum of vectors (α1, ..., αn) ∈ Rn such that:

1. There exists some D > 0 such that for every q ∈ N we have

max
i=1,...,n

d(q · αi, Z) ≥ D · q−τ .

2. For every linearly independent vectors g, h ∈ Zn+1

The ratio
g0 + g1α1 + ... + gnαn

h0 + h1α1 + ... + hnαn
is a Liouville number.

We proceed to construct {v1, ..., v4} with properties (i) and (ii) as above. Let τ > 2

and find (α1, α2) as in Theorem 6.6. Assuming without the loss of generality that both 

α1, α2 > 0 we define

v1 = 1, v2 = 2, v3 = α1 + 1, v4 = α2 + 1

(if αi < 0 for i = 1, 2 we define vi+2 = 1 − αi and proceed with the same proof). By 

Theorem 6.6 part (2) for every i, j the ratio vi

vj
is either rational or Liouville. Therefore, 

(i) holds. To verify (ii), let |x|  1 and y ∈ R. We may assume that
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d(xvi + y, Z) <
1

|x|2τ
, i = 1, 2.

So for i = 1, 2 there are ni ∈ Z and εi with |εi| < 1
|x|2τ such that

xvi + y = ni + εi.

Note that this implies x = (n2−n1)+(ε2−ε1)
v2−v1

= (n2 − n1) + (ε2 − ε1). So, for i = 3, 4 and 

any k ∈ Z

|xvi + y + k| = |x(vi − v1) + n1 + k + ε1|

=

∣∣∣∣(n2 − n1)
vi − v1

v2 − v1
+ n1 + k +

ε2 − ε1

v2 − v1

∣∣∣∣

≥
∣∣∣∣(n2 − n1)

vi − v1

v2 − v1
+ n1 + k

∣∣∣∣−
2

|x|2τ

≥ d( (n2 − n1)
vi − v1

v2 − v1
, Z)− 2

|x|2τ
.

Finally since vi−v1

v2−v1
= αi−2 for i = 3, 4, and |x| ≥ C0|n2 − n1| for some global C0 > 0 as 

long as |x| is large enough, by part (1) of Theorem 6.6 we obtain:

max
i=3,4

d( vi · x + y, Z) ≥ max
i=3,4

d( (n2 − n1)
vi − v1

v2 − v1
, Z)− 2

|x|2τ

= max
i=1,2

d( (n2 − n1)αi, Z)− 2

|x|2τ

≥ D

|n2 − n1|τ
− 2

|x|2τ
≥ C ′

|x|τ .

For some global constant C ′, as long as |x| is large enough. This proves (ii) for {v1, ..., v4}
as claimed. Finally, notice that essentially the same proof yields a wide class of further 

examples of Diophantine IFS’s satisfying (2) but not (53) with arbitrarily many contrac-

tion ratios (in particular, more than 4).

Remark 6.7. As pointed out to us by the anonymous referee, if Φ satisfies that there are 

l, C > 0 such that

max
i∈{1,...n}

d( log |ri| · x, Z) ≥ C

|x|l , for all x ∈ R large enough in absolute value (54)

then the induced IFS Ψ as in Lemma 6.2 is Diophantine in the sense of (2). In general, 

however, (54) does not imply (2) (but the converse is obviously true). To see this, let 

x, y ∈ R be such that y is a Liouville number and x is a Diophantine number in the sense 

of [40, Equation (1.2)]. Then the vector v = (1, x, 1 +(x −1)y) fails (2): Indeed, (2) holds 
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for v = (x − 1) · (0, 1, y) + (1, 1, 1) if and only if it holds for (0, 1, y), and clearly (0, 1, y)

fails (2). On the other hand, it can be shown that v satisfies (54) since x is Diophantine.

The main reason why we work with (2) rather than (54) is that in an upcoming paper 

we will show that a certain analogue of it for C1+γ non-linear IFS’s implies effective 

Fourier decay for self conformal measures. In this non-linear setting it is not clear that 

if we assume an analogue of (54) then the induced IFS as in Lemma 6.2 will satisfy the 

needed condition. We also note that (2) is consistent with the related works [7,20,1] that 

we either make use of here, or plan to make use of in future works.

6.4. Proof of Corollary 1.2 part (3)

Let Φ = {f1, ..., fn} be a uniformly contracting Cr smooth IFS on the interval I, 

where either r = 2 or r = ω. Suppose that there exists a self conformal measure ν that 

is not pointwise absolutely normal or not Rajchman. We can define a derivative cocycle 

c′ directly on A × I by

c′(i, x) = − log |f ′
i(x)|.

Notice that, unlike the symbolic version we have been working with so far, here we need 

Φ to be at least C2 so that the cocycle c′ has a finite moment in the sense of [3, Equation 

(11.15)]. This also implies for every fixed i the cocycle c′ is C1 and therefore Lipschitz 

continuous in x ∈ I. Let L denote the space of Lipschitz continuous maps I → C, K be 

the attractor of Φ, and define

Λc′ = {θ : ∃φθ ∈ L with |φθ| = 1 and uθ ∈ S1 such that ∀(a, x) ∈ A×K,

φθ(fa(x)) = uθ exp(−iθ · c′(a, x)) · φθ(x)}.

Claim 6.8. The assumptions of Corollary 1.2 part (3) imply that Λc′ 
= {0}.

Proof. If Λc′ = {0} then the cocycle c′ is aperiodic. Therefore Benoist and Quint’s local 

limit Theorem for cocycles [3, Theorem 16.15] applies to c′. The crucial observation here 

is that, starting from a given point x0 ∈ I, the n-step random walk driven by the cocycle 

c and the n-step random walk driven by the cocycle c′ have exactly the same law, which 

is the corresponding push-forward of the distribution of P on the first n digits. It follows 

that [3, Theorem 16.15] applies to c as well, as long as the target ϕ = 1Aη
for some 

cylinder Aη (to see this, just work with the conjugated IFS fη ◦Φ ◦ f−1
η for which fην is 

self conformal). Therefore, Theorem 3.11 holds true as stated. Since this is the only use 

we make of the assumption Λc = {0}, it follows from the proof of Theorem 1.1 that ν is 

both Rajchman and pointwise absolutely normal. This contradicts our assumptions. �

So, there exists 0 
= θ ∈ Λc′ . The next Lemma now follows via a standard argument:
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Lemma 6.9. If Φ is C2 then there exists a C1 function ϕ : I → R and some α ∈ R such 

that for every (i, x) ∈ A ×K,

ϕ(fi(x)) = α + θ · (− log |f ′
i(x)|) + ϕ(x) mod 1.

Furthermore, if Φ is Cω then we may assume ϕ is also Cω.

The next Lemma is where the assumption that K is an interval when Φ is C2 comes 

into play:

Lemma 6.10. Let ϕ and α be as in Lemma 6.9. If Φ is C2 and K is an interval then for 

every 1 ≤ i ≤ n there is some ni ∈ Z such that for every x ∈ I

ϕ(fi(x)) = α + θ · (− log |f ′
i(x)|) + ϕ(x) + ni.

If Φ is Cω then every y ∈ K admits a neighbourhood Ny in I and ny,i ∈ Z such that for 

every x ∈ Ny and every i

ϕ(fi(x)) = α + θ · (− log |f ′
i(x)|) + ϕ(x) + ny,i.

Notice that one difference between this Lemma and Lemma 6.9 is the set on which 

the cohomological equation holds.

Proof. First, by Lemma 6.9, for every 1 ≤ i ≤ n and for all x ∈ K

ϕ(fi(x))− (α + θ · (− log |f ′
i(x)|) + ϕ(x)) ∈ Z.

Assuming K is an interval, the function on the left hand side is a continuous function 

taking values in Z, so it must be constantly ni ∈ Z on K.

If Φ is Cω then so is ϕ. So, the function on the left hand side in the last displayed 

equation is a Cω function on K that takes values in Z. Since K is compact and infinite, 

this Lemma follows. �

Proof of Corollary 1.2 part (3). Assume first that Φ is C2 smooth and that K is an 

interval. Let ϕ be as in Lemma 6.10, and let h : I → R be a C2 smooth function that is 

a primitive of exp(ϕ(x)
θ ) on I. Now, for every i define

gi(x) = h ◦ fi ◦ h−1 : h(I)→ h(I)

and let Ψ be the IFS consisting of the maps gi. We claim that Ψ is a periodic self similar 

IFS. Indeed, by Lemma 6.10, for every i and every y ∈ h(I)
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g′
i(y) =

(
h ◦ fi ◦ h−1

)′
(y)

=
h′ (fi ◦ h−1(y)

)
· f ′

i(h
−1(y))

h′(h−1(y))

= exp

(
ϕ ◦ fi(h

−1(y))

θ
+ log |f ′

i(h
−1(y))|)− ϕ(h−1(y))

θ

)
· sign

(
f ′

i(h
−1(y))

)

= exp
(ni

θ
+

α

θ

)
· sign

(
f ′

i(h
−1(y))

)
.

Since by uniform contraction sign
(
f ′

i(h
−1(y))

)
is constant in y, Ψ is a self similar IFS. 

Finally, Ψ must be periodic, since if it were aperiodic then by Corollary 1.2 part (2) the 

measure ν would be both pointwise absolutely normal and Rajchman, contradicting our 

assumptions.

If the IFS is Cω smooth then the same proof shows that h(K) can be covered by 

finitely many intervals on which every map in Ψ acts as an affine map, with contraction 

ratios of the form rni . We leave the verification to the reader.

7. Proof of Theorem 1.3

7.1. Proof of Theorem 1.4

In this Section we prove Theorem 1.4, which is the key to the proof of Theorem 1.3. 

We follow the same notations as before: Let Φ = {f1, ..., fn} be a self-similar IFS, and 

let ν be a self similar measure. Let p ≥ 2 be an integer, and define a stopping time

βn(ω) := min{m : |f ′
ω|m

(0)| < e−n·log p}.

The following is a complete analogue of Theorem 5.5:

Theorem 7.1. For P almost every ω, for every integer q

lim
N→∞

Fq

(
1

N

N−1∑

n=0

δT n
p (xω)

)
−Fq

(
1

N

N−1∑

n=0

T n
p ◦ fω|βn(ω)

ν

)
= 0.

Recall that our aim is to prove the following Theorem:

Theorem 7.2. If ν is a Rajchman measure then it is pointwise normal to base p.

We need the following key Proposition.

Proposition 7.3. For every ε > 0 there is some q0 = q0(ε) such that for all integer 

|q| > q0, for P almost every ω and every n,

∣∣∣Fq

(
T n

p ◦ fω|βn(ω)
ν
)∣∣∣ < ε.
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Proposition 7.3 implies Theorem 7.2: By appealing first to Theorem 7.1 and using the 

relation between P and ν, this is completely analogous to the implication Theorem 5.2

⇒ Theorem 5.1.

Proof of Proposition 7.3. Let ε > 0 and let q ∈ Z. Fix ω, a P typical point. For every n

and x ∈ K, since Φ is a self similar IFS (and so we may assume all maps are defined on 

R)

T n
p ◦ fω|βn(ω)

(x) = pn
(

f ′
ω|βn(ω)

(0) · x + fω|βn(ω)
(0)
)
−mx,n, where mx,n ∈ Z. (55)

Note: There is some global C0 > 0 such that 
∣∣∣pn · f ′

ω|βn(ω)
(0)
∣∣∣ ∈ [C0, 1] for all n and ω.

Let r(ω, n) = pn · f ′
ω|βn(ω)

(0). Then, by (55) and since q ∈ Z

∣∣∣Fq

(
T n

p ◦ fω|βn(ω)
ν
)∣∣∣ =

∣∣Fq·r(ω,n) (ν)
∣∣ .

Since r(ω, n) is now fixed and its norm is in [C0, 1], and since ν is assumed to be Rajch-

man, for all |q| > q0(ε, C0) = q0(ε) and every ω, n

∣∣Fq·r(ω,n) (ν)
∣∣ < ε.

The proof is complete.

7.2. Reduction to IFS’s in integer form

We begin the proof of Theorem 1.3. Fix the self similar IFS Φ = {fi(x) = aix + bi}, 
where ai > 0 for all i. Recall the notation Φ1 := Φ and for every integer m ≥ 2,

Φm := {g : g = φ1 ◦ ... ◦ φ	, such that φi ∈ Φ, g′(0) <
1

m
and (φ1 ◦ ... ◦ φ	−1)

′
(0) ≥ 1

m
}

and that for every m ∈ N, KΦm
= KΦ, i.e. all these IFS’s have the same attractor as Φ. 

Let K denote this common attractor. We require the following Claim:

Claim 7.4. dim K = sup{dim μ : μ is a self similar measure w.r.t Φm, m ∈ N}.

Recall that in this paper self similar measures always correspond to a strictly positive 

probability vector on the underlying IFS. While we have not been able to find the 

statement of Claim 7.4 in the literature, it can nonetheless be inferred from a combination 

of existing results. We thus postpone its proof to Section 7.4.

It will be convenient to introduce the notation

A = {x : x is absolutely normal }.
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So, if

dim K ∩A < dim K

then by Claim 7.4 there is some IFS Φm and a self similar measure μ on it that is 

not pointwise absolutely normal. Without the loss of generality, we assume that m = 1. 

That is, Φ already admits such a self similar measure. Notice that if there is a self similar 

measure μ with dim μ = dim K then μ cannot be pointwise absolutely normal, and we 

can work with this measure.

So, let μ be a non pointwise absolutely normal self similar measure. We first claim that 

it is impossible that there exist contraction ratios ai, aj of maps in Φ such that log ai

log aj
/∈ Q. 

Indeed, if this is the case then it follows from [40, Theorem 1.2] that μ is a Rajchman 

measure. So, by Theorem 1.4 μ is pointwise absolutely normal, a contradiction.

Therefore, we may assume that every ai is a rational power of some r > 0. Since μ

cannot be a Rajchman measure, following the work of Brémont [6, Theorem 2.3] the IFS 

Φ is affinely conjugated via a map h to an IFS Ψ = {gi(x) = rix + ti} that is in so-called 

Pisot form [6, Definition 2.2]. For the time being, we note that this means that for every 

gi ∈ Ψ, gi(x) = rnix + ti where r−1 is a Pisot number, and (ni) are relatively prime (the 

ti also have an explicit form, but we postpone discussion about this to the next section).

We next claim that r−1 is an integer. Again, we argue via contradiction: Otherwise, 

r−1 is a non-integer Pisot number, which in particular implies that r−1 is independent 

of all integers p ≥ 2. We require the following well known Lemma, which is adapted from 

e.g. the work of Shmerkin-Peres [45, Proposition 6] and Shmerkin [57, Lemma 4.2]:

Lemma 7.5. For every ε > 0 there exists an IFS Λ satisfying the following properties:

1. Every f ∈ Λ is a composition of maps from Φ.

2. Every f ∈ Λ has the same contraction ratio, which must be of the form r−k for some 

k ∈ N by the structure of Φ and (1).

3. Λ satisfies the strong separation condition: The union

KΛ =
⋃

f∈Λ

f(KΛ)

is disjoint. In particular, the IFS Λ is regular.

4. KΛ ⊆ K and we have dim K ≤ dim KΛ + ε.

Now, let ε > 0 and produce an IFS Λ satisfying the conditions of Lemma 7.5. It is 

well known that for such homogeneous IFS’s with separation there exists a self similar 

measure ν on KΛ such that dim ν = dim KΛ. By [29, Theorem 1.4], since the IFS Λ is 

regular and r−1 is independent of all integer p ≥ 2, ν a.e. x is normal to all integer bases, 

that is, ν(A) = 1. Since KΛ ⊆ K, we find that
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dim A ∩K ≥ dim A ∩KΛ ≥ dim ν = dim KΛ ≥ dim K − ε.

Taking ε → 0 we find that dim A ∩ K = dim K. This is a contradiction. We conclude 

that r−1 has to be an integer.

7.3. Structure of the conjugating map and conclusion of proof

Let us recall what we have shown so far: The IFS Φ is conjugated via an affine map 

h(x) = cx +d to an IFS Ψ = {gi(x) = rix +ti} that is in so-called Pisot form [6, Definition 

2.2] for some integer Pisot number. This means that for every gi ∈ Ψ, gi(x) = rnix + ti

where r−1 = n is an integer, the (ni) are relatively prime, and, since r−1 is an integer, 

the translations ti have the form ti = zi

nsi
where zi ∈ Z and si ∈ N ∪ {0}.

In this section we complete the proof of Theorem 1.3 by showing that we must have 

c ∈ Q and that d is not an n-normal number. As we will see, this implies that every 

translation in the original IFS is not n-normal. Afterwards, we show that under some 

extra assumptions on Φ each such translation must be rational. So, let X denote the 

attractor of Ψ. Since our IFS Φ is conjugated by the affine map h(x) = cx + d to Ψ, we 

have

h(X) = K = KΦ.

Let ε > 0 and produce an IFS Λ as in Lemma 7.5 but for the IFS Ψ. In particular,

dim XΛ ≥ dim X − ε

and all the maps in Λ have the same contraction n−k for some k ∈ N. Furthermore, 

since all the maps in Λ are compositions of maps in Ψ, the translations of the maps in 

Λ retain the structure of those in Ψ. We also note that h(XΛ) ⊆ K.

Consider the conjugated IFS Θ = {h ◦ li ◦ h−1}li∈Λ: Every affine map fi ∈ Θ has 

the same contraction ratio n−k, and its translation fi(0) = bi satisfies, by the known 

structure of the maps in Λ,

bi =
c · zi

nsi
+ d− d

nk
, zi ∈ Z, si ∈ N ∪ {0}.

Now, since Φ is non-trivial we may assume that so is Ψ, and consequently Λ is non-trivial 

(if ε is small enough). So, there exist maps fi, fj ∈ Θ with bi 
= bj . This implies that

0 
= nk · bi − nk · bj = nk · c ·
( zi

nsi
− zj

nsj

)
, zi, zj ∈ Z, si, sj ∈ N.

By the last displayed equation, if c /∈ Q then

{nkbi − nkbj : i, j ∈ Φ} is not contained in a proper closed subgroup of T . (56)
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Now, let μ be a self similar measure on h(XΛ) with respect to the conjugated IFS Θ, such 

that dim μ = dim XΛ. By [19, Theorem 4], which we may apply via (56), μ is pointwise 

n-normal. It is well known that this implies that μ is pointwise normal to all integer bases 

p such that p ∼ n (see e.g. [55]). We also note that Θ satisfies the open set condition: 

Since Λ has the strong separation condition, XΛ has positive Hausdorff measure in its 

dimension. Therefore, the attractor of Θ, h(XΛ), also has positive Hausdorff measure in 

its dimension. Therefore, by [44, Theorem 1.1], Θ satisfies the open set condition. So, 

since all maps in the regular IFS Θ have contraction 1
nk , we may appeal to [29, Theorem 

1.4] to see that μ is pointwise normal to all bases p ≥ 2 such that p � n. Therefore, 

μ(A) = 1, and we conclude that

dim K∩A = dim h(X)∩A ≥ dim h(XΛ)∩A ≥ dim μ = dim XΛ ≥ dim X−ε = dim K−ε.

Taking ε → 0, we obtain a contradiction.

So far, we have established the structure of the conjugated IFS Ψ, and found that 

the conjugating map h(x) = cx + d must have c ∈ Q. We next show that d cannot be 

n-normal. If d is n-normal, then every translation bi in the homogeneous IFS Θ as above 

must be n-normal: Indeed, we have seen that

bi =
c · zi

nsi
+ d(1− 1

nk
), zi ∈ Z, si ∈ N ∪ {0}

and so bi = s · d + t where s, t ∈ Q and s 
= 0. This implies that bi is n-normal as proved 

by Wall in his Ph.D. thesis [68]. We can now run the same argument as above, with the 

only difference being that since bi− bj ∈ Q and bi is n-normal for all i, j, we can use [19, 

Theorem 7] instead of [19, Theorem 4] to conclude that μ is pointwise absolutely normal. 

We have just shown that this leads to a contradiction. So, d cannot be n-normal.

Finally, we have shown that Φ = {h ◦ gi ◦ h−1}gi∈Ψ where Ψ = {gi(x) = rix + ti} is 

such that for every gi ∈ Ψ, gi(x) = x
nki

+ ti where (ki) are relatively prime, and ti = zi

nsi

where zi ∈ Z and si ∈ N ∪ {0}. We have also shown that h is an affine map such that 

h′(0) = c ∈ Q and h(0) = d is not n-normal. So, every map h ◦ gi ◦ h−1 in Φ is of the 

form

x �→ x

nki
+

c · zi

nsi
+ d− d

nki
.

Appealing to Wall’s thesis [68] once more, since d is not n normal and c ∈ Q, c·zi

nsi
+d − d

nki

is also not n-normal.

If furthermore there are two maps in Φ with different contraction ratios 1
nki

= 1

nkj

then their translations ti, tj satisfy that, since c ∈ Q

nkiti − nkj tj = qi,j +
(
nki − nkj

)
· d, where qi,j ∈ Q.

So, if d /∈ Q then nkiti − nkj tj /∈ Q and thus
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{nkiti − nkj tj : i, j ∈ Φ} is not contained in a proper closed subgroup of T . (57)

Now, assuming that Φ is regular, let μ be a self similar measure such that dim μ = dim K. 

Then μ a.e. x is n-normal by [19, Theorem 4] which applies via (57). Also, μ a.e. x is 

p-normal for all p � n via [29, Theorem 1.4], since Φ is regular and all maps in Φ have 

contractions that are independent of p. It follows that μ(A) = 1 so dim K ∩A = dim K, 

a contradiction. We conclude that in this situation d ∈ Q, and with this the proof of 

Theorem 1.3 is done.

7.4. Proof of Claim 7.4

We now prove Claim 7.4. We work with the same notations introduced before 

Claim 7.4. Recall that for p, a probability vector on the IFS Φ (which is a finite set), μp

is the corresponding self similar measure. By combining the results of Peres-Solomyak 

[46] and of Feng-Hu [24] (or by [28]), we see that the map p �→ dim μp is lower semi-

continuous. Notice that this holds true even if some of the entries in p are zero. Therefore, 

if pk → p then

lim inf dim μpk
≥ dim μp.

Now, let ε > 0. It follows from [57, Lemma 4.2] that there exists an IFS Λ with strong 

separation such that every f ∈ Λ is a composition of maps from Φ, and KΛ ⊆ K with 

dim KΛ ≥ dim K− ε. Notice that unlike Lemma 7.5, here we do not require all the maps 

in Λ to have the same contraction ratio. It is a consequence of the proof of [57, Lemma 

4.2] that we can choose Λ by taking m large enough and choosing a subset of the maps 

that make up the IFS Φm. That is, Λ ⊆ Φm for some m.

Since Λ has strong separation, we can always find a self similar measure μp such that 

dim KΛ = dim μp. Since Λ ⊆ Φm, we can find a sequence pk → p such that each pk is 

a strictly positive probability vector on Φm. By the lower semi-continuity alluded to in 

the first paragraph, for every k large enough we thus have

dim μpk
≥ dim μp − ε = dim KΛ − ε ≥ dim K − 2ε

which implies Claim 7.4.
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