W) Check for updates

Received: 27 September 2021 Revised: 20 January 2022 Accepted: 28 February 2022

DOI: 10.1112/jlms.12608

Journal of the London
RESEARCH ARTICLE Mathematical Society

Logarithmic Fourier decay for self conformal
measures

Amir Algom | Federico Rodriguez Hertz | Zhiren Wang

Department of Mathematics, The

Pennsylvania State University, Abstract

Pennsylvania, USA We prove that the Fourier transform of a self conformal
Correspondence measure on R decays to O at infinity at a logarithmic
Amir Algom, Department of rate, unless the following holds: The underlying IFS is
Mathematics, The Pennsylvania State smoothly conjugated to an IFS that both acts linearly on

University, McAllister Building,

University Park, State College, PA 16302,
USA. tine. Our key technical result is an effective version of
Email: amir.algoml@gmail.com

its attractor and contracts by scales that are not Diophan-

a local limit Theorem for cocycles with moderate devi-
ations due to Benoist-Quint (2016), that is of indepen-
dent interest.

MSC 2020
42A38 (primary), 28A80 (secondary)

1 | INTRODUCTION

Let v be a Borel probability measure on R. For every q € R the Fourier transform of v at q is
defined by

Fq(v) = / exp(2rigx)dv(x).

The measure v is called a Rajchman measure if limg,_,, F,(v) = 0. It is a consequence of the
Riemann-Lebesgue Lemma that if v is absolutely continuous then it is Rajchman. On the other
hand, by Wiener’s Lemma if » has an atom then it is not Rajchman. For measures that are both
continuous (no atoms) and singular, determining whether or not v is a Rajchman measure may
be a challenging problem even for well structured measures. The Rajchman property has various
geometric consequences on the measure v and its support, for example, regarding the uniqueness
problem [27]. Further information about the rate of decay of F,(») has even stronger geometric
consequences. For example, by a classical Theorem of Davenport-Erdds-LeVeque [14], establish-
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ing a sufficiently fast rate of decay for F,(v) is one means towards finding normal numbers in the
support of v. For some further applications of the Rajchamn property and the rate of decay, see
the survey [28].

The goal of this paper is to prove that a wide class of fractal measures enjoy logarithmic Fourier
decay, assuming some mild conditions are met: Let ® = {f, ..., f,,} be a finite set of strict con-
tractions of a compact interval I C R (an IFS - Iterated Function System), such that every f; is
differentiable. We say that ® is C* smooth if every f; is at least C* smooth for some « > 1. It is
well known that there exists a unique compact set § # K = Ky C I such that

K =JfHi®. )
i=1

The set K is called the attractor of the IFS {f, ..., f,,}. We always assume that there exist i, j such
that x; # x;, where x; is the fixed point of f;. This ensures that K is infinite. We call ® uniformly
contracting if

0 <inf{|f'(x)| : fed,xel}<sup{lf/(x)|: fed,xe}< 1.
Next, writing A = {1, ..., n}, for every w € A" and m € N let
Fay 7= fay 200 fa,
Fix x, € I. Then we have a surjective coding map 7 : A" — K defined by
we A x, 1= lm £, (x)

which is a well defined map because of uniform contraction (see e.g., [5, Section 2.1]).

Letp = (p;, ..., p,) be a strictly positive probability vector, thatis, p; > Oforalliand ), p; = 1,
and let P = p" be the corresponding Bernoulli measure on .A". We call the measure v = 7P on
K the self conformal measure corresponding to p, and note that our assumptions are known to
imply that it is non-atomic. Equivalently, v is the unique Borel probability measure on K such
that

n

V= Z p; - fiv, where f,v is the push-forward of v via f;.
i=1

When all the maps in ® are affine we call ® a self-similar IFS and v a self-similar measure.
Next, we say that a ClIFS @ is Diophantine if there are [, C > 0 such that

inf max d(log FHEDIREE D2 z) > L, for all x € R large enough in absolute value. (2)
yeR iefl,..n} [x|!

This condition is adopted from the work of Breuillard [8] on effective local limit Theorems for
classical random walks on R, and serves a similar purpose for us as well. Note that it is invariant
under conjugation by C! maps with non-vanishing derivative. Next, we say that a C? IFS W is linear
if g’’(x) = 0forevery x € Ky and g € W. Note that if ¥ is C* and linear then it must be self-similar.
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1630 | ALGOM ET AL.

We believe it is possible to construct a linear C? IFS that includes maps with non-locally constant
derivative on the attractor, and we hope to discuss this in a future work.

Let £ denote the family of all Borel probability measures on R that have logarithmic Fourier
decay. That is, writing P(R) for the family of Borel probability measures on R,

L :={u: pu € P(R)and there exists & > 0 such that ’Pq(v)’ < O<ﬁ> as |q| — oo}.
0glq

The following Theorem is the main result of this paper. We say that an IFS ® is C" conjugate to
an IFS W if there is a C" diffeomorphism h such that ® = {h o g o h™!} gew-

Theorem 1.1. Let ® be an orientation preserving uniformly contracting C" IFS, where r > 2. If
there exists a self conformal measure that is not in L then ® is C" conjugate to a linear non-
Diophantine IFS.

Several remarks are in order: First, Theorem 1.1 improves our previous work [1, Theorem 1.1
and Corollary 1.2] by establishing a rate of decay in many new cases (our previous work was effec-
tive only for Diophantine self similar IFSs). Secondly, the orientation preserving assumption is
made purely for notational convenience, and can be easily dropped. Finally, we emphasize that
no separation conditions are imposed on &.

Recent years have seen an explosion of interest and progress regarding the study of Fourier
decay for fractal measures. We proceed to give a concise overview of results related to Theorem 1.1,
and refer to [1, Section 1] for more details on, for example, the methods involved: Combining the
work of Bourgain-Dyatlov [6] with [24], Li [25] proved the Rajchman property for Furstenberg
measures for SL(2, R) cocycles under mild assumptions (there are known conditions that ensure
that such measures are self-conformal [3, 39]). Sahlsten-Stevens [33, 34] proved the Rajchman
property for Gibbs measures on C® self-conformal sets under some additional assumptions. These
include the strong separation condition (i.e., that the union (1) is disjoint), and a stronger non-
linearity assumption: The IFS is not conjugate to an IFS where the derivatives of the maps are
locally constant on its attractor. Our previous work [1, Corollary 1.2 part (3)] gave a unified proof
of the Rajchman property for many of these cases, and Theorem 1.1 further upgrades this result by
establishing a logarithmic rate of decay. On the other hand, Bourgain-Dyatlov, Li, and Sahlsten-
Stevens, establish a polynomial rate of decay, but these works require various further assumptions.
We believe that when @ is not C" conjugate to a linear IFS then the assumptions of Theorem 1.1
should ensure that all self conformal measures have polynomial Fourier decay. See the end of this
introduction for some more discussion about this issue.

Next, suppose @ is a C? IFS that is smoothly conjugated to a self similar IFS with contractions
ratios {ry, ..., r,} C R, such that: There exist C > 0,1 > 2 with

.Igax }d(log Ir;| - x, Z) > ﬁ, for all x € R large enough in absolute value. 3)
iel,..n X

Then, by [1, Remark 6.7], there exists a C> IFS ¥ as in Theorem 1.1 that satisfies (2), and every self
conformal measure with respect to ® is also self-conformal with respect to . So, in the conjugate-
to-self-similar situation, it is enough to assume the self-similar IFS meets condition (3) in order
for all self-conformal measures to be in L. This generalizes an effective decay result of Li-Sahlsten
[27, Theorem 1.3] for self-similar measures.
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In the context of self-similar IFSs, when all contraction ratios are powers of some r € (0, 1),
Varju-Yu [38] proved logarithmic decay as long as r~! is not a Pisot or a Salem number. Kaufman
[23] and Mosquera-Shmerkin [30] proved polynomial Fourier decay for C? non-linear IFS’s that
arise by conjugating homogeneous (that are never Diophantine) self-similar IFS’s. Solomyak [35,
36] has recently shown that in fact, outside a zero Hausdorff dimension exceptional set of param-
eters, self-similar measures on R and certain self-affine measures always have polynomial Fourier
decay. Brémont [7] recently resolved the Rajchman problem for self-similar measures on R, and
Rapaport [32] extended this to self-similar measures on R¢ for any d > 1 (see also [26]). Finally,
we mention the classical work of Erdés [16] and Kahane [22] about polynomial decay being typ-
ical for Bernoulli convolutions, and the more recent works [9, 12, 13] about rates in some explicit
examples of Bernoulli convolutions.

Let us now outline the proof of Theorem 1.1, and along the way describe the orgnization of
this paper. Fix ® as in Theorem 1.1, and assume it is either Diophantine or not-conjugate-to-
linear. We aim to show that all self-conformal measures are in £, which implies Theorem 1.1
since the Diophantine condition (2) is invariant under smooth conjugation. We begin with Sec-
tion 2, where we define the derivative cocycle of the IFS and the transfer operator corresponding
to it and to a fixed probability vector p as above, and recall some known results about it. We
then proceed to prove Theorem 2.5, an estimate on the norm of iterations of the transfer opera-
tor, which requires some delicate analysis that is closely related to the work of Dolgopyat [15]. In
particular, in the not-conjugate-to-linear case we will make use of the so-called temporal distance
function [15, Appendix A.1]. This is, to the best of our information, the first such anylsis to be
done in the context of general C? IFS’s without separation (in the presence of separation there
are numreous papers that conduct similar analyses e.g., the work of Naud [31] for separated C*
IFS’s).

Afterwards, in Section 3, we show that certain random walks driven by the derivative cocycle
satisfy an effective version of the central limit Theorem. This is Theorem 3.1, that follows from a
standard application of the Nagaev-Guivarc’h method as presented in the work of Gouézel [20].
Thus, all we have to do to this end is to verify that the conditions of [20, Theorem 3.7] are met,
which is a consequence of well known results that are discussed in Section 2.2.

Section 4 then contain the most subtle step towards Theorem 1.1, and the main technical result
of this paper: We prove an effective version of Benoist-Quint’s local limit Theorem with moderate
deviations [4, Theorem 16.1] for random walks driven by the derivative cocycle. Here we combine
our estimates on the contraction properties of the transfer operator obtained in Theorem 2.5 with
the work of Breuillard [8], who proved effective local limit Theorems for classical random walks on
R? under a Diophantine condition similar to (2), and with the work of Benoist-Quint [4, Chapter
16], to derive our local limit Theorem 4.1.

In Section 5 we use these effective limit Theorems to obtain a certain effective conditional local
limit Theorem for the derivative cocycle. This is Theorem 5.4, which is an upgraded version of our
previous result [1, Theorem 3.7] as it is effective (holds with a polynomial rate). Finally, in Sec-
tion 6, we show that all self conformal measures belong to L. To this end we combine Theorem 5.4
with a delicate linerization scheme, and a more robust estimation of certain oscillatory integrals
asin [1, Section 4.2].

Finally, we remark that in the not-conjugate-to-linear case it might be possible to further
upgrade our local limit Theorem 4.1 to hold with an exponential rate of convergence. This would
be an important step towards showing that in this case all self-conformal measures have polyno-
mial Fourier decay. Also, it is possible that Theorem 1.1 is optimal in the Diophantine case, since
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1632 | ALGOM ET AL.

such IFSs may be self-similar, where much less is known regarding polynomial Fourier decay in
concrete cases (though “most” self-similar measures do have polynomial decay as shown in the
afformentioned work of Solomyak [36]).

2 | THE DERIVATIVE COCYCLE AND THE ASSOCIATED TRANSFER
OPERATOR
2.1 | Preliminaries

Fix an orientation preserving C2IFS ® = {fi,-,fntandwrite A ={1,...,n}. Foreveryl <a<n
lett, : AN — AN be the map

(@, w,,...) = (a,w;, w,,...).

Let G to be the free semigroup generated by the family {t, : 1 < a < n}, which acts on AN by
composing the corresponding ¢,’s. We define the derivative cocycle ¢ : G x AN — R via

c(a, ) = —log f(x,). 4
Letp :=SUpeq [If"lle € (0,1), and define a metric on AN via
AN in{n: w,#w),
dy(,0') = prmin{n: wpFwn} (5)
We record the following standard Claim for future use:

Claim 2.1. For every a € A the following statements hold true:

1. The map ¢, is uniformly contracting:

d(14(@), 1,(n)) = pd(w,n).

2. The cocycle c(a, w) is uniformly bounded, Lipschitz in w, with a uniformly bounded Lipschitz
constant as a € A varies.

This is standard, since all the maps in ® are C2 smooth, and since by uniform contraction
0<D :=min{—log|f'(x)| : fe®,xeI}, D' :=max{—log|f'(x)|: fe€d x€eEI}< .
(6)

Next, let H' = H'(p) denote the space of Lipschitz functions A" — C in the metric d,,, and
equip H'! with the norm

w) — o’
lol; = Il + c1(p), where ¢,(¢) = sup lo(@) — ¢(@)|

- = the Lipschitz constant of ¢. (7)
wte Ay (0, @)
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Following Dolgopyat [15, Section 6], for every 6 # 0 we define yet another norm on H' via

_ ¢ (p)
el = max{nqonw 206|9|} ®)

for a constant Cy > 0 whose exact choice will be explained soon.

Next, let p = (p;, ..., p,) be a strictly positive probability vector on A, and let P = p" be the cor-
responding product measure on AN, Note that P is the unique stationary measure corresponding
to the measure 4t 1= Y . 1 P, - Sy, onG.

Definition 2.2. For every 6 € R let P;g : H' — H! denote the transfer operator defined by, for
¢p€H and w € AV,

P(@)(@) = / PO 3, (w))dp(a).

We can now remark that the constant C; > 0 is chosen so that ||P?6||(9) < 1 forall n - see [15,
Proposition 2] for more details.

2.2 | Some properties of the transfer operator

In this Section we recall some properties of the family of operators {P;g}gcr, Working with the
norm (7) on H'. We begin with following standard results:

Theorem 2.3. Suppose ® satisfies the conditions of Theorem 1.1. Let P = p" be a Bernoulli measure
on AN. Then the following properties hold true:

1. [4, Lemma 11.17] P;4 is an analytic function of 6.

2. [4, Lemma 15.1 and Lemma 15.3] The constant function 1 € H' is an isolated and simple eigen-
value of P;,. All other eigenvalues of P;, have absolute value less than 1, and its essential spectrum
is strictly contained inside the unit disc.

Let us take a moment to explain how our setup fits into the more general one outlined in the
work of Benoist-Quint [4]: With the notations of [4, Chapter 11], our acting semigroup is G as in
the beginning of Section 2.1, F is the trivial group (and so is the morphism s), and E is simply taken
to be R. Recalling the definition of the measure u on G from before Definition 2.2, the compact
metric G-space on which G is (u, 1)-contracting is taken to be AN (this follows from Claim 2.1
part (1)), and recall that P is the unique stationary measure. Since y is finitely supported, via
Claim 2.1 part (2) our cocycle c trivially has both finite exponential moment and its Lipschitz
constant has finite moment [4, Eq. (11.14) and (11.15)]. Thus, in our setup [4, Lemmas 11.17, 15.1,
15.3] can all be applied. Now, [4, Lemma 11.17] immediately implies Theorem 2.3 part (1). Since,
by [4, Equation (15.3)] the only eigenfunction of modulus 1 of P;; is 1, [4, Lemma 15.1 and Lemma
15.3] imply Theorem 2.3 part (2).

We proceed to recall some results proved by Benoist-Quint [4] regarding certain contraction
properties of P;,: For every small enough 6 the operator N;; : H! — H' is defined in [4, Lemma
11.18] as an analytic continuation of the operator Ny(¢) = N(¢) = P(¢). Furthermore, N;g is the
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projection onto the one dimensional eigenspace spanned by the eigenvector with the leading
eigenvalue 4,4 of P;5. The local behaviour of 4,4 near 0 plays a crucial role in the analysis of Benoist-
Quint [4, Parts iii and iv], and also in our work.

In the following Proposition we use the standard re-centring trick [4, Equation (3.9)] and
assume

X == [ daw)p@dr@ =0 ©)

Notice that this amounts to changing the cocycle c to a re-centred version ¢ — y, which only adds
a constant phase to Pjg, so it does not affect its norm (note that y equals o, in the notations of [4,
Equation (3.9)]).

Proposition 2.4 (Benoist-Quint). Assume the conditions of Theorem 2.3 hold, and suppose in addi-
tion that @ is either Diophantine or not-conjugate-to-linear. Then we have:

1. [4, Corollary 15.2] Let J C R, be a compact set such that O & J. Then there are n, € Nand C’ €
(0,1) such that

n '
supllPis"Il1 <C' <1
el

2. [4, Lemmas 11.18 and 11.19] For every ¢ > 0 small enough there is some constant C"" € (0,1) such
that

—_C".02.
sup |[PL|l, < 2¢7C" 9",

101€[0,¢]

Here we are using the norm from (7) for the operator norm, as in [4, Chapter 11.3]. Now,
part (1) follows from [4, Corollary 15.2] since our assumptions are known to imply that P;q
does not have an eigenfunction of modulus 1 for 8 # 0: This follows from, for example, [1,
Section 6.1] in the Diophantine case, and from [1, Section 6.4] in the not-conjugate-to-linear
case. To derive part (2) from [4, Lemmas 11.18 and 11.19] we need to explain why here the
variance ry, = ry(p) of the associated Gaussian as in the central limit Theorem [4, Theo-
rem 12.1 part (i)] (see also Section 3) satisfies that r, > 0: Recall that I is an interval such
that every f € @ is a self map of I. We can define a derivative cocycle ¢’ directly on A X I
via

' (i,x) = —log f1(x).

It is well known that having r, = 0 implies that the cocycle ¢’ is C! co-homologous to a constant
(seee.g., [1, Section 6.4] for a very similar argument). This is clearly impossible if @ is Diophantine.
In addition, if ¢’ is C' co-homologous to a constant, then a standard argument shows that @ is
conjugate to linear (in fact, this argument is included in the proof of Claim 2.13 below). Thus, in
our setting r, > 0, and so one may use the Taylor-Young formula for 1,4 obtained via [4, Lemmas
11.18 and 11.19] similarly to, for example, [20, third paragraph in the proof of Theorem 3.7] to derive
part (2) (Note: in that proof 1,4 is denoted by A(¢)).
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2.3 | Contraction properties of P;, for large 0

As in the work of Dolgopyat [15], for every § > 0 and 6 € R let

n(B,0) = B -log|6]].

The following Theorem is the key behind the proof of our effective local limit Theorem with mod-
erate deviations, Theorem 4.1:

Theorem 2.5. Suppose @ satisfies the conditions of Theorem 1.1 and is either Diophantine or not-
conjugate-to-linear. Then there are «t, 3, C > 0 such that for every |6] > 1 we have

(8.6) c
||Pin96 gy <1— B

where the operator norm is taken with respect to the norm || - || ).

The proof of Theorem 2.5 relies on some ideas going back to the work of Dolgopyat [15]. First,
we will need:

Lemma 2.6 [15, Lemma 3]. Let a > 0. If there is some 8 > 0 such that for every 6 with |0| > 1 and
forevery ¢ € H' with ||¢| ey < 1 there exists some w, € AN and 0 < n < 3n(B, 0) such that

1
PL(@)@o)| <1- =0,
11 |Q|a
then there exist 3, C,s. g > 0 such that for every |8] > 1
n(B.6) Cis
1P," e <1 - EES

We remark that o, is related to o and to the entropy of P. Notice that the formal conclusion
of [15, Lemma 3] is different from that of Lemma 2.6. Nonetheless, the conclusion of Lemma 2.6
follows from the proof of [15, Lemma 3] - which is explicitly stated in the argument (for the readers’
convenience we use the same notation a,, Cy5 as in [15]).

Next, we recall what happens if ® fails the conditions of Lemma 2.6. First, we require the fol-
lowing Definition:

Definition 2.7. We say ® has the approximate eigenfunctions (AAE) property if for every ¢, > 0
there are a, § > «, such that one can find arbitrarily large 0 satisfying:
There are @ = ©(6) € Rand H = Hy € H! with |H(w)| = 1 for all w € AV, such that:

1
101«

. n(g,6) i
£(0he ") H(o’n(ﬁ’e)(a))> — e°H(w)| < (10)

and the Lipschitz norm of H satisfies
max{||H||q,c; (H)} < O(|6]).

We remark that the terminology AAE is adopted from [19, Section 4.3.2]. The following Lemma
is proved in [15, Section 8]:
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Lemma 2.8 [15, Lemma 4]. If « > 0 fails the conditions of Lemma 2.6 for every 3 > 0, then there is
some B = B(a) > 0 and a sequence |0),| — co with associated sequences of ©, € R, H, € H' with
|Hy | = 1, such that (10) holds true for all k. Furthermore, 3 can be taken to be arbitrarily large, so if
® fails the conditions of Lemma 2.6 for every a, 8 > 0 then it has the AAE property.

Notice that [15, Lemma 4] is stated in terms of approximate eigenfunctions of iterations of a cer-
tain operator defined in [15, Page 2] - our statement avoids this notation, and follows by unwind-
ing Dolgopyat’s definitions. Next, a-priori [15, Lemma 4] makes a different assumption, about the
norm of the resolvent operator, but for the proof of [15, Lemma 5] (which is the crucial step in the
proof) only [15, Equation (3)] is required - and this is precisely the assumption made in Lemma 2.8.
We remark that Dolgopyat’s extra assumption on the norm of the resolvent operator is required
for his analysis in [15, Section 9], which allows him to upgrade the conclusion of Lemma 2.8 into
having ©® = 0. We do not know if in our setting such a bound on the norm of the resolvent operator
holds true.

2.3.1 | Proof of Theorem 2.5 under the Diophantine condition (2)

We show that if @ satisfies the Diophantine condition (2) then there is some a > 0 that satisfies
the conditions of Lemma 2.6. Thus, via the conclusion of Lemma 2.6, Theorem 2.5 will follow.
Suppose that o > 0 fails the conditions of Lemma 2.6 for every 8 > 0. Then by Lemma 2.8 there
is some B = B(a) > 0 such that we can find a sequence |6, | - oo with associated sequences of
0, € R, H; € H! with |H,| = 1, such that

eiekc<w|n(5,sk),gn(ﬁ,ek)(w)>Hk <O.n(5,9)(w)> _ einH(w) < 1 (11)

< )
|6 |«

Now, for every a € A leta € AN be the constant sequence a. Let x,, be the fixed point of f . It fol-
lows from (11) by plugginginw = a, a € A, thatfor every k there is some y;, € R (that corresponds
to ©y,), such that for m, € Z that may differ between the a’s,

61 - n(B, ) - log | f,(x )| + ¥y = 2rm, + O(16 | ™).

Therefore, for all k we get

inf maxd( -6 - n(B,6;) - log | f1 (x,) + v, >= O(|0I7).

YER aeA

On the other hand, by the Diophantine condition there are #, C > 0 such that for every s € R large
enough in absolute value,

inf maxd s-lo x )|+, —_
Inf maxd(s - log|fy (o)l +, 2) >
Combining the last two displayed equations and using that as k — oo we have |6, | - oo, we

see that a < 7. Therefore, for every a > ¢ there exists some 3 > 0 such that the conditions of
Lemma 2.6 hold true. This completes the proof of Theorem 2.5 in this case.
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LOGARITHMIC FOURIER DECAY FOR SELF CONFORMAL MEASURES 1637

2.3.2 | Proof of Theorem 2.5 assuming @ is not conjugate to linear

We now prove Theorem 2.5 assuming @ is not conjugate to linear. First, we require the following
definition, that is originally due to Chernov [10].

Definition 2.9 [15, Appendix A.1]. The symbolic temporal distance function D : AN x AN x
AN x AN — R is defined by

D¢ ) = lim ((log £}, (x,) = log 1, (x,)) = (log f}, (x.)—log f}, (x,))).

The Euclidean temporal distance function E : AN x AN X I X I — R, where [ is the interval ® is
acting on, is defined by

D(&.¢,x,y) = lim ((log £}, () —log f, (1) — (log f}, (¥)=logf}, ).

Notice that D and E are well defined since ® is uniformly contracting and C2. The following
Theorem is essentially [15, Theorem 6], with some variations similar to [29, Theorem 5.6]. For a
bounded set X C R we denote its lower box dimension by dim X

Theorem 2.10. If ® has the AAE property then dim,D(AN x AN x AN x AY) = 0.

Proof. First, for every n € Nand (£,¢,w,7) € (AN)* we define
D, (§.¢.wm) = (log ], (x) —log fL, (x,)) = (log f}, (x,) = log f, (x,))

and notice that, since p = sup e [/l < 1, we have

D(§,¢,w,m) = Dy(§, ¢, w,m) + O(0").
Combining this with the definition of c,
exp (i6D(§, ¢, @,7)) = exp (i6D,(§,{, @, 7)) + O(] - p")

exp <i6 logféln(xw)> exp (i@ logféln(x,?))
- exp (i@ logféln(x,?)) . exp (i@ 10gf£°|n(xw)>

_ exp 0c((§ln@)ln, " (€ln-)))  exp (i8S ln-Mly> 0" (101
exp (i8c((§1,Mn> ™(€l,m)))  exp (i8c((§l,-@)lys 0"(E15-0)))

+0(16] - p").

+ 06| - p")

Let t, > 0 be fixed, and let , 8 > . Using the AAE property and the equation above, we can
find arbitrarily large 6 and H = Hy € H' as in Definition 2.7 such that we have

H(& gy« Hlngem)

: +0(16]™%) + 0(18] - p" B,
H(l0)m) Hlppe)-©)

exp (i6D(§,¢, w, 7)) =
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Since n(g,0) = [B log |0]], via Lemma 2.8 we may assume f3 is large enough so that we have
161" 79 <7t 1017

Therefore, since |H| = 1 we have

1

H(l,p,6)-@)
‘ . = |H(§|n(5,e)-w) - H(fb(ﬁ,@)-’?)’ < ¢ (H) - dy(Elugo)ns €lngeo)@)

H(&,5,0)M) B

< 0(/61p" %) < o(l81 ™).
Since the same is true for the term corresponding to ¢, it follows that
exp (i8D(§, ¢, w, 7)) — 1| = O(|6]™%)

for arbitrarily large 6 and every (€, 7, w,n). Thus, there is some C = C(a) such that for arbitrarily
large 6,

27 j C 27 j C
D(AN x AN x AN x AN C = _ , =+ )
( U (T~ g o * e

j€z
So,
. 1
dim,(D(AN x AN x AN x AM)) < :
dim;(D( NS o7
The result follows since « can be made arbitrarily large. O

Thus, it is our main task to verify that in the not-conjugate-to-linear setting, the box dimension
appearing in Theorem 2.10 cannot vanish. To this end, we adopt a variant of Naud’s non local
integrability condition [31, Definitions 2.1-2.2]:

Lemma 2.11. If there exist (£,¢,w,7) € (AN)?* such that the function

g I—R, g(x)=E(E.{xx,)

satisfies that g'(x,,) # 0, then dim, D(A™ x AN x AN x AN) > 0.
In particular, ® fails the AAE property.

Proof. The assumption means that there is some n € N such that ¢’ does not vanish on f w|n(K).
This means that ¢’ is bi-Lipschitz on f o}, (K). So,

dimy D(&, ¢, AN, 7) = dimy E(, ¢, K, x,) > dimy E(§,¢, f,,) (K), x,)
= 9(fy,(K)) = dimy K > 0.

The last part of the Lemma now follows via Theorem 2.10. O
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We proceed to prove two Claims that together will allow us to verify the conditions of
Lemma 2.11 in our setting. We follow the general strategy of Avila-Gouézel-Yoccoz [2, Proposi-
tion 7.4], with some modifications due to the possible lack of separation in the IFS.

Claim 2.12. If there exists some ¢ > 0 such that for infinitely many n thereare £ = £(n),{ = {(n) €
AN such that for some x, = x,(n) € K
‘ d

/ !
—(logfy, —logfl, Jxo)| >

then the condition of Lemma 2.11 holds.

Proof. Suppose the condition of Lemma 2.11 fails. Then for every (¢,¢,7) € (AN)? the correspond-
ing function g as in Lemma 2.11 satisfies g’(x) = 0 for every x € K . So, for all x € K and every
n

0=yg'(x)
= lim dd (10 17, 0 - logfgl )
fﬂk -1 f¢|k @1,
2 ° f§|k—1(x) kZ f§|k—1(x)

=%<logf;|n<x>—logfgln<x>>

5 Lo fa @ fl ) 5 o o fo, (-1, ()
+ —_ .
fioofe () Gn Frofan®

k>n

Since sup,e; reo | f,((;c))l = O(1), we obtain

i ro_ 4 — /1 n—1
de<1°gf§|n logfmn)Hw’K—o(fc‘ég”f||oo )-

This contradicts our assumptions. O
Here is the final ingredient in our proof:
Claim 2.13. If the condition in Claim 2.12 fails then ® is C" conjugate to a an IFS ¥ such that
g”(x) = 0forevery x € Ky and g € V.

Proof. Suppose the condition in Claim 2.12 fails. Then for any £, ¢ € AN and any x € K we have

1 4 logfg| (x) = hrn d logfg,| (x). (12)
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1640 | ALGOM ET AL.

Now, fixi € A,and leti € AN be the corresponding o-periodic point. Fix x,, € I. Define a function
@; - I > Rvia

Pi(x) :=limlog f} (x)—logfj (xo)
It is standard that ¢; is C"~1. Now, for every x € I we have

@(fi(x) = limlog ] o f,(x)—log f}, (xo) =1lim Y log f/ o fy,, (x) — log f}, (xo)

Jjsn
= ¢;(x) — log f](x) + log f;(x;).
Therefore, for anyi € A and any x € I,
@i o fi(x) = —log f1(x) + @;(x) + log ! (x;). (13)

Note that we can produce such a function ¢; for every j € A. So, for every j € A we define a
functiond; : I — Rvia

d;(x) = 9, () — ().

By (12) for every x € K we have that ¢/ (x) = qo;.(x) SO d;.(x) = 0forall x € K. Also, using (13), for
anyx €landi € A,

P10 fi(x) =@ 0 fi(x)+d;o fi(x)= —logfl{(x) + @;(x) +d; o fi(x) + logf{(x;)
= —log f1(x) + ¢, (x) — d;(x) + d; o f;(x) + log f](xp).
To conclude, for every i € A the function F; : I — R defined by
Fi(x) :=d; o f;(x) — d;(x) + log f;(x;)
satisfies that

@1 o fi(x) = —log f(x) + ¢;(x) + F;(x) for every x € I, and F/(x) = 0 forallx € K. ~ (14)

Finally, let h : I — R be a C" smooth function that is a primitive of exp(¢,(x)) on I. For every
i € A define a function g; : h(I) — h(I) via

g(x) :=ho fioh™ : h(I) = h(I)

and let ¥ be the IFS consisting of the maps ¢;. Then ¥ is C" conjugate to ®.
We claim that ¥ is a linear IFS. Indeed, by (14), for every i € A and every y € h(I)

g = (hofioh™) )

R (frohT ) - £ o)
- ()
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LOGARITHMIC FOURIER DECAY FOR SELF CONFORMAL MEASURES 1641

=exp (@ 0 fioh™' (W) +log(fl o h™'(¥)) — @, 0 K7 ()
= exp (F; o k().

Therefore, for every y € h(K) we have
9'®) =F()- () ) exp (Fio h™' () =0
as F] vanishes on K by (14). Since h(K) is the attractor of W, the proof is complete. O

Proof of Theorem 2.5. We show that in the not-conjugate-to-linear setting there is some « > 0 that
satisfies the conditions of Lemma 2.6. Thus, via the conclusion of Lemma 2.6, Theorem 2.5 will
follow. Indeed, if this is not the case then by Lemma 2.8 ® has the AAE property. However, since
® assumed not to be conjugate to linear, by Claim 2.13 the condition in Claim 2.12 holds true. This
in turn implies that the the condition of Lemma 2.11 holds true. But by Lemma 2.11 ® cannot have
the AAE property. This is a contradiction. The Theorem is proved. [

3 | AN EFFECTIVE CENTRAL LIMIT THEOREM FOR THE
DERIVATIVE COCYCLE

Let P = p" be a Bernoulli measure on A", and keep the notations and assumptions as in Section 2.
In this Section we discuss an effective version of the central limit Theorem for a certain random
walk driven by the derivative cocycle (4). This random walk is defined as follows: Denoting by
o : AN — AN the left shift, for every n € N we define a function on AN via

Sn(a)) =- log f;|"(xcr”(cu))' 15)
Let X; : AN — R be the random variable
X, (@) 1= c(w;,0(w) = — logfc’u1 (X)) (16)

and note that our assumptions on ® imply that X; € H'. Next, for every integer n > 1 we define

X, () = —logfc’un (xan(xw)> =X, 00" L

Let x be the law of the random variable X,. Then for every n, X,, ~ x. By uniform contraction
there exists D, D’ € R as in (6), so x € P([D, D']). In particular, the support of x is bounded away
from 0. It is easy to see that for every n € N and w € AN we have

Sp(@) =) X,(w).

i=1

Thus, in this sense S,, is a random walk.
We proceed to state a version of the central limit Theorem for the random walk S,,: For r > 0 let
N(0, r?) be the distribution of a Gaussian random variable with 0 mean and variance r2. Also, for
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1642 | ALGOM ET AL.

any Bernoulli measure P on AN recall that we write y = Xp = f c(a,w)dp(a)dP(w). The Berry-
Esseen type central limit Theorem we now state follows from a standard application of the Nagaev-
Guivarc’h method as presented in the work of Gouézel [20]:

Theorem 3.1 [20, Theorem 3.7]. Suppose ® satisfies the conditions of Theorem 1.1 and is either
Diophantine or not-conjugate-to-linear. Let P = p" be a Bernoulli measure on AN. Then there exists

somery = ry(p) > 0 such that
n2

where (N(O, ré) < z) stands for the probability that N(0, ré) is less than z.

S, —ny
Pl 2—%=<z)-(NOr>)<z
(x/ﬁ >( 02

sup
zZ

To explain how the setup of Theorem 3.1 fits into the conditions of [20, Theorem 3.7], we note
that since c is a cocycle, for every 6 the constant function 1 € H' satisfies

B9 ) = E(PLD)).

This confirms the coding assumption in [20, Theorem 2.4]. The other assumptions of [20, Theorem
2.4] and [20, Theorem 3.7] follow directly from Theorem 2.3 and Proposition 2.4 part (2) (where
it is explained why here r; > 0).

Finally, we remark that the very recent works of Fernando-Liverani [18] and Cuny-Dedecker-
Merlevede [11] are closely related to this. We refer the reader to [18, 19] for an exhaustive bibliog-
raphy of some further related results.

4 | AN EFFECTIVE LOCAL LIMIT THEOREM WITH MODERATE
DEVIATIONS

Let P = p" be a Bernoulli measure on A", and keep the notations and assumptions as in Sec-
tion 2. For every n € N and w € AN consider the distribution of the centred n-step random walk
driven by c that starts from w. This distribution is given by a measure u, , on R such that, for
XCR

My o(X) = / 1(c(a,w) — ny)dp™(a)

where, as in Section 3, y is the Lyapunov exponent. Let G,, be the density of the n-fold convolution
of the Gaussian N*"(0, rg) with ry as in Theorem 3.1. That is,

2,2

'r()

e_ 2n

U

, forv e R.

G,(v) =
2nn
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LOGARITHMIC FOURIER DECAY FOR SELF CONFORMAL MEASURES | 1643

The following local limit Theorem is one of the main keys behind the proof of Theorem 1.1. It is
an effective version of a local limit Theorem with moderate deviations due to Benoist-Quint [4,
Theorem 16.1]. Recall that A denotes the Lebesgue measure on R.

Theorem 4.1. Suppose ® satisfies the conditions of Theorem 1.1 and is either Diophantine or not-
conjugate-to-linear. Then for every R > 0 there is some § = 6(p, R) > 0 such that for every bounded
interval C C R

sup {

Here by O A(C)(%) we mean that the multiplicative constant inside the big-O depends on 1(C),
but we do note that it also depends on other universal multiplicative factors and on p. We do
not attempt to give more specific quantitative estimates of the rate, although this is possible. This
result may be extended to other cocycles taking values in vector spaces over R subject to certain
contraction and moment conditions, along with conditions ensuring that the transfer operator
contracts fast enough for large frequencies (as in Theorem 2.5). Also, similarly to, for example,
[4, Proposition 16.6] Theorem 4.1 may be adapted to work with a target. However, having the
Fourier decay result Theorem 1.1 in our sights, we do not study these more general situations
here.

The scheme of proof of Theorem 4.1 is modelled after the proof of Benoist-Quint’s local limit
Theorem [4, Theorem 16.1], which is essentially the same as Theorem 4.1 but without an explicit
rate of decay. The proof of Benoist-Quint roughly follows three main steps: First, they prove a ver-
sion with the interval C replaced by certain smooth functions on R [4, Lemma 16.11]. Secondly,
they prove that the indicator function 1. admits “good” approximations via such smooth func-

tions [4, Lemma 16.13]. The third and final step is an estimation of % for moderately large

:un,a)(C + vn)

—A0O)| : we AN, |v,| < V/Rnlogn » = O/l(C)(i)’ asn — co.
G,(v,) nd

v, € R using the previous two steps.

Thus, we will show that the conditions of Theorem 4.1 yield an effective version of [4, Lemma
16.11], the local limit Theorem for smooth functions. Section 4.1, that contains this result, crit-
ically relies on Theorem 2.5 to derive certain estimates on an integral that arises from Fourier
inversion. This is inspired by the work of Breuillard [8, Lemme 3.1], and is related to the analysis
of Fernando-Liverani [18, Theorem 2.4]. Then, in Section 4.2, we show that the proof of [4, Lemma
16.13] actually yields a polynomial error term. We then combine these into a proof of Theorem 4.1
in Section 4.3, following along the lines of [4, Eq. (16.21) and (16.23)].

From this point forward, we use the standard re-centring trick as in (9) and assume y = 0. This
will make our computation a bit simpler. Notice that this amounts to changing the cocycle c to a
re-centred version ¢ — ny, which is precisely how the distributions y,, ,, are defined. From now
on, this will be our cocycle.

4.1 | Effective local limit theorem for smooth functions
We proceed to prove a version of our effective local limit Theorem for certain smooth functions.

This is in accordance with the strategy of Benoist-Quint [4, Section 16.2], but via Theorem 2.5 and
ideas going back to Breuillard [8] and Stone [37] we make this Theorem effective.
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1644 | ALGOM ET AL.

Fix a non-negative Schwartz function « on R such that A(a) = 1, | |||, < 1, and & has compact
support, as in [4, Definition 16.8 and Remark 16.9]. For every € > 0 we define

1
o, (v) 1= —a(2).
€ €
Fix a bounded interval C and define
bec®) i= [ e - wdiw) = @) 1c
which is still a non-negative Schwartz function [4, Page 268]. For f € CK(R) let

ck( )= max || f () |l;1, and (even for more general functions) f© = / e 0% fo)dx

and note that for every integer k > 1

el <A©), Ieclle < X2, @0 <40 M) < <§> )

Recall the notations y,, ,,, G,, introduced before Theorem 4.1. The following is an effective version
of [4, Lemma 16.11]:

Theorem 4.2. Let ® be as in Theorem 4.1 and let P = p" be a Bernoulli measure. Let £ = a + 1,
where o is as in Theorem 2.5.

Then for every r > 2 there exists § = 8(r) > 0 such that, settingk = [£ - r + 2], for every e > 0 we
have

SUp |ty (Pec) = AW - Gy)| < OA(C)( : ) Aec -G )+ OA(C)( L )

weAN 2

Notice that in Theorem 4.2 the dependence on ¢ is explicit in the second error term - this will be
important later on. Also, here the sequence ¢,, as in [4, Lemma 16.11] is the polynomially decaying
sequence OMC)(H%). We can, in fact, indicate a more precise rate - see (21) below.

To prove Theorem 4.2 we utilize Theorem 2.5 and Proposition 2.4 to establish Theorem 4.4, a
Breuillard [8, Lemme 3.1] type estimate on large frequencies of an integral that arises via Fourier
inversion on , ,, (3. ). In Section 4.1.2 we show how to derive Theorem 4.2 from this estimate.

4.1.1 | A Breuillard type estimate
We begin by deriving the following Corollary from Theorem 2.5:

Corollary 4.3. Let o, 3,C > 0 be as in Theorem 2.5. If |6] > 1 and n € N satisfy

n>log||-p-2.
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Then

ncC

IIPL(Dle < e BFT,

Proof. Let n, = [B - log|0]]. First, for every k € N and |6| > 1 we have by Theorem 2.5

c \* _ck
||Pl- (1)||(e) ||P ||(9) 11l < <1_W> -1<ge 7,

Note that in [15, Section 6] the choice of C; > 0 as in (8) is made so that for every r € N,
[1Pll) < 1
Now, write n = k - n, + r where k = [ni]. Via the last two displayed equations we see that
0

—n

[P (Dl < 1Py < 1P} Dl < T < offeT
where in the last inequality we use that |8] > 1. I

Our analysis now allows to estimate one crucial quantity that will come up in the proof of
Theorem 4.2. We retain the assumption that the cocycle c is already re-centred, so that (9) holds.
The following Theorem is inspired by the work of Breuillard [8, Lemme 3.1] - in fact, it is essentially
[8, Lemme 3.1] put in our setting.

Theorem 4.4. Letr > 0 and ¢’ = a + 1 where « is as in Theorem 2.5. Then there is a constant
D(r,p) > 0 such that for every D > D(r, p) we have

f©®) - PL(1)(@)db = C*(f) - o, (18)

/|6|>\/D‘Z
uniformly inw € {1,..,n}N and f € C* such that C*(f) < coandk > ¢' -r + 1

The proof of Theorem 4.4 follows by mimicking the proof of [8, Lemme 3.1]: First, the role of
f(x)in [8]is replaced by P;g(w) here. Secondly, the estimate of Corollary 4.3 replaces the estimate
|(x)| < exp(—C/|x|") as in [8]. Finally, we remark that the estimates of Proposition 2.4 are used
to obtain an analogue of [8, first equation in the proof of Lemme 3.1]. With these observations in
hand, Theorem 4.4 follows readily from the proof of [8, Lemme 3.1].

4.1.2 | Proofof Theorem 4.2

Recall the family of operators {N,o} discussed in and before Proposition 2.4. We will require the
following asymptotic expansion result from [4].

Lemma 4.5 [4, Lemma 16.12]. Let r > 2. There are polynomial functions A; on R, 0<i<r—1
with degree at most 3i and no constant term for i > 0, with values in the space L(H") of bounded
endomorphisms of H' such that:
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Forany M > 0, uniformly in © € Rwith |6] < \/M logn and ¢ € H' we have Ay(0)p = Ny and
in H'

esz 2 —l\/—G)( ln o Q= < Ai(?)@ <(log n) |§0|1>

\[ \F i=0 n2 nz

Proof of Theorem 4.2. Recall that we are using the re-centred cocycle, so that
X = /c(a, w)dp(a)dP(w) =
Fix w € AVN. By Fourier inversion [4, Equation (16.13)] we have
I, 1= 27y (e ) = / Do c(OVFo(1,,)(0)dO = / Pe c(OPT (1)(w)de.

We will decompose I, as I, = I + I? + I'. Note that unlike [4, Page 266] we have no need for I,
but we keep the notation to make the comparison with [4] easier for the reader.
First, let T > 0 and define

Ii :=/ ogn gbec(@)P (1)(w)db.
1812>T
If T > D as in Theorem 4.4 then by (17)
AlC
|If,| =Ck(1’be,C) (_) O< (k)> r’
€ n

Next, appealing to [4, Lemma 11.18] there is some § € (0, 1) such that in a small neighbourhood
of 0, P;g — 19N has spectral radius < d. So, via (17), as long as n is large enough,

Ii = /|;|2 T logn @(9) (P:le - A?GNIQ)(I)(w)de = Ol(c)(an)
It remains to control

I = /| o P c(OALN 5(1)(w)d6.

By Lemma 4.5, since y = 0 we have via (17)

r+l

1G6)- A(\/no log? 2
Ii - ‘/|9|2<Tlogn C(a) Z ( ) (\/_ ) (w)de+o/1(C) < Oi n>

where

G,(6) =e ~z = The Fourier transform of the Gaussian function G,.
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Since for every 0 < i < r — 1 A; has degree < 3i we get

_G(6)- A(V/nO)1(w) logn’s
/| . : 40 =00\ —mm |-

nz n_2

So, choosing T > 1 we find that

rl/\

I, —/zpec(e) e

Now, for every 0 < i < r — 1 there exists a polynomial function B; on R with values in H! such
that deg(B;) < 3i and for every w € AN the function on R given by

G.(0)- A(\/_ O 1 e, < 1 > (19)

n2 n2

26 r202

2 A(O1(w) =e"

0 2 A(0)

is the Fourier transform of the function on R given by

v = G(V)B;(v)(w).

So, by (19) and Fourier inversion

r-1 Bi(—=)(w) 1 1
1n=277.'/‘l/)€C(U) G (U)Z—d/‘l(v)-i' O/l(C)<_£> (20)
R

=0 n2 n2

Next, forevery0 <i<r—1,

B/(-2)(w)
/ P () - Gn(v>—f dA(v) = ( g’ﬁ >||¢e,c||oo
|v|2=Tnlogn l’lT

nz

1 3i+1
<1.O<%><%.O<#>
€ nz € nz

and since 9. . is non-negative,

/

Bi(—=)(w)
\/_ dA(v) = O (logn

n:2

/ Yec®) - Gu0)—L— >A(¢ec G).
|v|2<Tnlogn

So, choosing T >> 1 the leading term in (20) is the one with i = 0. Since A,(6) = N and Ny =
P(¢) for all ¢, we get By(v)(w) = P(1) = 1, so that

nZ

3(r—1)

logn 1 1
I, = 271'/1(1#(_;,(; : Gn) + /1(¢e,c : Gn)o g + e_ko/l(C) <_K> . (21)

1
2 n2

n

Recalling the definition of I,,, the Theorem follows. O
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4.2 | Approximation of C by a smooth function

The following Lemma allows us to relate the quantities as in Theorem 4.2 to those appearing in
Theorem 4.1. Both the statement and the proof are not much different than [4, Lemma 16.13]; our
modest contribution is to notice that the proof given in [4] can be made effective. We keep the
notation . - as in the previous Sections.

Lemma 4.6. Let R > 0 be fixed. Then there is some 8" = §""(R) > 0 such that

A -G
sup{’(gbeg;(v)") —AO)| : we AN, |v] < y/Rnlogn, ¢ € (0,1)} =0( }3")‘
n\v n

Proof. Fixn > 1,v € Rwith |v] < y/Rnlogn and € € (0,1). Let

. Aecvv - Gn) _ Aecro - Gn)
Jn .—W—A(C)— Gn(U) —/1(C+U).

Since 4 is translation invariant and A(e,) = 1 we get

Jp = / o (W)lep,(w' — w)(Gn(w’) ) dAW)dAW).
RXR G”(U)
We decompose this as a sum J,, = J} + JZ with
1 _ r_ Gn(w’) _ ,
J, = /|w|<n3t ae(w)ley (W —w)( G, 1) dA(w)dA(w’).
2 = r_ Gn(wl) _ ,
J, = /|w|>n}x a(w)ley,(w —w)( G, 1) dA(w)dA(w").

Bounding Jrll: Here, for w, w’ such that w’ — v € C + w we have,

w' —v = ¢+ w, where |[w|| < n'/*, c € C, and |v| < v/Rnlogn

so,
1 1/2
w —v|=0(n3), and|v+uw'|= O((nlogn) / )
Therefore,
5
(v +w)( —w)| = o(ns).

Finally,

G w/ r2-(v+w’)(u—w’) 1

S e S =0

G,(v)

1
and so J}l = 0O(n"5). Here, we use that f a.(x)dx = 1. Notice: the norm of «, does not affect
this term.
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Bounding J2: First, since |v| < y/Rnlogn we obtain

2

G ! r2v
”(w)gegn <n
Gp(v)

Next, since « is a Schwartz function there is some Cy = Cqy(«) such that

()] < 2
sup |a(x)|]  —————.
XEE (1 + |x|)4R+1
So,
P<niaC+o) | awdiw)<n:i©) [, a(x)dx
|wlzn3 [x|>n%

<0 £ I R— —
< A(c><"2>‘n(4R_1+1)/4‘ AO\ yr/2 )

this decays polynomially.
Combining the bounds for J} and J2, we are done. O

Notice that the implicit constant in the O;((-) above also depends on . However, in practice
we will always use the same «, so this is indeed a universal bound.

4.3 | Proof of Theorem 4.1

FixR > Oandletr > 3 + Randletk = k(r, ) be asin Theorem 4.2. From now on we fix a Schwartz
function « that satisfies

/ | a(w)dA(w) < n"F.
|w|>n2k

For example, this holds for a(x) = e=*"/2, We proceed to combine our previous work to obtain
Theorem 4.1.

Lemma 4.7 (Upper bound). There is some &, > 0 such that

Mno(C +0) N 1
—_— < < — )
sup{ XO) we A, |v]| < VRnlogn /1(C+v)+O(n50)

The proofis based on [4, Proof of Eq. (16.21)], which with our previous analysis is made effective:
1
Proof. Let n € N and notice that for every w € R with |[w| < n™ 2k we have

1
C C C + By(n %) + w, where B(e) is the open ball about 0 of radius e > 0.
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1650 | ALGOM ET AL.

_1 1
Denote C* *) := C + By(n~ ). So, since we also have for every € > 0
o) = [ 3@t o(C + w)dAw) 22)
R

1
Plugging in € = n~ & we obtain

(1= 17F) « o (C +0) < i <¢ 23)

1 _1 > .
n k,ctn 2K) 4y
We also recall that

1 LR
G, < @r)inz .

Applying successively (23), Theorem 4.2, Lemma 4.6 we see that:

1
M o(C +0) < 1 lun’w<¢n_li,c("_2k)+v>
G,0) i G,(®)
k
A 1 GY+0(F) AW 1, -GYnk-0(E)
< n_ k,cln 2k)4y n n kol 2K 4y n2
h G,(v)
1
X _1
l1—n «

/A

L (Petabn % s
1 . n ,C! +v +O<—5> +O<n1+T . _r>
l—n% G,(v) n n:

IN
(=Y
|
S} =
==
N
N
N
Q
S
S
+
N————
+
o
VR
S
03 —
N————
+
o
N
=m|*—‘
N——
+
Qo
/N
S
w
+
hlé
N
N——

/A
ot
|
= —
-
/N
B
a
+
Qo
/N
3 |H
R
~
+
o
N
=
o[
N———
+
o
N
3|
~—
+
Qo
VS
S
P
(S]]
T
N———"
"

(o) o) o) ()

By the choice of r we are done. O
The lower bound is an effective analogue of [4, Proof of Eq. (16.23)]:

Lemma 4.8 (Lower bound). There is some §; > 0 such that

C+v
inf{M twe AV, |u] € \/Rnlogn} >/1(C+v)—0<%>.
nei

Gy (v)
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LOGARITHMIC FOURIER DECAY FOR SELF CONFORMAL MEASURES 1651

1
Proof. Let n € N and notice that for every w € R with |[w| < n™ 2k we have

ﬂ C-u)y+wcCC.

1
u€By(n 2k)

1
LetC = C — u). Plugging ¢ = n™ k into (22) we have
e ﬂueBO(n’i)( ). Plugging (22)
Ho(C +0) > / Lo @o(C 1+ U+ w)dAW) 24)
’ lwign 2k n k T X&)

> -K!'-K? 25
Mo wn_%’c L +v n n ( )
(n 2k)

where
Krllz/ L (€ 1+ v+ w)dA(w)
n_ﬁ<|w|gnz n k ’ (n 2k)

K= [ @€y o+ udiw)
|lwjznd n k ’ (n 2k)

First, via the upper bound from Lemma 4.7 and the proof of Lemma 4.6 we get

Ki G,(v+w) 1
G S /n;kwnz R N OR <A<C +ot+w)+ O(E))dﬂw)

</ .« _l(w)<1+o(il>>-</1(0+v+w)+o<ig>>d/1(w)
n kgw|snd 1ok ns neo
< <1+O(Ll>>- </1(C)+O<i5>> -n‘%.

ne n-o

Secondly, since |v| < y/Rnlogn then as in the second part of the proof of Lemma 4.6

K 5/ (W)dA(w) B/ ()cu(>0<1)
<n2 (04 w w)=n: al(w w) = — ).
Gn(v) IwIZn% n_% lezn%r% nk/2

Applying successively (24), Theorem 4.2, Lemma 4.6 we get

M0 1/’ -1 _K,}l _Ki
, e
/,tnw(C+v) S " (n_i)ﬂ)
G,(v) ~ Gp(v)
1 k 1
A Go-0(%) 14 _, G,) - nt o(—,)
n k,C 1 n C 1 +U n2
S (n 2k) (n 2K)
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1652 ALGOM ET AL.

1 _1

ZAC/ Y - Gp)

n k,C 1 +v

(niﬁ) 1 34R 1
> _O<_> _O<n o 5 >
G,(v) né n2

1 _1

1 1 34R-r 1 _1
>/1(C)+O<W>+o<$>+o(n p )—O<W>—O(n 0.

By the choice of r we are done. [l

Via Lemma 4.8 and Lemma 4.7 the proof of Theorem 4.1 is complete.

5 | AN EFFECTIVE CONDITIONAL LOCAL LIMIT THEOREM FOR
SMOOTH FUNCTIONS

Let @ be an IFS as in Theorem 1.1 that is either Diophantine or not-conjugate-to-linear. Let P = p"
be a Bernoulli measure on .A". In this Section we prove Theorem 5.4, a conditional local limit
Theorem which will be the key behind the proof of Theorem 1.1. This is an effective version of [1,
Theorem 3.7], and is proved via the effective local limit Theorem 4.1 and the effective central limit
Theorem 3.1 that we previously discussed.

We first define the following function on .AN. Though it resembles one, it is not a stopping time:
Recalling (15), we let

Ti(w) :=min{n : S,(w) > kx}.
Note that we allow k to take positive non-integer values. We also recall that y is the corresponding

Lyapunov exponent.
Recalling (6), it is clear that for every k > 0 and w € AN we have

—log |f:o|rk(m)(ngk(w)(w))| = Srk(w)(w) € [kx,kx + D,]-
Next, we introduce some partitions of the space 4", that are modelled after [1, Definition 3.3]:

Definition 5.1. Given a finite word 7’ = (7],...,7),) € A”:

1. Denote by A,, C AN the set of infinite words that begin with 7/,

Ay i=fo: (@,...,0,)=7}
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2. We define the event

Ay ={o: @ w)eAa,l
3. Given k,h’ > 0 we denote by AQ’ the finite partition of AN according to the map

[Il:’(w) - lh’ (O.Tk(cu)—l(w)>
where

(") = 7, (), Where #,(n) = min{n : —log max |f}, () > h- x}.

Note that every cell of the partition AZ/ isof the form 4, ,,. Givenk, K > 0andw € AN we write
AZ'(@) for the unique AZ’ cell that contains w. For P-a.e. w, we denote the conditional measure
of P on the corresponding cell by P Recall that A is the Lebesgue measure on R, and that X,

is defined in (16).

AZ/ (@)’

Definition 5.2. Let k € N and let ' € A* be a finite word. Assuming P(Ay,y) > 0, we define a
probability measure I'y , on [ky,kx + D'] by

fA,,, iy, ky+x, (@) AP(@")
/An’ X, (") dP(w’)

r Ay =

The following Lemma is straightforward:

Lemma 5.3 [1, Lemma 3.5]. If P(A /) > O then T g < Alkyky+p'] With a density that depends

only on P, such that its norm is bounded above by % independently of k and n’

We now state an effective version of our previous conditional local limit Theorem [1, Theorem
3.7]. Its effectiveness is what will ultimately allow us to obtain the rate of decay for 7, (v), where v
is the projection of P to the fractal (the corresponding self-conformal measure). The idea behind it
is to describe some local limit like phenomenon for the random variable S; , and this is achieved

subordinate to the partitions AZ'. We also note that the 4’ partin AZ, is useful for the linearization
argument outlined in Section 6.2.

Theorem 5.4. If ® satisfies the conditions of Theorem 1.1 and is either Diophantine or not-conjugate-
to-linear, then there exists some 8, = 6,(p) > 0 such that:
For every k, W' > 0 there exists a subset Zfﬁl C AN such that:
() PN >1- o<k%>.
1
(ii) forall§ € A, P(AL (&) > 0.
(iii) forall€ € ZZ, and for any sub-interval J C [ky,ky + D'],

1
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All big-O terms should be understood to depend on p. There are two main differences between
Theorem 5.4 and [1, Theorem 3.7]: The most substantial one is that the error terms are explicit
and polynomial in k. The second one is that in [1, Theorem 3.7] we work inside cylinders to get
pointwise normality (which requires more parameters), but here we only care about Fourier decay
which allows us to make the statement simpler.

The proof of Theorem 5.4 is similar to that of Theorem [1, Theorem 3.7]. Let us now explain
how the quantitative estimates we previously obtained can be used to make [1, Proof of Theorem
3.7] effective:

For every k we define the interval

I = [k — v/klogk,k + v/klogk]. (26)

The proof of Theorem 5.4 relies on a decomposition of the left hand side in (iii) as

PA;;’(g)(ka eJ) =y PAZ,@)(S“ el =m+ 1) + ) PAQ’(g)(STk el =m+ 1)
mEI mely

27)
Both terms are respectively treated by Proposition 5.5 and Proposition 5.6 below, and the The-
orem follows. First, we have:

Proposition 5.5. There exists a set A such that claims (i) and (i) hold and for all £ € A,

1
ka

Notice that we are using the abbreviated notation A instead of ﬁ;{". Proposition 5.6 is an effective
version of [1, Proposition 3.12]. The key to the proof is showing that

1
P(r,—1¢I.)=0( — ). (28)

Indeed, once (28) is established, the result follows by an application of Markov’s inequality, simi-
larly to the end of the proof of [1, Proposition 3.12]. The proof of (28) is rather straightforward and
is essentially the same as the proof of [1, Eq. (15)]. The latter proof can now be made effective by
replacing the use of the non-effective central limit Theorem [4, Theorem 12.1] with the effective
Theorem 3.1.

The second term in (27) is treated in the following Proposition:

Proposition 5.6. Under the assumptions of Theorem 5.4, there is some &, > 0 such that for all £ in
the set A from Proposition 5.5,

1

melj

This is an effective version of [1, Proposition 3.13]. Let us explain how, via Theorem 4.1, [1,
Proof of Proposition 3.13] can be made effective. Let ' be the finite word such that AZ’ (§) = Ay
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Write

Z P (5 el t m+1> ZmETkP<SrkEJ’Tk=m+1,COGAkJI,>
n » Tk = — .
mely Ay O\ 7k P(Ak,n,)

As shown in [1, Proof of Proposition 3.13], each summand in the numerator can be written as
[FD<STk (S ], Ty =m + 1, w e Ak,r]’) = / Pa—m({wl}) (Sm S Jw,> dP(CU’),
Ay
n

where the interval J%' is defined by
T = [y = X,(@'), k) n (T =X, (@)).

Note that J%" also depends on k, but we suppress this in our notation. Let a,, ;. be the left endpoint
of J*'. We now slightly change our notation:

We write G(-) for the density of the Gaussian random variable N(0, $2).

By Theorem 4.1, we have for every «’, using that m € I, so lay ) —mx| < 8yy/m logm,

’ , 1
Poniory (Sn €9) = 6. @ =) <A<Jw )+ O<ﬁ>>

Using that m € I;, and applying [1, Lemma 3.14], there is some &’ such that

Ponory(Sm €% ) = G g, (m =k +B)0)- (A(Jw’) ¥ o%)) 29)

for all o’ €Ay, melandf e [0,1) as k = oo.

From here, one simply swaps [1, Equation (20)] for (29), and essentially the same proof given
for [1, Proposition 3.13]) yields Proposition 5.6.

6 | PROOF OF THEOREM 1.1
In this Section we prove Theorem 1.1. Fix an IFS @ as in Theorem 1.1 that is either Diophantine or
not-conjugate-to-linear, and let P = p" be a Bernoulli measure on AN. As in [1], we first require

a preliminary step - an adaptation of Theorem 5.4 to Fourier modes. This is the content of the
following Section.

6.1 | Application of Theorem 5.4 to Fourier modes

Fix a Borel probability measure p € P(R). For every g € R we define a function g, , : R - Rvia

2
gq’p(t) = ’Fq(Me_tp)| , where for any s, x € R, M(x) :=s-x.
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The following is a version of Theorem 5.4 for Fourier modes instead of intervals:
Theorem 6.1. Fix parameters q,k,h’ withk,h’,|q| > 0, and let p € P(R) be a measure such that
diam(supp(p)) = O(e ™" %).

Then for every & € EZ’ c AN, for &y > 0 as in Theorem 5.4, we have

2 —(k+h)xy2 1
<ol —=—— — ).
< O<qe_(k+h,)x + (qe )

ky+D’
Ear |90 (5,)] - /kx 9a.,p (AT (%) 1o

This is an analogue of [1, Theorem 4.1]. The main difference is that we swap the o), term in [,
Theorem 4.1], which is the non-effective rate at which [1, Theorem 3.7] holds, for a more explicit
bound in terms of our parameters and the effective rate at which Theorem 5.4 holds. To sketch
the proof, note that the Lipschitz norm of the function

t € lkx,kx +D'] = gq (1)

is 4rge—** . diam(supp(p)). This allows for the construction of a O( . L__)-approximating step-

e—(k+h")x
function on this interval in the sup-norm, with (qe‘(k””)}f )?-steps. Each step corresponds to an
indicator function of some sub-interval of [k y, ky + D’], where Theorem 5.4 holds with a uniform
rate of O(k=%). This implies the Theorem. For a detailed outline of this sketch, see [1, Proof of
Theorem 4.1].

6.2 | Collecting error terms

Let v be the self-conformal measure that arises by projecting P to the fractal K. Fix parameters
g, k, W’ where g will be the frequency of the Fourier transform of v, and k, h’ positive numbers that
will depend on g. In this Section we will bound 7, (v) via a sum of certain error terms that depend
variously on |g|,k, h’. These error terms will arise from three main sources: Linearization, the
local limit Theorem, and an oscillatory integral. This is analogues to [1, Section 4.2], so we exclude
some of the proofs (but we will indicate exactly what we are using from [1]). For brevity, let A be
the set ZZ’ as in Theorem 5.4 for our parameters. The most technically involved estimate arises
from a linearization scheme, whose outcome is summarized in the following Theorem. Here, and
throughout this Section, all big-O terms should be understood to depend on P and ®. For every
s, x € R we denote the scaling map by M (x) := s - x, and recall that ® is C" smooth, r > 2.

Theorem 6.2 (Linearization). There is some integer P > 1 such that for any 8 € (0, 1),

2
o < 3 [ e

lpl<2P

1 —(k+h)y—B-W
+o<_1>+o(|q|.e (k+h")x—B x)’

k3

2
Fo(M s, e 0 iy 0 fo)| PO
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Wwhere:

1. Forevery & € A then' inside the integral corresponds to the cell AZ’(&' ) =Apy-
2. For every ' we definen’ :=1'|,s_p, the prefix of )’ of length |n'| — P
3. There is a global constant C' > 1 such that for all ' and p as above,

((£500,) @ =0 (e7#7), vxer.

Proof. Thisisacombination of [1, Lemma 4.3, Lemma 4.4, Claim 4.5, and Corollary 4.6], and since
® is assumed to be orientation preserving. O

Now, fix some p with |p| < 2P and consider the corresponding term in Theorem 6.2,

E W
/ge i A©

We now appeal to the local limit Theorem 6.1 for every event Aﬁ’(f ) separately. To do this, we
notice that by Theorem 6.2, for every f,; o f,, involved

2
dp(§).

Fq (Mefsrk(w)(w) ° f77_' © va>

diam(supp(fn—, o fpv)) =0(e7 "),

Notice that the error term in Theorem 6.1 is O(Th,))( + (|q|e_(k+h x ) —) independently of
the event AZ (&). So,

/§ €A, [EAZ/(%’ )
k)(+D’
i

2 —ke+h)y2 1
of ——= (k+h")xy" =
<|q|e—<k+h'>x +(late e

Since this is true for every p with |p| < 2P, combining with Theorem 6.2 we see that

kyx+D’
| ( ) /eA/
|o|<2P § k

2 / 21 ! !
+0 —2 4 (qle-trx _)+o )
<|q|e—<k+h’>x (Iql ) P " Iq| -e

Recall that by Lemma 5.3, the probability measure T’

2
dp(§)

Fy <Me_sfk(w)(°’) ofyo fpv)

2
e o fy o fov)| dr 01 AP(E)

2
M, o fn’/ o fpv> drAZ,@)(x)dP(g)

AP () is absolutely continuous with respect
k

to the Lebesgue measure on [ky, ky + D’], such that the norm of its density function is uniformly
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bounded by % > 0 independently of all parameters. Using this fact, we obtain

5 ky+D’
|Fq(y)' ) |p|§2p /564»7 </’<X

2 _ N2 1 1 _ Ny Ry
+0| ———+ e (k+h")x —>+O — +O< -e (k+n")x ﬁ’-h}()_
<|q|e—<k+h’>x (lal ") +ol ) ol

2

Fo(Mes o f0 f,v) .ll)dz>dum(§)

This leads us to the last error term, that comes from the sum of the oscillatory integrals as in the
equation above:

Proposition 6.3 (Oscillatory integral). For every |p| < 2P, & € A, and every r > 0 we have

kyx+D’
/kx

Proof. This follows from Hochman’s Lemma [21, Lemma 3.2] about the average of the Fourier
transform of scaled measures. Here we are using it in the form [1, Lemma 2.6], and are also making
use of the fact that there is a global constant C’ > 1 such that for all ’ and p as above,

2

Fo(Meo f01,v) sup (B, () )

1 1
—dz<O| ——
D z <r|q|e—(k+h')){

(£508,) I =00 (e7), vxel

which follows from Theorem 6.2. See [1, Pages 41-42] for more details. O

6.3 | Conclusion of the proof

Following the argument in Section 6.2, we bounded |T’q(1/)|2 by the sum of the following terms.
Every term is bounded with dependence on the Bernoulli measure P = p" and some fixed g €
(0,1). For simplicity, we ignore global multiplicative constants, so we omit the big-O notation.
Recall that §, > 0 is as in Theorem 5.4:

Linearization - Theorem 6.2:

|q|e—(k+h’)xe—ﬁh'}(;
Local limit Theorem - The discussion in between Theorem 6.2 and Proposition 6.3:

2 ~(k+h")yy? L
————— +(|qle —;
s (Iq1 ) 5,

Oscillatory integral: Via Proposition 6.3, for every r > 0,

1

_— B.(»)).
Flale—tery T SuP v(B,()
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Choice of parameters: For |q| large we choose k = k(|q|) and b/ = \/E such that

gl = k& - ki,

-8
Fixr = k™8 . Then we get:
Linearization:

! ! S
|qle= kX e=BR X = ke fVix ,  This decays exponentially fast in k.

Local limit Theorem:

2 — Nyy2 1 2 % 1 . . .
W + (|glek+mDx)y P = k—5_0 +k2 - P This decays polynomially fast in k.
4

Oscillatory integral: There is some d = d(v) such that

1

o
ks
r|q|e—(k+h’);(

—d-8,
+supv(B,(y)) € =~ + k—s, This decays polynomially fast in k.
y k&

Here we made use’ of [17, Proposition 2.2], where it is shown that there is some C > 0 such that
for every r > 0 small enough

sup v(B,(y)) < Cre.
y

Finally, by summing these error terms we see that for some o = a(v) > 0 we have |Fq(v)| = O(kia).
Since as |q| — oo we have k > O(log |q|) our claim follows.
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