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Invariant measures and measurable

projective factors for actions of higher-rank

lattices on manifolds

By Aaron Brown, Federico Rodriguez Hertz, and Zhiren Wang

Abstract

We consider smooth actions of lattices in higher-rank semisimple Lie

groups on manifolds. We define two numbers r(G) and m(G) associated

with the roots system of the Lie algebra of a Lie group G. If the dimension

of the manifold is smaller than r(G), then we show the action preserves

a Borel probability measure. If the dimension of the manifold is at most

m(G), we show there is a quasi-invariant measure on the manifold such

that the action is measurably isomorphic to a relatively measure-preserving

action over a standard boundary action.

1. Introduction and statement of results

In this paper we consider lattices Γ in higher-rank Lie groups G acting

by C1+Hölder diffeomorphisms on compact manifolds. The Zimmer program

refers to a number of questions and conjectures related to such actions. It is

expected that all such actions are constructed from algebraic examples or have

some algebraic factor. In particular, if the dimension of M is smaller than the

dimension of all possible algebraic actions, Zimmer ’s conjecture asserts that

all actions factor through the action of a finite group. See [8] and [7] for recent

solution to (non-volume-preserving cases of) Zimmer’s conjecture by Brown,

Fisher and Hurtado for cocompact lattices in split, simple Lie groups as well

as for finite-index sublattices of SL(m,Z).
The main results of this paper concern actions of lattices in low dimen-

sions. Most rigidity results in the literature concerning actions of lattices in

low dimensions require additional hypotheses such as the preservation of a
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Borel probability measure (see [18], [36]), strong regularity assumptions of the

action (see [16]), or extremely low dimensions. (See [37], [11], [19] for actions

on the circle and [18], [36] for actions on surfaces.) Our focus in this paper

is to establish the existence of an invariant measure for actions in moderately

low dimensions and with low differentiability. In particular, in Theorem 1.6

we show that if the dimension of M is sufficiently small relative to algebraic

data associated to a simple Lie group G, then for any lattice Γ ⊂ G, any

C1+β-action α : Γ → Diff1+β(M) preserves a Borel probability measure. The

critical dimension below which we are guaranteed an invariant probability is

precisely the critical dimension in the non-volume-preserving case of Zimmer’s

conjecture for split, simple Lie groups. In the case that Γ is cocompact, The-

orem 1.6 follows immediately from the main result of [8]; on the other hand,

the proof of the main result of [8] uses many of the ideas used to prove Theo-

rem 1.6, particularly our Proposition 5.1 below. Theorem 1.6 moreover holds

for actions of non-uniform lattices, which was used in the proof of Zimmer’s

conjecture [7] for finite-index sublattices of SL(m,Z)
The second main result, Theorem 1.10, concerns actions α: Γ→Diff1+β(M)

on manifolds M of certain intermediate dimensions. This range of dimensions

includes examples where there exist non-isometric (volume-preserving) actions

as well as examples of actions that do not preserve any Borel probability mea-

sure. In this case, we show that there exists a quasi-invariant measure µ on

M such that the action on (M,µ) is measurably isomorphic to a relatively

measure-preserving extension over a standard projective action.

Given an action α : Γ → Diff1+β(M), the key idea in both theorems is to

consider the G-action induced by α on an auxiliary space, which we denote

by Mα. We take P ⊂ G to be a minimal parabolic subgroup and consider

P -invariant measures on Mα. This approach should be compared with a num-

ber of papers by Nevo and Zimmer, particularly [34], [35]. Nevo and Zimmer

consider a manifold with a G-action and G-stationary measure ν. The measure

ν decomposes as ν0 ∗ λ, where λ is a P -invariant measure. (See [34, Th. 1.4]

for discussion of this decomposition). Assuming that λ satisfies certain tech-

nical conditions—namely, that the measure λ is either P -mixing in [34] or

that every non-trivial element of the maximal split Cartan subgroup S ⊂ P

acts ergodically in [35]—it is shown that the G-action on (M, ν) is a relatively

measure-preserving extension over a standard projective action. These tech-

nical conditions are typically difficult to verify. In our argument, we exploit

the constraints on the dimension of M and verify certain conditions similar to

those introduced by Nevo and Zimmer. For instance, the technical condition in

[35, Th. 3] that all elements of the maximal split Cartan subgroup S ⊂ P act

ergodically implies our Claim 6.2 below and hence all arguments in Section 6.2

apply. In practice, it is difficult to verify such ergodicity hypotheses.
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1.1. Introduction and reductions. Throughout we assume that G is a real,

connected, semisimple Lie group with R-rank at least 2. By a standard con-

struction, there is a central extension G̃→ G such that G̃ is the direct product

of connected, simple Lie groups:

G̃ =
∏

Gi.

(We abuse terminology and say a connected Lie group is simple if its Lie algebra

is simple; in particular, we allow groups with infinite center.) We take Γ ⊂ G

to be a lattice subgroup and, writing Γ̃ for the lift of Γ to G̃, we assume that

for every simple factor Gi ⊂ G̃ with R-rank 1, the image of of Γ̃ to Gi is dense

in Gi. Such a lattice will be called a higher-rank lattice. This, in particular,

includes the cases that

(1) G has no compact factors and Γ ⊂ G is irreducible, or

(2) every non-compact, simple factor of G has R-rank at least 2.

Below, we will study smooth actions of such groups Γ. As we may lift an

action of Γ to an action of Γ̃, without loss of generality we will assume for the

remainder that G is a direct product G =
∏
Gi of simple Lie groups.

Note that G = C×G′, where C is the maximal connected compact normal

subgroup of G and G′ is the maximal connected normal subgroup without

compact factors. We remark that our main results—Theorems 1.6 and 1.10—

are sharpest when G′ is assumed to be simple. Replacing Γ with a subgroup

of finite index, one may assume the restriction of the map G → G′ to Γ is

injective; in particular, one may assume G = G′, and thus that G has no

compact factors. So we will assume from now on that G has no compact

factors.

Let M be a compact, connected, boundaryless C∞ manifold, and let

α : Γ → Diff1+β(M) be an action of Γ onM by C1+β diffeomorphisms. For no-

tational convenience later, we assume α is a right action; that is, α(gh)(x) =

α(h)(α(g)(x)). Conjecturally, all such actions are obtained from families of

model algebraic actions via standard constructions. In particular, if dim(M)

is sufficiently small so that no model algebraic actions exists, Zimmer’s conjec-

ture states that all such actions should factor through actions of finite quotients

of Γ; that is, the image α(Γ) of Γ in Diff1+β(M) should be finite. Such an ac-

tion is said to be trivial. See [16, Conjs. I, II], [17, Conjs. 4.12, 4.14], or [8,

Conj. 2.4] for more precise formulations. See also [8] for recent solution to (the

non-volume-preserving case of) Zimmer’s conjecture for cocompact lattices in

split, simple Lie groups.

We recall that in dimension 1, any lattice in a higher-rank, simple Lie

group with finite center acts trivially on the circle [19], [11]. For certain lattices

acting on surfaces, we obtain in conjunction with the main results of [18] the

following complete results.
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Theorem A ([18, Cor. 1.8] and Theorem 1.6). Let S be a closed oriented

surface, and for n ≥ 4, let Γ ⊂ SL(n,Z) be a finite index subgroup. Then every

C1+β action of Γ on S is trivial.

Theorem B ([18, Cor. 1.7] and Theorem 1.6). Let S be a closed oriented

surface of genus at least 1, and for n ≥ 4, let Γ ⊂ SL(n,R) be a non-uniform

lattice. Then every C1+β action of Γ on S is trivial.

More generally, Theorem B holds when Γ ⊂ G is a non-uniform lattice and

G is a connected, semisimple Lie group with finite center, no compact factors,

and r(G) ≥ 3 for the integer r(G) defined below ([18, Cor. 1.7]). In particular,

the conclusion of Theorem B holds for any non-uniform lattice in a higher-rank,

simple Lie group G with finite center such that the restricted root system of

the Lie algebra of G is not of type A2. By the main results of [8], triviality

of all actions on surfaces also holds for cocompact lattices in all such groups.

A more recent development is the proof of analogues of Theorems A and B

for C1-actions of lattices of higher-rank semisimple Lie groups on manifolds of

dimension less than rankR(G) (or volume-preserving C1-actions in dimension

rankR(G)), by Brown, Damjanović, and Zhang [6].

Note that if Γ ⊂ SL(3,R) is any lattice, then there is a model real-analytic

action of Γ on a surface S that admits no invariant probability measure—

namely, the right projective action of Γ ⊂ SL(3,R) on RP 2 (or S2). Note

that any volume form on RP 2 is quasi-invariant but non-invariant under this

action. More generally, consider G a semi-simple Lie group with finite center.

Let Q ⊂ G be a parabolic subgroup, and let Γ ⊂ G be a lattice. Then there is a

natural right action of Γ on the quotient Q\G preserving no Borel probability

measure but preserving the Lebesgue measure class.

Given the model action discussed above, we have the following conjecture,

motivated by Theorems A and B, attributed to Polterovich in [17, Question

4.8], as well as new results from [6].

Conjecture 1.1. Let Γ ⊂ SL(3,R) be a lattice. Let S be closed, con-

nected a surface and let Γ act on S by C1 diffeomorphisms. Suppose there is

no Γ-invariant Borel probability measure on S. Then S is either RP 2 or S2;

furthermore, any such action is smoothly conjugate to the standard projective

action.

1.2. Facts from the structure of Lie groups. To state our main results we

recall some facts and definitions from the structure theory of real Lie groups.

A standard reference is [23]. Let G be a connected, semisimple Lie group. As

usual, write g for the Lie algebra of G. Fix a Cartan involution θ of g, and

write k and p, respectively, for the +1 and −1 eigenspaces of θ. Denote by

a a maximal abelian subalgebra of p and by m the centralizer of a in k. We

let Σ denote the set of restricted roots of g with respect to a. Note that the
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elements of Σ are (non-zero) real linear functionals on a. Recall that dimR(a)

is the R-rank of G.

We choose a family of positive roots Σ+ ⊂ Σ and write Σ− for the cor-

responding set of negative roots. For β ∈ Σ, write gβ for the associated root

space. Then n =
⊕

β∈Σ+
gβ is a nilpotent subalgebra. A standard parabolic

subalgebra (relative to the choice of θ, a, and positive roots Σ+) is any sub-

algebra of g containing m ⊕ a ⊕ n. Recall β ∈ Σ+ is a simple (positive) root

if it is not an integer combination of other elements in Σ+. We denote by

Π ⊂ Σ+ the set of simple roots in Σ+. We have that the standard parabolic

subalgebras of g are parametrized by exclusion of simple (negative) roots: for

any sub-collection Π′ ⊂ Π let

(1) qΠ′ = m⊕ a⊕
⊕

β∈Σ+∪Span(−Π′)

gβ .

Then qΠ′ is a Lie subalgebra of g and all standard parabolic subalgebras of g

are of the form qΠ′ for some Π′ ⊂ Π. (See [23, Prop. 7.76] and, in particular,

the analysis of corresponding sl(2,R)-triples, [23, Lemma 7.73].)

Let A,N, and K be the analytic subgroups of G corresponding to a, n

and k. These are closed subgroups of G and G = KAN is the corresponding

Iwasawa decomposition of G. When G has finite center, K is a maximal

compact subgroup. Note that the Lie exponential exp: g → G restricts to

diffeomorphisms between a and A and n and N . Fixing a basis for a, we

identify A = exp(a) = Rd. Via this identification we often extend linear

functionals on a to A. We write M = CK(a) for the centralizer of a in K.

Then P = MAN is the standard minimal parabolic subgroup. Since M is an

abelian extension of a compact group, it follows that P is amenable. (See, for

example, [2, Prop. G.2.2(ii)].) A standard parabolic subgroup (relative to the

choice of θ, a, and Σ+ above) is any closed subgroup Q ⊂ G containing P .

The Lie algebra of any standard parabolic subgroup Q is a standard parabolic

subalgebra, and the correspondence between standard parabolic subgroups and

subalgebras is 1-1.

We say two restricted roots β, β̂ ∈ Σ are coarsely equivalent if there is

some c > 0 with

β̂ = cβ.

Note that c takes values only in {1
2 , 1, 2} and this occurs only if the root system

Σ has a factor of type BCℓ. Let Σ̂ denote the set of coarse restricted roots—that

is, the set of coarse equivalence classes of Σ. Note that for ξ ∈ Σ̂, gξ := ⊕β∈ξg
β

is a nilpotent subalgebra and the Lie exponential restricts to a diffeomorphism

between gξ and the corresponding analytic subgroup, which we denote by Gξ.

Let q denote a standard parabolic subalgebra of g. Observe that if gβ ⊂ q

for some β ∈ Σ then, from the structure of parabolic subalgebras, gξ ⊂ q where
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ξ ∈ Σ̂ is the coarse restricted root containing β. A standard parabolic (proper)

subalgebra q is maximal if there is no subalgebra q′ with q ( q′ ( g. Note that

maximal standard parabolic subalgebras are of the form qΠrβ for some β ∈ Π.

1.3. Resonant codimension and related combinatorial numbers. Given a

standard parabolic subalgebra q, define the resonant codimension of q to be

the cardinality of the set

{ξ ∈ Σ̂ | gξ 6⊂ q}.

Given G as above, we define a combinatorial number r(G) as follows.

Definition 1.2. The minimal resonant codimension of g, denoted r(g), is

defined to be the minimal value of the resonant codimension of q as q varies

over all (maximal) proper parabolic subalgebras of g.

Example 1.3. We compute r(g) for a number of classical real simple Lie

algebras as well as simple real Lie algebras with restricted root systems of

exceptional type. Given a simple real Lie algebra g, the number r(g) is de-

termined purely by the restricted root system. In particular, we have the

following.

Type An: r(g) = n. This includes sl(n+ 1,R), sl(n+ 1,C), sl(n+ 1,H).

Type Bn, Cn, and (BC)n: r(g) = 2n − 1. This includes sp(n,R), so(n,m)

for n < m, and su(n,m) and sp(n,m) for n ≤ m.

Type Dn: r(g) = 2n− 2 for n ≥ 4. This includes so(n, n) for n ≥ 4.

Type E6: r(g) = 16.

Type E7: r(g) = 27.

Type E8: r(g) = 57.

Type F4: r(g) = 15.

Type G2: r(g) = 5.

In all classical root systems An, Bn, Cn, (BC)n and Dn, the number r(g) corre-

sponds to the parabolic subalgebra obtained by omitting the left-most root in

the standard Dynkin diagrams. Exceptional root systems are checked by hand.

Note that if g is non-simple, then r(g) is min{r(gi) : 1 ≤ i ≤ n} where gi
are the simple (non-compact) factors of g. We write r(G) = r(g). Note that

inside a fixed family of simple Lie groups, the number r(G) grows with the

rank of G but need not coincide with the minimal dimension of a non-trivial

algebraic action in the case that G is non-split. In particular, we only obtain

the optimal expected dimensions in the case that G is split.

We define a second number m(g) associated to the Lie algebra g of G.

Definition 1.4. Given a simple Lie algebra g of R-rank at least 2, define

m(g) to be the minimal value of the resonant codimension of q as q varies over
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all proper parabolic subalgebras q of the form qΠr{αi,αj} where αi 6= αj are

simple roots in Π. If g has rank 1, let m(g) = 1. If g = ⊕gi is semisimple, take

m(g) to be the minimum of m(gi) over all non-compact, simple factors gi of g.

As before, write m(G) = m(g).

Example 1.5. Again, we compute the number m(g) for a number of classi-

cal, simple real Lie algebras as well as simple real Lie algebras with restricted

root systems of exceptional type. As before, given a simple real Lie algebra g,

the number m(g) is determined only by the restricted root system.

Type An: m(g) = 2n− 1.

Type Bn, Cn, and (BC)n: m(g) = 4n− 4.

Type Dn: m(g) = 9 for n = 4; m(g) = 4n− 6 for n ≥ 5.

Type E6: m(g) = 24.

Type E7: m(g) = 43.

Type E8: m(g) = 84.

Type F4: m(g) = 20.

Type G2: m(g) = 6.

In all classical root systems except D4, the number m(g) corresponds to the

parabolic subalgebra obtained by omitting the two left-most roots in the stan-

dard Dynkin diagrams. In D4, the number m(g) corresponds to omitting two

commuting roots. Exceptional root systems are checked by hand.

As before, write m(G) = m(g).

1.4. Statement of results. Let G be a connected semisimple Lie group with

real-rank at least 2 and, as introduced above, and let Γ ⊂ G be a higher-rank

lattice subgroup.

Recall that α denotes a right action of Γ on a compact, boundaryless

manifold M by C1+β diffeomorphisms.

1.4.1. Existence of invariant measures in low dimensions. Our first main

result establishes the existence of an α-invariant measure if the dimension of

M is sufficiently small relative to r(G).

Theorem 1.6. Let M be a compact manifold with dim(M) < r(G). Then

for any C1+β action α of Γ on M , there exists an α-invariant Borel probability

measure.

We remark that in the case that Γ is cocompact, Theorem 1.6 in an

immediate corollary of the main result of [8] where Zimmer’s conjecture is

verified for actions of compact lattices on manifolds of dimension less than r(G).
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The proof of the main result of [8] uses the proof of Theorem 1.6, namely

the key observation in Proposition 5.1 below. We note also that Theorem 1.6

applies to non-uniform lattices and was used in the recent work [7] on Zimmer’s

conjecture for SL(m,Z).
We do not assert any regularity of the measure in Theorem 1.6. In par-

ticular, the ergodic components of the measure are expected to be supported

on finite sets as such actions are expected to be trivial. Theorems A and B

follow directly from the main results in [18] and Theorem 1.6.

1.4.2. Finite extensions of projective factors in critical dimension. In the

case where dimM = r(G), we recall as a model the standard right action of

Γ ⊂ SL(n+1,R) on RPn. Note that RPn has the structure of Q\SL(n+1,R)
for a (maximal) parabolic subgroup Q ⊂ SL(n+ 1,R).

Theorem 1.7. Let M be a manifold with dim(M) = r(G). Then given

any C1+β action α of Γ on M , either

(a) there exists an α-invariant Borel probability measure on M ; or

(b) there exists an α-quasi-invariant Borel probability measure µ on M and a

maximal parabolic subgroup Q ⊂ G such that the action α of Γ on (M,µ)

is measurably conjugate to a finite extension of the standard right action

of Γ on (Q\G,m) where m is of Lebesgue class.

Motivated by the above theorem, we extend Conjecture 1.1.

Conjecture 1.8. Let M be a manifold with dim(M) = r(G). Given any

sufficiently smooth action α of Γ on M either

(a) there exists an α-invariant Borel probability measure on M ; or

(b) there is a maximal parabolic subgroup Q ⊂ G such that M is diffeomorphic

to a finite cover of Q\G; moreover, the action α is smoothly conjugate to

a lift of the standard right-action of Γ on Q\G.

1.4.3. Projective factors in intermediate dimensions. Let (X, ν) and (Z, µ)

be standard measure spaces, and suppose Γ acts measurably on both X and

Z (on the right) and preserves the measure classes of ν and µ respectively.

Let (Y, η) be a standard measure space, and write Aut(Y, η) for the group of

invertible, measure-preserving transformations of (Y, η). Let α and ρ denote,

respectively, the actions of Γ on (Z, µ) and (X, ν).

Definition 1.9. We say that α is a relatively measure-preserving extension

(modeled on (Y, η)) of ρ if there are

(1) a measurable cocycle ψ : Γ× (X, ν) → Aut(Y, η) over ρ, and

(2) an isomorphism of measure spaces Φ: (Z, µ) → (X × Y, ν × η)

such that Φ intertwines α and the skew action defined by ψ: if Φ(z) = (x, y),

Φ(α(γ)(z)) = (ρ(γ)(x), ψ(γ, x)(y)) .
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Theorem 1.10. Let M be a manifold with dim(M) ≤ m(G). Then given

any C1+β action α of Γ on M there is an α-quasi-invariant Borel probability

measure µ on M , a standard parabolic subgroup Q, and a Lebesgue space (Y, η)

such that the action α on (M,µ) is a relatively measure-preserving extension

(modeled on (Y, η)) of the standard right action of Γ on (Q\G,m).

Note in the above theorem that if Q = G, it follows that µ is α-invariant.

As discussed above, the result in Theorem 1.10 should be compared to results

of Nevo and Zimmer, particularly [34], [35].

2. Suspension construction and its properties

We construct an auxiliary space on which the action α of Γ on M embeds

as a Poincaré section for an associated G-action. We then equip the tangent

space to this G-space with a norm that is well adapted to the geometry of Γ

in G and the dynamics of the induced G-action.

2.1. Suspension construction. On the product G ×M consider the right

Γ-action
(g, x) · γ = (gγ, α(γ)(x))

and the left G-action
a · (g, x) = (ag, x).

Define the quotient manifold Mα := G ×M/Γ. As the G-action on G ×M

commutes with the Γ-action, we have an induced left G-action on Mα. We

denote this action by α̃. We write π : Mα → G/Γ for the natural projection

map. Note that Mα has the structure of a fiber bundle over G/Γ induced by

the map π with fibers diffeomorphic to M . As the action of α is by C1+β

diffeomorphisms, Mα is naturally a C1+β manifold. Equip Mα with a C∞

structure compatible with the C1+β-structure.

Note that the action α̃ of G on Mα preserves two transverse distributions

EF and EG, where EF = ker(Dπ) and EG is tangent to the local G-orbits

on Mα. Furthermore, these distributions integrate to C1+β foliations of Mα.

We first observe the following.

Claim 2.1. There exists an α-invariant Borel probability measure on M

if and only if there exists an α̃-invariant Borel probability measure on Mα.

That an α-invariant measure on M induces an α̃-invariant measure on

Mα is standard. For the reverse implication, see, for instance, [34, Lemma

6.1]. Note that any α̃-invariant measure on Mα projects under π to the Haar

measure on G/Γ.

As the suspension space Mα is non-compact in the case that Γ is non-

uniform, some care is needed when applying tools from smooth ergodic theory

to the G-action onMα. Indeed, although the non-compactness comes from the

homogeneous factor, care is needed in order to control the fiber-wise dynamics
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as the corresponding C1- and C1+β-norms of the fiberwise dynamics need not

be bounded.

Below, we use the quasi-isometry between the Riemannian and word met-

rics on Γ established in [31] to control the degeneration of the fiber-wise dy-

namics. We follow the approach of [9] and construct dynamical charts relative

to which the tools of classical smooth ergodic theory may be applied. The

remainder of this section is devoted to constructing a Riemannian metric on

TMα, corresponding distance function d, and a family of dynamical charts.

The reader interested only in actions of cocompact lattices may skip the

remainder of this section.

2.2. Construction of a fundamental domain and family of fiber metrics.

Recall our standing assumptions on the Lie group G and the lattice Γ.

A set D ⊂ G is a fundamental domain for Γ if
⋃

γ∈ΓDγ = G and if the

natural map G→ G/Γ is one-to-one on D. A Borel set D ⊂ G is almost-open

if the interior of D has full measure in the closure of D. A subset S ⊂ G is a

fundamental set if
⋃

γ∈Γ Sγ = G and the set {γ : Sγ ∩ S 6= ∅} is finite. The

injectivity radius rΓ(g) of Γ at a point g ∈ G is the largest 0 < r ≤ 1 such that

the map g → G/Γ given by X 7→ expg(X)gΓ is injective on

{X ∈ g : ‖X‖ < r}.

We write
Vr(g) := {expg(X)g : ‖X‖ ≤ r}

for the remainder.

2.2.1. Properties of the family of metrics. Our goal below is to build on

TM a continuous family Riemannian metrics 〈·, ·〉g, parametrized by g ∈ G,

and an almost-open, Borel fundamental domain D ⊂ G for Γ such that

(1) the family of metrics 〈·, ·〉g depends continuously on g ∈ G;

(2) the family 〈·, ·〉g is Γ-equivariant : given γ ∈ Γ and v, w ∈ TxM ,

〈v, w〉g = 〈Dxα(γ)v,Dxα(γ)w〉gγ ;

(3) writing

V =
⋃

g∈D

VrΓ(g)(g),

the family 〈·, ·〉g is uniformly comparable on V : there is a C > 0 so that

for all g, g ∈ V, x ∈M, and v ∈ TxM ,

〈v, v〉g ≤ C〈v, v〉g;

(4) for every p ≥ 1, the function g 7→ dG(e, g) is L
p on D with respect to the

Haar measure where dG(·, ·) is the right-invariant metric on G.

2.2.2. Reductions. Note that given a finite-index subgroup Γ′ ⊂ Γ, a fun-

damental domain D′ for Γ′ and a Γ′-equivariant family of metrics that satisfy

(1)–(4) above for Γ′, then we can choose a fundamental domain D ⊂ D′ for Γ
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and construct a Γ-equivariant family of metrics satisfying (1)–(4) for Γ by av-

eraging over Γ′-coset representatives in Γ. Below, we will pass to a finite-index

subgroup Γ′ ⊂ Γ and construct such a domain and family of metrics for Γ′.

First, recall thatG has no compact factors and has Iwasawa decomposition

G = KAN . Then K contains the center of G. Since Γ is a lattice, it intersects

the center of G in a finite-index subgroup; see [32, Lemma IX.(6.1)]. Passing

to a group of finite index we may thus assume K ∩Γ is contained in the center

of G and has finite index in the center of G.

Let Ad: G → Ad(G) be the adjoint representation of G. Since G has no

compact factors, it follows that Ad(Γ) is a lattice subgroup in Ad(G); see [32,

Lemma IX.(6.1)].

From the Margulis Arithmeticity Theorem [32], it follows that there is a

semisimple linear algebraic group H such that writing H = H(R)◦ for the con-

nected component of the identity in H(R), there is a surjective homomorphism

Φ: H → Ad(G) with compact kernel such that

Ad(Γ) ∩ Φ(H(Z))

has finite index in Ad(Γ). Let Γ̂ = Φ−1(Ad(Γ))∩H(Z)∩H. Then Γ̂ has finite

index in H(Z) and is an arithmetic lattice in H. Replacing Γ, Ad(Γ) and Γ̂

with finite index subgroups, we may assume that Γ̂ is torsion-free, that Γ maps

surjectively onto Ad(Γ), and that Φ: Γ̂ → Ad(Γ) is an isomorphism.

Let X = K\G be the globally symmetric space associated with G. We

may select maximal compact subgroups K ⊂ Ad(G) and K̂ ⊂ H so that X is

also identified as

X := K\G = K\Ad(G) = K̂\H.

Equip G with a right-invariant, left-K-invariant metric, and equip X with the

quotient right-invariant metric.

2.2.3. Compactification of X and Siegel fundamental sets. Following [4,

Part III, Ch. 9], write X
BS

for the Borel-Serre partial compactification of X.

The space X
BS

has the structure of a real-analytic manifold with corners. The

action of Γ̂ ∼= Ad(Γ) on X extends to a continuous, proper action on X
BS

.

The quotient X
BS
/Γ̂ is a compact, Hausdorff space. Having taken Γ̂ to be

torsion-free, Γ̂ acts properly-discontinuously on X
BS

and the quotient X
BS
/Γ̂

has the structure of a compact real-analytic manifold with corners. (See [4,

Prop. III.5.14] for statement and Propositions III.9.16 and III.9.17 of [4] for

further details.)

By the reduction theory of arithmetic groups, we may find a Siegel fun-

damental set S ⊂ X = K̂\H (a finite union of rational translates of Siegel

sets) for the action of Γ̂ ∼= Ad(Γ) on X. (See, for instance, [32, VIII.1].) Write

intX(S) for the interior of S in X. Then
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(1)
⋃

γ̂∈Γ̂ intX(S) · γ̂ = X;

(2) the set {γ̂ ∈ Γ̂ : Sγ̂ ∩ S 6= ∅} is finite;

(3) for any x0 ∈ X, the function x 7→ dX(x0, x) is L
p on S with respect to the

Haar measure for every 1 ≤ p <∞;

(4) S has compact closure in X
BS

.

Write S for the closure of S in X
BS

, and write int
X

BS(S) for the interior of S

in X
BS

. Then we also have (see discussions in [4, III.9])

(5)
⋃

γ̂∈Γ̂ intXBS(S) · γ̂ = X
BS

;

(6) the set {γ̂ ∈ Γ̂ : Sγ̂ ∩ S 6= ∅} is finite;

Moreover, from the construction of Siegel sets, if we denote injectivity radius at

x ∈ X by rX(x) and write Bx(x, r) for the ball in X centered at x of radius r,

we have that

(7) S′ :=
⋃

x∈S B(x, rX(x)) is contained in a Siegel fundamental set.

2.2.4. Construction of partition of 1. Let S be as above. We may cover

X
BS
/Γ̂ with finitely many open sets Uj , each of which is the injective image

of an open set Ûj ⊂ int
X

BS(S). Equip X
BS
/Γ̂ with a partition of unity {ψj}

subordinate to the cover {Uj}. For each j, let ψ̂j : X
BS

→ [0, 1] be the lift of

ψj whose support is contained in Ûj .

The map Υ: G → K × X, Υ: kan 7→ (k,Kan) is well known to be a

bi-Lipschitz map ([2, Lemma 3.6.3]) and is (K ∩ Γ)-equivariant. If K0 ⊂ K is

a pre-compact open set with K = K0 · (Γ∩K) and if S ⊂ X is a fundamental

set for the action of Ad(Γ) ∼= Γ̂ on X, then

S̃ := Υ−1(K0 × S)

is a fundamental set for the Γ-action on G. Moreover, the function g 7→ dG(e, g)

is Lp on S̃ with respect to the Haar measure on G for every 1 ≤ p <∞. Cover

K/(K ∩ Γ) with finitely many open sets {Vk}, each of which is the injective

image of an open set V̂k ⊂ K0. Let {ηk}, ηk : K → [0, 1] be a partition of

unity of K/(K ∩ Γ) subordinate to the cover {Vk}, and for each k, lift ηk to

η̂k : K0 → [0, 1] supported on V̂k ⊂ K0.

Finally, let φj,k : S̃ → [0, 1] be

φj,k(g) = ηk(Υ1(g)) · ψj(Υ2(g)),

where Υ1,Υ2 are the coordinate functions of Υ. Let {φi} denote the collection

{φj,k}.

For each i and γ ∈ Γ, write φi,γ : G→ [0, 1] for the function

φi,γ(g) = φi(gγ).

We enumerate some properties of {φi,γ}.
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(1) From the assumptions on the supports of φi, we have for each i that

supp(φi,γ) ∩ supp(φi,γ′) = ∅ whenever γ 6= γ′.

(2) The set

{ γ ∈ Γ | supp(φi,γ) ∩ S̃ 6= ∅ for some i }

is finite.

(3) The collection {φi,γ | i ∈ {1, . . . , N}, γ ∈ Γ } is a locally-finite, Γ-invariant,

partition of unity on G.

2.2.5. Parametrized families of metrics. Given x ∈ M , let 〈·, ·〉0,x denote

the inner product on TxM . Given g ∈ G, x ∈M , and v, w ∈ TxM , set

〈v, w〉g,x :=
N∑

i=1

∑

γ∈Γ

φi,γ(g) 〈Dxα(γ)(v), Dxα(γ)(w)〉0,α(γ)(x).

Let ‖ · ‖g,x denote the norm induced by the inner product {〈·, ·〉g,x}, and let

‖ · ‖′ denote the induced norm on G× TM .

We collect the following observations.

Claim 2.2.

(1) The norms ‖ · ‖g,x are uniformly comparable on any fundamental set S̃ in

G as above: there is a constant C > 0, such that for all g1, g2 ∈ S̃, x ∈M ,

and v ∈ TxM , we have

1

C
‖v‖g1,x ≤ ‖v‖g2,x ≤ C‖v‖g1,x.

(2) For any g ∈ G, γ̃ ∈ Γ, and (x, v) ∈ TM , we have

‖Dxα(γ̃)v‖gγ̃,α(γ̃)(x) = ‖v‖g,x.

In particular, Γ acts by isometries on the fibers of G×TM whence ‖ · ‖′

descends to a norm ‖ · ‖ on the fiberwise tangent bundle EF over Mα.

Proof. (1) follows from finiteness of the partition of 1. For (2) we verify

‖v‖2g,x =
N∑

i=1

∑

γ∈Γ

φi,γ(g)‖Dxα(γ)‖
2
0,α(γ)(x)

=
N∑

i=1

∑

γ∈Γ

φi,γ̃−1γ(gγ̃)‖Dxα(γ̃γ̃
−1γ)(v)‖20,α(γ)(x)

=
N∑

i=1

∑

γ∈Γ

φi,γ̃−1γ(gγ̃)‖Dα(γ̃)(x)α(γ̃
−1γ)Dxα(γ̃)(v)‖

2

0,α(γ̃−1γ)
(
α(γ̃)(x)

)

= ‖Dxα(γ̃, x)v‖
2
gγ̃,α(γ̃)(x). �
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2.2.6. Choice of fundamental domain. Let D ⊂ S̃ be a fundamental do-

main for Γ in G. Since the injectivity radius on G/Γ is comparable with the

injectivity radius on X/Ad(Γ), from item (7) of Section 2.2.3 we have that

V =
⋃

g∈D VrΓ(g)(g) only intersects the support of finitely many functions φi,γ .

The desired properties in Section 2.2.1 follow.

2.2.7. Induced distance on Mα. Using the Γ-equivariant family of metrics

{〈·, ·〉g : g ∈ G} constructed above and using the right invariant metric on G,

we endow the tangent bundle of G×M with a continuous Riemannian metric

such that Γ acts by isometries. This induces a Riemannian metric on TMα and

corresponding distance function d(·, ·) on Mα. The restriction of the metric

on TMα to the fiberwise tangent bundle EF coincides with the metric defined

in 2.2.5.

2.3. Some estimates. EquipM with any C∞ Riemannian metric; by com-

pactness, all estimates are independent of the choice of metric. Let expx : TxM

→ M be the Riemannian exponential map at x, and fix r0 ≤ 1 to be smaller

than the injectivity radius of M .

Write Bx(r) ⊂ TxM for the norm ball Bx(r) = {v ∈ TxM : ‖v‖ < r}.

Given a diffeomorphism f : M →M , let

f̃x : Ux,f ⊂ Bx(r0) ⊂ TxM → Bf(x)(r0) ⊂ Tf(x)M

be the diffeomorphism defined by

f̃x := exp−1
f(x) ◦f ◦ expx

on the maximal domain Ux,f on which it is defined. Given U ⊂ Ux,f , define

the local C1 and Hölder norms of f̃x↾U : U → Bx(r0) ⊂ Tf(x)M to be

‖Df̃x‖U = sup
v∈U

‖Dvf̃x‖, HölβU (Df̃x) := sup
v 6=w∈U

‖Dvf̃x −Dwf̃x‖

‖v − w‖β
.

If f : M →M is C1+β , define

(1) ‖Df‖ := supx∈M ‖Df̃x‖Ux,f
and

(2) Hölβ(Df) := supx∈M HölβUx,f
(Df̃x).

Compactness of M ensures ‖Df‖ and Hölβ(Df) are finite.

We have the following elementary estimate.

Claim 2.3. Let f, g ∈ Diff1+β(M). Given x ∈ M and U ⊂ Ux,g ⊂ TxM

such that

g̃x(U) ⊂ Ug(x),f ,

we have

HölβU (D(̃f ◦ g)x) ≤ ‖Df‖Hölβ(Dg) + ‖Dg‖1+β Hölβ(Df).



INVARIANT MEASURES AND MEASURABLE PROJECTIVE FACTORS 955

Proof. For v, u ∈ U and ξ with ‖ξ‖ = 1,

‖Dv (̃f ◦ g)xξ −Du(̃f ◦ g)xξ‖ = ‖Dg̃x(v)f̃g(x)Dv g̃xξ −Dg̃x(u)f̃g(x)Dug̃xξ‖

≤ ‖Dg̃x(v)f̃g(x)Dv g̃xξ −Dg̃x(v)f̃g(x)Dug̃xξ‖

+ ‖Dg̃x(v)f̃g(x)Dug̃xξ −Dg̃x(u)f̃g(x)Dug̃xξ‖

≤ ‖Df̃g(x)‖‖Dv g̃x −Dug̃x‖+ ‖Dg̃x‖‖Dg̃x(v)f̃g(x) −Dg̃x(u)f̃g(x)‖

≤ ‖Df‖HölβU (Dg̃x)d(u, v)
β + ‖Dg‖Hölβ

g̃x(U)(Df̃g(x))d (g̃x(v), g̃x(u))
β

≤ ‖Df‖HölβU (Dg̃x)d(u, v)
β + ‖Dg‖1+β Hölβ

g̃x(U)(Df̃g(x))d(u, v)
β . �

In particular, we have the following.

Claim 2.4. Let gi∈Diff1+β(M), i={1, 2, . . . , ℓ}, and fix C with ‖Dgi‖≤C

and Hölβ(Dgi) ≤ C . Given n ≥ 0 and

U ⊂ Bx(C
−nr0) ⊂ TxM

with h = gi1 ◦ · · · ◦ gin , we have

(1) ‖Dh̃x‖U ≤ Cn and

(2) HölβU (Dh̃x) ≤ nCn(1+β) for every x.

2.4. Construction of dynamical charts. Let D ⊂ G be the almost open,

fundamental domain for Γ constructed in Section 2.2. In the sequel, we often

use the measurable parametrization D ×M of Mα = (G×M)/Γ.

Fix a globally defined, Borel family of isometric identifications τx : TxM →

Rn. With respect to any fixed background C∞ Riemannian metric on M , let

expx : TxM → M denote the Riemannian exponential map at x and let r0
denote the injectivity radius of M . Let Rk = g ⊕ Rn be equipped with the

product Euclidean metric where k = dimG+ dimM .

Given p = (g, x) ∈ D ×M , let ρ(g) = 1
2 min{rΓ(g), r0}, and let

φp : Rk(ρ(g)) →Mα

be the natural embedding

φp : (X, v) 7→
(
exp(X)g, expx(τ

−1
x v)

)
/Γ,

where we write Rk(r) := {v ∈ Rk : ‖v‖ < r}. We immediately verify that,

relative to the induced metric in 2.2.7, the charts φ(g,x) are C
1 with ‖Dφ(g,x)‖

and ‖Dφ−1
(g,x)‖ uniformly bounded; in particular, relative to the distance func-

tion d in 2.2.7 the charts are uniformly bi-Lipschitz. As the injectivity radius

rΓ(gΓ) is comparable to the distance from gΓ to a fixed base point x0 ∈ G/Γ,

we have that g 7→ − log(ρ(g)) is Lq with respect to the Haar measure for all

1 ≤ q <∞.
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Recall that we let A be the analytic subgroup of G corresponding to a.

Fixing a basis for a, via the parametrization exp: a → A we identify A with Rd,

where d ≥ 2 is the rank of G. Below, we consider an arbitrary lattice subgroup

Zd ⊂ A and fix a finite, symmetric, generating set F ={sj : 1 ≤ j≤m} for Zd.

Following the notation of [9], we let U = U0 = Λ = D ×M =Mα for any

such Zd and F .

In the sequel, we will be concerned with A-invariant measures µ on Mα

that project to the Haar measure on G/Γ.

Proposition 2.5. Let µ be an A-invariant probability measure on Mα

projecting to Haar measure on G/Γ. Then for any lattice Zd ⊂ A ≃ Rd and

any finite, symmetric, generating set F = {sj : 1 ≤ j ≤ ℓ} for Zd, the standing

hypotheses of [9, §3.2] hold relative to the charts {φp : p ∈Mα} above.

That is, there are measurable functions r : D → (0, 1] and C : D → [1,∞)

and a constant L with

r(g) ≤ ρ(g), − log r(g) ∈ Lq(D), and logC(g) ∈ Lq(D) for all 1 ≤ q <∞

such that, writing

r(p) = r(g), ρ(p) = ρ(g), C(p) = C(g)

for p = (g, x) ∈Mα = D ×M , we have

(H1) φp : Rk(ρ(p))→Mα is a C1 diffeomorphism onto its image with φp(0)=p;

(H2) ‖Dφp‖ ≤ L and ‖Dφ−1
p ‖ ≤ L; in particular, φp : Rk(ρ(p)) → (U, d) is a

bi-Lipschitz embedding with Lip(φp) ≤ L and Lip(φ
−1

p ) ≤ L.

Moreover, for each m ∈ F , setting f(·) = α̃(m, ·), we have for p ∈Mα that

(H1) the map

(2) f̃p := φ−1
f(p) ◦ f ◦ φp

is well defined on Rk(r(p)) with range contained in Rk(ρ(f(p)));

(H2) f̃p : Rk(r(p)) → Rk(ρ(f(p))) is uniformly C1+β with

‖f̃p‖1+β ≤ C(p)

(H3) for every n ∈ Zd,
(
p 7→ log+ ‖Dpα̃(n)‖

)
∈ Lq(µ) for any 1 ≤ q < ∞;

in particular,
(
p 7→ log+ ‖Dpα̃(n)‖

)
∈ Ld,1(µ).

Here Ld,1(µ) is the Lorentz integrability space (see [30]). We have Lq(µ) ⊂

Ld,1(µ) for any q > d. The assertion that
(
p 7→ log+ ‖Dpα̃(n)‖

)
∈ Ld,1(µ)

guarantees the cocycle satisfies the hypotheses of the higher-rank multiplicative

ergodic theorem. As − log ρ,− log r and logC are Ld on the domain D, it

follows that, in the terminology of [9], they are slowly growing functions over

the action of Zd.
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Proof. Fix a finite, symmetric generating set S = {γi : 1 ≤ i ≤ ℓ} for Γ.

For each 1 ≤ i ≤ ℓ, take gi = α(γi) : M →M and set Ĉ > 1 with

(1) ‖Dgi‖ ≤ Ĉ and

(2) Hölβ(Dgi) ≤ Ĉ.

Let dword denote the corresponding word metric on Γ. Let dG denote the dis-

tance on G induced by the right-invariant metric on G. Note that dG restricts

to a metric on Γ ⊂ G. It follows from [31] that if Γ is a higher-rank lattice

as introduced in Section 1, the metrics dword and dG are quasi-isometrically

equivalent: there are A > 1 and B > 0 such that for all γ, γ̂ ∈ Γ, we have

(3) A−1dG(γ, γ̂)−B ≤ dword(γ, γ̂) ≤ AdG(γ, γ̂) +B.

Now consider any lattice subgroup Zd in A ≃ Rd and finite symmetric

generating set F in Zd. Given g ∈ D and sj ∈ F , let γj(g) be such that

sjg ∈ Dγj(g). Define

N(g) = max
sj∈F

{dword(e, γj(g))}.

We have

dword(e, γj(g)) ≤ A
[
d(e, g) + d(e, sj) + d(e, sjg(γj(g))

−1)
]
+B.

We denote with dg the Haar measure on G/Γ and naturally identify it

with dg on D. Remember that g 7→ d(e, g) is in Lq(D, dg) for all 1 ≤ q <

∞ by the choice of the Siegel domain. Also, as the map D → D given by

g 7→ sjg(γj(g))
−1 preserves the Haar measure, it follows that g 7→ N(g) is in

Lq(D, dg) for all 1 ≤ q <∞.

We set r(g, x) = r(g) := Ĉ−N(g)ρ(g). We have that 0 < r(g, x) ≤ ρ(g) for

every (g, x) ∈ D ×M . Moreover, we have that∫
(− log(r(g, x)))q dµ(g, x) =

∫

D

(− log(r(g)))q dg <∞.

Given sj ∈ F , let f = α̃(sj). Write f̃(g,x) : Rk(r(g)) → Rk(ρ(f(g)) for

f̃(g,x) := φ−1
f(g,x) ◦ f ◦ φ(g,x).

(H1) then follows. From Claim 2.4, we have

‖Df̃(g,x)‖ ≤ ĈN(g), Hölβ(Df̃(g,x)) ≤ N(g)ĈN(g)(1+β)

whence (H2) follows. Moreover, we have that the function

(4) (g, x) 7→ log ‖D0f̃(g,x)‖

is Lq(µ) for every 1 ≤ q < ∞. From the cocycle property, (H3) follows for all

elements of the action. �

We have the following stronger version of (H3), which follows from the

uniform comparability of the norms on the fundamental domain D, inequal-

ity (3), and that g 7→ dG(e, g) is L
q on D with respect to the Haar measure on

G for all 1 ≤ q <∞. Let ‖ · ‖ denote the norm on TMα constructed in 2.2.5.
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Claim 2.6. Let µ be Borel probability measure on Mα projecting to Haar

measure on G/Γ. Given any compact set B ⊂ G, the function

p 7→ sup
g∈B

log+ ‖Dpα̃(g)‖

is Lq(µ) for any 1 ≤ q <∞.

3. Lyapunov exponents, coarse foliations, and conditional entropy

This section is mostly a summary of results we need from [9], [5], [10]. We

consider the restriction of the action α̃ on Mα to the subgroup A in G. Take µ

to be an A-invariant probability measure onMα. Let ν = π∗(µ) be the projec-

tion of µ to G/Γ. In the case that Γ is not cocompact, assume the projection

ν is G-invariant so that the charts in Section 2.4 satisfy properties (H1)–(H3)

of Proposition 2.5 for an arbitrarily fixed lattice Zd ⊂ A.

3.1. Lyapunov exponent functionals. From the Ld,1 integrability of (H3)

of Proposition 2.5 it follows that the restriction to A of the derivative cocycle

Dα̃ on (Mα, µ) satisfies the hypotheses of the Oseledec’s multiplicative ergodic

theorem in every direction s ∈ Rd (see (6) below). Moreover, we have uniform

convergence along spheres guaranteed by the stronger conclusions of the higher-

rank Oseledec’s multiplicative ergodic theorem.

Equip A ≃ Rd with any norm | · |.

Theorem 3.1 (Higher-rank multiplicative ergodic theorem; [9, Th. 2.4]).

Let µ be any A-invariant Borel probability measure on Mα satisfying (H 3) of

Proposition 2.5. Then there exist

(1) a full measure, A-invariant subset Λ0 ⊂Mα;

(2) an A-invariant measurable function r : Λ0 → N;
(3) an A-invariant measurable family of linear functionals λi(p) : A → R for

1 ≤ i ≤ r(p);

(4) and a family of mutually transverse, Dα̃↾A-invariant, measurable subbun-

dles Eλi
(p) ⊂ TMα with TpM

α =
⊕r(p)

i=1 Eλi
(p) for p ∈ Λ0

such that

(5) lim
s→∞

log ‖Dpα̃(s)(v)‖ − λi(p)(s)

|s|
= 0

for all v ∈ Eλi
(p)r {0}.

We note that (5) is stated in [9, Th. 2.4] only for integer vectors n ∈ Zd

but easily generalizes to all s ∈ A. Indeed, it suffices to approximate s by an

integer vector n with uniformly bounded error. The resulting error between

λi(p)(s) and λi(p)(n) is uniformly bounded. To control the error between

log ‖Dpα̃(s)(v)‖ and log ‖Dpα̃(n)(v)‖, fix a compact fundamental set K for the
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lattice subgroup Zd in A, and let

φ(p) = max

ß

sup
s∈K

log+ ‖Dpα̃(s)‖, sup
s∈K

log+ ‖Dpα̃(s)
−1‖, 1

™

.

We have ∣∣log ‖Dpα̃(s)(v)‖ − log ‖Dpα̃(n)(v)‖
∣∣ ≤ φ(α̃(n)(p)).

By Claim 2.6, we have φ ∈ Ld(µ); by the pointwise ergodic theorem for actions

of Zd, for µ-almost every p, the sum

1

Nd

∑

|n|≤N

(
φ(α̃(n)(p))

)d

converges. It follows for almost every p that

max
|n|=N

(
φ(α̃(n)(p))

)d

Nd
→ 0

as N → ∞ whence

max
|n|=N

φ(α̃(n)(p))

N
→ 0

as N → ∞.

From (5), for almost every p ∈Mα and every s ∈ A, we have convergence

along rays

(6) lim
k→∞

1

k
log ‖Dpα̃(ks)(v)‖ = λi(p)(s)

for all v ∈ Eλi
(p) r {0}. The linear functionals λi(p) : A → R are the Lya-

punov exponent functionals. The dimension of the corresponding Eλi
(p) is the

multiplicity of λi(p).

Recall the two Dα̃-invariant subbundles EF and EG of TMα. We may

restrict the derivative cocycle {Dα̃(s) : s ∈ A} to either of the two A-invariant

distributions EF or EG. These restrictions satisfy the hypotheses of the higher-

rank multiplicative ergodic theorem. For the restricted cocycles, we obtain

Lyapunov exponent functionals {λFi (p)} and {λGj (p)} and splittings EF (p) =

⊕EF
λF
i (p)

(p), 1 ≤ i ≤ rF (p) and EG(p) = ⊕EG
λG
j (p)

(p) for 1≤j≤rG(p) defined on

full measure A-invariant subsets. By a direct computation, we have that the

linear functionals {λGj (p)} coincide with Σ, the restricted roots of g with respect

to a. In particular, the number rG(p), the functions {λGj (p)}, and the subspaces

EG
λG
j (p)

(p) are defined at every point p ∈Mα and are independent of p.

Below, we write L(p), LF (p) and LG(p) = Σ, respectively, for the corre-

sponding collections of Lyapunov exponent functionals at the point p for the

derivative cocycle and its restrictions to EF and EG. If µ is A-ergodic, we write

L(µ), LF (µ) and LG(µ) or simply L, LF and LG if the measure is understood.
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3.2. Coarse Lyapunov exponents and coarse Lyapunov manifolds. For this

section assume that µ is A-ergodic and that the charts in Section 2.4 satisfy

properties (H1)–(H3) of Proposition 2.5. Note that Lyapunov exponents and

dimension of the corresponding subspaces are independent of the point almost

surely.

As with restricted roots, we group Lyapunov exponent functionals into

coarse equivalence classes by declaring that two exponents are equivalent if

they are positively proportional. We write L̂ for the set of coarse exponents;

that is L̂ is the set of equivalence classes of Lyapunov exponents. For χ ∈ L̂,

we write Eχ(p) =
⊕

λ∈χEλ(p).

Recall that we equipped Mα with a Riemannian metric which, in turn,

induces a distance d on Mα. Given s ∈ A and p ∈Mα we write

W u
s (p) :=

ß

y ∈Mα : lim sup
n→−∞

1

n
log d (α̃(ns)(p), α̃(ns)(y)) < 0

™

for the unstable manifold through p for the action of s ∈ A on Mα. For

µ-almost every p ∈ Mα, we have that W u
s (p) is a connected, injectively im-

mersed, C1+β manifold with TpW
u
s (p) =

⊕
λ∈L:λ(s)>0Eλ(p). Observe that

given s ∈ A, the collection of global unstable manifolds {W u
s (p) : p ∈ Mα}

forms a (generally non-measurable) partition of (Mα, µ).

Let Zd be any lattice in A ≃ Rd. Given a coarse Lyapunov exponent χ ∈ L̂

we write Wχ(p) for the path connected (relative to the immersed topologies)

component of ⋂

{s∈Zd:χ(s)>0}

W u
s (p)

containing p. The set Wχ(p) is called the coarse Lyapunov manifold corre-

sponding to χ through p. For almost every p, Wχ(p) is a C1+β injectively

immersed manifold with TpW
χ(p) = Eχ(p) (see [9]). We let Wχ denote the

partition of (Mα, µ) into coarse Lyapunov manifolds Wχ(p). In the termi-

nology of [9], Wχ is a C1+β-tame, α̃↾A-invariant, measurable foliation. Note

that the partition Wχ is defined independently of the choice of lattice Zd ⊂ A

in that for any two choices of lattice, the corresponding partitions coincide

modulo µ.

Similarly, in the terminology of [9], the partition G of Mα into G-orbits

and the partition F of Mα into fibers of π : Mα → G/Γ form C1+β-tame,

α̃-invariant, measurable foliations. We similarly define WχF
(p) and W ξ(p)

for the coarse Lyapunov manifolds associated to coarse fiberwise Lyapunov

exponents χF ∈ L̂F and coarse roots ξ ∈ Σ̂. Note that if ξ ∈ Σ̂, then W ξ(p)

is simply the orbit α̃(Gξ)(p) of p by the unipotent subgroup Gξ = exp gξ of G.

We similarly define measurable foliations WχF
and Wξ given by the partitions

into fiberwise coarse Lyapunov manifolds and orbits of coarse root groups.
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3.3. Conditional entropy, entropy product structure, and coarse-Lyapunov

Abramov–Rohlin formula. We continue to assume that µ is an A-invariant,

A-ergodic probability measure on Mα. Recall that in the case that Γ is not

cocompact, we assume the projection ν of µ to G/Γ is G-invariant so that the

charts in Section 2.4 satisfy properties (H1)–(H3) of Proposition 2.5.

Recall that for s ∈ A, the µ-metric entropy of α̃(s) is

hµ(α̃(s)) := sup{hµ(α̃(s), η)}.

Above, the supremum is taken over all measurable partitions η of (Mα, µ). For

each η, hµ(α̃(s), η) is given by the mean conditional entropy

hµ(α̃(s), η) = Hµ(η
+ | α̃(s)η+),

where η+ =
∨∞

i=0 α̃(s
i)η.

Given the partition Wχ into coarse Lyapunov manifolds for χ ∈ L̂, for

s ∈ A with χ(s) > 0, we define the conditional metric entropy of α̃(s) relative

to Wχ as follows: A measurable partition ξ of (Mα, µ) is said to be subordinate

to Wχ if, for almost every p,

(1) the atom ξ(p) is contained in Wχ(p),

(2) the atom ξ(p) contains a neighborhood of p in Wχ(p), and

(3) the atom ξ(p) is precompact in Wχ(p).

The conditional metric entropy of α̃(s) relative to Wχ is

hµ(α̃(s) | W
χ) := sup{hµ(α̃(s), η ∨ ξ)},

where the supremum is over all partitions ξ subordinate to Wχ and all mea-

surable partitions η.

From [10] we have the following result, which states that entropy behaves

like a product along coarse Lyapunov manifolds.

Proposition 3.2 ([10, Cor. 13.2]). For s ∈ A,

hµ(α̃(s)) =
∑

χ(s)>0

hµ(α̃(s) | W
χ).

Fix a coarse exponent χ ∈ L̂. Write χ(F ) ∈ L̂F for the unique fiberwise

coarse exponent with χ(F ) with χ(F ) ⊂ χ if such a fiberwise coarse exponent

exists; that is, χ(F ) is positively propositional to χ. Otherwise let χ(F ) denote

the 0 functional. Similarly, define χ(G) to be the unique coarse restricted root

ξ̂ ∈ Σ̂ that is positively proportional to χ and 0 otherwise. Note that given

a non-zero coarse Lyapunov exponent χ ∈ L̂, at least one of χ(F ) or χ(G) is

non-zero.

Let ν denote the image of µ under π : Mα → G/Γ. From the Abramov-

Rohlin formula (cf. [29], [3]), we may decompose entropy of µ into the sum of
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the entropy along fibers and the entropy of the factor: for any s ∈ A,

(7) hµ(α̃(s)) = hν(s) + hµ(α̃(s) | F).

Here F is the partition into preimages of the projection π : Mα → G/Γ and

hν(s) is the ν-metric entropy of the translation by s on (G/Γ, ν). From [10],

we have a similar decomposition into fiber and factor entropy along coarse

manifolds.

Proposition 3.3 ([10, Th. 13.7]). Let s ∈ A be such that χ(s) > 0. Then

(8) hµ(α̃(s) | W
χ) = hν(s | χ(G)) + hµ(α̃(s) | W

χ(F )).

Above, hν(s | χ(G)) denotes the metric entropy of translation by s on

(G/Γ, ν) conditioned on the partition of (G/Γ, ν) into orbits of Gχ(G). Note

that for our applications below, if χ(F ) = 0, then hµ(α̃(s) | W
χ(F )) = 0.

Proposition 3.3 is a special case of [10, Th. 13.7] that establishes an

Abramov-Rohlin formula for entropy subordinate to coarse Lyapunov mani-

folds for two smooth Zd-actions, one of which is a measurable factor of the

other. In the current setting, our factor map π : Mα → G/Γ is smooth and

we obtain Proposition 3.3 directly from Proposition 3.2. We include a proof of

Proposition 3.3 in our current setting.

Proof of Proposition 3.3. Note that, as the map π : Mα → G/Γ is smooth,

every coarse restricted root ξ̂ ∈ Σ̂ for the action of A on G/Γ coincides with

some coarse Lyapunov exponent χ ∈ L̂ for the action of A on (Mα, µ); in

particular, every ξ̂ ∈ Σ̂ is of the form ξ̂ = χ(G) for some χ ∈ L̂.

Given χ ∈ L̂, set χ = χ(G) and take s ∈ A with χ(s) > 0. If χ = 0,

take η to be the point partition on G/Γ. Otherwise, take η to be a measurable

partition of G/Γ such that

(1) s−1 · η ≥ η;

(2) the atom η(x) of η containing x is contained in the Gχ-orbit of x and

contains an open neighborhood of x in the Gχ-orbit;

(3)
∨

n∈N s
−n · η is the point partition.

Let η = π−1(η). Take ζ to be a measurable partition of Mα such that

(1) α̃(s−1)(ζ) ≥ ζ;

(2) the atom ζ(x) of ζ containing x is contained in Wχ(x) and contains an

open neighborhood of x in Wχ(x) for almost every x;

(3)
∨

n∈N α̃(s
−n)(ζ) is the point partition.

The existence of the partitions η and ζ follows from a standard argument.

See [28, Prop. 3.1] or [27, Lemma 9.1.1].

The partitions η and ζ satisfy

hν(s, η) = hν(s | χ) and hµ(α̃(s), ζ ∨ F) = hµ(α̃(s) | W
χ(F )).
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We have the following standard computation (cf. [22, Lemma 6.1]):

hµ(α̃(s) | W
χ) := hµ(α̃(s), η ∨ ζ)

≤ hµ(α̃(s), η) + hµ

(
α̃(s), ζ ∨

∨

n∈Z

α(sn)(η)

)

= hν(s, η) + hµ(α̃(s), ζ ∨ F)

= hν(s | χ) + hµ(α̃(s) | W
χ(F )).

Now, fix χ0 ∈ L̂. Given any s ∈ A with χ0(s) > 0, we have from (7) and

the analogue of Proposition 3.2 applied to the total, fiber, and base entropies

(see full formulation in [10, Th. 13.1]) that

hµ(α̃(s)) =
∑

χ(s)>0

hµ(α̃(s) | W
χ)

≤
∑

χ(s)>0

hν(s | χ(G)) +
∑

χ(s)>0

hµ(α̃(s) | W
χ(F ))

= hν(s) + hµ(α̃(s) | F)

= hµ(α̃(s)).

Since entropies are non-negative quantities, it follows that

hµ(α̃(s) | W
χ) = hν(s | χ(G)) + hµ(α̃(s) | W

χ(F ))

for all χ ∈ L̂ with χ(s) > 0. �

We note that Proposition 3.3 will be applied only in the special case where

Wχ(F ) is trivial, in Proposition 5.1. Since the proof in this special case would

not be much simpler than the one provided above, we give the general version

of Proposition 3.3.

4. Conditional measures and criteria for invariance

Let G be as in the introduction. That is, G = G1 × · · · ×Gℓ is the direct

product of non-compact simple Lie groups. Consider X any locally compact,

second countable metric space, and suppose that X admits a continuous left

G-action x 7→ g · x. We moreover assume the action is locally free; that is,

for every x ∈ X, there is a neighborhood e ∈ Ux ⊂ G such that the map

Ux → X, g 7→ g ·x is injective. (The size of Ux does not have to be uniform.) It

follows that for every x, we have a canonical identification of G with a covering

space of the orbit G · x given by g 7→ g · x.

4.1. Leafwise measures along orbits of subgroups. Consider any Borel prob-

ability measure µ on X. Let V ⊂ G be a connected Lie subgroup, and let η be

a measurable partition of (X,µ) such that for µ-almost every x ∈ X, the atom

η(x) is contained in the V -orbit V · x and contains an open neighborhood of

x in the V -orbit V · x. Such a partition is said to be subordinate to V -orbits.
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As above, we identify V ⊂ G with a cover of the V -orbit through x. Fix a

decreasing sequence of measurable partitions η0 ≥ η1 ≥ η2 · · · subordinate to

V -orbits such that for any compact set K ⊂ V , for almost every x, there is a j

with K ·x ⊂ ηj(x). For each j, let {µ
ηj
x } be an associated family of conditional

probability measures on X. By fixing a choice of normalization, a standard

construction gives for almost every x ∈ X a locally finite Radon measure µVx ,

supported on V , which is canonical up to the choice of normalization. Indeed,

it is enough to define µVx on compact setsK ⊂ V on which the function v 7→ v·x

is injective. For any such K, let j be sufficiently large so that K · x ⊂ ηj(x),

and set

µVx (K) =
µ
ηj
x (K · x)

µ
ηj
x (η0(x))

.

Because the sequence ηj is decreasing, we have µ
ηj
x (η0(x)) > 0 for µ-almost

every x and every j ≥ 0, and we also obtain that µVx (K) is independent of the

choice of j as long as j is sufficiently large. However, µVx is unique only up

to renormalization determined by the choice of η0. To emphasize the lack of

uniqueness, we write [µVx ] for the equivalence class of the measure µVx up to

normalization of the measure. See [12, §6] for further details.

Using the family of measures [µVx ] on V , we recover the conditional mea-

sures for any partition η subordinate to V -orbits. For simplicity, suppose that

almost every V -orbit is free. We then have the following: for any partition

η subordinate to V -orbits, there is a function cη : X → (0,∞) such that if

{µηx : x ∈ X} is a family of conditional measures on (X,µ) associated with the

measurable partition η, then

µηx = cη(x)(v 7→ v · x)∗ (µ
V
x )↾η(x).

Note that the subgroups V above need not be unimodular. We have the

following claim, which follows from local disintegration and the definition of

the left Haar measure.

Claim 4.1. Let V ⊂ G be a connected Lie subgroup. Then the measure

[µVx ] coincides with the (positive proportionally class of the) left Haar measure

on V for µ-almost every x ∈M if and only if the measure µ is invariant under

the action of V .

The remainder of this section is devoted to a number of criteria that will

guarantee that [µVx ] is the left Haar measure.

4.2. Invariance from the structure of parabolic subgroups. Recall that we

write P = MAN for the minimal parabolic subgroup of G. Suppose µ is a

P -invariant, Borel probability measure on X. Given a coarse negative root

ξ ∈ Σ̂− and a non-trivial subgroup V ⊂ Gξ such that µ is V -invariant then,

as the stabilizer of a measure is a closed subgroup of G, it follows from the
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structure theory of parabolic subgroups that µ is invariant by the full coarse

root subgroup Gξ. In the case that the subgroup V above varies with the point

x ∈ X, we have the following lemma. Note that Gξ is nilpotent so subgroups

of Gξ are unimodular.

Lemma 4.2. Let µ be a P -invariant measure on X , and suppose for some

ξ ∈ Σ̂− that for µ-almost every x ∈ X , there is a non-trivial, connected Lie

subgroup V (x) ⊂ Gξ such that [µG
ξ

x ] coincides with the Haar measure on V (x).

Moreover, assume the assignment x 7→ V (x) is measurable and A-invariant.

Then the measure µ is Gξ-invariant.

Proof. Let {µex} denote the A-ergodic decomposition of µ. It is enough to

verify that the measure µex is Gξ-invariant for almost every x.

Take s ∈ A such that ‖Ad(s)|n‖ < 1. It follows by Lemma 4.3 below

that the partition into A-ergodic components is refined by the partition into

N -orbits. In particular, for µ-almost every x, the measure µex is N -invariant

by Claim 4.1.

Fix a generic x ∈ X. Let V be the µex-almost surely constant value of

x 7→ V (x). Let H(x) be the closed subgroup of G under which µex is invariant,

and let hx = Lie(H(x)).

As −ξ is a positive coarse restricted root, we have g−ξ ⊂ hx. Moreover,

given a non-zero Y ∈ Lie(V ), from the analysis of sl(2,R) triples in g (see [23,

Lemma 7.73]), we have that (ad(Y ))2 maps g−ξ onto gξ. In particular gξ ⊂ hx
whence µex is Gξ-invariant. �

Lemma 4.3. Let U be a closed connected subgroup of G normalized by an

element s ∈ A such that ‖Ad(s)↾u‖ < 1, where u is the Lie algebra of U . If

Es is the partition into ergodic components of µ with respect to s, then Es is

refined by the partition into U -orbits mod µ.

Proof. We say a point x is generic with respect to µ if for every compactly

supported continuous function φ, 1
N

∑N−1
n=0 φ(s

k · x) →
∫
φ dµEsx , where µEsx is

the ergodic component of µ with respect to s at x. Note that if u ∈ U , then

skus−k · x → x as k → +∞ uniformly on compact sets in X and hence for

every compactly supported continuous function φ,

|φ(sk · x)− φ(sk · u · x)| → 0

uniformly in x as k → +∞. Finally if x and y are generic points with y = u ·x

and if φ is a compactly supported continuous function, we have

lim
N→+∞

1

N

N−1∑

k=0

φ(sk · x) = lim
N→+∞

1

N

N−1∑

k=0

φ(sk · y).

It follows that µEsx = µEsy . �
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4.3. High-entropy method. We have the following theorem of Einsiedler

and Katok from which we deduce additional invariance of an A-invariant prob-

ability measure along unipotent subgroups by considering its support along

coarse root spaces. We say a Lie subalgebra h ⊂ g is contracting if it is invari-

ant under the adjoint action of A and if there is some s ∈ A with

h =
⊕

ξ∈Σ̂:ξ(s)<0

(gξ ∩ h).

Note that any such h is nilpotent, hence unimodular. We state a simplified

version of the High Entropy Theorem from [14].

Theorem 4.4 (High Entropy Theorem, [14, Th. 8.5]). Let µ be an A-

invariant probability measure on X , and let h ⊂ g be a contracting Lie algebra

with corresponding analytic subgroup H . Then for µ-almost every x, there are

Lie subgroups

Hx ⊂ Sx ⊂ H

with

(1) µHx is supported on Sx;

(2) µHx is invariant under left and right multiplication by Hx;

(3) Hx and Sx are connected and their Lie algebras are direct sums of subspaces

of root spaces ;

(4) Hx is normal in Sx, and if ξ, ξ′ ∈ Σ̂ with ξ 6= ξ′ are distinct coarse roots,

then for g ∈ Sx ∩G
ξ and h ∈ Sx ∩G

ξ′ , the cosets gHx and hHx commute

in Sx/Hx;

(5) µG
ξ

x is left- and right- invariant under multiplication by elements of Hx∩G
ξ .

It follows that the groups Sx and Hx are equivariant under conjugation

by A; that is Ss·x = sSxs
−1. Unlike in [14], here we only consider the adjoint

action of A on g. As this action is semisimple with real roots, it follows that

the groups Sx and Hx are normalized by A. In particular, the maps x 7→ Sx
and s 7→ Hx are constant along A-orbits.

4.4. Invariance from entropy considerations. Let µ be an A-invariant,

A-ergodic measure. Given a coarse root ξ ∈ Σ̂, let Wξ be the partition of

X into orbits of Gξ. We have a standard fact (see, for example, [28]) that if µ

is Gξ-invariant, then for s ∈ A with ξ(s) > 0, the entropy of the action of s on

(X,µ) conditioned along orbits of Gξ is given by

hµ(s | W
ξ) =

∑

β∈ξ

β(s) dim(gβ).

The converse also holds.
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Lemma 4.5. Let ξ ∈ Σ̂ be such that

hµ(s | W
ξ) =

∑

β∈ξ

β(s) dim(gβ)

for some s ∈ A with ξ(s) > 0. Then µ is Gξ-invariant.

Indeed, Ledrappier shows in [24, Th. 3.4] that µ has absolutely continu-

ous conditional measures along Gξ-orbits. In our setting, this is [5, Th. 7.2].

Moreover, from the explicit computation of the density function in the proof

of [24, Th. 3.4] it follows that the conditional measures of µ along Gξ-orbits

coincide with the image of the Haar measure on Gξ. See also [26, (6.1)] for

the argument in English. In our setting, see Claim 12.2 and the computation

preceding it in [5]. From Claim 4.1 it follows that µ is Gξ-invariant.

We remark that deriving extra invariance of a measure by verifying that

conditional entropy is maximized also underlies the proof of the so-called “in-

variance principle” for fiber-wise conditional measures invariant under a skew

product, developed by Ledrappier for projective and linear cocycles in [25] and

extended to non-linear cocycles in [1].

5. Main propositions and proofs of Theorems 1.6, 1.7, and 1.10

5.1. Non-resonance implies invariance. We return to the setting intro-

duced in Section 2. Fix any lattice Zd ⊂ A, and consider an A-invariant,

A-ergodic measure µ on Mα satisfying (H3) of Proposition 2.5. We say a re-

stricted root β ∈ Σ of g is resonant (with the fiber exponents LF (µ) of µ) if

there exist a c > 0 and a fiberwise Lyapunov exponent λ ∈ LF (µ) with

β = cλ.

If no such c and λ exist, we say β is non-resonant. We similarly say that a

fiberwise Lyapunov exponent λ ∈ LF (µ) is resonant (with g) if there are a

c > 0 and a β ∈ Σ with

λ = cβ.

Note that resonance and non-resonance are well defined on the set of coarse

restricted roots Σ̂ and coarse fiberwise exponents L̂F (µ).

The proof of Theorem 1.6 follows directly from the following key proposi-

tion.

Proposition 5.1. Let µ be an A-invariant, A-ergodic Borel probability

measure on Mα such that the image of µ in G/Γ is G-invariant. Then, given

a coarse restricted root ξ ∈ Σ̂ that is non-resonant with the fiberwise Lyapunov

exponents of µ, the measure µ is Gξ-invariant for the action α̃.

Proof. Indeed if ξ is a non-resonant coarse restricted root, then ξ = χ(G)

for some coarse exponent χ ∈ L̂ with Wχ(F ) being trivial. Since the image of
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µ in G/Γ is the Haar measure, it follows for s ∈ A with ξ(s) > 0 that

hHaar(s | ξ) =
∑

β∈ξ

β(s) dim(gβ).

From Proposition 3.3 and the fact that the partitionsWχ=Wξ coincide inMα,

it follows that hµ(α̃(s) | W
χ(F )) = 0 whence

hµ(α̃(s) | W
ξ) =

∑

β∈ξ

β(s) dim(gβ).

The Gξ-invariance of µ then follows from Lemma 4.5. �

We remark that the proof of Proposition 5.1 is similar to key steps in [33]

and [15] where one deduces extra invariance of a measure by computing con-

ditional entropy, verifying that the entropy is the maximal value permitted by

the Margulis–Ruelle inequality, and applying Lemma 4.5 to obtain invariance.

5.2. P -invariant measures and the proof of Theorem 1.6. Recall that P

is the minimal standard parabolic subgroup and is hence amenable. It fol-

lows (even in the case that Γ is non-uniform) that there exists an ergodic,

P -invariant probability measure µ for the restriction of the action α̃ on Mα

to P . Indeed, take any measure µ0 on Mα that projects to the Haar measure

on G/Γ, and let {Fk} be a Følner sequence in the amenable group P . Then the

average of µ0 over each Fk, which we denote by µk, projects to the Haar mea-

sure. In consequence, the family {µk} is precompact and any weak-∗ limit µ∞
of µk is a P -invariant probability measure. (In other words, there is no escape

of mass.) One my then take an ergodic component µ of µ∞. We remark also

that any P -invariant probability measure onMα projects to the Haar measure

on G/Γ, since the latter is the only P -invariant probability measure on G/Γ.

Fix a P -invariant, P -ergodic measure µ on Mα. Recall that A ⊂ P and

recall the data r(·), λi(·), Eλi
(·) defined in Theorem 3.1 for the action of A on

(M,µ) as well as the corresponding data rF (·), λFi (·), and EλF
i
(·) and rG(·),

λGi (·), and EλG
i
(·) for the fiberwise and orbit cocycles. As observed earlier, the

data rG(·), λGi (·), and EλG
i
(·) are independent of the measure µ and the point.

We show that for µ as above, the remaining data is independent of the point.

Claim 5.2. Suppose that µ is a P -invariant, P -ergodic measure. Then

the functions r(·), rF (·), λi(·), λ
F
i (·) and the dimensions of the corresponding

subspaces Eλi
(·), EλF

i
(·) are constant almost surely.

Proof. Note that µ is P -ergodic but need not be A-ergodic. Let {µep}p∈Mα

denote the A-ergodic decomposition of µ. We may select s ∈ A so that β(s) < 0

for every β ∈ Σ+. By the pointwise ergodic theorem (see Lemma 4.3), it follows

that ergodic components are refined by the measurable hull of the partition

into N -orbits. Then µep is N -invariant for almost every p ∈ Mα. It follows

that the data in the claim is constant along AN -orbits.
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Finally, recall that P = MAN with M contained in the centralizer of A.

It follows that the data is constant along M orbits. By the P -ergodicity of µ,

the result follows. �

From Claim 5.2 it follows that for any P -invariant, P -ergodic measure µ

on Mα, the set of resonant roots depends only on the measure µ and not the

decomposition of µ into A-ergodic components.

Theorem 1.6 now follows immediately from Proposition 5.1.

Proof of Theorem 1.6. Let µ be any P -invariant, P -ergodic measure on

Mα. Let Q be the stabilizer of G in µ. Note that Q is a closed subgroup

with P ⊂ Q ⊂ G. If dimM < r(G), then there at most r(G) − 1 fiberwise

Lyapunov exponent functionals in LF , hence at most r(G)−1 coarse fiberwise

Lyapunov exponent functionals in L̂F . It follows that there are at most r(G)−1

resonant coarse restricted roots ξ ∈ Σ̂. From Proposition 5.1, it follows that

Q is a standard parabolic subgroup with resonant codimension strictly smaller

than r(G). But then Q = G by definition of r(G).

It follows that µ is a G-invariant, Borel probability measure onMα. From

Claim 2.1, it follows that there exists a Γ-invariant Borel probability measure

on M . �

5.3. Parabolic subgroups associated to conditional measures. We continue

to assume µ is a P -invariant, P -ergodic measure on Mα. The proof of Theo-

rems 1.7 and 1.10 follow from an analysis of the geometry of the measures [µGp ]

constructed in the previous section.

We define subgroups QIn(µ)⊂QOut(µ) of G as follows: Given p∈Mα, let

(1) QIn(µ) denote the largest subgroup of G for which µ is invariant for the

action α̃;

(2) QOut(µ; p) denote the smallest, closed, [µGp ]-co-null subgroup of G.

Note that both QIn(µ) and QOut(µ; p) are standard parabolic subgroups. As

P ⊂ QOut(µ; p), it follows that QOut(µ; p) is constant along P -orbits. By

P -ergodicity of µ, we write QOut(µ) for the almost-surely constant value of

QOut(µ; p).

Theorems 1.7 and 1.10 will follow from verifying that QIn(µ) = QOut(µ).

We use the criteria in the previous section to verify this condition. First,

consider the case that every fiberwise Lyapunov exponent λFi of µ is resonant

with a negative root. In this setting we immediately obtain that QIn(µ) and

QOut(µ) coincide.

Proposition 5.3. Suppose that for every λFi ∈ LF , there are a β ∈ Σ−

and c > 0 with λFi = cβ. Then QIn(µ) = QOut(µ).
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We also verify that QIn(µ) = QOut(µ) given the combinatorics of the

number m(G).

Proposition 5.4. Suppose g has no rank-1 simple ideals and that QIn(µ)

is a maximal parabolic subgroup. Then QIn(µ) = QOut(µ).

5.4. Proofs of Theorems 1.7 and 1.10. Given a P -invariant, P -ergodic

measure µ as above, let µ̃ denote the locally finite measure on G×M obtained

from lifting µ on fundamental domains of Γ. Given g ∈ G, let µg denote the

conditional probability measure on M defined by disintegrating µ̃ along fibers

and identifying each fiber {g} ×M with M .

As µ̃ lifts µ, we have that {µg : g ∈ G} is Γ-equivariant:

µgγ = α(γ)∗µg.

Moreover, as µ is QIn(µ)-invariant, for almost every g ∈ G, we have that

µg = µqg for every q ∈ QIn(µ). Let Q = QIn(µ). We equip Q\G with any

measure m in the Lebesgue class. Let µ be the measure on Q\G×M given by

µ(B) =

∫
µg({x : (Qg, x) ∈ B}) dm(Qg),

and let µ̂ be the measure on M given by

µ̂(B) =

∫
µg(B) dm(Qg).

Note that µ̂ is image of µ under the natural projection π : Q\G×M →M .

Consider the µ-measurable partition ζπ on Q\G×M into level sets of the

map π. We have that ζπ is measurably equivalent to the partition

{QIn(µ)\QOut(µ)× {x} : x ∈M}.

In particular, in the case QIn(µ) = QOut(µ), the following claim follows imme-

diately.

Claim 5.5. If QIn(µ) = QOut(µ), then the projection (Q\G ×M,µ) →

(M, µ̂) is a measurable isomorphism.

Theorems 1.7 and 1.10 follow from Γ-equivariance of the family {µg} and

Claim 5.5.

Proof of Theorems 1.7 and 1.10. Let µ be a P -invariant, P -ergodic mea-

sure on Mα.

First consider the setting of Theorem 1.7 where dim(M) = r(G). If there

exists a non-resonant, fiberwise Lyapunov exponent λFi for µ then, by dimen-

sion counting, there are at most r(G)−1 coarse resonant roots ξ ∈ Σ̂. However,

as µ is P -invariant and as there are no proper parabolic subalgebras of resonant

codimension smaller than r(G), it follows that µ is necessarily G-invariant. It

then follows that if α̃ has no invariant probability measure on Mα, then every
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fiberwise Lyapunov exponent of µ is resonant with a root of g. We claim in

this case that every fiberwise exponent for µ is in fact resonant with a negative

root β ∈ Σ−. Indeed, if there existed a fiberwise exponent that was resonant

with a positive root, then there would be at most r(G) − 1 resonant negative

roots. As we assume µ is P -invariant, we again generate a parabolic subgroup

that preserves µ and with resonant codimension smaller than r(G). This again

implies the existence of an α̃ invariant probability on Mα.

Thus, in the case that dim(M) = r(G) it follows that if there is no

α-invariant probability measure on M , then there exists s ∈ A such that

λFi (s) < 0 for every fiberwise Lyapunov exponent λFi of µ.

Proposition 5.3 then holds, and a standard argument shows in this case

that the fiberwise conditional measures µg are supported on a finite set for

almost every g. It then follows by ergodicity that the number of atoms is

constant almost surely. This argument could have been due to R. Mañé, but

we were unable to find an explicit reference in the literature; we include it as

the following lemma. In our case we view Mα as (G/Γ) ×M by choosing a

measurable trivialization of the bundle.

Lemma 5.6. Let f : (Ω, ν) → (Ω, ν) and F : (Ω×M,µ) → (Ω×M,µ) be

invertible, ergodic, measure-preserving transformations of standard probability

spaces with F ergodic. Let p : Ω ×M → Ω be projection into first coordinate,

and assume that p∗µ = ν. Let ω → µω be the disintegration into conditional

measure along the partition into preimages of p. Assume M is a Riemannian

manifold (not necessarily compact) and that

F (ω, x) = (f(ω), gω(x)),

where gω is a C1 diffeomorphism for every ω and log ‖gω‖C1 is ν-integrable.

If the Lyapunov exponents of F along the M direction are all negative, then

there is a k ∈ N such that for ν-almost every ω ∈ Ω, µω is an atomic measure

with k atoms of mass 1
k
.

Proof of Lemma 5.6. Let g
(n)
ω : M → M be the diffeomorphism such that

Fn(ω, x) =
Ä

fn(ω), g
(n)
ω (x)

ä

. The F -invariance of µ implies for ν-almost every

ω that (g
(n)
ω )∗µω = µfn(ω) for all n.

We shall use the following consequence of ergodicity and the negativity

of the Lyapunov exponents: there exist λ > 0 and a measurable function

r : Ω × M → (0,∞), defined µ-almost everywhere, such that for µ-almost

every (ω, x),

diam g(n)ω

(
Br(ω,x)(x)

)
< e−λn.

Given δ > 0, set Gδ := {(ω, x) : µω(Br(ω,x)(x)) ≥ δ}. Fix some δ > 0 with

µ(Gδ) > 0. For µ-almost every (ω, x), there are nj → ∞ with F−nj (ω, x) ∈ Gδ.
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Then for all such (ω, x) and nj ,

µω(Be
−λnj (x)) ≥ µω

(
g
(nj)

f
−nj (ω)

Ä

B
r(F−nj (ω,x))(g

−nj
ω (x))

ä

)

= µ
f
−nj (ω)

Ä

B
r(F−nj (ω,x))(g

−nj
ω (x))

ä

≥ δ.

Taking nj → ∞, it follows for µ-almost every (ω, x) that µω({x}) ≥ δ. Ergod-

icity of µ gives the remainder of the claims. �

We now continue the proof of Theorems 1.7 and 1.10. In the case that

dim(M) ≤ m(G) and every fiberwise Lyapunov exponent is resonant with a

negative root, the same analysis as above holds. In particular, the hypotheses

of Proposition 5.3 hold. Note that this holds even if g has rank-1 simple ideals

(so m(G) = 1 and M is a circle.) If dim(M) ≤ m(G) and not every fiberwise

Lyapunov exponent is resonant with a negative root, then there are at most

m(G)− 1 resonant, negative coarse restricted roots. Note that if g has rank-1

simple ideals then, as m(G)−1 = 0, this implies QIn(µ) = QOut(µ) = G. Thus

we may assume g has no rank-1 simple ideals. From the definition of m(G), it

follows that either QIn(µ) = G or that QIn(µ) is a maximal parabolic subgroup

and, from Proposition 5.4, we have that QIn(µ) = QOut(µ).

In particular, under the hypotheses of either Theorem 1.7 or 1.10, we have

Q := QIn(µ) = QOut(µ).

In the setting of either theorem, the spaces (M,µg) are Lebesgue prob-

ability spaces. As there are at most countably many isomorphism types of

Lebesgue probability spaces, by P -ergodicity it follows that the spaces (M,µg)

are all measurably isomorphic to a fixed abstract Lebesgue probability space

(Y, η). In particular, we may select a measurable family of measurable isomor-

phisms φg : (M,µg) → (Y, η). Since we have µg = µqg for all q ∈ Q, we may

moreover assume φg = φqg for almost every g and every q ∈ Q. The family of

isomorphisms φg translate the Γ-equivariance of the family µg to a family of

automorphisms of the measure space (Y, η) parametrized by Q\G:

ψ(γ,Qg) := φgγ ◦ α(γ)∗ ◦ φ
−1
g ∈ Aut(Y, η).

One verifies that ψ is a cocycle over the right Γ-action on Q\G.

It now follows from Claim 5.5 that (M, µ̂) is measurably isomorphic to

(Q\G, ν)× (Y, η). Moreover, the action α of Γ on (M, µ̂) is measurably conju-

gate via this isomorphism to the skew action defined by ψ over the standard

right action of Γ on Q\G. Theorems 1.7 and 1.10 now follow. �

6. Proof of Propositions 5.3 and 5.4

We recall the notation of Section 5.3. In particular, we take µ to be a

P -invariant, P -ergodic measure on Mα. Recall also the definitions of QIn(µ)

and QOut(µ) in Section 5.3. We verify under the hypotheses of Propositions 5.3

and 5.4 that QIn(µ) = QOut(µ).
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6.1. Conditional measures along coarse root spaces. Under the assumption

that QIn(µ) 6= QOut(µ), the following claim guarantees the existence of a coarse

restricted root ξ ∈ Σ̂ with Gξ 6⊂ QIn(µ) and such that the measure [µG
ξ

p ] is

non-trivial. Write Q = QIn(µ) and q = Lie(Q) for the remainder.

Claim 6.1. Suppose QIn(µ) 6= QOut(µ). Then there is a coarse restricted

root ξ ∈ Σ̂ with gξ 6⊂ q such that µG
ξ

p is non-atomic for µ-almost every p ∈Mα.

The claim follows from the local product structure of A-invariant measures

on G-spaces demonstrated in [13, Prop. 8.3] and further developed in [14,

Ths. 7.5, 8.4]. We sketch a short proof here for completeness.

Given standard parabolic subgroup Q with Lie algebra q, let

ΣQ = {β ∈ Σ : gβ ⊂ q}, Σ⊥
Q = {β ∈ Σ : gβ 6⊂ q}.

We have that Σ = ΣQ∪Σ⊥
Q and ΣQ and Σ⊥

Q are saturated by coarse equivalence

classes of restricted roots.

Proof. Recall that we write Q = QIn(µ) and the measure µGp is a Q- and

hence A-invariant measure on G. Let g⊥ :=
⊕

β∈Σ⊥

Q
gβ . Note that Σ⊥

Q consists

of negative roots. Let V be the analytic subgroup corresponding to g⊥. Let

Cs denote conjugation by s ∈ A. We have Cs(V ) = V for s ∈ A. As µ is

A-invariant, we have for s ∈ A that [(Cs)∗µ
V
p ] = [µV

α̃(s)(p)] for almost every p.

As Σ⊥
Q⊂Σ−, we may find an s0∈A and a coarse restricted root ξ⊂Σ⊥ with

• β(s0) = 0 for β ∈ ξ;

• β(s0) < 0 for all β ∈ Σ⊥
Q r ξ.

Let V ′ be the analytic subgroups of V corresponding to
⊕

β∈Σ⊥

Qrξ g
β .

Suppose first that µVp is not supported V ′ for a positive measure of set of

p ∈Mα. As α̃(s0) commutes with the action of Gξ, we have [µG
ξ

α̃(s0)(p)
] = [µG

ξ

p ]

for almost every p. Moreover, as α̃(s0) contracts V ′-orbits, it follows from

Poincaré recurrence to compact sets of sufficiently large measure where the

measures [µG
ξ

q ] are well defined, vary continuously in q, and contain the identity

in their supports, that for µVp -almost every g ∈ V , writing g = vu for u ∈ Gξ

and v ∈ V ′, u is in the support of [µG
ξ

p ]. Thus, µG
ξ

p is atomic on a positive

measure set of p only if µVp is supported on V ′ for a positive measure of set of

p ∈Mα. Thus, µG
ξ

p is non-atomic on a positive measure set of p. Note that the

actions by A and M preserve the coarse root subgroups Gξ and also preserve

the measure µ. Also, as the A-ergodic components of µ are N -invariant, it

follows from P -ergodicity of µ that µG
ξ

p is non-atomic for almost every p.

If µVp is supported on a single V ′-orbit for almost every p ∈ Mα, we may

recursively repeat the above argument with V replaced V ′. �

6.2. Recurrence and the proof of Proposition 5.3. We show under the as-

sumption that every fiberwise Lyapunov exponent is resonant with a negative
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root, that QIn(µ) = QOut(µ). Suppose that QIn(µ) 6= QOut(µ), and let ξ

be a coarse restricted root as in Claim 6.1. We will show below that µ is

Gξ-invariant. The contradiction completes the proof of Proposition 5.3.

Let A′ ⊂ A denote the kernel of ξ; that is, s ∈ A′ if β(s) = 0 for all

β ∈ ξ. As we assume Γ has dense image in every rank-1 simple subgroup of G,

it follows from Moore’s ergodicity theorem (applied to each irreducible factor)

that A′ acts ergodically on G/Γ (see, for example, [38, Th. 2.2.6]).

As discussed in the proof of Theorem 1.7, the assumption that every fiber-

wise Lyapunov exponent is resonant with a negative root implies that µg has

finite support for almost every gΓ ∈ G/Γ. Moreover, P -ergodicity of µ ensures

that the number of atoms is constant in gΓ.

The discussion below will always be in the sense of modulo µ-null sets.

Throughout the argument we will use only invariance of µ under P and, in

particular, its subgroup A and therefore the null sets are preserved under

these actions.

Note that (as we assume µG
ξ

p is non-atomic) the partition of (Mα, µ) into

full Gξ-orbits is non-measurable. Let ηξ denote the measurable hull of this

partition—that is, the finest measurable partition of (Mα, µ) containing full

Gξ-orbits modulo µ. We remark that this construction does not require µ to be

Gξ-invariant. However, as the partition into Gξ-orbits and µ are both invariant

under A′, the partition ηξ is A′-invariant modulo µ-null sets.

Consider the action of A′ on (Mα, µ). Note that the action need not

be ergodic. Let EA′ denote the partition into ergodic components of µ with

respect to the action of A′. We have the following claim, which will provide

the necessary recurrence to complete the proof of Proposition 5.3.

Claim 6.2. The partition ηξ refines EA′ .

Proof. Let EA denote the partition into ergodic components of µ with

respect to the action of A on Mα. Taking s ∈ A such that ξ(s) < 0, by

Lemma 4.3 we get that ηξ refines Es. Because Es refines EA, it follows that η
ξ

refines EA.

To complete the proof of the claim we show EA = EA′ .

Fix p ∈ Mα, and let µEAp be the A-ergodic component of µ containing p.

Let Ẽ(p) denote the partition of (Mα, µEAp ) into A′-ergodic components. We

claim that Ẽ(p) is finite for almost every p. Indeed first note that, as both A

and A′ act ergodically on G/Γ, the A and A′-ergodic components of (Mα, µ)

project to the Haar measure on G/Γ. Furthermore, as the fiber conditional

measures µgΓ are purely atomic and as the ergodic components of the A′-action

on (Mα, µEAp ) are mutually singular, it follows that the partition Ẽ(p) is finite.

As A′ ⊂ A with A abelian, it follows that A permutes elements of the

partition Ẽ(p) of (Mα, µEAp ). Note that the partition Ẽ(p) is finite, A acts
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ergodically on (Mα, µEAp ), and A is a connected group. In particular, A acts

ergodically on the (finite) factor measure space (Mα, µEAp )/Ẽ(p). This yields a

contradiction unless the partition Ẽ(p) contains only one element. It follows

that EA = EA′ . �

From standard measure rigidity arguments for actions of abelian groups

we obtain the following.

Claim 6.3. µ is invariant under the action Gξ .

Proof. Fix U ⊂ Gξ to be a pre-compact, open neighborhood of the identity

in Gξ. Given almost every p ∈Mα, the measure µG
ξ

p gives positive mass to U .

For such p, normalize µG
ξ

p on U .

Let A′ be as above. Then any s∈A′ commutes with Gξ whence sUs−1= U

and thus µG
ξ

α̃(s)(p) = µG
ξ

p . Let K ⊂ Mα be a compact set on which the assign-

ment p 7→ µG
ξ

p is continuous (where locally finite measure on Gξ are endowed

with the topology dual to compactly supported continuous functions).

Since ηξ refines EA′ , we have the following: for µ-almost every p ∈ Mα

and for µG
ξ

p -almost every u ∈ Gξ, setting p′ = α̃(u)(p) we have p′ ∈ EA′(p).

Consider such p and p′ such that p′ ∈ K is a density point of K with respect to

the A′-ergodic component of µ containing p. It follows that there is a sequence

sk ∈ A′ with

(1) α̃(sk)(p) ∈ K for every k ∈ N;
(2) α̃(sk)(p) → p′ as k → ∞;

(3) µG
ξ

p = µG
ξ

α̃(sk)(p)
for every k ∈ N.

It follows that µG
ξ

p = µG
ξ

p′ . Taking sets Kj as above of measure arbitrarily close

to 1, for typical points p, it follows that µG
ξ

p = µG
ξ

p′ for all p′ = α̃(v)(p) for a

µG
ξ

p -conull set of v. It follows that for almost every p, the group of isometries

of Gξ preserving µG
ξ

p up to normalization acts transitively on the support of

µG
ξ

p in Gξ. In fact, the group of right-translations of Gξ preserving µG
ξ

p up to

normalization acts transitively on the support of µG
ξ

p in Gξ.

It now follows from arguments developed in [21, §5] that µG
ξ

p coincides with

the Haar measure on a non-trivial subgroup V (p) ⊂ Gξ. See also [20, §6.1]

for an argument in the framework described here. Moreover, the assignment

p 7→ V (p) is measurable and constant on A-orbits. From Lemma 4.2 it follows

that µ is Gξ-invariant. �

Recall that our initial choice of ξ was such that Gξ 6⊂ Q = QIn(µ). From

this contradiction we conclude that QIn(µ) = QOut(µ). This completes the

proof of Proposition 5.3
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6.3. Proof of Proposition 5.4. The proof of Proposition 5.4 is a direct

application of the Theorem 4.4. Recall the definitions of ΣQ and Σ⊥
Q above.

Suppose that QIn(µ) 6= QOut(µ). Let ξ ∈ Σ̂ be as in Claim 6.1. Then ξ ⊂

Σ⊥
QIn(µ)

. Write Q = QIn(µ).

If ξ contains two elements, we have ξ = {β′, 2β′} for some root β′ ∈ Σ−.

In this case, take β = 2β′ if µG
ξ

p is supported on G2β′

for almost every p and

β = β′ otherwise. If ξ is a single root, take β with ξ = {β}.

We claim the following.

Claim 6.4. If QIn(µ) is a maximal parabolic subgroup then, with β as

above, there is a root γ ∈ ΣQIn(µ) with

(1) γ 6= −cβ, for any c > 0;

(2) γ + β ∈ Σ;

(3) γ + β ∈ Σ⊥
QIn(µ)

.

Proof. Indeed let q = Lie(QIn(µ)). Then q = qΠr{α} for some simple

root α. If β = −α then, as we assume there are no rank-1 simple ideals,

there is a simple positive root α̂ 6= −α adjacent to α in the Dynkin diagram

corresponding to the simple factor containing α. Then α̂−β = α̂+α is a root.

Take γ = −α̂. Then (since q is of the form qΠr{α}) γ = −α̂ ∈ ΣQIn(µ) and

γ + β ∈ Σ⊥
QIn(µ)

. Similarly, if β = −2α (so that β is a root in factor of type

BCn), then α is the right-most root in the Dynkin diagram; with α̂ the root

adjacent to (that is, to the left of) α, since α̂ + 2α is a root, γ = −α̂ satisfies

the conclusions of the claim.

If β 6= −α and β 6= −2α, then β is of the form

β = cαα+
∑

α̂ 6=α∈Π

cα̂α̂,

where cα < 0, cα̂ ≤ 0, and
∑

α̂ 6=α∈Π cα̂ ≤ −1. Since β is not a simple negative

root, there is a simple (positive) root α′ ∈ Π such that β + α′ is a negative

root. If α′ 6= α then, since β = (β+α′)−α′ and −α′ ∈ ΣQIn(µ), it follows that

(β + α′) /∈ ΣQIn(µ)

since QIn(µ) is a subgroup. Then γ = α′ satisfies the conclusion of the claim.

On the other hand, if α′ = α then, since β + α is a negative root,

−(β + α) ∈ Σ+ ⊂ ΣQIn(µ)

and
β +−(β + α) = −α /∈ ΣQIn(µ).

Since β and α are linearly independent, the root γ = −(β + α) satisfies the

conclusion of the claim. �

As we assume that γ 6= −cβ for c > 0, it follows that we may find s ∈ A

with β(s) < 0 and γ(s) < 0. Let h be the Lie subalgebra generated by gξ ⊕g[γ]

where [γ] is the coarse equivalence class of γ. Then H = exp(h) is the minimal
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subgroup containing Gξ and G[γ] that is contracted by all s with β(s) < 0 and

γ(s) < 0. For a generic p ∈Mα, let Hp ⊂ Sp ⊂ H be the subgroups guaranteed

by Theorem 4.4.

By Claim 6.1 and choice of β in the coarse Lyapunov class ξ, Gξ ∩ Sp is

non-empty. Moreover, either Gξ = Gβ , or Gξ = G2β ⊕Gβ and Gξ ∩ Sp is not

contained in G2β . By Theorem 4.4(3), in the latter case, Gξ ∩ Sp contains a

non-trivial connected subgroup {exp(tY ) : t ∈ R} of Gβ for some Y ∈ gβ .

Let β = β + γ. By Claim 6.4, β ∈ Σ, which implies that there is some

Z ∈ gγ such that adZY ∈ gβ+γ is non-trivial. Theorem 4.4 implies that Lie(Hp)

contains the line spanned by [Z, Y ] ∈ [gγ , gβ ] ⊂ gβ for µ-almost every p.

Denote by V (p) the largest connected Lie subgroup of Gβ ∩ Hp, which

is non-trivial by the above discussion. This is a measurable family. By the

discussion after Theorem 4.4, V (p) is equivariant under the action by A.

In particular, the family V (p) satisfies the hypotheses of Lemma 4.2. From

Lemma 4.2, it follows that the measure µ is G[β]-invariant contradicting the

choice of γ. This completes the proof of Proposition 5.4.

Appendix A. Tables of root data for classical root systems

A table of simple roots and all positive roots is given in Table 1. We

express the roots in terms of a standard presentation (cf. [23, App. C].) In

all cases, the parabolic subalgebra q of minimal resonant codimension is q =

qΠr{α1} from which we immediately verify r(g) in Example 1.3 from Table 1.

We also verify that m(g) is the resonant codimension of q = qΠr{α1,α2} except

for D4 from which we verify m(g) in Examples 1.5.
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Table 1. Roots systems and positive roots for classical root systems

Simple roots and

Dynkin diagram
Positive roots

Aℓ α1 α2 αℓ−1 αℓ

αi = ei − ei+1

1 ≤ i ≤ ℓ

αi + · · ·+ αk = ei − ek+1 1 ≤ i < k ≤ ℓ

Bℓ α1 α2 αℓ−1 αℓ

αi = ei − ei+1,

1 ≤ i ≤ ℓ− 1;

αℓ = eℓ

αi + · · ·+ αk = ei − ek+1 1 ≤ i ≤ k ≤ ℓ− 1

αi + · · ·+ αℓ = ei 1 ≤ i ≤ ℓ

αi + · · ·+ αk + 2αk+1 + . . . 1 ≤ i ≤ k < ℓ

+2αℓ = ei + ek+1

Cℓ α1 α2 αℓ−1 αℓ

αi = ei − ei+1,

1 ≤ i ≤ ℓ− 1;

αℓ = 2eℓ

αi + · · ·+ αk = ei − ek+1 1 ≤ i ≤ k ≤ ℓ− 1

αi + · · ·+ αk + 2αk+1 + . . . 1 ≤ i ≤ k < ℓ

+2αℓ−1 + αℓ = ei + ek+1

2αi + · · ·+ 2αℓ−1 + αℓ = 2ei 1 ≤ i ≤ ℓ

BCℓ α1 α2 αℓ−1 αℓ

αi = ei − ei+1,

1 ≤ i ≤ ℓ− 1;

αℓ = eℓ

αi + · · ·+ αk = ei − ek+1 1 ≤ i ≤ k ≤ ℓ− 1

αi + · · ·+ αℓ = ei 1 ≤ i ≤ ℓ

αi + · · ·+ αk + 2αk+1 + . . . 1 ≤ i ≤ k < ℓ

+2αℓ = ei + ek+1

2αi + · · ·+ 2αℓ−1 + 2αℓ = 2ei 1 ≤ i ≤ ℓ

Dℓ

α1 α2 αℓ−2

αℓ−1

αℓ

αi = ei − ei+1,

1 ≤ i ≤ ℓ− 1;

αℓ = eℓ−1 + eℓ

αi 1 ≤ i ≤ ℓ

αi + · · ·+ αk = ei − ek+1 1 ≤ i < k ≤ ℓ− 2

αi + · · ·+ αℓ−2 + αℓ−1 = ei − eℓ 1 ≤ i ≤ ℓ− 2

αi + · · ·+ αℓ−2 + αℓ = ei + eℓ 1 ≤ i ≤ ℓ− 2

αi + · · ·+ αℓ−1 + αℓ = ei + eℓ−1 1 ≤ i ≤ ℓ− 2

αi + · · ·+ αk + 2αk+1 + . . . 1 ≤ i ≤ k < ℓ− 2

+2αℓ−2 + αℓ−1 + αℓ

= ei + ek+1
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Sci. Publ. Math. no. 59 (1984), 163–188. MR 0743818. Zbl 0561.58037. Available

at http://www.numdam.org/item?id=PMIHES 1984 59 163 0.

[25] F. Ledrappier, Positivity of the exponent for stationary sequences of matrices,

in Lyapunov Exponents (Bremen, 1984), Lecture Notes in Math. 1186, Springer,

Berlin, 1986, pp. 56–73. MR 0850070. Zbl 0591.60036. https://doi.org/10.1007/

BFb0076833.

[26] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I.

Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math.

(2) 122 no. 3 (1985), 509–539. MR 0819556. Zbl 0605.58028. https://doi.org/

10.2307/1971328.

[27] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. II.

Relations between entropy, exponents and dimension, Ann. of Math. (2) 122

no. 3 (1985), 540–574. MR 0819557. Zbl 1371.37012. https://doi.org/10.2307/

1971329.

[28] F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from be-

low in Pesin’s entropy formula, Ergodic Theory Dynam. Systems 2 no. 2

(1982), 203–219 (1983). MR 0693976. Zbl 0533.58022. https://doi.org/10.1017/

S0143385700001528.



INVARIANT MEASURES AND MEASURABLE PROJECTIVE FACTORS 981

[29] F. Ledrappier and P. Walters, A relativised variational principle for con-

tinuous transformations, J. London Math. Soc. (2) 16 no. 3 (1977), 568–576.

MR 0476995. Zbl 0388.28020. https://doi.org/10.1112/jlms/s2-16.3.568.

[30] G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950),

37–55. MR 0033449. Zbl 0035.35602. https://doi.org/10.2307/1969496.

[31] A. Lubotzky, S. Mozes, and M. S. Raghunathan, The word and riemannian

metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math.

no. 91 (2000), 5–53 (2001). MR 1828742. Zbl 0988.22007. Available at http:

//www.numdam.org/item?id=PMIHES 2000 91 5 0.

[32] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergeb. Math.

Grenzgeb. 17, Springer-Verlag, Berlin, 1991. MR 1090825. Zbl 0732.22008.

[33] G. A. Margulis and G. M. Tomanov, Invariant measures for actions of

unipotent groups over local fields on homogeneous spaces, Invent. Math. 116

no. 1-3 (1994), 347–392. MR 1253197. Zbl 0816.22004. https://doi.org/10.1007/

BF01231565.

[34] A. Nevo and R. J. Zimmer, Homogenous projective factors for actions of

semi-simple Lie groups, Invent. Math. 138 no. 2 (1999), 229–252. MR 1720183.

Zbl 0936.22007. https://doi.org/10.1007/s002220050377.

[35] A. Nevo and R. J. Zimmer, A structure theorem for actions of semisimple Lie

groups, Ann. of Math. (2) 156 no. 2 (2002), 565–594. MR 1933077. Zbl 1012.

22038. https://doi.org/10.2307/3597198.

[36] L. Polterovich, Growth of maps, distortion in groups and symplectic geometry,

Invent. Math. 150 no. 3 (2002), 655–686. MR 1946555. Zbl 1036.53064. https:

//doi.org/10.1007/s00222-002-0251-x.

[37] D. Witte, Arithmetic groups of higher Q-rank cannot act on 1-manifolds, Proc.

Amer. Math. Soc. 122 no. 2 (1994), 333–340. MR 1198459. Zbl 0818.22006.

https://doi.org/10.2307/2161021.

[38] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monogr. Math. 81,
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