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Invariant measures and measurable
projective factors for actions of higher-rank
lattices on manifolds

By AARON BROWN, FEDERICO RODRIGUEZ HERTZ, and ZHIREN WANG

Abstract

We consider smooth actions of lattices in higher-rank semisimple Lie
groups on manifolds. We define two numbers r(G) and m(G) associated
with the roots system of the Lie algebra of a Lie group G. If the dimension
of the manifold is smaller than r(G), then we show the action preserves
a Borel probability measure. If the dimension of the manifold is at most
m(G), we show there is a quasi-invariant measure on the manifold such
that the action is measurably isomorphic to a relatively measure-preserving
action over a standard boundary action.

1. Introduction and statement of results

In this paper we consider lattices I' in higher-rank Lie groups G acting
by CHHolder giffeomorphisms on compact manifolds. The Zimmer program
refers to a number of questions and conjectures related to such actions. It is
expected that all such actions are constructed from algebraic examples or have
some algebraic factor. In particular, if the dimension of M is smaller than the
dimension of all possible algebraic actions, Zimmer’s conjecture asserts that
all actions factor through the action of a finite group. See [8] and [7] for recent
solution to (non-volume-preserving cases of) Zimmer’s conjecture by Brown,
Fisher and Hurtado for cocompact lattices in split, simple Lie groups as well
as for finite-index sublattices of SL(m, Z).

The main results of this paper concern actions of lattices in low dimen-
sions. Most rigidity results in the literature concerning actions of lattices in
low dimensions require additional hypotheses such as the preservation of a
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Borel probability measure (see [18], [36]), strong regularity assumptions of the
action (see [16]), or extremely low dimensions. (See [37], [11], [19] for actions
on the circle and [18], [36] for actions on surfaces.) Our focus in this paper
is to establish the existence of an invariant measure for actions in moderately
low dimensions and with low differentiability. In particular, in Theorem 1.6
we show that if the dimension of M is sufficiently small relative to algebraic
data associated to a simple Lie group G, then for any lattice I' C G, any
C'*B_action a: T' — Diff! P (M) preserves a Borel probability measure. The
critical dimension below which we are guaranteed an invariant probability is
precisely the critical dimension in the non-volume-preserving case of Zimmer’s
conjecture for split, simple Lie groups. In the case that I' is cocompact, The-
orem 1.6 follows immediately from the main result of [8]; on the other hand,
the proof of the main result of [8] uses many of the ideas used to prove Theo-
rem 1.6, particularly our Proposition 5.1 below. Theorem 1.6 moreover holds
for actions of non-uniform lattices, which was used in the proof of Zimmer’s
conjecture [7] for finite-index sublattices of SL(m, Z)

The second main result, Theorem 1.10, concerns actions a: I' — Diff ™8 (A1)
on manifolds M of certain intermediate dimensions. This range of dimensions
includes examples where there exist non-isometric (volume-preserving) actions
as well as examples of actions that do not preserve any Borel probability mea-
sure. In this case, we show that there exists a quasi-invariant measure p on
M such that the action on (M, u) is measurably isomorphic to a relatively
measure-preserving extension over a standard projective action.

Given an action o: I' — Diff'*# (M), the key idea in both theorems is to
consider the G-action induced by « on an auxiliary space, which we denote
by M“. We take P C G to be a minimal parabolic subgroup and consider
P-invariant measures on M. This approach should be compared with a num-
ber of papers by Nevo and Zimmer, particularly [34], [35]. Nevo and Zimmer
consider a manifold with a G-action and G-stationary measure v. The measure
v decomposes as vp * A, where X is a P-invariant measure. (See [34, Th. 1.4]
for discussion of this decomposition). Assuming that \ satisfies certain tech-
nical conditions—namely, that the measure A is either P-mizing in [34] or
that every non-trivial element of the maximal split Cartan subgroup S C P
acts ergodically in [35]—it is shown that the G-action on (M, v) is a relatively
measure-preserving extension over a standard projective action. These tech-
nical conditions are typically difficult to verify. In our argument, we exploit
the constraints on the dimension of M and verify certain conditions similar to
those introduced by Nevo and Zimmer. For instance, the technical condition in
[35, Th. 3] that all elements of the maximal split Cartan subgroup S C P act
ergodically implies our Claim 6.2 below and hence all arguments in Section 6.2
apply. In practice, it is difficult to verify such ergodicity hypotheses.
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1.1. Introduction and reductions. Throughout we assume that G is a real,
connected, semisimple Lie group with R-rank at least 2. By a standard con-
struction, there is a central extension G — G such that G is the direct product
of connected, simple Lie groups:

G=]]¢G:

(We abuse terminology and say a connected Lie group is simple if its Lie algebra
is simple; in particular, we allow groups with infinite center.) We take I' C G
to be a lattice subgroup and, writing T for the lift of I' to G, we assume that
for every simple factor G; C G with R-rank 1, the image of of T to G; is dense
in G;. Such a lattice will be called a higher-rank lattice. This, in particular,
includes the cases that

(1) G has no compact factors and I' C G is irreducible, or
(2) every non-compact, simple factor of G has R-rank at least 2.

Below, we will study smooth actions of such groups I'. As we may lift an
action of T' to an action of T, without loss of generality we will assume for the
remainder that G is a direct product G =[] G; of simple Lie groups.

Note that G = C' x G’, where C' is the maximal connected compact normal
subgroup of G and G’ is the maximal connected normal subgroup without
compact factors. We remark that our main results—Theorems 1.6 and 1.10—
are sharpest when G’ is assumed to be simple. Replacing I' with a subgroup
of finite index, one may assume the restriction of the map G — G’ to I is
injective; in particular, one may assume G = G’, and thus that G has no
compact factors. So we will assume from now on that G has no compact
factors.

Let M be a compact, connected, boundaryless C°° manifold, and let
a: I — Diff 78 (M) be an action of I on M by C'*# diffeomorphisms. For no-
tational convenience later, we assume « is a right action; that is, a(gh)(z) =
a(h)(a(g)(z)). Conjecturally, all such actions are obtained from families of
model algebraic actions via standard constructions. In particular, if dim(M)
is sufficiently small so that no model algebraic actions exists, Zimmer’s conjec-
ture states that all such actions should factor through actions of finite quotients
of I'; that is, the image «(T") of T' in Diff'*#(A1) should be finite. Such an ac-
tion is said to be trivial. See [16, Conjs. I, II], [17, Conjs. 4.12, 4.14], or [8,
Conj. 2.4] for more precise formulations. See also [8] for recent solution to (the
non-volume-preserving case of) Zimmer’s conjecture for cocompact lattices in
split, simple Lie groups.

We recall that in dimension 1, any lattice in a higher-rank, simple Lie
group with finite center acts trivially on the circle [19], [11]. For certain lattices
acting on surfaces, we obtain in conjunction with the main results of [18] the
following complete results.
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THEOREM A ([18, Cor. 1.8] and Theorem 1.6). Let S be a closed oriented
surface, and forn > 4, letI' C SL(n,Z) be a finite index subgroup. Then every
CYtB action of T on S is trivial.

THEOREM B ([18, Cor. 1.7] and Theorem 1.6). Let S be a closed oriented
surface of genus at least 1, and for n > 4, let I' C SL(n,R) be a non-uniform
lattice. Then every C'*P action of T' on S is trivial.

More generally, Theorem B holds when I' C G is a non-uniform lattice and
G is a connected, semisimple Lie group with finite center, no compact factors,
and r(G) > 3 for the integer r(G) defined below ([18, Cor. 1.7]). In particular,
the conclusion of Theorem B holds for any non-uniform lattice in a higher-rank,
simple Lie group G with finite center such that the restricted root system of
the Lie algebra of G is not of type As. By the main results of [8], triviality
of all actions on surfaces also holds for cocompact lattices in all such groups.
A more recent development is the proof of analogues of Theorems A and B
for C'-actions of lattices of higher-rank semisimple Lie groups on manifolds of
dimension less than rankg(G) (or volume-preserving Cl-actions in dimension
rankg(G)), by Brown, Damjanovié¢, and Zhang [6].

Note that if I' € SL(3,R) is any lattice, then there is a model real-analytic
action of I' on a surface S that admits no invariant probability measure—
namely, the right projective action of I' € SL(3,R) on RP? (or S?). Note
that any volume form on RP? is quasi-invariant but non-invariant under this
action. More generally, consider G a semi-simple Lie group with finite center.
Let Q C G be a parabolic subgroup, and let I' C G be a lattice. Then there is a
natural right action of I' on the quotient Q\G preserving no Borel probability
measure but preserving the Lebesgue measure class.

Given the model action discussed above, we have the following conjecture,
motivated by Theorems A and B, attributed to Polterovich in [17, Question
4.8], as well as new results from [6].

CONJECTURE 1.1. Let T C SL(3,R) be a lattice. Let S be closed, con-
nected a surface and let T act on S by C' diffeomorphisms. Suppose there is
no T-invariant Borel probability measure on S. Then S is either RP? or S?;
furthermore, any such action is smoothly conjugate to the standard projective
action.

1.2. Facts from the structure of Lie groups. To state our main results we
recall some facts and definitions from the structure theory of real Lie groups.
A standard reference is [23]. Let G be a connected, semisimple Lie group. As
usual, write g for the Lie algebra of G. Fix a Cartan involution # of g, and
write £ and p, respectively, for the +1 and —1 eigenspaces of 6. Denote by
a a maximal abelian subalgebra of p and by m the centralizer of a in £. We
let 3 denote the set of restricted roots of g with respect to a. Note that the
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elements of ¥ are (non-zero) real linear functionals on a. Recall that dimp(a)
is the R-rank of G.

We choose a family of positive roots ¥, C ¥ and write >_ for the cor-
responding set of negative roots. For 8 € ¥, write g? for the associated root
space. Then n = Pgey, g? is a nilpotent subalgebra. A standard parabolic
subalgebra (relative to the choice of €, a, and positive roots ¥ ) is any sub-
algebra of g containing m @ a @ n. Recall § € X, is a simple (positive) root
if it is not an integer combination of other elements in ¥,. We denote by
IT C ¥, the set of simple roots in ;. We have that the standard parabolic
subalgebras of g are parametrized by exclusion of simple (negative) roots: for
any sub-collection IT' C II let

(1) a=maoaee  H

BEXUSpan(—I1)
Then qrp is a Lie subalgebra of g and all standard parabolic subalgebras of g
are of the form qry for some II' C II. (See [23, Prop. 7.76] and, in particular,
the analysis of corresponding sl(2, R)-triples, [23, Lemma 7.73].)

Let A, N, and K be the analytic subgroups of G corresponding to a,n
and €. These are closed subgroups of G and G = K AN is the corresponding
Iwasawa decomposition of G. When G has finite center, K is a maximal
compact subgroup. Note that the Lie exponential exp: g — G restricts to
diffeomorphisms between a and A and n and N. Fixing a basis for a, we
identify A = exp(a) = R? Via this identification we often extend linear
functionals on a to A. We write M = Ck(a) for the centralizer of a in K.
Then P = M AN is the standard minimal parabolic subgroup. Since M is an
abelian extension of a compact group, it follows that P is amenable. (See, for
example, [2, Prop. G.2.2(ii)].) A standard parabolic subgroup (relative to the
choice of 6, a, and ¥, above) is any closed subgroup @@ C G containing P.
The Lie algebra of any standard parabolic subgroup @ is a standard parabolic
subalgebra, and the correspondence between standard parabolic subgroups and
subalgebras is 1-1.

We say two restricted roots g, B € ¥ are coarsely equivalent if there is
some ¢ > 0 with

f=cp.

Note that c takes values only in {%, 1,2} and this occurs only if the root system
S has a factor of type BCy. Let 3 denote the set of coarse restricted roots—that
is, the set of coarse equivalence classes of X.. Note that for £ € f], g = @56595
is a nilpotent subalgebra and the Lie exponential restricts to a diffeomorphism
between g¢ and the corresponding analytic subgroup, which we denote by G¢.

Let q denote a standard parabolic subalgebra of g. Observe that if g C q
for some 3 € ¥ then, from the structure of parabolic subalgebras, g¢ C q where
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¢ € 3 is the coarse restricted root containing 3. A standard parabolic (proper)
subalgebra q is mazimal if there is no subalgebra q’ with q C q' C g. Note that
maximal standard parabolic subalgebras are of the form qr. g for some 3 € II.

1.3. Resonant codimension and related combinatorial numbers. Given a
standard parabolic subalgebra g, define the resonant codimension of q to be
the cardinality of the set

{¢eS|g* ¢ a}

Given G as above, we define a combinatorial number r(G) as follows.

Definition 1.2. The minimal resonant codimension of g, denoted r(g), is
defined to be the minimal value of the resonant codimension of q as q varies
over all (maximal) proper parabolic subalgebras of g.

Ezample 1.3. We compute r(g) for a number of classical real simple Lie
algebras as well as simple real Lie algebras with restricted root systems of
exceptional type. Given a simple real Lie algebra g, the number r(g) is de-
termined purely by the restricted root system. In particular, we have the
following.

Type Ap: r(g) = n. This includes sl(n + 1,R), sl(n + 1,C), sl(n + 1, H).

Type By, Cy, and (BC),: r(g) = 2n — 1. This includes sp(n,R), so(n,m)
for n < m, and su(n,m) and sp(n, m) for n < m.

Type Eg: r(g) = 16.
Type E7: r(g) = 27.
Type Es: r(g) = 57.
Type Fy: r(g) = 15.

In all classical root systems A, B,,, Cy, (BC),, and D, the number r(g) corre-
sponds to the parabolic subalgebra obtained by omitting the left-most root in
the standard Dynkin diagrams. Exceptional root systems are checked by hand.

Note that if g is non-simple, then r(g) is min{r(g;) : 1 <i < n} where g;
are the simple (non-compact) factors of g. We write r(G) = r(g). Note that
inside a fixed family of simple Lie groups, the number r(G) grows with the
rank of G but need not coincide with the minimal dimension of a non-trivial
algebraic action in the case that G is non-split. In particular, we only obtain
the optimal expected dimensions in the case that G is split.

We define a second number m(g) associated to the Lie algebra g of G.

Definition 1.4. Given a simple Lie algebra g of R-rank at least 2, define
m(g) to be the minimal value of the resonant codimension of q as ¢ varies over
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all proper parabolic subalgebras q of the form I~ {os,0;) Where o # aj are
simple roots in II. If g has rank 1, let m(g) = 1. If g = @g; is semisimple, take
m(g) to be the minimum of m(g;) over all non-compact, simple factors g; of g.

As before, write m(G) = m(g).

Ezample 1.5. Again, we compute the number m(g) for a number of classi-
cal, simple real Lie algebras as well as simple real Lie algebras with restricted
root systems of exceptional type. As before, given a simple real Lie algebra g,
the number m(g) is determined only by the restricted root system.

Type A,: m(g) =2n — 1.
Type By, C,, and (BC),: m(g) = 4n — 4.
Type D,: m(g) =9 for n = 4; m(g) = 4n — 6 for n > 5.

Type Eg: m(g) = 24.
Type E7: m(g) = 43.
Type Eg: m(g) = 84.
Type Fy: m(g) = 20.

Type Ga: m(g) = 6.

In all classical root systems except Dy, the number m(g) corresponds to the
parabolic subalgebra obtained by omitting the two left-most roots in the stan-
dard Dynkin diagrams. In Dy, the number m(g) corresponds to omitting two
commuting roots. Exceptional root systems are checked by hand.

As before, write m(G) = m(g).

1.4. Statement of results. Let G be a connected semisimple Lie group with
real-rank at least 2 and, as introduced above, and let I' C G be a higher-rank
lattice subgroup.

Recall that a denotes a right action of I" on a compact, boundaryless
manifold M by C'*# diffeomorphisms.

1.4.1. Euxistence of invariant measures in low dimensions. Our first main
result establishes the existence of an a-invariant measure if the dimension of
M is sufficiently small relative to r(G).

THEOREM 1.6. Let M be a compact manifold with dim(M) < r(G). Then
for any C™P action o of T' on M, there exists an a-invariant Borel probability
measure.

We remark that in the case that I' is cocompact, Theorem 1.6 in an
immediate corollary of the main result of [8] where Zimmer’s conjecture is
verified for actions of compact lattices on manifolds of dimension less than r(G).
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The proof of the main result of [8] uses the proof of Theorem 1.6, namely
the key observation in Proposition 5.1 below. We note also that Theorem 1.6
applies to non-uniform lattices and was used in the recent work [7] on Zimmer’s
conjecture for SL(m,Z).

We do not assert any regularity of the measure in Theorem 1.6. In par-
ticular, the ergodic components of the measure are expected to be supported
on finite sets as such actions are expected to be trivial. Theorems A and B
follow directly from the main results in [18] and Theorem 1.6.

1.4.2. Finite extensions of projective factors in critical dimension. In the
case where dim M = r(G), we recall as a model the standard right action of
I' ¢ SL(n+1,R) on RP™. Note that RP™ has the structure of Q\SL(n+ 1,R)
for a (maximal) parabolic subgroup @ C SL(n + 1,R).

THEOREM 1.7. Let M be a manifold with dim(M) = r(G). Then given

any C'P action o of T' on M, either

(a) there exists an a-invariant Borel probability measure on M; or

(b) there exists an a-quasi-invariant Borel probability measure pn on M and a
mazimal parabolic subgroup Q@ C G such that the action o of T' on (M, p)
18 measurably conjugate to a finite extension of the standard right action
of T' on (Q\G,m) where m is of Lebesgue class.

Motivated by the above theorem, we extend Conjecture 1.1.

CONJECTURE 1.8. Let M be a manifold with dim(M) = r(G). Given any
sufficiently smooth action o of I' on M either
(a) there exists an a-invariant Borel probability measure on M; or
(b) there is a mazximal parabolic subgroup Q C G such that M is diffeomorphic
to a finite cover of Q\G; moreover, the action « is smoothly conjugate to

a lift of the standard right-action of T' on Q\G.

1.4.3. Projective factors in intermediate dimensions. Let (X, v) and (Z, )
be standard measure spaces, and suppose I' acts measurably on both X and
Z (on the right) and preserves the measure classes of v and p respectively.
Let (Y,n) be a standard measure space, and write Aut(Y,n) for the group of
invertible, measure-preserving transformations of (Y,7). Let o and p denote,
respectively, the actions of I" on (Z, 1) and (X, v).

Definition 1.9. We say that « is a relatively measure-preserving extension
(modeled on (Y, 7)) of p if there are
(1) a measurable cocycle ¢: I' x (X,v) — Aut(Y,n) over p, and
(2) an isomorphism of measure spaces ®: (Z,u) — (X x Y, v x n)
such that ® intertwines o and the skew action defined by ¢: if ®(z) = (z,vy),

(a(7)(2)) = (p(V) (), ¥ (v, 2)(y)) -
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THEOREM 1.10. Let M be a manifold with dim(M) < m(G). Then given
any C'P action o of T' on M there is an a-quasi-invariant Borel probability
measure p on M, a standard parabolic subgroup @, and a Lebesgue space (Y, n)
such that the action o on (M, ) is a relatively measure-preserving extension

(modeled on (Y,n)) of the standard right action of T' on (Q\G,m).

Note in the above theorem that if Q) = G, it follows that y is a-invariant.
As discussed above, the result in Theorem 1.10 should be compared to results
of Nevo and Zimmer, particularly [34], [35].

2. Suspension construction and its properties

We construct an auxiliary space on which the action « of I' on M embeds
as a Poincaré section for an associated G-action. We then equip the tangent
space to this G-space with a norm that is well adapted to the geometry of I'
in G and the dynamics of the induced G-action.

2.1. Suspension construction. On the product G x M consider the right

I'-action
(g:2) -7 = (97, (7)(x))
and the left G-action
a- (g,%) = (ag7$)‘

Define the quotient manifold M* := G x M/T'. As the G-action on G x M
commutes with the I'-action, we have an induced left G-action on M®. We
denote this action by @. We write m: M® — G/T" for the natural projection
map. Note that M* has the structure of a fiber bundle over G/T" induced by
the map 7 with fibers diffeomorphic to M. As the action of « is by C'+8
diffeomorphisms, M is naturally a C'*# manifold. Equip M® with a C>
structure compatible with the C**B-structure.

Note that the action & of G on M preserves two transverse distributions
EFf and EY, where E¥ = ker(Dn) and EY is tangent to the local G-orbits
on M®. Furthermore, these distributions integrate to C'*# foliations of M®.

We first observe the following.

CLAaM 2.1. There exists an a-invariant Borel probability measure on M
if and only if there exists an a-invariant Borel probability measure on M®.

That an a-invariant measure on M induces an a-invariant measure on
M® is standard. For the reverse implication, see, for instance, [34, Lemma
6.1]. Note that any a-invariant measure on M® projects under 7 to the Haar
measure on G/T.

As the suspension space M® is non-compact in the case that I" is non-
uniform, some care is needed when applying tools from smooth ergodic theory
to the G-action on M®. Indeed, although the non-compactness comes from the
homogeneous factor, care is needed in order to control the fiber-wise dynamics
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as the corresponding C'- and C'*P-norms of the fiberwise dynamics need not
be bounded.

Below, we use the quasi-isometry between the Riemannian and word met-
rics on I' established in [31] to control the degeneration of the fiber-wise dy-
namics. We follow the approach of [9] and construct dynamical charts relative
to which the tools of classical smooth ergodic theory may be applied. The
remainder of this section is devoted to constructing a Riemannian metric on
TM®, corresponding distance function d, and a family of dynamical charts.

The reader interested only in actions of cocompact lattices may skip the
remainder of this section.

2.2. Construction of a fundamental domain and family of fiber metrics.
Recall our standing assumptions on the Lie group G and the lattice I'.

A set D C G is a fundamental domain for I' if | J,ep Dy = G and if the
natural map G — G/T is one-to-one on D. A Borel set D C G is almost-open
if the interior of D has full measure in the closure of D. A subset S C G is a
fundamental set if | J,cr 7 = G and the set {y: SyN S # 0} is finite. The
injectivity radius 7' (g) of I" at a point ¢ € G is the largest 0 < r < 1 such that
the map g — G/T" given by X — exp,(X)gI' is injective on

{Xeg:||X] <r}

We write
Vig) = {expy(X)g - [| X < 7}
for the remainder.
2.2.1. Properties of the family of metrics. Our goal below is to build on
TM a continuous family Riemannian metrics (-, )4, parametrized by g € G,
and an almost-open, Borel fundamental domain D C G for I' such that

(1) the family of metrics (-, ), depends continuously on g € G;
(2) the family (-,-)4 is I'-equivariant: given v € I and v,w € T, M,
(v, w)g = (Dz(7)v, Dea(y)w)gy;
(3) writing
V=] Vi),
geD
the family (-,-)4 is uniformly comparable on V: there is a C' > 0 so that
forall g,ge V,x € M, and v € T, M,
<U, U)Q < C<U7 v>§;
(4) for every p > 1, the function g — dg(e, g) is LP on D with respect to the
Haar measure where dg(-,-) is the right-invariant metric on G.

2.2.2. Reductions. Note that given a finite-index subgroup I'' C I, a fun-
damental domain D’ for IV and a I"-equivariant family of metrics that satisfy
(1)—(4) above for I, then we can choose a fundamental domain D C D’ for T’



INVARIANT MEASURES AND MEASURABLE PROJECTIVE FACTORS 951

and construct a I'-equivariant family of metrics satisfying (1)—(4) for I' by av-
eraging over IV-coset representatives in I'. Below, we will pass to a finite-index
subgroup IV C T" and construct such a domain and family of metrics for I”.

First, recall that G has no compact factors and has Iwasawa decomposition
G = KAN. Then K contains the center of G. Since I is a lattice, it intersects
the center of G in a finite-index subgroup; see [32, Lemma IX.(6.1)]. Passing
to a group of finite index we may thus assume K NI is contained in the center
of G and has finite index in the center of G.

Let Ad: G — Ad(G) be the adjoint representation of G. Since G has no
compact factors, it follows that Ad(T") is a lattice subgroup in Ad(G); see [32,
Lemma IX.(6.1)].

From the Margulis Arithmeticity Theorem [32], it follows that there is a
semisimple linear algebraic group H such that writing H = H(R)® for the con-
nected component of the identity in H(R), there is a surjective homomorphism
®: H — Ad(G) with compact kernel such that

AdT)N®(H(Z))

has finite index in Ad(T). Let I' = &' (Ad(I")) NH(Z) N H. Then T has finite
index in H(Z) and is an arithmetic lattice in H. Replacing I', Ad(I") and T
with finite index subgroups, we may assume that [ is torsion-free, that T maps
surjectively onto Ad(I'), and that ®: I' — Ad(T") is an isomorphism.

Let X = K\G be the globally symmetric space associated with G. We
may select maximal compact subgroups K C Ad(G) and K C H so that X is
also identified as

X = K\G = K\ Ad(G) = K\H.
Equip G with a right-invariant, left- K-invariant metric, and equip X with the
quotient right-invariant metric.

2.2.3. Compactification of X and Siegel fundamental sets. Following [4,
Part III, Ch. 9], write X5 for the Borel-Serre partial compactification of X.
The space X5 has the structure of a real-analytic manifold with corners. The
action of I' Ad(T") on X extends to a continuous, proper action on x5S,
The quotient YBS /f is a compact, Hausdorff space. Having taken ' to be
torsion-free, I acts properly-discontinuously on X% and the quotient xS / I
has the structure of a compact real-analytic manifold with corners. (See [4,
Prop. II1.5.14] for statement and Propositions 111.9.16 and I11.9.17 of [4] for
further details.)

By the reduction theory of arithmetic groups, we may find a Siegel fun-
damental set S ¢ X = K\H (a finite union of rational translates of Siegel
sets) for the action of I' 2 Ad(T) on X. (See, for instance, [32, VIIL1].) Write
int x (S) for the interior of S in X. Then
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(1) User intx(8) -5 = X;

(2) the set {3 € I': S5 NS # 0} is finite;

(3) for any xg € X, the function x — dx(xg,x) is LP on S with respect to the
Haar measure for every 1 < p < oc;

(4) S has compact closure in X,

Write S for the closure of S in YBS, and write intps (S) for the interior of S
)

in X°°. Then we also have (see discussions in [4, II1.9]

(5) Usep intyes(S) -4 =X";

(6) the set {4 € I': 54 N'S # 0} is finite;

Moreover, from the construction of Siegel sets, if we denote injectivity radius at
r € X by r*(z) and write B, (z,7) for the ball in X centered at x of radius r,
we have that

(7) S :=Jyeg Bz, 7% (x)) is contained in a Siegel fundamental set.

2.2.4. Construction of partition of 1. Let S be as above. We may cover
X /f with finitely many open sets Uj, each of which is the injective image
of an open set U; C intns (S). Equip X" JT with a partition of unity {¢;}
subordinate to the cover {U;}. For each j, let 12)]-: x5 [0,1] be the lift of
1; whose support is contained in Uj.

The map Y: G — K x X, Y: kan — (k,Kan) is well known to be a
bi-Lipschitz map ([2, Lemma 3.6.3]) and is (K NTI')-equivariant. If Ky C K is
a pre-compact open set with K = Ky- (I'N K) and if S C X is a fundamental
set for the action of Ad(I') =T on X, then

S:=T"YKyxS)
is a fundamental set for the I'-action on G. Moreover, the function g — dg(e, g)
is L? on S with respect to the Haar measure on G for every 1 < p < co. Cover
K/(K NT) with finitely many open sets {V}}, each of which is the injective
image of an open set V;, C Ko. Let {n}, me: K — [0,1] be a partition of
unity of K/(K NT') subordinate to the cover {V}}, and for each k, lift n; to
Mk : Ko — [0, 1] supported on Vi C Ko.
Finally, let ¢;: S — [0,1] be
¢5k(9) = m(T1(g)) - ¥;(Ta(g)),
where Y1, Ty are the coordinate functions of Y. Let {¢;} denote the collection
{ojk}-
For each i and v € T', write ¢;,: G — [0,1] for the function
bin(9) = Gi(g7)-

We enumerate some properties of {¢;}.
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(1) From the assumptions on the supports of ¢;, we have for each i that
supp(¢i) Nsupp(¢; /) = 0 whenever v # 7.

(2) The set B
{~v €T |supp(¢i) NS # 0 for some 7 }

is finite.
(3) The collection { ¢, | ¢ € {1,...,N},v € I' } is a locally-finite, I'-invariant,

partition of unity on G.

2.2.5. Parametrized families of metrics. Given x € M, let (-,-)o, denote
the inner product on T, M. Given g € G, x € M, and v,w € T, M, set

N
(0, 0)g 1= 3 3 iy (9) (D0 (7) (1), Dar(D)(@))o0(r)(0)-

i=1 ~vel
Let || - ||g,> denote the norm induced by the inner product {(-,-)4.}, and let

| - ||" denote the induced norm on G x T'M.
We collect the following observations.

CLAIM 2.2.

(1) The norms || - ||g,« are uniformly comparable on any fundamental set S in
G as above: there is a constant C' > 0, such that for all g1,90 € S, © € M,
and v € T, M, we have

1

5Hvllgl,x < [[vllgae < Cllvllgy o
2) For an eG,yel, and (z,v) € TM, we have
(2) yge G, yeT, , ,

1 Dz0(7)0]l 7,003 @) = Ivllg.e-
In particular, T' acts by isometries on the fibers of G x TM whence || - |’
descends to a norm || - || on the fiberwise tangent bundle E¥ over M®.

Proof. (1 ) follows from finiteness of the partition of 1. For (2) we verify

||v|r§,x=22¢z,7 N Dea(NIIB () @)

i=1 vel

N
= Z Z (;Si’,s/—l,y(gﬁ/) HDCCa(/?/?_l’Y) (U) ”%,a(’y)(w)

i=1 vel

=S b 6 Patnl ) Du ) M 51 (o510

i=1 vyel

= |D2a(F, 2)0[1%5 a3 (a)- O
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2.2.6. Choice of fundamental domain. Let D C S be a fundamental do-
main for I in G. Since the injectivity radius on G/T" is comparable with the
injectivity radius on X/ Ad(I'), from item (7) of Section 2.2.3 we have that
V' =Ugep Vir(g)(9) only intersects the support of finitely many functions ¢; .
The desired properties in Section 2.2.1 follow.

2.2.7. Induced distance on M. Using the I'-equivariant family of metrics
{(-,)g : g € G} constructed above and using the right invariant metric on G,
we endow the tangent bundle of G x M with a continuous Riemannian metric
such that I acts by isometries. This induces a Riemannian metric on T'M“ and
corresponding distance function d(-,-) on M®. The restriction of the metric
on TM® to the fiberwise tangent bundle E¥ coincides with the metric defined
in 2.2.5.

2.3. Some estimates. Equip M with any C°° Riemannian metric; by com-
pactness, all estimates are independent of the choice of metric. Let exp,: T, M
— M be the Riemannian exponential map at x, and fix ryp < 1 to be smaller
than the injectivity radius of M.

Write B,(r) C TpM for the norm ball B,(r) = {v € T,M : ||v|| < r}.
Given a diffeomorphism f: M — M, let

fot Usp C By(ro) C TuM — By (ro) C TpiyM
be the diffeomorphism defined by

Jo = exp;(lm) of oexp,

on the maximal domain U, ; on which it is defined. Given U C U, y, define
the local C' and Holder norms of f,[y: U — By(ro) C Ty M to be

_ N . . Dyfe — Dy f.
IDFull = sup |Dofil,  HOL(D,) = sup 12vSs }‘éfg””'
vel vZwWeU HU - w”

If f: M — M is C'tB, define

(1) D]l = supyens |DFslly, , and
(2) HEV(Df) i= sup,ep Hol, (D).

Compactness of M ensures ||Df|| and Hol°(Df) are finite.
We have the following elementary estimate.

CLAIM 2.3. Let f,g € Diff'™3(M). Given z € M and U C Usg C T M
such that
92(U) C Uy(a), 1
we have

Holl (D(f 0 g),) < | Df|| Hol®(Dg) + || Dg||**# Hol (D f).
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Proof. For v,u € U and ¢ with ||£]| =1,

1Dy (f © 9)u& — Du(f © 9) €Il = 1Dy, (o) Fo@) Poidct — Dgy(u) fo(e) Puda |
< ||Dg, () fy(z) Doiic€ — Dy, () Fy(w) Dudaé |
+ 1D, () o) Pudicé — Dy, (u) Fo(e) Dudall
<D fy@) 11 Podz = Dudell + 1 DGzl Dg, ) Fo(a) = Do) o)l
< || DFIIHSL (Dgy)d(u, v)” + || Dgl| HEL () (D fya)d (3(v), G (u))”

< || DFIIHGL (DG, )d(u, v)? + | Dgl|" P HoL. (D fya))d(u,v)?. OO

In particular, we have the following.

CLAIM 2.4. Let g; € Diff "8 (M), i={1,2,...,¢}, and fir C with | Dg;|| <C
and Hol(Dg;) < C. Givenn >0 and

U C B.(C ") C TuM
with h = g;, o---0g;,, we have
(1) ||Dhg|ly < C™ and
(2) HoLY (Dh,) < nC™HB) for every .

2.4. Construction of dynamical charts. Let D C G be the almost open,
fundamental domain for I' constructed in Section 2.2. In the sequel, we often
use the measurable parametrization D x M of M® = (G x M)/T.

Fix a globally defined, Borel family of isometric identifications 7, : T, M —
R™. With respect to any fixed background C*° Riemannian metric on M, let
exp,: IxM — M denote the Riemannian exponential map at z and let rg
denote the injectivity radius of M. Let R¥ = g @ R™ be equipped with the
product Euclidean metric where k = dim G + dim M.

Given p = (g,z) € D x M, let p(g) = £ min{r''(g),ro}, and let

op: R¥(p(g)) — M®
be the natural embedding
dp: (X,v) = (exp(X)g, exp, (7, 'v)) /T,

where we write RF(r) := {v € R¥ : |lv|| < r}. We immediately verify that,
relative to the induced metric in 2.2.7, the charts ¢, ;) are C' with Do gl
and ||D<Z>(_glx) || uniformly bounded; in particular, relative to the distance func-
tion d in 2.2.7 the charts are uniformly bi-Lipschitz. As the injectivity radius
rI'(gI') is comparable to the distance from gI' to a fixed base point o € G/T,
we have that g — —log(p(g)) is L? with respect to the Haar measure for all
1< g < o0
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Recall that we let A be the analytic subgroup of G corresponding to a.
Fixing a basis for a, via the parametrization exp: a — A we identify A with R,
where d > 2 is the rank of G. Below, we consider an arbitrary lattice subgroup
7% C A and fix a finite, symmetric, generating set F={s;:1<j<m} for Z4.

Following the notation of [9], we let U = Uy =A = D x M = M® for any
such Z% and F.

In the sequel, we will be concerned with A-invariant measures p on M“
that project to the Haar measure on G/T".

PROPOSITION 2.5. Let p be an A-invariant probability measure on M®
projecting to Haar measure on G/T'. Then for any lattice Z* C A ~ R? and
any finite, symmetric, generating set F' = {s; : 1 < j < (} for 7%, the standing
hypotheses of [9, §3.2] hold relative to the charts {¢, : p € M*} above.

That is, there are measurable functions r: D — (0,1] and C: D — [1,00)
and a constant L with

r(g) < plg), —logr(g) € LUD), and log C(g) € LY(D) for all1 < ¢ < oo
such that, writing
r(p) = (9), p(p) = p(9), C(p) = C(9)
forp=1(g,x) € M* =D x M, we have
(H1) ¢p: R¥(p(p)) — M is a C! diffeomorphism onto its image with ¢,(0) =p;

(H2) ||D¢pll < L and ||D¢]jl|| < L; in particular, ¢p: R*(p(p)) — (U, d) is a
bi-Lipschitz embedding with Lip(¢p,) < L and Lip(qb;) < L.

Moreover, for each m € F, setting f(-) = a(m,-), we have for p € M* that

(H1) the map
(2) fp = ¢;(1p) o fodp

is well defined on R¥(r(p)) with range contained in R*(p(f(p)));
(H2) f,: RE(r(p)) — R¥(p(f(p))) is uniformly C**7 with

1 fplli+s < Cp)
(H3) for every n € Z¢, (p+~ log™ | Dpa(n)||) € LY (n) for any 1 < q < oo;
in particular, (p — log™ || Dpa(n)|) € L% (u).

Here L%!(p) is the Lorentz integrability space (see [30]). We have L9(u) C
L4 () for any ¢ > d. The assertion that (p+ log™ ||Dpa(n)||) € L (1)
guarantees the cocycle satisfies the hypotheses of the higher-rank multiplicative
ergodic theorem. As —logp, —logr and logC are L% on the domain D, it
follows that, in the terminology of [9], they are slowly growing functions over
the action of Z¢<.



INVARIANT MEASURES AND MEASURABLE PROJECTIVE FACTORS 957

Proof. Fix a finite, symmetric generating set S = {7; : 1 < i < ¢} for T.
For each 1 < iAg ¢, take g; = a(v;): M — M and set C > 1 with
(1) [Dgill < C and
(2) Hol’(Dg,) < C.
Let dyorqa denote the corresponding word metric on I'. Let dg denote the dis-
tance on G induced by the right-invariant metric on G. Note that dg restricts
to a metric on I' C G. It follows from [31] that if I" is a higher-rank lattice
as introduced in Section 1, the metrics dyworq and dg are quasi-isometrically
equivalent: there are A > 1 and B > 0 such that for all 7,4 € I', we have

(3) A_ldG(’Va;Y) —B< dword(’%ﬁ/) < AdG(’Y’ﬁ/) + B.

Now consider any lattice subgroup Z% in A ~ R? and finite symmetric
generating set F in Z9. Given g € D and s; € F, let v;(g) be such that
sjg € Dv;j(g). Define

N(g) = g%i{dword(e”ﬁ(g))}‘

8j
We have
dwora(e,j(9)) < A[d(e, g) + dle, s;) + d(e, s59(7;(9)™1)] + B.

We denote with dg the Haar measure on G/T" and naturally identify it
with dg on D. Remember that g — d(e,g) is in L4(D,dg) for all 1 < ¢ <
oo by the choice of the Siegel domain. Also, as the map D — D given by
g+ 5;9(7j(g))~! preserves the Haar measure, it follows that g — N(g) is in
L9(D,dg) for all 1 < g < occ.

We set r(g,z) = r(g) := C~NV©)p(g). We have that 0 < r(g,z) < p(g) for
every (g,x) € D x M. Moreover, we have that

[ (- 108r(9. )7 di. ) = /D (~log(r(9)))? dg < 0.
Given s; € F', let f = a(s;). Write f(g@): R*(r(g)) — R*(p(f(g)) for

Fl) = Py © F © Do)
(H1) then follows. From Claim 2.4, we have
HDf(g,a:) H < éN(g)a HOIB(Df(g,x)) < N(g)éN(g)(H_ﬁ)

whence (H2) follows. Moreover, we have that the function

(4) (9,x) = log || Do fig.z |
is L9(u) for every 1 < g < oo. From the cocycle property, (H3) follows for all
elements of the action. O

We have the following stronger version of (H3), which follows from the
uniform comparability of the norms on the fundamental domain D, inequal-
ity (3), and that g — dg(e, g) is L? on D with respect to the Haar measure on
G for all 1 < ¢ < co. Let || - || denote the norm on TM® constructed in 2.2.5.
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CLAIM 2.6. Let o be Borel probability measure on M“ projecting to Haar
measure on G/T'. Given any compact set B C G, the function

p > suplog™ [ Dpé(g)]|
geB

is L9(p) for any 1 < g < 0.

3. Lyapunov exponents, coarse foliations, and conditional entropy

This section is mostly a summary of results we need from [9], [5], [10]. We
consider the restriction of the action @ on M to the subgroup A4 in G. Take p
to be an A-invariant probability measure on M®. Let v = m, () be the projec-
tion of u to G/T'. In the case that I' is not cocompact, assume the projection
v is G-invariant so that the charts in Section 2.4 satisfy properties (H1)—(H3)
of Proposition 2.5 for an arbitrarily fixed lattice Z? C A.

3.1. Lyapunov exponent functionals. From the L%! integrability of (H3)
of Proposition 2.5 it follows that the restriction to A of the derivative cocycle
Da on (M, u) satisfies the hypotheses of the Oseledec’s multiplicative ergodic
theorem in every direction s € R? (see (6) below). Moreover, we have uniform
convergence along spheres guaranteed by the stronger conclusions of the higher-
rank Oseledec’s multiplicative ergodic theorem.

Equip A ~ R? with any norm | - |.

THEOREM 3.1 (Higher-rank multiplicative ergodic theorem; [9, Th. 2.4]).
Let v be any A-invariant Borel probability measure on M® satisfying (H3) of
Proposition 2.5. Then there exist

(1) a full measure, A-invariant subset A9 C M<;

(2) an A-invariant measurable function r: Ag — N;

(3) an A-invariant measurable family of linear functionals A\i(p): A — R for
1 <i<r(p)

(4) and a family of mutually transverse, D&l o-invariant, measurable subbun-
dles Ey,(p) C TM® with T,M® = @) Ey,(p) for p € Ay

such that
o) o Tog [|D,(5) ()| = Adp)()
S—r00 ‘5‘
for allv € Ey,(p) ~ {0}.
We note that (5) is stated in [9, Th. 2.4] only for integer vectors n € Z<

but easily generalizes to all s € A. Indeed, it suffices to approximate s by an
integer vector n with uniformly bounded error. The resulting error between

=0

Ai(p)(s) and A;(p)(n) is uniformly bounded. To control the error between
log || Dpa(s)(v)|| and log || Dpé(n)(v)|], fix a compact fundamental set K for the
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lattice subgroup Z% in A, and let
6(p) = max {suplog* D, (s)], suplog* [ Dya(s) |1} .
sek se
We have
|log || Dyéx(s) (v)l| — log || Dpa(n) (v) || < d(c(n)(p))-
By Claim 2.6, we have ¢ € L%(y1); by the pointwise ergodic theorem for actions
of Z%, for p-almost every p, the sum

converges. It follows for almost every p that

(#(@(n)(p)))*

—0
|£LI\13)1§{ Nd
as N — oo whence
L eame)

|n|=N N
as N — oo.
From (5), for almost every p € M® and every s € A, we have convergence
along rays

(6) Tim - log [ Dya(ks) ()| = Mi(p)()

for all v € Ej,(p) ~ {0}. The linear functionals X\;(p): A — R are the Lya-
punov exponent functionals. The dimension of the corresponding E), (p) is the
multiplicity of Xi(p).

Recall the two Da-invariant subbundles ¥ and EC of TM®. We may
restrict the derivative cocycle {Da(s) : s € A} to either of the two A-invariant
distributions EF or EC. These restrictions satisfy the hypotheses of the higher-
rank multiplicative ergodic theorem. For the restricted cocycles, we obtain
Lyapunov exponent functionals {\'(p)} and {)\JG(p)} and splittings E (p) =
@E/I\:F(P) (p), 1 <i < rf(p)and E%(p) = @Efc(p) (p) for 1< j <r%(p) defined on
full measure A-invariant subsets. By a direc]t computation, we have that the
linear functionals {)\JG (p)} coincide with X, the restricted roots of g with respect
to a. In particular, the number & (p), the functions {)\]G (p)}, and the subspaces
E)?;G(P)

Below, we write £(p), LI (p) and L% (p) = X, respectively, for the corre-
sponding collections of Lyapunov exponent functionals at the point p for the

(p) are defined at every point p € M and are independent of p.

derivative cocycle and its restrictions to E¥ and EC. If i is A-ergodic, we write
L(p), LF (1) and LY () or simply £, £F and L& if the measure is understood.
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3.2. Coarse Lyapunov exponents and coarse Lyapunov manifolds. For this
section assume that p is A-ergodic and that the charts in Section 2.4 satisfy
properties (H1)—(H3) of Proposition 2.5. Note that Lyapunov exponents and
dimension of the corresponding subspaces are independent of the point almost
surely.

As with restricted roots, we group Lyapunov exponent functionals into
coarse equivalence classes by declaring that two exponents are equivalent if
they are positively proportional. We write L for the set of coarse exponents;
that is £ is the set of equivalence classes of Lyapunov exponents. For y € /j,
we write By (p) = Paey Ea(p)-

Recall that we equipped M® with a Riemannian metric which, in turn,
induces a distance d on M“. Given s € A and p € M“ we write

Wi(p) == {y € M“ : limsup E logd (a(ns)(p), a(ns)(y)) < O}
n——oo N
for the unstable manifold through p for the action of s € A on M“. For
p-almost every p € M®, we have that W¥(p) is a connected, injectively im-
mersed, C'F manifold with T,W*(p) = @xcrns)>0 Ea(p). Observe that
given s € A, the collection of global unstable manifolds {W¥(p) : p € M“}
forms a (generally non-measurable) partition of (M, p).

Let Z¢ be any lattice in A ~ R%. Given a coarse Lyapunov exponent y € L
we write WX(p) for the path connected (relative to the immersed topologies)
component of

N ww
{s€Zd:x(s)>0}

containing p. The set WX(p) is called the coarse Lyapunov manifold corre-
sponding to x through p. For almost every p, WX(p) is a C't8 injectively
immersed manifold with T,WX(p) = E\(p) (see [9]). We let WX denote the
partition of (M®,u) into coarse Lyapunov manifolds WX(p). In the termi-
nology of [9], WX is a C'*P-tame, a[4-invariant, measurable foliation. Note
that the partition WX is defined independently of the choice of lattice Z¢ C A
in that for any two choices of lattice, the corresponding partitions coincide
modulo p.

Similarly, in the terminology of [9], the partition G of M® into G-orbits
and the partition F of M® into fibers of m: M® — G/T' form C'*F-tame,
a-invariant, measurable foliations. We similarly define WX" (p) and W¢(p)
for the coarse Lyapunov manifolds associated to coarse fiberwise Lyapunov
exponents x! € £F and coarse roots € € . Note that if £ € 3, then W¥(p)
is simply the orbit &(G¢)(p) of p by the unipotent subgroup G¢ = exp g¢ of G.
We similarly define measurable foliations WX" and W given by the partitions
into fiberwise coarse Lyapunov manifolds and orbits of coarse root groups.



INVARIANT MEASURES AND MEASURABLE PROJECTIVE FACTORS 961

3.3. Conditional entropy, entropy product structure, and coarse-Lyapunov
Abramov—Rohlin formula. We continue to assume that p is an A-invariant,
A-ergodic probability measure on M®. Recall that in the case that T' is not
cocompact, we assume the projection v of u to G/I' is G-invariant so that the
charts in Section 2.4 satisfy properties (H1)-(H3) of Proposition 2.5.

Recall that for s € A, the p-metric entropy of a(s) is

hu(a(s)) = sup{hu(a(s),n)}.
Above, the supremum is taken over all measurable partitions n of (M, ). For
each 1, h,(&(s),n) is given by the mean conditional entropy

hu(a(s),n) = Hu(n™ | a(s)n*),
where n = \/22 a(s")n.

Given the partition WX into coarse Lyapunov manifolds for x € L, for
s € A with x(s) > 0, we define the conditional metric entropy of a(s) relative
to WX as follows: A measurable partition £ of (M, i) is said to be subordinate
to WX if, for almost every p,

(1) the atom &(p) is contained in WX (p),
(2) the atom &(p) contains a neighborhood of p in WX(p), and
(3) the atom &(p) is precompact in WX(p).

The conditional metric entropy of a(s) relative to WX is

hu(a(s) | WX) = sup{hyu(a(s),n Vv &)},
where the supremum is over all partitions £ subordinate to WX and all mea-
surable partitions 7.
From [10] we have the following result, which states that entropy behaves
like a product along coarse Lyapunov manifolds.

ProprosITION 3.2 ([10, Cor. 13.2]). For s € A,
ha(@s)) = ) hu(als) |WY).

x(8)>0

Fix a coarse exponent y € L. Write x(F) € LF for the unique fiberwise
coarse exponent with x(F) with x(F') C x if such a fiberwise coarse exponent
exists; that is, x(F’) is positively propositional to x. Otherwise let x(F") denote
the 0 functional. Similarly, define x(G) to be the unique coarse restricted root
é € ¥ that is positively proportional to xy and 0 otherwise. Note that given
a non-zero coarse Lyapunov exponent y € L, at least one of X(F) or x(G) is
1ON-ZETO.

Let v denote the image of y under 7: M* — G/I'. From the Abramov-
Rohlin formula (cf. [29], [3]), we may decompose entropy of u into the sum of
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the entropy along fibers and the entropy of the factor: for any s € A,
(7) hu(a(s)) = hu(s) + hu(a(s) | F).

Here F is the partition into preimages of the projection 7: M* — G/T and
hy(s) is the v-metric entropy of the translation by s on (G/I',v). From [10],
we have a similar decomposition into fiber and factor entropy along coarse
manifolds.

PROPOSITION 3.3 ([10, Th. 13.7]). Let s € A be such that x(s) > 0. Then
(8) hu(@(s) | WX) = hy (s | X(G)) + hy(a(s) | WXy,

Above, h,(s | x(G)) denotes the metric entropy of translation by s on
(G/T,v) conditioned on the partition of (G/I',v) into orbits of GX(¢). Note
that for our applications below, if x(F) = 0, then h,(a(s) | WXI)) = 0.

Proposition 3.3 is a special case of [10, Th. 13.7] that establishes an
Abramov-Rohlin formula for entropy subordinate to coarse Lyapunov mani-
folds for two smooth Z%-actions, one of which is a measurable factor of the
other. In the current setting, our factor map m: M“ — G/I' is smooth and
we obtain Proposition 3.3 directly from Proposition 3.2. We include a proof of
Proposition 3.3 in our current setting.

Proof of Proposition 3.3. Note that, as the map 7: M — G/T is smooth,
every coarse restricted root é € ¥ for the action of A on G /T coincides with
some coarse Lyapunov exponent x € £ for the action of A on (M*, p); in
particular, every £ € 3 is of the form & = X(G) for some y € L.

Given y € £, set ¥ = x(G) and take s € A with x(s) > 0. If ¥ = 0,
take 77 to be the point partition on G/T'. Otherwise, take 7 to be a measurable
partition of G/T" such that
(1) s~ 7 =7
(2) the atom 7j(z) of 7] containing x is contained in the GX-orbit of = and

contains an open neighborhood of x in the GX-orbit;

(3) Vpen s~ ™ -7 is the point partition.

Let n = 7~ 1(7). Take ¢ to be a measurable partition of M® such that

(1) a(s™1)(0) = ¢

(2) the atom ((z) of ¢ containing z is contained in WX(x) and contains an

open neighborhood of x in WX(x) for almost every ;
(3) Vpen &(s™™)(¢) is the point partition.

The existence of the partitions 77 and ( follows from a standard argument.
See [28, Prop. 3.1] or [27, Lemma 9.1.1].
The partitions 77 and ¢ satisfy

hy(5,7) = hy(s | X) and hy(a(s), ¢V F) = hu(a(s) | X)),
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We have the following standard computation (cf. [22, Lemma 6.1]):
hu(a(s) | WX) := hy(a(s),n v C)
< hu(als),n) + hy (d(S),C v\/ a(S”)(ﬁ))

nez
= hy(5,7) + hu(a(s), ¢V F)
= hy(s | X) + hpu(a(s) | WX,

Now, fix xo € £. Given any s € A with yo(s) > 0, we have from (7) and
the analogue of Proposition 3.2 applied to the total, fiber, and base entropies
(see full formulation in [10, Th. 13.1]) that

hu(a(s) = S hu(als) | W)

x(s)>0

< D (s IX@)+ Y halals) | WX

x(s)>0 x(s)>0
= hy(s) + hyu(a(s) | F)
= hy(af(s)).
Since entropies are non-negative quantities, it follows that
hu(@(s) | WX) = hy (s | X(G)) + hu(a(s) | WXE))
for all x € £ with x(s) > 0. O

We note that Proposition 3.3 will be applied only in the special case where
WXF) g trivial, in Proposition 5.1. Since the proof in this special case would
not be much simpler than the one provided above, we give the general version
of Proposition 3.3.

4. Conditional measures and criteria for invariance

Let G be as in the introduction. That is, G = G1 X - -+ x Gy is the direct
product of non-compact simple Lie groups. Consider X any locally compact,
second countable metric space, and suppose that X admits a continuous left
G-action x — g - x. We moreover assume the action is locally free; that is,
for every x € X, there is a neighborhood e € U, C G such that the map
U, — X, g — g-x is injective. (The size of U, does not have to be uniform.) It
follows that for every z, we have a canonical identification of G with a covering
space of the orbit G - x given by g — g - x.

4.1. Leafwise measures along orbits of subgroups. Consider any Borel prob-
ability measure p on X. Let V C G be a connected Lie subgroup, and let 1 be
a measurable partition of (X, u) such that for u-almost every z € X, the atom
n(z) is contained in the V-orbit V - z and contains an open neighborhood of
z in the V-orbit V - z. Such a partition is said to be subordinate to V -orbits.
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As above, we identify V' C G with a cover of the V-orbit through x. Fix a
decreasing sequence of measurable partitions 19 > n; > 12 --- subordinate to
V-orbits such that for any compact set K C V, for almost every x, there is a j
with K -2 C n;(z). For each 7, let {u;’} be an associated family of conditional
probability measures on X. By fixing a choice of normalization, a standard
construction gives for almost every z € X a locally finite Radon measure u
supported on V', which is canonical up to the choice of normalization. Indeed,
it is enough to define 1} on compact sets K C V on which the function v > v-z
is injective. For any such K, let j be sufficiently large so that K -z C n;(z),
and set 0
v M (K -x)

iy (K) = T Ay

pa’ (no(x))

Because the sequence 7; is decreasing, we have ju’ (o(x)) > 0 for p-almost
every = and every j > 0, and we also obtain that Y (K) is independent of the
choice of j as long as j is sufficiently large. However, uY is unique only up
to renormalization determined by the choice of 1y. To emphasize the lack of
uniqueness, we write [pY] for the equivalence class of the measure u) up to
normalization of the measure. See [12, §6] for further details.

Using the family of measures [pY ] on V, we recover the conditional mea-
sures for any partition n subordinate to V-orbits. For simplicity, suppose that
almost every V-orbit is free. We then have the following: for any partition
n subordinate to V-orbits, there is a function ¢7: X — (0,00) such that if
{pg : x € X} is a family of conditional measures on (X, 1) associated with the
measurable partition 7, then

i =) (v e v ), (1) I
Note that the subgroups V above need not be unimodular. We have the
following claim, which follows from local disintegration and the definition of
the left Haar measure.

CrAmMm 4.1. Let V C G be a connected Lie subgroup. Then the measure
(Y] coincides with the (positive proportionally class of the) left Haar measure
onV for p-almost every x € M if and only if the measure p is invariant under
the action of V.

The remainder of this section is devoted to a number of criteria that will
guarantee that [pY] is the left Haar measure.

4.2. Invariance from the structure of parabolic subgroups. Recall that we
write P = M AN for the minimal parabolic subgroup of G. Suppose u is a
P-invariant, Borel probability measure on X. Given a coarse negative root
¢ e $_ and a non-trivial subgroup V C G¢ such that p is V-invariant then,
as the stabilizer of a measure is a closed subgroup of G, it follows from the
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structure theory of parabolic subgroups that u is invariant by the full coarse
root subgroup G¢. In the case that the subgroup V above varies with the point
x € X, we have the following lemma. Note that G¢ is nilpotent so subgroups
of G¢ are unimodular.

LEMMA 4.2. Let u be a P-invariant measure on X, and suppose for some
£ e S_ that for p-almost every x € X, there is a non-trivial, connected Lie
subgroup V(x) C G¢ such that [ugg] coincides with the Haar measure on V(x).
Moreover, assume the assignment x — V (x) is measurable and A-invariant.
Then the measure u is GS-invariant.

Proof. Let {u} denote the A-ergodic decomposition of u. It is enough to
verify that the measure p¢ is Gé-invariant for almost every z.

Take s € A such that || Ad(s)|n|| < 1. It follows by Lemma 4.3 below
that the partition into A-ergodic components is refined by the partition into
N-orbits. In particular, for py-almost every x, the measure pf is N-invariant
by Claim 4.1.

Fix a generic x € X. Let V be the p$-almost surely constant value of
x +— V(z). Let H(z) be the closed subgroup of G under which x¢ is invariant,
and let b, = Lie(H(x)).

As —¢ is a positive coarse restricted root, we have g~¢ C h,. Moreover,
given a non-zero Y € Lie(V'), from the analysis of s[(2,R) triples in g (see [23,
Lemma 7.73]), we have that (ad(Y"))? maps g—¢ onto g¢. In particular g¢ C b,
whence p¢ is Gé-invariant. 0

LEMMA 4.3. Let U be a closed connected subgroup of G normalized by an
element s € A such that |Ad(s)[u|| < 1, where u is the Lie algebra of U. If
Es is the partition into ergodic components of p with respect to s, then & is
refined by the partition into U-orbits mod p.

Proof. We say a point z is generic with respect to p if for every compactly
supported continuous function ¢, % 227;01 o(sF - z) = / qbdpff, where ,u‘gs is
the ergodic component of p with respect to s at . Note that if u € U, then

k k

s®us™ - x — x as k — +oo uniformly on compact sets in X and hence for

every compactly supported continuous function ¢,
|6(s" - 2) = p(s" - u-z)[ = 0

uniformly in x as k — +o0o. Finally if x and y are generic points with y = v -z
and if ¢ is a compactly supported continuous function, we have

1N—l 1N—l
: - k. — : - k
iy )= i S

It follows that ufs = uiS. O
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4.3. High-entropy method. We have the following theorem of Einsiedler
and Katok from which we deduce additional invariance of an A-invariant prob-
ability measure along unipotent subgroups by considering its support along
coarse root spaces. We say a Lie subalgebra b C g is contracting if it is invari-
ant under the adjoint action of A and if there is some s € A with

h= P (€ nh).
£esé(s)<0

Note that any such b is nilpotent, hence unimodular. We state a simplified
version of the High Entropy Theorem from [14].

THEOREM 4.4 (High Entropy Theorem, [14, Th. 8.5]). Let pu be an A-
invariant probability measure on X, and let h C g be a contracting Lie algebra
with corresponding analytic subgroup H. Then for p-almost every x, there are
Lie subgroups

H,cS,CH
with

(1) pll is supported on Sy;
(2) pll is invariant under left and right multiplication by H,;

(3) H, and S, are connected and their Lie algebras are direct sums of subspaces
of root spaces;

(4) H, is normal in Sy, and if £,& € S with & # & are distinct coarse roots,
then for g € Sy NGE and h € Sy N GE', the cosets gH, and hH, commute
in Sy/Hy;

(5) Mgg is left- and right- invariant under multiplication by elements of H,NGS.

It follows that the groups S, and H, are equivariant under conjugation
by A; that is Ss., = sS,s~!. Unlike in [14], here we only consider the adjoint
action of A on g. As this action is semisimple with real roots, it follows that
the groups S, and H, are normalized by A. In particular, the maps = — S,
and s — H, are constant along A-orbits.

4.4. Invariance from entropy considerations. Let p be an A-invariant,
A-ergodic measure. Given a coarse root £ € 3, let W€ be the partition of
X into orbits of G5. We have a standard fact (see, for example, [28]) that if p
is G¢-invariant, then for s € A with £(s) > 0, the entropy of the action of s on
(X, 1) conditioned along orbits of G¢ is given by

(s | WE) = Z B(s) dim(g
Beg
The converse also holds.
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LEMMA 4.5. Let 5 €S be such that

(s | W) = Z B(s) dim(g
peg

for some s € A with £(s) > 0. Then u is G¢-invariant.

Indeed, Ledrappier shows in [24, Th. 3.4] that u has absolutely continu-
ous conditional measures along G%-orbits. In our setting, this is [5, Th. 7.2].
Moreover, from the explicit computation of the density function in the proof
of [24, Th. 3.4] it follows that the conditional measures of ;1 along G¢-orbits
coincide with the image of the Haar measure on G¢. See also [26, (6.1)] for
the argument in English. In our setting, see Claim 12.2 and the computation
preceding it in [5]. From Claim 4.1 it follows that u is Gé-invariant.

We remark that deriving extra invariance of a measure by verifying that
conditional entropy is maximized also underlies the proof of the so-called “
variance principle” for fiber-wise conditional measures invariant under a skew
product, developed by Ledrappier for projective and linear cocycles in [25] and
extended to non-linear cocycles in [1].

5. Main propositions and proofs of Theorems 1.6, 1.7, and 1.10

5.1. Non-resonance implies invariance. We return to the setting intro-
duced in Section 2. Fix any lattice Z? C A, and consider an A-invariant,
A-ergodic measure p on M satisfying (H3) of Proposition 2.5. We say a re-
stricted root 8 € X of g is resonant (with the fiber exponents £ (1) of p) if
there exist a ¢ > 0 and a fiberwise Lyapunov exponent A\ € £ (x) with

8 =cA.

If no such ¢ and A exist, we say (3 is non-resonant. We similarly say that a
fiberwise Lyapunov exponent A € £ () is resonant (with g) if there are a
c¢>0and a g € ¥ with
A=cp.

Note that resonance and non-resonance are well defined on the set of coarse
restricted roots 3 and coarse fiberwise exponents £ (11).

The proof of Theorem 1.6 follows directly from the following key proposi-
tion.

PROPOSITION 5.1. Let pu be an A-invariant, A-ergodic Borel probability
measure on M® such that the image of u in G/I is G-invariant. Then, given
a coarse restricted root & € S that is non-resonant with the fiberwise Lyapunov
exponents of ju, the measure p is GS-invariant for the action @.

Proof. Indeed if £ is a non-resonant coarse restricted root, then £ = x(G)
for some coarse exponent y € £ with WX(¥) being trivial. Since the image of
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w in G/T is the Haar measure, it follows for s € A with {(s) > 0 that

hHaar 5 ‘ 5 ZB dlm
Beg
From Proposition 3.3 and the fact that the partitions WX =WS¥ coincide in M,
it follows that h,(a(s) | WXU)) = 0 whence

hu(a(s) | WE) = B(s) dim(g
Beg
The G¢-invariance of p then follows from Lemma 4.5. (]

We remark that the proof of Proposition 5.1 is similar to key steps in [33]
and [15] where one deduces extra invariance of a measure by computing con-
ditional entropy, verifying that the entropy is the maximal value permitted by
the Margulis—Ruelle inequality, and applying Lemma 4.5 to obtain invariance.

5.2. P-invariant measures and the proof of Theorem 1.6. Recall that P
is the minimal standard parabolic subgroup and is hence amenable. It fol-
lows (even in the case that I' is non-uniform) that there exists an ergodic,
P-invariant probability measure p for the restriction of the action & on M“
to P. Indeed, take any measure pg on M that projects to the Haar measure
on G/TI', and let {F}} be a Fglner sequence in the amenable group P. Then the
average of g over each Fy, which we denote by uy, projects to the Haar mea-
sure. In consequence, the family {ux} is precompact and any weak-* limit i
of py is a P-invariant probability measure. (In other words, there is no escape
of mass.) One my then take an ergodic component p of po. We remark also
that any P-invariant probability measure on M projects to the Haar measure
on G/TI', since the latter is the only P-invariant probability measure on G/T.

Fix a P-invariant, P-ergodic measure p on M“. Recall that A C P and
recall the data 7(-), A\i(+), Ej,(:) defined in Theorem 3.1 for the action of A on
(M, 1) as well as the corresponding data rf'(-), Af'(-), and E/\f(') and r&(-),
AF(-), and E )\ic(-) for the fiberwise and orbit cocycles. As observed earlier, the

data 79(-), A¢(-), and Ey¢(-) are independent of the measure y and the point.
We show that for p as above, the remaining data is independent of the point.

CLAamM 5.2. Suppose that u is a P-invariant, P-ergodic measure. Then
the functions r(-),rF(-), Mi(-), M'(-) and the dimensions of the corresponding
subspaces Ey,(-), E\r(-) are constant almost surely.

Proof. Note that i is P-ergodic but need not be A-ergodic. Let {15 }penra
denote the A-ergodic decomposition of . We may select s € A so that 5(s) < 0
for every B € 3. By the pointwise ergodic theorem (see Lemma 4.3), it follows
that ergodic components are refined by the measurable hull of the partition
into N-orbits. Then py is N-invariant for almost every p € M®. It follows
that the data in the claim is constant along AN-orbits.
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Finally, recall that P = M AN with M contained in the centralizer of A.
It follows that the data is constant along M orbits. By the P-ergodicity of u,
the result follows. O

From Claim 5.2 it follows that for any P-invariant, P-ergodic measure p
on M“, the set of resonant roots depends only on the measure p and not the
decomposition of y into A-ergodic components.

Theorem 1.6 now follows immediately from Proposition 5.1.

Proof of Theorem 1.6. Let p be any P-invariant, P-ergodic measure on
M<. Let @ be the stabilizer of G in u. Note that @ is a closed subgroup
with P C Q C G. If dim M < r(G), then there at most r(G) — 1 fiberwise
Lyapunov exponent functionals in £, hence at most 7(G) — 1 coarse fiberwise
Lyapunov exponent functionals in ££. Tt follows that there are at most r(G)—1
resonant coarse restricted roots £ € . From Proposition 5.1, it follows that
Q is a standard parabolic subgroup with resonant codimension strictly smaller
than r(G). But then @ = G by definition of r(G).

It follows that p is a G-invariant, Borel probability measure on M®. From
Claim 2.1, it follows that there exists a I'-invariant Borel probability measure
on M. U

5.3. Parabolic subgroups associated to conditional measures. We continue
to assume p is a P-invariant, P-ergodic measure on M®. The proof of Theo-
rems 1.7 and 1.10 follow from an analysis of the geometry of the measures [,ug ]
constructed in the previous section.

We define subgroups Qm (1) C Qout(i) of G as follows: Given pe M, let

(1) Qm(p) denote the largest subgroup of G for which p is invariant for the
action a;
(2) Qout(p; p) denote the smallest, closed, [ug]—co—null subgroup of G.

Note that both Q, (1) and Qout(p; p) are standard parabolic subgroups. As
P C Qout(u;p), it follows that Qout(p;p) is constant along P-orbits. By
P-ergodicity of u, we write Qout(p) for the almost-surely constant value of
QOut(:u;p)'

Theorems 1.7 and 1.10 will follow from verifying that Qm (1) = Qout ().
We use the criteria in the previous section to verify this condition. First,
consider the case that every fiberwise Lyapunov exponent )\ZF of u is resonant
with a negative root. In this setting we immediately obtain that Qr,(u) and

Qout (1) coincide.

PROPOSITION 5.3. Suppose that for every )\ZF e LY, there are a B € ¥_
and ¢ > 0 with \F' = 8. Then Qum (1) = Qout(p)-
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We also verify that Qm(pr) = Qout(p) given the combinatorics of the
number m(G).

PROPOSITION 5.4. Suppose g has no rank-1 simple ideals and that Q, (1)
is a mazximal parabolic subgroup. Then Qm (1) = Qout(1).

5.4. Proofs of Theorems 1.7 and 1.10. Given a P-invariant, P-ergodic
measure 4 as above, let i denote the locally finite measure on G x M obtained
from lifting p on fundamental domains of I'. Given g € G, let gy denote the
conditional probability measure on M defined by disintegrating f along fibers
and identifying each fiber {g} x M with M.

As fi lifts p1, we have that {p4 : g € G} is I'-equivariant:

fgy = () xhg-
Moreover, as u is Qm(u)-invariant, for almost every g € G, we have that

fg = fiqq for every ¢ € Qm(p). Let Q@ = Qm(p). We equip Q\G with any
measure m in the Lebesgue class. Let 71 be the measure on Q\G x M given by

f(B) = / ny({2 : (Qg.x) € BY) dm(Qg).

and let {1 be the measure on M given by

A(B) = / 1y(B) dm(Qg).

Note that i is image of i under the natural projection 7: Q\G x M — M.
Consider the fi-measurable partition (™ on Q\G x M into level sets of the
map 7. We have that (™ is measurably equivalent to the partition

{Qm()\Qout (1) x {x} : 2 € M}.

In particular, in the case Qm (1) = Qout (1), the following claim follows imme-
diately.

CrLAamM 5.5. If Qm(p) = Qout(p), then the projection (Q\G x M, ) —
(M, ) is a measurable isomorphism.

Theorems 1.7 and 1.10 follow from I'-equivariance of the family {z4} and
Claim 5.5.

Proof of Theorems 1.7 and 1.10. Let p be a P-invariant, P-ergodic mea-
sure on M“.

First consider the setting of Theorem 1.7 where dim(M) = r(G). If there
exists a non-resonant, fiberwise Lyapunov exponent )\ZF for pu then, by dimen-
sion counting, there are at most 7(G)—1 coarse resonant roots £ € 3. However,
as p is P-invariant and as there are no proper parabolic subalgebras of resonant
codimension smaller than r(G), it follows that p is necessarily G-invariant. It
then follows that if & has no invariant probability measure on M %, then every
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fiberwise Lyapunov exponent of p is resonant with a root of g. We claim in
this case that every fiberwise exponent for u is in fact resonant with a negative
root B € ¥_. Indeed, if there existed a fiberwise exponent that was resonant
with a positive root, then there would be at most 7(G) — 1 resonant negative
roots. As we assume p is P-invariant, we again generate a parabolic subgroup
that preserves p and with resonant codimension smaller than r(G). This again
implies the existence of an & invariant probability on M®.

Thus, in the case that dim(M) = r(G) it follows that if there is no
a-invariant probability measure on M, then there exists s € A such that
M(s) < 0 for every fiberwise Lyapunov exponent A" of .

Proposition 5.3 then holds, and a standard argument shows in this case
that the fiberwise conditional measures i, are supported on a finite set for
almost every ¢g. It then follows by ergodicity that the number of atoms is
constant almost surely. This argument could have been due to R. Mané, but
we were unable to find an explicit reference in the literature; we include it as
the following lemma. In our case we view M® as (G/T") x M by choosing a
measurable trivialization of the bundle.

LEMMA 5.6. Let f: (Q,v) = (Q,v) and F : (2 x M, pu) — (2 x M, u) be
invertible, ergodic, measure-preserving transformations of standard probability
spaces with F ergodic. Let p:  x M — € be projection into first coordinate,
and assume that p,p = v. Let w — g, be the disintegration into conditional
measure along the partition into preimages of p. Assume M is a Riemannian
manifold (not necessarily compact) and that

Fw,z) = (f(w), gu(x)),
where g, is a C1 diffeomorphism for every w and log ||gul|c1 is v-integrable.
If the Lyapunov exponents of F' along the M direction are all negative, then
there is a k € N such that for v-almost every w € ), u, is an atomic measure
with k atoms of mass %
Proof of Lemma 5.6. Let g&n) : M — M Dbe the diffeomorphism such that
F'(w,x) = ( f(w), gc(u”) (x)) The F-invariance of p implies for v-almost every

w that (gU(Jn))*,uw = pn( for all n.

We shall use the following consequence of ergodicity and the negativity
of the Lyapunov exponents: there exist A > 0 and a measurable function
r: Q x M — (0,00), defined p-almost everywhere, such that for p-almost
every (w,z),

diam g&”) (Brwa) (@) < e

Given 6 > 0, set G5 := {(w, ) : pw(Br(w,2)(x)) = 6}. Fix some § > 0 with

1(Gs) > 0. For p-almost every (w, z), there are n; — oo with F~" (w, z) € Gs.
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Then for all such (w,z) and n;,

/Lw(Be*A"j () = po (gj(ﬁjgj (w) (BT(F_"j (w,x))(g;nj ()

= 11n5 ) (Br(pi oy (9™ (@) 2

Taking n; — oo, it follows for p-almost every (w,x) that p,({z}) > J. Ergod-
icity of u gives the remainder of the claims. ([l

~ O,

We now continue the proof of Theorems 1.7 and 1.10. In the case that
dim(M) < m(G) and every fiberwise Lyapunov exponent is resonant with a
negative root, the same analysis as above holds. In particular, the hypotheses
of Proposition 5.3 hold. Note that this holds even if g has rank-1 simple ideals
(so m(G) =1 and M is a circle.) If dim(M) < m(G) and not every fiberwise
Lyapunov exponent is resonant with a negative root, then there are at most
m(G) — 1 resonant, negative coarse restricted roots. Note that if g has rank-1
simple ideals then, as m(G) — 1 = 0, this implies Qm (1) = Qout(p) = G. Thus
we may assume g has no rank-1 simple ideals. From the definition of m(G), it
follows that either Q, (1) = G or that Qm, (1) is a maximal parabolic subgroup
and, from Proposition 5.4, we have that Qm, (1) = Qout(1)-

In particular, under the hypotheses of either Theorem 1.7 or 1.10, we have
Q= an(u) = QOut(M)‘

In the setting of either theorem, the spaces (M, py) are Lebesgue prob-
ability spaces. As there are at most countably many isomorphism types of
Lebesgue probability spaces, by P-ergodicity it follows that the spaces (M, jq)
are all measurably isomorphic to a fixed abstract Lebesgue probability space
(Y,n). In particular, we may select a measurable family of measurable isomor-
phisms ¢g: (M, pg) — (Y,n). Since we have pg = pgqq for all ¢ € Q, we may
moreover assume ¢, = ¢4y for almost every g and every ¢ € Q). The family of
isomorphisms ¢, translate the I'-equivariance of the family p, to a family of
automorphisms of the measure space (Y, 7) parametrized by Q\G:

P(7,Q) := dgy 0 a()x 0 ¢, € Aut(Y,n).

One verifies that 1 is a cocycle over the right I'-action on Q\G.

It now follows from Claim 5.5 that (M, /i) is measurably isomorphic to
(Q\G,v) x (Y,n). Moreover, the action « of I on (M, f1) is measurably conju-
gate via this isomorphism to the skew action defined by ¢ over the standard
right action of I' on Q\G. Theorems 1.7 and 1.10 now follow. g

6. Proof of Propositions 5.3 and 5.4

We recall the notation of Section 5.3. In particular, we take p to be a
P-invariant, P-ergodic measure on M®. Recall also the definitions of Q,(u)
and Qout (1) in Section 5.3. We verify under the hypotheses of Propositions 5.3
and 5.4 that an(u) = QOut(ﬂ)‘
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6.1. Conditional measures along coarse root spaces. Under the assumption
that Qm (1) # Qout (), the following claim guarantees the existence of a coarse
restricted root & € 3 with G¢ ¢ Qu(1) and such that the measure [ugﬁ] is
non-trivial. Write @ = Qm(¢) and q = Lie(Q) for the remainder.

CLAIM 6.1. Suppose Qm (1) # Qout(i). Then there is a coarse restricted
root £ € S with g¢ ¢ q such that ,ugg is non-atomic for p-almost everyp € M<.

The claim follows from the local product structure of A-invariant measures
on G-spaces demonstrated in [13, Prop. 8.3] and further developed in [14,
Ths. 7.5, 8.4]. We sketch a short proof here for completeness.

Given standard parabolic subgroup @) with Lie algebra ¢, let

So={fex:g’cq}, Ng={Ben:¢"Za}
We have that ¥ = EQUZ%2 and Xg and Eé are saturated by coarse equivalence
classes of restricted roots.

Proof. Recall that we write @ = Qm,(u) and the measure ,ug is a Q- and
hence A-invariant measure on G. Let g := ay, pexy g?. Note that Eé consists
of negative roots. Let V be the analytic subgroup corresponding to g-. Let
Cs denote conjugation by s € A. We have Cs(V) =V for s € A. As p is
A-invariant, we have for s € A that [(C’S)*uy‘;] = [,ug(s)(p)] for almost every p.

As Zé C¥_, we may find an so € A and a coarse restricted root £ C £+ with

e B(sg) =0 for p €¢;

e 3(sg) <0 forall e Eé €
Let V' be the analytic subgroups of V' corresponding to € Beshng g°.

Suppose first that ,uz‘)/ is not supported V' for a positive measure of set of
p € M?. As a(sg) commutes with the action of G¢, we have [ug(gs())(p)] = [,ugg]
for almost every p. Moreover, as &(sg) contracts V’-orbits, it follows from
Poincaré recurrence to compact sets of sufficiently large measure where the
measures [qug] are well defined, vary continuously in ¢, and contain the identity
in their supports, that for ug—almost every g € V, writing g = vu for v € G¢
and v € V'  w is in the support of [,ugg]. Thus, ,ugg is atomic on a positive
measure set of p only if “1‘)/ is supported on V' for a positive measure of set of
p € M. Thus, pg ¢ is non-atomic on a positive measure set of p. Note that the
actions by A and M preserve the coarse root subgroups G¢ and also preserve
the measure p. Also, as the A-ergodic components of p are N-invariant, it
follows from P-ergodicity of u that ugé is non-atomic for almost every p.

If uz‘,/ is supported on a single V'-orbit for almost every p € M®, we may
recursively repeat the above argument with V' replaced V'. U

6.2. Recurrence and the proof of Proposition 5.3. We show under the as-
sumption that every fiberwise Lyapunov exponent is resonant with a negative
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root, that Qm(p) = Qout(p). Suppose that Qm(u) # Qout(w), and let £
be a coarse restricted root as in Claim 6.1. We will show below that u is

G%-invariant. The contradiction completes the proof of Proposition 5.3.

Let A C A denote the kernel of &; that is, s € A’ if B(s) = 0 for all
B € & As we assume I' has dense image in every rank-1 simple subgroup of G,
it follows from Moore’s ergodicity theorem (applied to each irreducible factor)
that A" acts ergodically on G/T" (see, for example, [38, Th. 2.2.6]).

As discussed in the proof of Theorem 1.7, the assumption that every fiber-
wise Lyapunov exponent is resonant with a negative root implies that p, has
finite support for almost every gI' € G/I". Moreover, P-ergodicity of p ensures
that the number of atoms is constant in gI'.

The discussion below will always be in the sense of modulo p-null sets.
Throughout the argument we will use only invariance of g under P and, in
particular, its subgroup A and therefore the null sets are preserved under
these actions.

Note that (as we assume ,ug*'& is non-atomic) the partition of (M, ) into
full G&-orbits is non-measurable. Let 1¢ denote the measurable hull of this
partition—that is, the finest measurable partition of (M®, ) containing full
G&-orbits modulo g We remark that this construction does not require p to be
G¢-invariant. However, as the partition into G¢-orbits and p are both invariant
under A’, the partition ¢ is A’-invariant modulo p-null sets.

Consider the action of A" on (M%, ). Note that the action need not
be ergodic. Let €4/ denote the partition into ergodic components of u with
respect to the action of A’. We have the following claim, which will provide
the necessary recurrence to complete the proof of Proposition 5.3.

CLAIM 6.2. The partition n¢ refines E4r.

Proof. Let £4 denote the partition into ergodic components of u with
respect to the action of A on M?®. Taking s € A such that (s) < 0, by
Lemma 4.3 we get that 77€ refines &;. Because & refines &4, it follows that 175
refines £4.

To complete the proof of the claim we show €4 = E4/.

Fix p € M, and let ,ugA be the A-ergodic component of p containing p.
Let £(p) denote the partition of (M“,ui*“) into A’-ergodic components. We
claim that & (p) is finite for almost every p. Indeed first note that, as both A
and A" act ergodically on G/T', the A and A’-ergodic components of (M®, 1)
project to the Haar measure on G/I'. Furthermore, as the fiber conditional
measures jigr are purely atomic and as the ergodic components of the A’-action
on (M®?, ugf‘) are mutually singular, it follows that the partition &(p) is finite.

As A’ € A with A abelian, it follows that A permutes elements of the
partition &(p) of (Ma,,ugf“). Note that the partition &(p) is finite, A acts
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ergodically on (M¢, ,ugA), and A is a connected group. In particular, A acts
ergodically on the (finite) factor measure space (M?, ugA) /E(p). This yields a

contradiction unless the partition £ (p) contains only one element. It follows
that £4 = Ex/. [l

From standard measure rigidity arguments for actions of abelian groups
we obtain the following.

CLAIM 6.3. u is invariant under the action GS.

Proof. Fix U C G¢ to be a pre-compact, open neighborhood of the identity
in G¢. Given almost every p € M, the measure ,ugg gives positive mass to U.
For such p, normalize ,ugg onU.

Let A’ bge as above. Then any s€ A’ commutes with G¢ whence sUs™1=U
G
a(s

and thus p o) = u?g. Let K C M“ be a compact set on which the assign-

ment p — ugg is continuous (where locally finite measure on G¢ are endowed
with the topology dual to compactly supported continuous functions).

Since 7¢ refines €4/, we have the following: for p-almost every p € M®
and for ugg—almos‘c every u € G¢, setting p' = a(u)(p) we have p’ € E4(p).
Consider such p and p’ such that p’ € K is a density point of K with respect to
the A’-ergodic component of p containing p. It follows that there is a sequence
s € A’ with
(1) a(sg)(p) € K for every k € N;

(2) a(sk)(p) = p' as k — oo;
(3) ,ugé = ug(gsk)(p) for every k € N.

It follows that ugg = ugé. Taking sets K; as above of measure arbitrarily close
to 1, for typical points p, it follows that ufg = ug’:g for all p’ = a(v)(p) for a
,ugg—conull set of v. It follows that for almost every p, the group of isometries
of G¢ preserving ugé up to normalization acts transitively on the support of
ugg in G¢. In fact, the group of right-translations of G¢ preserving ugg up to
normalization acts transitively on the support of uf,;{ in G¢.

It now follows from arguments developed in [21, §5] that ugg coincides with
the Haar measure on a non-trivial subgroup V(p) C G¢. See also [20, §6.1]
for an argument in the framework described here. Moreover, the assignment

p — V(p) is measurable and constant on A-orbits. From Lemma 4.2 it follows
that p is Gé-invariant. O

Recall that our initial choice of ¢ was such that G¢ ¢ @ = Qru (). From
this contradiction we conclude that Qr, () = Qout(r). This completes the
proof of Proposition 5.3
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6.3. Proof of Proposition 5.4. The proof of Proposition 5.4 is a direct
application of the Theorem 4.4. Recall the definitions of ¥ and Eé above.
Suppose that Qm(pn) # Qout(p). Let £ € Y be as in Claim 6.1. Then & C
Eém(u)' Write Q = Qm(u).

If £ contains two elements, we have £ = {f’,23'} for some root ' € 3_.
In this case, take § = 23" if ,ugg is supported on G2 for almost every p and
B = B’ otherwise. If £ is a single root, take 8 with £ = {5}.

We claim the following.

CrAamM 6.4. If Qm(u) is a maximal parabolic subgroup then, with 5 as

above, there is a root v € L, () with
(1) v # —cB, for any ¢ > 0;
(2) v+ B€X;
(3) v+ B¢ ELID(M).
Proof. Indeed let q = Lie(Qm(p)). Then q = qnqq) for some simple
root a. If B = —a then, as we assume there are no rank-1 simple ideals,

there is a simple positive root & # —« adjacent to « in the Dynkin diagram
corresponding to the simple factor containing . Then & — 8 = &+ « is a root.
Take v = —&. Then (since q is of the form qp. (o)) ¥ = —& € g, () and
v+ B € Eém(“). Similarly, if 8 = —2« (so that 8 is a root in factor of type
BC(C,), then « is the right-most root in the Dynkin diagram; with & the root
adjacent to (that is, to the left of) «, since & + 2« is a root, v = —& satisfies
the conclusions of the claim.
If B # —a and 8 # —2a, then f is of the form
B =coa+ Z ca v,
a#a€ll
where cq <0, g <0, and ) 424erca < —1. Since § is not a simple negative
root, there is a simple (positive) root o’ € II such that 8 + o' is a negative
root. If o/ # « then, since f = (B+0a’) —a’ and —a’ € g, (,.), it follows that

(B+a') & Zgu, ()
since Qrn(p) is a subgroup. Then v = o satisfies the conclusion of the claim.

On the other hand, if o/ = « then, since S + « is a negative root,
_(ﬁ + O[) € E"l‘ C EQIH()U“)

DR

and

Bt —=(B+a)=—adXq,mw-
Since  and « are linearly independent, the root v = —(f + «) satisfies the
conclusion of the claim. O

As we assume that v # —cf for ¢ > 0, it follows that we may find s € A
with B(s) < 0 and y(s) < 0. Let h be the Lie subalgebra generated by g¢ @ gl!
where [7] is the coarse equivalence class of 7. Then H = exp(h) is the minimal
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subgroup containing G¢ and G that is contracted by all s with /3 (s) < 0and
v(s) < 0. For a generic p € M, let H, C S, C H be the subgroups guaranteed
by Theorem 4.4.

By Claim 6.1 and choice of 3 in the coarse Lyapunov class &, G¢ N Sy is
non-empty. Moreover, either G¢ = G?, or G¢ = G%¥ & GP and G¢ N Sp is not
contained in G2%. By Theorem 4.4(3), in the latter case, G¢ NS, contains a
non-trivial connected subgroup {exp(tY) : t € R} of G for some Y € ¢°.

Let 8 = 8+ ~. By Claim 6.4, 3 € ¥, which implies that there is some
Z € g7 such that adzY € g#*7 is non-trivial. Theorem 4.4 implies that Lie( H,,)
contains the line spanned by [Z,Y] € [g7,g°] C g” for p-almost every p.

Denote by V(p) the largest connected Lie subgroup of G® N H,, which
is non-trivial by the above discussion. This is a measurable family. By the
discussion after Theorem 4.4, V' (p) is equivariant under the action by A.

In particular, the family V' (p) satisfies the hypotheses of Lemma 4.2. From
Lemma 4.2, it follows that the measure p is Gl invariant contradicting the
choice of . This completes the proof of Proposition 5.4.

Appendix A. Tables of root data for classical root systems

A table of simple roots and all positive roots is given in Table 1. We
express the roots in terms of a standard presentation (cf. [23, App. C].) In
all cases, the parabolic subalgebra q of minimal resonant codimension is q =
I~ {a,} from which we immediately verify 7(g) in Example 1.3 from Table 1.
We also verify that m(g) is the resonant codimension of q = qry._ {a1,a0} €XCepPL
for Dy from which we verify m(g) in Examples 1.5.
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Table 1. Roots systems and positive roots for classical root systems

[1] A. AviLa and M. VIANA, Extremal Lyapunov exponents: an invariance prin-
ciple and applications, Invent. Math. 181 no. 1 (2010), 115-189. MR 2651382.

Simple roots and Positive roots
Dynkin diagram
o0—0---0—0 :
Ar | a1 ao Qr_1 Qg i+t =€ — gt 1<i<k</?
Q = €; — €41
1<i</
Oéi+"'+0£k:ei_ek+l 1§’L§l€§£*1
o—0O ----0=0 S — e ;
B, | a1 ar  ars ar ai+- o =e 1§§§€
i+ ok + 20641 F - - 1<i<k</?
Qi = €; — €i41, +200 = €; + er+1
1<i<l—1;
Qy = €y
o+t o =€ — eg41 1<i<k</i-1
O—O0O ---0==0 ) i
C | ar a s o a; + + ar + 2ak41 + ... 1<i<k</?
+200-1 + ar = €; + ekt
Qi = € — €it1, 200 + -+ - 4+ 20001 + g = 2e; 1<i<?
1<i<l—1;
ap = 2ey
Qi+t ak =€ — ept1 1<i<k<i-1
O—O - - - -O==0 Qi+ tar=e 1<i<t
BC, | a1 a2 Qp—1 Qp i+ -+ o+ 20641 + ... 1<i<k</?
Qj = €j — €i41, +2a2:ei+ek+1
1<i<l-—1; 206 + - -+ 200-1 + 200 = 2¢4 1<i<?
Oy = €y
. 1<i</
i+ o =e; —ep 1<i<k<{l-2
Q-1 ot ta2tamr =6 —e 1<i< -2
Qi+ tarotar=e; +e 1<i<e-2
Dy L -2 ¢ ¢ S
Qi as > Qi+ taertar=ete1r 1<i<0-2
Qy a; + - Fag+ 2041+ ... 1<i<k</t-2
Q; = €e; — €41, +200—2 + -1 + ¢
1<i<e-1, =e; + ert1
Qap =er—1+ e
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