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ABSTRACT. In the first part of this paper, we formulate a general setting in

which to study the smooth ergodic theory of differentiable Zd -actions pre-

serving a Borel probability measure. This framework includes actions by

C 1+Hölder diffeomorphisms of compact manifolds. We construct intermedi-

ate unstable manifolds and coarse Lyapunov manifolds for the action as well

as establish controls on their local geometry.

In the second part, we consider the relationship between entropy, Lya-

punov exponents, and the geometry of conditional measures for rank-1 sys-

tems given by a number of generalizations of the Ledrappier±Young entropy

formulas.

In the third part, for a smooth action of Zd preserving a Borel proba-

bility measure, we show that entropy satisfies a certain ªproduct structureº

along coarse unstable manifolds. Moreover, given two smooth Zd -actionsÐ

one of which is a measurable factor of the otherÐwe show that all coarse-

Lyapunov exponents contributing to the entropy of the factor system are

coarse Lyapunov exponents of the total system. As a consequence, we derive

an Abramov±Rohlin formula for entropy subordinated to coarse Lyapunov

manifolds.
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1. INTRODUCTION

The primary motivation for this series of papers is to establish a ªproduct

structure of entropyº formula as well as a ªcoarse-Lyapunov Abramov±Rohlin

formulaº for measure-preserving, non-uniformly hyperbolic Zd -actions. These

formulas appear in Corollary 13.2 and Theorem 13.7 of Part III. While technical

to state, these results have been essential for related work, especially in the

rigidity theory of actions of higher-rank lattices in [13, 14, 12]. To establish

these results, it is necessary to generalize the main results of the seminal papers

of Ledrappier and Young [31, 32]. In Part II, we revisit the work of Ledrappier

and Young and establish these necessary generalizations. In Part I, we revisit

the theory of Lyapunov exponents, non-uniform hyperbolicity, and invariant

manifolds in the setting of Zd -actions.

In the remainder of this introduction, we provide a short outline of each part

with brief discussion of related work and our results.

1.1. Overview of Part I. In Part I, we introduce a general setting in which to

study smooth ergodic theory of Zd actions. Our setting includes actions on

manifolds which need not be compact and we allow for actions with disconti-

nuities or singularities sufficiently far from a set of full measure. While results

in this part may be well known to experts, they do not appear in a comprehen-

sive way in the literature. Among many others, the results here primarily adapt

[40, 25]; see also [2, 23].

In Section 2, we formulate the background on Lyapunov exponents for lin-

ear cocycles over actions of abelian groups. We address certain integrability

hypotheses in equation (6) which seem to be missing from existing literature

(see discussion in Section 2.3.)
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In Section 3, we formulate a general framework in which to study the smooth

ergodic theory of C 1+Hölder-actions of Zd preserving a Borel probability measure.

This framework includes C 1+Hölder-actions on compact manifolds. HoweverÐas

our motivating application includes actions where the underlying manifold is

not compactÐwe introduce certain hypotheses to overcome non-compactness

of the underlying space. These hypotheses only require controls on the local

C 1+β dynamics of the action. Thus, it is natural to work in systems where only

the dynamics localized to an open set of full measures is assumed to be smooth

(or even continuous). Such a setting was introduced in [25] for diffeomorphisms

with singularities and discontinuities; we view our standing hypotheses II in

Section 3.2 as analogues of the hypotheses introduced in [25] for actions of Zd .

In Section 4, we introduce unstable manifolds for individual elements of an

action and the concept of (tame) invariant measurable foliations for an action

of Zd . We define the notion of coarse Lyapunov exponents, the correspond-

ing coarse Lyapunov foliations, and assert that unstable foliations and coarse

Lyapunov foliations provide the primary examples of (tame) invariant measur-

able foliations for the action. In Section 5, we introduce the technical tool of

Lyapunov charts, with various charts adapted to particular objects of study. As-

sertions made in Section 4 are established using the dynamics inside Lyapunov

charts.

1.2. Overview of Part II. For Part II, we recall the results of [31, 32] which es-

tablished a relationship between the metric entropy of a C 2 measure-preserving

diffeomorphism, its Lyapunov exponents, and certain geometric data associated

to the measure.

In [31], a certain rigidity of invariant measures is proven extending the main

result of [28]. Recall that for a C 1 diffeomorphism f : M → M of a compact

manifold M and an ergodic, f -invariant measure µ with Lyapunov exponents

λi , the Margulis±Ruelle inequality [45] gives a bound

hµ( f ) ≤
∑

λi>0

λi mi(1)

where mi is the multiplicity of the exponent. In [31], it is shown that equality

holds in (1) if and only if the measure µ has the following geometric property:

the conditional measures of µ along unstable manifolds are absolutely contin-

uous (and, in fact, equivalent) to the Riemannian volume along unstable man-

ifolds. See [31, Theorem A]. When the unstable manifolds have an algebraic

structure relative to which the dynamics acts by automorphisms, this rigidity

can be used to obtain additional invariance of the measure. This idea is used,

for example, in [38, 18, 14, 12, 13] to obtain extra invariance of certain measures.

In [32], the defect of equality in (1) is explained in terms of geometric quanti-

ties associated with the measure µ. To each positive Lyapunov exponent λi > 0,

we define a corresponding contribution to the entropy hµ( f ). The maximal con-

tribution of each λi to the entropy hµ( f ) is miλi . The main result of [32] is that

the entropy contribution of each λi is given by γiλi where γi ≤ mi denotes the
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ªtransverse pointwise dimensionº of the measure conditioned along the interme-

diate λi -unstable manifold and transverse to the faster unstable foliation. See

[32, Theorem C’].

The results of [31, 32] have been generalized to many other settings includ-

ing the case of i.i.d. random dynamics on compact manifolds [35, 33], more

general skew product systems [1, 41], infinite dimensional systems [5], and en-

domorphisms [46, 34]. In all these settings, the underlying dynamics occurs on

compact subsets and the dynamics is assumed C 2. Beyond the compact setting,

we point to [43] where finiteness of entropy and a Margulis±Ruelle inequality

for diffeomorphisms of non-compact manifolds is studied and [42] for exam-

ples where the Margulis±Ruelle inequality fails for C∞ diffeomorphisms of a

non-compact manifolds.

In Part II we reprove the main results of [31, 32] under somewhat more gen-

eral hypotheses and for slightly more general notions of entropy. These general-

izations are needed for the results in Part III which in turn are used in [14] and

[12, 13]. In addition to [31, 32], we heavily adapt arguments from [28, 25, 29].

In Section 6, we review basic definitions and facts about the entropy of an

invertible measurable transformation. In Section 7, we state our main results,

Theorem 7.2 and 7.7. In Section 8, we review the construction of special par-

titions, namely increasing partitions subordinated to an expanding foliation

following [29]; the key technical result is stated as Proposition 8.3. The proof of

Theorem 7.7 and Proposition 8.3 occupies Sections 9±11, following essentially

the same arguments as in [31, 32]. Finally, in Section 12 we reduce the proof of

Theorem 7.2 to the setting considered in [28, Section 3].

The results and proofs in Part II are rather similar to [31, 32] and may not

be surprising to experts. We emphasize some specific ways our results extend

previous results.

1. The papers [31, 32] and most subsequent results required the dynamics to

be C 2. For hyperbolic measures (i.e., measures without zero exponents)

the results of [31, 32] still hold for C 1+β diffeomorphisms of compact man-

ifolds; see [28], and [2] and [3, Appendix]. The main result of [11] allows

us to deduce the entropy formulas in the presence of zero Lyapunov expo-

nents for C 1+β diffeomorphisms.

2. Similarly, the entropy formulas appearing in [31, 32] (and most extensions

mentioned above) assumed the manifold M is compact (or the dynamics is

concentrated to a compact part of the space). In particular, the derivative

and its Lipschitz (or Hölder) norm are assumed to be bounded from above

and the injectivity radius of M is assumed to be bounded from below. In

the case of random dynamics, one can remove uniform boundedness by

assuming some integrability properties of derivative and its Lipschitz vari-

ation.

We replace compactness and the consequent boundedness of local

dynamics by assuming log-integrability of the derivative, and slow degen-

eration of the C 1+Hölder size of the local dynamics and the injectivity radii
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along orbits. This is formalized through the introduction of dynamical

charts {φx } in Section 3.2. By the introduction of such charts, we localize

our analysis to an open set of full measure restricted to which the the dyn-

amics is a diffeomorphism; no assumptions are made on the dynamics

outside of such charts and thus we also consider maps with singularities

and discontinuities (assuming the measure is sufficiently concentrated

away from the singular set). We obtain analogues of the entropy formulas

of [31, 32] in settings similar to those studied in [25].

3. We consider two notions of ªrelativizedº metric entropy: the metric en-

tropy of a transformation subordinate to a measurable partition and the

metric entropy of a transformation subordinate to an invariant measur-
able foliation. We prove a formula analogous to that of [32] for entropy

subordinated to a measurable partition and, as in [31], show that the en-

tropy subordinate to an invariant measurable foliation attains its maximal

theoretical value only when the measure is absolutely continuous along

the unstable component of the foliation.

1.3. Overview of Part III. In Part III, we establish the ªproduct structure of en-

tropy,º stated in Corollary 13.2. This result is motivated by two previous results.

First, for commuting C 2 diffeomorphisms of a compact manifold preserving

a common invariant probability measure, it was shown in [21, Theorem B] that

entropy is subadditive; in particular, given a C 2 action α of Zd preserving a

probability measure µ, the entropy function Zd →R,

n 7→ hµ(α(n))(2)

extends to a semi-norm on Rd . [21, Theorem B] also implies the semi-norm

(2) is additive when restricted to each of finitely many connected open sets in

the complement of finitely many singular hyperplanes; moreover, the singular

hyperplanes correspond to the kernels of a subset of the coarse Lyapunov expo-

nents. From Corollary 13.2, we recover the subadditivity of entropy (see Theo-

rem 13.3). Furthermore, the results of Part II give additional information on the

shape of the semi-norm: the singular hyperplanes where the semi-norm stops

being linear are in one-to-one correspondence with the kernels of coarse Lya-

punov exponents contributing entropy to the system. We note that [21] heavily

used the results of [32] and our extension in Corollary 13.2 relies on the results

developed in Part II.

Second, in homogeneous settings such as those considered in [15, 16, 17],

conditional measures along total unstable manifolds have been shown to ex-

hibit certain product structures (as products of conditional measures along

coarse Lyapunov foliations). The ªproduct structure of entropyº we establish

follows in such settings from the product structure of conditional measures.

However, to show the product structure of conditional measures, it seems es-

sential to work in a homogeneous (and semisimple) setting where the kernel of

a Lyapunov exponent acts isometrically on the corresponding coarse Lyapunov

foliation. In the setting of smooth Zd -actions, one can not expect the kernel of a
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Lyapunov exponent to act isometrically on the corresponding coarse Lyapunov

foliation. Thus, we establish the ªproduct structure of entropyº without estab-

lishing any product structure of conditional measures. We note though that the

ªproduct structure of entropyº still implies many of the geometric properties of

conditional measures along coarse Lyapunov foliations.

Additionally, in Part III, we also consider the setting of two smooth Zd -actions,

one of which is a measurable factor of the other. We show in Theorem 13.5

that any exponent that contributes entropy to the factor system must be posi-

tively proportional to an exponent for the extended system; we also establish

a ªcoarse-Lyapunov Abramov±Rohlin formulaº in Theorem 13.7 relating the en-

tropy contributions of such pairs of exponents. In Remark 13.6, we observe that

this seems to provide finer information distinguishing actions (up to measur-

able conjugacy) than the coincidence of the entropy functions (2).

We state our main results in Section 13. In Section 14, we define various ob-

jects associated to the Lyapunov exponent functionals and various subsets of

Lyapunov exponent functionals with good geometric properties that appear in

the induction in our proofs. We also establish a number of elementary proper-

ties about these objects. In Section 15, we establish our main inductive propo-

sition, Proposition 15.4, and prove Theorem 13.1. We then give the proofs of

Theorems 13.5 and 13.7 in Section 16.

Part I. Lyapunov exponents, dynamical charts, and coarse Lyapunov

manifolds

by Aaron Brown and Federico Rodriguez Hertz

We formulate a general setting in which to study the smooth ergodic theory

of differentiable Zd -actions preserving a Borel probability measure. This frame-

work includes actions by C 1+Hölder diffeomorphisms of compact manifolds. We

construct intermediate unstable manifolds and coarse Lyapunov manifolds for

the action as well as establish controls on their local geometry.

2. COCYCLES OVER Zd -ACTIONS

Let (X ,µ) be a standard probability space. Consider an action α : Zd ×X → X
of Zd by measurable, invertible, measure-preserving transformations of (X ,µ).

That is, for every n,m ∈Zd and x ∈ X

1. α(n,α(m, x)) =α(n +m, x);

2. α(0, x) = x;

3. α(n, ·) : X → X is measurable;

4. if φ ∈ L1, then
∫
φ(x) dµ(x) =

∫
φ◦ (α(n, x)) dµ(x).

The action α of Zd on (X ,µ) is moreover said to be ergodic if

5. given φ ∈ L1(µ), if φ(x) = φ(α(n, x)) for all n ∈ Zd and a.e. x, then φ is

constant on a set of full measure.
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At times we write α(n) : X → X for the map α(n)(x) =α(n, x). Additional smooth-

ness hypotheses on α and X will be imposed starting in Section 3 below.

Fix a basis for Zd and equip Zd with the norm |(n1, . . . ,nd )| = max |ni |. Note

however that all definitions and facts stated below are independent of the choice

of basis and norm on Zd .

2.1. Slowly increasing functions.

DEFINITION 2.1. Given a measurable set X0 ⊂ X , a measurable function L : X →
[1,∞) is slowly increasing on X0 (over the action α) if

lim
τ→∞

1

τ
sup
|n|≤τ

log(L(α(n, x))) = 0(3)

for all x ∈ X0. L is slowly increasing if X0 can be taken with µ(X0) = 1. L is said

to be ε-slowly increasing on X0 if for every x ∈ X0 and every n ∈Zd we have

L(α(n, x)) ≤ e |n|εL(x)

and ε-slowly increasing if X0 can be taken with µ(X0) = 1.

We have the following claim.

CLAIM 2.2. Let X0 ⊂ X , and consider a measurable function L : X → [1,∞) that
is slowly increasing on X0. Let Y0 = ⋃

{α(n)(X0) : n ∈ Zd } be the α-orbit of X0.
Then for any ε> 0 there is a measurable function L̂ : Y0 → [1,∞) that is ε-slowly
increasing on Y0 with

L(x) ≤ L̂(x)

for all x ∈ Y0.

Proof. Given x ∈ Y0 define

L̂(x) := sup
n∈Zd

e−|n|εL(α(n, x)).(4)

Then L̂ is defined for x ∈ X0 by (3). Moreover, for every k, j ∈Zd we have

L̂(α(k + j , x)) := sup
n∈Zd

e−|n|εL(α(n +k + j , x))

≤ sup
n∈Zd

e |k|ε−|n+k|εL(α(n +k + j , x))

= e |k|εL̂(α( j , x)).

Setting j = 0 and considering y = α(k, x) ∈ Y0. it follows that (4) is defined for

every y ∈ Y0. Moreover, given y ∈ Y0, writing y =α( j , x) for x ∈ X0 it follows that

L̂ has the desired properties.

Applying either the higher-rank pointwise ergodic theorem (see [27, Theorem

2.8]) or adapting the proof of [2, Lemma 2.1.5] (see also [9, Proposition 6]) we

have the following claim.

CLAIM 2.3. Let α be an action of Zd on (X ,µ) and let φ : X → [1,∞) be a mea-
surable function with log(φ) ∈ Ld (µ). Then φ is slowly increasing.
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Claim 2.3 fails for log(φ) ∈ L1(µ) and d > 1. Indeed, see the discussion in

Section 2.3.

2.2. Multiplicative ergodic theorem and Lyapunov exponents. Let α be an ac-

tion of Zd on (X ,µ). A k-dimensional linear cocycle defined over α is measurable

function

A : Zd ×X0 → GL(k,R)

satisfying the cocycle relation: A (0, x) = Id and

A (m +n, x) =A (m,α(n, x))A (n, x)(5)

for all n,m ∈Zd and x ∈ X0 where X0 ⊂ X is an α-invariant subset with µ(X0) = 1.

Write Lp (µ) for the standard Lp spaces. Let Lp,q (µ) denote the Lorentz space

introduced, for instance, in [36]. We will not provide a definition of the Lorentz

spaces but will recall some of their properties: for 1 ≤ p, q ≤∞, ε> 0 and q < q ′

we have that

1. Lp,p (µ) = Lp (µ);

2. Lp+ε(µ) ⊂ Lp,1(µ);

3. Lp,q (µ) ⊂ Lp,q ′
(µ).

Given a function φ : X → (0,∞), write log+φ := max{logφ,0}. Write | · | for the

standard norm on Rk and ∥ ·∥ for induced operator norm.

THEOREM 2.4 (Higher-rank Oseledec’s Theorem). Let α be an ergodic action of
Zd on (X ,µ) and let A : Zd ×X → GL(k,R) be a measurable cocycle. Assume for
every m ∈Zd that

(
x 7→ log+ ∥A (m, x)∥

)
∈ Ld ,1(µ).(6)

Then there are

1. an α-invariant subset Λ0 ⊂ X with µ(Λ0) = 1;
2. linear functionals λi : Zd →R for 1 ≤ i ≤ p;
3. positive integers mi for 1 ≤ i ≤ p;
4. and splittings Rk = ⊕p

i=1
Eλi (x) into families of mutually transverse, mi -

dimensional, µ-measurable subbundles Eλi (x) ⊂Rk defined for x ∈Λ0

such that for all x ∈Λ0 and all v ∈ Eλi (x)∖ {0}

(a) A (n, x)Eλi (x) = Eλi (α(n, x)) and

(b) lim
n→∞

log |A (n, x)(v)|−λi (n)

|n|
= 0.

Moreover, for x ∈Λ0 we have

(c) lim
n→∞

log |detA (n, x)|−∑
miλi (n)

|n|
= 0, and

(d) for every λi ,

lim
n→∞

1

|n|
log

(
sin∠

(
Eλi (α(n, x)),

⊕

λ j ̸=λi

Eλ j (α(n, x))
))

= 0.
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Here ∠(V ,U ) denotes the smallest angle between subspaces V ,U in Rk rela-

tive to the standard inner product; that is ∠(V ,U ) = inf{∠(v,u) : v ∈V ∖ {0},u ∈
U ∖ {0}}. The modifications of Theorem 2.4 to the case of non-ergodic µ are

standard; in particular, the number of exponents p(x), linear functionals {λi ,x ,

1 ≤ i ≤ p(x)}, and splitting Rk = ⊕p(x)

i=1
Eλi (x) are invariant or equivariant and

depended measurably on x. See for instance [2, Section 3.6.1].

Observe that the limits in (b)±(d) are taken along any sequence n →∞ in Zd .

The limit in (b) implies the following weaker result: given x ∈Λ0, v ∈ Eλi ∖ {0},

and n ∈Zd

lim
k→∞

1

k
log |A (kn, x)(v)| =λi (n).(7)

However, convergence along rays in (7) does not imply the limit in (b) holds. It

seems the Ld ,1(µ) hypothesis is sharp as discussed in [9].

To prove Theorem 2.4, first using only that
(
x 7→ log+ ∥A (m, x)∥

)
∈ L1(µ), for

every m ∈Zd one can produce the set Λ0, the splitting Rk =⊕p
i=1

Eλi (x) for x ∈
Λ0 and the functionals λi : Rd →R such that convergence along (the countably

many) rays in (7) holds (see [2, Theorem 3.6.6]). Analogues of (c) and (d) also

hold along rays.

The convergence (along spheres) in (b) and (c) can be derived from the max-

imal lemma in [8] following the arguments in [8, Section 3]. Alternatively, the

convergence in (b) and (c) can be reinterpreted in terms of random semimetrics

modeled on Zd in which case the result follows from [4, Theorem 2.4]. The limit

in (d) follows from (c) using arguments as in [2, Theorem 1.3.11] and [2, Section

1.3.2].

It seems the integrability hypothesis Ld ,1 is essential in the proof of Theorem

2.4. Indeed, see discussion in [9]. Below, in Section 2.3, we show that Theorem

2.4 fails if we only assume the cocycle is L1.

DEFINITION 2.5. The linear functionals λi in Theorem 2.4 are called Lyapunov
exponent functionals, or simply Lyapunov exponents of the cocycle A . The sub-

spaces Eλi (x) are the Oseledec’s subspaces, and the set Λ0 is the set of regular
points. The integer mi is the multiplicity of λi .

We write L = {λi } for the set of Lyapunov exponents functionals. Note that

the exponents λi are independent of the choice of norm on Rk and the choice

of generating set and norm on Zd .

We have the following standard fact.

PROPOSITION 2.6. Let A be as in Theorem 2.4. Then for any ε > 0 there are
ε-slowly increasing measurable functions A,K : Λ0 → [1,∞) such that for every
x ∈Λ0 and v ∈ Eλi (x),

(a) for all n ∈Zd ,

A(x)−1eλi (n)−|n|ε/2|v | ≤ |A (n, x)v | ≤ A(x)eλi (n)+|n|ε/2|v |;
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(b) for all λi ,

sin∠
(
Eλi (x),

⊕

λ j ̸=λi

Eλ j (x)
)
≥ K (x)−1.

Proof. Conclusion (b) follows from Theorem 2.4(d) and Claim 2.2.

For conclusion (a), write Ai (n, x) :=A (n, x)↾Eλi (x) : Eλi (x) = Eλi (α(n, x)) and

Ci (x) := sup
n∈Zd

∥Ai (n, x)∥e−λi (n)−|n| ε
2 , ci (x) := inf

n∈Zd
m(Ai (n, x))e−λi (n)+|n| ε

2 ,

where m(B) =
∥∥B−1

∥∥−1
denotes the conorm of a matrix. From Theorem 2.4(b),

we have 0 < ci (x) ≤ Ci (x) <∞ for almost every x. Moreover, for v ∈ Eλi (x) we

have

ci (x)eλi (n)−|n| ε
2 |v | ≤ |A (n, x)v | ≤Ci (x)eλi (n)+|n| ε

2 |v |.
Observe for all k,n ∈Zd that

∥Ai (n,α(k, x))∥e−λi (n)−|n| ε
2
−|k|ε

≤ ∥Ai (n +k, x)∥m(Ai (k, x))−1e−λi (n)−|n| ε
2
−|k|ε

≤Ci (x)ci (x)−1eλi (n+k)+|n+k| ε
2
−λi (k)+|k| ε

2 e−λi (n)−|n| ε
2
−|k|ε

≤Ci (x)ci (x)−1

whence

Ci (α(k, x)) ≤ e |k|εCi (x)ci (x)−1.

Similarly

ci (α(k, x)) ≥ e−|k|εci (x)Ci (x)−1.

Set

Ai (x) := sup
n,k∈Zd

e−|k|εCi (α(k, x)), ai (x) := inf
n,k∈Zd

e |k|εci (α(k, x)).

Then −∞ < ai (x) ≤ ci (x) ≤ Ci (x) ≤ Ai (x) <∞ and, in particular, for v ∈ Eλi (x)

we have

ai (x)eλi (n)−|n| ε
2 |v | ≤ |A (n, x)v | ≤ Ai (x)eλi (n)+|n| ε

2 |v |.
Moreover, the inequalities

Ai (α(m, x)) ≤ e |m|εAi (x), ai (α(m, x)) ≥ e−|m|εai (x)

hold by definition. The function A(x) = max{Ai (x), ai (x)−1 : 1 ≤ i ≤ p} then

satisfies the conclusions of the proposition.

2.3. Failure of Theorem 2.4 in L1. The integrability hypothesis

(x 7→ log+ ∥A (m, x)∥) ∈ Ld ,1(µ)

seems to be sharp in Theorem 2.4 (see discussion in [9]) although there are

assertions in the literature that L1 integrability is sufficient. For instance, both

[2, Theorem 3.6.7] and [23, Theorem 1.7.1] are incorrect as stated. For instance,

if we only assume (x 7→ log+ ∥A (m, x)∥) ∈ L1(µ), then the limit in (1.7.4) of [23,

Theorem 1.7.1] (corresponding to (b) of our Theorem 2.4) need not converge.

Similarly, in [2, page 87], the sum defining the Lyapunov metric need not con-

verge and the reduction theorem of [2, Theorem 3.6.7] fails.
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Both these defects can be seen in the following example. Take β1,β2 ∈ [0,1]∖

Q to be badly approximable numbers and let rβ : S1 → S1, rβ(x) = x +β mod 1,

denote the rotation on S1 by β. Let α : Z2 ×T2 → T2 be the product action

α((n,m), (x, y)) = (rnβ1
(x),rmβ2

(y)). Given any γ ∈ (1/2,1), let φ : T2 → R be the

function

φ(x, y) = 1

d(x,0)γ
1

d(y,0)γ

where d denotes the distance on S1. Let A : Z2 ×T2 → GL(1,R) be the (abelian)

cocycle

A ((n,m), (x, y)) = exp
[
φ(α((n,m), (x, y)))−φ(x, y)

]
.

Let µ be the Lebesgue measure on T2. For all n,m ∈Z2 we have

(x, y) 7→ log+ ∥A ((n,m), (x, y))∥ ∈ L1(µ)

but

(x, y) 7→ log+ ∥A ((n,m), (x, y))∥ ∉ L2(µ).

As β1,β2 are chosen to be badly approximable, there is a C such that, for any

x, y ∈ S1 and any N , there are 1 ≤ n,m ≤ N with

d(rnβ1
(x),0) ≤ C

N , d(rmβ2
(y),0) ≤ C

N ,

whence φ(α((n,m), (x, y))) ≥ N 2γ

C 2 . Then for any (x, y) ∈T2 (outside of the orbits

of {0}×S1 and S1 × {0}) one can find a sequence (ni ,mi ) →∞ with

log+ ∥A ((ni ,mi ), (x, y))∥
|(ni ,mi )|

→∞.

2.4. Restricted cocycles. Let α be an ergodic action of Zd on (X ,µ). Let A : Zd×
X → GL(k,R) be a linear cocycle satisfying the hypotheses of Theorem 2.4 and

let L = {λ j } be the Lyapunov exponents of α. Let H ⊂ Zd be a subgroup and

let α̃ denote the restriction of α to H . It may be that α̃ is no longer ergodic.

However, for almost every ergodic component µ̃e
x of the action of α̃ on (X ,µ),

the restriction of the cocycle A to the action α̃ satisfies the hypotheses of Theo-

rem 2.4. For such an ergodic component µ̃e
x , let L̃x = {λ̃i ,x } be the Lyapunov

exponents of the restricted cocycle. Clearly, for every i we have λ̃i ,x =λ j ↾H for

some j . In particular, the collection of linear functionals {λ̃i ,x } are independent

a.s. of the choice of ergodic component µ̃e
x .

2.5. Lyapunov metric. A standard technique which simplifies certain dynami-

cal arguments is to specify a family of inner products and related norms on Rk

relative to which the dynamics of the cocycle A is uniformly partially hyper-

bolic. Let A : Zd ×X → GL(k,R) be a measurable cocycle satisfying (6) over an

ergodic Zd -action α on X . We define a measurable family of inner products,

called the ε-Lyapunov metric as follows: given any ε > 0, x ∈ Λ0, λi ∈ L , and

v, w ∈ Eλi (x)

〈〈〈v, w〉〉〉x,ε :=
∑

n∈Zd

e−2λi (n)−2ε|n|〈A (n, x)v,A (n, x)w〉.(8)

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455±540



466 A. BROWN, F. RODRIGUEZ HERTZ AND Z. WANG

The expression in (8) converges for x ∈ Λ0 by Proposition 2.6(a). We extend

〈〈〈· , ·〉〉〉x,ε to Rk by declaring

〈〈〈v, w〉〉〉x,ε = 0

for v ∈ Eλi (x) and w ∈ Eλ j (x) with λi ̸=λ j .

For vi ∈ Eλi (x), let |||vi |||x,ε be the norm on Eλi (x) induced by 〈〈〈· , ·〉〉〉x,ε. Given

v ∈Rk , we decompose v =∑
vi where vi ∈ Eλi (x) and define a measurable fam-

ily of norms |||·|||x,ε, called the ε-Lyapunov norm, on Rk by

|||v |||x,ε = max
{
|||vi |||x,ε

}
.(9)

We have the following two facts about the family of norms |||·|||x,ε.

PROPOSITION 2.7. For x ∈Λ0, v ∈ Eλi (x), and all k ∈Zd we have

eλi (k)−ε|k||||v |||x,ε ≤ |||A (k, x)v |||α(k,x),ε ≤ eλi (k)+ε|k||||v |||x,ε.(10)

Proof. We have

|||A (k, x)v |||2α(k,x),ε

:=
∑

n∈Zd

e−2λi (n)−2ε|n|〈A (n,α(k, x))A (k, x)v,A (n,α(k, x))A (k, x)v〉

=
∑

n∈Zd

e−2λi (n)−2ε|n|〈A (n +k)v, A (n +k)v〉

=
∑

n∈Zd

e2λi (k)e−2λi (n+k)−2ε|n|〈A (n +k)v, A (n +k)v〉

≤
∑

n∈Zd

e2λi (k)+2ε|k|e−2λi (n+k)−2ε|n+k|〈A (n +k)v, A (n +k)v〉

=
∑

n∈Zd

e2λi (k)+2ε|k||||v |||2x,ε

proving the upper bound. The lower bound is similar.

LEMMA 2.8. There are a constant k0 > 1 (depending only on p) and, for every
ε > 0, an ε-slowly increasing function L : Λ0 → [1,∞) such that for x ∈ Λ0 and
v ∈Rk ,

k−1
0 |v | ≤ |||v |||x,ε ≤ L(x)|v |.(11)

Proof. For vi ∈ Eλi (x), we have |vi | ≤ |||v |||x,ε. If v =∑
vi for vi ∈ Eλi (x) we have

|v | ≤ p max{|vi | : 1 ≤ i ≤ p}.

The lower bound follows with k0 = p.

Let K and A be (ε/2)-slowly increasing functions as in Proposition 2.6. For

vi ∈ Eλi (x), with b =∑
n∈Zd e−ε|n|,

|||v |||2x,ε ≤
∑

n∈Zd

A(x)2e−ε|n||vi |2 = b A(x)2|vi |2.

For v ∈ Rk , write v = ∑
vi where vi ∈ Eλi (x). Given any i , the orthogonal pro-

jections of v and vi onto the orthogonal complement of
⊕

λ j ̸=λi
Eλ j (x) coincide
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whence

|v | ≥ |vi |sin∠
(
Eλi (x),

⊕

λ j ̸=λi

Eλ j (x)
)
≥ |vi |K (x)−1

and

|||v |||x,ε ≤ A(x)
p

b max
{
|vi | : 1 ≤ i ≤ p

}
≤ A(x)

p
bK (x)|v |.

3. SMOOTH ACTIONS OF Zd
WITH SINGULARITIES AND DISCONTINUITIES

In this section, we establish the notational conventions as well as the stand-

ing hypotheses for the remainder of the paper. In particular, we present hy-

potheses under which generalizations of the entropy formulas of [31, 32] will

hold.

3.1. Notational conventions. Given a map f : X → Y between metric spaces, let

Lip( f ) denote the Lipschitz constant of f and let HÈolβ( f ) denote the β-Hölder

constant of f . (To avoid awkwardness in definitions, we only ever consider

HÈolβ( f ) when f has bounded range.) Given a norm ∥ · ∥ on Rm and subspace

V ⊂ (Rm ,∥ ·∥) we write

V (r ) =V (r,∥ ·∥) := {v ∈V : ∥v∥ < r }.

Consider Rk and R j equipped, respectively, with norms ∥ · ∥1 and ∥ · ∥2, an

open set U ⊂Rk , and a differentiable map g : U →R j . Let

∥Dg∥ = sup
u∈U

∥Du g∥

and let ∥g∥C 1 be the usual C 1 norm of g . Note: we often consider the case

0 ∈U ⊂Rk (1,∥ ·∥1) and g (0) = 0 and ignore the C 0 part of g . Considering Dg as

map from U to the space of linear maps Rk →R j , we write

HÈolβ(Dg ) = sup
u ̸=v∈U

∥Du g −Dv g∥
∥u − v∥β1

for the β-Hölder constant of Dg . Set

∥g∥C 1+β = max
{
∥g∥C 1 , HÈolβ(Dg )

}
.

If ∥g∥C 1+β <∞, we say g is uniformly C 1+β.

3.2. Standing hypotheses. For many applications1 it is sufficient to consider

the following set of hypotheses.

Fix, once and for all, 0 <β≤ 1.

STANDING HYPOTHESES I. M is a compact manifold and α : Zd → Diff1+β(M) is

a homomorphism from Zd to the group of uniformly C 1+β diffeomorphisms of

M . µ is an α-invariant Borel probability measure.

1Of particular note is the analysis of the dynamics of a maximal R-split torus on the suspension

space induced by an action of a cocompact lattice in higher-rank Lie groups considered in [12]
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However, there are natural examples of actions where the manifold M may

not be compact.2 We introduce certain dynamical charts {φx } that control the

non-compactness of M (and the consequent unboundedness of the derivative

and its Hölder variation). Such charts allow us to work in a setting similar to

that introduced in [25]; following [25], we thus allow for possible discontinuities

and singularities of the action.

Let M be a Hausdorff, second countable, k-dimensional, C∞ manifold with-

out boundary. Let µ be a Borel probability measure on M . Unlike in [25], we

do not explicitly assume any properties of any metric on M or the metric com-

pletion of M . Let α : Zd × M → M be an action by measurable, invertible, µ-

preserving transformations. We do not assume µ to be ergodic.

With | · | the standard norm on Rk , we assume the following hypotheses for

the system (M ,α,µ). We note that standing hypotheses II subsumes standing

hypotheses I, and thus we focus on systems satisfying standing hypotheses II

for the remainder.

STANDING HYPOTHESES II. We assume there are

• a measurable, α-invariant subset Λ⊂ M with µ(Λ) = 1;

• an open set U0 ⊃Λ equipped with a continuous Riemannian metric and

an associated locally-defined distance function d on U0;

• measurable functions ρ,D : Λ→ [1,∞) that are slowly increasing (over α)

on Λ (see Definition 2.1); and

• a measurable family of C 1 embeddings

{φx : x ∈Λ}, φx : Rk (ρ(x)−1) →U0

with the following properties:

(H1) φx : Rk
(
ρ(x)−1

)
→U0 is a C 1 diffeomorphism onto its image with φx (0)=x;

(H2)
∥∥Dφx

∥∥≤ D(x) and
∥∥Dφ−1

x

∥∥≤ D(x); in particular, each chart

φx : Rk (ρ(x)−1) → (U0,d)

is a bi-Lipschitz embedding with D(x)−1 ≤ Lip(φx ) ≤ D(x).

Moreover, given any finite, symmetric subset F ⊂ Zd that generates Zd , we as-

sume there are

• an open subset Λ⊂U ⊂U0 such that for every n ∈ F , α(n)(U ) ⊂U0 and the

restriction α(n)↾U : U →U0 is a diffeomorphism between U and its range;

• measurable functions r,C : Λ→ [1,∞) that are slowly increasing (over α)

on Λ with ρ(x) ≤ r (x)

such that

(H3) φx
(
Rk

(
r (x)−1

))
⊂U and for every m ∈ F ,

α(m)
(
φx

(
Rk (

r (x)−1
)))

⊂φα(m,x)

(
Rk (

ρ
(
α(m, x)−1

)))
.

2This happens, for instance, for the actions of maximal R-split tori on the suspension space

induced by an action of a non-uniform lattice considered in [14, 13].
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Moreover, for each m ∈ F , setting f (·) =α(m, ·) and defining

f̂x :=φ−1
f (x) ◦ f ◦φx(12)

for x ∈Λ, we assume

(H4) f̂x : Rk (r (x)−1) →Rk (ρ( f (x))−1) is uniformly C 1+β with

∥ f̂x∥1+β ≤C (x).

As F is a generating set for Zd , it follows that given x ∈Λ and n ∈Zd , the map

α̂(n, x) :=φ−1
α(n,x) ◦α(n, x)◦φx

is defined and is a uniformly C 1+β diffeomorphism on some neighborhood of 0.

This induces a measurable cocycle A : Zd ×Λ→ GL(k,R) given by the derivative

A (n, x) = D0α̂(n, x).(13)

We moreover assume that

(H5)
(
x 7→ log+ ∥A (n, x))∥

)
∈ Ld ,1(µ) for every n ∈Zd .

Applying Theorem 2.4, we write Λ0 ⊂Λ in the remainder for the set of regular
points of the cocycle A over the action of α on (M ,µ).

REMARK 3.1. Given local diffeomorphisms g1, g2 : Rk (1) →Rk preserving 0, de-

fine h = g2 ◦ g1 on the maximal domain of definition. Then we have

1. ∥Dh∥ ≤ ∥Dg2∥∥Dg1∥;

2. HÈolβ(Dh) ≤ ∥Dg2∥HÈolβ(Dg1)+ HÈolβ(Dg2)∥Dg1∥1+β.

Suppose that a family of charts {φx }, open set U0, and functions ρ and D satis-

fying (H1)±(H2) exist such that for some finite symmetric generating set F ⊂Zd

there are U ,r , and C such that (H3)±(H4) hold. Then, given any other finite sym-

metric generating set F ′, we may modify the functions r and C and the open

set U so that (H3)±(H4) hold for F ′.
Condition (H5) is independent of F,U ,r, and C and hence remains valid

passing to F ′. Moreover, by the cocycle property (5), it is enough to verify(
x 7→ log+ ∥A (n, x))∥

)
∈ Ld ,1(µ) only for n in some finite symmetric generating

subset.

REMARK 3.2. Given an invertible, measurable, measure-preserving transforma-

tion

f : (M ,µ) → (M ,µ)

we say that f satisfies standing hypotheses I or II if the Z-action generated by f
does. In this of standing hypotheses II, we may take F = {1,−1} so that (H3) and

(H4) hold for both f and f −1.

REMARK 3.3. As Ld ,1(µ) ⊂ Ld−1,1(µ) it follows that if the action α : Zd × (M ,µ) →
(M ,µ) satisfies Standing Hypotheses I or II, then for any subgroup H ⊂Zd , set-

ting α : H ×M → M to be the restriction of α to H , we have that (M ,α,µ) also

satisfies our standing hypotheses. Moreover, for almost every α↾H -ergodic com-

ponent µe
x of µ, (M ,α↾H ,µe

x ) satisfies standing hypotheses I or II.
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4. UNSTABLE MANIFOLDS AND C 1+β-TAME FOLIATIONS

We introduce one of our primary dynamical objects of study. Recall U0 ⊂ M
introduced in standing hypotheses II is equipped with a locally-defined distance

d ; in the case of standing hypotheses I, we may take U0 = M . For x ∈ U0, let

B(x,r ) ⊂U0 denote the open ball centered at x of radius r .

4.1. C 1+β-tame foliations. Let F be a partition of (M ,µ). We do not assume F

to be measurable. Let F (x) denote the atom of F containing x.

DEFINITION 4.1. A measurable foliation is a partition F , a set B = B(F ) ⊂ M
with µ(B) = 0, and a measurable function r : M → (0,∞) such that

1. for almost every x ∈ M , F (x)∖B is a C 1 injectively immersed manifold in

M of constant dimension (over connected components)

and, writing F (x,r (x)) for the path-connected component of

(F (x)∖B)∩B(x,r (x))

(relative to the immersed manifold topology in F (x)∖B) containing x,

2. the family {F (x,r (x))} is a measurable family of C 1 embedded discs.

REMARK 4.2. Above, the set B is a negligible singular set on which atoms of F

may fail to have any manifold structure (arising from construction or definition

of F .) In particular, while F (x) may not have a manifold structure, F (x)∖B is

a (possibly disconnected) manifold for a.e. x.

As a primary example, if we consider systems with singularities and discon-

tinuities satisfying standing hypotheses II in Section 3.2, one should expect

that global unstable sets defined by Definition 4.2 below do not have any man-

ifold structure. However, for almost every x, the locally-defined unstable sets

have the structure of a connected manifold. Furthermore, when we restrict the

global unstable set through almost every x to the co-null subset of points y ∈ M
whose backwards orbit (1) never leaves a dynamically good set Û and (2) even-

tually enters some local unstable manifold, the restricted global unstable set

has the structure of an immersed submanifold; see the proof of Proposition 4.6

on page 473.

If F is a measurable foliation, then the measurability of x 7→ F (x,r (x)) im-

plies, by Lusin’s theorem, that after removing the set B and a set of arbitrarily

small measure, for almost every x there is neighborhood of x on which F lo-

cally restricts to a lamination with uniformly C 1 leaves and such that the local

leaves vary continuously in the C 1 topology. We write F
′(x) := F (x)∖B and

refer to F
′(x) as the leaf of F through x. Note that F

′(x) need not be connected

(though we do assume F
′(x) is second countable).

Consider a µ-preserving action α : Zd × M → M satisfying hypotheses II of

Section 3.2.
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DEFINITION 4.3. A measurable foliation F is α-invariant if, for every finite

symmetric generating set F ⊂Zd , the set U ⊂U0 in Section 3.2 and the null set

B in Definition 4.1 can be taken so that for all m ∈ F ,

α(m)
(
F

′(x)∩U
)
⊂F

′(α(m, x)).

Recall that α(m)↾U : U →U0 is a diffeomorphism onto its image for m ∈ F . It

follows that the dimension of F
′(x) is constant along orbits whence for m ∈ F ,

α(m) is a diffeomorphism between F
′(x)∩U and an open subset of F

′(α(m, x)).

In particular, if µ is α-ergodic and F is α-invariant, then the leaves of F have

constant dimension a.s.

Note that the geometry of the leaves of F as embedded in M may degrade

along orbits of α arbitrarily fast. We restrict ourselves to foliations for which

this degradation is subexponential. We also impose additional regularity on the

local geometry of leaves of the foliation.

Let α : Zd × (M ,µ) → (M ,µ) be an action satisfying the standing hypotheses

I or II of Section 3.2. Recall the family of charts φx introduced in standing

hypotheses II; in the case of standing hypotheses I, we may take the charts φx

to be exponential charts relative to some Borel trivialization of the T M .

DEFINITION 4.4. A measurable foliation F is C 1+β-tame (for the action α and

relative to the charts φx ) if there is a set ΛF ⊂Λ with µ(ΛF ) = 1 such that for

every ε > 0 there is a measurable function ℓF : ΛF → [1,∞) that is ε-slowly

increasing (over α) on ΛF and such that for x ∈ ΛF , writing F̂ (x) for the the

path component (relative to the immersed topology) of

φ−1
x

(
F

′(x)
)
∩Rk (

ℓ−1
F

(x)
)

containing 0, F̂ (x) is the graph of a C 1+β function

hF

x : Ux ⊂ TxF̂ (x) → TxF̂ (x)⊥

for some connected open subset Ux ⊂ TxF̂ (x) with

1. hF
x (0) = 0 and D0hF

x = 0;

2. HÈolβ
(
DhF

x

)
≤ (ℓF (x))β whence

∥∥DhF
x

∥∥≤ 1.

Note that the family of functions {hF
x : x ∈ΛF } depends measurably on x.

The primary examples of α-invariant, C 1+β-tame, measurable foliations are

the partitions into strong unstable manifolds and coarse and intermediate Lya-

punov foliations arising in higher-rank, non-uniformly hyperbolic dynamics

(defined below in Proposition 4.6).

4.2. Global unstable manifolds. Let α : Zd × (M ,µ) → (M ,µ) be an action sat-

isfying the standing hypotheses I or II of Section 3.2. To simplify notation, we

moreover assume the action α is ergodic with respect to µ. All definitions here

may be generalized to the non-ergodic case by considering ergodic components.

Let L = {λi : 1 ≤ i ≤ p} denote the Lyapunov exponent functionals of the

derivative cocycle (13) equipped with a choice of enumeration. Given n ∈ Zd
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we choose a permutation σ(n) of {1,2, . . . , p} and 1 ≤ u(n) ≤ p such that

λσ(n)(1)(n) ≥λσ(n)(2)(n) ≥ ·· · ≥λσ(n)(u(n))(n) > 0 ≥ ·· · ≥λσ(n)(p)(n).

Note that by choosing n ∈Zd in general position (in particular, outside of finitely

many hyperplanes) we can ensure all inequalities above are strict.

DEFINITION 4.5. Given x ∈ M , n ∈Zd , and 1 ≤ i ≤ u(n), define the i th unstable
manifold through x for α(n) to be the set

W u,i
n (x) =

{
y ∈ M

∣∣ limsup
k→−∞

1

k
logd(α(kn, x),α(kn, y)) ≤−λσ(n)(i )(n)

}
.

The unstable manifold through x for α(n) is the set

W u
n (x) :=

{
y ∈ M

∣∣ limsup
k→−∞

1

k
logd(α(kn, x),α(kn, y)) < 0

}
.

Although W u,i
n (x) may be quite pathological for certain x, it will follow from

Proposition 4.6 below thatÐafter possibly removing an ambient singular set

of measure zero if our dynamics has singularities or discontinuitiesÐW u,i
n (x)

is an injectively immersed manifold for almost every x, hence the terminology.

Moreover, we have W u
n (x) =W u,u(n)

n (x) for almost every x. Note that if n is not in

general position so that λσ(n)(i )(n) =λσ(n)(i+1)(n) for some i with λσ(n)(i+1)(n) >
0 then the above definition implies

W u,i
n (x) =W u,i+1

n (x).

Implicit in the above definition is that d(α(kn, x),α(kn, y)) is defined for all

but finitely many k < 0; in particular, we have α(kn, x) ∈U0 and α(kn, y) ∈U0

and are sufficiently close for all but finitely many k ≤ 0. If α(kn, x) ∈ M ∖U0

for infinitely many k < 0, declare W u,i
n (x) = {x}. From the above definition, it

follows for each n ∈ Zd that the collection of i th unstable manifolds forms a

partition W
u,i

n of M . We also write W u
n for the partition of M into unstable

manifolds for α(n). It follows from Proposition 4.6 below that W u
n and W

u,u(n)
n

coincide off a null set.

As we do not assume the action α to be by diffeomorphisms, W u,i
n (x) is,

in general, not a submanifold. However, from Proposition 4.6 below, under

our standing hypotheses, the partition W
u,i

n has the structure of a C 1+β-tame,

measurable foliation tangent a.e.to D0φx

(⊕
λ j (n)≥λσn (i )(n) Eλ j (x)

)
. Then, with the

notation introduced above,
(
W

u,i
n

)′
(x) is an injectively immersed manifold of

dimension dim
(⊕

λ j (n)≥λσn (i )(n) Eλ j (x)
)

.

Given an α-invariant measurable foliation F and x ∈ M , let dF denote the

distance on F
′(x)∩U0 induced by restriction of the continuous Riemannian

metric on U0. In particular, dF (x, y) is defined if and only if y ∈F
′(x) and there

is a C 1 path in F
′(x)∩U0 from x to y . Given a measurable foliation F and

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455±540



SMOOTH ERGODIC THEORY OF Zd -ACTIONS 473

n ∈Zd define

(
F ∨W

u,i
n

)
(x) :=

{
y ∈ M

∣∣ limsup
k→−∞

1

k
logdF (α(kn, x),α(kn, y)) ≤−λσ(n)(i )(n)

}

=
{

y ∈F
′(x)

∣∣ limsup
k→−∞

1

k
logdF (α(kn, x),α(kn, y)) ≤−λσ(n)(i )(n)

}
.

This defines a partition F ∨W
u,i

n of (M ,µ). Similarly define F ∨W u
n .

The following proposition will be shown in the next section.

PROPOSITION 4.6. Assume (M ,µ) and α : Zd × (M ,µ) → (M ,µ) satisfy the stand-
ing hypotheses II with µ ergodic. Given any n ∈Zd ,

(a) W
u,i

n is a C 1+β-tame, α-invariant measurable foliation with

Tx

(
W

u,i
n

)′
(x) = D0φx

(
⊕

λ j (n)≥λσn (i )(n)

Eλ j (x)

)

for almost every x;
(b) given any C 1+β-tame, α-invariant measurable foliation F , the partition

F ∨W i
n is a C 1+β-tame, α-invariant measurable foliation with

Tx

((
F ∨W

u,i
n

)′
(x)

)
= Tx

(
W

u,i
n

)′
(x)∩TxF

′(x)

for almost every x.

REMARK 4.7. Note that the term measurable foliation indicates that the local

transverse structure to plaques of the foliation is measurable. In general, a

measurable foliation is not a measurable partition. In particular, the partition

of (M ,µ) into global unstable manifolds W u
n is never a measurable partition if

α(n) has positive metric entropy.

As a corollary of Proposition 4.6 we have the following uniqueness property.

LEMMA 4.8. Let n1,n2 ∈ Zd have the following property: for some 1 ≤ i ≤
min{u(n1),u(n2)}

1. {σ(n1)( j ) : 1 ≤ j ≤ i } = {σ(n2)( j ) : 1 ≤ j ≤ i },
2. λσ(n1)(i )(n1) >λσ(n1)(i+1)(n1), and
3. λσ(n2)(i )(n2) >λσ(n2)(i+1)(n2).

Then W
u,i

n1
⊜W

u,i
n2

. In particular, if sgn(λi (n1)) = sgn(λi (n2)) for all λi ∈L , then
W u

n1
⊜W u

n2
.

Indeed, the lemma follows from Proposition 4.6 as for almost every x,

Tx

(
W

u,i
n1

)′
(x) = Tx

(
W

u,i
n2

)′
(x)

whence W
u,i

n1
∨W

u,i
n2

⊜W
u,i

n1
.
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4.3. Coarse Lyapunov exponents, manifolds, and foliations. We continue to

assume α : Zd × (M ,µ) → (M ,µ) satisfies standing hypotheses II with µ ergodic.

Let L = {λi : 1 ≤ i ≤ p} denote the Lyapunov exponent functionals of the deriva-

tive cocycle (13).

DEFINITION 4.9. Two Lyapunov exponents λi and λ j ∈L are equivalent if they

are positively proportional; that is, if there is a c > 0 such that λi = cλ j . A coarse
Lyapunov exponent is an equivalence class in L .

We write L̂ for the set of coarse Lyapunov exponents. Note that for χ ∈ L̂ ,

the sign (positive, negative, or zero) of χ(n) is well-defined.

DEFINITION 4.10. Given χ ∈ L̂ with χ ̸= 0, the coarse Lyapunov foliation corre-

sponding to χ is

W
χ :=

∨

{n∈Zd :χ(n)>0}

W
u

n .(14)

The coarse Lyapunov manifold corresponding to χ through x is the correspond-

ing leaf W χ(x) := (W χ)′(x).

From Lemma 4.8, the intersection in (14) above is equivalent to an intersec-

tion taken over a finite subset of Zd . It then follows from Proposition 4.6 that

W χ is a C 1+β-tame, α-invariant measurable foliation.

5. LYAPUNOV CHARTS; PROPERTIES OF TAME AND UNSTABLE FOLIATIONS

Let (M ,µ) and α : Zd × (M ,µ) → (M ,µ) satisfy the standing hypotheses II of

Section 3.2. To simplify notation, we assume that α acts ergodically on (M ,µ).

We present here a standard construction which, via a local change of coordi-

nates, locally converts the non-uniformly partially hyperbolic dynamics into

uniformly partially hyperbolic dynamics.

In Section 5.1 we fix some standing notation. In Section 5.2 we construct

ªstandardº Lyapunov charts {Φx } relative to which the dynamics along orbits

becomes uniformly partially hyperbolic in a neighborhood of the orbit (relative

to our original fixed charts {φx }. In Section 5.3, given a C 1+β-tame measurable

foliation F , we show in Proposition 5.3 that Lyapunov charts {Φx } can be chosen

so that relative to these charts, the local leaves of F are uniformly C 1+β. In

Section 5.4, we then construct charts {Ψx } on local leaves of F (built from such

family {Φx } as in Section 5.3) relative to which the dynamics along the local

leaves of F becomes uniformly partially hyperbolic. In Section 5.5, we use

the dynamics in such charts to construct local unstable manifolds and justify

assertions made in Section 4.

5.1. Standing notation. Recall the Lyapunov exponent functionals L = {λi : 1 ≤
i ≤ p}. For the remainder of this section, fix F ⊂ Zd to be a finite, symmetric

generating set as in standing hypotheses II of Section 3.2. We recall the sets

Λ, U0 and U , functions r,ρ and C , and all other notation from Section 3.2. All

constructions below are relative to this choice of F and corresponding U ,r,ρ

and C .
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Write

λ0 = max{|λi (n)| : n ∈ F,1 ≤ i ≤ p}(15)

and

(16) ε0 := 1

100
min

{
1, |λi (n)|, |λi (n)−λ j (n)| : n ∈ F,1 ≤ i , j ≤ p,

λi (n) ̸=λ j (n),λi (n) ̸= 0
}

.

Note that when λi (n) > 0, for any 0 ≤ ε≤ ε0 we have

eλi (n)−2ε ≤ eλi (n)−ε−ε≤ eλi (n)+ε+ε≤ eλi (n)+2ε;

if λi (n) = 0, then eλi (n)+ε+ε≤ eλi (n)+2ε.

5.2. Lyapunov charts. Recall that Λ0 ⊂Λ denotes the set of regular points (for

the measure µ) in Theorem 2.4. We specify an alternative norm on Rk . Fix an

orthogonal (with respect to the standard inner product) decomposition Rk =⊕
Ri where dimRi = mi is the dimension of Eλi (x) for x ∈Λ0. Define the norm

∥ · ∥ on Rk as follows: writing v =∑
vi for vi ∈ Ri set ∥v∥ = max{|vi |} where |vi |

restricts to the norm induced by the standard inner product on each Ri .

PROPOSITION 5.1 (Lyapunov charts). For every 0 < ε < ε0 there is an ε-slowly
increasing function ℓ : Λ0 → [1,∞) and a measurable family of invertible linear
maps {

Lx : (Rk ,∥ ·∥) → (Rk , | · |) : x ∈Λ

}

such that

(a) LxRi = Eλi (x);
(b) Lx : Rk (2,∥ ·∥) ⊂Rk

(
ρ(x)−1, | · |

)
and Lx : Rk

(
e−λ0−2ε,∥ ·∥

)
⊂Rk

(
r (x)−1, | · |

)
.

Define a measurable family of C 1 embeddings {Φx : x ∈ M } by

Φx =φx ◦Lx : Rk (2,∥ ·∥) → M .

For each n ∈ F , write f =α(n). Then

(c) for each x, Φx (0) = x and Φx is diffeomorphism between Rk (2,∥ ·∥) and an
open subset of U ;

(d) the map f̃x : Rk
(
e−λ0−2ε,∥ ·∥

)
→Rk (1,∥ ·∥) given by

f̃x (v) :=Φ
−1
f (x) ◦ f ◦Φx (v) = L−1

f (x) ◦ f̂x ◦Lx(17)

is well-defined (where f̂x is as in (12));
(e) D0 f̃xRi =Ri for every i and for v ∈Ri

eλi (n)−ε∥v∥ ≤ ∥D0 f̃x v∥ ≤ eλi (n)+ε∥v∥;

(f) HÈolβ(D f̃x ) ≤ ε hence Lip( f̃x −D0 f̃x ) ≤ ε;
(g) ∥Lx∥ ≤ 1,

∥∥L−1
x

∥∥≤ ℓ(x), Lip(Φx ) ≤ 1, and Lip(Φ−1
x ) ≤ ℓ(x).
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We call a family of embeddings {Φx } satisfying the above properties a family

of ε-Lyapunov charts. Given 0 < ε′ < ε < ϵ0, a family of ε′-Lyapunov charts is

automatically a family ε-Lyapunov charts. While we often restrict dynamics to

smaller balls, it is convenient in Proposition 5.2 below to allow each Φx to have

a larger domain Rk (2,∥ ·∥).

As our construction is slightly different than others in the literature, we in-

clude an outline of the construction.

Proof outline of Proposition 5.1. Take 0 < ε′ < ε/4 sufficiently small. Recall the

ε′-Lyapunov metric 〈〈〈· , ·〉〉〉x,ε′ defined by (8) and the corresponding family of

norms |||·|||x,ε′ . Relative to the inner products 〈〈〈· , ·〉〉〉x,ε′ on Rk , choose a measur-

able orthonormal basis for each Eλi (x) which, in turn, defines a measurable

family of linear isometries τ̂x :
(
Rk , |||·|||x,ε′

)
→

(
Rk ,∥ ·∥

)
with τ̂x Eλi (x) = Ri for

every i .

Let k0 be the constant and L(x) the ε′-slowly increasing function in Lemma

2.8. Let Ĉ (x) be an ε′-slowly increasing function such that the functions D(x),

C (x), r (x), ρ(x) appearing in our standing hypotheses of Section 3.2 are bounded

above by Ĉ (x) for all x ∈ Λ0. Take τx : (Rk ,∥ · ∥) → (Rk , | · |) defined by τx (v) =
τ̂−1

x (v). We have

∥τx∥ ≤ k0, ∥τ−1
x ∥ ≤ L(x).

Take

ℓ̂(x) =
(
(ε/2)−1k

1+β
0 L(x)Ĉ (x)

) 1
β

and take Lx :
(
Rk ,∥ ·∥

)
→

(
Rk , | · |

)
to be the linear map defined by

Lx (v) = τx
(
ℓ̂−1(x)v

)
.

Having taken ε′ sufficiently small, ℓ̂ is (ε/2)-slowly increasing and we verify

properties (a), (b), and (c).

Given n ∈ F write f = α(n). Given x ∈Λ0, write f̂x as in (12). Consider first

f x : Rk
(
r (x)−1k−1

0 ,∥ ·∥
)
→

(
Rk ,∥ ·∥

)
given by f x = τ−1

f (x)
◦ f̂x ◦τx . We have

Dv f x (ξ) = τ−1
f (x)

(
Dτx (v) f̂x (τx (ξ))

)

hence for ξ with ∥ξ∥ = 1
∥∥∥Dv f x (ξ)−Du f x (ξ)

∥∥∥≤ k0L(x)HÈolβ(D fx ) |τx (v)−τx (u)|β

≤ k0L(x)Ĉ (x)k
β
0 ∥u − v∥β

and

HÈolβ
(
D f x

)
≤ k0L(x)Ĉ (x)k

β
0 ≤ ℓ̂(x)βε/2.

Moreover for v ∈Ri we have

eλi (n)−ε′∥v∥ ≤ ∥D0 f x v∥ ≤ eλi (n)+ε′∥v∥.

By (b), f̃x : Rk (e−λ0−2ε,∥ ·∥) →Rk defined by

f̃x (v) = ℓ̂( f (x)) f x

(
ℓ̂(x)−1v

)
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is well-defined. As eλ0+ε+ ε ≤ eλ0+2ε, the Lipschitz constant of f̃x is bounded

above by eλ0+2ε and (d) follows. We have

Dv f̃x (ξ) = ℓ̂( f (x))ℓ̂(x)−1
(
Dℓ̂(x)−1v f x (ξ)

)

hence
∥∥Dv f̃x (ξ)−Du f̃x (ξ)

∥∥≤ ℓ̂( f (x))ℓ̂(x)−1 HÈolβ
(
D f x

)∥∥ℓ̂(x)−1v − ℓ̂(x)−1u
∥∥β

≤ ℓ̂( f (x))ℓ̂(x)−1ε/2∥u − v∥β ≤ ε∥u − v∥β

whence (f) follows. Also,

e−ε/2
∥∥∥D0 f x (v)

∥∥∥≤
∥∥D0 f̃x (v)

∥∥= ℓ̂( f (x))ℓ̂(x)−1
∥∥∥D0 f x (v)

∥∥∥≤ eε/2
∥∥∥D0 f x (v)

∥∥∥

and (e) follows.

Finally, with ℓ(x) = k0L(x)Ĉ (x)ℓ̂(x), we have that ℓ(x) is ε-slowly increasing

and satisfies the bounds in (g).

5.3. Lyapunov charts adapted to C 1+β-tame foliations. Let F be an α-invari-

ant, C 1+β-tame measurable foliation. The following proposition guarantees that

Lyapunov charts above may be chosen so that, relative to the charts Φx , the local

leaves of F are uniformly C 1+β embedded.

PROPOSITION 5.2. An α-invariant measurable foliation F of (M ,µ) is C 1+β-
tame if and only if for every 0 < ε < ε0, the charts Φx in Proposition 5.1 can be
chosen so that, in addition to the properties in Proposition 5.1, there are

• a set Λ′ ⊂Λ0 with µ(Λ′) = 1;
• a subspace V ⊂Rk with orthogonal complement W ;
• a measurable family of C 1+β functions

h̃F

x : V (1,∥ ·∥) →W (1,∥ ·∥)

defined for x ∈Λ
′

such that, writing F̃x for the path component (relative to the immersed topology)
of Φ−1

x (F (x)′)∩Rk (2) containing 0, F̃x contains graph
(
h̃F

x

)
as an open subman-

ifold. Moreover

(i) h̃F
x (0) = 0; D0h̃F

x = 0;
(j) HÈolβ

(
Dh̃F

x

)
≤ ϵ and hence ∥Dh̃F

x ∥ ≤ ϵ;
(k) for all n ∈ F , writing f̃x as in (17), f̃x is a diffeomorphism between

graph
(
h̃F

x

)
∩Rn

(
e−λ0−2ε

)

and an open subset of graph
(
h̃F

α(n)(x)

)
.

We note for each n ∈ F , writing f =α(n) and f̃x as in (17), we have that V is

D0 f̃x -invariant.

The proof of Proposition 5.2 relies on the following lemma which, in turn,

follows from the Implicit Function Theorem with Hölder estimates, [40, Lemma

2.1.1] or [2, Lemma 7.5.2]. Consider Rk equipped with two norms ∥ · ∥1 and

∥ · ∥2. Let V 1,V 2 ⊂ Rk be subspaces and for j ∈ {1,2}, let W j be a subspace of
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complementary dimension transverse to V j . We assume the decompositions

V j ⊕W j and norms ∥ · ∥ j have the property that, for any vector u ∈Rk , writing

u = v +w for v ∈V j and w ∈W j we have

∥u∥ j ≥ max
{
∥v∥ j ,∥w∥ j

}
.(18)

Our applications below of the above setup are: ∥ ·∥ j is the Euclidean norm and

W j is the orthogonal complement of V j ; or ∥ ·∥ j is the norm on Rk specified in

Section 5.2, V j satisfies V j =⊕
i (V ∩Ri ), and W j is the orthogonal complement

of V j .

With the above setup we have the following.

LEMMA 5.3. For 0 < r < 1, let h : V 1(r,∥ · ∥1) →W 1 be a C 1+β function such that
(relative to ∥ ·∥1) we have

• h(0) = 0 and D0h = 0;
• HÈolβ(Dh) ≤ a;
• ∥Dh∥ ≤ 1.

Let L : Rn →Rn be an invertible linear map with L(V 1) =V 2. Take

• a0 = a∥L−1∥1+β;
• b0 = 2∥L−1∥;
• c0 = ∥L∥.

Then with

r0 = min

{
r /2

∥L−1∥
,

r /2

2b0c0∥L−1∥
,

1

(1+2b0c0)(2a0c0)1/β
,

1
(
(1+b0c0)2(8a0c0)

)1/β

}

we have that L(graph(h)) contains as an open set the graph of a C 1+β-function
ĥ : V 2(r0) →W 2 such that (relative to ∥ ·∥2) we have

1. ĥ(0) = 0 and D0ĥ = 0;
2. HÈolβ

(
Dĥ

)
≤ 8a0c0(1+b0c0)2;

whence

3. ∥Dĥ∥ ≤ 1.

Proof. We have that graph(h) in (Rk ,∥ · ∥1) is the solution set to ψ(v, w1) ≡ 0

where

ψ(v1, w1) = w1 −h(v1) ∈W1

is defined for all (v1, w1) with ∥v1∥1 < r . Then L(graph(h)) contains as an open

set the solution set ψ(v2, w2) ≡ 0 of the function

ψ : V 2

(
r

2∥L−1∥
,∥ ·∥2

)
×W 2

(
r

2∥L−1∥
,∥ ·∥2

)
→W 1

given by

ψ(v2, w2) =ψ◦L−1(v2, w2).

Decomposing the domains Rk = V 2 ⊕W 2 and Rk = V 1 ⊕W 1 of L−1 and ψ, re-

spectively, we have

D(v,w2)ψ(ξ) =
[
−DL−1v h I

]
L−1(ξ).
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We check the following.

1. The partial derivative D2,(0,0)ψ : W 2 →W 1 is of the form

D2,(0,0)ψ(ξ) =
[

0 I
]

L−1(ξ)

and is a linear isomorphism with
∥∥∥
(
D2,(0,0)ψ

)−1
∥∥∥≤ ∥L∥.

Indeed, given w2 ∈ W 2 write L−1(w2) = v1 +w1. Then D2,(0,0)ψ(w2) = w1,

and writing L(w1) = w2 −L(v1) we have from (18) that

∥w2∥2 ≤ ∥Lw1∥2 ≤ ∥L∥∥w1∥1.

2. The partial derivative D1,(v,0)ψ : V 2 →W 1 is of the form

D1,(v,0)ψ(ξ) =
[
−DL−1v h I

]
L−1(ξ)

hence

max∥D1,(v,0)ψ∥ ≤ ∥L−1∥.

3. D(v,w2)ψ(ξ)−D(v̂ ,ŵ2)ψ(ξ) =
[
−DL−1v h +DL−1 v̂ h 0

]
L−1(ξ), so

HÈolβ
(
Dψ

)
≤ ∥L−1∥1+βa.

The conclusion of the lemma then follows from [40, Lemma 2.1.1] and the fact

that L(graph(h)) is tangent to V 2.

Proof of Proposition 5.2. First, suppose that F is uniformly C 1+β relative to Lya-

punov charts as in Proposition 5.2. We may apply Lemma 5.3 with the linear

map L = Lx : (Rk ,∥ ·∥) → (Rk , | · |) the maps guaranteed from Proposition 5.1 and

deduce that F is C 1+β-tame.

Suppose now that F is an α-invariant C 1+β-tame, measurable foliation. We

retain all notation from Definitions 4.3 and 4.4. In particular, we assume for

n ∈ F that α(n)
(
F

′(x)∩U
)
⊂ F

′(α(n, x)) for almost all x. Take Λ
′ = Λ0 ∩ΛF .

Note that the α-invariance of F implies that T0F̂ (x) = ⊕(
Eλi ∩T0F̂ (x)

)
for

almost every x (where F̂ (x) is as in Definition 4.4.) In the proof of Proposition

5.1 we may select V ⊂ Rk and construct the maps τx :
(
Rk ,∥ ·∥

)
→

(
Rk , | · |

)
so

that τx (V ) = T0F̂ (x) for all x ∈Λ
′.

Taking ε′ > 0 sufficiently small in the proof of Proposition 5.1 and an ε′-slowly

increasing function ℓF as in Definition 4.4, applying Lemma 5.3 to the maps

τ−1
x :

(
Rk , | · |

)
→

(
Rk ,∥ ·∥

)
appearing the proof of Proposition 5.1 we may find an

(ε/2)-slowly increasing function ℓ(x) so that

τ−1
x

(
F̂ (x)

)
∩Rk

(
2ℓ(x)−1,∥ ·∥

)

is the graph of a C 1+β function

ĥx : Ûx →V ⊥
(
2ℓ(x)−1,∥ ·∥

)
,

where

1. V
(
ℓ(x)−1,∥ ·∥

)
⊂ Ûx ⊂V ;
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2. ĥx (0) = 0 and D0ĥx (0) = 0;

3. HÈolβ
(
Dĥx

)
≤ εℓ(x)β.

Then taking

ℓ̂(x) = max

{
ℓ(x),

(
(ε/2)−1k

1+β
0 L(x)pĈ (x)2

) 1
β

}

in the proof of Proposition 5.1, the results of Proposition 5.1 remain valid.

Let h̃x : V (1,∥ ·∥) →V ⊥(1,∥ ·∥) be given by

h̃x (v) = ℓ̂(x)ĥx
(
ℓ̂(x)−1v

)
.

Then the set

L−1
x

(
F̂ (x)

)
∩Rk (2,∥ ·∥)

contains the graph of a C 1+β function

h̃x : V (1,∥ ·∥) →V ⊥(1,∥ ·∥),

where

1. h̃x (0) = 0 and D0h̃x (0) = 0;

2. HÈolβ
(
Dh̃x

)
≤ ε whence ∥Dh̃x∥ ≤ ε.

The proposition then follows.

5.4. Lyapunov charts adapted to dynamics restricted to leaves. Note that if

F is an α-invariant, C 1+β-tame, measurable foliation, then, with V as in the

notation of Proposition 5.2, we have

V =
p⊕

i=1

(V ∩Ri ).

As in Propositions 5.1 and 5.2, given an α-invariant, C 1+β-tame, measurable

foliation F we construct a family of charts for the restriction of the dynamics to

leaves of F . Given 0 < ε′ < ε0 sufficiently small, let {Φx } a family of ε′-Lyapunov

charts satisfying Proposition 5.2. Take Λ
′ and h̃F

x (v) as in Proposition 5.2. Given

x ∈Λ
′ define

H̃F

x : Rk (1,∥ ·∥) →Rk (∥ ·∥)

relative to the orthogonal decomposition Rk =V ⊕W by

H̃F

x (v, w) =
(
v, w + h̃F

x (v)
)

.

We then define a measurable family of embeddings Ψ
F
x : V (1,∥ ·∥) →F (x) by

Ψ
F

x (v) =Φx ◦ H̃F

x (v).

PROPOSITION 5.4. For every 0 < ε < ε0 there is a family of ε-Lyapunov charts
{Φx : x ∈Λ0}, an ε-slowly increasing function ℓ : Λ′ → [1,∞), and a measurable
family of C 1 embeddings

{
Ψ

F
x : x ∈Λ

′} defined as above with

(a) Ψ
F
x (0) = x and Ψ

F
x (V (1,∥ ·∥)) ⊂F

′(x) for almost every x.

Furthermore, for every n ∈ F , writing f =α(n) we have
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(b) the function f x : V
(
e−λ0−2ε,∥ ·∥

)
→V (1,∥ ·∥) given by

f x (v) :=
(
Ψ

F

f (x)

)−1
◦ f ◦ΨF

x (v)

is well-defined;
(c) D0 f x (Ri ∩V ) = (Ri ∩V ) for every i and for v ∈ (Ri ∩V )

eλi (n)−ε∥v∥ ≤ ∥D0 f x v∥ ≤ eλi (n)+ε∥v∥;

(d) HÈolβ
(
D f x

)
≤ ε hence Lip( f x −D0 f x ) ≤ ε;

(e) Lip(ΨF
x ) ≤ 1 and Lip((ΨF

x )−1) ≤ ℓ(x)−1.

Proof. For 0 < ε′ < ε0 sufficiently small, let {Φx } be a family of ε′-Lyapunov

charts satisfying Proposition 5.2. Then with H̃F
x as above we have

1. ∥D H̃F
x ∥ ≤ 1+ε′ and ∥D(H̃F

x )−1∥ ≤ 1+ε′;
2. D0(H̃F

x ) = Id;

3. HÈolβ
(
D H̃F

x

)
≤ ε′ and HÈolβ

(
D

(
H̃F

x

)−1
)
≤ ε′.

Given n ∈ F , write f =α(n) and define f̃x as in (17). Define

F x : Rk
(

1

(1+ε′)2
e−λ0−2ε′ ,∥ ·∥

)
→Rk (1,∥ ·∥)

by

F x =
(
H̃F

f (x)

)−1
◦ f̃x ◦ H̃F

x .

Note F x is well-defined.

We have

1. D0F x = D0 f̃x ;

and check that

2. HÈolβ
(
DF x

)
≤

(
1+ε′

)
eλ0+2ε′ε′+

(
1+ε′

)2+β
ε′+

((
1+ε′

)
eλ0+2ε′

)1+β
ε′.

Having taken 0 < ε′ < ε sufficiently small, the charts {Φx } are a family of ε-charts,

and we can ensure f x = F x↾V (e−λ0−2ε) is well defined and has the desired proper-

ties. Moreover we can construct a function ℓ with the desired properties.

5.5. Local unstable manifolds and Proof of Proposition 4.6. Relative to either

the charts Φx in Proposition 5.1 or ΨF
x in Proposition 5.4 we may perform either

the Perron±Irwin method or Hadamard graph transform method to construct

(un)stable manifolds. See for instance [20], [19], or [2] for more details.

Fix n ∈Zd . Let F ⊂Zd be a finite, symmetric, generating set containing n. Let

F be an α-invariant, C 1+β-tame measurable foliation. Let U be as in Section

3.2 and Definition 4.3 and take ε0 and λ0 as in (15) and (16). Let f =α(n) and

fix and 0 < ε < ε0. Take Λ = Λ0 or Λ
′, E = Rk or V , and fx = f̃x or fx = f x ,

respectively, with the notation of either Proposition 5.1 or Proposition 5.4.

Let E i =Ri ∩E . Fix 1 ≤ k ≤ p such that λk (n) > 0 and let

E≥k :=
⊕

λ j (n)≥λk (n)

E j and E<k :=
⊕

λ j (n)<λk (n)

E j .
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LEMMA 5.5. Suppose λk (n) > 0. Then for every x ∈Λ there is a C 1+β function

hx : E≥k

(
e−λ0−2ε,∥ ·∥

)
→ E<k (1,∥ ·∥)

with

(a) hx (0) = 0, and D0hx (0) = 0;
(b) HÈolβ(Dhx ) < c for some c independent of x;
(c) ∥Dhx∥ ≤ 1/3;
(d) for δ≤ e−λ0−2ε, writing Wx,δ := graph

(
hx↾E≥k (δ,∥·∥)

)
we have

W f (x),δ ⊂ fx (Wx,δ);

(e) if u, v ∈Wx,δ, then

eλk (n)−2ε∥v −u∥ ≤ ∥ fx (v)− fx (u)∥ ≤ eλ0+2ε∥v −u∥.

Moreover, the family {hx } depends measurably on x ∈Λ. Write f
− j

x = f −1
f − j (x)

◦ · · · ◦
f −1

f −1(x)
where defined. Then

(f) for u ∈Wx,δ and n ≥ 0, f −n
x (u) is defined and

Wx,δ :=
{

u ∈ E(δ,∥ ·∥) : limsup
j→∞

1
j log

∥∥∥ f
− j

x (u)
∥∥∥≤−λk (n)+10ε

}
.(19)

Continue to write f =α(n). Let Vloc,x,ε be the image of

Wx,e−2λ0−4ε

in Lemma 5.5 under either Φx or ΨF
x . With f =α(n) we still have

f (Vloc,x,ε) ⊃Vloc, f (x),ε.

Moreover, for m ∈ F and a.e. x we have

1. α(m)(Vloc,x,ε) is contained in the image of Wα(m)(x),e−λ0−2ε under either

Φα(m,x) or ΨF

α(m,x)
;

2. f − j (α(m)(Vloc,x,ε)) ⊂U for all j ≥ 0;

3. for y ∈Vloc,x,ε and j ≥ 0,

d
(

f − j (α(m, y)), f − j (α(m, x))
)
≤ e− j (λk (n)+2ε).

Proof of Proposition 4.6. Let F be an α-invariant, C 1+β-tame measurable folia-

tion. In the case of (a) of Proposition 4.6, take F = {M }. Recall we write f =α(n)

for our distinguished n. Also recall we fix a finite symmetric generating set F
containing n and set U ⊂ U0 with α(m) : U → U0 a diffeomorphism onto its

image for each m ∈ F . Take U ⊂ Û ⊂U0 open such that f ↾Û →U0 is a diffeomor-

phism onto its image. We may then replace U in the hypotheses of Section 3.2

with a smaller open set so that

α(m)(U ) ⊂ Û

for all m ∈ F .

Recall our permutation σ(n) such that

λσ(n)(1)(n) ≥λσ(n)(2)(n) ≥ ·· · ≥λσ(n)(u(n))(n) > 0 ≥ ·· · ≥λσ(n)(p)(n).
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For distinguished i in Proposition 4.6, fix 1 ≤ k ≤ p with σ(n)(i ) = k. Take Λ as

in Lemma 5.5. Let Vloc,x,ε be as constructed from Lemma 5.5 above.

For x ∈Λ take

Vx : =
⋃

j≥0

(
f ↾Û

) j
(
Vloc, f − j (x),ε

)

=
{

y : f − j (y) ∈ Û for all j ≥ 0 and f − j (y) ∈Vloc, f − j (x),ε for some j ≥ 0
}

.

In particular, Vx ⊂ Û .

We have

CLAIM 5.6. For x, y ∈Λ and m ∈ F

1. if y ∈Vx ∩U , then α(m)(y) ∈Vα(m)(x);
2. if y ∈Vx , then

limsup
j→∞

1

n
logd

(
f − j (y), f − j (x)

)
≤−λσ(n)(i )(n) =−λk (n);

3. if y ∉Vx , then Vx ∩Vy =∅;
4. if y ∈Vx , then Vx =Vy .

Take B(n) = M ∖ (
⋃

x∈ΛVx ). From the above discussion, for x ∈Λ we have

1. Vx is a C 1 injectively immersed manifold and is defined independently of

ε;

2.
(
F ∨W

u,i
n

)
(x)∖B(n) =Vx .

In particular,

3. F ∨W
u,i

n is an α-invariant, C 1+β-tame, measurable foliation.

The proposition follows.

REMARK 5.7. Given an α-invariant, C 1+β-tame, measurable foliation F and

sufficiently small ε > 0, let Φx be a family of ε-charts; let Ψ
F
x be the family

constructed from Φx in Proposition 5.4.

Let hu
x be as in Lemma 5.5 for the charts Φx and i = u(n). Let h̃F

x be as in

Proposition 5.2 and let hF ,u
x be as in Lemma 5.5 for the charts Ψx with i = u(n).

Let W u
x,δ

:= graph
(
hu

x ↾R≤r (δ,∥·∥)

)
and let F̃x be the graph of h̃F

x .

Let W F ,u
x be the graph of h̃F

x ◦hF ,u
x and let W F ,u

x (δ) =W F ,u
x ∩Rk (δ).

It follows from the characterization (19), the Lipschitzness of Hx in the proof

of Proposition 5.4, and the local dynamics and invariance of manifolds in charts

that for all δ< e−λ0−2ε, W F ,u
x (δ) = F̃x ∩W u

x,δ
.

Part II. Entropy formulas for rank-1 systems

by Aaron Brown

In this part, we extend the main result of [31] and the entropy formulas from

[32] to the setting of diffeomorphisms satisfying our standing hypotheses. As a

corollary of the proof, we obtain the finiteness of entropy for systems satisfying

the standing hypotheses II of Section 3.2. Although we provide most details
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here, the arguments in this section are heavily adapted from the original papers

[31, 32]

6. DEFINITIONS AND FACTS ABOUT METRIC ENTROPY

Before stating our main results in Section 7, we recall some standard defini-

tions and facts about the metric entropy of measure-preserving transformations

that will be used throughout.

For this section, let (X ,µ) be a standard probability space. Given a measur-

able partition ξ of (X ,µ), we indicate by
{
µ
ξ
x

}
a family of conditional probability

measures relative to the partition ξ. In particular, the assignment x 7→µ
ξ
x is σ(ξ)-

measurable (where σ(ξ) denotes the σ-algebra of ξ-saturated sets) and, given a

measurable A ⊂ X , µ(A) =
∫
µ
ξ
x (A) dµ(x).

6.1. Metric entropy of an invertible transformation. Given measurable parti-

tions η,ξ of (X ,µ), the conditional information of η relative to ξ is Iµ(η | ξ)(x) =
− log

(
µ
ξ
x (η(x))

)
and the conditional entropy of η relative to ξ is Hµ(η | ξ) =∫

Iµ(η | ξ)(x) dµ(x). The entropy of η is Hµ(η) = Hµ(η | {∅, X }). If Hµ(η) < ∞,

then η is countable and Hµ(η) =−∑
C∈ηµ(C ) logµ(C ).

6.1.1. Entropy of an invertible transformation. Let f : (X ,µ) → (X ,µ) be an in-

vertible, measurable, measure-preserving transformation. Let η be a measur-

able partition of (X ,µ). We define

η+ :=
∞∨

i=0

f iη, η f :=
∞∨

i∈Z
f iη.

We define the (ªunstableº or ªfuture3º) entropy of f given the partition η to be

hµ( f ,η) := Hµ

(
η | f η+

)
= Hµ

(
η+ | f η+

)
= Hµ

(
f −1η+ | η+

)
.

We define the metric entropy of f relative to µ to be

hµ( f ) = sup{hµ( f ,η)}

w here the supremum is taken over all measurable partitions of (X ,µ).

The quantity hµ( f ) is the main object studied in [31, 32] in the setting of C 2

diffeomorphisms of compact manifolds. In addition to relaxing the C 2 regu-

larity and compactness, we will need analogues of the main results of [31, 32]

for related quantities, the entropy subordinated to a measurable partition or an

invariant foliation, which we define below.

3It is perhaps more standard to define the entropy hµ( f ,η) as Hµ
(
η | f −1η−

)
as in standard refer-

ences such as [44]. Note that we typically expect asymmetry of these definitions: Hµ
(
η | f η+

)
̸=

Hµ
(
η | f −1η−

)
. However, if η satisfies Hµ(η) <∞, then the symmetry of the two definitions holds.

We choose to define hµ( f ,η) = Hµ
(
η | f η+

)
to have results most consistent with statements in

[31, 32] and related work.
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6.1.2. Entropy subordinate to a partition. Given two partitions ξ and η write

η≺ ξ if ξ refines η.

DEFINITION 6.1. Given a measurable partition η of (M ,µ) we define the entropy
of f subordinate to η to be the quantity

hµ( f | η) := sup
{
hµ( f ,ξ) : η≺ ξ

}
= sup

{
hµ( f ,η∨ζ)

}
.

In general, hµ( f | η) ̸= hµ

(
f −1 | η

)
. However, if η is an f -invariant partition,

then

hµ( f | η) = hµ

(
f −1 | η

)
.

REMARK 6.2. When f η= η or f η≺ η, then the above definition coincides with

the usual definition of entropy of a transformation conditioned on an invariant

partition or invariant σ-algebra. See for example [26, Definition II.1.3].

6.1.3. Entropy subordinate to a measurable foliation. We now take X = M to

be a C∞ manifold equipped with a Borel probability measure µ. Consider a

measurable foliation F of M (see Definition 4.1.) Note that the partition into

leaves of F is generally not a measurable partition of (M ,µ).

DEFINITION 6.3. A measurable partition ξ of (M ,µ) is subordinate to F if for

a.e. x ∈ M

1. ξ(x) ⊂F (x);

2. ξ(x) contains an open neighborhood (in the immersed topology) of x in

F
′(x) (where F

′(x) is as in Section 4.1).

DEFINITION 6.4. Let F be an f -invariant, measurable foliation of (M ,µ). We

define the entropy of f subordinate to F to be

hµ( f |F ) := sup
{
hµ( f | ξ) : ξ is subordinate to F

}
.

More generally, if η is any measurable partition of (M ,µ) we define

hµ( f | η∨F ) := sup
{
hµ( f | ξ∨η) : ξ is subordinate to F

}
.

REMARK 6.5. In most constructions of partitions subordinate to a foliation, one

may further assume each atom ξ(x) is precompact in the immersed topology of

F
′(x) for almost every x or at least for a positive measure subset of x.

When hµ( f ) <∞, it is with no loss of generality to assume in Definition 6.4

that all partitions ξ have the additional property that

3. ξ(x) is precompact in the immersed topology of F
′(x) for a positive mea-

sure set of x.

Indeed, let ξ be as in Definition 6.3. We may measurably select a representative

xξ in each atom of ξ (see [6, Theorem 9.1.3].) For each xξ, we may select (in

a measurable way) a precompact (in F
′(xξ)) neighborhood of xξ with positive

conditional measure so that, taken together with its complement, the resulting

partition ξ̃ is measurable. Since ξ ≺ ξ̃, Hµ(ξ̃ | ξ) ≤ log2, and hµ( f ,ξ) < ∞, we
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have (see Section 6.2 below)

Hµ

(
ξ̃ | f ξ+

)
= Hµ

(
ξ̃∨ξ | f ξ+

)

= Hµ

(
ξ | f ξ+

)
+Hµ

(
ξ̃ | ξ+

)

≤ Hµ

(
ξ | f ξ+

)
+Hµ

(
ξ̃ | ξ

)
<∞

and it follows from property (9) of Section 6.2 below that hµ

(
f | ξ̃

)
≥ hµ( f | ξ).

6.2. Properties of metric entropy. We recall some properties of the above defi-

nitions. A standard reference for proofs and details is [44]. Consider a standard

probability space (X ,µ), an invertible, measurable, measure-preserving trans-

formation f : (X ,µ) → (X ,µ), and measurable partitions η,ξ, and ζ of (X ,µ).

1. hµ( f ,ξ) ≤ Hµ(ξ).

2. Iµ(η∨ζ | ξ)(x) = Iµ(η | ξ)(x)+ Iµ(ζ | η∨ξ)(x) a.e. whence

Hµ(η∨ζ | ξ) = Hµ(η | ξ)+Hµ(ζ | η∨ξ).

3. If ξ≺ η, then Hµ(η | ζ) ≥ Hµ(ξ | ζ) and Hµ(ζ | η) ≤ Hµ(ζ | ξ).

4. hµ( f ,η∨ζ) ≤ hµ( f ,η)+hµ( f ,ζ).

5. If ζn ↗ ζ and if Hµ(η | ζ1) <∞, then Hµ(η | ζn) ↘ Hµ(η | ζ).

6. hµ( f ) = sup
{
hµ( f ,P ) : Hµ(P ) <∞

}
and hµ( f | η) = sup

{
hµ( f ,η∨P ) :

Hµ(P ) <∞
}

.

7. hµ( f ,η∨ξ) = hµ( f ,η∨ f k (ξ)) for k ∈Z.

8. If η≺ ξ and Hµ

(
ξ | f η+

)
<∞, then 1

n Hµ

(∨n−1
i=0

f iξ | f nη+
)
↘ hµ( f ,ξ).

9. If η ≺ ξ and Hµ

(
ξ | f η+

)
< ∞, then hµ( f ,η) ≤ hµ( f ,ξ). In particular, if

Hµ(P ) <∞, then hµ( f ,η) ≤ hµ( f ,η∨P ).

10. If either hµ( f ,ξ) <∞ or Hµ(ξ | η) <∞, then

hµ( f ,ξ∨η) ≤ hµ( f ,η)+hµ

(
f ,ξ∨η f

)
.

We also have a more precise version of (9) and (10).

11. If Hµ

(
ξ∨η | f η+

)
<∞, then

hµ( f ,η∨ξ) = hµ( f ,η)+hµ

(
f ,ξ∨η f

)
.

We note that all inequalities hold for ∞-valued quantities.

Conclusion (8) is [44, 7.3]. (9) is [44, 8.7]. (10) holds as

hµ( f ,ξ∨η) = Hµ

(
η∨ f n(ξ) | f

(
η+

)
∨ f n+1

(
ξ+

))

= Hµ

(
η | f

(
η+

)
∨ f n+1

(
ξ+

))
+Hµ

(
f n(ξ) | η+∨ f n+1

(
ξ+

))

= Hµ

(
η | f

(
η+

)
∨ f n+1

(
ξ+

))
+Hµ

(
ξ | f −n (

η+
)
∨ f

(
ξ+

))
.

We have Hµ

(
η | f

(
η+

)
∨ f n+1

(
ξ+

))
≤ hµ( f ,η) and, assuming either that hµ( f ,ξ) <

∞ or that Hµ(ξ | η) < ∞, we obtain that Hµ

(
ξ | f −n

(
η+

)
∨ f

(
ξ+

))
decreases to

Hµ

(
ξ | η f ∨ f

(
ξ+

))
as n →∞. As η f is f -invariant, we have Hµ

(
ξ | η f ∨ f

(
ξ+

))
=

hµ

(
f ,ξ∨η f

)
.

The assertion in (11) is [44, 7.7] which can be derived from (8) and (10).
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6.3. Abramov±Rohlin-type formulas. We say a partition η of (X ,µ) is f -increas-
ing if f η≺ η. Note in this case that η+ = η and hµ( f ,η) = Hµ(η | f η). We say η

generates if η f is the point partition.

Consider a second measure-preserving transformation g : (Y ,ν) → (Y ,ν) of a

standard probability space (Y ,ν). Suppose there is a measurable ψ : X → Y with

ψ∗µ= ν and ψ◦ f = g ◦ψ. We say that g is a factor of f induced by ψ. Write A
ψ

for the partition of (X ,µ) into preimages of ψ. Note that A
ψ is f -invariant.

We have the following equalities which include the classical Abramov±Rohlin

formula, (21) below (see [30, 7]).

COROLLARY 6.6. Let g : (Y ,ν) → (Y ,ν) be a measurable factor of f : (X ,µ) →
(X ,µ) induced by ψ. Let η̂ be a measurable partition of (Y ,ν) that is increas-
ing for g . Then

hµ

(
f |ψ−1

(
η̂
))
= hν

(
g , η̂

)
+hµ

(
f |ψ−1

(
η̂g ))

and if η̂ generates for g , then

hµ

(
f |ψ−1

(
η̂
))
= hν

(
g , η̂

)
+hµ

(
f |A ψ

)
.(20)

In particular,

hµ( f ) = hν(g )+hµ

(
f |A ψ

)
.(21)

Indeed, if hν

(
g , η̂

)
= ∞ there is nothing to prove. If hν

(
g , η̂

)
< ∞ we may

take the supremum of hµ

(
f ,P ∨ψ−1

(
η̂
))

over all partitions P of (X ,µ) with

Hµ(P ) <∞ and obtain the first conclusion from (11) of Section 6.2. (21) follows

by taking supremums over finite entropy partitions of (X ,µ) and (Y ,ν).

7. STATEMENT OF RESULTS

We extend the main results of [31, 32] to the setting of rank-1 systems (i.e.,

diffeomorphisms) satisfying the hypotheses introduced in Section 3.2. Beyond

establishing formulas as in [31, 32] for the total entropy hµ( f ), we also establish

results analogous to those of [31, 32] for entropy subordinated to a foliation,

hµ( f |F ), or a measurable partition, hµ( f | η), following the definitions in Sec-

tion 6.

Let M be a k-dimensional, C∞ manifold equipped with a Borel probability

measure µ. Let f : M → M be an invertible, measurable, µ-preserving trans-

formation. Then f generates an action of Z on M . We assume the induced

Z-action satisfies hypotheses II of Section 3.2. In particular, we fix the generat-

ing set F = {−1,1} and consider all constructions from Part I including the set

U ⊂U0 from Section 3.2 and the Lyapunov charts from Section 5 to be relative

to F .

For the remainder of Part II, we further assume that µ is f -ergodic as the

generalizations of all results stated here to the non-ergodic case are standard.

As f induces an action of Z, we may identify the Lyapunov exponent function-

als λi : Z→R for the derivative cocycle (13) with their coefficients λi :=λi (1) ∈R.
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For the remainder of Part II, Lyapunov exponents are assumed to be real num-

bers, listed without multiplicity, and ordered so that

λ1 >λ2 > ·· · >λr > 0 ≥λr+1 > ·· · >λp .

We write E i (x) = Eλi (x) and write mi for the almost-surely constant value of

dimE i (x). Also write E u(x)=⊕
λi>0 E i (x), E 0(x)=E0(x), and E s(x)=⊕

λi<0 E i (x).

Recall we view each E i (x) as a subspace of Rk via the charts in φx in standing

hypotheses II in Section 3.2; we may push forward each E i (x) to Tx M under

D0φx .

Given 1 ≤ i ≤ r , we write W i (x) = W i
1 (x) and W i = W i

1 for the i th unstable

manifold and i th unstable foliation corresponding to the generator f = α(1).

Similarly write W u =W u
1 . Given any C 1+β-tame, f -invariant, measurable foli-

ation F we write F
u := F ∨W u . We similarly define stable manifolds W s(x)

and the stable foliation W s to be the unstable manifold and foliation relative to

f −1.

7.1. Finiteness of entropy. Our first result is the following version of the Margu-

lis±Ruelle inequality [45] for systems satisfying our standing hypotheses.

PROPOSITION 7.1. Let (M ,µ) and f be as above. Then

hµ( f ) ≤
∑

λi>0

λi mi .

In particular, hµ( f ) <∞.

7.2. Geometric rigidity of measures satisfying the entropy formula. Let F be

an f -invariant, measurable foliation. Observe that the distribution x 7→ TxF
′(x)

is D f -invariant and thus for a.e. x,

TxF
′(x) =

p⊕

i=1

(
D0φx E i (x)∩TxF

′(x)
)
.

(Here φx are the dynamical charts in standing hypotheses II in Section 3.2.)

Define the multiplicity of each λi relative to F to be (the almost-surely constant

value of)

mi (F ) := dim
(
D0φx E i (x)∩TxF

′(x)
)

.

We say a measure µ is absolutely continuous along F if µ
η
x is absolutely continu-

ous with respect to the Riemannian volume on η(x) ⊂F (x)′ for any measurable

partition η subordinate to F and almost every x.

We have the following extension of [31, Theorem A].

THEOREM 7.2. Let F be an f -invariant, C 1+β-tame, measurable foliation. Then

hµ( f |F ) ≤
∑

1≤i≤r
λi mi (F ).(22)

Moreover, equality holds if and only if µ is absolutely continuous along F
u .
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Furthermore, in the case of equality in (22), the measures µ
η
x are equivalent

to the Riemannian volume on almost every ηx ⊂ F
u(x) for any measurable

partition η subordinate to F
u . (See [31, Corollary 6.1.4]).

Note that Proposition 7.1 follows from the statement of Theorem 7.2 by taking

F = M . However, we establish Proposition 7.1 separately from Theorem 7.2.

As in the main result of [28], Theorem 7.2 follows from Jensen’s inequality

after we establish that all entropy of the system is carried by unstable manifolds

(or the unstable part of an invariant foliation). (Compare with [31, Corollary

5.3].)

PROPOSITION 7.3. For an f -invariant, C 1+β-tame, measurable foliation F we
have

hµ( f |F ) = hµ( f |F u).

7.3. Pointwise transverse dimensions. In Part III we will want a geometric de-

scription of the entropy hµ( f | η) where η is an invariant measurable partition.

We thus prove a generalization of the classical Ledrappier±Young entropy for-

mula for the quantity hµ( f | η).

Take η to be an arbitrary measurable partition of (M ,µ). Given 1 ≤ i ≤ r ,

let ξi be a measurable partition subordinate to W i . Let
{
µ
ξi∨η
x

}
be a family of

conditional measures relative to the measurable partition ξi ∨η. We define the

i th upper and lower pointwise dimensions of µ relative to η at x to be

dim
i
(µ, x|η) := limsup

r→0

log
(
µ
ξi∨η
x (B(x,r ))

)

logr
,

dimi (µ, x|η) := liminf
r→0

log
(
µ
ξi∨η
x (B(x,r ))

)

logr

and the i th pointwise dimension of µ relative to η at x to be

dimi (µ, x|η) := lim
r→0

log
(
µ
ξi∨η
x (B(x,r ))

)

logr

when the limit exists. One verifies that the functions dim
i
(µ, x|η) and dimi (µ, x|η)

are measurable and independent of the choice of ξi . Moreover, if f η ≺ η and

hµ( f ,η) <∞, it follows that dim
i
(µ, x|η) and dimi (µ, x|η) are constant along or-

bits of f and hence, by ergodicity of µ, constant a.s. Let dim
i
(µ|η), dimi (µ|η)

denote the a.s. constant values.

We first claim the following (whose proof follows from the inequalities in

Section 10.1).

PROPOSITION 7.4. Let η be a measurable partition of (M ,µ). Then

dim
i
(µ|η+) = dimi (µ|η+).
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Write dimi (µ|η+) for the common value guaranteed by Proposition 7.4. Set

dim0(µ|η+) = 0. For 1 ≤ i ≤ r define the i th transverse dimension of µ relative to
η+ to be

γi (
µ|η+

)
= dimi (

µ|η+
)
−dimi−1

(
µ|η+

)
.

CLAIM 7.5. For 1 ≤ i ≤ r , γi
(
µ|η+

)
≤ mi := dimE i .

Note that if η̂ is a measurable partition of (M ,µ) with η≺ η̂, then, by defini-

tion, we have

hµ( f | η) ≥ hµ

(
f | η̂

)
.

We have a similar result for the transverse dimensions above.

PROPOSITION 7.6. If η+ ≺ η̂+, then for every 1 ≤ i ≤ r

γi (
µ|η+

)
≥ γi (

µ|η̂+
)

.

Proposition 7.6 follows from discussion at the end of Section 11.3.

7.4. Geometric characterization of the defect in the entropy formula. As in

[32] we have an explicit geometric description of the defect of equality in (22) as

well as its generalization to the entropy subordinate to a measurable partition.

THEOREM 7.7. Let η be a measurable partition of (M ,µ). Then

hµ( f | η) =
∑

1≤i≤r
λiγ

i (
µ|η+

)
.

Taking η to be the trivial partition {X ,∅}, we obtain an extension of the en-

tropy formula from [32] to C 1+β diffeomorphisms of noncompact manifolds

satisfying our standing hypotheses.

Suppose g : (Y ,ν) → (Y ,ν) is a measurable factor of f induced by ψ : (M ,µ) →
(Y ,ν). As a primary application of Theorem 7.7, we obtain a Ledrappier±Young

entropy formula for the fiber entropy hµ

(
f |A ψ

)
of smooth systems when the

elements of the fiber partition A
ψ are only measurable. In particular, from (21)

the entropy of the factor system g : (Y ,ν) → (Y ,ν) can be computed in terms of

the Lyapunov exponents of the total system f and the geometry of the condi-

tional measures of µ and of
{
µA

ψ

x

}
along unstable manifolds. In the case that

the fibers are smooth manifolds, a Ledrappier±Young formula for fiber entropy

follows from [41].

7.5. A characterization of the Pinsker partition. Let π denote the Pinsker par-

tition for the action of f on (M ,µ). Also, let Bu and Bs be the measurable hulls

of the (typically non-measurable) partitions W u and W s .

THEOREM 7.8. Under the above assumptions

π⊜B
u ⊜B

s .

Theorem 7.8 follows from the discussion in [44, (12.4)] exactly as in [31, (6.3)]

and [28, (2.3)] from Proposition 8.3 and Remark 8.1 below.
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8. PREPARATIONS: SPECIAL PARTITIONS AND THEIR ENTROPY PROPERTIES

8.1. Standing notation. We write Λ0 for the set of regular points of µ. Let

ε0 =
1

100
min

{
1, |λi |, |λi −λ j | : i ̸= j ,λi ̸= 0

}
.

For Sections 8±11, fix 0 < ε< ε0. Let {Φx } be a fixed family of ε-Lyapunov charts

as in Proposition 5.1 with corresponding function ℓ. Given 0 ≤ i ≤ r and x ∈
Λ0, let hi

x be a function as in Lemma 5.5 (relative to the charts Φx ). Let λ0 =
max{|λi |}. For 0 < δ≤ e−λ0−2ε , let

W i
x,δ = graph

(
hi

x↾
⊕

j≤i R
j (δ)

)

and write

V i
loc,x,ε :=Φx

(
graph

(
hi

x↾
⊕

j≤i R
j (−2λ0−4ε)

))
=Φx (W i

x,e−2λ0−4ε)

for the i th local unstable manifold relative to the charts {Φx }.

Consider a C 1+β-tame, f -invariant, measurable foliation F . We may further-

more choose charts {Φx } above as in Proposition 5.4 and build an associated

family of charts Ψ
F
x . Let hF ,u

x = hr
x be as in Lemma 5.5 (relative to the charts

{ΨF
x }) and write

V F ,u
loc,x,ε

:=Ψ
F

x

(
graph

(
hF ,u

x ↾⊕
j≤r (V ∩R j )(e−2λ0−4ε)

))

for the local manifold of F
u := F ∨W u through x relative to the charts {ΨF

x }.

Also write

V F

loc,x,ε :=Ψ
F

x (V (1)) =Φx (graph(h̃F

x ↾V (1))),

where h̃F
x is as in Proposition 5.2.

Recall the ambient (locally-defined) metric d on U0. Write dV i
loc,x,ε

for the

restriction of d to the embedded manifold V i
loc,x,ε

where dV i
loc,x,ε

(x, y) =∞ if y ∉
V i

loc,x,ε
. Denote by B(x,δ) := {y ∈U0 : d(x, y) < δ} and

B i (x,δ) :=
{

y ∈V i
loc,x,ε : dV i

loc,x,ε
(x, y) < δ

}
.(23)

8.2. Expanding partitions subordinate to unstable manifolds. Following the

constructions in [29, Proposition 3.1], [31, Lemma 3.1.1], and [32, Lemma 9.1.1],

there exists measurable partitions ξi for 1 ≤ i ≤ r with the following properties:

(1) ξi is subordinate to W i (see Definition 6.3); moreover for a positive mea-

sure set of x we have ξi (x) ⊂V i
loc,x,ε

;

(2) ξi ≺ f −1ξi ;

(3)
∨∞

n=0 f −nξi is the point partition;

(4) for 1 ≤ i ≤ r −1, we have ξi+1 ≺ ξi .

A partition satisfying (1)±(3) is said to be an increasing generator subordinate to
W i .
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REMARK 8.1. Take i = r . For any partition ξu := ξr satisfying (1) and (2) we have
∧

n≥0

f nξu =B
u .

The construction of partitions ξi with the above properties outlined in [32,

Lemma 9.1.1] requires one to first subfoliate each V u
loc,x,ε

by a continuous foli-

ation by fast unstable manifolds. The characterization of atoms of these parti-

tions given on [31, p. 520] and [32, p. 555] is then given in terms of distances

inside global fast unstable manifolds. Although this may be carried out word-

for-word in our setting, we prefer a construction that only uses the measurable

family of local fast unstable manifolds V i
loc,x,ε

. In particular, we first follow [29,

Proposition 3.1] and build partitions ξ̃i satisfying (1)±(3); we then refine these

to obtain partitions ξi satisfying (4). Moreover, as we allow our system to have

discontinuities and singularities, we prefer a (partial) characterization of atoms

of each partition in terms of the dynamics inside local fast unstable manifolds

in Lemma 8.2 below. Since our construction is somewhat different from [32,

Lemma 9.1.1] and since we will refer back to sets used in the construction, we

outline the construction here.

8.2.1. Outline of construction. Recall our fixed 0 < ε< ε0 and family of ε-Lyap-

unov charts Φx with corresponding function ℓ. Also recall the charts Ψ
F
x built

from Φx as in Proposition 5.4. Fix ℓ0 > 0 sufficiently large. Let Λ1 ⊂ Λ0 be a

compact set of positive measure such that:

• ℓ(x) ≤ ℓ0 for x ∈Λ1;

• the charts x 7→Φx and x 7→Ψ
F
x vary continuously in the C 1 topology on

Λ1;

• for 1 ≤ i ≤ r the family of functions hu,i
x vary continuously in the C 1 topol-

ogy on Λ1;

• the familes of functions h̃F
x and hF ,u

x vary continuously in the C 1 topology

on Λ1.

It follows that the families of embedded manifolds x 7→V i
loc,x,ε

, x 7→V F

loc,x,ε
, and

x 7→ V F ,u
loc,x,ε

vary continuously in the C 1 topology on Λ1. Let x0 be a density

point of Λ1. Given ρ > 0 sufficiently small and y ∈ B(x0,ρ)∩Λ1, let

V u,i (y,ρ) =V i
loc,y,ε∩B(x0,ρ).

Write V u(y,ρ) = V u,r (y,ρ). Similarly, given y ∈ B(x0,ρ)∩Λ1, write V F ,u(y,ρ) =
V F ,u

loc,y,ε
∩B(x0,ρ) and V F (y,ρ) =V F

loc,y,ε
∩B(x0,ρ). Set

S0
ρ := B(x0,ρ)∩Λ1.

Taking 0 < ρ0 sufficiently small, we may assume for 0 < ρ < ρ0 that N =
B(x0,ρ) is an embedded open submanifold with N ⊂U an embedded submani-

fold with boundary and that for all and y1, y2 ∈ S0
ρ the following hold:

(a) V u,i (y1,ρ) is a connected open neighborhood of y1 with compact closure

in V i
loc,y1,ε

;
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(b) if y1 ∈V i
loc,y2,ε

, then V u,i (y1,ρ) =V u,i (y2,ρ);

(c) V F (y1,ρ) is a connected open neighborhood of y1 with compact closure

in V F

loc,y1,ε
;

(d) V F ,u(y1,ρ) is a connected open neighborhood of y1 with compact closure

in V F ,u
loc,y1,ε

and

V F ,u(y1,ρ) =V u(y1,ρ)∩V F (y1,ρ);

(e) if y1 ∈ V F

loc,y2,ε
, then V F (y1,ρ) = V F (y2,ρ), and if y1 ∈ V F ,u

loc,y2,ε
, then

V F ,u(y1,ρ) =V F ,u(y2,ρ).

(Properties (c)Ð(e) will be used later in Section 12.)

For 1 ≤ i ≤ r , set

Si
ρ =

⋃

x∈S0
ρ

V u,i (x,ρ).

Consider y ∈ Si
ρ . There exists x ∈ S0

ρ with y ∈V u,i (x,ρ); moreover, if y ∈V u,i (x ′,ρ)

for some x ′ ∈ S0
ρ , then

V u,i (x,ρ) =V u,i (x ′,ρ).

For such y ∈ Si
ρ and x, set D i (y) =V u,i (x,ρ). It follows that

ξ̂i (y) =
{

D i (y) y ∈ Si
ρ ,

M ∖Si
ρ y ∉ Si

ρ

defines a partition of a full measure subset of M . Take ξ̃i := (ξ̂i )+.

By ergodicity, for any 0 < ρ < ρ0 and a.e. y , we have that f −n(y) ∈ S0
ρ for some

n ≥ 0. It follows that ξ̃i (y) ⊂W i (y) for a.e. y . We check that ξ̃i satisfy properties

(2) and (3) enumerated at the beginning of this section. Indeed, property (2) fol-

lows from construction and property (3) follows from the dynamics inside local

unstable manifolds. Property (1) follows for Lebesgue-almost every choice of

ρ < ρ0 (ensuring the boundary of a.e. V u,i (x,ρ) has zero measure and that back-

wards orbits do not accumulate too quickly near the boundaries of V u,i (x,ρ))

by the same arguments as in [29, Section 3]. Fix such a choice of ρ < ρ0.

We have the following partial characterization atoms of ξ̃i which will be used

in the sequel.

LEMMA 8.2. Set δ= e−2λ0−4ε and suppose ρ < 1
2
δℓ−1

0 . Suppose z and y satisfy the
following: for all m ≥ 0,

1. f −m(y) ∈ Si
ρ if and only if f −m(z) ∈ Si

ρ ;

2. d
(

f −m(y), f −m(z)
)
≤ 1

2
δℓ−1

0 em(−λi+2ε).

Then ξ̃i (z) = ξ̃i (y).

Proof. Given any m ≥ 0, we claim that f −m(z) ∈ ξ̂i ( f −m(y)); the result then fol-

lows. For m such that f −m(y) ∉ Si
ρ , the claim follows by hypothesis.
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Consider any m ≥ 0 such that f −m(y) ∈ Si
ρ . There is some x ∈ S0

ρ with y ∈
V u,i (x,ρ). Then d

(
x, f −m(z)

)
≤ ℓ−1

0 and f −m(z) is in the domain of Φ−1
x . For

k ≥ 0 we have
∥∥∥Φ−1

f −k (x)

(
f −m−k (y)

)∥∥∥≤ e(−λi+2ε)kℓ0ρ ≤ 1
2
δe(−λi+2ε)k .

Since

ℓ
(

f −k (x)
)

d
(

f −m−k (z), f −m−k (y)
)
≤ ℓ0eεk d

(
f −m−k (z), f −m−k (y)

)
≤ 1

2
δ

it follows that f −m−k (z) is in the domain of Φ−1
f −k (x)

for all k ≥ 0. Then for k ≥ 0

∥∥∥Φ−1
f −k (x)

(
f −m−k (z)

)∥∥∥≤ ℓ
(

f −k (x)
)
·
(
ℓ−1

0 δek(−λi+2ε)
)
≤ δek(−λi+3ε)

which, from (19) of Lemma 5.5, implies f −m(z) ∈V i
loc,x,ε

. Since f −m(z) ∈ Si
ρ , we

have

f −m(z) ∈V u,i (x,ρ) = D i (
f −m(y)

)
= ξ̂i (

f −m(y)
)

and the lemma follows.

For 1 ≤ i ≤ r , note that V u,i (x,ρ) is defined only for x ∈ S0
ρ . In particular,

while V u,i (x,ρ) ⊂ V u,i+1(x,ρ), the collection {V u,i (y,ρ) : y ∈ V u,i+1(x,ρ)} may

not subfoliate V u,i+1(x,ρ). In particular, while Si
ρ ⊂ Si+1

ρ , we do not automati-

cally have ξ̂i+1(y) ≺ ξ̂i (y) nor ξ̃i+1(y) ≺ ξ̃i (y) (as ξ̃i (y) is refined on return times

to Si
ρ rather than return times to Si+1

ρ .) Thus, having built ξ̃1, . . . , ξ̃r satsifying

(1)±(3), for 1 ≤ i ≤ r set

ξi =
r∨

j=i
ξ̃ j .(24)

Property (4) now clearly holds for the family of partitions ξi for each 1 ≤ i ≤ r .

Moreover, properties (2) and (3) are inherited by the partition ξi and, since

V i
loc,x,ε

is an embedded submanifold of V
j

loc,x,ε
for all j ≥ i , property (1) contin-

ues to hold for ξi .

We fix a sufficiently small ρ > 0 and write S = S0
ρ and Si = Si

ρ for the remainder.

Also write ξu = ξr .

The following proposition is the analogue of the main results of [31]; see

[31, Corollary 5.3]. Roughly, the proposition says that all entropy is ªcarried by

unstable manifolds,º the most difficult step in establishing the SRB property in

[31]. The proof will follow directly from Proposition 9.1 and the inequalities in

10.1 below.

PROPOSITION 8.3. Let ξu = ξr be a partition as above. Then for any measurable
partition η,

hµ( f | η) = hµ

(
f ,η∨ξu)

= Hµ

(
η+∨ξu | f

(
η+∨ξu))

.

In particular, hµ( f ) = hµ

(
f ,ξu

)
.

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455±540



SMOOTH ERGODIC THEORY OF Zd -ACTIONS 495

8.3. Entropy properties of the partitions ξi . Following (the proof of) [32, (9.2)]

we have the following.

CLAIM 8.4. Let ξi be any partition as in Section 8.2. Then hµ( f ,ξi ) <∞.

Proof. Given δ> 0, let

Aδ :=
{

x : B i ( f (x),δ) ⊂ ξi ( f (x))
}

,

where B i (·,δ) is as in (23). Then µ(Aδ) → 1 as δ→ 0. Let

g (x) =− logµ
ξi

x

(
f −1ξi (x)

)
.

Given any M < hµ( f ,ξi ) = Hµ( f −1ξi | ξi ), take δ> 0 so that
∫

Aδ

g dµ≥ M .

Write

U i (x,n,δ) :=
⋂

{ j :0≤ j≤n−1, f j (x)∈Aδ}

(
f −( j+1)ξi

)
(x).

Note that if k = max{0 ≤ j ≤ n −1 : f j (x) ∈ Aδ}, then

U i (x,n,δ) = f −(k+1)ξi (x).

Relative to the family of ε-Lyapunov charts {Φx }, we observe for every suffi-

ciently large n ≥ 1 (such that f j (x) ∈ Aδ for some 0 ≤ j ≤ n −1) that

B i
(
x,δℓ(x)−1e(−λ1−2ε)n

)
⊂U i (x,n,δ).

Moreover

− logµ
ξi

x

(
B i

(
x,δℓ(x)−1e(−λ1−2ε)n

))
≥− logµ

ξi

x

(
U i (x,n,δ)

)
≥

n−1∑

j=0

(✶Aδ
· g )( f j (x)).

Then, by the pointwise ergodic theorem, for µ-a.e. x we have

liminf
n→∞

− 1

n
logµ

ξi

x

(
B i

(
x,δℓ(x)−1e(−λ1−2ε)n

))
≥

∫

Aδ

g ≥ M .

On the other hand (see [31, Lemma 4.1.4]), fixing a bi-Lipschitz identification

of the embedded manifold V i
loc,x,ε

with Rmi+···+m1 we have for a.e. x that

limsup
n→∞

− 1

n
logµ

ξi

x

(
B i

(
x,δℓ(x)−1e(−λ1−2ε)n

))
≤ (mi +·· ·+m1)(λ1 +2ε)

whence M ≤ (mi +·· ·+m1)(λ1 +2ε).

We frequently use the following fact that partitions satisfying properties (2)

and (3) of Section 8.2 locally maximize entropy.

CLAIM 8.5. Let ξ be any measurable partition of (M ,µ) satisfying properties (2)
and (3) of Section 8.2. Let η and ζ be measurable partitions with hµ( f ,ζ) <∞.
Then

hµ( f ,ζ∨ξ∨η) ≤ hµ( f ,ξ∨η).
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Indeed, this follows from (10) of Section 6.2 as (ξ∨η) f =∨
n∈Z f n(ξ∨η) is the

point partition.

Combined with (9) of Section 6.2, we have the following (compare to [31,

Lemma 3.2.1]).

COROLLARY 8.6. Let ξ be any measurable partition of (M ,µ) satisfying (2) and
(3) of Section 8.2. Let η and P be measurable partitions with Hµ(P ) <∞. Then

hµ( f ,ξ∨η∨P ) = hµ( f ,ξ∨η).

As in [31, Lemma 3.1.2] we have the following.

LEMMA 8.7. For each 1 ≤ i ≤ r , let ξi
1 and ξi

2 be two partitions as in Section 8.2
and let η be an arbitrary measurable partition. Then

hµ( f ,ξi
1 ∨η) = hµ( f ,ξi

2 ∨η).

In particular, hµ( f ,ξi
1) = hµ( f ,ξi

2).

8.4. Finite entropy partitions adapted to Lyapunov charts. Recall our family

of ε-Lyapunov charts {Φx }. Fix 0 < δ< 1. For x ∈Λ0, define the corresponding

center-unstable sets:

Scu
δ,x =

{
y ∈Rk :

∥∥∥Φ−1
f −m (x) ◦ f −m ◦Φx (y)

∥∥∥< δ for all m ≥ 0
}

.

DEFINITION 8.8. We say a measurable partition P of (M ,µ) is adapted to ({Φx },δ)

if, for almost every x,

P
+(x) ⊂Φx

(
Scu
δ,x

)
.

LEMMA 8.9. For every 0 < δ< 1, there exists a measurable partition P adapted
to ({Φx },δ) with Hµ(P ) <∞.

Proof. Let ℓ : Λ→ [1,∞) be the function associated with the charts {Φx }. Recall

in Section 8.2 we fixed an open ball N with N ⊂U a closed ball and S := S0
ρ ⊂ N

with µ(S) > 0 and ℓ(x) ≤ ℓ0 for x ∈ S.

Let n : S → N be the first return function: n(x) = min
{

j ≥ 1 : f j (x) ∈ S
}

. We

have
∫

n(x) dµ↾S = 1.

Let ρ : S → (0,1) be

ρ(x) = δℓ−1
0 e−n(x)(λ0+2ε).

Let µ̂ = 1
µ(S)

µ↾S . We have
∫
− log(ρ) d µ̂ <∞ hence, adapting [37, Lemma 2] to

(N , µ̂), there is a partition P̂ of (S, µ̂) with Hµ̂(P̂ ) <∞ and diam(P̂ (x)) < ρ(x) for

almost every x ∈ S. Let P = P̂ ∪ {M ∖S}. Then Hµ(P ) <∞. Moreover, from the

choice of ρ and the properties of the charts {Φx }x∈S , the same computations as

in [31, Lemma 2.4.2] show that P is adapted to ({Φx },δ).

CLAIM 8.10. Let δ< e−2λ0−4ε and let P be adapted to ({Φx },δ). Then for 1 ≤ i ≤ r
and almost every x,

(P +∨ξi )(x) ⊂V i
loc,x,ε.
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Proof. Let η=P
+∨ξi . For x ∈ S we have

η(x) ⊂ ξi (x) ⊂V i
loc,x,ε.

In particular, Φ−1
x (η(x)) ⊂W i

x,δ
.

Now consider arbitrary x and y ∈ η(x). Suppose Φ
−1
x (y) ∈ W i

x,δ
and f (y) ∈

η( f (x)). By the choice of δ,

Φ
−1
f (x)( f (y)) ∈W i

f (x),eλ0+2εδ
∩Rk (δ) =W i

f (x),δ

whence f (y) ∈V i
loc, f (x),ε

.

For x ̸∈ S, let n(x) = max
{
k ≥ 1 : f −k (x) ∈ S

}
. For k ≥ 0 we have f −k (η(x)) ⊂

η
(

f −k (x)
)
. Then for each 0 ≤ k ≤ n(x) and y ∈ η(x) we have f −k (y) ∈ η

(
f −k (x)

)
.

Moreover, we have Φ
−1
f −n(x)(x)

(
f −n(x)(y)

)
∈W i

f −n(x)(x),δ
. By repeated application of

the preceding paragraph,

Φ f −k+1(x)( f −k+1(y)) ∈W i
f −k+1(x),δ

and f −k+1(y) ∈V i
loc, f −k+1(x),ε

for all 1 ≤ k ≤ n(x) and the claim follows.

9. LOCAL ENTROPIES ALONG FAST UNSTABLE FOLIATIONS

As in [32, Proposition 7.2.1, (9.2), and (9.3) ], we establish a version of the

Brin±Katok entropy formula (c.f. [10]) for entropy conditioned along fast un-

stable foliations W i and relate it to the entropy given by the partitions ξi con-

structed in Section 8.2.

Let η be a measurable partition of (M ,µ). We do not assume hµ( f | η) <∞.

Given 1 ≤ i ≤ r , let ξi be any measurable partition subordinate to W i .

For 1 ≤ i ≤ r define the i th unstable Bowen ball

V i (x,n,δ) :=
{

y : dV i
loc, f k (x),ε

( f k (x), f k (y)) < δ for 0 ≤ k ≤ n
}

.

Define for 1 ≤ i ≤ r

• hi (x,δ,η) := limsupn→∞− 1
n log

(
µ
η+∨ξi

x V i (x,n,δ)
)
;

• hi (x,δ,η) := liminfn→∞− 1
n log

(
µ
η+∨ξi

x V i (x,n,δ)
)
;

• hi (x,η) := limδ→0 hi (x,δ,η);

• hi (x,η) := limδ→0 hi (x,δ,η).

The last two limits exist by monotonicity. It is clear that the definitions are

independent of the choice of partitions ξi subordinate to W i .

To unify formulas later, let ξ0 denote the point partition on (M ,µ). Then

µ
ξ0∨η+

x = δx is atomic and, with the same notations as above, we have

• h0(x,η) = h0(x,η) = 0.

PROPOSITION 9.1. For 1 ≤ i ≤ r , let ξi be a partition as in Section 8.2. Then for
µ-a.e. x,

hi (x,η) = hi (x,η) =: hi (x,η) = hµ( f ,ξi ∨η) = Hµ( f −1(η+∨ξi ) | η+∨ξi ).
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Moreover, hµ( f ,ξi ∨η) <∞.

We remark that finiteness of hµ( f ,ξi ∨η) follows from 9.1.1 below and the

inequality (see the proof of Claim 8.4 and [31, Lemma 4.1.4])

hi (x,η) <∞.

Write hi (η) = hµ( f ,ξi ∨ η) for the almost-surely constant value of hi (x,η).

Note that hi (η) is independent of the choice of ε < ε0 and the family of Lya-

punov charts {Φx } and, by Lemma 8.7, independent of the choice of ξi .

9.1. Proof of Proposition 9.1. We prove Proposition 9.1 in two steps.

9.1.1. Proof that hi (x,η) ≥ Hµ

(
f −1

(
η+∨ξi

)
| η+∨ξi

)
. For fixed integers 1 ≤ i ≤ r

and k ≥ 0, write

ξi ,k (x) := ( f −kξi )(x).

For almost every x, the set ξi ,k (x) contains an open neighborhood of x in

ξi (x). Thus

µ
ξi ,k∨η+

x = 1

µ
ξi∨η+

x
((
ξi ,k ∨η+

)
(x)

) µ
ξi∨η+

x ↾(ξi ,k∨η+)(x).

Then,

µ
ξi ,k∨η+

x
(

f −1
(
ξi ,k ∨η+

)
(x)

)

µ
ξi ,k∨η+

x
(

f −1ξi ,k (x)
) =

µ
ξi∨η+

x
(

f −1
(
ξi ,k ∨η+

)
(x)

)

µ
ξi∨η+

x
(

f −1ξi ,k (x)
)

= E
µ
ξi ∨η+
x

(
✶ f −1η+(x) |σ

(
f −1ξi ,k

))
(x).

Given b > 0, set

Ab,k :=
{

x :
µ
ξi ,n∨η+

x
(

f −1
(
ξi ,n ∨η+

)
(x)

)

µ
ξi ,n∨η+

x
(

f −1ξi ,n(x)
) ≥ e−b for all n ≥ k

}
.

By pointwise convergence for martingales, we have µ(Ab,k ) → 1 as k →∞.

Given b > 0,δ> 0 and k ∈N, set

Ab,k,δ :=
{

x ∈ Ab,k : B i ( f (x),δ) ⊂ ξi ,k ( f (x))
}

.

We have µ(Ab,k,δ) →µ(Ab,k ) as δ→ 0. Given any

M < Hµ

(
f −1

(
η+∨ξi ,k

)
| η+∨ξi ,k

)
= Hµ

(
f −1

(
η+∨ξi

)
| η+∨ξi

)

and

0 < b < Hµ( f −1(η+∨ξi ,k ) | η+∨ξi ,k )−M

choose first k, then δ0 so that for any 0 < δ≤ δ0

M +b ≤
∫

Ab,k,δ

− log
(
µ
η+∨ξi ,k

x

(
f −1

(
η+∨ξi ,k

)
(x)

))
dµ(x).

Then

M ≤
∫

Ab,k,δ

− log
(
µ
η+∨ξi ,k

x

((
f −1ξi ,k

)
(x)

))
dµ(x).
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Define

Ui (x,n,δ) :=
⋂

0≤ j≤n−1: f j (x)∈Ab,k,δ

(
f −( j+1)ξi ,k

)
(x).

Then for all sufficiently large n ≥ 1 (such that f j (x) ∈ Ab,k,δ for some 0 ≤ j ≤ n−1)

we have

V i (x,n,δ) ⊂Ui (x,n,δ)

and with

g (x) :=− logµ
η+∨ξi ,k

x ( f −1ξi ,k )(x)

we have

− logµ
η+∨ξi ,k

x (Ui (x,n,δ)) ≥
n−1∑

j=0

(✶Ab,k,δ
· g )

(
f j (x)

)
.

Then for a.e. x,

hi (x,δ,η) := liminf
n→∞

− 1

n
logµ

η+∨ξi

x (V i (x,n,δ))

≥ liminf
n→∞

− 1

n
logµ

η+∨ξi

x (Ui (x,n,δ))

≥ liminf
n→∞

1

n

n−1∑

j=0

(✶Ab,k,δ
· g )( f j (x))

=
∫

Ab,k,δ

g dµ≥ M

and the inequality follows.

9.1.2. Proof that hi (x,η) ≤ Hµ

(
f −1

(
η+∨ξi

)
| η+∨ξi

)
. Given ℓ ≤ k and a parti-

tion η of (M ,µ) define

ηk
ℓ :=

k∨

j=ℓ
f − jη.(25)

Exactly as in [32, Lemma 9.3.1], the following follows from the Chung±Neveu

lemma (see [39, Lemma 2.1].)

LEMMA 9.2. Let ζ be a partition of M with Hµ(ζ | ξi ∨η+) <∞. Then for µ-a.e. x

lim
n→∞

− 1

n
logµ

ξi∨η+

x

((
ζ∨ξi ∨η

)n
0 (x)

)
= Hµ

(
ξi ∨η | f (ξi ∨η+)

)
.

Recall the unstable manifolds W i
x,δ

= graph
(
hi

x↾R j≤i (δ)

)
defined inside charts

the Φx in Section 8.1. With the notation of (25), we have the following.

LEMMA 9.3. Given 0 < ε′ sufficiently small, there exists a partition P of (M ,µ)

with Hµ(P ) < ∞ and a measurable n0 : M → N such that for every 1 ≤ i ≤ r ,
almost every x ∈ M, and n ≥ n0(x),

Φ
−1
x

((
P

n
0 ∨ξi

)
(x)

)
⊂W i

x,ε′e−(λi −2ε)n .

In particular, for n ≥ n0(x),

(a)
(
P

n
0 ∨ξi

)
(x) ⊂V i

(
x,n,ε′

)
;
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(b)
(
P

n
0 ∨ξi

)
(x) ⊂ B i

(
x,e−(λi−2ε)n

)
.

The final two conclusions follow from the fact each chart Φx is 1-Lipschitz

for almost every x. The proof is nearly identical to that of [32, Lemmas 9.3.3,

9.3.2]. We include it for completeness.

We note in the statement and proof of Lemma 9.3 that the same partition P

works for all indices i .

Proof of Lemma 9.3. Let S = S0
ρ be as in Section 8.2. In particular, µ(S) > 0,

ℓ(x) ≤ ℓ0 for x ∈ S, and there is an open ball N with N a closed ball such that

S ⊂ N .

Given x ∈ S, define

n+(x) = min
{
n > 0 : f n(x) ∈ S

}
, n−(x) = min

{
n > 0 : f −n(x) ∈ S

}
.

Let δ= e−2λ0−4ε and consider any 0 < ε′ < δ. Let ψ,ψ+ : S → (0,1) be

ψ(x) = ε′ℓ0
−1e−(λ0+2ε)max{n+(x),n−(x)}, ψ+(x) = ε′ℓ0

−1e−(λ0+2ε)n+(x).

Let µS = 1
µ(S)

µ↾S . Then
∫

log(ψ) dµS <∞. Adapting [37, Lemma 2] (to (N ,µS)),

we may find a measurable partition P
′ of S with

1. HµS

(
P

′)<∞;

2. P
′(x) ⊂ B(x,ψ(x)) for all x ∈ S.

Let P = {S, M ∖ S}∨P
′. Then we still have Hµ(P ) < ∞ and P (x) = P

′(x) ⊂
B(x,ψ(x)) for all x ∈ S.

For x ∈ M define

n0(x) := min{n ≥ 0 : f n(x) ∈ S}

and

r0(x) := max
{
n < 0 : f n(x) ∈ S

}
= n0(x)−n−( f n0(x)(x)).

We claim the lemma holds with P and n0 defined above.

First consider for x ∈ S. From the dynamics inside Lyapunov charts we have,

exactly as in [32, Lemma 9.3.2(1)], that if Φ−1
x (y) ∈W i

x,δ
and d(x, y) ≤ψ+(x), then

∥∥∥Φ−1
f j (x)

(
f j (y)

)∥∥∥< ε′, for 0 ≤ j ≤ n+(x)(26)

and

Φ
−1
f n+(x)(x)

(
f n+(x)(y)

)
∈W i

f n+(x)(x),δ
.(27)

Consider x with f n(x) ∈ S infinitely often as n →±∞. Consider any

y ∈P
n0(x)
0 (x)∩ξi (x) :=

n0(x)∨

j=0

f − j
P (x)∩ξi (x).

Note first that f n0(x)(y) ∈ P
(

f n0(x)(x)
)
. From the choice of ψ(x), for 0 ≤ j ≤

n0(x)− r0(x) we have

Φ
−1
f n0(x)− j (x)

(
f n0(x)− j (

P
(

f n0(x)(x)
)))

⊂Rk (δ).(28)
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Since ξi is increasing we have f r0(x)(y) ∈ ξi ( f r0(x)(x)) and since f r0(x)(x) ∈ S we

have

Φ
−1
f r0(x)(x)

(
f r0(x)(y)

)
∈W i

f r0(x)(x),δ
.

It follows from the choice of δ, (28), and the dynamics inside Lyapunov charts

that for 0 ≤ j ≤ n0(x)− r0(x),

Φ
−1
f r0(x)+ j (x)

(
f r0(x)+ j (y)

)
∈W i

f r0(x)+ j (x),δ
.

In particular,

Φ
−1
f n0(x)(x)

(
f n0(x)(y)

)
∈W i

f n0(x)(x),δ

and

d
(

f n0(x)(y), f n0(x)(x)) ≤ψ+( f n0(x)(x)
)

.

Now, let nk (x) denote the subsequent returns of x to S. For n ≥ n0(x), take k
with nk (x) ≤ n < nk+1(x). If y ∈ (P n

0 ∨ξi )(x), then f n j (x)(y) ∈P ( f n j (x)(x)) for all

0 ≤ j ≤ k whence

d
(

f nk (x)(y), f nk (x)(x)) ≤ψ+( f nk (x)(x)
)

and we recursively verify as in (27) that

Φ
−1
f nk+1(x)(x)

f nk+1(x)(y) ∈W i
f nk+1(x)(x),δ

.

Then for our nk (x) ≤ n < nk+1(x), we have

Φ
−1
f n (x)

(
f n(y)

)
∈W i

f n (x),δ

and as in (26), ∥∥∥Φ−1
f n (x)( f n(y))

∥∥∥< ε′.

The results follows applying the dynamics along W i manifolds inside Lyapunov

charts.

Proof that hi (x,η) ≤ Hµ

(
f −1

(
η+∨ξi

)
| η+∨ξi

)
. Given ε′ > 0 sufficiently small,

hi (x,ε′,η) := limsup
n→∞

− 1

n
log

(
µ
η+∨ξi

x V i (x,n,ε′)
)

≤ limsup
n→∞

− 1

n
log

(
µ
η+∨ξi

x P
n
0 (x)

)

≤ limsup
n→∞

− 1

n
log

(
µ
η+∨ξi

x (η+∨ξi ∨P )n
0 (x)

)

= Hµ

(
f −1

(
η+∨ξi

)
| η+∨ξi

)
.

where the first inequality follows from Lemma 9.3 and the final equality follows

from Lemma 9.2.
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10. BOUNDS ON LOCAL ENTROPIES

10.1. Proof of Propositions 7.1 and 7.4, Claim 7.5, Theorem 7.7, and Propo-

sition 8.3. Consider a measurable partition η of (M ,µ). As we have not yet

established Proposition 7.1, we will moreover assume that hµ( f ,η) <∞. (This is

sufficient to prove Proposition 7.1 from which it follows that hµ( f ,η) <∞ for all

η.) Propositions 7.1 and 7.4, Claim 7.5, Theorem 7.7, and Proposition 8.3 then

follow directly from the following four inequalities whose proofs occupy the rest

of this and the following section.

Recall the local entropies hi (η) defined in Section 9 (and independent of

ε> 0). We claim for 1 ≤ i ≤ r that the following inequalities hold:

(I) hi (η)−hi−1(η) ≥λi

(
dim

i
(µ|η+)−dim

i−1
(µ|η+)

)
;

(II) hi (η)−hi−1(η) ≤λi
(
dimi (µ|η+)−dimi−1(µ|η+)

)
;

(III) hi (η)−hi−1(η) ≤λi mi ;

(IV) hr (η) = hµ( f | η).

10.2. Proof of (I). This is identical to [32, (10.2)]; we include it for completeness.

Recall our fixed 0 < ε< ε0 and family of ε-Lyapunov charts {Φx } with correspond-

ing function ℓ. For 0 ≤ i ≤ r , let ξi be a measurable partition as in Section 8.2.

LEMMA 10.1. For each 1 ≤ i ≤ r , there exists a partition P with H(P ) <∞ and
a measurable function n0 : M →N such that for µ-a.e. x, the following hold for
all n ≥ n0(x):

(a)
logµ

ξi−1∨η+

x B i−1
(
x,e−n(λi−2ε)

)

−n(λi −2ε)
≤ dim

i−1
(µ | η+)+ε;

(b) − 1

n
logµ

ξi−1∨η+

x P
n
0 (x) ≥ hi−1(η)−ε;

(c) ξi (x)∩P
n
0 (x) ⊂ B i

(
x,e−n(λi−2ε)

)
;

(d) − 1

n
logµ

ξi∨η+

x P
n
0 (x) ≤ hi (η)+ε;

(e) B i−1
(
x,e−n(λi−2ε)

)
⊂ ξi−1(x).

Moreover, for infinitely many n ≥ n0(x)

(f)
logµ

ξi∨η+

x B i
(
x,2e−n(λi−2ε)

)

−n(λi −2ε)
≥ dim

i
(µ | η+)−ε.

Proof. (a), (e), and (f) follow from definition. (b) and (c) follows from Lemma

9.3 taking sufficiently small ε′ > 0. (d) follows from Lemma 9.2 as P
n
0 (x) ⊃ (P ∨

ξi ∨η+)n
0 (x). Note also that (a), (b), (d) and (e) hold trivially when i −1 = 0.

We now prove the first inequality of Section 10.1.

Proof of (I). We retain all notation from Lemma 10.1.

With Γ := {x : n0(x) ≤ N1}, select N1 large enough so that for some x ∈ Γ satis-

fying Lemma 10.1 we have for all n ≥ N1
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µ
ξi−1∨η+

x

(
Γ∩B i−1

(
x,e−n(λi−2ε)

))
≥ 1

2
µ
ξi−1∨η+

x

(
B i−1

(
x,e−n(λi−2ε)

))

≥ 1

2
e

(−n(λi−2ε))
(
dim

i−1
(µ|η+)+ε

)

.

Fix such an x.

For n ≥ N1, take Ln := B i−1
(
x,e−n(λi−2ε)

)
. For y ∈ Γ∩Ln ∩η+(x) and n ≥ N1,

using that ξi−1(y) = ξi−1(x) and Lemma 10.1(e), we have B i−1
(
y,e−n(λi−2ε)

)
⊂

ξi−1(x) and hence from Lemma 10.1(b),

µ
ξi−1∨η+

x P
n
0 (y) =µ

ξi−1∨η+

y P
n
0 (y) ≤ e−n(hi−1(η)−ε).

For n ≥ N1, we a obtain lower bound on the cardinality of the number of distinct

P
n
0 ∨ξi -atoms meeting Γ∩Ln ∩η+(x) by

#
{(

P
n
0 ∨ξi

)
(y) : y ∈ Γ∩Ln ∩η+(x)

}
≥µ

ξi−1∨η+

x (Γ∩Ln)/e−n(hi−1(η)−ε)

≥ 1

2
e

(−n(λi−2ε))
(
dim

i−1
(µ|η+)+ε

)

en(hi−1(η)−ε).

For y ∈ Γ∩Ln ∩η+(x), we have by Lemma 10.1(c) that

(
P

n
0 ∨ξi

)
(y) ⊂ B i

(
y,e−n(λi−2ε)

)

whence (P n
0 ∨ξi )(y) ⊂ B i

(
x,2e−n(λi−2ε)

)
. From Lemma 10.1(d), we have

µ
ξi∨η+

y P
n
0 (y) ≥ e−n(hi (η)+ε)

and obtain inequalities

µ
ξi∨η+

x B i
(
x,2e−n(λi−2ε)

)

≥ #
{

(P n
0 ∨ξi )(y) : y ∈ Γ∩Ln ∩η+(x)

}
·e−n(hi (η)+ε)

≥ 1

2
e

(−n(λi−2ε))
(
dim

i−1
(µ|η+)+ε

)

en(hi−1(η)−ε)e−n(hi (η)+ε).

Comparing to Lemma 10.1(f) we have for infinitely many n that

(λi −2ε)
(
dim

i
(µ | η+)−ε

)
≤ log2

n
+ (λi −2ε)

(
dim

i−1
(µ | η+)+ε

)

+hi (η)−hi−1(η)+2ε.

Choosing n sufficiently large we have

hi (η)−hi−1(η) ≥ (λi −2ε)
(
dim

i
(µ | η+)−dim

i−1
(µ | η+)−2ε

)
−3ε.

Inequality (I) follows by the arbitrariness of ε< ε0.
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11. PROOFS OF (II), (III), AND (IV )

11.1. Properties of fake unstable manifolds inside charts. Recall we fixed 0 <
ε≤ ε0, a family of ε-Lyapunov charts {Φx }, and for x ∈Λ0, define

f̃x : Rk
(
e−λ0−2ε,∥ ·∥

)
→Rk (1,∥ ·∥)

as in Proposition 5.1. It is convenient to extend each locally-defined f̃x to a dif-

feomorphism Fx : Rk →Rk . Fix a C∞ bump function Θ : Rk → [0,1] with Θ(v) = 0

for ∥v∥ ≥ 1 and Θ(v) = 1 for ∥v∥ ≤ 1
2

. Given 0 < δ̂< 1, define Fx : Rk →Rk by

Fx (v) = D0 f̃x (v)+Θ(δ̂−1v)
(

f̃x (v)−D0 f̃x (v)
)

.(29)

Assume now that δ̂ < e−2λ0−4ε. We have that Fx is well-defined. Moreover,

if δ̂ is sufficiently small, then ∥Fx −D0 f̃x∥C 1 < ε. Moreover, we have a uniform

bound HÈolβ(DFx ) ≤ C which will be used later to obtain Lipschitz control on

certain holonomies. Fix such sufficiently small δ̂> 0.

As ∥Fx − D0 f̃x∥C 1 < ε, for each 1 ≤ i ≤ r + 1 and z ∈ Rk that there is a C 1

function

g i
x,z :

⊕

j≤i
R j →

⊕

j>i
R j

with ∥Dg i
x,z∥ ≤ 1

3
such that, writing W̃ i

x (z) for the graph of g i
x,z , we have z ∈

W̃ i
x (z), Fx (W̃ i

x (z)) = W̃ i
f (x)

(Fx (z)), and W̃ i−1
x (z) ⊂ W̃ i

x (z). Moreover if ẑ ∈ W̃ i
x (z),

then W̃ i
x (z) = W̃ i

x (ẑ) and

eλi−2ε∥z − ẑ∥ ≤ ∥Fx (z)−Fx (ẑ)∥ ≤ eλ1+2ε∥z − ẑ∥.(30)

Moreover, W̃ i
x (z) consists of all points ẑ ∈Rk such that

limsup
n→∞

1

n
log∥F−1

f −n (x) ◦ · · · ◦F−1
f −1(x)

(z)−F−1
f −n (x) ◦ · · · ◦F−1

f −1(x)
(ẑ)∥ ≤−λi +10ε.

Write

W̃ i
x,r (z) :=

{
ẑ ∈ W̃ i

x (z) : ∥ẑ∥ < r
}

.(31)

Note we use W̃ to denote the ªfakeº unstable manifolds. These depend on the

choice of globalized dynamics Fx : Rk → Rk above. We note, in particular, that

when i = r +1, ªgenuineº center-unstable manifolds through 0 do not exist and

one can only define ªfakeº center-unstable manifolds relative to some choice of

globalized dynamics. Claim 11.1 below relates these to ªgenuineº dynamically-

defined objects.

Recall the center-unstable sets Scu
δ,x defined in Section 8.4. We collect a num-

ber of properties of the above objects.

CLAIM 11.1. For 1 ≤ i ≤ r , δ< δ̂/4, and the notation of (31) the following hold:

(a) Scu
2δ,x =

{
z ∈Rk (2δ) : F−1

f −n (x)
◦ · · · ◦F−1

f −1(x)
(z) ∈Rk (2δ) for all n ≥ 0

}
;

(b) W̃ i
x,2δ

(0) =W i
x,2δ

;

(c) Scu
2δ,x ⊂ W̃ r

x,2δ
(0) if λr+1 < 0 and Scu

2δ,x ⊂ W̃ r+1
x,2δ

(0) if λr+1 = 0.
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Moreover, for z ∈ Scu
δ,x

(d) W̃ i
x,2δ

(z) ⊂ Scu
2δ,x ;

(e) W̃ i
x,2δ

(z) = f̃ f −1(x)

(
W̃ i

f −1(x),2δ

(
f̃ −1

x (z)
))
∩Rk (2δ);

(f ) if Φx (z) ∈Λ0, then

Φ
−1
x

(
V i

loc,Φx (z),ε

)
∩Scu

2δ,x ⊂ W̃ i
x,2δ(z);

(g) if Φx (z) ∈Λ0 and ℓ(Φx (z)) ≤ e−2λ0−4ε(4δ)−1, then

Φx

(
W̃ i

x,2δ(z)
)
⊂V i

loc,Φx (z),ε.

Proof. Conclusions (a)±(c) follow using that Fx and f̃x coincide on Rk (2δ) and

the dynamics inside charts. Using that Fx is an ε-Lipschitz small perturbation

of the linear map D0 f̃x , for any ∥z∥ ≤ δ we have

W̃ i
f (x),2δ(Fx (z)) ⊂ Fx

(
W̃ i

x,2δ(z)
)

.

Indeed, D0 f̃x

(
W̃ i

x,2δ
(z)

)
is the graph of a function defined on an open ball around

0 in
⊕

j≤i R
j of radius eλi−ε(2δ); it follows that Fx

(
W̃ i

x,2δ
(z)

)
is the graph of a

function defined on an open ball around 0 of
⊕

j≤i R
j of radius (eλi−ε−ε)2δ≥

eλi−2ε2δ≥ 2δ. Conclusions (d) and (e) follow.

Conclusions (f) and (g) follow from the dynamics of Fx along W̃ i -leaves and

the fact that Fx and the dynamics f̃x in the charts Φx coincide on Rk (2δ).

11.2. Construction of auxiliary partitions. Consider a fixed family of measur-

able partitions {ξi }0≤i≤r as in Section 8.2. Recall in the construction of ξi in

Section 8.2 we fix x0 ∈ Λ1 to be a density point of Λ1. Recall the choice of S0
ρ ,

Si
ρ , and ℓ0 in Section 8.2. Write Si = Si

ρ . With δ0 = min
{
δ̂/4,e−2λ0−4ε/(4ℓ0)

}
, let

E ⊂ S0 be a set with µ(E) > 0 and

E ⊂ B

(
x0,

δ0ℓ
−1
0

2

)
.

Then for x ∈ E we have E ⊂Φx (Rk (δ0)). Let P be a measurable partition of (X ,µ)

with the following properties:

1. P is adapted to ({Φx },δ0) (see Definition 8.8);

2. P refines {Si , M ∖Si } for each 0 ≤ i ≤ r ;

3. P refines {E , M ∖E };

4. P refines {E ′, M∖E ′} where E ′ ⊂ E is a subset with µ(E ′) > 0 to be specified

below;

5. Hµ(P ) <∞.

Recall that η is an arbitrary measurable partition of (M ,µ) (with hµ( f ,η) <∞).

Take η∗ = (η∨P )+ and for 0 ≤ i ≤ r take

ηi = η∗∨ξi .
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Note that η0 is the point partition. For notational convention, we also write

ηr+1 := η∗. Note that if no exponent is zero, it follows as in [28] that η∗ =
ηr+1 = ηr . In the presence of zero exponents we may have ηr ̸= ηr+1. From

Claim 11.1(c) and Claim 8.10, for almost every x we have

1. Φ
−1
x (ηr+1(x)) ⊂ Scu

δ0,x ⊂ W̃ r+1
x,δ0

(0);

2. ηi (x) ⊂V i
loc,x,ε

for 1 ≤ i ≤ r .

As in [31, Lemmas 3.3.1±3.3.2] and [32, 11.1.2±11.1.3], we have the following.

LEMMA 11.2. For each 1 ≤ i ≤ r , almost every x, and every y ∈ Λ0 ∩ ηi+1(x),
writing ŷ =Φ

−1
x (y), we have

(a) Φx

(
W̃ i

x,2δ0
(ŷ)

)
∩ηi+1(x) = ηi (y);

(b) f −1(ηi (y)) = ηi ( f −1(y))∩ f −1(ηi+1(x)).

Proof. For (a), first consider z ∈Φx

(
W̃ i

x,2δ0
(ŷ)

)
∩ηi+1(x). We follow the notation

in Section 8.2 and show the following claim: for each i ≤ j ≤ r we have z ∈ ξ̃ j (y).

It then follows from definition (see (24)) that z ∈ ξi (y) whence z ∈ ηi (y). For

the proof of the claim, recall that P refines {S j , M ∖S j } and thus if z ∈ P
+(y),

it follows for all m ≤ 0 that f m(z) ∈ S j if and only if f m(y) ∈ S j . Moreover, if

z ∈Φx

(
W̃ i

x,2δ0
(ŷ)

)
, using that Lyapunov charts are 1-Lipschitz and (30) we have

d
(

f −m(y), f −m(z)
)
≤ 2δ0em(−λi+2ε) ≤ 2δ0em(−λ j+2ε),

which, by Lemma 8.2 and our choice of δ0, implies z ∈ ξ̃ j (y). For the reverse

inclusion, Claim 8.10 implies ηi (y) ⊂V i
loc,y,ε

∩η∗(x), whence

Φ
−1
x (ηi (y)) ⊂Φ

−1
x

(
V i

loc,y,ε

)
∩Scu

δ0,x ⊂ W̃ i
x,2δ0

(
Φ

−1
x (y)

)

follows from Claim 11.1(f).

For (b), first note that we have

f −1(ηi (y)) ⊂ ηi ( f −1(y))∩ f −1(ηi+1(x))

because f −1(ηi (y)) ⊂ ηi ( f −1(y)) and ηi (y) ⊂ ηi+1(x). For the reverse inequality,

set ŷ = Φ
−1
x (y) and ŷ−1 = Φ f −1(x)( f −1(y)). From part (a) and Claim 11.1(e), we

have

Φ
−1
x

(
f (ηi ( f −1(y)))∩ (ηi+1(x))

)

= f̃ f −1(x)

(
W̃ i

f −1(x),2δ0
(ŷ−1)∩Φ

−1
f −1(x)

(ηi+1( f −1(x)))
)
∩Φ

−1
x (ηi+1(x))∩Rk (2δ0)

=
(
W̃ i

x,2δ0
(ŷ)

)
∩Φ

−1
x (ηi+1(x))

=Φ
−1
x (ηi (y)).

Note from Lemma 11.2(b), for 1 ≤ i ≤ r we have

hµ( f ,ηi ) = Hµ( f −1ηi+1 | ηi ) ≤ Hµ( f −1ηi+1 | ηi+1) = hµ( f ,ηi+1).

In particular, the partitions ηi carry more of the entropy as i increases.
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11.3. Transverse metrics on ηi /ηi−1 and transverse dimension. Recall we fixed

x0 ∈ S0 and E ⊂ B(x0, 1
2
δ0ℓ

−1
0 ) defined in the previous section. Also recall that

for each 1 ≤ i ≤ r and almost every x we have that Φ
−1
x (ηi (x)) ⊂ W i

x,δ0
and

Φ
−1
x (η∗(x)) ⊂ Scu

δ0,x .

Consider x ∈ Λ0. For 1 ≤ i ≤ r +1, let V i = ⊕
j≥i R

j . Given y, z ∈ η∗(x) note

that W̃ i−1
x,2δ0

(
Φ

−1
x (y)

)
∩V i and W̃ i−1

x,2δ0

(
Φ

−1
x (z)

)
∩V i are singletons. Let

d i
x (y, z) =

∥∥∥W̃ i−1
x,2δ0

(
Φ

−1
x (y)

)
∩V i −W̃ i−1

x,2δ0

(
Φ

−1
x (z)

)
∩V i

∥∥∥ .

Then d i
x defines a metric on ηi−1-equivalence classes in η∗(x); below we will

restrict our d i
x to a metric on ηi−1-equivalence classes in ηi (x), hence the nota-

tion in the superscript. As in [31, Lemma 2.3.2] and [32, Lemma 8.3.2], applying

the dynamics in charts we have the following.

CLAIM 11.3. For z ∈ ηi (x),

d i
f (x)

(
f (x), f (z)

)
≤ eλi+3εd i

x (x, z).

We construction an alternative metric that is independent of the choice of

x. This is slightly different from the construction in [31, (4.2)] and [32, (8.4)];

in particular, we use the Lipschitzness of holonomies in the setting of C 1+β

diffeomorphisms established in [11]. For each 1 ≤ i ≤ r +1, let

Ti ⊂ B
(
x0,1/2δ0ℓ

−1
0

)

be a (dim(⊕ j≥i E j (x)))-dimensional embedded disc that is uniformly transverse

to each V i−1
loc,y,ε

for y ∈ E and such that for 1 ≤ i ≤ r , V i
loc,y,ε

∩Ti is an embedded

mi -dimensional submanifold for each y ∈ E . For x ∈ E and y, z ∈ η∗(x) define

d Ti (y, z) to be

d Ti (y, z) := d Ti

(
V i−1

loc,y,ε∩Ti ,V i−1
loc,z,ε∩Ti

)
,

where d Ti is the metric on Ti obtained by a bi-Lipschitz identification of Ti

with a subset of Rdim(⊕ j≥i E j ). For x ∈ E , d Ti defines a metric on ηi−1-equivalence

classes in η∗(x).

For x ∈ E , let T̃i (x) = Φ
−1
x (Ti ). We have that T̃i (x) and Ti are bi-Lipschitz

equivalent with Lipschitz constant uniform over x ∈ E . Given x ∈ E , consider

the holonomy map

V i ∩W̃ i
x,2δ0

→ T̃i (x)∩W̃ i
x,2δ0

along W̃ i−1
x,2δ0

-leaves. The main result of [11] ensures this map is uniformly (over

x ∈ E) bi-Lipschitz. Given x ∈ E and y, x ∈ η∗(x), define

d̃ T̃i ,i
x (y, z) :=

∥∥∥
(
W̃ i−1

x,2δ0
(Φ−1

x (y))∩ T̃i (x)
)
−

(
W̃ i−1

x,2δ0
(Φ−1

x (z))∩ T̃i (x)
)∥∥∥ .

It follows that restricted to ηi−1-equivalence classes in ηi (x) ⊂Φx

(
W̃ i

x,δ0
(0)

)
, the

metrics d i
x and d̃ T̃i ,i

x are uniformly (over x ∈ E) bi-Lipschitz equivalent.

Using that the charts {Φx : x ∈ E } are uniformly Lipschitz embeddings, we

obtain the following.
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CLAIM 11.4. There is a N > 1 (depending on ℓ0) such that for all x ∈ E and
y, z ∈ ηi (x),

1

N
d Ti (y, z) ≤ d i

x (y, z) ≤ N d Ti (y, z).

We note the N in Claim 11.4 depends only on the choice of the set E (on

which ℓ0 is bounded from above) but not on the choice of E ′ ⊂ E in the choice

of P in Section 11.2. We now specify E ′ ⊂ E to be any subset with

0 <µ(E ′) < ε2

8log N
.

(Below, we will define a metric on ηi−1-equivalence classes in each ηi relative to

which all hyperbolicity is concentrated on returns to E ′. The choice of E ′ with

small mass will be used to control bi-Lipschitz changes of metric that arise over

subsequent returns to E ′.)
Fix x ∈Λ0 and let

n(x) := min
{
n ≥ 0 : f −n(x) ∈ E ′} .

By the choice of P , n(x) is constant on elements of η∗. For y, z ∈ η∗(x), define

d Ti (y, z) := d Ti
(

f −n(x)(y), f −n(x)(z)
)

.(32)

Observe that, as ηi−1( f (x)) ⊂ f ηi−1(x), d Ti defines a metric on ηi−1-equivalence

classes in ηi (x). In particular, we view the space of equivalence classes as a

topological quotient ηi (x)/ηi−1 endowed with this metric.

For 1 ≤ i ≤ r +1, let

B Ti (x,ρ) :=
{

y ∈ ηi (x) : d Ti (y, x) < ρ
}

denote the ball of ηi−1-equivalence classes in ηi (x) of radius ρ centered at x;

note, in particular, that y ∈ B Ti (x,ρ) implies ηi−1(y) ⊂ B Ti (x,ρ).

For 1 ≤ i ≤ r +1, write

γ̃i (x) = liminf
ρ→0

logµ
ηi
x

(
B Ti (x,ρ)

)

logρ
.(33)

Recall that E 0(x) denotes the subspace corresponding to the zero Lyapunov

exponent and E s(x) denotes the subspace corresponding to all negative Lya-

punov exponents.

CLAIM 11.5. For 1 ≤ i ≤ r and x ∈ E, γ̃i (x) ≤ mi and γ̃r+1(x) ≤ dimE 0(x) +
dimE s(x).

Proof. For 1 ≤ i ≤ r , note that ηi (x) ⊂ V i
loc,x,ε

. For x ∈ E , we may isometrically

identify ηi (x)/ηi−1 with a subset of V i
loc,x,ε

∩Ti . Fixing bi-Lipschitz charts on

V i
loc,x,ε

∩Ti , it follows for almost every x ′ ∈ ηi (x) (see [31, Lemma 4.1.4]) that

γ̃i (x ′) ≤ mi . The result for i = r + 1 holds identifying T r+1 with a subset of

RdimE 0+dimE s
.
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The following claim summarizes the discussion in [32, (11.3)±(11.4)] (using

the Lipschitzness of holonomies established in [11] rather than the coordinates

of [32, (8.4)]).

CLAIM 11.6. For 1 ≤ i ≤ r , suppose c ≥ 0 is such that γ̃i (x) ≥ c for almost every
x ∈ E. Then

c ≤ dimi (µ|η+)−dimi−1(µ|η+).

Proof. Note that for x ∈ E we have ξi (x) ⊂Φx (W r
x,1) ⊂Φx (1). Applying the back-

wards dynamics, for some m ≥ 0 we have f −m(x) ∈ E and Φ
−1
f −m (x)

(
f −m

(
ξi (x)

))
∈

Rk (2δ0) ⊂ Rk (δ̂/2). Then the globalized backwards dynamics (29) coincides

with the local backwards dynamics on Φ
−1
x

(
f −m(ξi (x))

)
. Using the local Lip-

schitz property of holonomies established in [11] (for the globalized past dyn-

amics restricted to f̃ −m
x Φ

−1
x (ξi (x)) and pushing forward under f̃ m to charts at

x), for each x ∈ E there is a bi-Lipschitz identification of ξi (x) with a subset

of Rdim⊕ j≤i E j
such that for x ′ ∈ ξi (x), ξi−1(x ′) is contained in a horizontal slice

Rdim⊕ j<i E j × {t ′} and if x ′′ ∉ ξi−1(x ′), then ξi−1(x ′′) and ξi−1(x ′) are contained in

distinct horizontal slices Rdim⊕ j<i E j × {t ′′} and Rdim⊕ j<i E j × {t ′}, respectively.

Under this identification, we may push forward the measures µ
ξi∨η+

x and µ
ηi
y

for all y ∈ ξi (x). Note by construction that ηi refines ξi ∨η+(x). In particular,

µ
ξi∨η+

x =
∫

µ
ηi
y dµ

ξi∨η+

x (y).

Note also that by definition, ξi−1(y)∩ηi (y) = ηi−1(y). As all identifications dis-

cussed are bi-Lipschitz, the claim follows from [32, Lemma 11.3.2] and [32,

Lemma 11.3.1].

Note that if η̂ is a measurable partition of (M ,µ) with η+ ≺ η̂+, then we may

similarly define η̂∗ = (η̂∨P )+ and η̂i = η̂∗∨ξi . We can then define for 1 ≤ i ≤ r+1

γ̂i (x) = liminf
ρ→0

logµ
η̂i
x

(
B Ti (x,ρ)

)

logρ
.

From [32, Lemma 11.3.2], it follows that

essinf γ̂i (x) ≤ essinf γ̃i (x).

Claim 11.6 combined with Proposition 11.7 below and inequality (I) then imply

Proposition 7.6.

11.4. Key Proposition. The following proposition is the analogue of [31, Propo-

sition 5.1] and [32, Proposition 11.2].

PROPOSITION 11.7. For the family of partitions

ηr+1 ≺ ηr ≺ ·· · ≺ η2 ≺ η1

as in Section 11.2, for every 1 ≤ i ≤ r +1 with λi ≥ 0 and a.e. x we have

(λi +3ε)γ̃i (x) ≥ (1−ε)
(
hµ( f ,ηi )−hµ( f ,ηi−1)−2ε

)

where γ̃i (x) is the transverse dimension (33) associated to ηi (x)/ηi−1.
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The 3 inequalities (II), (III), and (IV) now follow from Proposition 11.7, Claims

11.6 and 11.5, and the arbitrariness of ε > 0. Indeed, using Corollary 8.6, for

1 ≤ i ≤ r the quantities

hµ( f ,ηi ) = hµ( f ,ξi ∨η) = hi (η)

are independent of the choice of the partition P . Then (III) follows from Propo-

sition 11.7 and Claim 11.5. Inequality (II) follows from Claim 11.6 with

c =
(1−ε)

(
hµ( f ,ηi )−hµ( f ,ηi−1)−2ε

)

(λi +3ε)

and Proposition 11.7 applied to x ∈ E .

For (IV), first note that

hr (η) = hµ

(
f ,η∨ξr )

= hµ

(
f ,η∨ξr ∨P

)
≤ hµ( f | η)

where the first equality holds by Proposition 9.1, the second equality holds by

Corollary 8.6, and the inequality is from definition. Moreover, given any M <
hµ( f | η) we may assume P in Section 11.2 is chosen so that

hµ

(
f ,η∨P

)
:= hµ

(
f ,ηr+1

)
> M .(34)

If λr+1 < 0, then ηr = ηr+1 and

M ≤ hµ( f ,ηr+1) = hµ( f ,η∨ξr ∨P ) = hµ( f ,η∨ξu) = hr (η) ≤ hµ( f | η)

and the result follows. If λr+1 = 0, then Proposition 11.7 gives

3εdim
(
E 0 ⊕E s)≥ (1−ε)(M −hr (η)−2ε).

As ε< ε0 is arbitrary, we have M ≤ hr (η) and (IV) follows.

We remark in the degenerate situation λ1 < 0 that η∗ is the point partition

and it follows that hµ( f ) = 0. Similarly, if λ1 = 0, then η∗ = η1 and η0 is the

point partition. Proposition 11.7 applies to this setting and shows again that

hµ( f ) = 0.

11.5. Proof of Proposition 11.7. The proof is identical to [31, Proposition 5.1]

(and [32, Proposition 11.2]); we include it for completeness. For 1 ≤ i ≤ r +1

with λi ≥ 0, define measurable functions g , gδ, g∗ : M →R as follows:

g (x) :=µ
ηi−1
x

(
f −1ηi (x)

)
=µ

ηi−1
x

(
f −1ηi−1(x)

)

gδ(x) := 1

µ
ηi
x

(
B i ,T (x,δ)

)
∫

B i ,T (x,δ)
µ
ηi−1
z

((
f −1ηi

)
(x)

)
dµ

ηi
x (z)

=
µ
ηi
x

[(
B i ,T (x,δ)

)
∩ ( f −1ηi )(x)

]

µ
ηi
x

(
B i ,T (x,δ)

)

g∗(x) := inf
δ>0

gδ(x).

The equality in the definition of g (x) follows from Lemma 11.2.

For 1 ≤ i ≤ r + 1 and almost every x, the metric d i identifies the quotient(
ηi (x)/ηi−1

)
with a subset of Rdim(⊕ j≥i E j ). This identification gives a measurable

map ηi (x) →Rdim(⊕ j≥i E j ) that is constant on elements of ηi−1. We may apply [31,

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455±540



SMOOTH ERGODIC THEORY OF Zd -ACTIONS 511

Lemma 4.1.3] to this setting (taking α in the statement of [31, Lemma 4.1.3] to

be the partition f −1ηi of ηi (x)) and obtain

∫
− log g∗(z) dµ

ηi
x (z) ≤ Hµ

ηi
x

( f −1ηi )+ logc +1

where c is a constant depending only on the dimension of Rdim(⊕ j≥i E j ) coming

from the Besicovitch Covering Lemma (see [31, (4.1)].) It follows that gδ → g
µ-a.e. and that

∫
− log g∗(z) dµ(z) ≤

∫
Hµ

ηi
x

( f −1ηi ) dµ(x)+ logc +1

≤ H( f −1ηi | ηi )+ logc +1

<∞.

Recall our choice of E ′ ⊂ E with 0 <µ(E ′) < ε2

8log N relative to which our metric

in (32) is defined. Recall that relative to the metric d Ti (· , ·), all hyperbolicity is

seen only on subsequent returns to E ′.
Consider x whose forwards orbit returns to E ′ infinitely often and let r0 ≤ 0 <

r1 < . . . denote the distinct times when f ri (x) ∈ E ′. For n sufficiently large and

for 0 ≤ k < n with r j ≤ k < r j+1 write

a(x;n,k) := B Ti

(
f k (x),e−(λi+3ε)(n−r j )N 2 j

)
⊂ ηi ( f k (x)).

We check from definition the following.

CLAIM 11.8. a(x;n,k)∩
(

f −1ηi
)(

f k (x)
)
⊂ f −1(a(x;n,k +1)).

Proof. First consider r j ≤ k < r j+1 −1 for some j ≥ 0. By definition of the metric

d Ti (· , ·),

f (a(x;n,k))∩ηi ( f k+1(x)) = B Ti

(
f k+1(x),e−(λi+3ε)(n−r j )N 2 j

)
= a(x;n,k +1).

If k = r j+1 −1 for some j ≥ 0 , then, recursively applying the above,

f (a(x;n,k))∩ηi ( f k+1(x))

= f r j+1−r j

(
B Ti

(
f r j (x),e−(λi+3ε)(n−r j )N 2 j

))
∩ηi ( f r j+1 (x))

⊂ B Ti

(
f r j+1 (x),e−(λi+3ε)(n−r j )e(λi+3ε)(r j+1−r j )N 2 j N 2

)

= a(x,n,k +1)

where the growth of e(λi+3ε)(r j+1−r j ) along the orbit is bounded above by Claim

11.3 and the factor of N 2 comes by converting between the metrics d Ti and

d i
f r j (x)

and d i
f r j+1 (x)

using Claim 11.4.
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Consider the quantity µ
ηi
x (a(x;n,0)). Write p = p(n) := ⌊(1−ε)n⌋. Then

µ
ηi
x (a(x;n,0)) =µ

ηi

f p (x)
(a(x;n, p))

p−1∏

k=0

µ
ηi

f k (x)
(a(x;n,k))

µ
ηi

f k+1(x)
(a(x;n,k +1))

≤
p−1∏

k=0

µ
ηi

f k (x)
(a(x;n,k))

µ
ηi

f k+1(x)
(a(x;n,k +1))

.

Renormalizing and applying Claim 11.8,

µ
ηi

f k (x)
(a(x;n,k))

µ
ηi

f k+1(x)
(a(x;n,k +1))

=µ
ηi

f k (x)
(a(x;n,k))

µ
ηi

f k (x)
(( f −1ηi )( f k (x)))

µ
ηi

f k (x)
( f −1(a(x;n,k +1)))

≤
µ
ηi

f k (x)
(a(x;n,k))

µ
ηi

f k (x)

[
( f −1ηi )( f k (x))∩ (a(x;n,k))

]µηi

f k (x)
(( f −1ηi )( f k (x)))

=
[
gδ(x;n,k)( f k (x))

]−1e−I ( f k (x))

where

δ(x;n,k) := e
−(λi+3ε)

(
n−r jk

)

N 2 jk

for r jk ≤ k < r jk+1 and

I (y) :=− logµ
ηi
y

((
f −1ηi

)
(y)

)
.

Then

(λi +3ε) liminf
r→0

log
(
µ
ηi
x B Ti (x,r )

)

logr

= (λi +3ε) liminf
n→∞

log
(
µ
ηi
x B Ti

(
x,e−(λi+3ε)n

))

loge−(λi+3ε)n

= (λi +3ε) liminf
n→∞

log
(
µ
ηi
x a(x;n,0)

)

loge−(λi+3ε)n

≥ liminf
n→∞

1

n

p(n)∑

k=0

log gδ(x;n,k)

(
f k (x)

)
+ lim

n→∞
1

n

p(n)∑

k=0

I
(

f k (x)
)

.(35)

For almost every x, limn→∞
1
n

∑p(n)

k=0
I ( f k (x)) exists and

lim
n→∞

1

n

p(n)∑

k=0

I ( f k (x)) = (1−ε)Hµ(ηi | f ηi ) = (1−ε)hµ( f ,ηi ).(36)

Now, let

Aδ′ :=
{

x : − log gδ(x) ≤− log g (x)+ε for all δ≤ δ′
}

.
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Since
∫
− log g∗ <∞, taking δ′ sufficiently small we can ensure

∫

M∖Aδ′
− log g∗ < ε.

For a.e. x, we may take n sufficiently large so that

Jn = #
{

0 ≤ i ≤ n : f i (x) ∈ E ′
}
≤ 2nµ(E ′).

By the choice of µ(E ′), for large enough n we have

δ(x;n,k) := e−(λi+3ε)(n−r jk
)N 2 jk ≤ e−ε(n−p(n))+2log N Jn ≤ e(−ε2+ε2/2)n ≤ δ′

for all 0 ≤ k ≤ p(n) = ⌊(1−ε)n⌋. Then, for such x and n,

p(n)∑

k=0

− log gδ(x;n,k)

(
f k (x)

)

≤
∑

{0≤k≤p(n): f k (x)∈Aδ′ }

− log gδ(x;n,k)

(
f k (x)

)
+

∑

{0≤k≤p(n): f k (x)∉Aδ′ }

− log gδ(x;n,k)

(
f k (x)

)

≤
∑

{0≤k≤p(n): f k (x)∈Aδ′ }

(
− log g ( f k (x))+ε

)
+

∑

{0≤k≤p(n): f k (x)∉Aδ′ }

− log g∗
(

f k (x)
)

whence (from the pointwise ergodic theorem)

limsup
n→∞

1

n

p(n)∑

k=0

− log gδ(x;n,k)

(
f k (x)

)

≤ (1−ε)

[∫

A′
δ

(
− log g +ε

)
dµ+

∫

M∖Aδ′
− log g∗ dµ

]

≤ (1−ε)

[∫
− log g dµ+2ε

]

= (1−ε)
[
Hµ

(
f −1ηi−1|ηi−1

)
+2ε

]

= (1−ε)
[
hµ( f ,ηi−1)+2ε

]
.

Combining the above with (35) and (36), the proposition follows.

12. PROOF OF THEOREM 7.2 AND PROPOSITION 7.3

Let F be an f -invariant, C 1+β-tame, measurable foliation. Let ε < ε0 be

sufficiently small, let {Φx } be a family of ε-Lyapunov charts, and let {Ψx } be a

family of charts adapted to F built from Φx as in Proposition 5.4.

Let S0
ρ and V F ,u(x,ρ) be as in Section 8.2.1 and let

SF ,u
ρ =

⋃

x∈S0
ρ

V F ,u(x,ρ).

For y ∈ SF ,u
ρ , select x ∈ S0

ρ with y ∈V F ,u(x,ρ) and write DF ,u(y) =V F ,u(x,ρ).
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Let ξ̂ be the partition

ξ̂(y) =
{

DF ,u(y) y ∈ SF ,u
ρ

U ∖SF ,u
ρ y ∉ SF ,u

ρ

(37)

and let ξ̃F
u

:= ξ̂+. Note that V F ,u(x,ρ) ⊂V r
loc,x,ε

for x ∈ SF ,u
ρ and thus distances

along each V F ,u(x,ρ) contract exponentially fast under backwards dynamics.

Choosing from a full measure set of ρ, we similarly obtain an increasing genera-

tor ξ̃F
u

subordinate to F
u satisfying analogues of (1)±(4) of Section 8.2. More-

over, since V F ,u
loc,x,ε

is an embedded submanifold of each V u
loc,x,ε

, setting

ξF
u

:= ξ̃F
u
∨ξu

then ξF
u

is still an increasing generator subordinate to F
u satisfying analogues

of (1)±(4) of Section 8.2.

Let η be a measurable partition of (M ,µ). As in Lemma 8.7, if ξF
u

1 and ξF
u

2

are any two partitions satisfying the analogues of (1)±(4) of Section 8.2, then

hµ

(
f ,ξF

u

1 ∨η
)
= hµ

(
f ,ξF

u

2 ∨η
)

.(38)

We have the following which immediately implies Proposition 7.3.

CLAIM 12.1. For any partition ξF
u

as above we have

hµ( f |F ∨η) = hµ

(
f ,η∨ξF

u
)
= Hµ

(
η+∨ξF

u
| f

(
η+∨ξF

u
))

.

Proof. Given b > 0, let ξ be a measurable partition subordinate to F such that

hµ( f |F ∨η)−b ≤ hµ( f | η∨ξ) = hµ( f ,η∨ξ∨ξu)

where the equality follow from Proposition 8.3. We construct a partition ξF
u

satisfying the analogues of (1)±(4) of Section 8.2 such that

hµ( f |F ∨η)−b ≤ hµ( f ,ξF
u
∨η) ≤ hµ( f |F ∨η).(39)

The claim follows since by (38), the value of middle term of (39) is independent

of the choice of such ξF
u

and thus (39) holds for all b > 0.

From Remark 6.5, we may further assume ξ(x) is precompact in F
′(x) for

a positive measure set of x. Fix ρ, S0
ρ , SF ,u

ρ , and Sr
ρ used in the construction

of partitions ξF
u

and ξu . We may moreover assume S0
ρ was chosen so that in

addition to the properties in Section 8.2.1, there exists ρ̂0 such that for 0 < ρ < ρ̂0

and x ∈ S0
ρ ,

1. V F (x,ρ) ⊂ ξ(x) (where V F (x,ρ) is as in Section 8.2.1);

2. ξ(x) is precompact in F
′(x) and if y ∈ ξ(x)∩B(x0,ρ), then y ∈V F (x,ρ).

Recall for x ∈ S0
ρ we also have

3. V F (x,ρ)∩V u(x,ρ) =V F ,u(x,ρ).

Given 0 < δ < min
{
e−2λ0−4ε, ρ̂0

}
, let P be a measurable partition of (M ,µ)

satisfying the following:

1. Hµ(P ) <∞;
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2. P refines
{

SF ,u
ρ , M ∖SF ,u

ρ

}
;

3. P is adapted to {Φ,δ}.

By Corollary 8.6,

hµ( f |F ∨η)−b ≤ hµ

(
f ,P ∨η∨ξ∨ξu)

.(40)

Take ζ= (η∨P ∨ξ)+∨ξu .

Define ξ̂ as in (37) and take ξ̃F
u

(y) = ξ̂+ and ξF
u

(y) = ξ̃F
u

(y)∨ξu . Note that

SF ,u
ρ ⊂ Sr

ρ and

SF ,u
ρ ⊂

⋃

x∈S0
ρ

V F (x,ρ) ⊂
⋃

x∈S0
ρ

ξ(x).

For any y , any z ∈ ζ(y), and all m ≥ 0 we have the following:

1. f −m(z) ∈ SF ,u
ρ if and only if f −m(y) ∈ SF ,u

ρ .

2. For all m ≥ 0 such that f −m(y) ∈ SF ,u
ρ , there is x ∈ S0

ρ with

f −m(z), f −m(y) ∈ ξu(x) ⊂V u(x,ρ)

and

f −m(y), f −m(z) ∈ ξ(x)∩B(x0,ρ) ⊂V F (x,ρ).

In particular, for all such m, we have f −m(z), f −m(y) ∈V F (x,ρ)∩V u(x,ρ) =
V F ,u(x,ρ).

It follows that z ∈ ξ̃F
u

(y). Since we also have z ∈ ξu(y), it follows that z ∈ ξF
u

(y)

whence ξF
u ≺ ζ.

By definition we have

hµ( f |F ∨η) ≥ hµ( f |F u ∨η) ≥ hµ

(
f ,ξF

u
∨η

)
.

On the other hand, (using (40), that ξF
u ≺ ζ, and Claim 8.5) we have that

hµ( f |F ∨η)−b ≤ hµ( f ,ζ) = hµ( f ,ζ∨ξF
u

) ≤ hµ( f ,ξF
u
∨η).

This completes the proof of the claim.

We turn to proof of Theorem 7.2. Let ξF
u

be an increasing generator subordi-

nate to F
u as above. From Claim 12.1, we have that hµ( f |F ) = hµ

(
f ,ξF

u )
. Let

η= ξF
u

. We first claim for 1 ≤ i ≤ r that

γi (µ | η) ≤ mi (F ).

Indeed we may assume that the transversals Ti in Section 11.3 were taken to be

in general position with V F

loc,x,ε
for every x ∈ E ⊂ S0

ρ . Let P be as in Section 11.2

and let η∗ = ξF
u ∨P . Then for x ∈ E , we have ηi (x) ⊂ V i

loc,x,ε
∩V F

loc,x,ε
∩Ti and

the metric d Ti identifies ηi (x)/ηi−1 with a subset of a mi (F )-dimensional sub-

manifold of Rdim(⊕ j≥i E j ). It follows that γ̃i (x) ≤ mi (F ). Inequality (I), Proposition

11.7, and Claim 11.5 of Section 11 then show that γi (µ|ξF u
) ≤ mi (F ) whence

the inequality in Theorem 7.2 then follows from Theorem 7.7.
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To complete the proof of Theorem 7.2 we claim that if

hµ

(
f ,ξF

u
)
=

∑

1≤i≤r
λi mi (F ),

then, exactly as in [28, Theorem 3.4] or [31, (6.1)], Jensen’s inequality implies

that µ
ξF ,u

x is absolutely continuous along F
u for almost every x. We sketch the

details in the remainder.

Recall that for x ∈ S0
ρ we have ξF

u
(x) ⊂V F ,u

loc,x,ε
. Define

n(x) = min
{

n ≥ 0 : f n(x) ∈ S0
ρ

}

and

ξ
F

u

(x) = f −n(x)
(
ξF

u (
f n(x)(x)

))
.

We then have

1. ξ
F

u

is a partition of (M ,µ) subordinate to F
u ;

2. ξ
F

u

(x) ⊂V F ,u
loc,x,ε

for almost every x;

3. ξ
F

u

≺ f −1ξ
F

u

;

4. hµ( f |F ) = hµ

(
f ,ξ

F
u )

.

Replacing ξF
u

with ξ
F

u

we may assume ξF
u

satisfies (2) for the remainder. This

choice ensures that Dz f is defined for all z ∈ ξF
u

(x) and almost every x.

For each C ∈ ξF
u

and x ∈C restrict the ambient Riemannian metric to V F ,u
loc,x,ε

and consider the induced Riemannian volume mx on C . Note that mx = my if

y ∈C and, since ξF
u

is subordinate to F
u , mx is a positive measure for almost

every x.

Define ∆x : ξF
u

(x) → [0,∞) by

∆x (y) = lim
n→∞

∏n
i=1

JF ,u( f −i (x))
∏n

i=1
JF ,u( f −i (y))

where for z ∈ ξF
u

(x) we define

JF ,u(z) =
∣∣∣detDz f ↾TzV F ,u

loc,x,ε

∣∣∣

and the determinant is computed against the Riemannian metric on U0. Note

that as ξF ,u(x) ⊂ V F ,u
loc,x,ε

for a.e. x, for all y ∈ ξF
u

(x) we have f −n(y) ∈ U0 and

JF ,u( f −n(y)) is defined for all n ≥ 0.

Arguing in ε-charts {Φx }, we have that as in [31, (6.1)] the following.

CLAIM 12.2.

(a) For almost every x, the limit defining ∆x converges and ∆x is uniformly
β-Hölder on ξF

u
(x).

(b) Defining L(x) :=
∫
ξFu

(x)∆x (y) dmx (y), for almost every x

0 < L(x) <∞.

(c) L( f (x)) = JF
u

(x)
∫

( f −1ξFu
)(x)∆x (y) dmx (y) ≤ JF

u
(x)L(x).
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(d) Defining νx on ξF
u

(x) by

dνx (y) = ∆x (y)

L(x)
dmx (y)

we have that νx = νy if y ∈ ξF
u

(x), {νx } is a measurable family of probabil-
ity measures, and

∫
− logνx ( f −1ξF

u
)(x) dµ(x) =

∫
log JF

u
(x) dµ(x).

Let ν be the probability measure defined on M by

ν(A) =
∫

νx (A) dµ(x)

for any Borel set A. As the derivative of the charts in Section 3.2 is controlled by

a slowly increasing function, we have (see for example [29, Proposition 2.1])
∫

log
(

JF
u

(x)
)

dµ(x) =
∑

mi (F )λi .

Exactly as in [31, Lemma 6.1.3] (see also [28, Theorem 3.4]), Jensen’s inequal-

ity gives the following.

CLAIM 12.3. If
∫

log JF
u

(x) dµ(x) = Hµ( f −1(ξF
u

) | ξF
u

), then ν and µ coincide
on the σ-algebra generated by f −1(ξF

u
).

Iterating, one has that ν and µ coincide on the σ-algebra generated by

f −n(ξF
u

) for all n ≥ 0. As ξF
u

generates, it follows that the measures ν and

µ coincide. Theorem 7.2 then follows.

Part III. Product structure of entropy

by Aaron Brown, Federico Rodriguez Hertz and Zhiren Wang

For a smooth action of Zd preserving a Borel probability measure, we show

that entropy satisfies a certain ªproduct structureº along coarse unstable man-

ifolds. Moreover, given two smooth Zd -actionsÐone of which is a measurable

factor of the otherÐwe show that all coarse Lyapunov exponents contributing

to the entropy of the factor system are coarse Lyapunov exponents of the to-

tal system and derive an Abramov±Rohlin formula for entropy subordinated to

coarse Lyapunov manifolds.

13. STATEMENT OF RESULTS

As in Part I, we take M to be a C∞ manifold equipped with a Borel probability

measure µ. Let α : Zd ×M → M be an action by measure-preserving, measur-

able transformations. We moreover assume (M ,µ) and α satisfy the standing

hypotheses (either hypotheses I or II) of Section 3.2. We further assume for

simplicity of statements and proofs that µ is ergodic.
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13.1. Product structure and subadditivity of entropy. Our first main result is

the following ªproduct structure of entropyº formula. Write L for the Lyapunov

exponents of α with respect to µ; at times we also write L =L
α(µ) to empha-

size that we consider Lyapunov exponents for the action of α and the invariant

measure µ. Let L̂ denote the coarse Lyapunov exponents of α with respect to

µ. For χ ∈ L̂ , let W χ denote the corresponding foliation by coarse Lyapunov

manifolds.

THEOREM 13.1. Let F be an α-invariant, C 1+β-tame, measurable foliation and
let η be an α-invariant measurable partition. Then for n ∈Zd ,

hµ(α(n) |F ∨η) =
∑

{χ∈L̂ :χ(n)>0}

hµ

(
α(n) |F ∨W

χ∨η
)

.

In particular, we have the following.

COROLLARY 13.2 (Product structure of entropy).

hµ(α(n)) =
∑

{χ∈L̂ :χ(n)>0}

hµ

(
α(n) |W χ

)
.(41)

Note that if f : M → M and g : N → N are diffeomorphisms preserving µ1 and

µ2, respectively, then there is a natural Z2-action on M×N preserving µ1×µ2. In

this case, (41) follows immediately from the classical Ledrappier±Young entropy

formula. Our result (41) suggestsÐat least at the level of entropyÐthat unstable

conditional measures associated to an ergodic α-invariant measure behave like

a product measure along coarse Lyapunov manifolds. It would be of interest to

know if the unstable conditional measures are always products of conditional

measures along coarse Lyapunov manifolds. In homogeneous settings such

as those considered in [17, 15, 16], similar product structures of entropy are

established by first establishing a product structure of the measure along total

unstable manifolds.

As explained in Lemma 14.12 below, the expression

n 7→
∑

{χ∈L̂ :χ(n)>0}

hµ

(
α(n) |F ∨W

χ∨η
)

extends from the set {n ∈Zd : χ(n) > 0} to a linear functional Rd →R. In particu-

lar, combined with Theorem 13.1 above, we recover the subadditivity of entropy

of Zd -actions first obtained by Hu in [21] for commuting C 2 diffeomorphisms

of compact manifolds.

THEOREM 13.3 (c.f. [21, Theorem B]). Let F be an α-invariant, C 1+β-tame,
measurable foliation and let η be an α-invariant measurable partition. Then for
all n,m ∈Zd

1. hµ(α(n +m) |F ∨η) ≤ hµ(α(n) |F ∨η)+hµ(α(m) |F ∨η);
2. moreover, if F ∨W u

n =F ∨W u
m , then equality holds.

Indeed, observe that if χ(n +m) > 0, then either χ(n) > 0 or χ(m) > 0. Both

conclusions then follow from Theorem 13.1 and the linearity in Lemma 14.12.
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The main technical results we establish to prove Theorem 13.1 are Proposi-

tion 15.4 and Corollary 15.6, below. As a direct consequence of Corollary 15.6,

we obtain a certain exact dimensionality formula for measures invariant under

Zk -actions. Let F be an α-invariant, C 1+β-tame, measurable foliation and let η

be an α-invariant measurable partition. For a coarse Lyapunov exponent χ ∈ L̂ ,

let dF ,χ,η(µ) be the almost-surely constant value of the pointwise dimension of

µ along F ∨W χ∨η (see Section 7.3). For n ∈ Zd , let d
F ,u,η
n (µ) be the almost-

surely constant value of the pointwise dimension of µ along F ∨W u
n ∨η.

Corollary 15.6 (with I := {λi ∈L : λi (n) > 0}) immediately implies the follow-

ing.

COROLLARY 13.4 (Product structure of unstable dimension). For any n ∈Zd ,

d
F ,u,η
n (µ) =

∑

χ(n)>0

dF ,χ,η(µ).

13.2. Measurable factors and coarse-Lyapunov Abramov±Rohlin formula.

Consider a second action α of Zd on (N ,ν) satisfying the standing hypotheses II

of Section 3.2. We say that α is a measurable factor of α if there is a measurable

map ψ : M → N with ψ∗µ = ν and ψ ◦α(n) = α(n) ◦ψ for all n ∈ Zd . Let A
ψ

denote the α-invariant partition of (M ,µ) into level sets of ψ.

We assume µ and thus ν are ergodic. To distinguish data associated to each

action, let L̂
α(ν) and L̂

α(µ) denote, respectively, the coarse Lyapunov expo-

nents for the actions α and α of Zd on (N ,ν) and (M ,µ).

Consider a coarse Lyapunov exponent χ ∈ L̂
α(ν) of α and suppose that

hν

(
α(n) |W χ

)
> 0(42)

for some n ∈Zd with χ(n) > 0. Let E = ker(χ) ⊂Rd be the Lyapunov hyperplane
determined by χ. It follows from Corollary 13.2 and (42) that for an open cone

C ⊂Rd containing E , the function

n 7→ hν(α(n))

is not a linear function on C ∩Zd . By the classical Abramov-Rohlin formula (21),

for every n ∈Zd we have that

hν(α(n)) = hµ(α(n))−hµ

(
α(n) |A ψ

)
.

If no Lyapunov exponent of α were proportional to χ then, taking any open

cone C ′ ⊂ C ⊂ Rd containing E and disjoint from the kernels of all non-zero

Lyapunov exponents in L
α(µ), it follows from Theorem 13.3 that both hµ(α(n))

and hµ(α(n) |A ψ) coincide with linear functions on C ′∩Zd , contradicting the

properties of C above.

It thus follows that every coarse Lyapunov exponent χ ∈ L̂
α(ν) that con-

tributes entropy to α is proportional to a Lyapunov exponent of α. We say

χ ∈ L̂
α(ν) is essential if

hν

(
α(n) |W χ

)
> 0
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for some (and hence all) n ∈Zd with χ(n) > 0. Let L̂
α

ess(ν) denote the essential

coarse Lyapunov exponents of the action α of Zd on (N ,ν). As remarked above,

all essential exponents χ of α are proportional to Lyapunov exponents of α. We

show that they are, in fact, positively proportional.

THEOREM 13.5. For every χ ∈ L̂
α

ess(ν) there exists χ ∈ L̂
α(µ) with χ positively

proportional to χ.

Analogous statements to Theorem 13.5 are established (for all coarse Lya-

punov exponents) in [24, Section 6.2] and [22, Lemma 2.3] under the assump-

tion that the factor map ψ is Hölder continuous using exponential contraction

of the dynamics along stable manifolds. Our more general statement in Theo-

rem 13.5 follows for measurable factors using only entropy considerations and

Theorem 7.7.

REMARK 13.6. Consider two ergodic actions of Zd (satisfying the standing hy-

potheses II of Section 3.2), one denoted α on (M ,µ) and the other denoted α

on (N ,ν). A necessary condition for these actions to be measurable isomorphic

is that the entropy functions Zd → [0,∞)

n 7→ hµ(α(n)), n 7→ hν(α(n))(43)

coincide. By [21, Theorem B], both functions (43) extend to semi-norms on Rd ;

moreover, the unit balls are convex (possibly non-complact) polytopes whose

faces meet only along kernels of coarse Lyapunov exponents. By Theorem 13.1,

the faces of the unit ball in each norm meets precisely along the kernels of those

coarse Lyapunov exponents that contribute entropy to the system.

We note that coincidence of the entropy functions (43) is not sufficient to

conclude the actions α and α are measurably conjugate; furthermore, as noted

by the referee, coincidence of the entropy functions also does not imply our

Theorem 13.5. In particular, Theorem 13.5 provides perhaps a finer mechanisms

to distinguish Zd actions up to measurable isomorphism.

As an example, consider Z2 generated by the standard basis {e1,e2} in R2.

Consider the linear functionals on R2,

λ1 = e∗1 , λ2 =−e∗1 , λ3 = e∗2 , λ4 =−e∗2 , λ5 = e∗1 +e∗2 , λ6 =−e∗1 +−e∗2 .

Suppose the exponents of the action α on (M ,µ) are λ1,λ2,λ3,λ4,λ5, and λ6,

each with conditional dimension exactly 1. Then the entropy function of α is

(n1e1,n2e2) 7→ 2max{|n1|, |n2|, |n1 +n2|}.(44)

Suppose the exponents of the action α on (N ,ν) are λ2,λ4, and λ5, each with

conditional dimension exactly 2. Then, the entropy function of α is again (44).

In particular, while the entropy functions coincide, Theorem 13.5 implies the

actions α and α are not measurably isomorphic as λ1 contributes entropy to α

but α has no exponent positively proportional to λ1. Similarly, Theorem 13.5

implies the actions n 7→α(n) and n 7→α(−n) on (N ,ν) are not measurably con-

jugate.
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We return to the setup at the beginning of Section 13.2. Given χ ∈ L̂
α(µ), let

χ ∈ L̂
α(ν) denote the equivalence class of exponents positively proportional

to those in χ if such a class exists; if no such class exists let χ denote the 0

functional. If χ = 0, let W χ denote the point partition on (N ,ν). Note that in

this case hν

(
α(n) |W χ̂

)
= 0.

Recall the classical Abramov±Rohlin formula (21). We establish an analogous

formula for entropy subordinate to coarse Lyapunov foliations under a measur-

able factor map ψ intertwining smooth Zd -actions α and α.

THEOREM 13.7 (Coarse-Lyapunov Abramov±Rohlin formula). Let χ ∈ L̂
α(µ).

Then for n ∈Zd with χ(n) > 0 we have

hµ

(
α(n) |W χ

)
= hν

(
α(n) |W χ

)
+hµ

(
α(n) |W χ∨A

ψ
)

.(45)

We note that in Proposition 3.1 and Corollary 3.4 of [17], an analogous result

is derived in the context of joinings of homogeneous actions in which case the

factor maps are smooth.

14. PRELIMINARIES

14.1. Lyapunov hyperplanes, (sub)chambers, and complete classes of expo-

nents. In the rest of this article, the letter χ (possibly with superscripts and

subscripts) always denotes a coarse Lyapunov exponent and the letter λ always

denotes a Lyapunov exponent or more general linear functional.

Consider an abstract collection L = {λ1, . . . ,λp } of linear functionals λi : Rd →
R. As in Definition 4.9, declare that λi ,λ j ∈ L are equivalent if they are posi-

tively propositional. Let L̂ denote the equivalence classes in L . Previewing our

main application where L are the Lyapunov exponents for an ergodic action

of Zd , given a non-zero λi ∈ L , the Lyapunov hyperplane associated to λi is

the kernel of λi in Rd . Note that if λi and λ j are proportional, then λi and λ j

induce the same Lyapunov hyperplane.

An (open) chamber W ⊂ Rd (associated to L ) is a connected component

of the complement of all Lyapunov hyperplanes in Rd . An (open) subchamber
U ⊂Rd (associated to L ) is a connected component of the complement in W of

all hyperplanes associated to all non-zero linear functionals of the form λi −λ j

and λi for all non-zero λi ,λ j ∈ L with λi ̸= λ j . Every subchamber is an open

subset of some chamber. Given a chamber W ⊂ Rd , we say a non-zero linear

functional L : Rd → R is in the wall of W if the intersection of the boundary of

W with the kernel of L, ∂W ∩kerL, is not contained in any proper subspace of

kerL; in this case, ∂W ∩kerL is a closed, convex subset with nonempty interior

in kerL. Similarly, a non-zero linear functional L : Rd → R is in the wall of a

subchamber U if ∂U ∩kerL is not contained in any proper subspace of kerL.

Elements v ∈ Rd of (open) subchambers are said to be generic; that is, v is

generic if it is outside the kernels of all non-zero linear functionals of the form

λi and λi −λ j for λi ,λ j ∈L .
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For each v ∈Rd , fix a permutation σ(v) : {1, . . . , p} → {1, . . . , p} so that

λσ(v)(1)(v) ≥λσ(v)(2)(v) ≥ ·· · ≥λσ(v)(p)(v).

Note that if v is generic, then the above inequalities are strict, the permutation

σ(v) is uniquely defined and is constant on the subchamber.

DEFINITION 14.1. We say two chambers W1 and W2 are adjacent if the inter-

section of their boundaries, ∂W1∩∂W2, has nonempty interior in both ∂W1 and

∂W2. Equivalently, W1 and W2 are adjacent if there is a nonzero linear func-

tional L : Rd →R (proportional to some functional λi ∈L ) in the wall of W1 and

W2 such that ∂W1 ∩∂W2 is not contained in any proper subspace of kerL. To

emphasize the role of L, we sometimes say W1 and W2 are adjacent through L.

Similarly, two subchambers U1,U2 are adjacent if the intersection of their

boundaries, ∂U1 ∩∂U2, has nonempty interior in both ∂U1 and ∂U2 or, equiva-

lently, if there is a nonzero linear functional L : Rd →R (proportional to a func-

tional of the form λi or λi −λ j ) in the wall of U1 and U2 such that ∂U1 ∩∂U2 is

not contained in any proper subspace of kerL.

LEMMA 14.2. Let U1 and U2 be distinct subchambers adjacent through some
L : Rd →R. Then for all v1 ∈U1 and v2 ∈U2 the permutations σ(v1),σ(v2) differ
by disjoint transpositions. Moreover, if σ(v2)(k) ̸=σ(v1)(k) and if λσ(v1)(k) is not
proportional to L, then λσ(v1)(k) and λσ(v2)(k) are linearly independent.

More specifically, (up to permutation) the set of indices {1, . . . , p} may be writ-
ten as the disjoint union of intervals I1, . . . , Ir , each of the form I j = {ℓ j ,ℓ j +
1, . . . ,ℓ j + t j } for some t j ≥ 0, such that

1. for every 1 ≤ j ≤ r −1, every k1 ∈ I j and k2 ∈ I j+1, and every v ∈U1 ∪U2,

λσ(v)(k1)(v) >λσ(v)(k2)(v);

2. if k ∈ I j is of the form k = ℓ j + t for 0 ≤ t ≤ t j , then

σ(v2)(k) =σ(v2)(ℓ j + t ) =σ(v1)(ℓ j + t j − t );

3. in particular, if t j = 0 so that #I j = 1, then for k ∈ I j ,

σ(v2)(k) =σ(v1)(k);

4. for each j with #I j ≥ 2, either the linear functionals
{
λσ(v1)(k) : k ∈ I j

}
=

{
λσ(v2)(k) : k ∈ I j

}

are pairwise linearly independent or are all proportional to L.

The lemma essentially describes the following phenomena: for elements v
inside the wall U1 ∩U2 ∩kerL between U1 and U2, the values of different Lya-

punov exponents may coincide; however, the pattern of coincidence does not

depend on the choice of v . Each individual group of Lyapunov exponents that

coincide along the wall can have their indices written as an interval I j . The

union U1 ∪U2 can be viewed as a neighborhood of U1 ∩U2 ∩kerL in which the

ordering of exponents are perturbed, but such perturbation would respect the

blocks I j . Moreover, if λ, λ′ are both in the group represented by I j , then λ−λ′
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is proportional to L. In other words, the Lyapunov exponents in the same group

can be arranged in a line in
(
Rd

)∗
in the direction of L. Crossing from one side

of the wall to the other changes the sign of the value of L, and hence reverses

the ordering within this group of Lyapunov exponents.

Proof of Lemma 14.2. Fix a nonzero L : Rd →R such that U1 and U2 are adjacent

through L. Let {L,ξ2, . . . ,ξd } be a basis for the dual space
(
Rd

)∗
. Let H = kerL

and let Z = ⋂d
i=2

ker(ξi ). Let ΠH : Rd → H and ΠZ : Rd → Z denote the projec-

tions relative to the direct sum decomposition Rd = H ⊕Z and for v ∈Rd , write

v = vH + vZ where vH = ΠH (v) ∈ H and vZ = ΠZ (v) ∈ Z . For every λ ∈ L , the

functionals λ◦ΠH and λ◦ΠZ are linearly independent when both are non-zero;

in particular, for any λ ∈L , there exists a unique aλ ∈R such that

λ=λ◦ΠH +aλL ◦ΠZ .(46)

Let v0 ∈ H = kerL be an element in the interior (in kerL) of ∂U1 ∩∂U2 that is

generic for the restriction of L to the subspace H . Fix a nonzero u0 ∈ Z . Let

q1 < q2 < ·· · < qr be the distinct values of λi (v0) for λi ∈L . Partition the index

set {1, . . . , p} of L into r sets Q j := {i : λi (v0) = q j }. Take I j to be the preimage of

the Q j under the permutation σ(v1) for some (and hence all) v1 ∈U1. Since v0

is generic in H , given i1, i2 ∈Q j we have λi1
↾H =λi2

↾H whence

λi1
◦ΠH =λi2

◦ΠH .

If i1 ̸= i2 are distinct elements of Q j , it follows from the uniqueness of the de-

composition (46) that the coefficients aλik
are distinct over all indices ik ∈ Q j .

Assuming q j ̸= 0, then λi ◦ΠH ̸= 0 for all i ∈ Q j . Conclusion (4) then follows

from (46).

Since v0 was chosen in the interior of ∂U1 ∩∂U2 ∩kerL and since Z is trans-

verse to H , replacing u0 with −u0 if necessary, for all c > 0 sufficiently small we

have v0 + cu0 ∈U1 and v0 − cu0 ∈U2. Since the set {aλ : λ ∈ L } is finite, given

any ε> 0, for all c > 0 sufficiently small we have

|λ(v0 ± cu0)−λ(v0)| < ε

for all λ ∈L . Taking ε> 0 sufficiently small and using that the permutations are

constant on subchambers, we verify for vi ∈Ui that I j :=σ(v1)−1Q j =σ(v2)−1Q j

and that conclusion (1) holds.

Finally, note that L(u0) ̸= 0. Consider the case L(u0) > 0. Take v1 = v0 + cu0

and v2 = v0−cu0 for c > 0 sufficiently small. Then for each 1 ≤ j ≤ r and writing

the interval I j as I j = {ℓ j ,ℓ j +1, . . . ,ℓ j + t j }, we have

aλσ(v1)(ℓ j )
> aλσ(v1)(ℓ j +1)

> ·· · > aλσ(v1)(ℓ j +t j )
.

From the decomposition (46),

λσ(v1)(ℓ j )(v1) > ·· · >λσ(v1)(ℓ j+t j )(v1)

and

λσ(v1)(ℓ j )(v2) < ·· · <λσ(v1)(ℓ j+t j )(v2).

A similar analysis holds if L(u0) < 0. Conclusion (2) then follows.
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14.2. Complete and strongly integrable collections of exponents. We now re-

turn to the special case that L =L
α(µ) are the Lyapunov exponent functionals

for an ergodic action α of Zd on (M ,µ). We recall that for each Lyapunov ex-

ponent λi ∈L
α(µ), the function λi : Zd →R extends uniquely to a linear func-

tion λi : Rd →R. Recall we take M to be a C∞ manifold equipped with a Borel

probability measure µ and take α : Zd ×M → M to be an action satisfying the

hypotheses (either hypotheses I or II) of Section 3.2 with µ ergodic.

DEFINITION 14.3. Given a subset Σ⊂V where V ∼=Rd ,

1. Define the positive cone of Σ as C (Σ) := {ξ ∈V ∗ : ξ(v) > 0 for all v ∈Σ};

2. If C (Σ) ̸=∅, define the positive convex hull of Σ as H(Σ) :=C (C (Σ)) = {v ∈
V : ξ(v) > 0 for all ξ ∈C (Σ)}.

REMARK 14.4. The following are always true:

1. C (Σ) is convex and closed under scalar multiplication by positive real num-

bers;

2. C (Σ) is open if Σ is finite;

3. H(Σ) ⊃Σ.

For our application, we will only study C (I ) and H(I ) where I is a subset

of Lyapunov exponents of the action and hence finite.

The following lemma is easy to establish and we omit its proof.

LEMMA 14.5. If C (Σ) ̸=∅, then H(Σ) is the smallest positive convex cone (i.e., a
convex subset that is closed under scalar multiplication by positive real numbers)
that contains Σ.

Given a subset I ⊂L
α(µ), write

EI

x =
⊕

λ∈I

D0φx Eλ(x)

for the subspace of Tx M spanned by Oseldec’s subspaces associated to λ ∈ I .

(Here, φx are the dynamical charts introduced in Standing Hypotheses II of

Section 3.2.)

Note in the case that I = χ is a single coarse Lyapunov exponent, C (I ) is a

open half-space. For I ⊂L
α(µ), C (I ) is a union of Weyl chambers.

With the above notation, we have the following definitions.

DEFINITION 14.6. Let I ⊂L
α(µ) be such that C (I ) ̸=∅.

1. We say I is complete if I = H(I )∩L
α(µ).

2. The completion of I is H(I )∩L
α(µ).

3. We say a collection I
′ is integrable if there is an α-invariant, C 1+β-tame

measurable foliation F with TxF = EI
′

x for almost every x.

4. Given a complete collection I ⊂ L , we say a collection I
′ is strongly

integrable with respect to I if there exists generic n1, . . . ,nk ∈ C (I ) and

κ1, . . . ,κk ∈ (0,∞) such that

I
′ = {λ ∈I : λ(ni ) ≥ κi for all 1 ≤ i ≤ k}.
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REMARK 14.7. We make a number of observations about the above definitions

(1) If I is complete, then it is a union of coarse Lyapunov exponents.

(2) From Proposition 4.6, every complete or strongly integrable collection I ⊂
L

α(µ) is integrable; we write W I for the associated α-invariant, C 1+β-

tame, measurable foliation.

(3) I is strongly integrable w.r.t. itself. If I
′ is strongly integrable (w.r.t.

I ), then given n ∈ C (I ) and κ > 0, the collection {λi ∈ I
′ : λi (n) ≥ κ}

is strongly integrable.

LEMMA 14.8. Fix a complete collection I ⊂L
α(µ) with C (I ) ̸=∅. Suppose for

some coarse Lyapunov exponent χ there are two Weyl chambers W1, W2 adjacent
through kerχ with W1 ⊂C (I ). Then I ∖χ is a complete collection.

We also note that if I is complete and χ⊂I , then the completeness of I∖χ

necessarily implies kerχ contains a face of C (I ). Note that in the assumption

of the lemma, W2 may or may not be in C (I ). However, if χ⊂I , then W2 must

be outside of C (I ).

Proof of Lemma 14.8. If χ ̸⊂I , then by Remark 14.7(1), I ∖χ=I and thus the

statement is trivial. So we assume χ⊂ I . It is clear that C (I ∖χ) ⊃C (I ) and

thus H(I∖χ) ⊂ H(I ) =I by completeness of I . In addition (I∖χ) ⊂ H(I∖χ)

by construction. By Remark 14.7(1), it suffices to show that χ ̸⊂ H(I ∖χ).

Choose n1 ∈ W1, n2 ∈ W2. Then for λ ∈ L
α(µ), λ(n1) and λ(n2) have same

signs, except when λ is proportional to χ. Moreover, n1 ∈C (I ). Because C (I ) is

non-empty and χ ∈I , we know I ∩(−χ) =∅. Hence for all λ ∈I ∖χ, λ(n1) > 0

and λ(n2) > 0. Thus n2 ∈C (I ∖χ).

On the other hand, for λ′ ∈χ, λ′(n1) and λ′(n2) have different signs. As χ⊂I ,

λ′(n1) > 0 and λ′(n2) < 0. Thus λ′ ∉C (C (I ∖χ)) = H(I ∖χ). This completes the

proof.

DEFINITION 14.9. Fix a complete collection I with C (I ) ̸=∅. Let U1, . . . ,Uℓ be

the subchambers contained in C (I ) and for each 1 ≤ j ≤ ℓ select n j ∈U j ∩Zd .

Given λ ∈I set

I (λ) :=
{
λ′ ∈I : λ′(n j ) ≥λ(n j ) for all 1 ≤ j ≤ ℓ

}
.

Note the above definition is independent of the choice of ni ∈Ui since the

relative order of all Lyapunov exponents is constant on subchambers. This, in

particular, implies λ′(n) ≥λ(n) for all λ′ ∈I (λ) and n ∈C (I ).

Given a complete collection I and λ ∈I , clearly I (λ) is strongly integrable

with respect to I . Similarly, we collect the following observation.

LEMMA 14.10. Let I be a complete collection and let I
′ ⊂ I be strongly inte-

grable w.r.t. I . Suppose there exists λ′ ∈I
′ such that

λ′(n) ≤λ(n) for all λ ∈I
′ and all n ∈C (I ).(47)

Then I
′ =I (λ′).
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Proof. From the hypothesis (47), it is clear that I
′ ⊂I (λ′).

On the other hand, there are generic n1, . . . ,nk ∈C (I ) such that

I (λ′) = {λ ∈I : λ(n) ≥λ′(n) for all n ∈C (I )

⊂ {λ ∈I : λ(ni ) ≥λ′(ni ) for all 1 ≤ i ≤ k}

=I
′

where the first equality is from the definition and the second equality follows

from Definition 14.6 and hypothesis (47).

14.3. Sufficient subsets of Zd . Fix a collection I ⊂L
α(µ) such that C (I ) ̸=∅.

The union of all subchambers U ⊂ C (I ) in C (I ) is an open dense subset of

C (I ). We say a subset S ⊂C (I )∩Zd is sufficient in C (I ) if

1. every n ∈ S is generic, and

2. for every subchamber U ⊂C (I ), the set S ∩U is a spanning set of Rd .

Since subchambers are open, if C (I ) ̸=∅, then there exists a finite subset S ⊂
Zd that is sufficient in C (I ).

14.4. Increasing partitions subordinate to expanding foliation. Let F be an

α-invariant, C 1+β-tame, measurable foliation. Define the positive cone of F to

be

C (F ) :=
{

n ∈Zd : F is expanding for α(n)
}

.

Following the discussion in Section 12, for each n ∈C (F ), there is a measurable

partition ξF
n of (M ,µ) subordinate to F and increasing for α(n). By adapting

the constructions in Sections 8.2 and 12, as in [21, Section 8] we obtain the

following.

PROPOSITION 14.11. Let n1, . . . ,nℓ ∈C (F ). Then there exists a measurable parti-
tion ξF of (M ,µ) with

1. ξF subordinate to F ;
2. α(ni )ξF ≺ ξF for i = 1, . . . ,ℓ;
3. ξF generates for α(ni ); that is

∨∞
k=0

α(−kni )ξF is the point partition.

Note that if α(n)ξF ≺ ξF and α(m)ξF ≺ ξF , then

α(n +m)ξF ≺ ξF .

The construction of ξF is essentially the same as that in Section 12. The main

adaptation is that, instead of letting ξ̃F
u

:= ξ̂+ =∨∞
k=0

f k ξ̂, here we define

ξF :=
∞∨

k1=0

· · ·
∞∨

kℓ=0

α

(
ℓ∑

i=1

ki ni

)
ξ̂.

The parameter ρ is again chosen from a full measure set, whose definition is

modified accordingly to avoid boundary concentration for all partitions from

the countable family
{
α

(∑ℓ
i=1

ki ni
)
ξ̂ : k1, · · · ,kℓ ≥ 0

}
.
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14.5. Linearity of entropy on positive cones. We have the following adaptation

of [21, Proposition 9.1].

LEMMA 14.12. Let F be an α-invariant, C 1+β-tame, measurable foliation. Let
n1,n2 ∈C (F ) and let η be a measurable partition that is increasing for α(n1) and
α(n2). Then

hµ(α(n1 +n2) |F ∨η) = hµ(α(n2) |F ∨η)+hµ(α(n1) |F ∨η).

In particular, if η is α-invariant, then

n 7→ hµ(α(n) |F ∨η)

coincides on C (F ) with a linear function.

Proof. Take a measurable partition ξF of (M ,µ) with ξF subordinate to F and

increasing for α(n1) and α(n2) as in Proposition 14.11. It follows from Claim

12.1 that

hµ(α(m) |F ∨η) = Hµ(α(−m)(ξF ∨η) | ξF ∨η)

for m = n1,n2 and m = n1 +n2. Moreover,

hµ(α(n1 +n2) |F ∨η)

= Hµ(α(−n1 −n2)(ξF ∨η) | ξF ∨η)

= Hµ(α(−n1)(α(−n2)(ξF ∨η))∨ (α(−n2)(ξF ∨η)) | ξF ∨η)

= Hµ(α(−n2)(ξF ∨η) | ξF ∨η)+Hµ(α(−n1)(α(−n2)(ξF ∨η)) |α(−n2)(ξF ∨η))

= hµ(α(n2) |F ∨η)+hµ(α(n1) |F ∨η).

15. KEY PROPOSITION AND PROOF OF THEOREM 13.1

15.1. Conditional and transverse dimensions dependent on choice of filtra-

tion. Consider an α-invariant, C 1+β-tame, measurable foliation F . Fix an in-

tegrable collection I
′ ⊂ L

α(µ) of Lyapunov exponents with C (I ′) ̸= ∅; let

W I
′

denote the foliation tangent to the subspaces EI
′

x . Write F
I

′ =F ∨W I
′
.

According to Proposition 4.6, for any n ∈ C (I ′) we obtain a filtration by α-

invariant, C 1+β-tame, measurable foliations

{x} ⊂F
1,I ′

n (x) ⊂F
2,I ′

n (x) ⊂ ·· · ⊂F
u(n),I ′

n (x) :=F
I

′
(x)(48)

where F
j ,I ′

n :=W
u, j

n ∨F
I

′
.

Note that even for generic n, when the cardinality #I
′ is small (relative to

u(n)) many of the foliations appearing in the filtration (48) coincide. Let m =
#I

′. For generic n ∈C (I ′), let

{ j1, . . . , jm} =σ(n)−1
{
i : λi ∈I

′}

ordered so that j1 > ·· · > jm . Then we also have filtration

{x}⊊F
j1,I ′

n (x)⊊F
j2,I ′

n (x)⊊ · · ·⊊F
jm ,I ′

n (x) :=F
I

′
(x).(49)
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Fix a generic n ∈C (I ) and let η be a measurable partition such that α(n)η≺ η.

For each 1 ≤ j ≤ u(n), let ξ(F
j ,I ′

n ) be an increasing measurable partition of

(M ,µ) subordinate to F
j ,I ′

n . We write

dim
j
n
(
µ |F ∨η |I ′) := lim

r→0

log
(
µ
ξ
(
F

j ,I ′
n

)
∨η

x (B(x,r ))
)

log(r )
.

The limit exists a.e. by Proposition 7.4 as ξ
(
F

j ,I ′

n

)
∨ η is increasing for α(n).

Although µ need not be ergodic for the action of α(n), α-invariance of the filtra-

tion (48) and the measure µ implies that

x 7→ lim
r→0

log
(
µ
ξ
(
F

j ,I ′
n

)
∨η

x (B(x,r ))
)

log(r )

is α-invariant and hence constant by α-ergodicity of µ.

With dim0
n(µ | F ∨η | I

′) := 0, for n ∈ S ∩C (I ′) and λi ∈ L
α(µ) such that

λi (n) > 0 we write

γn(λi |F ∨η |I ′) :=dimσ(n)−1(i )
n (µ |F ∨η |I ′)

−dimσ(n)−1(i )−1
n (µ |F ∨η |I ′).

(50)

For jk−1 ≤ j < jk observe that F
j ,I ′

n (x) =F
jk−1,I ′

n (x) a.e. whence

dim
j
n(µ |F ∨η |I ′) = dim

jk−1
n (µ |F ∨η |I ′).

In particular, we have the following.

CLAIM 15.1. If n ∈C (I ′)∩S and if λi (n) > 0 for some λi ∉I
′, then

γn(λi |F ∨η |I ′) = 0.

Moreover, for λi ∈ I
′, we may alternatively define γn(λi | F ∨η | I ′) as fol-

lows: if σ(n)( jk ) = i , then

γn(λi |F ∨η |I ′) = dim
jk
n (µ |F ∨η |I ′)−dim

jk−1
n (µ |F ∨η |I ′).(51)

From Proposition 7.6 we have the following.

CLAIM 15.2. Let I
′′ ⊂I

′ be integrable collections and fix n ∈C (I ′). If η and η̂

are measurable partitions with η≺ η̂, α(n)η̂≺ η̂, and α(n)η≺ η then

γn(λi |F ∨ η̂ |I ′′) ≤ γn(λi |F ∨η |I ′).

Proof. Take ξI
′,F

n and ξI
′′,F

n with ξI
′,F

n ≺ ξI
′′,F

n to be measurable partitions

of (M ,µ) subordinated to W I
′∨F and W I

′′∨F , respectively, with α(n)ξI
′,F

n ≺
ξI

′,F
n and α(n)ξI

′′,F ≺ ξI
′′,F . Then

η∨ξI
′,F ≺ η̂∨ξI

′′,F

whence by Proposition 7.6 we have

γn(λi |F ∨ η̂ |I ′′) ≤ γn(λi |F ∨η |I ′).
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15.2. Main proposition. Now consider a complete collection I ⊂ L
α(µ). Let

S ⊂Zd be a finite subset of generic elements that is sufficient in C (I ). Let η be

a measurable partition such that α(n)η≺ η for all n ∈ S.

Before stating our main proposition, we first observe the following.

CLAIM 15.3. For λi ∈I , the quantity

γn
(
λi |F ∨η |I (λi )

)

is independent of the choice of n ∈C (I )∩S.

Indeed, by definition of I (λi ), the right-most and second-to-right-most ele-

ments of the filtration (49) coincide for all n ∈C (I ); since the right-most folia-

tion in the filtration (49) corresponds to λi for all n ∈C (I )∩S, the conclusion

follows from (51).

Given Claim 15.3, write γ
(
λi |F ∨η |I (λi )

)
for the constant value of γn

(
λi |

F ∨η |I (λi )
)

over n ∈C (I )∩S.

Our main technical proposition and its corollaries show that the inequality

in Claim 15.2 is often an equality and remains constant as the choice of n or I

vary.

PROPOSITION 15.4. Let I be a complete set of exponents, let S ⊂Zd be a finite
subset that is sufficient in C (I ), and let η be a measurable partition such that
α(n)η≺ η for all n ∈ S.

Then, for every λi ∈I and n ∈ S ∩C (I ), we have

γn(λi |F ∨η |I ) = γ
(
λi |F ∨η |I (λi )

)
.(52)

In particular, γn(λi |F ∨η |I ) is independent of the choice of n ∈ S ∩C (I ).

Before giving the proof of Proposition 15.4, we collect the main corollaries

that we use in the sequel.

COROLLARY 15.5. Let χ0 ∈ L̂
α(µ) be a non-zero coarse Lyapunov exponent. Let

S ⊂Zd be a finite set that is sufficient in the half-space C (χ0) and suppose η is a
measurable partition such that α(n)η≺ η for all n ∈ S.

Let I be a complete collection with χ0 ⊂I . Then for λi ∈χ0,

γn(λi |F ∨η |I ) = γn
(
λi |F ∨η |χ0

)
(53)

for every n ∈C (I )∩S.

We postpone the proof of Corollary 15.5 but state the following special case

when η is an α-invariant partition.

COROLLARY 15.6. Let η be an α-invariant measurable partition. Given any com-
plete collection I with C (I ) ̸=∅, any coarse Lyapunov exponent χ⊂I , and any
λi ∈χ we have

γn
(
λi |F ∨η |I

)
= γn

(
λi |F ∨η |χ

)

for every generic n ∈C (I ).

Proof. Take a sufficient set S in the half-space C (χ) containing n. Then apply

Corollary 15.5.
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With Corollary 15.6 at hand, we are now ready to prove Corollary 13.4.

Proof of Corollary 13.4. For a coarse Lyapunov exponent χ ∈ L̂
α(µ) with χ(n) >

0, let dF ,χ,η(µ) be the almost-surely constant value of the pointwise dimension

of µ along F ∨W χ∨η as in Section 7.3). In the notation above, this means

dF ,χ,η(µ) = lim
r→0

log

(
µ
ξF∨W χ∨η
x (B(x,r ))

)

log(r )

=dim
jmχ

n (µ |F ∨η |χ) =
∑

λi∈χ
γn

(
λi |F ∨η |χ

)

=
∑

λi∈χ
γ

(
λi |F ∨η |χ

)

=
∑

λi∈χ
γ

(
λi |F ∨η |W u

n

)
,

(54)

where mχ denotes the length of the filtration (49) for I
′ = χ, and the two last

equalities are respectively given by Proposition 15.4 and Corollary 15.6.

We also let d
F ,u,η
n (µ) be the almost-surely constant value of the pointwise

dimension of µ along F ∨W u
n ∨η. One can similarly deduce that

d
F ,u,η
n (µ) =

∑

λi∈L α(µ):λi (n)>0

γ
(
λi |F ∨η |W u

n

)
.(55)

It suffices to recognize that (55) is the sum of (54) over all coarse Lyapunov

exponents χ with χ(n) > 0.

15.3. Proof of Proposition 15.4 and Corollary 15.5. Fix a complete collection

I as in Proposition 15.4. Let S ⊂ Zd be a finite set of generic elements that is

sufficient in C (I ) and let η be a measurable partition such that α(n)η ≺ η for

all n ∈ S.

Proposition 15.4 follows immediately from the following induction hypothe-

sis.

LEMMA 15.7. Let 1 ≤ m ≤ #I −1 be an integer such that the following holds: for
every strongly integrable (w.r.t. I ) collection I

′ ⊂I with #I
′ ≤ m, every λ ∈I

′,
and every n ∈C (I )∩S,

γn(λ |F ∨η |I ′) = γ
(
λ |F ∨η |I (λ)

)
.(56)

Then the same holds for every strongly integrable (w.r.t. I ) collection I0 ⊂I

with #I0 = m +1.

When m = 1, each strongly integrable collection I
′ with #I

′ = 1 has a single

exponent I
′ = {λi }. From Lemma 14.10, we have I

′ = I (λi ). Then, for any

n ∈C (I )∩S, γn
(
λi |F ∨η |I ′)= γ

(
λi |F ∨η |I (λi )

)
.

Given any n ∈ C (I )∩ S, we find strongly integrable collections I
′

1 ⊂ ·· · ⊂
I

′
#I

= I (with respect to I ) given by the filtration (49) associated with the

ordering on I associated with n. By induction on m, Proposition 15.4 follows

directly Lemma 15.7.
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Proof of Lemma 15.7. Fix a strongly integrable (w.r.t. I ) collection I0 ⊂I with

#I0 = m+1. Fix n0 ∈C (I )∩S. We show (56) holds for n = n0 and all λ ∈I0. Fix

λk ∈I0 such that

λk (n0) = min{λi (n0) : λi ∈I0} .

Recall n0 is generic and so λk (n0) <λi (n0) for all λi ∈I0 ∖ {λk }.

We consider two cases.

Case 1. Consider first the case that

λk (n) = min{λi (n) : λi ∈I0}

for all n ∈C (I )∩S. Let I
′ =I0 ∖ {λk }; observe that I

′ is strongly integrable.

By Lemma 14.10 we have I0 =I (λk ). Then clearly

γn
(
λk |F ∨η |I0

)
= γ

(
λk |F ∨η |I (λk )

)

holds for any choice of n ∈C (I )∩S. As in Claim 15.3, for any n ∈C (I0)∩S, the

element of the filtration (49) associated to λk is the right-most. Thus, for any

λ j ∈I0 ∖ {λk } and n ∈C (I )∩S we have

γn
(
λ j |F ∨η |I0

)
= γn

(
λ j |F ∨η |I ′) .

Since I
′ is strongly integrable and #I

′ = m, by the inductive hypothesis we

have

γn
(
λ j |F ∨η |I ′)= γ

(
λ j |F ∨η |I (λ j )

)

The conclusion then holds.

Case 2. Now suppose there is n∗ ∈C (I )∩S and λ∗ ∈I0 such that

λk (n∗) >λ∗(n∗).

Then there exists a sequence of subchambers U0,U1, . . . ,Uℓ ⊂C (I ) with n0 ∈U0

and λ′ ∈I0 with λ′ ̸=λk such that for any choice of n j ∈U j ∩S for 1 ≤ j ≤ ℓ the

following hold:

1. U j is adjacent to U j−1 for every 1 ≤ j ≤ ℓ;

2. λk (n j ) = min
{
λi (n j ) : λi ∈I0

}
for every 0 ≤ j ≤ ℓ−1;

3. λ′(nℓ) = min{λi (nℓ) : λi ∈I0}.

Note, in particular, that λ′(nℓ) <λk (nℓ).

Let I
′ = I0 ∖ {λk }, I

′′ = I0 ∖ {λ′} and I
′′′ = I0 ∖ {λk ,λ′}; observe I

′, I
′

and I
′′′ are strongly integrable with #I

′ = #I
′′ = m and #I

′′′ = m −1. By the

inductive hypothesis and examining the filtration (49) on the subchambers Uℓ−1

and Uℓ, for all λi ∈I
′′′ we have

γnℓ−1

(
λi |F ∨η |I0

)
= γnℓ−1

(
λi |F ∨η |I ′)

= γ
(
λi |F ∨η |I (λi )

)

= γnℓ

(
λi |F ∨η |I ′′)

= γnℓ

(
λi |F ∨η |I0

)
.

(57)

Moreover, by the inductive hypothesis,

γnℓ−1

(
λ′ |F ∨η |I0

)
= γnℓ−1

(
λ′ |F ∨η |I ′)= γ

(
λ′ |F ∨η |I (λ′)

)
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and

γnℓ

(
λk |F ∨η |I0

)
= γnℓ

(
λk |F ∨η |I ′′)= γ

(
λk |F ∨η |I (λk )

)
.

By Lemma 14.12, the maps

1. n 7→ hµ

(
α(n) |F ∨η∨W I

′
)

2. n 7→ hµ

(
α(n) |F ∨η∨W I

′′
)

3. n 7→ hµ

(
α(n) |F ∨η∨W I

′′′
)

4. n 7→ hµ

(
α(n) |F ∨η∨W I0

)

extend from C (I )∩S, respectively, to linear functionals L1,L2,L3,L0 : Rd →R.

From Theorem 7.7 and the structure of the filtration (49), for n ∈Uℓ−1 ∩S we

have

L0(n) = L1(n)+γnℓ−1

(
λk |F ∨η |I0

)
λk (n)

and

L1(n) = L3(n)+γnℓ−1

(
λ′ |F ∨η |I ′)λ′(n).

Similarly, for n ∈Uℓ∩S we have

L0(n) = L2(n)+γnℓ

(
λ′ |F ∨η |I0

)
λ′(n)

and

L2(n) = L3(n)+γnℓ

(
λk |F ∨η |I ′′)λk (n).

Combining the equalities above, after applying (57) and canceling common

linear terms, we get that for all n ∈ S ∩C (I ),
[
γ
(
λk |F ∨η |I (λk )

)
−γnℓ−1

(λk |F ∨η |I0)
]
λk (n)

−
[
γ
(
λ′ |F ∨η |I (λ′)

)
−γnℓ

(λ′ |F ∨η |I0)
]
λ′(n) = 0.

Here we used the fact that both Uℓ−1 ∩ S and Uℓ ∩ S are spanning as S is a

sufficient set.

Since Uℓ−1 and Uℓ are adjacent and λk and λ′ are positive on Uℓ−1 and Uℓ

and swap relative order when crossing the subchamber wall from U1 and U2, by

Lemma 14.2, λk and λ′ are linearly independent. It follows that

γn0

(
λk |F ∨η |I0

)
= γnℓ−1

(
λk |F ∨η |I0

)
= γ

(
λk |F ∨η |I (λk )

)

Moreover, for λi ∈I0 ∖ {λk } we have by the inductive hypothesis that

γn0

(
λi |F ∨η |I0

)
= γn0

(
λi |F ∨η |I ′)= γ

(
λi |F ∨η |I (λi )

)
.

The conclusion follows.

We conclude with the proof of Corollary 15.5.

Proof of Corollary 15.5. Fix n0 ∈C (I ).

If I =χ0, then the conclusion follows from definition. We reduce to this case

by backwards induction on the number of coarse exponents in I .

Suppose I contains at least two distinct coarse exponents. Since C (I ) ̸=∅,

there is a coarse exponent χ1 that is not proportional to χ0; in particular, the

kernel of χ1 has nonempty intersection with C (χ0). It follows that C (I ) is a
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proper subset of C (χ0) and there exist adjacent chambers W1,W2 ⊂C (χ0) with

W1 ⊂C (I ) and W2 ⊂C (χ0)∖C (I ).

Let χ ∈ I be such that W1 and W2 are adjacent through χ. Let U ⊂ W1 be a

subchamber such that χ is in the wall of U ; by Lemma 14.2,

λ(n1) <λ′(n1)

for all n1 ∈U ,χ′ ∈I∖{χ}, λ ∈χ, and λ′ ∈χ′. Let I
′ =I∖χ. Then I

′ is complete

by Lemma 14.8 and for all λ ∈I
′ and n1 ∈U ∩S,

γn1
(λi |F ∨η |I ) = γn1

(λi |F ∨η |I ′).

By Proposition 15.4 and Claim 15.3, the above remain are constant as n1 varies

across C (I )∩S and C (I ′)∩S, respectively. It follows that

γn0
(λi |F ∨η |I ) = γn0

(λi |F ∨η |I ′).

By backwards induction on #{χ ∈ L̂
α(µ) : χ ∈ I }, we reduce to the case that

I = {χ0}.

15.4. Proof of Theorem 13.1. Theorem 13.1 follows immediately from the Corol-

lary 15.6.

Proof of Theorem 13.1. First consider a generic n ∈Zd . Let

U (n) :=
{
λi ∈L

α(µ) : λi (n) > 0
}

be the collection of positive Lyapunov exponents for α(n); then U (n) is com-

plete. From Theorem 7.7, with f =α(n) we have that

hµ(α(n) |F ∨η) =
∑

λi (n)>0

γn(λi |F ∨η |U (n))λi (n).

On the other hand, for any coarse Lyapunov exponent χ ∈ L̂
α(µ) with χ(n) > 0,

applying Theorem 7.7 again we have that

hµ

(
α(n) |F ∨W

χ∨η
)
=

∑

λi∈χ
γn

(
λi |F ∨η |χ

)
λi (n).

The conclusion then follows for all generic n ∈Zd by Corollary 15.6.

Now, consider a non-generic m ∈Zd . From Claim 12.1 we have

hµ(α(m) |F ∨η) = hµ

(
α(m) |F ∨W

u
m ∨η

)
.

Take F̂ =F ∨W u
m . Then F̂ is expanding for α(m).

Since C (F̂ ) ̸= ∅, it follows that C (F̂ ) contains a spanning set of generic

points. From Lemma 14.12, the functions

n 7→ hµ

(
α(n) | F̂ ∨η

)
and n 7→

∑

{χ∈L̂ :χ(n)>0}

hµ

(
α(n) | F̂ ∨W

χ∨η
)

extend from C (F̂ ) to linear functions on Rd ; moreover the two functions co-

incide on a spanning set of n ∈ Zd . It follows that they agree on C (F̂ ). As

F̂ ∨W χ = F ∨W χ for all χ ∈ L̂
α(µ) with χ(m) > 0, the conclusion extends by

linearity to non-generic m ∈Zd .
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16. PROOF OF THEOREMS 13.5 AND 13.7

We retain all notation from Section 13.2. In particular, α is an action of Zd

on (N ,ν) which is a measurable factor of α induced by ψ : M → N ; A
ψ denotes

the α-invariant measurable partition on (M ,µ) induced by the factor map ψ.

16.1. Key Lemma. Consider any non-zero Lyapunov exponent χ ∈ L̂
α(ν). Note

that we have not yet shown the equivalence class χ is positively propositional

to an equivalence class in L̂
α(µ). Take H =C (χ) to be the Lyapunov half-space

associated with χ.

Considering all non-zero λ ∈ L
α(ν) and λ ∈ L

α(µ) as linear functionals on

Rd , define joint chambers and joint subchambers relative to the collection of lin-

ear functionals L =L
α(ν)∪L

α(µ). Then H is saturated by joint subchambers

and we may take a finite set S ⊂ H ∩Zd that is sufficient (for the collection of

joint subchambers) in H .

Take η to be a measurable partition of (N ,ν) as in Proposition 14.11 that is

subordinate to W χ with α(n)(η) ≺ η for all n ∈ S. Let η=ψ−1(η).

The key observation in the proof of Theorems 13.5 and 13.7 is that for n ∈
S ⊂ H , every coarse Lyapunov exponent χ ∈ L̂

α(µ) with χ ̸= χ contributes only

fiber-entropy to the quantity hµ(α(n) | η). Write

U
α
µ (n) :=

{
λ′ ∈L

α(µ) : λ′(n) > 0
}

.

LEMMA 16.1. Let χ ∈ L̂
α(ν) be as fixed above. For n ∈ S ⊂ H and any χ ∈ L̂

α(µ)

such that χ is not proportional to χ and χ(n) > 0 we have

γn

(
λ j | η |U α

µ (n)
)
= γn

(
λ j |A ψ |χ

)

for all λ j ∈χ.

In Lemma 16.1 and in what follows, the dimension γn(·) are always relative

to the action α.

Proof. First note that for any n ∈ S with χ(n) > 0, from Claim 15.2 we have

γn

(
λ j | η |U α

µ (n)
)
≥ γn

(
λ j | η |χ

)
≥ γn

(
λ j |A ψ |χ

)
(58)

for all λ j ∈χ.

To prove the reverse inequality note that, as χ is not proportional to χ, the

Lyapunov hyperplane associated to χ intersects the interior of H . In particular,

there are joint chambers W1 ⊂ H ∩C (χ) and W2 ⊂ H ∖C (χ) that are adjacent

through χ. Let U1 and U2 be subchambers, respectively, of W1 and W2 that are

adjacent through χ and fix ni ∈Ui ∩S ⊂ H .

Let W0 ⊂C (χ)∩H be the joint chamber containing the n in the statement of

the lemma. As S is sufficient in C (χ)∩H there is a sequence of subsequently ad-

jacent joint chambers W0 =W 1,W 2, . . . ,W ℓ+1 =W1 in C (χ)∩H and a sequence

of coarse Lyapunov exponents χ′
1,χ′

2, . . . ,χ′
ℓ

in L̂
α(µ)∪ L̂

α(ν) with χ′
j ̸= χ for
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1 ≤ j ≤ ℓ such that each pair W j ,W j+1 is adjacent through χ′
j . Note also that

since each W j ⊂ H , we have χ′
j ̸=χ for 1 ≤ j ≤ ℓ. Let

I =U
α
µ (n)∖

(
χ′

1 ∪χ′
2 ∪·· ·∪χ′

ℓ

)
.

Then also

I =U
α
µ (n1)∖

(
χ′

1 ∪χ′
2 ∪·· ·∪χ′

ℓ

)
.

Repeatedly using Lemma 14.8 and Proposition 15.4 when crossing chamber

walls, we know I is complete, and for λ j ∈χ the following hold:

1. γn(λ j | η |U α
µ (n)) = γn1

(λ j | η |I );

2. γn1
(λ j | η |U α

µ (n1)) = γn(λ j | η |I );

3. γn(λ j | η |I ) = γn1
(λ j | η |I );

4. γn(λ j |A ψ |χ) = γn1
(λ j |A ψ |χ).

To prove the lemma it thus suffices to show for λi ∈χ that

γn1
(λ j | η |U α

µ (n1)) = γn1

(
λ j |A ψ |χ

)
.(59)

From Theorem 7.7, for any n ∈ S we have

hµ(α(n) | η) =
∑

λi∈U
α
µ (n)

λi (n)γn

(
λi | η |U α

µ (n)
)

.

Moreover, from the conditional Abramov±Rohlin formula (20), Theorem 7.7, and

Theorem 13.1 (applied to the trivial foliation and α-invariant partition A
ψ) we

have for any n ∈ S that

hµ(α(n) | η) = hν(α(n) | η)+hµ

(
α(n) |A ψ

)

= hν(α(n) | η)+
∑

χ′⊂U
α
µ (n)

hµ

(
α(n) |W χ′

∨A
ψ
)

.

= hν(α(n) | η)+
∑

χ′⊂U
α
µ (n)

∑

λi∈χ′
λi (n)γn

(
λi |A ψ |χ′) ,

whence

hν(α(n) | η̂) =
∑

λi∈U
α
µ (n)

λi (n)γn

(
λi | η |U α

µ (n)
)
−

∑

χ′⊂U
α
µ (n)

∑

λi∈χ′
λi (n)γn

(
λi |A ψ |χ′) .

Recall the partition η of N is subordinate to W χ. From Lemma 14.12, it

follows that the restriction of the map

n 7→ hν(α(n) | η̂)

to S ⊂ H coincides with the restriction of a linear function L : Rd →R. From the

above analysis, for all n ∈W1 ∩S and m ∈W2 ∩S we have

L(n) =
∑

λi∈U
α
µ (n1)

λi (n)γn1

(
λi | η |U α

µ (n1)
)
−

∑

χ′⊂U
α
µ (n1)

hµ

(
α(n) |W χ′

∨A
ψ
)

(60)

L(m) =
∑

λi∈I ∗
λi (m)γn2

(
λi | η |U α

µ (n2)
)
−

∑

χ′⊂I∗
hµ

(
α(m) |W χ′

∨A
ψ
)

(61)
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where I
∗ =

(
U

α
µ (n1)∖χ

)
∪−χ or I

∗ =U
α
µ (n1)∖χ depending, respectively, on

whether or not −χ is a coarse Lyapunov exponent in L̂
α(µ).

Consider χ′ ∈ L̂
α(µ) with χ′ ⊂ U

α
µ (n1)∖ {±χ} and λi ∈ χ′. Since W1 and W2

are adjacent through χ, from Proposition 15.4 we have

γn1

(
λi | η |U α

µ (n1)
)
= γn1

(
λi | η |I ∗)

= γn2

(
λi | η |I ∗)

= γn2

(
λi | η |U α

µ (n2)
)

and

γn1

(
λi |A ψ |χ′)= γn2

(
λi |A ψ |χ′) .

Let L1 be the function

L1(n) =
∑

λi∈χ
λi (n)γn1

(
λi | η |U α

µ (n1)
)
−

∑

λi∈χ
λi (n)γn1

(
λi |A ψ |χ

)

and (if −χ is a coarse Lyapunov exponent) let

L2(n) =
∑

λi∈−χ
λi (n)γn2

(
λi | η |U α

µ (n2)
)
−

∑

λi∈−χ
λi (n)γn2

(
λi |A ψ | −χ

)
.

Comparing righthand sides of (60) and (61) and canceling common linear terms

it follows that either

L1 = 0 or L1 = L2.

From (58) we have L1(n) ≥ 0 and L2(n) ≤ 0 for n ∈W1 whence either case above

implies ∑

λi∈χ
λi (n1)

(
γn1

(
λi | η |U α

µ (n1)
)
−γn1

(
λi |A ψ |χ

))
= 0.

Conclusion (59) then follows from (58).

16.2. Proof of Theorem 13.5. Theorem 13.5 follows directly from Lemma 16.1.

Proof of Theorem 13.5. We retain all notations from above. In particular, we take

χ ∈ L̂
α(ν) with

hν

(
α(n) |χ

)
> 0

for some n with χ(n) > 0. Take a measurable partition η as in Proposition 14.11

that is subordinate to W χ with α(n)(η) ≺ η for all n ∈ S. Suppose that no coarse

Lyapunov exponent χ ∈ L̂
α(µ) is positively proportional to χ. Then, by the

conditional Abramov-Rohlin formula (20), Theorem 7.7, and Lemma 16.1 we

obtain a contradiction, as for any n ∈ S ⊂ H we have

hν

(
α(n) |W χ

)

= hν(α(n) | η) = hµ(α(n) | η)−hµ

(
α(n) |A ψ

)

=
∑

λi∈U
α
µ (n)

λi (n)γn

(
λi | η |U α

µ (n)
)
−

∑

χ∈L̂ α(µ):χ(n)>0

∑

λi∈χ
λi (n)γn

(
λi |A ψ |χ

)

= 0.
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Having established Theorem 13.5, given any coarse Lyapunov exponent χ ∈
L̂

α(ν) contributing entropy to the factor system α, it follows there is χ ∈ L̂
α(µ)

positively proportional to χ.

Let χ ∈ L̂
α(ν), η, η, and S ⊂ H =C (χ) be as above.

COROLLARY 16.2. Suppose χ ∈ L̂
α(µ) is positively proportional to χ. For n ∈ S

we have
hµ

(
α(n) |W χ∨η

)
= hν(α(n),η)+hµ

(
α(n) |A ψ∨W

χ
)

.

Proof. From Corollary 15.6, for n ∈ S, χ′ ⊂U
α
µ (n), and λi ∈χ′ we have the equal-

ity

γn

(
λi |A ψ |U α

µ (n)
)
= γn

(
λi |A ψ |χ′)

which is well-defined and independent of the choice of n ∈C (χ′). Let γ
(
λi |A ψ

)

denote this constant.

From Lemma 16.1 and Theorem 7.7 we have

hµ(α(n) | η)

=
∑

λi∈U
α
µ (n)

λi (n)γn

(
λi | η |U α

µ (n)
)

=
∑

λi∈U
α
µ (n)

λi (n)γ
(
λi |A ψ

)
+

∑

λi∈χ
λi (n)

(
γn

(
λi | η |U α

µ (n)
)
−γ

(
λi |A ψ

))

= hµ(α(n) |A ψ)+
∑

λi∈χ
λi (n)

(
γn

(
λi | η |U α

µ (n)
)
−γ

(
λi |A ψ

))

whence

hν(α(n),η) = hµ(α(n) | η)−hµ

(
α(n) |A ψ

)

=
∑

λi∈χ
λi (n)

(
γn

(
λi | η |U α

µ (n)
)
−γ

(
λi |A ψ

))
.

From Corollary 15.6, we have for λi ∈χ that

γn

(
λi | η |U α

µ (n)
)
= γn(λi | η |χ).

Thus

hν(α(n),η) =
∑

λi∈χ
λi (n)

(
γn(λi | η |χ)−γ

(
λi |A ψ

))

= hµ

(
α(n) |W χ∨η

)
−hµ

(
α(n) |A ψ∨W

χ
)

.

16.3. Proof of Theorem 13.7. We obtain Theorem 13.7 from Corollary 16.2.

Proof of Theorem 13.7. Consider a fixed, non-zero χ ∈ L̂
α(µ). Fix n ∈ Zd with

χ(n) > 0 and let W be the chamber of L̂
α(µ) containing n. Fix a finite set S that

is sufficient in W .

Choose an enumeration of all coarse exponents χ j ⊂U
α
µ (n) with χ=χ0. For

each χ j ∈ L̂
α(µ) let χ j ∈ L̂

α(ν) be the coarse Lyapunov exponent positively
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proportional to χ j if such a coarse exponent exists; in this case let η j be a mea-

surable partition of (N ,ν) as in Proposition 14.11 that is subordinate to W
χ j

with α(m)(η j ) ≺ η j for all m ∈W ∩S. For χ j ∈ L̂
α(µ) such that no coarse expo-

nent in L̂
α(ν) is positively proportional to χ j , take χ j to be the 0 functional

and take η j to be the point partition. For all j , let η j =ψ−1(η j ).

From Theorems 13.1 and 13.5 we have for m ∈W ∩S

1. hν(α(m)) =
∑

χ∈L
α
ess∩U

α
ν (m)

hν

(
α(m) |W χ

)
=

∑

χ j∈U
α
µ (m)

hν(α(m),η j );

2. hµ(α(m) |A ψ) =
∑

χ j∈U
α
µ (m)

hµ

(
α(m) |A ψ∨W

χ j
)

;

3. hµ(α(m)) =
∑

χ j∈U
α
µ (m)

hµ

(
α(m) |W χ j

)
.

Combined with Corollary 16.2, it follows that for m ∈W ∩S,
∑

χ j∈U
α
µ (m)

hµ

(
α(m) |W χ j ∨η j

)
= hν(α(m))+hµ(α(m) |A ψ)

= hµ(α(m))

=
∑

χ j∈U
α
µ (m)

hµ

(
α(m) |W χ j

)
.

(62)

From Claim 8.5, for each j we have

hµ

(
α(m) |W χ j ∨η j

)
≤ hµ

(
α(m) |W χ j

)

for every m ∈ W ∩S. Combined with (62) it follows for each j and m ∈ W ∩S
that

hµ

(
α(m) |W χ j ∨η j

)
= hµ

(
α(m) |W χ j

)
.

The conclusion of Theorem 13.7 then follows for m ∈W ∩S from Corollary 16.2.

Since the restrictions of the three terms in (45) to C (χ) extend to linear func-

tions, the conclusion of Theorem 13.7 extends to all n ∈C (χ) by linearity.
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