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ABSTRACT. In the first part of this paper, we formulate a general setting in
which to study the smooth ergodic theory of differentiable 7%-actions pre-
serving a Borel probability measure. This framework includes actions by
cl+Halder diffeomorphisms of compact manifolds. We construct intermedi-
ate unstable manifolds and coarse Lyapunov manifolds for the action as well
as establish controls on their local geometry.

In the second part, we consider the relationship between entropy, Lya-
punov exponents, and the geometry of conditional measures for rank-1 sys-
tems given by a number of generalizations of the Ledrappier-Young entropy
formulas.

In the third part, for a smooth action of z4 preserving a Borel proba-
bility measure, we show that entropy satisfies a certain “product structure”
along coarse unstable manifolds. Moreover, given two smooth 7% -actions—
one of which is a measurable factor of the other—we show that all coarse-
Lyapunov exponents contributing to the entropy of the factor system are
coarse Lyapunov exponents of the total system. As a consequence, we derive
an Abramov-Rohlin formula for entropy subordinated to coarse Lyapunov
manifolds.
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1. INTRODUCTION

The primary motivation for this series of papers is to establish a “product
structure of entropy” formula as well as a “coarse-Lyapunov Abramov-Rohlin
formula” for measure-preserving, non-uniformly hyperbolic Z%-actions. These
formulas appear in Corollary 13.2 and Theorem 13.7 of Part III. While technical
to state, these results have been essential for related work, especially in the
rigidity theory of actions of higher-rank lattices in [13, 14, 12]. To establish
these results, it is necessary to generalize the main results of the seminal papers
of Ledrappier and Young [31, 32]. In Part II, we revisit the work of Ledrappier
and Young and establish these necessary generalizations. In Part I, we revisit
the theory of Lyapunov exponents, non-uniform hyperbolicity, and invariant
manifolds in the setting of Z4-actions.

In the remainder of this introduction, we provide a short outline of each part
with brief discussion of related work and our results.

1.1. Overview of Part I. In Part I, we introduce a general setting in which to
study smooth ergodic theory of Z4 actions. Our setting includes actions on
manifolds which need not be compact and we allow for actions with disconti-
nuities or singularities sufficiently far from a set of full measure. While results
in this part may be well known to experts, they do not appear in a comprehen-
sive way in the literature. Among many others, the results here primarily adapt
[40, 25]; see also [2, 23].

In Section 2, we formulate the background on Lyapunov exponents for lin-
ear cocycles over actions of abelian groups. We address certain integrability
hypotheses in equation (6) which seem to be missing from existing literature
(see discussion in Section 2.3.)
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SMOOTH ERGODIC THEORY OF Z%-ACTIONS 457

In Section 3, we formulate a general framework in which to study the smooth
ergodic theory of C'*H914er_actions of Z4 preserving a Borel probability measure.
This framework includes C'*10!4¢r_actions on compact manifolds. However—as
our motivating application includes actions where the underlying manifold is
not compact—we introduce certain hypotheses to overcome non-compactness
of the underlying space. These hypotheses only require controls on the local
C'*P dynamics of the action. Thus, it is natural to work in systems where only
the dynamics localized to an open set of full measures is assumed to be smooth
(or even continuous). Such a setting was introduced in [25] for diffeomorphisms
with singularities and discontinuities; we view our standing hypotheses II in
Section 3.2 as analogues of the hypotheses introduced in [25] for actions of 74,

In Section 4, we introduce unstable manifolds for individual elements of an
action and the concept of (tame) invariant measurable foliations for an action
of Z%. We define the notion of coarse Lyapunov exponents, the correspond-
ing coarse Lyapunov foliations, and assert that unstable foliations and coarse
Lyapunov foliations provide the primary examples of (tame) invariant measur-
able foliations for the action. In Section 5, we introduce the technical tool of
Lyapunov charts, with various charts adapted to particular objects of study. As-
sertions made in Section 4 are established using the dynamics inside Lyapunov
charts.

1.2. Overview of Part II. For Part II, we recall the results of [31, 32] which es-
tablished a relationship between the metric entropy of a C?> measure-preserving
diffeomorphism, its Lyapunov exponents, and certain geometric data associated
to the measure.

In [31], a certain rigidity of invariant measures is proven extending the main
result of [28]. Recall that for a C' diffeomorphism f: M — M of a compact
manifold M and an ergodic, f-invariant measure y with Lyapunov exponents
Ai, the Margulis—Ruelle inequality [45] gives a bound

ey hu(f)< ) Aim;
/1,'>0

where m; is the multiplicity of the exponent. In [31], it is shown that equality
holds in (1) if and only if the measure u has the following geometric property:
the conditional measures of y along unstable manifolds are absolutely contin-
uous (and, in fact, equivalent) to the Riemannian volume along unstable man-
ifolds. See [31, Theorem A]. When the unstable manifolds have an algebraic
structure relative to which the dynamics acts by automorphisms, this rigidity
can be used to obtain additional invariance of the measure. This idea is used,
for example, in [38, 18, 14, 12, 13] to obtain extra invariance of certain measures.

In [32], the defect of equality in (1) is explained in terms of geometric quanti-
ties associated with the measure p. To each positive Lyapunov exponent 1; > 0,
we define a corresponding contribution to the entropy h,(f). The maximal con-
tribution of each A; to the entropy h,(f) is m;A;. The main result of [32] is that
the entropy contribution of each A; is given by y;A; where y; < m; denotes the
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458 A. BROWN, E RODRIGUEZ HERTZ AND Z. WANG

“transverse pointwise dimension” of the measure conditioned along the interme-
diate A;-unstable manifold and transverse to the faster unstable foliation. See
[32, Theorem C’].

The results of [31, 32] have been generalized to many other settings includ-
ing the case of i.i.d. random dynamics on compact manifolds [35, 33], more
general skew product systems [1, 41], infinite dimensional systems [5], and en-
domorphisms [46, 34]. In all these settings, the underlying dynamics occurs on
compact subsets and the dynamics is assumed C?. Beyond the compact setting,
we point to [43] where finiteness of entropy and a Margulis—Ruelle inequality
for diffeomorphisms of non-compact manifolds is studied and [42] for exam-
ples where the Margulis—Ruelle inequality fails for C* diffeomorphisms of a
non-compact manifolds.

In Part II we reprove the main results of [31, 32] under somewhat more gen-
eral hypotheses and for slightly more general notions of entropy. These general-
izations are needed for the results in Part III which in turn are used in [14] and
[12, 13]. In addition to [31, 32], we heavily adapt arguments from [28, 25, 29].

In Section 6, we review basic definitions and facts about the entropy of an
invertible measurable transformation. In Section 7, we state our main results,
Theorem 7.2 and 7.7. In Section 8, we review the construction of special par-
titions, namely increasing partitions subordinated to an expanding foliation
following [29]; the key technical result is stated as Proposition 8.3. The proof of
Theorem 7.7 and Proposition 8.3 occupies Sections 9-11, following essentially
the same arguments as in [31, 32]. Finally, in Section 12 we reduce the proof of
Theorem 7.2 to the setting considered in [28, Section 3].

The results and proofs in Part II are rather similar to [31, 32] and may not
be surprising to experts. We emphasize some specific ways our results extend
previous results.

1. The papers [31, 32] and most subsequent results required the dynamics to
be C2. For hyperbolic measures (i.e., measures without zero exponents)
the results of [31, 32] still hold for C'*# diffeomorphisms of compact man-
ifolds; see [28], and [2] and [3, Appendix]. The main result of [11] allows
us to deduce the entropy formulas in the presence of zero Lyapunov expo-
nents for C'*# diffeomorphisms.

2. Similarly, the entropy formulas appearing in [31, 32] (and most extensions
mentioned above) assumed the manifold M is compact (or the dynamics is
concentrated to a compact part of the space). In particular, the derivative
and its Lipschitz (or Holder) norm are assumed to be bounded from above
and the injectivity radius of M is assumed to be bounded from below. In
the case of random dynamics, one can remove uniform boundedness by
assuming some integrability properties of derivative and its Lipschitz vari-
ation.

We replace compactness and the consequent boundedness of local
dynamics by assuming log-integrability of the derivative, and slow degen-
eration of the C'+H0lder gize of the local dynamics and the injectivity radii
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along orbits. This is formalized through the introduction of dynamical
charts {¢,} in Section 3.2. By the introduction of such charts, we localize
our analysis to an open set of full measure restricted to which the the dyn-
amics is a diffeomorphism; no assumptions are made on the dynamics
outside of such charts and thus we also consider maps with singularities
and discontinuities (assuming the measure is sufficiently concentrated
away from the singular set). We obtain analogues of the entropy formulas
of [31, 32] in settings similar to those studied in [25].

3. We consider two notions of “relativized” metric entropy: the metric en-
tropy of a transformation subordinate to a measurable partition and the
metric entropy of a transformation subordinate to an invariant measur-
able foliation. We prove a formula analogous to that of [32] for entropy
subordinated to a measurable partition and, as in [31], show that the en-
tropy subordinate to an invariant measurable foliation attains its maximal
theoretical value only when the measure is absolutely continuous along
the unstable component of the foliation.

1.3. Overview of Part III. In Part III, we establish the “product structure of en-
tropy,” stated in Corollary 13.2. This result is motivated by two previous results.

First, for commuting C? diffeomorphisms of a compact manifold preserving
a common invariant probability measure, it was shown in [21, Theorem B] that
entropy is subadditive; in particular, given a C? action a of Z¢ preserving a
probability measure y, the entropy function Z¢ — R,

) n— hy(a(n))

extends to a semi-norm on R?. [21, Theorem B] also implies the semi-norm
(2) is additive when restricted to each of finitely many connected open sets in
the complement of finitely many singular hyperplanes; moreover, the singular
hyperplanes correspond to the kernels of a subset of the coarse Lyapunov expo-
nents. From Corollary 13.2, we recover the subadditivity of entropy (see Theo-
rem 13.3). Furthermore, the results of Part II give additional information on the
shape of the semi-norm: the singular hyperplanes where the semi-norm stops
being linear are in one-to-one correspondence with the kernels of coarse Lya-
punov exponents contributing entropy to the system. We note that [21] heavily
used the results of [32] and our extension in Corollary 13.2 relies on the results
developed in Part II.

Second, in homogeneous settings such as those considered in [15, 16, 17],
conditional measures along total unstable manifolds have been shown to ex-
hibit certain product structures (as products of conditional measures along
coarse Lyapunov foliations). The “product structure of entropy” we establish
follows in such settings from the product structure of conditional measures.
However, to show the product structure of conditional measures, it seems es-
sential to work in a homogeneous (and semisimple) setting where the kernel of
a Lyapunov exponent acts isometrically on the corresponding coarse Lyapunov
foliation. In the setting of smooth Z%-actions, one can not expect the kernel of a
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Lyapunov exponent to act isometrically on the corresponding coarse Lyapunov
foliation. Thus, we establish the “product structure of entropy” without estab-
lishing any product structure of conditional measures. We note though that the
“product structure of entropy” still implies many of the geometric properties of
conditional measures along coarse Lyapunov foliations.

Additionally, in Part I1I, we also consider the setting of two smooth Z%-actions,
one of which is a measurable factor of the other. We show in Theorem 13.5
that any exponent that contributes entropy to the factor system must be posi-
tively proportional to an exponent for the extended system; we also establish
a “coarse-Lyapunov Abramov-Rohlin formula” in Theorem 13.7 relating the en-
tropy contributions of such pairs of exponents. In Remark 13.6, we observe that
this seems to provide finer information distinguishing actions (up to measur-
able conjugacy) than the coincidence of the entropy functions (2).

We state our main results in Section 13. In Section 14, we define various ob-
jects associated to the Lyapunov exponent functionals and various subsets of
Lyapunov exponent functionals with good geometric properties that appear in
the induction in our proofs. We also establish a number of elementary proper-
ties about these objects. In Section 15, we establish our main inductive propo-
sition, Proposition 15.4, and prove Theorem 13.1. We then give the proofs of
Theorems 13.5 and 13.7 in Section 16.

Part I. Lyapunov exponents, dynamical charts, and coarse Lyapunov
manifolds
by Aaron Brown and Federico Rodriguez Hertz

We formulate a general setting in which to study the smooth ergodic theory
of differentiable Z%-actions preserving a Borel probability measure. This frame-
work includes actions by C!*Holder diffeomorphisms of compact manifolds. We
construct intermediate unstable manifolds and coarse Lyapunov manifolds for
the action as well as establish controls on their local geometry.

2. COCYCLES OVER Z%-ACTIONS

Let (X, 1) be a standard probability space. Consider an action a: Z% x X — X
of 74 by measurable, invertible, measure-preserving transformations of (X, ).
That is, for every n,me Z% and x € X

1. a(n,a(m,x)) = a(n+m,x),

2. a(0,x) =x;

3. a(n,'): X — X is measurable;

4. ifpe L', then [p(x) du(x) = [ o (a(n,x) du(x).

The action a of Z4 on (X, 1) is moreover said to be ergodic if

5. given ¢ € L' (), if ¢p(x) = ¢p(a(n,x)) for all n € Z% and a.e. x, then ¢ is

constant on a set of full measure.
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At times we write a(n): X — X for the map a(n)(x) = a(n, x). Additional smooth-
ness hypotheses on @ and X will be imposed starting in Section 3 below.

Fix a basis for Z4 and equip 74 with the norm [(ny,...,n4)| = max|n;|. Note
however that all definitions and facts stated below are independent of the choice
of basis and norm on 74,

2.1. Slowly increasing functions.

DEFINITION 2.1. Given a measurable set Xy € X, a measurable function L: X —
[1,00) is slowly increasing on X, (over the action a) if

1
(3) lim — sup log(L(a(n,x))) =0
T=0T |p|<t
for all x € Xy. L is slowly increasing if Xy can be taken with p(Xp) = 1. L is said
to be e-slowly increasing on X, if for every x € Xy and every n € Z% we have
L(a(n,x)) < e L(x)
and e-slowly increasing if Xy can be taken with p(Xp) = 1.

We have the following claim.

CLAIM 2.2. Let Xy < X, and consider a measurable function L: X — [1,00) that
is slowly increasing on Xy. Let Yy = U{a(n)(Xp) : n € Z% be the a-orbit of Xp.
Then for any € > 0 there is a measurable function L: Yy — [1,00) that is €-slowly
increasing on Yy with

L(x) < L)

forall xeYy.
Proof. Given x € Y, define

4) L(x) := sup e ""EL(a(n, x)).

nez¢
Then L is defined for x € X, by (3). Moreover, for every k, j € Z% we have
Lia(k+ j,x)):= sup e " L(a(n+k+ j, x))
nezd

< sup eMEIRE (@ (n+ k+ f, x))
nezd

= e L(a(j, x).
Setting j = 0 and considering y = a(k, x) € Yy. it follows that (4) is defined for

every y € Y. Moreover, given y € Yy, writing y = a(j, x) for x € Xj it follows that
L has the desired properties. O

Applying either the higher-rank pointwise ergodic theorem (see [27, Theorem
2.8]) or adapting the proof of [2, Lemma 2.1.5] (see also [9, Proposition 6]) we
have the following claim.

CLAIM 2.3. Let a be an action of Z% on (X, ) and let ¢: X — [1,00) be a mea-
surable function with log(¢) € L (). Then ¢ is slowly increasing.
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Claim 2.3 fails for log(¢) € L'(u) and d > 1. Indeed, see the discussion in
Section 2.3.

2.2. Multiplicative ergodic theorem and Lyapunov exponents. Let a be an ac-
tion of Z% on (X, ). A k-dimensional linear cocycle defined over «a is measurable
function

o 7% x Xg — GL(k,R)
satisfying the cocycle relation: </ (0, x) = Id and
(5) A (m+n,x) = (m,an,x))f(n, x)

for all n,m € Z% and x € X, where X, c X is an a-invariant subset with p(Xp) =1.

Write LP (u) for the standard L? spaces. Let LP9(u) denote the Lorentz space
introduced, for instance, in [36]. We will not provide a definition of the Lorentz
spaces but will recall some of their properties: for 1 < p,g<oo, €>0and g < ¢’
we have that

1. LPP(u) = LP(w);

2. LP*e(p)  LP! (w);

3. LP9(u) < LP7 ().
Given a function ¢: X — (0,00), write log* ¢ := max{log¢,0}. Write |- | for the
standard norm on R¥ and || - || for induced operator norm.

THEOREM 2.4 (Higher-rank Oseledec’s Theorem). Let a be an ergodic action of
7% on (X, and let of : 7% x X — GL(k,R) be a measurable cocycle. Assume for
every me 7% that

(6) (x—log* s (m, x)1l) € L (u).

Then there are
1. an a-invariant subset Ay € X with u(Ag) = 1;
2. linear functionals A;: 7% - R for1<i< p;
3. positive integers m; for1 <i < p;
4. and splittings R = @le E),(x) into families of mutually transverse, m;-
dimensional, u-measurable subbundles E) (x) < RK defined for x € Ag
such that for all x € Ay and all v € E),(x) \ {0}
(@) 4 (n,x)Ey, (x) = Ey, (a(n,x)) and
log|<f (n, —-A;
@) lim ogle/ (n, )W) - Ai(n) _ 0.
n—oo |n|
Moreover, for x € Ay we have
© lim logldetsf (n,x)| —Y m;A;(n) _

n—oo |7

(d) forevery A;,

0, and

lim ilog(siné(EAi(a(n,x)), @ Eaj(a(n,x)))) =0.
n—oo | p| LA
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Here Z(V,U) denotes the smallest angle between subspaces V, U in R¥ rela-
tive to the standard inner product; that is Z(V,U) =inf{Z(v,u) : ve V.~ {0}, u e
U ~ {0}}. The modifications of Theorem 2.4 to the case of non-ergodic u are
standard; in particular, the number of exponents p(x), linear functionals {A; y,
1 <i < p(x)}, and splitting R¥ = EBf:(’lC) Ej,(x) are invariant or equivariant and
depended measurably on x. See for instance [2, Section 3.6.1].

Observe that the limits in (b)-(d) are taken along any sequence n — oo in 74,
The limit in (b) implies the following weaker result: given x € Ao, v € Ey, \ {0},

and ne 74
1
7) klim Elogld(/m, x)(V)] = Ai(n).

However, convergence along rays in (7) does not imply the limit in (b) holds. It
seems the L%! (1) hypothesis is sharp as discussed in [9].

To prove Theorem 2.4, first using only that (x— log* [« (m, x)|l) € L' (w), for
every me 7% one can produce the set Ay, the splitting RF = EB?ZI Ej,(x) for x €
A and the functionals A;: R? — R such that convergence along (the countably
many) rays in (7) holds (see [2, Theorem 3.6.6]). Analogues of (c) and (d) also
hold along rays.

The convergence (along spheres) in (b) and (c) can be derived from the max-
imal lemma in [8] following the arguments in [8, Section 3]. Alternatively, the
convergence in (b) and (c) can be reinterpreted in terms of random semimetrics
modeled on Z¢ in which case the result follows from [4, Theorem 2.4]. The limit
in (d) follows from (c) using arguments as in [2, Theorem 1.3.11] and [2, Section
1.3.2].

It seems the integrability hypothesis L%! is essential in the proof of Theorem
2.4. Indeed, see discussion in [9]. Below, in Section 2.3, we show that Theorem
2.4 fails if we only assume the cocycle is L.

DEFINITION 2.5. The linear functionals A; in Theorem 2.4 are called Lyapunov
exponent functionals, or simply Lyapunov exponents of the cocycle «. The sub-
spaces E),(x) are the Oseledec’s subspaces, and the set Aq is the set of regular
points. The integer m; is the multiplicity of 1;.

We write £ = {A;} for the set of Lyapunov exponents functionals. Note that
the exponents A; are independent of the choice of norm on R* and the choice
of generating set and norm on Z¢.

We have the following standard fact.

PROPOSITION 2.6. Let of be as in Theorem 2.4. Then for any € > 0 there are
e-slowly increasing measurable functions A,K: Ay — [1,00) such that for every
X €My and v € Ey,(x),

(@) forallne 74,

Ax) MR Y| < |of (n, x) vl < Ax) MR )
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(b) forall A;,

sinZ(Ey, (0, @ B, @) =K®™
Aj#A;

Proof. Conclusion (b) follows from Theorem 2.4(d) and Claim 2.2.

For conclusion (a), write «f;(n, x) := </ (n, X) rEM(x) 1 By, (x) = By, (a(n, x) and

Ci(x):= sup |l<Z;(n, x) e MMz ¢i(x):= inf m(set;(n, x)e H*HZ
nez4 nezd

where m(B) = ||B_1 ||_1 denotes the conorm of a matrix. From Theorem 2.4(b),
we have 0 < ¢;(x) < C;(x) < oo for almost every x. Moreover, for v € Ej,(x) we
have
c; ()M M5y < 1ot (n, X)v| < C; ()M HME |y,
Observe for all k, n € Z4 that
ls#i (n, au(k, x)) | i~ It = ke

< |leti(n+ k, x) | m(sf; (k, x)) "' e~ A= Inl5—Ikle
< Ci(x)ci(x)—le/ll-(n+k)+|n+k|g—/'li(k)+|k|§e—/li(n)—lnlg—lkls

< Ci(x)ci(x)7!

whence

Ci(ak,x) < e™eC;(x)c; (07
Similarly

cilalk,x) z e Mec; (0 Ci(x) 7"
Set

Ai(x):= sup e MEC;(alk,x)), a;(x):= inf ¢ (a(k,x)).
n,kezd n,kezd

Then —oo < a;(x) =< ¢;(x) < Cij(x) < A;(x) < oo and, in particular, for v € Ey,(x)
we have

a; ()M M5 Y| < 1ot (n, x)v] < A;(x) Pz,
Moreover, the inequalities

—Imle

Ai(a(m,x)) <e™EA;(x),  aila(m,x)=e "€ a;(x)

hold by definition. The function A(x) = max{A;(x),a;(x)"!:1 < i < p} then
satisfies the conclusions of the proposition. O

2.3. Failure of Theorem 2.4 in L'. The integrability hypothesis
(x—log" |l (m, x)I) € L ()

seems to be sharp in Theorem 2.4 (see discussion in [9]) although there are
assertions in the literature that L! integrability is sufficient. For instance, both
[2, Theorem 3.6.7] and [23, Theorem 1.7.1] are incorrect as stated. For instance,
if we only assume (x — log" |l (m, x)||) € L' (u), then the limit in (1.7.4) of [23,
Theorem 1.7.1] (corresponding to (b) of our Theorem 2.4) need not converge.
Similarly, in [2, page 87], the sum defining the Lyapunov metric need not con-
verge and the reduction theorem of [2, Theorem 3.6.7] fails.
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Both these defects can be seen in the following example. Take 1, 82 € [0,1] \
Q to be badly approximable numbers and let rg: st — st rg(x) = x+p mod 1,
denote the rotation on S! by B. Let a: Z? x T2 — T2 be the product action
a((n,m),(x,y)) = (rpp, (X), rmp, (¥)). Given any y € (1/2,1), let ¢: T2 — R be the

function
1 1

o(x,y) = A0 A0, 07
where d denotes the distance on S!. Let o : 7% x T2 — GL(1,R) be the (abelian)
cocycle

o ((n,m),(x,y) =exp [p(al(n,m),(x,) —dx,p)].
Let u be the Lebesgue measure on T2. For all n, m € Z2 we have

(x,) = log" Il (n, m), (x, y)l € L' (W)
but

(x,) = log" Il (n, m), (x, ) € L* ().
As f31, B2 are chosen to be badly approximable, there is a C such that, for any
X, Y€ S! and any N, there are 1 < n,m < N with

A(rpp,(1),0)< €, d(rpp, (1,00 %,

whence ¢(a((n,m),(x,)))) = AC’—ZZY Then for any (x, y) € T? (outside of the orbits
of {0} x S! and S! x {0}) one can find a sequence (n;, m;) — oo with
log* l# ((ni, my), (x, M)l
— 00
|(n;, m;)|

2.4. Restricted cocycles. Let a be an ergodic action of Z% on (X, ). Let of : Z%x
X — GL(k,R) be a linear cocycle satisfying the hypotheses of Theorem 2.4 and
let £ = {A;} be the Lyapunov exponents of a. Let H 7% be a subgroup and
let @ denote the restriction of a to H. It may be that & is no longer ergodic.
However, for almost every ergodic component fi¢ of the action of & on (X, ),
the restriction of the cocycle & to the action & satisfies the hypotheses of Theo-
rem 2.4. For such an ergodic component (¢, let 2, = {; ,} be the Lyapunov
exponents of the restricted cocycle. Clearly, for every i we have 1; , = A il for
some j. In particular, the collection of linear functionals {/1,-, «} are independent
a.s. of the choice of ergodic component fi.

2.5. Lyapunov metric. A standard technique which simplifies certain dynami-
cal arguments is to specify a family of inner products and related norms on R¥
relative to which the dynamics of the cocycle &/ is uniformly partially hyper-
bolic. Let o : Z% x X — GL(k,R) be a measurable cocycle satisfying (6) over an
ergodic Z%-action @ on X. We define a measurable family of inner products,
called the e-Lyapunov metric as follows: given any € >0, x € Ag, 1; € &£, and
v, we€ Ey,(x)

8) W, W e = Y, e 2726 g (0, x), o (n, X) w).

nezd
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The expression in (8) converges for x € Ag by Proposition 2.6(a). We extend
-, WM x,e to R* by declaring
Ky, W)»x,s =0
for ve Ey,(x) and w € Ey (x) with A; # 4.
For v; € Ej, (x), let [|villx,¢ be the norm on E), (x) induced by (-, ) x,e. Given
veRk we decompose v =} v; where v; € Ej,(x) and define a measurable fam-
ily of norms |||l x,¢, called the e-Lyapunov norm, on RF by

) llvlllx.e = max{lv;ll e}
We have the following two facts about the family of norms |[|||llx,-
PROPOSITION 2.7. For x€ Ao, v€ E),(x), and all k € 7% we have
(10) MO~ Myl e < Nt U, 0Vl e < €O Dl .
Proof. We have
st (e, X)UIIZ oy ¢
= Y e 2NN (o (n, a(k, x)) ot (K, X) v, o (m, a(k, X))o (K, x) V)

nez¢
= Y e 2m=2elnl oy (n+ kyv, of (n+ k) v)
nezd
=) e?hiB) g2hilnt=2elnl oy (y 4 )y, of (n+ k) v)
nezd
< Z e2/1,-(k)+2£|k|e—2/1i(n+k)—2£|n+k| (:Q{(n‘*‘ k)U d(n‘i‘ k) l}>
nezd
— Z ezﬂ,(k)+2£|k| ”IU”li’g
nezd
proving the upper bound. The lower bound is similar. O

LEMMA 2.8. There are a constant ko > 1 (depending only on p) and, for every
€ >0, an e-slowly increasing function L: Ao — [1,00) such that for x € Ay and
VE Rk,

(11) ko ol < Mvllye < L)V,
Proof. For v; € Ey,(x), we have |v;| <|[vllxe. If v =2 v; for v; € E),(x) we have
lv] = pmax{|vi|:1=<1i<p}.

The lower bound follows with kg = p.
Let K and A be (g/2)-slowly increasing functions as in Proposition 2.6. For
v; € By, (x), with b=Y . 7a =",

v, < Y A)*e ™ v;|? = bAxX)? vl

nezd

For v € R, write v = ¥ v; where v; € E 1;(x). Given any i, the orthogonal pro-
jections of v and v; onto the orthogonal complement of @, x4, Ex, (x) coincide
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whence
lv| = |Vi|Sin4(E/li ), P Ey, (x)) > v K(x)™
Aj#A
and
vllye < AG)Vbmax{|v;|:1<i<p} < A)VDK()|v]. O

3. SMOOTH ACTIONS OF Zd WITH SINGULARITIES AND DISCONTINUITIES

In this section, we establish the notational conventions as well as the stand-
ing hypotheses for the remainder of the paper. In particular, we present hy-
potheses under which generalizations of the entropy formulas of [31, 32] will
hold.

3.1. Notational conventions. Given amap f: X — Y between metric spaces, let
Lip(f) denote the Lipschitz constant of f and let H61°(f) denote the f-Holder
constant of f. (To avoid awkwardness in definitions, we only ever consider
H61P (f) when f has bounded range.) Given a norm | - | on R” and subspace
V< (®R™, | -|) we write

Vi =vl-=weV:|vi<r}

Consider R and R/ equipped, respectively, with norms || -||; and || - ||z, an
open set U c R, and a differentiable map g: U — R/. Let

IDgll =supllDygll
uelU
and let ||gllc be the usual C! norm of g. Note: we often consider the case

0e UcRF1, |- ;) and g(0) =0 and ignore the C° part of g. Considering Dg as
map from U to the space of linear maps R* — R/, we write

Dy,g—-D
Hﬁl'B(Dg) = sup I1Dyg ;gll
u#vel ||u—y||1

for the f-Holder constant of Dg. Set
lgllcies = maX{IIgIIcl, Hﬁlﬁ(Dg)}.
If gl c1+p < 00, we say g is uniformly Cc+h.

3.2. Standing hypotheses. For many applications' it is sufficient to consider
the following set of hypotheses.
Fix, once and for all, 0 < f < 1.

STANDING HYPOTHESES I. M is a compact manifold and a: 7% - Diff“ﬁ(M) is
a homomorphism from Z¢ to the group of uniformly C'*# diffeomorphisms of
M. p is an a-invariant Borel probability measure.

10Of particular note is the analysis of the dynamics of a maximal R-split torus on the suspension
space induced by an action of a cocompact lattice in higher-rank Lie groups considered in [12]
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However, there are natural examples of actions where the manifold M may
not be compact.” We introduce certain dynamical charts {¢,} that control the
non-compactness of M (and the consequent unboundedness of the derivative
and its Holder variation). Such charts allow us to work in a setting similar to
that introduced in [25]; following [25], we thus allow for possible discontinuities
and singularities of the action.

Let M be a Hausdorff, second countable, k-dimensional, C* manifold with-
out boundary. Let u be a Borel probability measure on M. Unlike in [25], we
do not explicitly assume any properties of any metric on M or the metric com-
pletion of M. Let a: 7% x M — M be an action by measurable, invertible, u-
preserving transformations. We do not assume p to be ergodic.

With | -| the standard norm on R¥, we assume the following hypotheses for
the system (M, a, u). We note that standing hypotheses II subsumes standing
hypotheses I, and thus we focus on systems satisfying standing hypotheses II
for the remainder.

STANDING HYPOTHESES II. We assume there are

e a measurable, a-invariant subset A ¢ M with py(A) =1;

¢ an open set Uy > A equipped with a continuous Riemannian metric and
an associated locally-defined distance function d on Uy;

« measurable functions p,D: A — [1,00) that are slowly increasing (over a)
on A (see Definition 2.1); and

e a measurable family of C! embeddings

{px:xEN}, ¢y Rk(p(x)_l) — Uy
with the following properties:
(H1) ¢x: R*(p(x)~!) — Uy is a C! diffeomorphism onto its image with ¢ (0) = x;
(H2) ||D</>x|| < D(x) and ||ng)_cl || < D(x); in particular, each chart
¢x: R¥ (0™ — (Uo, d)
is a bi-Lipschitz embedding with D(x)~! < Lip(¢,) < D(x).

Moreover, given any finite, symmetric subset F c Z¢ that generates Z%, we as-
sume there are

« an open subset A c U < Uj such that for every n € F, a(n)(U) c Uy and the
restriction a(n)[y: U — Uy is a diffeomorphism between U and its range;

» measurable functions r,C: A — [1,00) that are slowly increasing (over a)
on A with p(x) < r(x)

such that
(H3) ¢y (R*(r(x)71)) c U and for every me F,

am) ¢+ (R (r@ ™)) € @m0 (B (p (alm, 0 71))).

2This happens, for instance, for the actions of maximal R-split tori on the suspension space
induced by an action of a non-uniform lattice considered in [14, 13].
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Moreover, for each m € F, setting f(-) = a(m, ) and defining
(12) fei=dpigofods
for x € A, we assume
(H4) fr: RE(r(x0)™") — RF(p(f(x))~1) is uniformly C'*# with
I felliep = Clx).
As F is a generating set for Z¢, it follows that given x € A and n € Z%, the map
A1, X) 1= Py, o aln, x)o gy

is defined and is a uniformly C'*# diffeomorphism on some neighborhood of 0.
This induces a measurable cocycle < : 7% x A — GL(k,R) given by the derivative

(13) o (n,x) = Doa(n, x).
We moreover assume that
(H5) (x—log" ll (n, x)) € L1 () for every ne z4.

Applying Theorem 2.4, we write Ag < A in the remainder for the set of regular
points of the cocycle «f over the action of a on (M, u).

REMARK 3.1. Given local diffeomorphisms g1, g>: R¥(1) — R¥ preserving 0, de-
fine & = g» 0 g1 on the maximal domain of definition. Then we have

1. IDhl = IDg2llIIDg1l;
2. HolP(Dh) < | Dg, || H61(Dgy) + HolP (Dg,) | Dg1 [11*P.

Suppose that a family of charts {¢,}, open set Uy, and functions p and D satis-
fying (H1)—(H2) exist such that for some finite symmetric generating set F c Z¢
there are U, r, and C such that (H3)-(H4) hold. Then, given any other finite sym-
metric generating set F/, we may modify the functions r and C and the open
set U so that (H3)-(H4) hold for F'.

Condition (H5) is independent of F,U,r, and C and hence remains valid
passing to F'. Moreover, by the cocycle property (5), it is enough to verify
(x—log" I (n, x)) € L% () only for n in some finite symmetric generating
subset.

REMARK 3.2. Given an invertible, measurable, measure-preserving transforma-
tion

[ M, p) — (M, p)
we say that f satisfies standing hypotheses I or Il if the Z-action generated by f
does. In this of standing hypotheses II, we may take F = {1, -1} so that (H3) and
(H4) hold for both f and f~!.

REMARK 3.3. As L%!(u) ¢ L9~V () it follows that if the action a: Z% x (M, y) —
(M, ) satisfies Standing Hypotheses I or II, then for any subgroup H c Z%, set-
ting @: H x M — M to be the restriction of a to H, we have that (M, a, u) also
satisfies our standing hypotheses. Moreover, for almost every | g-ergodic com-
ponent uf of u, (M, aly, u$) satisfies standing hypotheses I or II.
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4. UNSTABLE MANIFOLDS AND C1+'B-TAME FOLIATIONS

We introduce one of our primary dynamical objects of study. Recall Uy c M
introduced in standing hypotheses II is equipped with a locally-defined distance
d; in the case of standing hypotheses I, we may take Uy = M. For x € Uy, let
B(x,r) c Uy denote the open ball centered at x of radius r.

4.1. C'*P-tame foliations. Let Z be a partition of (M, 11). We do not assume &
to be measurable. Let & (x) denote the atom of & containing x.

DEFINITION 4.1. A measurable foliation is a partition &, a set B= B(¥)c M
with ¢(B) =0, and a measurable function r: M — (0,00) such that

1. for almost every xe M, #(x)\BisaC 1 injectively immersed manifold in
M of constant dimension (over connected components)

and, writing & (x, r(x)) for the path-connected component of
(ZF ()N B)nB(x,r(x)

(relative to the immersed manifold topology in & (x) \. B) containing x,

2. the family { (x, r(x))} is a measurable family of C! embedded discs.

REMARK 4.2. Above, the set B is a negligible singular set on which atoms of &
may fail to have any manifold structure (arising from construction or definition
of %.) In particular, while % (x) may not have a manifold structure, & (x) \ B is
a (possibly disconnected) manifold for a.e. x.

As a primary example, if we consider systems with singularities and discon-
tinuities satisfying standing hypotheses II in Section 3.2, one should expect
that global unstable sets defined by Definition 4.2 below do not have any man-
ifold structure. However, for almost every x, the locally-defined unstable sets
have the structure of a connected manifold. Furthermore, when we restrict the
global unstable set through almost every x to the co-null subset of points y € M
whose backwards orbit (1) never leaves a dynamically good set U and (2) even-
tually enters some local unstable manifold, the restricted global unstable set
has the structure of an immersed submanifold; see the proof of Proposition 4.6
on page 473.

If & is a measurable foliation, then the measurability of x — & (x,r(x)) im-
plies, by Lusin’s theorem, that after removing the set B and a set of arbitrarily
small measure, for almost every x there is neighborhood of x on which & lo-
cally restricts to a lamination with uniformly C! leaves and such that the local
leaves vary continuously in the C 1 topology. We write &'(x) := % (x) \ B and
refer to &' (x) as the leaf of & through x. Note that &' (x) need not be connected
(though we do assume &' (x) is second countable).

Consider a p-preserving action a: Z9 x M — M satisfying hypotheses II of
Section 3.2.
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DEFINITION 4.3. A measurable foliation & is a-invariant if, for every finite
symmetric generating set F c Z¢, the set U c Uy in Section 3.2 and the null set
B in Definition 4.1 can be taken so that for all m € F,

a(m) (F' () nU) c F'(alm,x)).

Recall that a(m)[y: U — Uy is a diffeomorphism onto its image for m e F. Tt
follows that the dimension of %' (x) is constant along orbits whence for m € F,
a(m) is a diffeomorphism between %' (x)NU and an open subset of &' (a(m, x)).
In particular, if p is a-ergodic and & is a-invariant, then the leaves of % have
constant dimension a.s.

Note that the geometry of the leaves of % as embedded in M may degrade
along orbits of a arbitrarily fast. We restrict ourselves to foliations for which
this degradation is subexponential. We also impose additional regularity on the
local geometry of leaves of the foliation.

Let a: Z% x (M, 1) — (M, 1) be an action satisfying the standing hypotheses
I or II of Section 3.2. Recall the family of charts ¢, introduced in standing
hypotheses II; in the case of standing hypotheses I, we may take the charts ¢,
to be exponential charts relative to some Borel trivialization of the T M.

DEFINITION 4.4. A measurable foliation & is C1*P -rame (for the action a and
relative to the charts ¢,) if there is a set Ag < A with u(Ag) = 1 such that for
every € > 0 there is a measurable function ¢4: Ag — [1,00) that is e-slowly
increasing (over a) on Ar and such that for x € Ag, writing Z (x) for the the
path component (relative to the immersed topology) of

¢ (F'(0) nR* (05} ()
containing 0, Z(x) is the graph of a C'*# function
h7 Uy ToFF (x) — ToF (x)F

for some connected open subset Uy Tx§ (x) with
1. h7(0)=0and Dyh? =0;
2. HolP (DhY) < (05 (x))P whence | DhZ || < 1.

Note that the family of functions {h7 : x € Az} depends measurably on x.

The primary examples of a-invariant, C'*#-tame, measurable foliations are
the partitions into strong unstable manifolds and coarse and intermediate Lya-
punov foliations arising in higher-rank, non-uniformly hyperbolic dynamics
(defined below in Proposition 4.6).

4.2. Global unstable manifolds. Let a: Z% x (M, ) — (M, u1) be an action sat-
isfying the standing hypotheses I or II of Section 3.2. To simplify notation, we
moreover assume the action « is ergodic with respect to u. All definitions here
may be generalized to the non-ergodic case by considering ergodic components.

Let & ={A;:1 < i < p} denote the Lyapunov exponent functionals of the
derivative cocycle (13) equipped with a choice of enumeration. Given n € Z¢
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we choose a permutation o(n) of {1,2,..., p} and 1 < u(n) < p such that
Aom@) (M) = Agmy2) (M) = -+ = Aoy (uin) () > 0=+ = Aoy (p) ().

Note that by choosing 2 € Z¢ in general position (in particular, outside of finitely
many hyperplanes) we can ensure all inequalities above are strict.

DEFINITION 4.5. Given x€ M, n€ Z%, and 1 < i < u(n), define the ith unstable
manifold through x for a(n) to be the set

. 1
Wi (x) = {y eM | limsup %logd(a(kn,x), akn,y)) < —Ag(n)(i)(n)} .
k——00
The unstable manifold through x for a(n) is the set

1
W,é‘(x) = {y € M| limsup Elogd(a(lm, x),a(kn,y)) < 0}.
k——o0

Although W,?'i(x) may be quite pathological for certain x, it will follow from
Proposition 4.6 below that—after possibly removing an ambient singular set
of measure zero if our dynamics has singularities or discontinuities—W,é”(x)
is an injectively immersed manifold for almost every x, hence the terminology.
Moreover, we have Wk (x) = W (x) for almost every x. Note that if 7 is not in
general position so that Ag()(5) (1) = Ag(myi+1) (1) for some i with Ag () i+1) (1) >
0 then the above definition implies

Wi(x) = Wit (x).

Implicit in the above definition is that d(a(kn, x), a(kn, y)) is defined for all
but finitely many k < 0; in particular, we have a(kn, x) € Uy and a(kn, y) € Uy
and are sufficiently close for all but finitely many k < 0. If a(kn,x) € M\ Uy
for infinitely many k < 0, declare W,é"i (x) = {x}. From the above definition, it
follows for each n € 7% that the collection of ith unstable manifolds forms a
partition #,,"" of M. We also write #,* for the partition of M into unstable
manifolds for a(n). It follows from Proposition 4.6 below that #,* and V/n”’u(”)
coincide off a null set. _

As we do not assume the action a to be by diffeomorphisms, W,;"l(x) is,
in general, not a submanifold. However, from Proposition 4.6 below, under
our standing hypotheses, the partition %l”'i has the structure of a C'*#-tame,

measurable foliation tangent a.e.to Do (EB A (W)= Ag,0 (m) B, (x)) . Then, with the

n

N\
notation introduced above, (Wn”l) (x) is an injectively immersed manifold of

dimension dim (@ Aj(m)=Ag, 0 ) B, (x)) .

Given an a-invariant measurable foliation & and x € M, let d& denote the
distance on &'(x) N Uy induced by restriction of the continuous Riemannian
metric on Up. In particular, dz(x, y) is defined if and only if y € &'(x) and there
is a C! path in %'(x) N Uy from x to y. Given a measurable foliation % and

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455-540



SMOOTH ERGODIC THEORY OF Z%-ACTIONS 473

nez% define

; 1
(97 v Wn””) (x):= {y € M |limsup %logdg(a(kn, x),alkn,y)) < —Ag(n)(i)(n)}

k——o0
1
= {y e F'(x) | limsup T logdg (a(kn,x),a(kn, y)) < —Agmyi) (1) } .
k——o00

This defines a partition & v Wn”’i of (M, ). Similarly define & v #".

The following proposition will be shown in the next section.

PROPOSITION 4.6. Assume (M, ) and a: Z% x (M, y1) — (M, 1) satisfy the stand-
ing hypotheses Il with y ergodic. Given any ne€ 29,

(@) Wn”’i is a C™*P-tame, a-invariant measurable foliation with

AV
Tx (Wnu,l) (x) = Do(/)x( @ E}Lj(JC)
Aj(M=Ag, ) (M)

for almost every x;
(b) given any C**P-tame, a-invariant measurable foliation F, the partition
FNW}isa C™P_tame, a-invariant measurable foliation with

T((# v 7/,}”)/ (%) =T (7/,1”'1')' ()N T F' (x)
for almost every x.

REMARK 4.7. Note that the term measurable foliation indicates that the local
transverse structure to plaques of the foliation is measurable. In general, a
measurable foliation is not a measurable partition. In particular, the partition
of (M, p) into global unstable manifolds %,/ is never a measurable partition if
a(n) has positive metric entropy.

As a corollary of Proposition 4.6 we have the following uniqueness property.

LEMMA 4.8. Let ny,ny € Z% have the following property: for some 1 < i <
min{u(m), u(nz)}

L{om)():l=sj=si}={om)(j):1=sj=1i},
2. Aoy (11) > Ao+ (1), and
3. Aoy (i) (12) > Ag(ny)(i+1) (12).

Then Wan’i = “//nl;’ In particular, if sgn(A;(n;)) = sgn(A;(ny)) forall A; € £, then
=W,

Indeed, the lemma follows from Proposition 4.6 as for almost every x,
A/ N\ /
T (#) ) = T (#,07) )

whence 7, v #,t =W,
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4.3. Coarse Lyapunov exponents, manifolds, and foliations. We continue to
assume a: Z% x (M, u) — (M, p) satisfies standing hypotheses II with p ergodic.
Let £ ={A;:1<i < p} denote the Lyapunov exponent functionals of the deriva-
tive cocycle (13).

DEFINITION 4.9. Two Lyapunov exponents A; and A; € & are equivalent if they
are positively proportional; that is, if there is a ¢ > 0 such that 1; = cA;. A coarse
Lyapunov exponent is an equivalence class in £.

We write 2 for the set of coarse Lyapunov exponents. Note that for y € 2,
the sign (positive, negative, or zero) of y(n) is well-defined.

DEFINITION 4.10. Given y € 2 with x # 0, the coarse Lyapunov foliation corre-
sponding to y is
(14) W= \V v,

{nez4:y(n)>0}
The coarse Lyapunov manifold corresponding to y through x is the correspond-
ing leaf WX (x) := (#' %) (x).

From Lemma 4.8, the intersection in (14) above is equivalent to an intersec-
tion taken over a finite subset of Z¢. It then follows from Proposition 4.6 that
WX is a C'*P-tame, a-invariant measurable foliation.

5. LYAPUNOV CHARTS; PROPERTIES OF TAME AND UNSTABLE FOLIATIONS

Let (M, ) and a: 7% x (M, W) — (M, p) satisfy the standing hypotheses II of
Section 3.2. To simplify notation, we assume that a acts ergodically on (M, ).
We present here a standard construction which, via a local change of coordi-
nates, locally converts the non-uniformly partially hyperbolic dynamics into
uniformly partially hyperbolic dynamics.

In Section 5.1 we fix some standing notation. In Section 5.2 we construct
“standard” Lyapunov charts {®,} relative to which the dynamics along orbits
becomes uniformly partially hyperbolic in a neighborhood of the orbit (relative
to our original fixed charts {¢,}. In Section 5.3, given a C'*#-tame measurable
foliation &, we show in Proposition 5.3 that Lyapunov charts {®,} can be chosen
so that relative to these charts, the local leaves of & are uniformly C*h, In
Section 5.4, we then construct charts {¥,} on local leaves of % (built from such
family {®,} as in Section 5.3) relative to which the dynamics along the local
leaves of & becomes uniformly partially hyperbolic. In Section 5.5, we use
the dynamics in such charts to construct local unstable manifolds and justify
assertions made in Section 4.

5.1. Standing notation. Recall the Lyapunov exponent functionals £ ={A;:1<
i < p}. For the remainder of this section, fix F c Z% to be a finite, symmetric
generating set as in standing hypotheses II of Section 3.2. We recall the sets
A, Uy and U, functions r,p and C, and all other notation from Section 3.2. All
constructions below are relative to this choice of F and corresponding U, r, p
and C.
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Write
(15) A =max{|A;(n)|:ne FE1<i<p}

and

(16) gp:= ﬁmin{l,l/li(n)l,l/l,-(n) -Ajm|:neE1<i,j<p,
Ai(n)¢/1j(n);/1i(n)?£0}~

Note that when A;(n) >0, for any 0 < € < gy we have

Ai(n)-2¢ < e/l,-(n)—s Ai(n)+e Ai(n)+2¢,

e —&E<e +eE<se

if A;(n) =0, then etiW+e g < hilW+2e,

5.2. Lyapunov charts. Recall that Ag c A denotes the set of regular points (for
the measure y) in Theorem 2.4. We specify an alternative norm on R¥. Fix an
orthogonal (with respect to the standard inner product) decomposition R¥ =
@DR; where dimR; = m; is the dimension of E,, (x) for x € Ay. Define the norm
|- |l on R¥ as follows: writing v =) v; for v; € R; set ||v|| = max{|v;|} where |v;]
restricts to the norm induced by the standard inner product on each R;.

PROPOSITION 5.1 (Lyapunov charts). For every 0 < € < € there is an e-slowly
increasing function ¢: Ay — [1,00) and a measurable family of invertible linear
maps

{Le: ®5 10— ®5)D:xea)
such that
(@) LiR; = Ej,(x);
() Ly: REQ2, - 1) <R* (o)7L, 1+1) and Ly: RF (e7 %026 || |) < R¥ (r(x)7L,1-1).
Define a measurable family of C' embeddings {®, : x € M} by
Dy =proLe: R 1-1) — M.
For each n€ F, write f = a(n). Then

(c) for each x, ®(0) = x and ® is diffeomorphism between R*(2, || - ) and an
open subset of U;
@) the map f: R (e_)“)_zg, I-1)— R (L, |- 1) given by

(17) Fe@) =@l 0 fo®u(w) = Ly, o0 froLy

is u{ell-deﬁned (where fx isasin (12));
(e) Dy fxR; =R; for every i and for v eR;

A:(n)— s A
M| < Do frvll < M|

() HOlP(Df,) <€ hence Lip(fi — Do fy) <&;
@ Lyl <1, |L7| = ¢(x), Lip(@,) <1, and Lip(@3!) < £(x).

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455-540



476 A. BROWN, E RODRIGUEZ HERTZ AND Z. WANG

We call a family of embeddings {®,} satisfying the above properties a family
of e-Lyapunov charts. Given 0 < ¢’ < € < €9, a family of ¢'-Lyapunov charts is
automatically a family e-Lyapunov charts. While we often restrict dynamics to
smaller balls, it is convenient in Proposition 5.2 below to allow each @, to have
a larger domain R¥(2, | - ).

As our construction is slightly different than others in the literature, we in-
clude an outline of the construction.

Proof outline of Proposition 5.1. Take 0 < €’ < £/4 sufficiently small. Recall the
¢'-Lyapunov metric ((-, ) x,et defined by (8) and the corresponding family of
norms |||l . Relative to the inner products (-, ¢ on R¥, choose a measur-
able orthonormal basis for each E,,(x) which, in turn, defines a measurable
family of linear isometries #y: (R, [l llxe) — (RY, [I-1) with £,E, (x) = R; for
every i.

Let ko be the constant and L(x) the &’-slowly increasing function in Lemma
2.8. Let C(x) be an &' -slowly increasing function such that the functions D(x),
C(x), r(x), p(x) appearing in our standing hypotheses of Section 3.2 are bounded
above by C(x) for all x € Ag. Take 7,: RY,|-|I) — RY,|-]) defined by 7,(v) =
1 (v). We have

It <ko, N7yl < Lx).
Take
1
() = (e P L)’
and take Ly: (RY, |- |) — (R¥,|-]) to be the linear map defined by
L) =1, ({7 (0)v).

Having taken &' sufficiently small, 7 is (¢/2)-slowly increasing and we verify
properties (a), (b), and (c).
_ Given n e F write f = a(n). Given x € Ag, write f as in (12). Consider first
e RE(ro kg L1 11) — (R, 11 1) given by f, = T}(lx) o fyoTy. We have
Dyf &) =77y (Dr, fx (7()
hence for ¢ with ||| =1
|PoF @ - DuF ) < koL HOP (D £ 72 0) ~ 7200 P
< ko L) C) kD llu— vl)?

and
HolP (Dfx) < koL(x)C(0) kP < P (x)Pe /2.

Moreover for v € R; we have
M | < |1 Do f vl < e ).
By (b), fi: R¥(e7%0=2¢ || |) — R¥ defined by
Fr@) =0(f ) f (00 v)
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is well-defined. As e’*¢ + & < e0*2¢ the Lipschitz constant of f, is bounded
above by e'*2¢ and (d) follows. We have

Dy fe@) = 0(f )20 (D 1,72 ©)
hence
|Dufe® - Dufe®| < 20~ 161 (DF ) | 0607 v = 2~ ]
<0(fNl)er2lu—-viP <ellu-vl|P

whence (f) follows. Also,
2 | Dof )] < | Do) = Ef N | DoT ()| < €72 DoF (00|

and (e) follows. R
Finally, with £(x) = koL(x)C(x)?(x), we have that ¢(x) is e-slowly increasing
and satisfies the bounds in (g). O

5.3. Lyapunov charts adapted to C'*#-tame foliations. Let & be an a-invari-
ant, C'*P-tame measurable foliation. The following proposition guarantees that
Lyapunov charts above may be chosen so that, relative to the charts @, the local
leaves of F are uniformly C'*# embedded.

PROPOSITION 5.2. An a-invariant measurable foliation & of (M, ) is C'*P-
tame if and only if for every 0 < € < g9, the charts @, in Proposition 5.1 can be
chosen so that, in addition to the properties in Proposition 5.1, there are

o aset N < Ay with u(A) =1;

e a subspace V c R* with orthogonal complement W;

o a measurable family of C'*P functions

hL VLD — W)
defined for x € A

such that, writing & for the path component (relative to the immersed topology)
of 71 (Z (x) "YNRX(2) containing 0, %, contains graph(h‘/ ) as an open subman-
zfold Moreover

(i) h7 (0)=0; DohZ =0;

() HolP (Dh?) <€ and hence |Dh7 || <¢;

(k) for all n € F, writing fy as in (17), fy is a diffeomorphism between

graph(irjf) NR" (e—lo—zs)
and an open subset of graph ( Wz )(x))

We note for each n € F, writing f = a(n) and f as in (17), we have that V is
Dy f-invariant.

The proof of Proposition 5.2 relies on the following lemma which, in turn,
follows from the Implicit Function Theorem with Hélder estimates, [40, Lemma
2.1.1] or [2, Lemma 7.5.2]. Consider R* equipped with two norms | - ||; and
I llo. Let V!, V2 c R* be subspaces and for j € {1,2}, let W/ be a subspace of
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complementary dimension transverse to V/. We assume the decompositions
V/ e W/ and norms | -||; have the property that, for any vector u € R, writing
u=v+wfor ve V/ and we W/ we have
(18) lullj = max{llvll;, lwl;}.
Our applications below of the above setup are: || - || ; is the Euclidean norm and
W/ is the orthogonal complement of Vior|-| j is the norm on RK specified in
Section 5.2, V/ satisfies V/ = ®;(VnR;), and W/ is the orthogonal complement
of VJ,

With the above setup we have the following.

LEMMA 5.3. For0<r <1, let h: V(r,||- 1) — W' be a C'*P function such that
(relative to | - |1) we have

e 1(0) =0 and Dyh = 0;

« HolP(Dh) < a;

e |Dh| <1.
Let L: R" — R" be an invertible linear map with L(VY) = V2, Take

o ag=alL7'*F;

e by=2|L7"|;
. o =ILI.
Then with
. r/2 r/2 1 1
0= mm{ 1L 2Bocol L1 (1+ 2boco) 2aoco) VB (1 + by co)? Bagca)) P }

we have that L(graph(h)) contains as an open set the graph of a C**P-function
h: V2(ro) — W? such that (relative to || - |2) we have

1. h(0) =0 and Dyh = 0;

2. HolP (Dh) < 8agco(1+ bycp)?;
whence

3. |Dh|<1.

Proof. We have that graph(h) in RK, | - ll1) is the solution set to ¥ (v,w;) =0
where

w(vy, wr) = wy —h(v) e Wy
is defined for all (v, w;) with ||v;|l; < r. Then L(graph(h)) contains as an open
set the solution set ¥/ (v2, w2) = 0 of the function

—. 2 r . 2
y:V (—2||L—1||’” II2)><W (

. — |/|/

given by
Y (w2, wy) =wo L™ (2, wo).
Decomposing the domains R* = V2 @ W? and R = V! @ W! of L™! and v, re-
spectively, we have
Diwuwy¥(@) = =Dp1yh | T TL7HQ.

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455-540



SMOOTH ERGODIC THEORY OF Z%-ACTIONS 479

We check the following.
1. The partial derivative Dy 0 ¥: W? — W' is of the form

Doooy@=[0]|1 1271

and is a linear isomorphism with
—\ -1
” (D2,00%) H <Ll

Indeed, given w, € W2 write L™ (w») = v + wy. Then Dy 0¥ (w>) = wy,
and writing L(w;) = w» — L(v1) we have from (18) that

lwallz < ILwyll2 < ILI 1w ll1-
2. The partial derivative D (,09: V2 — W' is of the form
Do @& =[ =Dpiyh | 1 ]L7'(©)
hence
max || Dy, ol < IL7'.
3. Daup¥ (&) — Do,y &) = =Dp-1,h+ D15k | 0 | L7HE), so
Hol? (Dy) < IL7) P a.

The conclusion of the lemma then follows from [40, Lemma 2.1.1] and the fact
that L(graph(h)) is tangent to V2, O

Proof of Proposition 5.2. First, suppose that & is uniformly C'*P relative to Lya-
punov charts as in Proposition 5.2. We may apply Lemma 5.3 with the linear
map L= Ly: (R, |- ]) = (R¥,||) the maps guaranteed from Proposition 5.1 and
deduce that % is C'*P-tame.

Suppose now that . is an a-invariant C'*#-tame, measurable foliation. We
retain all notation from Definitions 4.3 and 4.4. In particular, we assume for
n € F that a(n) (F'(x) nU) € F'(a(n,x)) for almost all x. Take A" = AgNAg.
Note that the a-invariance of & implies that T0§ (x) = GB(E,L. n T0§ (x)) for
almost every x (where Z (x) is as in Definition 4.4.) In the proof of Proposition
5.1 we may select V < R* and construct the maps 7.: (R, [|-]) — (R¥,|-]) so
that 7,(V) = ToZ (x) for all xe A

Taking &’ > 0 sufficiently small in the proof of Proposition 5.1 and an &’-slowly
increasing function ¢ as in Definition 4.4, applying Lemma 5.3 to the maps
7't (R%,]-1) — (R¥, || - |I) appearing the proof of Proposition 5.1 we may find an
(e/2)-slowly increasing function ¢(x) so that

73 (F ) R (2200711
is the graph of a C'*# function
s U= VA (220074111,
where

L V(e 1) e Ocev;
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2. 11x(0) = 0 and Dyh(0) = 0;
3. HolP (Dhy) <el(x)P.
Then taking
1
f(x) = max{é(x), ((5/2)_1ké+ﬁL(x)pC(x)2) ! }
in the proof of Proposition 5.1, the results of Proposition 5.1 remain valid.
Let hy: V1, II-1) — V(1,1 - ) be given by
hy() = 00 hy (00 0).
Then the set
LM (F W) nRER, I 1)
contains the graph of a C!'*# function
e VA1) = VE D,

where

1. he(0) = 0 and Doh(0) =0; i
2. HolP (Dhy) < € whence | Dhyll <.

The proposition then follows. O
5.4. Lyapunov charts adapted to dynamics restricted to leaves. Note that if

Z is an a-invariant, C'*#-tame, measurable foliation, then, with V as in the
notation of Proposition 5.2, we have

14
V=P WVnR,).
i=1

As in Propositions 5.1 and 5.2, given an a-invariant, C'*P-tame, measurable
foliation & we construct a family of charts for the restriction of the dynamics to
leaves of &. Given 0 < ¢’ < g sufficiently small, let {®,} a family of ¢’-Lyapunov
charts satisfying Proposition 5.2. Take A’ and 17 (v) as in Proposition 5.2. Given
x € N define

AT RE, - 1) — RE(- )
relative to the orthogonal decomposition RF = V & W by
I:I;?(v, w) = (v, w+ fzf(v)).
We then define a measurable family of embeddings ¥ : V(1, |- ) — % (x) by
Y7 (1) = D0 HZ (v).

PROPOSITION 5.4. For every 0 < € < gq there is a family of e-Lyapunov charts
{®y: x € Ao}, an e-slowly increasing function ¢: N' — [1,00), and a measurable
family of C* embeddings {¥7 : x € A'} defined as above with

(a) \I,}g (0) = x and \P;?(V(l, I-1)) < F'(x) for almost every x.
Furthermore, for every n € F, writing f = a(n) we have
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(b) the function ?x: V(e M2 |I-1)) — v, -I) given by

— -1
frw) = (‘I"?(x)) OfO‘P‘f(v)
is well-defined;
() Dof ((RinV)=(R;nV) foreveryi and for ve (R;nV)

Ai(n)— i Ai(n)+ .
MEp) < Do f vll < eFE|p;

) HolP (D?x) < ¢ hence Lip(?x — DO?X) <eg;
(e) Lip(W7) <1 and Lip(WZ)™) < £(x)".
Proof. For 0 < €' < gy sufficiently small, let {®,} be a family of ¢'-Lyapunov
charts satisfying Proposition 5.2. Then with HY as above we have
1. IDA7 | <1+¢ and |IDHAZ) | <1+¢;
2. Do(HY) =1d;
3. Hol (DAY) <¢' and Hol’ (D(A7) ') <.
Given n € F, write f = a(n) and define f; as in (17). Define
? . Rk - —/10—28,, . ) - IRk 1’ .
x ((1+£’)2€ -1 @11
by
— _ o
Fe= (A7) ofcoRi].
Note F, is well-defined.
We have
1. DoFx = Do fy;
and check that

— , N1+

2. HolP (DF,) < (1+&) e 26 + (14£)2 P e+ (14¢7) ho*2¢] Per,
Having taken 0 < ¢’ < ¢ sufficiently small, the charts {®,} are a family of e-charts,
and we can ensure f, = Fy ['V(e-10-2¢y is well defined and has the desired proper-

ties. Moreover we can construct a function ¢ with the desired properties. O

5.5. Local unstable manifolds and Proof of Proposition 4.6. Relative to either
the charts @, in Proposition 5.1 or ¥ in Proposition 5.4 we may perform either
the Perron-Irwin method or Hadamard graph transform method to construct
(un)stable manifolds. See for instance [20], [19], or [2] for more details.

Fix n € Z%. Let F c Z% be a finite, symmetric, generating set containing 7. Let
Z be an a-invariant, C'*#-tame measurable foliation. Let U be as in Section
3.2 and Definition 4.3 and take &y and Ay as in (15) and (16). Let f = a(n) and
fix and 0 < € < g9. Take A = Ag or A/, E=RF or V, and f; = fx orfx:?x,
respectively, with the notation of either Proposition 5.1 or Proposition 5.4.

Let E' =R; N E. Fix 1 < k < p such that A(n) > 0 and let
Espi= @ E and Eq:= @ E.

Aj(m)zAy(n) Aj(m) <Ay (n)

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455-540



482 A. BROWN, E RODRIGUEZ HERTZ AND Z. WANG

LEMMA 5.5. Suppose Ai(n) > 0. Then for every x € A there is a C'*P function
Bt Bai (€772 111 = E<k(L11-1)
with
(@ hy(0) =0, and Dohy(0) = 0;
(b) H6IP(Dhy) < ¢ for some ¢ independent of x;

(¢) |Dhxll =1/3;
(@) ford < e M=% writing W, s := graph (hy| g .s,1.1)) we have

Wew,6 © fx(Wys);
(e) ifu,ve Wygs, then
M2 1y — )| < || £ (0) - fell < € v —ull.
Moreover, the family {hy} depends measurably on x € A. Write f, 7= ff‘_lj 9O
ff__l1 . where defined. Then
(f) forue Wy 5 and n=0, f,"(u) is defined and
(19) Wy = {uEE((S, ||-||):limsup%10g

j—oo

fx_j(u)“ s—Ak(n)+105}.

Continue to write f = a(n). Let Vjyc ¢ be the image of
Wx’e—210—4s
in Lemma 5.5 under either @, or ‘I’f’ . With f = a(n) we still have

f(Vioc,x,s) 2 Vloc,f(x),e-
Moreover, for m € F and a.e. x we have
1. a(m)(Vioc,x¢) is contained in the image of W,y 12 under either
Dy (m,x) OF ‘P‘;’(m,x);

2. f I (a(m)(Vipexe)) < U for all j =0;
3. for y € Vigc,xe and j 20,

a(f7@m, y), 7 @im,x))) < e IAm+20),

Proof of Proposition 4.6. Let % be an a-invariant, C'*#-tame measurable folia-
tion. In the case of (a) of Proposition 4.6, take & = {M}. Recall we write f = a(n)
for our distinguished n. Also recall we fix a finite symmetric generating set F
containing n and set U c Uy with a(m): U — U a diffeomorphism onto its
image for each m € F. Take U c U c Uy open such that f [y — Up is a diffeomor-
phism onto its image. We may then replace U in the hypotheses of Section 3.2
with a smaller open set so that

am)(U)cU

forall me F.
Recall our permutation o (n) such that

Aom@) (M) = Agmy@) (M) = -+ = Aoy (uin) (M) > 0=+ = Ag(my(p) ().
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For distinguished i in Proposition 4.6, fix 1 < k < p with o(n)(i) = k. Take A as
in Lemma 5.5. Let Vjgc, x ¢ be as constructed from Lemma 5.5 above.
For x € A take

V= U (f fg)j (Vloc,f‘f(x),e)

j=0
= {y:f‘j(y) e U forall j=0and f_j(y) € Vige, f-i(0,e for some j = 0}.

In particular, Vy c .
We have

CLAIM 5.6. Forx,ye A and me F

1. ifyeVinU, then a(m)(¥) € Vam ),
2. ifye Vy, then

1 . »

limsup —logd (f T, f J(x)) < Aoy (M) = A (n);
jmoo 1

3. ify¢ Vy, thenVynV, =J;

4. if ye Vy, then Vy = V.

Take B(n) = M . (Uxea Vx). From the above discussion, for x € A we have

1. V, is a C! injectively immersed manifold and is defined independently of
&

z(gvﬁwym\mmzw.

In particular,
3. Vv Wn”’i is an a-invariant, C'*P-tame, measurable foliation.

The proposition follows. O

REMARK 5.7. Given an a-invariant, C'*#-tame, measurable foliation % and
sufficiently small € > 0, let ®, be a family of e-charts; let ¥ be the family
constructed from ®, in Proposition 5.4.

Let h¥ be as in Lemma 5.5 for the charts @, and i = u(n). Let fzxg be as in
Proposition 5.2 and let hx‘g:’” be as in Lemma 5.5 for the charts ¥, with i = u(n).
Let W}; := graph (h{[n_,,1.) and let Zx be the graph of Ay .

Let W." be the graph of 17 o hZ" and let W ""(8) = W " nRK(6).

It follows from the characterization (19), the Lipschitzness of H, in the proof
of Proposition 5.4, and the local dynamics and invariance of manifolds in charts
that for all 6 < e~%~2¢, WZ'4(5) = F,.n W,

Part II. Entropy formulas for rank-1 systems
by Aaron Brown

In this part, we extend the main result of [31] and the entropy formulas from
[32] to the setting of diffeomorphisms satisfying our standing hypotheses. As a
corollary of the proof, we obtain the finiteness of entropy for systems satisfying
the standing hypotheses II of Section 3.2. Although we provide most details
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here, the arguments in this section are heavily adapted from the original papers
[31, 32]

6. DEFINITIONS AND FACTS ABOUT METRIC ENTROPY

Before stating our main results in Section 7, we recall some standard defini-
tions and facts about the metric entropy of measure-preserving transformations
that will be used throughout.

For this section, let (X, 1) be a standard probability space. Given a measur-

able partition ¢ of (X, ), we indicate by {,ui} a family of conditional probability

measures relative to the partition ¢. In particular, the assignment x — ui is o (&)-
measurable (where o(¢) denotes the o-algebra of ¢-saturated sets) and, given a
measurable Ac X, u(A) = fui(A) du(x).

6.1. Metric entropy of an invertible transformation. Given measurable parti-
tions 7,¢ of (X, u), the conditional information of n relative to ¢ is I,(n | $)(x) =

—log(ui(n(x))) and the conditional entropy of n relative to ¢ is Hy(n | §) =

fl,l(n | $)(x) du(x). The entropy of n is H,(n) = H,(n | {<, X}). If Hy(n) < oo,
then 7 is countable and H, (1) = — Y. cey #(C)log u(C).

6.1.1. Entropy of an invertible transformation. Let f: (X, u) — (X, ) be an in-
vertible, measurable, measure-preserving transformation. Let 7 be a measur-
able partition of (X, i). We define

N Fo_ N7 si
n =\ f'n n =\ f'n.
i=0

ieZ
We define the (“unstable” or “future®”) entropy of f given the partition n to be

hu(fim):=Hy (1 fn*) = Ha(n* | f0*) = Ha (F 0" 10").
We define the metric entropy of f relative to u to be

hu(f) = supih,(f,m}

w here the supremum is taken over all measurable partitions of (X, y).

The quantity h,(f) is the main object studied in [31, 32] in the setting of C?
diffeomorphisms of compact manifolds. In addition to relaxing the C? regu-
larity and compactness, we will need analogues of the main results of [31, 32]
for related quantities, the entropy subordinated to a measurable partition or an
invariant foliation, which we define below.

31t is perhaps more standard to define the entropy hu(f,m) as Hy (nlf _ln_) as in standard refer-
ences such as [44]. Note that we typically expect asymmetry of these definitions: H, (mlfn*)#
Hy, (mlf ’ln’) . However, if n) satisfies Hy, (1) < oo, then the symmetry of the two definitions holds.
We choose to define hy(f,n) = Hy (n1 fn™) to have results most consistent with statements in
[31, 32] and related work.
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6.1.2. Entropy subordinate to a partition. Given two partitions ¢ and 7 write
n < ¢ if & refines 7.

DEFINITION 6.1. Given a measurable partition 1 of (M, 1) we define the entropy
of f subordinate to 1 to be the quantity

hy(f 1m) == sup{hu(f,&) :n <&} =sup{h,(f,nV}.

In general, hﬂ( flim# hy ( f -1 77). However, if 7 is an f-invariant partition,
then

hu(f1m) =Ry (7 ).

REMARK 6.2. When fn =1 or fn<n, then the above definition coincides with
the usual definition of entropy of a transformation conditioned on an invariant
partition or invariant o-algebra. See for example [26, Definition II.1.3].

6.1.3. Entropy subordinate to a measurable foliation. We now take X = M to
be a C* manifold equipped with a Borel probability measure u. Consider a
measurable foliation & of M (see Definition 4.1.) Note that the partition into
leaves of & is generally not a measurable partition of (M, u).

DEFINITION 6.3. A measurable partition ¢ of (M, ) is subordinate to & if for
aexeM

1. {(x) c F(x);
2. ¢(x) contains an open neighborhood (in the immersed topology) of x in
F'(x) (where &'(x) is as in Section 4.1).

DEFINITION 6.4. Let &% be an f-invariant, measurable foliation of (M, i). We
define the entropy of f subordinate to & to be

hy(f | %) :==sup{hy(f |¢): ¢ is subordinate to F}.
More generally, if 7 is any measurable partition of (M, u) we define
hy(f Inv F) :=sup{hu(f|&vn):¢is subordinate to F}.

REMARK 6.5. In most constructions of partitions subordinate to a foliation, one
may further assume each atom ¢(x) is precompact in the immersed topology of
F'(x) for almost every x or at least for a positive measure subset of x.

When hy,(f) < oo, it is with no loss of generality to assume in Definition 6.4
that all partitions ¢ have the additional property that

3. &(x) is precompact in the immersed topology of &'(x) for a positive mea-
sure set of x.

Indeed, let ¢ be as in Definition 6.3. We may measurably select a representative
X¢ in each atom of ¢ (see [6, Theorem 9.1.3].) For each x;, we may select (in
a measurable way) a precompact (in &' (x¢)) neighborhood of x; with positive
conditional measure so that, taken together with its complement, the resulting
partition & is measurable. Since ¢ < ¢, H#(E | §) < log2, and hy(f,¢) < oo, we

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455-540



486 A. BROWN, F. RODRIGUEZ HERTZ AND Z. WANG

have (see Section 6.2 below)
Hy (§1£87) = Hu(Sv el fEF)
Hy (E1fE)+Hy(E1€7)
<Hu (&1 fE)+Hu(E1¢) <00
and it follows from property (9) of Section 6.2 below that h, (f | £) = hyu(f | &).

6.2. Properties of metric entropy. We recall some properties of the above defi-
nitions. A standard reference for proofs and details is [44]. Consider a standard
probability space (X, i), an invertible, measurable, measure-preserving trans-
formation f: (X, u) — (X, u), and measurable partitions 7,¢, and ¢ of (X, ).

L. hu(f,8) < Hy(S).

2. Iipv 1) () =I,(n 1) () + I, v &) (x) a.e.whence

Hynv {18 =Hunl&)+Hu(lInve).

If ¢ <7, then H,(n 1) = H,u(é |{) and H,u(( [n) < Hy(( 1<).
hu(finv O < hy(f,n) + hy(f,0).
If{, /¢ andif H,(n|{1) <oo, then H,(n|{,) \ H,(n|0).
hy(f) = sup{hu(f,2): Hy(P) <oo} and h,(f | m) = sup{hu(finvP):
Hy(2) < oo}
7. hu(finvE = hu(fimv fR©) for ke Z.
Ifn<¢&and Hy (€1 fn*) < oo, then 5 Hy (VI F1E1f"0™) N\ Bu(f, ).
9. If n < & and H, (¢ fn*) < oo, then hy(f,n) < h,(f,&). In particular, if
H,(2) < oo, then hy,(f,n) < h,(f,nv 2?).
10. If either hy(f,¢) <oo or H, (S| n) <oo, then

Bu(f, 6 v < hu(fom + by (£.Ev ).

We also have a more precise version of (9) and (10).
11. If H, (vl fn*) <oo, then

Pu(fn v & = (fom + by (£,6 vrf).
We note that all inequalities hold for co-valued quantities.
Conclusion (8) is [44, 7.3]. (9) is [44, 8.7]. (10) holds as
hu(f,&vm) = Hy (v f" @1 f () v 1 (&)
= Hu(nl f(n*) v [ () + Ha (7@ 1™ v 7 (67)
=Hu (1 f(n") v " HE)) + Hu (€1 f " (") v £ (€7))-
We have Hy (1 f (n7) v f"*1 (7)) < hu(f,n) and, assuming either that h, (f, ) <
oo or that Hy (& | 1) < oo, we obtain that H, (| f~"(n*) v f(¢7)) decreases to
Hy(EInf v f(¢)) as n—oo. Asn/ is f-invariant, we have Hy (¢ 10/ v f(¢1)) =

hy(f.évnf).
The assertion in (11) is [44, 7.7] which can be derived from (8) and (10).

o e w

®
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6.3. Abramov-Rohlin-type formulas. We say a partition n of (X, y) is f-increas-
ing if fn <. Note in this case that n* =7 and hy(f,n) = H,(n | fn). We say n
generates if n/ is the point partition.

Consider a second measure-preserving transformation g: (Y,v) — (Y,v) of a
standard probability space (Y, v). Suppose there is a measurable y: X — Y with
w.pu=vand wo f = gow. We say that g is a factor of f induced by v. Write /¥
for the partition of (X, u) into preimages of . Note that «/¥ is f-invariant.

We have the following equalities which include the classical Abramov-Rohlin
formula, (21) below (see [30, 7]).

COROLLARY 6.6. Let g: (Y,v) — (Y,v) be a measurable factor of f: (X,u) —
(X, w) induced by w. Let f) be a measurable partition of (Y,v) that is increas-
ing for g. Then

hu (f 1™ (@) = v (8,0) + hy (f 197 (7))
and if ) generates for g, then

(20) B (F 1y~ () = v (87) + hu (£ 17,
In particular,
1) hy(f) =hy(@) + hy (f 1 2Y).

Indeed, if hy (g,f) = co there is nothing to prove. If h,(g,7) < co we may
take the supremum of hy (f,2 vy ™! (7)) over all partitions & of (X, ) with
H,(2?) < 0o and obtain the first conclusion from (11) of Section 6.2. (21) follows

by taking supremums over finite entropy partitions of (X, u) and (Y,v).

7. STATEMENT OF RESULTS

We extend the main results of [31, 32] to the setting of rank-1 systems (i.e.,
diffeomorphisms) satisfying the hypotheses introduced in Section 3.2. Beyond
establishing formulas as in [31, 32] for the total entropy h,(f), we also establish
results analogous to those of [31, 32] for entropy subordinated to a foliation,
hu(f | &), or a measurable partition, h,(f |7n), following the definitions in Sec-
tion 6.

Let M be a k-dimensional, C* manifold equipped with a Borel probability
measure y. Let f: M — M be an invertible, measurable, p-preserving trans-
formation. Then f generates an action of Z on M. We assume the induced
Z-action satisfies hypotheses II of Section 3.2. In particular, we fix the generat-
ing set F = {—1,1} and consider all constructions from Part I including the set
U c Uy from Section 3.2 and the Lyapunov charts from Section 5 to be relative
to F.

For the remainder of Part II, we further assume that u is f-ergodic as the
generalizations of all results stated here to the non-ergodic case are standard.

As f induces an action of Z, we may identify the Lyapunov exponent function-
als 1;: Z — R for the derivative cocycle (13) with their coefficients A; := 1;(1) e R.
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For the remainder of Part II, Lyapunov exponents are assumed to be real num-
bers, listed without multiplicity, and ordered so that

M>A>>A,>02 141> > 4.

We write E?(x) = Ej, (x) and write m; for the almost-surely constant value of
dim E? (x). Also write E“(x)= @59 E (x), E°(x) = Ep(x), and ES(x)= @, <o E' (x).
Recall we view each Ei(x) as a subspace of R* via the charts in ¢y in standing
hypotheses II in Section 3.2; we may push forward each E i(x) to T, M under
Dogps. o o

Given 1 < i <r, we write W'(x) = W/ (x) and #'' = #/ for the ith unstable
manifold and ith unstable foliation corresponding to the generator f = a(1).
Similarly write #'" = #}". Given any C'*P-tame, f-invariant, measurable foli-
ation & we write F“:= % v #'*. We similarly define stable manifolds W*(x)
and the stable foliation %S to be the unstable manifold and foliation relative to

.

7.1. Finiteness of entropy. Our first result is the following version of the Margu-
lis—Ruelle inequality [45] for systems satisfying our standing hypotheses.

PROPOSITION 7.1. Let (M, ) and f be as above. Then
hu(f)< ) Aim;.
A;>0
In particular, hy,(f) < oo.
7.2. Geometric rigidity of measures satisfying the entropy formula. Let & be

an f-invariant, measurable foliation. Observe that the distribution x — T,Z'(x)
is D f-invariant and thus for a.e. x,

p .
T F' (x) = @ (Dop<E' (x) N TxF' (x)).
i=1
(Here ¢, are the dynamical charts in standing hypotheses II in Section 3.2.)
Define the multiplicity of each A; relative to & to be (the almost-surely constant
value of)

mi(F) := dim (Do E' (1) 0 To ().

We say a measure i is absolutely continuous along & if 11! is absolutely continu-
ous with respect to the Riemannian volume on 7(x) < & (x)’ for any measurable
partition 7 subordinate to & and almost every x.

We have the following extension of [31, Theorem A].

THEOREM 7.2. Let & be an f-invariant, C'*P-tame, measurable foliation. Then

(22) hu(f1F) < ). Aimi(F).

l<isr
Moreover, equality holds if and only if u is absolutely continuous along &".
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Furthermore, in the case of equality in (22), the measures u' are equivalent
to the Riemannian volume on almost every 1, ¢ % %(x) for any measurable
partition i subordinate to &%, (See [31, Corollary 6.1.4]).

Note that Proposition 7.1 follows from the statement of Theorem 7.2 by taking
& = M. However, we establish Proposition 7.1 separately from Theorem 7.2.

As in the main result of [28], Theorem 7.2 follows from Jensen’s inequality
after we establish that all entropy of the system is carried by unstable manifolds
(or the unstable part of an invariant foliation). (Compare with [31, Corollary
5.3].)

PROPOSITION 7.3. For an f-invariant, C'*P-tame, measurable foliation & we
have

hy(f 1| F) = hu(f 1 FY).

7.3. Pointwise transverse dimensions. In Part III we will want a geometric de-
scription of the entropy h,(f | ) where 7 is an invariant measurable partition.
We thus prove a generalization of the classical Ledrappier-Young entropy for-
mula for the quantity hy(f 7).

Take n to be an arbitrary measurable partition of (M,u). Given 1 <i <,

let ¢’ be a measurable partition subordinate to #'. Let { uiivn} be a family of

conditional measures relative to the measurable partition ¢’ v 7. We define the
ith upper and lower pointwise dimensions of u relative to n at x to be

— ; log 1 " (B(x, 1))
im (u,x|n) = 1r:15$1p Togr

log 15 V" (B(x, 1)
logr

dim’ (u, x|n) := limiglf
r—
and the ith pointwise dimension of p relative to n at x to be

log 15 V" (B(x, 1)
logr

dimi(u,xln) = lim
r—0

when the limit exists. One verifies that the functions di_mi (1, x|m) and dim’ (i, x|n)
are measurable and independent of the choice of ¢ i, Moreover, if fn <n and

hu(f,n) < oo, it follows that dim’ (14, x|n) and dim’ (u, x|n) are constant along or-

bits of f and hence, by ergodicity of u, constant a.s. Let dim’ (uln), dim’ (uln)
denote the a.s.constant values.

We first claim the following (whose proof follows from the inequalities in
Section 10.1).

PROPOSITION 7.4. Letn be a measurable partition of (M, u). Then
dim’ (uln™*) = dim’ (uin™).
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Write dim’ (u|n*) for the common value guaranteed by Proposition 7.4. Set
dim®(uln*) = 0. For 1 < i < r define the ith transverse dimension of u relative to
n* to be

y' (uin*) = dim’ (uln™) - dim’~* (uin*).
CLAIM 7.5. Forl<i<r,y' (uln®) < m;:=dimE".

Note that if 1) is a measurable partition of (M, u) with i < 7}, then, by defini-
tion, we have

hu(f 1m) = hy (£ 19).
We have a similar result for the transverse dimensions above.

PROPOSITION 7.6. Ifn*™ <@)", then foreveryl<i<r
Y (™) =y ().
Proposition 7.6 follows from discussion at the end of Section 11.3.

7.4. Geometric characterization of the defect in the entropy formula. As in
[32] we have an explicit geometric description of the defect of equality in (22) as
well as its generalization to the entropy subordinate to a measurable partition.

THEOREM 7.7. Letn be a measurable partition of (M, u). Then
ha(fim=Y Awy'(uin®).

1<isr

Taking 7 to be the trivial partition {X, &}, we obtain an extension of the en-
tropy formula from [32] to C'*P diffeomorphisms of noncompact manifolds
satisfying our standing hypotheses.

Suppose g: (Y,v) — (Y,v) is a measurable factor of f induced by yv: (M, u) —
(Y,v). As a primary application of Theorem 7.7, we obtain a Ledrappier-Young
entropy formula for the fiber entropy hy, (f | /%) of smooth systems when the
elements of the fiber partition «/¥ are only measurable. In particular, from (21)
the entropy of the factor system g: (Y,v) — (Y,v) can be computed in terms of
the Lyapunov exponents of the total system f and the geometry of the condi-

tional measures of u and of { us w} along unstable manifolds. In the case that

the fibers are smooth manifolds, a Ledrappier—Young formula for fiber entropy
follows from [41].

7.5. A characterization of the Pinsker partition. Let 7 denote the Pinsker par-
tition for the action of f on (M, u). Also, let " and %° be the measurable hulls
of the (typically non-measurable) partitions %% and # °.

THEOREM 7.8. Under the above assumptions
=R =5,

Theorem 7.8 follows from the discussion in [44, (12.4)] exactly as in [31, (6.3)]
and [28, (2.3)] from Proposition 8.3 and Remark 8.1 below.
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8. PREPARATIONS: SPECIAL PARTITIONS AND THEIR ENTROPY PROPERTIES

8.1. Standing notation. We write A for the set of regular points of u. Let
1 ) .,
g = ﬁmln{l,MiLMi —Ajlii# j,Ai #0}.

For Sections 8-11, fix 0 < € < gg. Let {®4} be a fixed family of e-Lyapunov charts
as in Proposition 5.1 with corresponding function ¢. Given 0 <i <r and x €
Ay, let hfc be a function as in Lemma 5.5 (relative to the charts ®,). Let 1¢ =
max{|A;|}. For 0 <8 < e =28 et

W, 5 = graph (h; @) Rf(a))
and write
‘/lf)c,x,g = q)x (graph (h; r®j5iRj(—Zﬂg—48))) = q)x(W;’eleo—%)

for the ith local unstable manifold relative to the charts {®,}.

Consider a C'*F-tame, f-invariant, measurable foliation %. We may further-
more choose charts {®,} above as in Proposition 5.4 and build an associated
family of charts W7 . Let hZt = h! be as in Lemma 5.5 (relative to the charts
{\P? 1 and write

Fu _\yF Z,
VIOCZ,E =Wy (graph(hx u Feajs,(vrﬁﬂ?f)(e’ﬂ"f“)))
for the local manifold of " := % v #“ through x relative to the charts {‘P‘xg 1.
Also write

vZ .= \Pf(V(l)) = q)x(graph(flxg vay),

loc,x,e *

where /7 is as in Proposition 5.2.
Recall the ambient (locally-defined) metric d on Uy. Write dvli for the

oc,x,&

restriction of d to the embedded manifold V! where dvli (x,y)=c0if y¢

loc,x,e
Vl(i)c,x,e' Denote by B(x,0) :={ye€ Uy:d(x,y) <8} and
(23) B(x,6)i={ye Vi, . 1dy  (x,y) <6},

8.2. Expanding partitions subordinate to unstable manifolds. Following the
constructions in [29, Proposition 3.1], [31, Lemma 3.1.1], and [32, Lemma 9.1.1],
there exists measurable partitions ¢’ for 1 < i < r with the following properties:

(1) & is subordinate to 7/1 (see Definition 6.3); moreover for a positive mea-

sure set of x we have ¢'(x) Vlgc e

@) ¢ =< feh

(3) V9., f ¢! is the point pa;tition%

(4) for 1<i<r—-1, we have &+l < ¢i.
A partition satisfying (1)-(3) is said to be an increasing generator subordinate to
V43
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REMARK 8.1. Take i = r. For any partition ¢“ := ¢" satisfying (1) and (2) we have

n=0
The construction of partitions ¢’ with the above properties outlined in [32,
Lemma 9.1.1] requires one to first subfoliate each Vlgcym by a continuous foli-
ation by fast unstable manifolds. The characterization of atoms of these parti-
tions given on [31, p. 520] and [32, p. 555] is then given in terms of distances
inside global fast unstable manifolds. Although this may be carried out word-
for-word in our setting, we prefer a construction that only uses the measurable

family of local fast unstable manifolds Vléc . ¢+ In particular, we first follow [29,

Proposition 3.1] and build partitions &’ satisfying (1)—(3); we then refine these
to obtain partitions ¢’ satisfying (4). Moreover, as we allow our system to have
discontinuities and singularities, we prefer a (partial) characterization of atoms
of each partition in terms of the dynamics inside local fast unstable manifolds
in Lemma 8.2 below. Since our construction is somewhat different from [32,
Lemma 9.1.1] and since we will refer back to sets used in the construction, we
outline the construction here.

8.2.1. Outline of construction. Recall our fixed 0 < € < ¢y and family of e-Lyap-
unov charts @, with corresponding function ¢. Also recall the charts ¥ built
from ®, as in Proposition 5.4. Fix ¢ > 0 sufficiently large. Let A} < Ap be a
compact set of positive measure such that:
o /(x)<¥yfor xe A
o the charts x — ®, and x — W vary continuously in the C' topology on
Ay
o for 1< i < r the family of functions k' vary continuously in the C! topol-
ogy on Aj;
o the familes of functions 7 and hxg” vary continuously in the C! topology
on Aj.

It follows that the families of embedded manifolds x — Vli L x—VZ
0C,X,E loc,x,e

X — Vl‘ixg vary continuously in the C! topology on A;. Let xo be a density

point of A;. Given p > 0 sufficiently small and y € B(xg, p) N Ay, let

and

VO (3,0) = Vb e N B0, 0).

Write V¥(y,p) = V*'(y,p). Similarly, given y € B(xo, p) N A1, write VF%(y,p) =
V2" AB(xo,p) and V¥ (y,0) = V;Z 1 B(xg,p). Set

loc,y,e 0C,),€
0._
Sp = B(JC(),p) ﬂAl.

Taking 0 < po sufficiently small, we may assume for 0 < p < po that N =
B(xy, p) is an embedded open submanifold with N c U an embedded submani-
fold with boundary and that for all and y;,y» € Sg the following hold:

(@) Vi( ¥1,p) is a connected open neighborhood of y; with compact closure
in V! ;
loc,y1,€’
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(b) if y1€ Vi, .» then V¥ (y1,0) = V¥ (y2, p);
() VZ(y1,p) is a connected open neighborhood of y; with compact closure
in Vl‘g ;
0C,1,€
d) vZ¥ '“(y1,p) is a connected open neighborhood of y; with compact closure
in Vlgu and
0C,y1,€

vZu (1, 0) = Vi, 0) NV (11, 0);
(e) if y; € vZ then Vg(yl,p) = Vg(yz,p), and if y; € yTu then

loc,y»,€’ loc,ys,¢€’
VU1, p) = VT4 (ys, p).
(Properties (c)—(e) will be used later in Section 12.)
Forl=i=<r,set

sp=U V¥ p.
xeS)
Consider y € S},. There exists x € S) with y € V*!(x, p); moreover, if y € V! (x', p)
for some x' € Sg, then

Vii(x,p) = V(X p).
For such ye S;; and x, set D'(y) = V%I (x, p). It follows that

fi={P'V ISy
MN\S, yeS,

defines a partition of a full measure subset of M. Take 5 .= ((f i+,

By ergodicity, for any 0 < p < pg and a.e. y, we have that f~"(y) € Sg for some
n = 0. It follows that & (y) ¢ #''(y) for a.e. y. We check that &' satisfy properties
(2) and (3) enumerated at the beginning of this section. Indeed, property (2) fol-
lows from construction and property (3) follows from the dynamics inside local
unstable manifolds. Property (1) follows for Lebesgue-almost every choice of
p < po (ensuring the boundary of a.e. V*(x, p) has zero measure and that back-
wards orbits do not accumulate too quickly near the boundaries of V*(x, p))
by the same arguments as in [29, Section 3]. Fix such a choice of p < py.

We have the following partial characterization atoms of ¢/ which will be used
in the sequel.

LEMMA 8.2. Set 6 = e 2"~ and suppose p < $6¢;". Suppose z and y satisfy the
following: for all m =0,

1. f7™(ye Sf) ifand only if f"™(z) € S ;

2.d(f™), f™(2) = 3605 e AT,
Then &' (2) = &(y).
Proof. Given any m =0, we claim that f~"(z) € Ei(f_m(y)); the result then fol-
lows. For m such that f~"(y) ¢ S, the claim follows by hypothesis.
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Consider any m = 0 such that f~™(y) € Sé. There is some x € Sg with y €
V*i(x,p). Then d(x,f™(2)) < ¢;" and f~™(z) is in the domain of ®;'. For
k =0 we have

Hq)}l (f—m—k(y))” < e(—/l,-+2£)k€0p < %5e(—/1i+2£)k.

—k(x)

Since
[(f—k(x))d(f—m—k(z)’f—m—k(y)) - goeskd(f—m—k(z)’f—m—k(y)) - %5

it follows that f ~m-k(z) is in the domain of @}}k ) for all k=0. Then for k=0

Hq)]_p}k(x) (f_m—k(Z)) || </ (f—k(x)) . (galaek(—lﬁzm) < 5ek(_1i+3£)

which, from (19) of Lemma 5.5, implies f~"(z) € Vlloc e Since ™2 e St we
have

s

fM@evtixp) =D (W) =& (W)
and the lemma follows. O

For 1 <i < r, note that V”’i(x,p) is defined only for x € Sg. In particular,
while V%i(x,p) c V**1(x,p), the collection {V*i(y,p) : y € V¥i*1(x, p)} may
not subfoliate V***!(x, p). In particular, while S}, c S5*!, we do not automati-
cally have &1 (y) < () nor &1 (y) < E(y) (as &' (y) is refined on return times
to Sf) rather than return times to Sfo“.) Thus, having built ¢1,...,¢" satsifying
()-3), for1<i<r set

(24) &=\ .
j=i

Property (4) now clearly holds for the family of partitions ¢’ for eachlsisr.
Moreover, properties (2) and (3) are inherited by the partition ¢’ and, since

Vlg oxe is an embedded submanifold of Vlé xe for all j = i, property (1) contin-

ues to hold for ¢i.

We fix a sufficiently small p > 0 and write S = Sg and S’ = Sé for the remainder.
Also write &% =¢&7,

The following proposition is the analogue of the main results of [31]; see
[31, Corollary 5.3]. Roughly, the proposition says that all entropy is “carried by
unstable manifolds,” the most difficult step in establishing the SRB property in
[31]. The proof will follow directly from Proposition 9.1 and the inequalities in
10.1 below.

PROPOSITION 8.3. Let Y =¢" be a partition as above. Then for any measurable
partition 1,

hu(fIm) = hu(finveE")=Hu(n* vl fn"vEr)).
In particular, hy(f) = hy (f,&%).
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8.3. Entropy properties of the partitions ¢’. Following (the proof of) [32, (9.2)]
we have the following.

CLAIM 8.4. Let &' be any partition as in Section 8.2. Then hy(f,fi) < oo.

Proof. Given 6 >0, let
45 = {x:BI(F,0) <& (rn},
where B! (-,8) is as in (23). Then u(As) — 1 as § — 0. Let
g =—logu§ (£7'¢'x).
Given any M < hy,(f, &) = Hy(f 11| &), take & > 0 so that

f gdu=M.
As

Write

Ul(x, n,6) .= ﬂ (f_(]"'l)él) (x)-
{j:0<j<n-1,f7(x)€eAs}

Note thatif k=max{0<j<n-1 :ff(x) € As}, then
U'(x,n,6) = f~F Vel (x),
Relative to the family of e-Lyapunov charts {®.}, we observe for every suffi-
ciently large n =1 (such that f/(x) € As for some 0 < j < n—1) that
B! (x,6€(x)_le(_’11_28)”) cU'(x,n,o).
Moreover
¢ (gi A & (i £ :
—logu5 (B’ (x,(%(x)_le(_ 1_28)")) > —logus (U’ (x, n,5)) > Z (14,8 (f(x)).
j=0

Then, by the pointwise ergodic theorem, for p-a.e. x we have

NI | & (i -1 ,(-M—28)n

llrgrlgf—;logpx (B (x,M(x) e ™ )) = AagzM.

On the other hand (see [31, Lemma 4.1.4]), fixing a bi-Lipschitz identification

of the embedded manifold Vlloc e With Rt M e have for a.e. x that

1 ri .
limsup —— log 5 (B’ (x,6€(x)_1e(_’11_25)")) < (m;+---+m)(A; +2¢)
n—oo n

whence M < (m; +---+ mp)(A; +2¢). O

We frequently use the following fact that partitions satisfying properties (2)
and (3) of Section 8.2 locally maximize entropy.

CLAIM 8.5. Let ¢ be any measurable partition of (M, u) satisfying properties (2)
and (3) of Section 8.2. Letn and { be measurable partitions with hy(f,{) < co.
Then

hu(f,¢vEvn < hy(f,§vn).
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Indeed, this follows from (10) of Section 6.2 as (¢ v 17)f =Vnez fH(E VD) is the
point partition.

Combined with (9) of Section 6.2, we have the following (compare to [31,
Lemma 3.2.1]).

COROLLARY 8.6. Let ¢ be any measurable partition of (M, 1) satisfying (2) and
(3) of Section 8.2. Letn and & be measurable partitions with H,(2%?) < oco. Then

hu(f,Evnv &) =hu(f,Evn).
As in [31, Lemma 3.1.2] we have the following.

LEMMA 8.7. Foreach1<i<r, let{i and éé be two partitions as in Section 8.2
and let 1 be an arbitrary measurable partition. Then

hu(f, €5 vm) = hu(f, & V).
In particular, hy(f, %) = hy(f,€5).

8.4. Finite entropy partitions adapted to Lyapunov charts. Recall our family
of e-Lyapunov charts {®,}. Fix 0 < < 1. For x € Ay, define the corresponding
center-unstable sets:

sgt ={yerk: Hop]:}m(x) o fMod,(y) ” <& for all m =0}

DEFINITION 8.8. We say a measurable partition & of (M, u) is adapted to ({®,}, )
if, for almost every x,

P () <o (S54).

LEMMA 8.9. For every 0 <8 < 1, there exists a measurable partition & adapted
to ({®y},6) with Hy(2) < co.

Proof. Let ¢: A — [1,00) be the function associated with the charts {®,}. Recall
in Section 8.2 we fixed an open ball N with N c U a closed ball and S := Sg cN
with p(S) >0 and ¢(x) < ¢, for xe€ S.

Let n: S — N be the first return function: n(x) = min{j>1: f/(x) € S}. We
have [n(x) duls=1.

Let p: S—(0,1) be

p(x) — 6[616—71()()(/104'28)‘
Let o= ﬁ,ufs. We have [ —log(p) dfi < oo hence, adapting [37, Lemma 2] to

(N, f1), there is a partition P of (S, f1) with Hy () < o0 and diam(2?(x)) < p(x) for
almost every x € S. Let 2 = 22 U{M . S}. Then H,(2) < co. Moreover, from the
choice of p and the properties of the charts {®,}cs, the same computations as
in [31, Lemma 2.4.2] show that & is adapted to ({®,},9). O

CLAIM 8.10. Let§ < e ?M ™% gnd let P be adapted to ({®,},5). Thenforl<i<r
and almost every x,

@ vEH ) eV

1
OC,X,€"
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Proof. Letn=2* v L. For x € S we have
U(x) = fl (x) < Vlz)c,x,a'

In particular, @;1(17(x)) c W;(s.

Now consider arbitrary x and y € n(x). Suppose ®;'(y) € W; sand f(y) e
n(f(x)). By the choice of 6,

-1 ‘ k ]
q)f(x) (f(_)/)) € W;(x),eA0+Zg5 N R (6) = Wfl(x)’é‘
whence f(y) € Vléc,f(x),g.

For x ¢ S, let n(x) = max{k =1 ke S}. For k =0 we have F*mx) c
n(f~*(x)). Then for each 0 < k < n(x) and y € n(x) we have f~*(y) e n(f*x)).
Moreover, we have © f}"(x)(x) ( @) e W]f,n(x, 0.5° By repeated application of
the preceding paragraph,

(Df—k+1 (x) (f_k+1(y)) € W;—kﬂ (2,86 and f_k+l(y) € ‘/lf)c,f*k*l(x),e

for all 1 < k < n(x) and the claim follows. O

9. LOCAL ENTROPIES ALONG FAST UNSTABLE FOLIATIONS

As in [32, Proposition 7.2.1, (9.2), and (9.3) |, we establish a version of the
Brin-Katok entropy formula (c.f. [10]) for entropy conditioned along fast un-
stable foliations #'* and relate it to the entropy given by the partitions ¢* con-
structed in Section 8.2.

Let n be a measurable partition of (M, u). We do not assume h,(f | 1) < oo.
Given 1 <i<r,let ¢’ be any measurable partition subordinate to 7"

For 1 < i < r define the ith unstable Bowen ball

Vi(x, n,0) = {y:dvi . (fk(x),fk(y)) <dfor0<k=< n}
loc, fX(x),e

Defineforl<i<r 4

o 7i(x,8,m) :=limsup,,_., — 1 log [l * V(e n,8));

o h;(x,6,m) ::liminfn_,oo—%log(,uzwflVi(x, n,6));

o hiCx,n) =lims_q h;i(x,8,m);

° Ei (xr n) = hmzﬁ—»Oﬁi (x) 67 n)
The last two limits exist by monotonicity. It is clear that the definitions are
independent of the choice of partitions ¢’ subordinate to 7.

To unify formulas later, let &% denote the point partition on (M,u). Then

Ovpy* . . . .
ui =5 x is atomic and, with the same notations as above, we have

o EO(X’TI) :EO(X)T]) =0.

PROPOSITION 9.1. Forl<i<r, let; be a partition as in Section 8.2. Then for
u-a.e.x,

Ry Gom) = hi(en) =:hiGx,n) = hu(f,E v = Hu(f " vED) Int v én.
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Moreover, h'u(f,cfi V1) < o0.

We remark that finiteness of hu(f,¢ iy 7n) follows from 9.1.1 below and the
inequality (see the proof of Claim 8.4 and [31, Lemma 4.1.4])
E-(x, 1) < 00.

Write h;(n) = hy( f,{i v 1)) for the almost-surely constant value of h;(x,n).
Note that h;(n) is independent of the choice of ¢ < gy and the family of Lya-
punov charts {®,} and, by Lemma 8.7, independent of the choice of &*.

9.1. Proof of Proposition 9.1. We prove Proposition 9.1 in two steps.

9.1.1. Proofthat h;(x,m) = H, (™" (n* v &) In* v ED). For fixed integers 1 < i < r
and k = 0, write _ _
&* 00 = (F D ).
_For almost every x, the set ¢ ik (x) contains an open neighborhood of x in
&'(x). Thus
E"'kvn* _ 1 5ivn+ I‘( . @
X - i + i X f" Vn+ x)*
e (kv @)

Then,
ik + . i + 3
g (P ) @) it (v )
e (1) u VT (FE k)
_ ) —1rik
= [E/,tilvn+ (]lfflTﬁ(X) | o (f 6 )) (x)

Given b >0, set
Ap k= {x- “il'n\m (1" vnt) @)
| W (f1g )

By pointwise convergence for martingales, we have p(Ap ) — 1 as k — oo.
Given b>0,6 >0 and keN, set

Apjs={x€ Apr: B'(f(0,8) <& (F}.
We have pu(Ap k,5) — 1(Apx) as 6 — 0. Given any

M < H, (ff1 (77+ Vfi,k) In* Vfi,k) = H, (ffl (77+ Véi) In* Vfi)

>e Pforall n= k}.

and _ _
0<b<H,(f ' vER IntvER - M
choose first k, then dg so that for any 0 < 6 <
+ ik .
Mbs [ —log[ul ™V (£ (5 v ) 10)) duco
Ap,ks
Then
+ i,k .
Msf —log(uz vé ((f_lé"k) (x))) du(x).
Abks
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Define
Ui(x,n,6) := N (f_(j“)fi’k) (x).
0<j<n-1:fi(x)€Apks
Then for all sufficiently large n = 1 (such that f J(x)e Ap,ks forsome0 < j=<n-1)
we have
Vix,n,é)c U;(x,n,0)

and with R _
g():=—logu V¢ (FEMR) (x)
we have
+Vfi’k n-1 .
—logul Y Wit n,8) 2 Y (Lay,,-8) ().
=)

Then for a.e. x,

1 +\ £l .
h;(x,6,m) := liminf——log u? ve (Vi(x,n,6))
n—oo n

1 +\, i
> liminf-—logu? ¢ (U;(x, n,8))
n—oo n
-1

17 ;
>liminf— )" (14,,, 8 (' (x))
n—oo n =0

=f gdu=M
Abks

and the inequality follows. O

9.1.2. Proof that h;(x,n) < H, (f~' (n* v&) In* vEl). Given ¢ < k and a parti-
tion 1 of (M, u) define

k )
(25) nt=\ fn.
j=t
Exactly as in [32, Lemma 9.3.1], the following follows from the Chung—Neveu

lemma (see [39, Lemma 2.1].)

LEMMA 9.2. Let { be a partition of M with H,({ | &' vn*) <oco. Then for y-a.e. x
. 1 EiV + . . .
,}L{{}o—ﬁlogux n ((Cvf’ vn)g(x)) =H, (E’ vnl f(& vn+)).

Recall the unstable manifolds W; 5 = 8raph (h; erSl.((s)) defined inside charts
the @, in Section 8.1. With the notation of (25), we have the following.

LEMMA 9.3. Given 0 < €' sufficiently small, there exists a partition 2 of (M, u)

with H,(2?) < oo and a measurable ny: M — N such that for every1 <i <r,
almost every x € M, and n = ny(x),

(D)_Cl ((961 Y, fl) (X)) cw! —(j-2e)n*

x,e'e
In particular, for n = ny(x),
@ (PvE) () cVi(x,ne);
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(b) (‘@(;l Véi) (X) C Bi (x’ e_(/li—ZE)n) )

The final two conclusions follow from the fact each chart @, is 1-Lipschitz
for almost every x. The proof is nearly identical to that of [32, Lemmas 9.3.3,
9.3.2]. We include it for completeness.

We note in the statement and proof of Lemma 9.3 that the same partition &2
works for all indices i.

Proof of Lemma 9.3. Let S = Sg be as in Section 8.2. In particular, u(S) > 0,

¢(x) < ¢ for x € S, and there is an open ball N with N a closed ball such that
ScN.
Given x € S, define

n.(x)=min{n>0: f"(x)eS}, n_(x)=min{n>0:f"(x) € S}.

Let § = e~2%~4¢ gnd consider any0<¢ <6. Lety,p,: S—(0,1) be

w(x) — Eléo—le—(/l0+2£)max{n+(x),n_(x)}, 1//+ (x) — 8/50—16—(A0+2£)n+(x)_

Let us = ﬁy[s. Then [log(y) dus < co. Adapting [37, Lemma 2] (to (N, 115)),
we may find a measurable partition &' of S with

1. Hy, (2') <oo;

2. @'(x) c B(x,w(x)) forall x€S.
Let 2 = {S,M ~\ S} v 2?'. Then we still have H, (%) < oo and 2(x) = P'(x) c
B(x,y(x)) for all xe€S.

For x € M define

no(x) :=min{n=0: f"(x) € S}
and
ro(x):=max{n<0: f"(x) € S} = no(x) - n_ ("9 (x)).
We claim the lemma holds with &2 and n, defined above.

First consider for x € S. From the dynamics inside Lyapunov charts we have,
exactly as in [32, Lemma 9.3.2(1)], that if <I>;1 (e W; 5 and d(x,y) <y (x), then

(26) ||<l>_}(x) (fj(y))“ <¢, for0<j<n,(x)
and
(27) q)}iJr(x) (x) (f”H(X) (y)) € Wfin+(x) (x),é'

Consider x with f"(x) € S infinitely often as n — +oco. Consider any
. no(x) .
ye@Ywné =\ fH2wnd .

j=0

Note first that f(y) € 22 (f™W(x)). From the choice of y(x), for 0 < j <
no(x) — ro(x) we have

(28) q)}io(x)_j(x) (fno(x)—] (@ (fno(x) (x)))) c Rk(é).
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Since ¢’ is increasing we have £ (y) € & (f*™(x)) and since ™ (x) € S we
have

1 i
q)fro(x)(x) (frO(X) (J’)) € W;’O(x)(x)ﬁ'

It follows from the choice of §, (28), and the dynamics inside Lyapunov charts
that for 0 < j < ng(x) — ro(x),

q)}_crlo(x)+j (x) (fro (0+] (J/)) € W}fo(xﬂf (x),6°
In particular,
(D}rlzo(x)(x) (an(x) (J’)) € Wfi‘no(x] (x),0
and
d(f™@ ), 9 @) <y, (F0 W),

Now, let n;(x) denote the subsequent returns of x to S. For n = ny(x), take k
with np(x) s n<ng(x). if ye (3?’0” v Y (x), then f”!’“‘) () e ;@(f"f(x’ (x)) for all
0 < j < k whence

d (™), 9 0) < g (9 ()

and we recursively verify as in (27) that

-1 Nis1(X) i
(Df”kﬂ(x)(x)f T E W5

Then for our ny(x) < n < ngy1(x), we have
q’}%(x) (f" ) € Whai 5
and as in (26),
|7t o] <e

The results follows applying the dynamics along W' manifolds inside Lyapunov
charts. O

Proof that hi(x,n) < Hy(f*(n*v Ei) Intv fi). Given &' > 0 sufficiently small,
_ 1 rygl .
hi(x,€'\n) ::limsup——log(,uz vé V’(x,n,e’))
n—oo n

1 £
<limsup - log(uz vé 90"(36))

n—oo

1 +\,x0 .
Slimsup—ﬁlog(uz vé m*ve V@)g(x))

n—oo
:H'u(f—l (n+véi) |n+vfi)-
where the first inequality follows from Lemma 9.3 and the final equality follows
from Lemma 9.2. 0
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10. BOUNDS ON LOCAL ENTROPIES

10.1. Proof of Propositions 7.1 and 7.4, Claim 7.5, Theorem 7.7, and Propo-
sition 8.3. Consider a measurable partition n of (M,u). As we have not yet
established Proposition 7.1, we will moreover assume that s, (f,n) <oo. (This is
sufficient to prove Proposition 7.1 from which it follows that h,(f,n) < oo for all
7.) Propositions 7.1 and 7.4, Claim 7.5, Theorem 7.7, and Proposition 8.3 then
follow directly from the following four inequalities whose proofs occupy the rest
of this and the following section.

Recall the local entropies h;(n) defined in Section 9 (and independent of
€>0). We claim for 1 < i < r that the following inequalities hold:

() hin) = i1 = Ay (@m’ (i) ~dim" (i)
(ID hi(m) - hi-1(m) < A; (dim’ (uln™) - dim’~* (uin™));
(D) ki) —hi-1(m) < Aijmy;
(V) h, () = hu(f 1.

10.2. Proof of (I). This is identical to [32, (10.2)]; we include it for completeness.
Recall our fixed 0 < € < gy and family of e-Lyapunov charts {®,} with correspond-
ing function ¢. For 0 < i < r, let {' be a measurable partition as in Section 8.2.

LEMMA 10.1. Foreach 1 <i <r, there exists a partition & with H(Z?) < co and
a measurable function ny: M — N such that for u-a.e. x, the following hold for
all n = ny(x):

logui"‘lvai—l (x, e—n(/l,-—zf:))

—i-1
@ i <dim  (uln*) +e¢;
l

1 i-1 +
() —;logﬂi YT (x) 2 b () — €5

© X NnPl(x)c B (x, e—n(ﬂi—Ze));
1 i +
@ —;logui Yl (x) < hi() + €5
(e) B! (x,e 1Ni=29)) c ¢i-1(x).
Moreover, for infinitely many n = ny(x)
log'uilvai (x,ze—n(/l,-—Zzz))

>dim' (u]n*) —¢.
—n(A; —2¢) zdim (pln™)—e

®

Proof. (a), (e), and (f) follow from definition. (b) and (c) follows from Lemma
9.3 taking sufficiently small & > 0. (d) follows from Lemma 9.2 as 2’ (x) > (22 v
Ely n")§ (x). Note also that (a), (b), (d) and (e) hold trivially when i —1=0. O

We now prove the first inequality of Section 10.1.

Proof of (I). We retain all notation from Lemma 10.1.
With I':={x: ng(x) < N1}, select N; large enough so that for some x € I satis-
fying Lemma 10.1 we have for all n= Ny
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i-1 + . 1 i-1 + .
.Ui vn (rth—l (x, e—n(/l,——Zf))) > E”i v (Bl—l (x, e—n(/li—ZE)))
- 1e(—n(ai—ZE))(dimi"(mn+)+e)
25 .

Fix such an x. .

For n = Ny, take L, := B! (x, e‘"(’li_z‘g)). For yeI'nL,nn*(x) and n = Ny,
using that ¢71(y) = ¢~!(x) and Lemma 10.1(e), we have B! (y,e "1i=28)
&=1(x) and hence from Lemma 10.1(b),

fi_IV

WV e =l () s e,

For n = Ni, we a obtain lower bound on the cardinality of the number of distinct
v ¢t -atoms meeting ' n L, nn™ (x) by

#{(2gve)gryernLann )= 18V T ALy fenim o)

_ L cntu-zen(dim™ win+e) i op-e)

2
For yeI'nL,nn*(x), we have by Lemma 10.1(c) that
(g,,on Vfi) (y) B (y, e—n(/l,»—ze))
whence (Z]' v &Y (y)c B! (x,Ze_”(’l"_z‘;)). From Lemma 10.1(d), we have
Hiivn+<@()rl (y) > e—n(hi(ﬂ)+£)
and obtain inequalities
Hiivn+3i (x’ze—n(/li—zg))
> #{(%” vENy) yelnL, ﬂn*(x)} e nhim+e)

—i-1 N
> % e(—n(ﬂi—%‘))(dlm (i) +e) o (hi- () =8) p=n(him)+e)

Comparing to Lemma 10.1(f) we have for infinitely many » that
_ log?2 i
(A; —2¢) (diml (wln™) - 5) < % +(A; —2¢) (diml l(y In*™)+ 5)
+hi(m) —hi-1(n) +2¢.
Choosing 7 sufficiently large we have
- - —i-1
Ry () = hi—1 () = (A; — 2€) (dlm'(p In")—dim  (u|n") - 25) —3e.

Inequality (I) follows by the arbitrariness of € < g. O
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11. PROOFS OF (II), (III), AND (IV)

11.1. Properties of fake unstable manifolds inside charts. Recall we fixed 0 <
€ < €9, a family of e-Lyapunov charts {®,}, and for x € A, define

Fer RE(e7h728 110 — REQL - 1)

as in Proposition 5.1. It is convenient to extend each locally-defined f; to a dif-
feomorphism Fy: R* — R*. Fixa C°° bump function ©: R* — [0,1] with ©(v) =
for |[v] =1 and O(v) =1 for || v|| S . Given 0 < 4 < 1, define Fy: RF — Rk by

(29) Fr(v) = Do fr (1) + OB ' v) (fr(v) — Do fr (1))

Assume now that § < e"2%0~%_ We have that F, is well-defined. Moreover,
if § is sufficiently small, then ||Fy — Dg f~x||cl < £. Moreover, we have a uniform
bound H&1P(DF,) < C which will be used later to obtain Lipschitz control on
certain holonomies. Fix such sufficiently small 5>0.

As ||Fx—Dofellcr <&, foreach 1 < i < r+1 and z € R that there is a C!

function
gzt DR/ — DR/
j<i j>i
with ||Dg)'c ZII < % such that, writing W'(z) for the graph of g); 2 we have z €
W (2), Fx(W [(2)) = )(Fx(z)), and W’ lz)c W (z). Moreover if Z € W (2),
then W/ (z) = Wi(2) and

(30) N7z = 2|l < | Fx(2) — Fx(2) || < €172 2 - 2.

Moreover, Wi(z) consists of all points Z € R* such that

limsup —log IIF “n() © 0@ = n(x) OF 1 @I =—2A; +10e.
n—oo
Write
31) Wi, (2):= {2 e Wi(z): 2l < r}.

Note we use W to denote the “fake” unstable manifolds. These depend on the
choice of globalized dynamics Fy: R* — R¥ above. We note, in particular, that
when i =r + 1, “genuine” center-unstable manifolds through 0 do not exist and
one can only define “fake” center-unstable manifolds relative to some choice of
globalized dynamics. Claim 11.1 below relates these to “genuine” dynamically-
defined objects.

Recall the center-unstable sets ngﬁc defined in Section 8.4. We collect a num-
ber of properties of the above objects.

CLAamM 11.1. Forl<i<r,0< 5/4, and the notation of (31) the following hold:
@ S5 {zeRk(za) F;! (2) € R¥(26) for all n > 0}

() W’26(0)

© S5 =T,

n(x) © 1( )
x26’

(0) if Ar+1 <0 and Sgff < W) ifA,41=0

20,x x,20
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Moreover, for z € SC”

@ Wiyya) <S58

@)“ﬁﬂﬂ@-<ﬁ4u%ﬂ@4um50§1un)angax
() if ©x(2) € Ao, then

(D)_Cl (‘/lécrq>x(z),8) Sggx < Wl x,26 (Z),
(g) lfq)x(z) € A\o and [(CDx(z)) < 6_2/10—45(46)—1, then

(DX( 25(2)) < Vlocd) (2,6

Proof. Conclusions (a)-(c) follow using that Fy and fx coincide on R¥(26) and
the dynamics inside charts. Using that F; is an e-Lipschitz small perturbation
of the linear map Dy f, for any | z|| < 6 we have

W26 (Fe(@) € Fe (W) 55(2))

Indeed, Dy fx ( .2 5(z)) is the graph of a function defined on an open ball around
0 in @jsilR{ of radius e}i~¢(26); it follows that F, (W; 25(Z)) is the graph of a

function defined on an open ball around 0 of @ <; R/ of radius (e} ¢ — )26 =
e!i72€2§ = 28. Conclusions (d) and (e) follow.

Conclusions (f) and (g) follow from the dynamics of F, along W'-leaves and
the fact that Fy and the dynamics fx in the charts @, coincide on R*(25). O

11.2. Construction of auxiliary partitions. Consider a fixed family of measur-
able partitions {¢'}p<;<, as in Section 8.2. Recall in the construction of ¢’ in
Section 8.2 we fix xp € A; to be a density point of A;. Recall the choice of Sg,

Sf), and ¢, in Section 8.2. Write §! = S;;. With 8o = min {§/4,e22~4¢/(4¢,)}, let
E c S° be a set with u(E) >0 and

EcB

X0,

50[61
2 .

Then for x € E we have E c @x(Rk(&))). Let 22 be a measurable partition of (X, y)
with the following properties:

1. & is adapted to ({®@,},d¢) (see Definition 8.8);

2. 9P refines {S!, M~ S} foreach 0<i<r;

3. & refines {E, M \ E};

4. 2P refines {E', M~ E'} where E' c E is a subset with u(E’) > 0 to be specified

below;

5. Hy(&) < co.

Recall that 7 is an arbitrary measurable partition of (M, ) (with h,(f,n) < oo).
Take 0. = (nv )" and for 0 < i < r take

ni=n.VE.
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Note that 7g is the point partition. For notational convention, we also write
Nr+1 := N«. Note that if no exponent is zero, it follows as in [28] that n. =
Nr+1 = Nr. In the presence of zero exponents we may have 71, # 1,+1. From
Claim 11.1(c) and Claim 8.10, for almost every x we have

L O3 0 (1) € S5 <« WIH0);

2. ni(x)c Vlécym forl<i<r.

As in [31, Lemmas 3.3.1-3.3.2] and [32, 11.1.2-11.1.3], we have the following.

LEMMA 11.2. For each 1 <i < r, almost every x, and every y € Ao Nnj1(x),
writing § = ®;1(y), we have

@ (Wi 5 ()] Amis1(0) =10
®) o =n: (L) N 1M (x).

Proof. For (a), first consider z € @, ( 280 ( y)) Nn;+1(x). We follow the notation

in Section 8.2 and show the following claim: for each i < j < r we have z € &/ (y).
It then follows from definition (see (24)) that z € ¢ i(y) whence z € n;(y). For
the proof of the claim, recall that 22 refines {S/, M ~. S/} and thus if z € P*( ),
it follows for all m <0 that f"(z) € S/ if and only if f™(y) € SJ. Moreover, if

z€ D, ( .26, ( y)) using that Lyapunov charts are 1-Lipschitz and (30) we have
d (f—m(y)’f—m(z)) < 26087’”(—114—28) < zaoem(—1]+2£),

which, by Lemma 8.2 and our choice of 0o, implies z € fj (). For the reverse

inclusion, Claim 8.10 implies n;(y) € V| loc e Nn«(x), whence

O i) € 05! (Wi e ) NS5 € W (@31 (7))

follows from Claim 11.1(f).
For (b), first note that we have

Frmiom eni(F o n fFmi (x)

because f~'(;(») <ni:(f~1(») and n;(y) € n;4+1(x). For the reverse inequality,
set = ®;'(y) and j_1 = ®p-1(4»(f (). From part (a) and Claim 11.1(e), we
have

(T oM N @i (0)
= ff,l(x) (W}_l(x) 25,7110 @}}l(x) (Mi+1 (f_l(x)))) N M ()N R¥(280)
= ( xz50(y)) MO (1141 (x))
D mi). O
Note from Lemma 11.2(b), for 1 < i < r we have
hu(fin) = Hy(f " 0isn 1) < Hu(f ' 01 103400 = B (f, 4.
In particular, the partitions n; carry more of the entropy as i increases.
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11.3. Transverse metrics on 7;/7;_; and transverse dimension. Recall we fixed
X € S® and E < B(xy, %5026 1) defined in the previous section. Also recall that
for each 1 < i < r and almost every x we have that CD;I(ni(x)) c W;ﬁo and
@' (1. (0)) = S5

Consider x€ Ag. Forl1<i<r+1,let V! = @jzi[ﬂil. Given y, z € 1. (x) note
that W;Eé (') NV and Wi,_zéo (®;'(2)) n V! are singletons. Let

diy2) = |Wigh, (@3 ) n v - Wigh (@' @)n v

Then d’ defines a metric on 7;_1-equivalence classes in 7. (x); below we will
restrict our d’ to a metric on 1;_;-equivalence classes in n;(x), hence the nota-
tion in the superscript. As in [31, Lemma 2.3.2] and [32, Lemma 8.3.2], applying
the dynamics in charts we have the following.

CLAIM 11.3. For ze Tli(x),
f(x) (f(x), f(2) < Qi +35d (x.2).

We construction an alternative metric that is independent of the choice of
x. This is slightly different from the construction in [31, (4.2)] and [32, (8.4)];
in particular, we use the Lipschitzness of holonomies in the setting of C'*5
diffeomorphisms established in [11]. Foreach 1 <i<r+1, let

T; < B (x0,1/280¢;")

be a (dim(® >;E;(x)))-dimensional embedded disc that is uniformly transverse
to each Vlé)clye for ye E and such thatfor 1 <i<r, Vlf)c e N T; is an embedded
m;-dimensional submanifold for each y € E. For x € E and y, z € . (x) define

dT"(y,z) to be
"y, 2)=al (Vi T VL a Ty,

loc,y,e
where d’i is the metric on T; obtained by a bi-Lipschitz identification of T;
with a subset of R4™®;=iE) For x € E, d”i defines a metric on n;_;-equivalence
classes in 1. (x).

For x € E, let T;(x) = @;I(Ti). We have that T;(x) and T; are bi-Lipschitz
equivalent with Lipschitz constant uniform over x € E. Given x € E, consider
the holonomy map

VinW, 5 — Tix) N W, 5
along W;;}so—leaves. The main result of [11] ensures this map is uniformly (over
x € E) bi-Lipschitz. Given x € E and y, x € . (x), define

di (2= || (Wigh, @' oy n T - (Wih @3 ) n T |

It follows that restricted to n;_;-equivalence classes in n;(x) c @, (W; 5 (0)), the

metrics d’. and JXT ol are uniformly (over x € E) bi-Lipschitz equivalent.
Using that the charts {®, : x € E} are uniformly Lipschitz embeddings, we
obtain the following.
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CLAIM 11.4. There is a N > 1 (depending on ¢,) such that for all x € E and
»z€n;(x),

1 .
Nde (1, 2) <d.(y,2) < NdTi(y,2).

We note the N in Claim 11.4 depends only on the choice of the set E (on
which ¢q is bounded from above) but not on the choice of E'  E in the choice
of & in Section 11.2. We now specify E' c E to be any subset with

52

0 E' .
<M )<810gN

(Below, we will define a metric on 17;_;-equivalence classes in each 7; relative to
which all hyperbolicity is concentrated on returns to E’. The choice of E’ with
small mass will be used to control bi-Lipschitz changes of metric that arise over
subsequent returns to E'.)

Fix x € Ay and let

n(x):=min{n=0: f~"(x) € E'}.
By the choice of 22, n(x) is constant on elements of 7... For y,z € . (x), define
(32) dli(y,2)=a" ("), "),

Observe that, as ;-1 (f(x)) < fn;-1(x), d’i defines a metric on n;—1-equivalence
classes in n;(x). In particular, we view the space of equivalence classes as a
topological quotient n;(x)/n;—; endowed with this metric.

Forl<i<r+1,let

B (x,p):={yenix):d" (y,x) < p}

denote the ball of n;_;-equivalence classes in 7;(x) of radius p centered at x;
note, in particular, that y € BT (x, p) implies n;_(y) < BT (x, p).

Forl1<i<r+1, write

logu (BTi(x, p)
33) 7:(x) = liminf —8£x (B7(xp)
p—0 logp

Recall that E°(x) denotes the subspace corresponding to the zero Lyapunov
exponent and E*(x) denotes the subspace corresponding to all negative Lya-
punov exponents.

CLAIM 11.5. For1<i<r and x € E, 7;(x) < m; and ¥,1(x) < dimE°(x) +
dim E* (x).
Proof. For 1< i <r, note that n;(x) c V! .

identify n;(x)/n;-; with a subset of Vlg cxe N Ti. Fixing bi-Lipschitz charts on

For x € E, we may isometrically

Vlf)c e T;, it follows for almost every x’ € n;(x) (see [31, Lemma 4.1.4]) that
¥:i(x") < m;. The result for i = r + 1 holds identifying T"*! with a subset of
[RdimEO+dimEs' n
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The following claim summarizes the discussion in [32, (11.3)-(11.4)] (using
the Lipschitzness of holonomies established in [11] rather than the coordinates
of [32, (8.4)]).

CLAIM 11.6. For 1 <i<r, suppose c =0 is such that ¥;(x) = c for almost every
x€E. Then _ .
¢ <dim’ (uln™) - dim"™" (uin™).

Proof. Note that for x € E we have ¢ i(x)c @x(W;J) c @, (1). Applying the back-

wards dynamics, for some m =0 we have f~™"(x) € E and dD}}m w (W) e

R¥(269) c R¥(6/2). Then the globalized backwards dynamics (29) coincides
with the local backwards dynamics on @1 (f~™ (& i(x))). Using the local Lip-
schitz property of holonomies established in [11] (for the globalized past dyn-
amics restricted to fx’ m(D;l (3 i(x)) and pushing forward under f M to charts at
x), for each x € E there is a bi-Lipschitz identification of ¢ I(x) with a subset
of RAM®;=iE" such that for x’ € &¥(x), {¥71(x’) is contained in a horizontal slice
RIM®<iE' 5 1/} and if x” ¢ €71 (x'), then 171 (x") and é~!(x') are contained in
distinct horizontal slices RY™®i<iE’ x ("} and RIM®i<iF x {1/}, respectively.

lvn

+ .
Under this identification, we may push forward the measures p; and p’

forall ye¢ i(x). Note by construction that 7; refines ¢ Ly n* (x). In particular,
pe " = f iy dpl"™ ().

Note also that by definition, £~ (y) Nn;(y) =1;-1(y). As all identifications dis-
cussed are bi-Lipschitz, the claim follows from [32, Lemma 11.3.2] and [32,
Lemma 11.3.1]. O

Note that if 7] is a measurable partition of (M, ) with n* <7*, then we may
similarly define 1), = (f)v2?)* and 7); = 7). v¢'. We can then define for 1 <i<r+1
logp (BT (x,
¥i(x) =liminf 81t (B(x,p)) .
p—0 logp

From [32, Lemma 11.3.2], it follows that
essinf y;(x) < essinf y; (x).

Claim 11.6 combined with Proposition 11.7 below and inequality (I) then imply
Proposition 7.6.

11.4. Key Proposition. The following proposition is the analogue of [31, Propo-
sition 5.1] and [32, Proposition 11.2].

PROPOSITION 11.7. For the family of partitions
Mr+1 <My <--<T72<M
as in Section 11.2, for everyl1 <i <r+1 with A; =0 and a.e. x we have
(Ai +38)7i(x) = A - &) (hu(f,ni) — hu(fini-1) — 2¢)
where v;(x) is the transverse dimension (33) associated ton;(x)/1n;-1.
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The 3 inequalities (II), (III), and (IV) now follow from Proposition 11.7, Claims
11.6 and 11.5, and the arbitrariness of € > 0. Indeed, using Corollary 8.6, for
1 < i < r the quantities

hu(f,ni) = hu(f,E v ) = hi(m)

are independent of the choice of the partition 2. Then (III) follows from Propo-
sition 11.7 and Claim 11.5. Inequality (II) follows from Claim 11.6 with

e (-8 (hu(fin) — hu(fini-1) — 2¢)
- (A; +3¢)

and Proposition 11.7 applied to x € E.
For (IV), first note that

he() = hy (finvE) = by (finvE v ) < hu(f 1)

where the first equality holds by Proposition 9.1, the second equality holds by
Corollary 8.6, and the inequality is from definition. Moreover, given any M <
hu(f 1 m) we may assume 2 in Section 11.2 is chosen so that

(34) hy(finv @) :=h,(finra) > M.
If 141 <0, then n; =714 and

M < hy(fnre)) = hu(finvE v = hu(finvE) = he(m) < hy(f 1)
and the result follows. If A, =0, then Proposition 11.7 gives

3edim (E° @ E*) = (1 - &)(M - h, (1) - 2¢).

As € < gg is arbitrary, we have M < h,(n) and (IV) follows.

We remark in the degenerate situation 1; < 0 that . is the point partition
and it follows that h,(f) = 0. Similarly, if A; = 0, then n. =71, and 7o is the
point partition. Proposition 11.7 applies to this setting and shows again that
hu(f) =0.

11.5. Proof of Proposition 11.7. The proof is identical to [31, Proposition 5.1]
(and [32, Proposition 11.2]); we include it for completeness. For 1 <i<r+1
with A; = 0, define measurable functions g, gs, g«: M — R as follows:

g0 = pl " (F 0 (0) = 1B (s ()

1 Ni-1 -1 i
zl i d X
it (B2T (x,0)) fBl‘vT(x,a) p (7 mi) () dp @)

i [(BP T, 0)) N (f ) (0]
1y (BT (x,6))
g« (x) := inf g5(x).
6>0

gs(x) =

The equality in the definition of g(x) follows from Lemma 11.2.

For 1 <i < r+1 and almost every x, the metric d’ identifies the quotient
(ni(x)/m;-1) with a subset of RI™(@/=E)) This identification gives a measurable
map 7;(x) — RIM@=iE)) that is constant on elements of 17;_;. We may apply [31,
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Lemma 4.1.3] to this setting (taking « in the statement of [31, Lemma 4.1.3] to
be the partition f~'n; of ;(x)) and obtain

f—logg* (2) duy' (z) < H;ul" (f ') +logc+1

where c is a constant depending only on the dimension of R4™®;=£)) coming
from the Besicovitch Covering Lemma (see [31, (4.1)].) It follows that g5 — g
u-a.e.and that

f—logg*(z) d,u(z)s[HNz,« (f'ni) du(x) +logc+1

<H(f'niI1n;) +logc+1

< 00.

2

Recall our choice of E' ¢ E with 0 < u(E") < 81<§W relative to which our metric

in (32) is defined. Recall that relative to the metric d”i(-,-), all hyperbolicity is
seen only on subsequent returns to E’.

Consider x whose forwards orbit returns to E’ infinitely often and let ro <0 <
1 <... denote the distinct times when f"i(x) € E’. For n sufficiently large and
for 0< k< n with rj < k <rj;; write

a(x; n, k) = BTi (fk(x), e—(/li+3£)(n—rj)N2j) c T’l(fk(x))
We check from definition the following.

CrLamm 11.8. a(x;n, k) n (f1n;) (Ff ) < f 1 alxn, k+1)).

Proof. First consider rj < k <rj;1 —1 for some j = 0. By definition of the metric
dTi (' ’ '))

flaten, ) nmi(FE ) = BT (541 (), e 390 NT) = a4 1),
If k=rj+1—1 for some j =0, then, recursively applying the above,

flatx;n, k) o (£ ()
= flimmh (BT" (fr" (x),e_ml‘*?’g)(”‘rf)sz)) N (77 (x))
c BTi (fl‘j+1 (x), e—(/li+3€)(n—rj)e(]L,-+35)(rj+1—rj) NZ]NZ)
=a(x,nk+1)
where the growth of ei*39(1=7)) along the orbit is bounded above by Claim

11.3 and the factor of N? comes by converting between the metrics d’i and

l' l . .
d i and d i () using Claim 11.4. O
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Consider the quantity u;' (a(x;n,0)). Write p = p(n) := [(1—€)n]. Then

p-1 ka( )(a(x; n, k))

Y (alx;n,00) =,
Uy (a(x; n,0)) /pr(x)(a(xnp))g_lo 7}k+] (alx;n, k+1))

I ANCIE0)

- i . :
k=0 IJ'fk+1 (x) (a(x) n, k+ 1))
Renormalizing and applying Claim 11.8,

ni .
H fi (a(x; n, k)

(a(x;n, k+1))

" TP (e DIEAE))
=g ik
,Ufk(x)(a(x n, k)) ?,k( )(f 1(a(x,n k+1))
ufk( ,(alx;n, k)

=
Wi [ m)(fk(x)m(a(x n, k)]

= [gs0amio (FFGn] e U

ni
:ufk+l(x)

Wi (P (FF )

where

Sx;n, k)= _M’”‘g)(”‘rfk)]vﬁk

for rj, <k <rj.41 and

I(y):==loguy ((f~'ni) 1))
Then
log (,u?BTi (x,1)
logr

(A; +3¢) liminf
r—0

log (MZiBTl- (x’ e—(A,-+3£)n))
log e—(/li+3£)n

= (A; +3¢)liminf
n—oo

log (1" a(x; n,0
= (A; +3¢&)liminf g(ﬂx ( ))
n—oo log e—(/1i+3£)n

p(n) 1 p(n)
(35) >11m1nf— Z log 85(x:n. k) (f (x)) + hm - Z I(fk(x)).

n—oo

For almost every x, lim,_.o izp (n) I(f k(x)) exists and
1 p(n) f
(36) lim — Z I(f"(x)=0-8e)Hym; | fn)=0-ehy(f,n;).
n—o0 n ]C:O
Now, let
As:i={x:-loggs(x) < —logg(x) +¢ forall § <6'}.
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Since [ —logg. < oo, taking &’ sufficiently small we can ensure

f —logg. <e.
M~ Agr

For a.e. x, we may take n sufficiently large so that
Tn = #{0 <i<n:fixe E’} < 2nu(E).
By the choice of u(E"), for large enough n we have
Seen, k)= o~ i3 (n=1j) N2jk < p=E(n—p(n)+2l0gNJy e(—£2+£2/2)n <5

forall0 < k < p(n) = [(1-¢)n]. Then, for such x and n,

p(n) P

Y —loggsxn k) (f (x))

k=0

< > —log g5 (x;n, k) (f k(x)) + > —log gs(x;n, k) (f k(x))
{0<sk=p(n):f*(x)eAys} {0sk=p(n):f* ()¢ Ay}

< > (—logg(fk(x)) +£) + > ~logg. (fk(x))
{0<k<p(n):f¥(x)eAs} {0<k<pn):fk(x)¢ Ay}

whence (from the pointwise ergodic theorem)

p(n)
limsup— " ~10ggs(sn k) (F£(0)

n—oo T g

<(1-¢ [f (-logg+¢) du+[ —logg. du]
Ag N Agr
<(1-¢) f—logg du+2e
= (1—) [Hy (f'ni-1lni-1) +2¢]
=(1-¢) [hu(f,ni-1) +2¢].
Combining the above with (35) and (36), the proposition follows. O

12. PROOF OF THEOREM 7.2 AND PROPOSITION 7.3

Let & be an f-invariant, C'*A-tame, measurable foliation. Let £ < &y be
sufficiently small, let {®,} be a family of e-Lyapunov charts, and let {¥,} be a
family of charts adapted to & built from @, as in Proposition 5.4.

Let S) and V¥ (x, p) be as in Section 8.2.1 and let

sy = vPHx,p).

0
xeS,

For y e S;?'”, select x € Sg with y € V¥ ¥(x, p) and write D7 %(y) = V¥ %(x, p).
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Let ¢ be the partition

F, F,
D¥My) yeS, "

37 E(y) =

and let E7" := é*. Note that V¥ ¥(x, p)c V!

loc,x,e
along each V¥ %(x,p) contract exponentially fast under backwards dynamics.
Choosing from a full measure set of p, we similarly obtain an increasing genera-
tor €7 subordinate to ! satisfying analogues of (1)-(4) of Section 8.2. More-

. F.u . . u .
over, since V| ' is an embedded submanifold of each V|/_, setting

Egu = Egu v fu
then ¢7" is still an increasing generator subordinate to % “ satisfying analogues
of (1)-(4) of Section 8.2.
Let 1) be a measurable partition of (M, 1). As in Lemma 8.7, if &7 and &7
are any two partitions satisfying the analogues of (1)-(4) of Section 8.2, then

(38) h(£,67" V) = (£,67" ).

We have the following which immediately implies Proposition 7.3.

for x e Spg;’” and thus distances

CLAIM 12.1. For any partition %" as above we have
hy(f1F V) = hy (f,nvégu) = H, (n+ ver" |f(n+ vfff”)).
Proof. Given b > 0, let £ be a measurable partition subordinate to % such that
hy(fIFVvm—=b<hy(finvE)=hy(finvEve™)

where the equality follow from Proposition 8.3. We construct a partition &7
satisfying the analogues of (1)-(4) of Section 8.2 such that

(39) hy(f 1 F V) —b<hy(f,&7" v < hy(f | F V.
The claim follows since by (38), the value of middle term of (39) is independent
of the choice of such 69 “ and thus (39) holds for all > 0.

From Remark 6.5, we may further assume ¢é(x) is precompact in &’ (x) for
a positive measure set of x. Fix p, Sg, Spg'”, and SI, used in the construction
of partitions ¢7" and ¢“. We may moreover assume 82 was chosen so that in

addition to the properties in Section 8.2.1, there exists po such that for 0 < p < gy
and x € S,

1. VZ(x,p) c&(x) (where V7 (x, p) is as in Section 8.2.1);
2. &(x) is precompact in &' (x) and if y € £(x) N B(xo, p), then y € V7 (x, p).
Recall for x € Sg we also have

3. VZ(x,p)nV%(x,p) = VZ¥(x,p).

Given 0 < § < min{e}4¢
satisfying the following:

1. Hy(P) < oo;

,0o}, let 2 be a measurable partition of (M, y)
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2. P refines {S?’”,M\ S‘?'”};
3. & is adapted to {®,6}.

By Corollary 8.6,
(40) hy(fIFvm-b<h,(f,2vnviveY).
TakeC:(nAv,@vf)JrVE”. ) R )
Define ¢ as in (37) and take nfgzu(y) =¢t and Egu(y) = cfg"(y) v &%, Note that
Spg’”csz and
s7te JvZwp e U éw.

xeSh xeSh
For any y, any z € {(y), and all m = 0 we have the following:
1. f7M(z)e Spg’” if and only if f~™(y) € Sf’”.
2. For all m =0 such that f~"(y) € S‘pg'“, there is x € Sg with

@), f™My) e&(x) c VE(x, p)
and
™), f™(2) € E(x) N B(xo, p) < VZ (%, p).

In particular, for all such m, we have f~"(z), f~™(y) € V7 (x, eNV¥(x,p) =
VZu(x, p).

It follows that z € E‘g “( ¥). Since we also have z € {%(y), it follows that z € g“af “ »
whence fgu <.
By definition we have

Bu(f | F V) = hy(F1F v ) = by (£,67" V).
On the other hand, (using (40), that &7" <, and Claim 8.5) we have that

hu(F 1F VD) =b < hy(f,0) = hu(f,0vET") < hy(F,67" V).
This completes the proof of the claim. O

We turn to proof of Theorem 7.2. Let ¢7" be an increasing generator subordi-
nate to " as above. From Claim 12.1, we have that h,(f | %) = hy (f,cfgu). Let
n=&7". We first claim for 1 < i < r that

Yiulm) < mi(F).

Indeed we may assume that the transversals T; in Section 11.3 were taken to be
in general position with Vl‘gjc L foreveryxe Ec Sg. Let &2 be as in Section 11.2
and let n, = &7" v 2. Then for x € E, we have n;(x) c Vléc,x,e N Vl‘i’m N T; and
the metric d”i identifies n;(x)/n;—1 with a subset of a m;(%)-dimensional sub-
manifold of RI™@j=E)) Tt follows that ;(x) < m;(%). Inequality (I), Proposition
11.7, and Claim 11.5 of Section 11 then show that y/(u|éF") < m;(%) whence
the inequality in Theorem 7.2 then follows from Theorem 7.7.
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To complete the proof of Theorem 7.2 we claim that if

hy (f,fgu) = ) Aimi(%F),

l=<isr
then, exactly as in [28, Theorem 3.4] or [31, (6.1)], Jensen’s inequality implies

Fu
that ,ui is absolutely continuous along " for almost every x. We sketch the
details in the remainder.

Recall that for x € Sg we have fg ‘ (x) c Vl‘?c Z o Define

n(x) :min{n >0: f"(x) € Sg}

and

_ou

&= (0 w)).
We then have

u

¢ is a partition of (M, u) subordinate to F4;

u

& e Vf:jc Z . for almost every x;

1.
2.
3. & <f1E;
4 h(f1P) =hy(£E).

o u

Replacing 7" with &~ we may assume ¢7 " satisfies (2) for the remainder. This
choice ensures that D, f is defined for all z€ fg ‘ (x) and almost every x.

For each C € &7 “ and x € C restrict the ambient Riemannian metric to Vlizg
and consider the induced Riemannian volume m, on C. Note that m, = my, if

y € C and, since {7 is subordinate to %, my is a positive measure for almost
every Xx.
Define A, : &7 (x) — [0,00) by

n F U £—1
Ax(y) = lim Hﬁjl]g (f_.(xn
n=oo [T JZH(f~H(¥)
where for z € fg ‘ (x) we define

J7(2) = |detD;f | ;. 7.

Z ¥loc,x,e

and the determinant is computed against the Riemannian metric on Uy. Note

that as ¢7%(x) c Vli’zg for a.e. x, for all y € &¢7"(x) we have f~"*(y) € Uy and

JZH(f~™(y)) is defined for all n=>0.
Arguing in e-charts {®,}, we have that as in [31, (6.1)] the following.

CLAIM 12.2.

(a) For almost every x, the limit defining Ay converges and Ay is uniformly
B-Holder on £7" (x).
(b) Defining L(x) := _/;rgu(x) Ax(y) dmy(y), for almost every x

0< L(x) <oo.
(© LUF(x) =T (%) fiprg5my (9 Da() dm(y) < J7 (0 L(x).
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. Fu
(d) Definingvy oné” (x) by

Ax(y)
L(x)

we have that vy =vy if y € E7"(x), vy} is a measurable family of probabil-
ity measures, and

f—logvx(f_lff’zu)(x) dp(x) =flog]‘9”(x) dp(x).
Let v be the probability measure defined on M by

v(A) :fvx(A) dp(x)

for any Borel set A. As the derivative of the charts in Section 3.2 is controlled by
a slowly increasing function, we have (see for example [29, Proposition 2.1])

/log(]gu(x)) dux) =Y. mi(F)A;.

Exactly as in [31, Lemma 6.1.3] (see also [28, Theorem 3.4]), Jensen’s inequal-
ity gives the following.

CrLAIM 12.3. If [logJ7" (x) du(x) = Hu(f‘l(égu) | 7", then v and p coincide
on the o -algebra generated by f~1(&7").

Iterating, one has that v and p coincide on the o-algebra generated by
FEZ") forall n= 0. As &7 generates, it follows that the measures v and
u coincide. Theorem 7.2 then follows.

Part III. Product structure of entropy
by Aaron Brown, Federico Rodriguez Hertz and Zhiren Wang

For a smooth action of Z¢ preserving a Borel probability measure, we show
that entropy satisfies a certain “product structure” along coarse unstable man-
ifolds. Moreover, given two smooth 7% -actions—one of which is a measurable
factor of the other—we show that all coarse Lyapunov exponents contributing
to the entropy of the factor system are coarse Lyapunov exponents of the to-
tal system and derive an Abramov—Rohlin formula for entropy subordinated to
coarse Lyapunov manifolds.

13. STATEMENT OF RESULTS

As in Part I, we take M to be a C*° manifold equipped with a Borel probability
measure u. Let a: 7% x M — M be an action by measure-preserving, measur-
able transformations. We moreover assume (M, u) and a satisfy the standing
hypotheses (either hypotheses I or II) of Section 3.2. We further assume for
simplicity of statements and proofs that y is ergodic.
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13.1. Product structure and subadditivity of entropy. Our first main result is
the following “product structure of entropy” formula. Write £ for the Lyapunov
exponents of a with respect to u; at times we also write £ = £%(u) to empha-
size that we consider Lyapunov exponents for the action of @ and the invariant
measure y. Let Z denote the coarse Lyapunov exponents of a with respect to
u. For y € 2, let #/'¥ denote the corresponding foliation by coarse Lyapunov
manifolds.

THEOREM 13.1. Let & be an a-invariant, C**P -tame, measurable foliation and
let n be an a-invariant measurable partition. Then for ne€ 7%,

hylam) | Fvn = Y. hy(am) | FvH#Xvy).
(e Z:x(n)>0}

In particular, we have the following.
COROLLARY 13.2 (Product structure of entropy).

(41) hyam) = ). hy(an)|#X).
{X€§5X(n)>0}

Note thatif f: M — M and g: N — N are diffeomorphisms preserving y; and
U, respectively, then there is a natural Z2-action on M x N preserving g x 2. In
this case, (41) follows immediately from the classical Ledrappier-Young entropy
formula. Our result (41) suggests—at least at the level of entropy—that unstable
conditional measures associated to an ergodic a-invariant measure behave like
a product measure along coarse Lyapunov manifolds. It would be of interest to
know if the unstable conditional measures are always products of conditional
measures along coarse Lyapunov manifolds. In homogeneous settings such
as those considered in [17, 15, 16], similar product structures of entropy are
established by first establishing a product structure of the measure along total
unstable manifolds.

As explained in Lemma 14.12 below, the expression

ne— > hy(a(n) | FvH#Xvn)
(XeL:x(n)>0}

extends from the set {n e 79 : x(n) > 0} to a linear functional RY - R. In particu-
lar, combined with Theorem 13.1 above, we recover the subadditivity of entropy
of Z%-actions first obtained by Hu in [21] for commuting C? diffeomorphisms
of compact manifolds.

THEOREM 13.3 (c.f. [21, Theorem B)). Let & be an a-invariant, C'*P-tame,
measurable foliation and let ) be an a-invariant measurable partition. Then for
alln,me 74

L hyla(n+m) | Fvn) <hy(a(n) | Fvn) +hy(a(m) | F V),

2. moreover, if F v W,\' = F Vv W, then equality holds.

Indeed, observe that if y(n + m) > 0, then either y(n) > 0 or y(m) > 0. Both
conclusions then follow from Theorem 13.1 and the linearity in Lemma 14.12.
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The main technical results we establish to prove Theorem 13.1 are Proposi-
tion 15.4 and Corollary 15.6, below. As a direct consequence of Corollary 15.6,
we obtain a certain exact dimensionality formula for measures invariant under
Zk-actions. Let & be an a-invariant, C!*# -tame, measurable foliation and let n
be an a-invariant measurable partition. For a coarse Lyapunov exponent y € 2
let dZ % (1) be the almost-surely constant value of the pointwise dimension of
w along & v #X v (see Section 7.3). For n € Z4, let df’u’" (1) be the almost-
surely constant value of the pointwise dimension of p along & v %,/ v 1.

Corollary 15.6 (with £ :={1; € £ : A;(n) > 0}) immediately implies the follow-
ing.

COROLLARY 13.4 (Product structure of unstable dimension). For any ne Z¢,

dy" " w=Y a7 w.
x(n)>0

13.2. Measurable factors and coarse-Lyapunov Abramov-Rohlin formula.
Consider a second action @ of Z¢ on (N, v) satisfying the standing hypotheses II
of Section 3.2. We say that @ is a measurable factor of a if there is a measurable
map ¥: M — N with v,y =v and woa(n) = a(n) oy for all n € 2%, Let oV
denote the a-invariant partition of (M, y) into level sets of .

We assume p and thus v are ergodic. To distinguish data associated to each
action, let ga(v) and ﬁ“(u) denote, respectively, the coarse Lyapunov expo-
nents for the actions @ and a of Z% on (N, v) and (M, ).

Consider a coarse Lyapunov exponent ¥ € Z%v) of @ and suppose that

42) hy (a(n) | WY) >0

for some n € 2% with 7(n) > 0. Let E = ker(y) c R% be the Lyapunov hyperplane
determined by . It follows from Corollary 13.2 and (42) that for an open cone
C < R? containing E, the function

n— hy(a(n))

is not a linear function on CNZ4. By the classical Abramov-Rohlin formula (21),
for every n € Z% we have that

hy @ (1)) = hy(a(m) - hy, (a(n) | V).

If no Lyapunov exponent of a were proportional to y then, taking any open
cone C' ¢ C c R? containing E and disjoint from the kernels of all non-zero
Lyapunov exponents in £%(u), it follows from Theorem 13.3 that both hu(a(n))
and hy(a(n) | «/¥) coincide with linear functions on C'n 7%, contradicting the
properties of C above.

It thus follows that every coarse Lyapunov exponent y € Z7(v) that con-
tributes entropy to @ is proportional to a Lyapunov exponent of a. We say
x € Z%W) is essential if

hy (@(n) | #*)>0
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for some (and hence all) n € Z with y(n) > 0. Let flzs(v) denote the essential
coarse Lyapunov exponents of the action @ of Z% on (N, v). As remarked above,
all essential exponents y of a are proportional to Lyapunov exponents of a. We
show that they are, in fact, positively proportional.

THEOREM 13.5. For every x € ffgs (v) there exists y € P~ (1) with y positively
proportional to'y.

Analogous statements to Theorem 13.5 are established (for all coarse Lya-
punov exponents) in [24, Section 6.2] and [22, Lemma 2.3] under the assump-
tion that the factor map vy is Hoélder continuous using exponential contraction
of the dynamics along stable manifolds. Our more general statement in Theo-
rem 13.5 follows for measurable factors using only entropy considerations and
Theorem 7.7.

REMARK 13.6. Consider two ergodic actions of Z¢ (satisfying the standing hy-
potheses II of Section 3.2), one denoted a on (M, i) and the other denoted @
on (N,v). A necessary condition for these actions to be measurable isomorphic
is that the entropy functions 7% - [0,00)

(43) n— hy(a(n)), n— hy(a(n))

coincide. By [21, Theorem B], both functions (43) extend to semi-norms on R4
moreover, the unit balls are convex (possibly non-complact) polytopes whose
faces meet only along kernels of coarse Lyapunov exponents. By Theorem 13.1,
the faces of the unit ball in each norm meets precisely along the kernels of those
coarse Lyapunov exponents that contribute entropy to the system.

We note that coincidence of the entropy functions (43) is not sufficient to
conclude the actions a and « are measurably conjugate; furthermore, as noted
by the referee, coincidence of the entropy functions also does not imply our
Theorem 13.5. In particular, Theorem 13.5 provides perhaps a finer mechanisms
to distinguish Z¢ actions up to measurable isomorphism.

As an example, consider Z? generated by the standard basis {e},e,} in R?.
Consider the linear functionals on R?,

* * * * * * * *
M=e, Ar=—e], A3=e,, Ayg=-e,, As=e +e,, Ag=—e]+—e,.

Suppose the exponents of the action @ on (M, u) are A1,A2,A3,44,15, and Ag,
each with conditional dimension exactly 1. Then the entropy function of « is

(44) (n1e1, npex) — 2maxi|ni|, |nzl, |n1 + nal}.

Suppose the exponents of the action @ on (N,v) are 1,14, and A5, each with
conditional dimension exactly 2. Then, the entropy function of @ is again (44).
In particular, while the entropy functions coincide, Theorem 13.5 implies the
actions a and a are not measurably isomorphic as A, contributes entropy to a
but @ has no exponent positively proportional to A;. Similarly, Theorem 13.5
implies the actions n— a(n) and n— a(—n) on (NN, v) are not measurably con-
jugate.
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We return to the setup at the beginning of Section 13.2. Given y € L% (), let
Y€ 27%(v) denote the equivalence class of exponents positively proportional
to those in y if such a class exists; if no such class exists let y denote the 0
functional. If ¥ = 0, let # % denote the point partition on (N,v). Note that in
this case h, (a(n) | 7/75) =0.

Recall the classical Abramov-Rohlin formula (21). We establish an analogous
formula for entropy subordinate to coarse Lyapunov foliations under a measur-
able factor map v intertwining smooth Z%-actions @ and @.

THEOREM 13.7 (Coarse-Lyapunov Abramov-Rohlin formula). Let y € P ().
Then for n e 7% with x(n) >0 we have

(45) (@ m) | #%) = hy (@00 | #T) + by (@) | 0w sV,

We note that in Proposition 3.1 and Corollary 3.4 of [17], an analogous result
is derived in the context of joinings of homogeneous actions in which case the
factor maps are smooth.

14. PRELIMINARIES

14.1. Lyapunov hyperplanes, (sub)chambers, and complete classes of expo-
nents. In the rest of this article, the letter y (possibly with superscripts and
subscripts) always denotes a coarse Lyapunov exponent and the letter A always
denotes a Lyapunov exponent or more general linear functional.

Consider an abstract collection &£ = {A4,...,A,} of linear functionals A; : RY —
R. As in Definition 4.9, declare that 1;,1; € &£ are equivalent if they are posi-
tively propositional. Let % denote the equivalence classes in Z. Previewing our
main application where £ are the Lyapunov exponents for an ergodic action
of Z4, given a non-zero A; € ¥, the Lyapunov hyperplane associated to A; is
the kernel of 1; in R?. Note that if A; and A j are proportional, then 1; and A;
induce the same Lyapunov hyperplane.

An (open) chamber W c R4 (associated to %) is a connected component
of the complement of all Lyapunov hyperplanes in R?. An (open) subchamber
U c R? (associated to %) is a connected component of the complement in W of
all hyperplanes associated to all non-zero linear functionals of the form A; —A;
and A; for all non-zero A;,A; € £ with A; # 1;. Every subchamber is an open
subset of some chamber. Given a chamber W c R%, we say a non-zero linear
functional L: R? — R is in the wall of W if the intersection of the boundary of
W with the kernel of L, 0OW nker L, is not contained in any proper subspace of
ker L; in this case, W nker L is a closed, convex subset with nonempty interior
in ker L. Similarly, a non-zero linear functional L: R — R is in the wall of a
subchamber U if U nker L is not contained in any proper subspace of ker L.

Elements v € R? of (open) subchambers are said to be generic; that is, v is
generic if it is outside the kernels of all non-zero linear functionals of the form
/1,' and /1,‘ —/1]' for ﬂ,i,/lj eZ.
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For each v e R?, fix a permutation o (v): {1,..., p} — {1,..., p} so that

Aoy (V) Z Aoy2) (V) =+ = Ao () (p) (V).

Note that if v is generic, then the above inequalities are strict, the permutation
o(v) is uniquely defined and is constant on the subchamber.

DEFINITION 14.1. We say two chambers W; and W, are adjacent if the inter-
section of their boundaries, 0W; N 0W>, has nonempty interior in both W, and
0W,. Equivalently, W; and W, are adjacent if there is a nonzero linear func-
tional L: RY — R (proportional to some functional 1; € %£) in the wall of W; and
W, such that 0W; N dW, is not contained in any proper subspace of ker L. To
emphasize the role of L, we sometimes say W), and W, are adjacent through L.

Similarly, two subchambers Uy, U, are adjacent if the intersection of their
boundaries, U, N 0U,, has nonempty interior in both 0U; and U, or, equiva-
lently, if there is a nonzero linear functional L: RY - R (proportional to a func-
tional of the form A; or A; — A;) in the wall of U; and U, such that 0U; n0U> is
not contained in any proper subspace of ker L.

LEMMA 14.2. Let Uy and U, be distinct subchambers adjacent through some
L: RY = R. Then for all vy € Uy and v, € U, the permutations o(vy),0(v2) differ
by disjoint transpositions. Moreover, if o(v2) (k) # o(v1) (k) and if Ay, k) is not
proportional to L, then Ay k) and Ag (v, k) are linearly independent.

More specifically, (up to permutation) the set of indices {1,..., p} may be writ-
ten as the disjoint union of intervals 1,...,I, each of the form I; = {¢;,¢; +
L,...,¢;+tj} for some tj =0, such that

1. foreveryl<j<r—1,everyki€ljandk;€lj.1, and every ve U UU,,
Aok (V) > Ag ) (ky) (V)5
2. ifkeljisoftheformk="¢;+t for0O<t<tj, then
o)k)=0)lj+t)=0a)l;+t;—1);
3. in particular, if t; = 0 so that #1; = 1, then for k€ I,
o (v2) (k) = o (v1)(k);

4. for each j with #1; = 2, either the linear functionals

Ao ke I} ={Aowyw 1 k€ I}

are pairwise linearly independent or are all proportional to L.

The lemma essentially describes the following phenomena: for elements v
inside the wall U, n U, nker L between U; and Uy, the values of different Lya-
punov exponents may coincide; however, the pattern of coincidence does not
depend on the choice of v. Each individual group of Lyapunov exponents that
coincide along the wall can have their indices written as an interval I;. The
union U; U U; can be viewed as a neighborhood of U; n U, nker L in which the
ordering of exponents are perturbed, but such perturbation would respect the
blocks I;. Moreover, if A, A are both in the group represented by I;, then 1 — A’
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is proportional to L. In other words, the Lyapunov exponents in the same group
can be arranged in a line in (R%)" in the direction of L. Crossing from one side
of the wall to the other changes the sign of the value of L, and hence reverses
the ordering within this group of Lyapunov exponents.

Proof of Lemma 14.2. Fix anonzero L: R — R such that U; and U, are adjacent
through L. Let {L,&,...,¢ 4} be a basis for the dual space (RY)". Let H = kerL
and let Z = ﬂfzz ker(&;). Let Iy: R — H and I1,: RY — Z denote the projec-
tions relative to the direct sum decomposition RY = He Z and for v € R, write
v=vg+vz where vy =Ilg(v) € H and vz =I[1z(v) € Z. For every 1 € &, the
functionals AoIly and A oIl are linearly independent when both are non-zero;
in particular, for any A € &£, there exists a unique a, € R such that

(46) AIAOHH+6£,1L0H2.

Let vg € H =ker L be an element in the interior (in ker L) of 0U; N dU> that is
generic for the restriction of £ to the subspace H. Fix a nonzero up € Z. Let
g1 < g2 <--- < g, be the distinct values of 1;(vg) for 1; € £. Partition the index
set {1,..., p} of £ into r sets Q; :={i: 1;(vo) = g;}. Take I; to be the preimage of
the Q; under the permutation o (v1) for some (and hence all) v, € U;. Since vg
is generic in H, given i1, 12 € Q; we have A; [y = A4, [z whence

Aiollg = A, ollg.

If iy # i» are distinct elements of Qj, it follows from the uniqueness of the de-
composition (46) that the coefficients ay, are distinct over all indices i € Q;.
Assuming q; # 0, then A; olly # 0 for all i € Q;. Conclusion (4) then follows
from (46).

Since vy was chosen in the interior of 0U; N0U, nker L and since Z is trans-
verse to H, replacing uo with —uy if necessary, for all ¢ > 0 sufficiently small we
have vy + cup € Uy and vy — cug € Uy. Since the set {ay : A € £} is finite, given
any ¢ > 0, for all ¢ > 0 sufficiently small we have

[A(vg £ cug) — A(vg)| <€
for all A € &£. Taking € > 0 sufficiently small and using that the permutations are
constant on subchambers, we verify for v; € U; that I;:= o(v1)"'Qj = 0(v2) 71 Q;
and that conclusion (1) holds.

Finally, note that L(ug) # 0. Consider the case L(ug) > 0. Take v; = vy + cuy
and v, = vy — cug for ¢ > 0 sufficiently small. Then for each 1 < j < r and writing
the interval Ij as I; ={¢;,0;+1,...,0 + ;}, we have

ay, > >ay

owniey) = Fowpejn N GEnE

From the decomposition (46),
A1) >+ > Aoy e+t (V1)
and
Ao (W2) <+ < Agy)e;+t)) (V2)-
A similar analysis holds if L(ug) < 0. Conclusion (2) then follows. O
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14.2. Complete and strongly integrable collections of exponents. We now re-
turn to the special case that £ = £%(u) are the Lyapunov exponent functionals
for an ergodic action a of Z¢ on (M, u). We recall that for each Lyapunov ex-
ponent 1; € £%(u), the function A;: 7% — R extends uniquely to a linear func-
tion A;: R? — R. Recall we take M to be a C> manifold equipped with a Borel
probability measure p and take a: Z% x M — M to be an action satisfying the
hypotheses (either hypotheses I or II) of Section 3.2 with u ergodic.

DEFINITION 14.3. Given a subset £ ¢ V where V =R,

1. Define the positive cone of = as C(Z) :={{€ V* : &(v) >0 for all v e Z};
2. If C(Z) # o, define the positive convex hull of Z as H(Z) := C(C(X)) ={v €
V:é(w) >0 forall e C(2)}.

REMARK 14.4. The following are always true:

1. C() is convex and closed under scalar multiplication by positive real num-
bers;

2. C(%) is open if X is finite;

3. H2)>Z.

For our application, we will only study C(.#) and H(.#) where .# is a subset
of Lyapunov exponents of the action and hence finite.
The following lemma is easy to establish and we omit its proof.

LEMMA 14.5. IfC(2) # &, then H(X) is the smallest positive convex cone (i.e., a
convex subset that is closed under scalar multiplication by positive real numbers)
that contains X.

Given a subset . < £%(u), write

EY = @ Dop<Exr(x)
Aesg

for the subspace of T, M spanned by Oseldec’s subspaces associated to 1 € .#.
(Here, ¢ are the dynamical charts introduced in Standing Hypotheses II of
Section 3.2.)

Note in the case that .# = y is a single coarse Lyapunov exponent, C(.#) is a
open half-space. For ¢ ¢ £%*(u), C(#) is a union of Weyl chambers.

With the above notation, we have the following definitions.

DEFINITION 14.6. Let .¢ ¢ £%(u) be such that C(.#) # @.

1. We say . is complete if ¥ = H(F) N L% ().

2. The completion of % is H(F) N ZL*(w).

3. We say a collection .#' is integrable if there is an a-invariant, C'*f-tame
measurable foliation & with T, % = E;f " for almost every x.

4. Given a complete collection . < &, we say a collection .’ is strongly
integrable with respect to .# if there exists generic ny,...,nx € C(¥) and
X1,...,Kk € (0,00) such that

SI'={leF:An;)=«; forall 1 <i<k}.
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REMARK 14.7. We make a number of observations about the above definitions

(1) If .# is complete, then it is a union of coarse Lyapunov exponents.

(2) From Proposition 4.6, every complete or strongly integrable collection . c
£%(u) is integrable; we write %~ for the associated a-invariant, C'*A-
tame, measurable foliation.

(3) # is strongly integrable w.r.t. itself. If #’ is strongly integrable (w.r.t.
#), then given n € C(#) and x > 0, the collection {A; € .#': 1;(n) = «}
is strongly integrable.

LEMMA 14.8. Fix a complete collection ¥ < £L*(u) with C(.#) # . Suppose for
some coarse Lyapunov exponent x there are two Weyl chambers Wy, W, adjacent
through ker y with W, c C(#). Then # \ x is a complete collection.

We also note that if .# is complete and y < .#, then the completeness of .Z \ y
necessarily implies ker y contains a face of C(.#). Note that in the assumption
of the lemma, W> may or may not be in C(.#). However, if y c .#, then W, must
be outside of C(.#).

Proof of Lemma 14.8. If y ¢ .#, then by Remark 14.7(1), .# \ x = .# and thus the
statement is trivial. So we assume y c .#. It is clear that C(.# \ y) o C(.#) and
thus H(#\y) € H(.¥) = .# by completeness of .#. In addition (£ \y) c H(Z\Y)
by construction. By Remark 14.7(1), it suffices to show that y ¢ H(# \ ¥).

Choose n; € Wy, np € W,. Then for A € £%(u), A(n;) and A(ny) have same
signs, except when A is proportional to y. Moreover, n; € C(.#). Because C(.#) is
non-empty and y € .#, we know £ N (—y) = <. Hence forall L € .\ y, A(n;) >0
and A(ny) > 0. Thus ny € C(F \y).

On the other hand, for A’ € y, A'(n1) and A’ (n,) have different signs. As y c .#,
A(n1)>0and A (ny) <0. Thus A’ ¢ C(C(F \ x)) = H(F \ y). This completes the
proof. O

DEFINITION 14.9. Fix a complete collection .# with C(#) # &. Let Uy, ..., Uy be
the subchambers contained in C(.#) and for each 1 < j < ¢ select njeU;n 74,
Given 1 € .# set

IN):={V eI :V(nj)=An;) forall 1 < j=</}.

Note the above definition is independent of the choice of n; € U; since the
relative order of all Lyapunov exponents is constant on subchambers. This, in
particular, implies A'(n) = A(n) for all A’ € #(A) and n € C(.¥).

Given a complete collection .# and A € .#, clearly .#(A) is strongly integrable
with respect to .#. Similarly, we collect the following observation.

LEMMA 14.10. Let .¢ be a complete collection and let $' < & be strongly inte-
grable w.r.t. #. Suppose there exists \' € ' such that

47 A(n) < An) forall A e ¥ and all ne€ C(.#).
Then ' = #(A").
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Proof. From the hypothesis (47), it is clear that .#' c .#(1)).
On the other hand, there are generic ny,..., ny € C(.#) such that

FA)={1e.F: A(n)=A'(n) for all ne C(.%)
cileg:An) =NV (n;) foralll<i<k}
=g

where the first equality is from the definition and the second equality follows
from Definition 14.6 and hypothesis (47). O

14.3. Sufficient subsets of Z¢. Fix a collection .# L% (u) such that C(.#) # 2.
The union of all subchambers U c C(#) in C(.#) is an open dense subset of
C(#). We say a subset Sc C(£)n 7% is sufficient in C(.#) if

1. every n€ S is generic, and
2. for every subchamber U c C(.#), the set SN U is a spanning set of R4,

Since subchambers are open, if C(.#) # &, then there exists a finite subset S
74 that is sufficient in C(.%).

14.4. Increasing partitions subordinate to expanding foliation. Let & be an
a-invariant, C1*#-tame, measurable foliation. Define the positive cone of & to
be

C(F):= {n €z Fis expanding for a(n)}.

Following the discussion in Section 12, for each n € C(%), there is a measurable
partition &7 of (M, y) subordinate to % and increasing for a(n). By adapting
the constructions in Sections 8.2 and 12, as in [21, Section 8] we obtain the
following.

PROPOSITION 14.11. Let ny,...,ne € C(¥). Then there exists a measurable parti-
tion &7 of (M, ) with

1. 53 subordinate to & ;

2. a(ni)fg <fgf0ri: 1,...,¢;

3. &7 generates for a(n;); that is Viso a(—kn;)&7 is the point partition.

Note that if a(n)éZ < &7 and a(m)é < &7, then
a(n+m)€9<€g.

The construction of ¢7 is essentially the same as that in Section 12. The main
adaptation is that, instead of letting fgu =&t = Vzo:o f k&, here we define

Ty

k] =0 kg =0

1

g A
kini)f-
=1

The parameter p is again chosen from a full measure set, whose definition is
modified accordingly to avoid boundary concentration for all partitions from
the countable family {a (Zle kini)é: ki, ke =0}
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14.5. Linearity of entropy on positive cones. We have the following adaptation
of [21, Proposition 9.1].

LEMMA 14.12. Let & be an a-invariant, C'*P-tame, measurable foliation. Let
ny, np € C(&) and letn be a measurable partition that is increasing for a(n,) and
a(ny). Then

hyla(ny +n2) | F vn) = hyla(ng) | Fvn) + hy(a(m) | F vn).
In particular, ifn is a-invariant, then
n— hy(a(n) | Fvn)
coincides on C(&) with a linear function.

Proof. Take a measurable partition 69 of (M, u) with 69 subordinate to & and
increasing for a(n;) and a(n,) as in Proposition 14.11. It follows from Claim
12.1 that

hula(m) | F v ) = Hy(a(-m)(E7 vy 1E7 v
for m = n1, ny and m = n; + ny. Moreover,
hy(a(ny +np) | F vn)
= Hy(a(-m - n) &7 vy 17 v
= Hy(a(-n)(@(-n) 7 vip) v (@(=n) &7 vy 1 E7 v

= Hy(a(-m) &7 v 1 E7 v + Hyla(-n)(a(-n) &7 vy) | a(-n2) (€7 v)
= hy(a(nz) | F vn) +hy(a(ng) | F vn). 0

15. KEY PROPOSITION AND PROOF OF THEOREM 13.1

15.1. Conditional and transverse dimensions dependent on choice of filtra-
tion. Consider an a-invariant, C1*#-tame, measurable foliation %. Fix an in-
tegrable collection .#' <« ¥%*(u) of Lyapunov exponents with C(#') # &; let
#?" denote the foliation tangent to the subspaces E; " Write F7 = F v
According to Proposition 4.6, for any n € C(#’) we obtain a filtration by a-
invariant, C'*#-tame, measurable foliations

48) ey 0 cFe () cFI ()= F (1)
where Fi7 =Wy g
Note that even for generic n, when the cardinality #.¢’ is small (relative to

u(n)) many of the foliations appearing in the filtration (48) coincide. Let m =
#%'. For generic ne C(¥'), let

(oo jmy=am) i 1€ 9}
ordered so that j; >--- > j,;. Then we also have filtration
(49) wWeF W FE e F 0= .
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Fix a generic n € C(.#) and let  be a measurable partition such that a(n)n <n.
Foreach 1 < j < u(n), let ¢ (Efl’ﬂ) be an increasing measurable partition of
(M, p) subordinate to gz,Jl’y . We write

og 17 ar)
log(r) '

dim}, (1 # v | #'):= lim
r—

The limit exists a.e. by Proposition 7.4 as ¢ (9,{"9”) v 1 is increasing for a(n).
Although u need not be ergodic for the action of a@(n), a-invariance of the filtra-
tion (48) and the measure y implies that

jio!
log(ﬂi(% M 2)
x— lim
r—0 log(r)

is a-invariant and hence constant by a-ergodicity of .
With dim?,l(u |ZFvn|F#):=0, for ne SNC(F') and A; € L%(u) such that
Ai(n) >0 we write

Yni | Fvn| ) =dim?? O | Fvn| .

(50) I
—dimg" O~y F vn|L).

For ji_1 < j < j observe that 9,],'&, (x) = 9,{’“’1’j,(x) a.e. whence
dim/, (| F v £ = dim (@ | F v | o).
In particular, we have the following.
CLAIM 15.1. Ifne C(F')nS and if A;(n) >0 for some A; ¢ .¥', then
Yai | Fvn|.s)=0.

Moreover, for A; € .#’, we may alternatively define y,(A; | & vn|.#') as fol-
lows: if o (n) (ji) = i, then

G yaAi | FvnlF) =dim’ | Fvn| g -dimt (| F vl
From Proposition 7.6 we have the following.

CLAIM 15.2. Let #" < ¥’ be integrable collections and fix n€ C(#'). If n and )
are measurable partitions with n <1), a(n)f) <f), and a(n)n <n then

YA | F Vi I <y (Ai | F v | ).
Proof. Take f‘nﬁ”g and 6,{”’3 with ff”g < f‘,f”’g to be measurable parti'gions
of (M, 1) subordinated to WINT and WV, respectively, with oz(n)gf‘,’zZ T <
‘,’f’g and a(n)éﬂ”'g < Ej”’ga. Then
v 7 <qve””
whence by Proposition 7.6 we have
YnQAi | FVil I) synAi | F vl . O
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15.2. Main proposition. Now consider a complete collection . ¢ £%(u). Let
S c 7% be a finite subset of generic elements that is sufficient in C(.#). Let  be
a measurable partition such that a(n)n<n for all n € S.

Before stating our main proposition, we first observe the following.

CLAM 15.3. For A; € .Z, the quantity
Yn(Ai | F V| FAD)
is independent of the choice of ne C(#) N S.

Indeed, by definition of .#(A;), the right-most and second-to-right-most ele-
ments of the filtration (49) coincide for all n € C(.#); since the right-most folia-
tion in the filtration (49) corresponds to A; for all n € C(#) N S, the conclusion
follows from (51).

Given Claim 15.3, write y(A; | & v | .#(A;)) for the constant value of y,(A; |
Fvn| L)) over ne C(£)NS.

Our main technical proposition and its corollaries show that the inequality
in Claim 15.2 is often an equality and remains constant as the choice of n or .
vary.

PROPOSITION 15.4. Let .# be a complete set of exponents, let S < Z% be a finite
subset that is sufficient in C(.#), and let n be a measurable partition such that

a(nyn<nforallnes.
Then, for every A; € . and n€ SN C(#), we have
(52) YnAi | F V| 2) =y(Ai| F vl I A)).

In particular, y,(A; | & v n|.#) is independent of the choice of n € SN C(.¥).

Before giving the proof of Proposition 15.4, we collect the main corollaries
that we use in the sequel.

COROLLARY 15.5. Let yo € K (1) be a non-zero coarse Lyapunov exponent. Let
Sc 7% be a finite set that is sufficient in the half-space C(xo) and supposen is a
measurable partition such that a(n)n<n forallneS.

Let .# be a complete collection with yo < .%. Then for A; € xo,

(53) YnQAi | FVvn| F)=yn (il F V1l xo)
foreveryne C(#)nS.

We postpone the proof of Corollary 15.5 but state the following special case
when 7 is an a-invariant partition.

COROLLARY 15.6. Letn be an a-invariant measurable partition. Given any com-
plete collection .# with C(.¥) # &, any coarse Lyapunov exponent y < %, and any
A € x we have

Yn(Ail FvnlI)=yn (il F vnly)
for every generic n e C(.%).

Proof. Take a sufficient set S in the half-space C(y) containing n. Then apply
Corollary 15.5. O
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With Corollary 15.6 at hand, we are now ready to prove Corollary 13.4.

Proof of Corollary 13.4. For a coarse Lyapunov exponent y € Z~ (1) with y(n) >
0, let 7% (1) be the almost-surely constant value of the pointwise dimension
of u along & v #* v as in Section 7.3). In the notation above, this means

FvHX
log|ut  V"(Bx,r)

d7 0N () =lim
r

-0 log(r)
=dim)" Wl Fvnlp=Y ya(Mil Fvnly)
(54) Aiey
=Y y(AilFvnly)
/li€x
=Y y(MilFvnI#Y,
/1,'6)(

where my denotes the length of the filtration (49) for .#" = y, and the two last
equalities are respectively given by Proposition 15.4 and Corollary 15.6.

We also let d,‘jj’u'n (1) be the almost-surely constant value of the pointwise
dimension of u along & v #," v . One can similarly deduce that

F U,
(55) d" = 3yl F vl
Li€eZL*(W):A;(n)>0
It suffices to recognize that (55) is the sum of (54) over all coarse Lyapunov
exponents y with y(n) > 0. O

15.3. Proof of Proposition 15.4 and Corollary 15.5. Fix a complete collection
# as in Proposition 15.4. Let S c Z4 be a finite set of generic elements that is
sufficient in C(.#) and let n be a measurable partition such that a(n)n < n for
allnes.

Proposition 15.4 follows immediately from the following induction hypothe-
sis.

LEMMA 15.7. Let1 < m<#Y —1 be an integer such that the following holds: for
every strongly integrable (w.r.t. ) collection #' ¢ ¥ with #.%' <m, every A e ',
and every ne C(F)N S,

(56) Yn AL F V| I)=y(A F vnl|LQ).

Then the same holds for every strongly integrable (w.r.t. .%) collection %y c .¥
with# % =m+1.

When m = 1, each strongly integrable collection .#’ with #.#' = 1 has a single
exponent ¢’ = {1;}. From Lemma 14.10, we have .¢' = .#(A;). Then, for any
neCEHNS, yn(Ail Fvnl I )=y(Ai| Fvnl L))

Given any n € C(#)n S, we find strongly integrable collections .#] c ---
4, , =¥ (with respect to .#) given by the filtration (49) associated with the
ordering on .# associated with n. By induction on m, Proposition 15.4 follows
directly Lemma 15.7.
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Proof of Lemma 15.7. Fix a strongly integrable (w.r.t. .#) collection .%) c .# with
#99=m+1. Fix ny € C(£) N S. We show (56) holds for n = ny and all A € .%;. Fix
Ak € F such that
Ak (ng) =min{A;(ng) : A; € o} .
Recall ny is generic and so Ay (1) < A;(np) for all A; € Fy < {Ax}.
We consider two cases.

Case 1. Consider first the case that
Arp(n) =min{A;(n) : A; € Fo}
forall ne C(#)NS. Let #' = .4\ {A;}; observe that .#' is strongly integrable.
By Lemma 14.10 we have .%y = .#(Ar). Then clearly
YAl F Vv H) =y(A | F vl F(AL)

holds for any choice of n € C(#)nS. As in Claim 15.3, for any n € C(-%) N S, the
element of the filtration (49) associated to A is the right-most. Thus, for any
Aj€F{A} and ne C(F) NS we have

Yn(Aj1F Vvl F)=yn(Aj | FvnlI).

Since .#’ is strongly integrable and #.¢’ = m, by the inductive hypothesis we
have

Ya(Aj 1 F vl I)=y(A; | F vyl IA))
The conclusion then holds.

Case 2. Now suppose there is n, € C(#)Nn S and 1, € % such that
Ak(”*) > /1* (n*)

Then there exists a sequence of subchambers Uy, Uy, ..., Uy < C(F£) with ng € Uy
and A' € # with A’ # A, such that for any choice of nj € Ujn S for 1 < j < ¢ the
following hold:

1. Uj is adjacent to U;j—; forevery 1 < j </¢;

2. Ak(nj) =min{A;(nj): A; € H} forevery0< j<-1;

3. AM(ny) =mini{d;(ny) : A € H).

Note, in particular, that A'(n,) < A (ny).

Let #' = S~ M), £ = FH (A} and £ = # \ {A, A'}; observe #', &’
and .#" are strongly integrable with #.¢' = #.¢" = m and #.9"" = m— 1. By the
inductive hypothesis and examining the filtration (49) on the subchambers U,_;
and Uy, for all A; € #" we have

Yo Ml F vl Fo) =Y, (Mil F vl I
=y(Ai | F Vvl L£A))
=Yne (Ai | Fvn|S")
=Yn, (i | F V| H).
Moreover, by the inductive hypothesis,
Yo NN F V01 ) =yn,, M 1F vyl )=y (A1 FvnlIQ))

(57)
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and
Y, A | FV ) =Y, A | Fvn| I ) =y (A | F V| L Ap).

By Lemma 14.12, the maps

1. thH(a(n) Igvanj’)

2. n— h#(a(n) Igvan‘fﬂ)

3. n—hy (a(n) | FVvnv Wf”’)

4. n—hy(am) | Fvnv )
extend from C(.#) N S, respectively, to linear functionals Ly, Ly, L3, Lo: RY - R.

From Theorem 7.7 and the structure of the filtration (49), for n€ Uy_1 NS we
have

Lo(n) = Ly(n) +yn,_, (A | F v | F) A ()
and

Li(n)=Ls(m)+yn, , A1 F vl L) ().
Similarly, for n € Uy N S we have

Lo(n) = La(n) +yn, (M | F vl HH)A (n)

and

Ly(n) = Ls(m) +yn, (Ak | F V| I") Ar(n).
Combining the equalities above, after applying (57) and canceling common
linear terms, we get that for all ne€ Sn C(.¥),

[Y(A 1 F V1 IAR) = Yn, Ak | F V1| F0)] Ar(n)
-[YA 1 F vy FA))=yn, A 1 F vyl L) A (n)=0.

Here we used the fact that both Uy,_; n'S and U,y N S are spanning as S is a
sufficient set.

Since Uy_; and U, are adjacent and A and A’ are positive on U,_; and Uy
and swap relative order when crossing the subchamber wall from U; and Us, by
Lemma 14.2, 1 and A’ are linearly independent. It follows that

Yno Mkl F V1 20) =yn,, Ml F V| H) =y(A | F vl I (A)
Moreover, for 1; € % \ {1} we have by the inductive hypothesis that
Yy (Ai | F V| Fo)=Yn, (Ai | Fvn| L) =y(Ai | F vyl LQA)).
The conclusion follows. O
We conclude with the proof of Corollary 15.5.

Proof of Corollary 15.5. Fix ng € C(.#).

If .# = o, then the conclusion follows from definition. We reduce to this case
by backwards induction on the number of coarse exponents in .#.

Suppose £ contains at least two distinct coarse exponents. Since C(.¥) # &,
there is a coarse exponent y; that is not proportional to yo; in particular, the
kernel of y; has nonempty intersection with C(yq). It follows that C(.#) is a
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proper subset of C(yo) and there exist adjacent chambers W, W> < C(yo) with
W) c C(#) and W, < C(yo) \ C(#).

Let y € £ be such that W, and W, are adjacent through y. Let U c W be a
subchamber such that y is in the wall of U; by Lemma 14.2,

A(ny) < A'(m)
forallm e U,y e #~{x}, Ley,and A’ € y'. Let #' = #~ x. Then .’ is complete
by Lemma 14.8 and for all A € #' and n1 e UN S,
Y Ai | FVvnl ) =y A | Fvn|I).

By Proposition 15.4 and Claim 15.3, the above remain are constant as n; varies
across C(#)n S and C(#') N S, respectively. It follows that

YnyAi | FV|I) =yp,(Ai | F V)| I).
By backwards induction on #{y € P (W) : x € &}, we reduce to the case that
S = {X()} O

15.4. Proof of Theorem 13.1. Theorem 13.1 follows immediately from the Corol-
lary 15.6.

Proof of Theorem 13.1. First consider a generic n e Z%. Let
Un):=4{1;i € LW : Ai(n) > 0}

be the collection of positive Lyapunov exponents for a(n); then % (n) is com-
plete. From Theorem 7.7, with f = a(n) we have that

hulam | Fvm =Y yudi | FVnlU%n)Ain).
Ai(n)>0

On the other hand, for any coarse Lyapunov exponent y € £%(u) with y(n) >0,
applying Theorem 7.7 again we have that

hylam) | Fv#ivn) = ya(Ail FVvnl))Ai(n).
/L'EX
The conclusion then follows for all generic n € Z4 by Corollary 15.6.
Now, consider a non-generic m € Z¢. From Claim 12.1 we have
hy(a(m)| F vn) = hy(a(m) | F Vv H,5vn).

Take & = F v W,}. Then s expanding for a/(m).
Since C(¥) # o, it follows that C(%) contains a spanning set of generic
points. From Lemma 14.12, the functions

n-—»hu(a(n)lé’\vn) and n— Z hu((x(n)lﬁv“fﬂxvn)
(xeZ:x(n)>0}

extend from C(§ ) to linear functions on R%; moreover the two functions co-
incide on a spanning set of n € Z%. It follows that they agree on C(Z). As
FNWX=F VWX forall X € P~ (1) with y(m) > 0, the conclusion extends by
linearity to non-generic m € Z4. O
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16. PROOF OF THEOREMS 13.5 AND 13.7

We retain all notation from Section 13.2. In particular, @ is an action of Z¢
on (N,v) which is a measurable factor of @ induced by w: M — N; «/¥ denotes
the a-invariant measurable partition on (M, 1) induced by the factor map .

16.1. Key Lemma. Consider any non-zero Lyapunov exponent y € 2% ). Note
that we have not yet shown the equivalence class Y is positively propositional
to an equivalence class in P (1). Take H = C(y) to be the Lyapunov half-space
associated with .

Considering all non-zero Ae L%v)and 1 € & %(w) as linear functionals on
R4, define joint chambers and joint subchambers relative to the collection of lin-
ear functionals £ = £%(v) U £%(u). Then H is saturated by joint subchambers
and we may take a finite set Sc Hn 7% that is sufficient (for the collection of
joint subchambers) in H.

Take 77 to be a measurable partition of (IV,v) as in Proposition 14.11 that is
subordinate to # ¥ with @(n)(@) <7 forall n€ S. Let n =y~ ([).

The key observation in the proof of Theorems 13.5 and 13.7 is that for n €
S c H, every coarse Lyapunov exponent y € P~ (1) with y #y contributes only
fiber-entropy to the quantity h,(a(n) | n). Write

%y (n):={A" € £%(w:A'(n) > 0}.

LEMMA 16.1. Lety € L) be as fixed above. For n€ Sc H and any y € 2 (W
such that y is not proportional to y and x(n) >0 we have

Yn(/lj Inl%ﬁ‘(n))=yn(/lj |2V | x)
forallAjey.

In Lemma 16.1 and in what follows, the dimension y,(-) are always relative
to the action a.

Proof. First note that for any n € S with y(n) > 0, from Claim 15.2 we have

(58) Yn(ljInl%ﬁ(n))zyn(ﬂjlnlx)zyn(ljld‘”lx)

forall A; € y.

To prove the reverse inequality note that, as y is not proportional to ¥, the
Lyapunov hyperplane associated to y intersects the interior of H. In particular,
there are joint chambers W) ¢ Hn C(y) and W, < H ~\ C(y) that are adjacent
through y. Let U; and U, be subchambers, respectively, of W; and W, that are
adjacent through y and fix n; e U;nSc H.

Let Wy < C(y) N H be the joint chamber containing the » in the statement of
the lemma. As S is sufficient in C(y) N H there is a sequence of subsequently ad-
jacent joint chambers Wy = W', W?,...,W’*! = W} in C(y) n H and a sequence
of coarse Lyapunov exponents X’pX’z»---’X/g in 2% (W u P%(v) with )(; # x for
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1 < j < ¢ such that each pair W/, W/*! is adjacent through )(’] Note also that
since each W/ c H, we have 7(; Zyforlsj<?. Let
=AM\ (X UraU---Uxy).
Then also
F =AU )\ (Y uxau---Uxy).

Repeatedly using Lemma 14.8 and Proposition 15.4 when crossing chamber
walls, we know .# is complete, and for A; € y the following hold:

L yn(AjInl%; ) =yn AjlIn|L);
2. ynAjInl2;(n)) =yn(AjIn|2);
3. YnAjInl A =yn,(AjIn|F);

4. YA 1Y) =Y, A 1 LY | Y).

To prove the lemma it thus suffices to show for A; € y that
(59) Y A 10|25 () =y, (A1 2¥ 1 x).

From Theorem 7.7, for any n € S we have

By i)=Y Aiwyn(AiInl2%Em).
A,-E%[f(n)

Moreover, from the conditional Abramov-Rohlin formula (20), Theorem 7.7, and
Theorem 13.1 (applied to the trivial foliation and a-invariant partition «/¥) we
have for any n € S that

hu(a(n) | n) = hy@n) |7 + hy (a(n) | £Y)
=h@m M+ Y hy(at | v ).

X< (n)
=m@mn)|m+ Y, Y Aimy.(AilLY 1)),
X<y () Aiey’
whence
m@min= Y Mmya(uinizim)- ¥ ¥ Ly, (il 1x).
Ai€Ug (n) XU (m Ay’

Recall the partition 77 of N is subordinate to #*. From Lemma 14.12, it
follows that the restriction of the map

n— hy(a(n)| )

to S < H coincides with the restriction of a linear function L: R? — R. From the
above analysis, for all ne W1 NS and m € W, N S we have

60) Lim= Y )Li(n)yn](/lilnl%;f(nl))— )y hu(a(n)wﬂ’vaw)

A€ (m) x'e%i(m)
61 Lm)= Y Aimyn, (Ailn| %))~ ¥ hy(atm) | #Y va?)
LieF* y'CI

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 455-540



536 A. BROWN, F. RODRIGUEZ HERTZ AND Z. WANG

where #* = (%ﬁ’(m) ~ )() U—yx or " =% (m) \ x depending, respectively, on
whether or not —y is a coarse Lyapunov exponent in 72 ().

Consider y' € £2%(w) with y' <% (m) \ {xy} and A; € . Since W) and W,
are adjacent through y, from Proposition 15.4 we have

Yo (M Im1 2 0] =y, (A 111.57)
:Ynz (Al | n | 'j*)
=Yn, (Ai |7 %ﬁ(nz))
and
Ym il 2V 1 X) =yn, (Ai 1 LY 1))
Let L; be the function
Lim= Y Aimyn (41012 00) = ¥ Aiyn, (L1 s2¥ 1)
Aigx Aiey
and (if —y is a coarse Lyapunov exponent) let
L= Y Aimyn (A% m))- ¥ Ly, (il 1-x).
Aie—x Aie—x
Comparing righthand sides of (60) and (61) and canceling common linear terms
it follows that either
L1 =0 or L1 = Lg.
From (58) we have L;(n) =0 and L,(n) <0 for n € W; whence either case above
implies
Y Ao (v, (A 1128 () =y, (Ai 127 1 x)) =0,
A.iE)(
Conclusion (59) then follows from (58). O

16.2. Proof of Theorem 13.5. Theorem 13.5 follows directly from Lemma 16.1.

Proof of Theorem 13.5. We retain all notations from above. In particular, we take
€ Z%v) with
hy (a@(n) 1 %) >0

for some n with y(n) > 0. Take a measurable partition 7 as in Proposition 14.11
that is subordinate to #* with @(n) () <7 for all n € S. Suppose that no coarse
Lyapunov exponent y € P (1) is positively proportional to y. Then, by the
conditional Abramov-Rohlin formula (20), Theorem 7.7, and Lemma 16.1 we
obtain a contradiction, as for any n € S € H we have

(@) | 77
= hy(@(n) |7 = hu(an) ) - hy (an) | Y)

= Y My (uimzim)- Y Y Loy (Al 1)
i€ (n) YELY():y (n)>0Ai€X

=0. O
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Having established Theorem 13.5, given any coarse Lyapunov exponent y €
L) contributing entropy to the factor system @, it follows there is y € K (W)
positively proportional to .

Let Y€ %), 7, 1, and S< H = C(¥) be as above.

COROLLARY 16.2. Suppose x € K72 (1) is positively proportional toy. Forne S
we have

hy (a(n) | #Xvn)=h,(@n),n+hy(an) | LV v,

Proof. From Corollary 15.6, for n€ S, y' %;f(n), and A; € y’ we have the equal-
ity

Ya(Ailst¥ 128 0) = ya(Ai 2”1 1)
which is well-defined and independent of the choice of n € C(y'). Lety (4; | «/¥)

denote this constant.
From Lemma 16.1 and Theorem 7.7 we have

hy(a(n) [n)

= Y Moya(diiniugom)
/1,'6%;11(”)

= Y Myile¥)+ X A0 (va(Ai Il 25 m) -y (A1 2Y))
A€ (n) Aiex

=huylam) | V) + Y. Li(n) (Yn (Ai Inl%,‘f(n))—Y(M |£¢w))

/1,'6%
whence

hy(@(n),n) = hu(an) 1) = hy (an) | ¥)

=Y M) (Yn (A,- In] %ff(n)) ~y (A Ww))'
Aiex

From Corollary 15.6, we have for 1; € y that
Yu(Ai In12g ) =y 191 p.
Thus

hy(@(n),m =Y. i (ynQilnlp-y(Ail«£¥))
/liEX

= (@) | T v ) = hy (@) | Y v Y). O
16.3. Proof of Theorem 13.7. We obtain Theorem 13.7 from Corollary 16.2.

Proof of Theorem 13.7. Consider a fixed, non-zero y € 2 (1). Fix n € 2% with
x(n) >0 and let W be the chamber of L) containing n. Fix a finite set S that
is sufficient in W.

Choose an enumeration of all coarse exponents y j « %,; (n) with y = yo. For

each y; € 72 (W) let ) ; € Z7%(v) be the coarse Lyapunov exponent positively
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proportional to x; if such a coarse exponent exists; in this case let 77; be a mea-
surable partition of (IV,v) as in Proposition lé.\ 11 that is subordinate to #'*i
with E(m)(ﬁj) < 1_;]- forallme WnS. For y; € %£%(u) such that no coarse expo-
nent in £ %(v) is positively proportional to y ;, take X to be the 0 functional
and take 77; to be the point partition. For all j, letn; = w‘l(ﬁj).

From Theorems 13.1 and 13.5 we have for me Wn S

1. hy(a(m)) = > hV(E(mHWY): Y hy (@(m), 7 ));
XELENU (m) XjEU (m)
2. hylam)| 2"y = ) hy(am) | ¥ v,
Xj€U (m)
3. hylam) = ). hy(am)|#Y).
Xj€U 1 (m)

Combined with Corollary 16.2, it follows that for me Wn'S,

Y. hu(a(m) | #% vn;) = hy(@m)) + hy(a(m) | «¥)
€U (m)

(62) hy(a(m))

Y. hy(alm) | 7).
Xj€%; (m)

From Claim 8.5, for each j we have
hy (a(m) | #% vnj) < hy(am) | #0)

for every m € Wn S. Combined with (62) it follows for each j and me WnS§
that
hy (a(m) | #% vnj)=hy(am) | #Y).
The conclusion of Theorem 13.7 then follows for m € Wn S from Corollary 16.2.
Since the restrictions of the three terms in (45) to C(y) extend to linear func-
tions, the conclusion of Theorem 13.7 extends to all n € C(y) by linearity. O
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