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ABSTRACT

Analyzing when noisy trajectories, in the two dimensional plane, of a stochastic dynamical system
exit the basin of attraction of a fixed point is specifically challenging when a periodic orbit forms
the boundary of the basin of attraction. Our contention is that there is a distinguished Most Probable
Escape Path (MPEP) crossing the periodic orbit which acts as a guide for noisy escaping paths in the
case of small noise slightly away from the limit of vanishing noise. It is well known that, before
exiting, noisy trajectories will tend to cycle around the periodic orbit as the noise vanishes, but we
observe that the escaping paths are stubbornly resistant to cycling as soon as the noise becomes at
all significant. Using a geometric dynamical systems approach, we isolate a subset of the unstable
manifold of the fixed point in the Euler-Lagrange system, which we call the River. Using the Maslov
index we identify a subset of the River which is comprised of local minimizers. The Onsager-Machlup
(OM) functional, which is treated as a perturbation of the Friedlin-Wentzell functional, provides a
selection mechanism to pick out a specific MPEP. Much of the paper is focused on the system obtained
by reversing the van der Pol Equations in time (so-called IVDP). Through Monte-Carlo simulations, we
show that the prediction provided by OM-selected MPEP matches closely the escape hatch chosen by
noisy trajectories at a certain level of small noise.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

dz = F(z)dt + /eocdW (1)

It is well known that noise can work against the deterministic
motion of a dynamical system with an attracting fixed point. With
probability one, a noisy trajectory of a system with additive noise
will, under natural conditions, leave the basin of attraction of the
fixed point, assuming it is bounded, at some point in time. Large
deviation theory is devoted to finding the most probable escape
path (MPEP) and the expected time of escape. The MPEP can be
thought of as the mode of the probability distribution function of
paths that escape from the basin of attraction. The central results,
which were largely formalized by Friedlin and Wentzell [1], are
asymptotic in the level of noise.

1.1. Stochastic differential equation

Mathematically, the framework is an SDE of the form (z € R"),
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This is a stochastic perturbation of the deterministic system given
by the drift term: Zz = F(z) where the noise strength is &,
the structure of the noise is given by the n x n matrix o, and
W represents the standard Wiener process (here as a vector of
separate processes). We will assume that the drift vector field
F(z) is as smooth as needed, and generally that o is the identity
matrix. Freidlin-Wentzell theory has its origins in the case of F(z)
being gradient: F(z) = —VV(z) for some potential V. Friedlin
and Wentzell introduced the notion of a quasipotential in order
to generalize the theory and this provides a framework for an-
swering many questions. A particular challenge arises, however,
when the basin boundary is a periodic orbit. The work of Day [2]
gives a clear and comprehensive picture of what happens in this
case as the noise vanishes. Day showed that there is no preferred
exit point or region along the periodic orbit and that the periodic
motion causes the most probable exit point to cycle around as the
noise decreases. The work of Maier and Stein [3] also added to
this picture and a very detailed analysis was more recently given
by Berglund and Gentz [4,5]
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Fig. 1. Monte-Carlo simulations of noisy trajectories that escape the periodic
orbit of the IVDP with noise strength /¢ = 0.32.

1.2. Main example

Monte-Carlo simulations of standard examples of Eq. (1)
where z € R? and an attracting fixed point is surrounded by
an unstable periodic orbit, which is its basin boundary, show a
different picture in practice. The example that is invoked more
than any other of this scenario is the Inverted van der Pol
equation (IVDP),

X=y,

y=—x+2nyx* —1). @)

which, when noise is added and put in the form of Eq. (1) in R?,
exhibits a striking escape pattern that is at a rather definite part
of the periodic orbit. In Fig. 1, we take n = 0.5 and /e = 0.32.
While this level of noise is decidedly not vanishingly small, it is
small and close to the limit of feasible Monte-Carlo simulations
that capture the MPEP without resorting to a strategy such as
importance sampling. The theory tells us that the escape will
indeed be carried around periodically. But it is also striking how
stubbornly the escape region shown in Fig. 1 persists when the
noise is small but not vanishingly so. It can be seen in [6] how
hard it is actually to see the cycling, even to get one iteration of
the escape region half way around the periodic.

1.3. Dynamical systems approach

We take the opposite viewpoint from the more theoretical
literature in this paper. Instead of trying to show that the the-
oretically predicted cycling actually happens, we aim to show
why non-cycling occurs at small noise, but slightly away from the
limit. The question we pose is whether the evident escape region
can be identified and understood using the tools of the asymptotic
theory.

There are a number of different approaches taken in analyz-
ing the escape phenomenon, for instance: matched asymptotics
(WKB) [7,8], quasipotential theory (HJE) [2], and a dynamical sys-
tems approach using random Poincaré maps [9]. Various mixtures
of these approaches have been used, particularly in the physics
literature [6,10-12].

In this work, a dynamical systems viewpoint is applied to the
Euler-Lagrange system derived for the Freidlin-Wentzell (FW)
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action functional of the SDE with IVDP dynamics. We identify a
specific part of the boundary from a careful study of the geomet-
ric structure of the unstable manifold of the fixed point in the
Euler-Lagrange system. We call this set of trajectories the River.
It is bordered by two specific trajectories that are heteroclinic
from the fixed point at the origin to the periodic. It is shown by
a number of authors [6,13] that the global minimizer of the FW
functional is a heteroclinic and it acts as a MPEP.

Of particular interest are the points on the periodic orbit
where the river trajectories cross as they escape. We further find
a subset of the river trajectories that has a close correspondence
with the escape hatch seen in the Monte-Carlo simulations. To
identify this set, we invoke the Onsager-Machlup functional to
account for the level of noise being small but away from the
asymptotic limit.

There is some irony in our approach in that we are using the
asymptotic theory (FW) to capture a phenomenon that we claim
lies outside the validity of that approach. One way to look at
this is that we are seeing which parts of the asymptotic theory
extrapolate to this level of noise and how it needs to be modified
to capture the effects in this parameter range.

1.4. Motivation

Our motivation comes from thinking about physical systems
relevant to the climate. Tipping from an apparently stable state
is particularly relevant in assessing climate change as abrupt
changes are known to take place in critical climate subsystems.
Moreover, the specter of their occurring in systems with large
impact on climate functioning has made their study pressing,
see [14-17]. Three distinct types of tipping have been identified
and distinguished from each other in the literature, see [18,19].
One of these is through the response of a system to external noise.
This noise may be identifiable as a known forcing of unknown
magnitude, or an accounting of missing physics. Mathematically,
noise is usually included through an additive stochastic perturba-
tion of the underlying differential equations (DE). The complexity
of the overall climate system makes this framework of stochasti-
cally perturbed DEs highly appropriate. Two questions then arise
naturally:

1. Within a certain time horizon, what is the probability of
tipping away from a given attracting state?

2. What is the most likely trajectory that the system will take
to tip?

From the climate viewpoint, the first question addresses how
dangerous the prospect of tipping might be, while the second will
point to the way it will most likely happen.

Tipping due to noise, so-called noise-induced or N-tipping,
has largely been studied as a problem in Large Deviation Theory,
see [20-25]. As mentioned in Section 1.1, large deviation theory
comprises a body of results that are valid in the limit of vanishing
noise. This is partly due to the connection of its development
with molecular chemistry, but also that, from the mathematical
viewpoint, it is a context in which rigorous analytical results
can be obtained. As a consequence, the results obtained may
only be valid for extremely long time scales, and these may be
beyond what is relevant for the climate. In the climate context,
we suggest that noise should be set to be small (otherwise the
noise is trying to capture mechanisms that should be included in
the model), but not vanishingly so. We shall refer to this as the
intermediate noise case, although it is known as “finite noise” in
the physics literature, see [26].
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1.5. Plan of paper

The paper is organized as follows. In Section 2 we review
some preliminary notions from Friedlin-Wentzell theory, discuss
the key ideas and give a roadmap for the work. In Section 3 we
discuss our methodology for computing unstable manifolds of
fixed points and stable manifolds of periodic orbits, along with
how we compute the heteroclinic orbits. Section 4 treats methods
for computing conjugate points and how we relate our approach
with the Maslov index. In Section 5 we discuss trajectories that
exit the periodic orbit and relate them to (local) minimizers of
a constrained variational problem. This is where we introduce
the notion of the River and of a pivot point. In Section 6 we
describe our use of the Onsager-Machlup functional as a selection
mechanism to pick out an MPEP for intermediate noise strength.
In Section 7, we derive a converged distribution for the location
of escape events. In Section 8 we discuss how we match our
simulations with the theory that we developed using the escape
hatch, the pivot point, the OM point and the Monte Carlo simu-
lations. Finally, Section 9 is devoted to discussing our approach
and concluding remarks.

2. Background and key ideas

We will work with a general set-up as given by Eq. (1) with
z € R? and make assumptions that reflect the particular structure
of interest. Some of these are very general, while some require
explanation and verification in specific cases. Our viewpoint is
that this latter type of assumptions would be verified numerically
and we illustrate this for the case of IVDP, see Eq. (2).

2.1. Goal

In the case of small but not vanishing noise, it is commented
in Section 1.2 that the “escape hatch” through which noisy tra-
jectories will favor exiting is fairly distinctive. Our goal is to show
that this subset of the periodic can be clearly identified through
a construction rooted in theory.

The construction will be based on finding structures in the dy-
namical Euler-Lagrange equations generated by finding extrema
of the Freidlin-Wentzell action functional.

2.2. Set-up

Start with Eq. (1), with o = I, where I is the 2 x 2 identity
dz = F(z)dt + /eldW, (3)
The first assumptions are on the underlying deterministic
system
az
dr
defined on z = (x, y) € R%, F = (f, g), to capture the dynamics in

which the escape of noisy paths, i.e. solutions of Eq. (3), is through
an unstable periodic orbit.

F(2), (4)

(A1) There is an (exponentially) attracting fixed point of Eq. (4),
which we will assume is at z = (0, 0), and it is the only
fixed point,

(A2) Eq.(4) has an (exponentially) repelling periodic orbit, which
we denote by I', surrounding the attracting fixed point at
the origin. Moreover there are no periodic orbits inside I".
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The theory of large deviations tells us that the most proba-
ble paths of escape from the attracting fixed point through the
unstable periodic orbit should minimize the Freidlin-Wentzell
functional [1]. In its most basic form, the functional is for paths
z=¢(t)on [0, T]

-1 T
Sﬂm=5/.W—HWFM, (5)
0

where = &

The most likely path from zg € R? to z; € R? is given
by the path that minimizes Eq. (5) over absolutely continuous
functions from [0, T] to R? with z(0) = zy and z; = z(T). The
minimization procedure works well if, in reference to a system
satisfying (A1) and (A2), the points zo and z; are inside I" and
neither is the fixed point at the origin. If the paths involve (0, 0),
or cross I, then the situation is more complicated and this will
be our focus. Nevertheless, the basic theory associated with the
so-called action functional of Eq. (5) underpins everything we will
do.

2.3. Euler-Lagrange equations

The action functional of Eq. (5) can be written in terms of a
Lagrangian

1.

o) =5 [ 1z 6)
2 Jo

where, obviously L(z,z) = |¢ — F(¢)|>. As in classical mechan-

ics, the Euler-Lagrange equations for extrema of Eq. (6) can be
written as a Hamiltonian system. We set

p=x—f, q=y—g.

The Euler-Lagrange equations as a Hamiltonian system then
reads,

x=f+p
y=g+q
s (7)
p=—fip—8&q
q=—fp—gaq.
The Hamiltonian is given by
2 2

p°+q
H(x,y,p.q) =f(x,y)p + 8g(x, y)q + > (8)
A key point to note is that p = g = 0 is invariant and that

invariant plane carries the deterministic flow given by Eq. (4),
recalling that z = (x,y). As a consequence, the fixed point at
the origin and periodic orbit I" reappear with their attraction and
repulsion reproduced within the plane. Note that, with a slight
abuse of notation we shall use the same notation of O and I" for
the fixed point and periodic orbit, respectively, in reference to
both Egs. (4) and (7). Their stability properties change, however,
in the full 4-dimensional system of Eq. (7). This is the key to using
Eq. (7) for determining the most probable paths of escape from
the attracting fixed point out of its domain of attraction.

By assumption (A1), two of the eigenvalues of Eq. (7) lin-
earized at O have positive real part, which are the negative of the
(deterministic) eigenvalues of Eq. (4). Thus the unstable manifold
of 0, which we denote W"(0) is 2-dimensional. The periodic orbit
I" has one stable, two neutral, and one unstable Floquet mul-
tipliers. It may seem as though I should have a 1-dimensional
stable manifold, but integrating this 1-dimensional stable direc-
tion results in a tangent bundle, which will be a 2-dimensional
manifold. It follows from Eq. (7) that I" has a 2-dimensional un-
stable manifold (in the deterministic plane) and a 2-dimensional
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stable manifold W*(I") which lies in the complement of the
deterministic plane in R*.

Both of these 2-dimensional objects will play central roles in
this work, and the unstable manifold W*(0) will be the main fo-
cus. In the next section we relate it to the minimization procedure
that renders the most probable paths.

2.4. The quasipotential and W'(0)

Of particular interest are paths starting at the fixed point
and escaping its basin of attraction, i.e., getting outside I". First,
consider paths that reach some point z* possibly inside I" from a
start at the fixed point. The formulation of the action functional
suggests that we seek paths going from the fixed point to z*
in time T. The time it takes to reach z* is something we want
to keep free, however, and so the following quantity, called the
Quasipotential, see [1], is defined as

V(z*)=__inf Si(e), (9)
T>0,peXT

where X7 is the set of absolutely continuous functions satisfying
the boundary conditions: ¢(0) = 0, i.e., the fixed point, and
¢(T) = z*. It follows from Lemma 3.1 in [1] that any minimizer
realizing the infimum in Eq. (9) must lie in the set H = 0. The
only point in H = 0 with z = (0, 0) is the fixed point of Eq. (7),
i.e., with p and g also equal to 0.

Since the only access to the fixed point at O in the zero-set
of the Hamiltonian of the 4D system of Eq. (7) is on the unstable
manifold W¥(0), it follows that any minimizer must lie in W*(0)
and the domain on which any minimizer is defined must be semi-
infinite. By a reparameterization, if necessary, it can be taken to
be (—o0, 0].

For z* inside I', the infimum in Eq. (9) is realized by a tra-
jectory on WH(0). An important point is that for z* € I', this is
not the case even though there may be trajectories on W4(0) that
cross I'.

Remark 1.

By a quirk of the way the quasipotential is defined, the min-
imizer is not actually in the space on which the functional is
defined, namely X7, since a minimizing path cannot reach O in
finite (backward) time. This is rectified by considering what is
called the Geometric Minimum Action, see [27]. The geometric
action has the effect of reparameterizing the paths so that they
all lie on a fixed bounded domain. One way this is achieved is
to use arc length to parameterize the paths. Since the paths on
WH(0) with fixed end point z inside I" have finite arc length,
the minimizing path does lie in the set of paths over which
the geometric action is minimized. Note that this does not work
for the trajectories in W*(I") as the arc length of any trajectory
tending to I" is necessarily infinite. It is for this reason that we
do not directly use the geometric minimum action in this work.

2.5. Singularities of the quasipotential and folding of W"

It is well known that the quasipotential is not in general
smooth. Caustics can form, see [10], and there might be multiple
minimizers of the action functional with the same z* = (x,y)
value. Viscosity solutions of the associated Hamilton-Jacobi equa-
tion are invoked to sort which is the global minimizer (infimum)
for that value of z*, see [23].

The signature of a singularity of the quasipotential in the
unstable manifold is a fold in the manifold when projected onto
(x, y)-space. Indeed, if over a set U C R?, the unstable manifold
WH(0) is given by the graph of a function (p,q) = h(x,y) for
(x,y) € U, then the quasipotential will be smooth on U. Folds
can be detected by finding conjugate points (Definition 2.1) along
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Fig. 2. Plot of paths sampled from the entire unstable manifold of O, indicating
no conjugate points occur before a path reaches the 0.32 border (in green).

trajectories, see Section 4. In actual fact, it is unlikely that the
full unstable manifold is the graph of a function of (x, y). This
is because of the complex tangling that occurs when there are
transverse intersections of stable and unstable manifolds along
heteroclinic orbits. By identifying where these folds happen and
looking at trajectories on W*(0) up to these fold points, we can
obtain a clear picture of the quasipotential in large regions inside
I'. The key is the fold points are related to the minimization of
the action functional as they are conjugate points as used in the
calculus of variations. To see this, note that at a fold point the
tangent space to W*(0) will have a vertical tangent vector. This
forces there to be a conjugate point.

Since we are interested in trajectories on W*(0), we make a
definition of conjugate point that is tailored to this situation.

Definition 2.1. If z(t) is a trajectory of Eq. (7) on W*(0O) then
T is said to be a conjugate point if the projection of the tangent
space T,yW"(O) to (x, y) space is not of full rank (i.e., not onto).

This corresponds to the classical definition of a conjugate point
extended to the case of an extremizing trajectory on a semi-
infinite domain. Indeed, if 7 is a conjugate point then there will
be a solution of the linearization of Eq. (7), denoted U(t), along
z(t) that satisfies u(tr) = 0 and u(t) — 0 ast — —oo where
U = (u,w) and u is the two-dimensional (linearized) variable
corresponding to (x, y).

The construction of W¥(0) is achieved by taking a small circle
around O inside (x, y) space and growing it under the flow. This is
explained in Section 3. We can see how far the unstable manifold
can be grown without hitting a conjugate point along any of the
trajectories.

We set a §-collar of the periodic orbit as the set of points
(in (x,y) space) inside I' that are within a distance § of I'. It
is known that, see [4,5], if the trajectories are within O(\/€) of
the periodic then the diffusion will dominate and cycling will not
play a significant role. It is thus interesting to see if we can reach
the § ~ O(4/€) collar without hitting a conjugate point. With
/€ = 0.32 in the IVDP system, we see that there are, in fact,
no conjugate points between this collar and the fixed point, see
Fig. 2. This has the consequence that the quasipotential is smooth
in this set as there will be no folding until the collar is reached,
where, as stated above, diffusion takes over.
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2.6. Heteroclinic orbits

Evaluating the quasipotential for z* € I' requires special
consideration. It must be constant on I" as it costs nothing in
terms of V to traverse the periodic orbit since it is an orbit of the
deterministic system. From general variational arguments, there
must be a minimizing trajectory, although its domain may not be
finite, or even semi-infinite. Since the minimizing trajectory must
be smooth, it follows that it must be a heteroclinic orbit from O
to I'. In particular, its domain will be (—oo, +00) and it lies in
both W¥(0) and W*(I").

Generically, we expect there to be more than one heteroclinic
orbit. Indeed if the minimizing heteroclinic is realized by a trans-
verse intersection of W¥(0) and W*(I"), then there must be, at
least, a second one. In the IVDP equation, we find exactly four,
but there is a symmetry in that problem and so there are only
two independent heteroclinics, the other two being given as a
mirror image. We can distinguish trajectories that are minimizers
by their Maslov Index [28,29]. In the following definition, Z =
{z(t)|t € I} will be a trajectory of Eq. (7) on some interval I C R,
which may be bounded, infinite or semi-infinite.

Definition 2.2. The Maslov Index of a trajectory Z on WY(0),
denoted m(Z), is the number of conjugate points in t € I along
z(t), counting multiplicity.

The multiplicity is that of the projection in the definition of
conjugate point.

We make the following assumptions about the configuration
of heteroclinic orbits in Eq. (7) which we will refer back to in
Sections 4 and 5, and verify for IVDP.

(A3) There are two heteroclinic orbits of Eq. (7), denoted #; and
‘H,, both from (0, 0) at —oo to I' at +o00. Moreover WY(0)
and W*(I") intersect transversely along each of them.

We note that W¥(0) and W*(I") live in H = 0. If x and y are
fixed, then a convenient description can be given for H = 0.
By completing the square inside the expression for H = 0 the
coordinates (p, q) satisfy

P+ YF + @+ ) =F2(xy) + 8% y), (10)
which is a clircle with center at (f(x, y), g(x, y)) and radius (f?(x, y)
+ g%(x,y))z.

Let C C R? be a simple closed curve, parameterized by s €
[0, 1], enclosing the fixed point O and lying inside the periodic
orbit I'. Putting the circles together for each s € [0, 1] yields a
torus 7¢ C R%. The intersection of W*(0) with 7¢, and of WS(I")
with 7¢, generically are closed curves in the toroidal direction
of 7 that do not wrap in the poloidal direction. Indeed, the
intersection cannot wrap in the poloidal direction because this
would correspond to W¥(0) intersecting the p = q = 0 plane,
which it cannot do since that plane is invariant. Thus, if these
two closed curves intersect once, they must intersect at least
twice. That is, there exists a second heteroclinic connection 5. In
general, and generically, the number of crossings must be even,
corresponding to an even number of heteroclinic connections.
This gives a justification for seeking two heteroclinic orbits. We
will distinguish them through their Maslov indices.

(A4) The Maslov index of 4 is 0 and of H; is 1.

Since an orbit with no critical points will minimize the action
functional, the heteroclinic #; will be a minimizer. On the other
hand, we know that H, will not be. A priori, we do not know
that # is a global minimizer as there may be others with Maslov
Index equaling 0. Generically, there will be a finite number and
the global minimizer is found just by conducting a search through
action values. In the IVDP system, the 0-Maslov Index trajectory
(and its mirror image) are verified to be minimizers as there are
no others.
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2.7. Exit trajectories

A characteristic of 2-dimensional systems such as the one
we are considering is that, at least for generic problems, some
trajectories on W¥(0) exit the periodic orbit (when projected onto
the (x,y) plane.) This cannot happen in 1-dimensional, nor in
gradient systems in 2D (which are not generic). Moreover, we can
show that some of these exit trajectories are (local) minimizers
of the FW action functional, see Section 5.

There must be at least one heteroclinic connection between
the origin O and the periodic I'. Indeed, there exists a most
probable escape path that is a heteroclinic connection. We are as-
suming in (A3) that there are at least two heteroclinic connections
between O and I'. For IVDP, we numerically verify the existence
of four such heteroclinic connections. We expect that heteroclinic
connections come in pairs.

When W*(0) and W*(I') intersect transversely along the hete-
roclinic orbits then complex tangling will occur. This is a familiar
picture in dynamical systems that is related to a homoclinic
tangle and the Shilnikov mechanism for chaotic dynamics. While
this picture is very complicated, if we view it in terms of finite
portions of W¥(0) as it is built up, then some clarity over the main
trajectories that play a role in guiding the stochastic trajectories
can be obtained. In Section 3, a procedure is articulated for
growing the unstable manifold. By a finite portion of W¥(0) we
mean the unstable manifold grown out to a fixed finite time from
its generating circle. The following lemma spells out that there
must exist exit trajectories if there is a transverse heteroclinic.

Lemma 2.3. In the neighborhood of a transverse heteroclinic orbit
with Maslov Index 0 (as in (A3)), there are trajectories on W"(0)
which exit I' and, moreover have no conjugate points before exiting
r.

The proof of this lemma is a standard dynamical systems proof
based on the observation that, inside the 3D set H = 0, W*(0) will
straddle W*(I"), by transversality, and one part will have to exit
I'. The fact that there will be no conjugate points of the exiting
trajectories before exit follows from continuity of the tangent
space to W¥(0) as trajectories are perturbed.

Over the periodic orbit, the zero energy level H = 0 is a
torus as indicated above since I' is a simple closed curve itself.
Consistently with the above notation. this torus is denoted 7,
and any trajectory exiting the periodic orbit (when projected onto
(x, y)-space) must exit through 7.

A key object for understanding the MPEP structure for inter-
mediate noise is the set W*(0)N 7. Due to the tangling of W¥(0)
this set will be very complicated. But we will isolate a subset of it,
using the Maslov Index, that we argue gives considerable insight
into the escape hatch noted from Monte-Carlo simulations. This
will be the subject of Section 5. In order to describe this set
properly, we first need to delve further into the way we compute
the various invariant manifolds.

3. Computing stable and unstable manifolds

Computing the unstable manifold proceeds in two steps. For
the first part we invoke a highly accurate method for calculating
the local unstable manifold near the fixed point at O. Since the
manifold is 2-dimensional, the full manifold can be generated
by initiating trajectories from a circle inside the local unstable
manifold. The set of trajectories so constructed form the global,
or full, unstable manifold.

Except for the heteroclinic orbits themselves, we are inter-
ested in trajectories that reach the periodic orbit /" in finite time.
Therefore we can focus on a finite portion of W¥(0). Such a finite
portion can be generated up to any desired accuracy by going to
high enough order in the method described next.
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3.1. Computing the local W"(0)

We use the parameterization method of [30-35] to accurately
compute the local unstable manifold of the fixed point O, and
grow the unstable manifold in order to compute the heteroclinic
connections and the set we call the River. By doing so, we ob-
tain a high-order approximation of W¥(0). The parameterization
method lays out a general functional analytic framework for
studying invariant manifolds in a number of different contexts
and applications. The method is constructive and leads to efficient
and accurate numerics. The main idea is to examine an invariance
equation describing the invariant manifold. One plugs in a certain
formal series into the invariance equation and solves the problem
via a power matching scheme.

Given an analytic vector field F : R* — R* with F(0) = 0,
and the conditions for a 2-dimensional unstable manifold, the
parameterization method seeks an embedding P : Bf(O) — R4,
with P(0) = 0, B%(O) the unit disk centered at 0, and a linear
vector field R : B3(0) — R? such that

F o P(x) = DP(x)RX. (11)

In other words, the goal is to obtain a conjugacy between the
flow on an invariant manifold of interest and the associated linear
problem restricted to the unit disk. We always restrict P to the
unit disk for the sake of numerical stability.

In our case, the spectrum of DF(0) is composed of distinct
eigenvalues {A'}2 , {A{}2_,, where the real parts are positive for
MY and negative for A] (the superscripts s and u stand for stable
and unstable respectively). We can then take R to be the usual
(real) matrix associated with two complex conjugate eigenvalues.

The image of P is a smooth 2-dimensional manifold, and since
it will be invariant by Eq. (11), it is an invariant manifold for 0
in R*. Furthermore, if we denote by @ : R* x R — R* the flow
generated by F and note that from [36], P must satisfy Eq. (11) if
and only if

P(P(x), t) = P(e" (x)),

for all x and ¢ for which it is defined, and thus it is a local unstable
manifold for the vector field F at 0.

The global unstable manifold can then be obtained by inte-
grating forward trajectories from this local unstable manifold. In
the next subsection, we describe a systematic way of doing this
which will allow to give a convenient description of the set of
exit trajectories we claim to be significant in understanding the
escape hatch of the stochastic system.

3.2, Generating the full W"(0)

The circle £ = P(BB%(O)) inside the local unstable manifold
will be used to generate the full W¥(0). An explicit parameteri-
zation of K will be given that also gives more insight into how
the parameterization method works for approximating the local
unstable manifold.

The first step if to extend the real-analytic vector field F on
15{4 to a complex analytic vector field on C%. A parameterization
P(z;, z,) of W*(0) in C* is then sought. The map P is taken to be
a double infinite sum

o0 o0
P(z1,25) = Z Z amn2i'2}.

m=0 n=0

To relate this to the flow, we can think of z; = z0e"1, z, = zJer2",
z?, zg € C, and w1 and p; are the (complex) unstable eigenvalues
of the Jacobian of Eq. (7) evaluated at the fixed point O. Since
w1 and py are complex conjugate pairs, as are their eigenvectors,
the value of P(zq, z5) is real if z; and z, are complex conjugate
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Fig. 3. Orbits on W¥(0) can be parameterized by a simple curve x C W" that
surrounds O. #; and #; can be obtained from 61, 6, € [0, 27).

pairs. Another way of saying this is that when pq, 11, are complex
conjugates, the coefficients of P have the symmetry a,, = omn
for all m + n > 2. Choosing complex conjugate eigenvectors
&1 and & and setting agg = O, ag1 = &1, d1p = & enfprces
the symmetry to all orders. The power series solution of P has
complex coefficients, but we get the real image of P by taking
complex conjugate variables. That is, we define, for example, for
the real parameters ¢1, {3, the function:

P(¢1, &) = P(&1 + G2, &1 — i),

which parameterizes the real unstable manifold. Further, we scale
the eigenvectors we use in the construction of P, which af-
fect z?, zg, so that the double infinite sum converges whenever
z1], 1z2] < 1.

We parameterize £ with 6 € [0,2r) by setting z1(0) =
cos(f) + isin(f) and z,(8) = cos(f) — isin(@). We then define

K = {P(z1(0), 22(0)) : 6 € [0, 2m)}. (12)

That is, K is a simple closed curve in W¥(0), parameterized by

6 € [0, 27), whose projection onto the (x, y)-plane is an ellipse
enclosing (0, 0). We denote by x(6) the point of K corresponding
to 6. The curve K is depicted as a green circle in Fig. 3.

3.3. Computing W3(I")

Next, in order to compute the stable manifold of the periodic
orbit, we proceed as follows. We first divide up the periodic orbit
into N points I, 0 < k < N. To each point there corresponds
a time 1, such that I, = I'(ty), where here I'(t) is the periodic
orbit.

Let &, be the eigenvector associated with the stable eigen-
value of the monodromy matrix. This vector is tangent to the
stable manifold at . The stability type of the state transition
matrix of any point I, on the periodic orbit is independent of
k and the eigenvectors can be computed if the state transition
matrix is known at a base point I. They are just the eigenvectors
of the monodromy matrix (which is computed at I'y) multiplied
by the state transition matrix of the new point I,

ésk = 45(0, Tk)éso-

Then for each I, we compute the state transition matrix ¢(0, ti)
and from this obtain the tangent space to the stable manifold
there, by the formula above. Set a tolerance v. If v is small enough
then

ng(O) =TI+ Vgsk

are points very nearly on the stable manifold. We integrate these
initial conditions over some time interval [0, T¢] obtaining the
orbits x;,(t). Then t along these orbits is the second coordinate on
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Fig. 4. Schematic of the flow near the periodic orbit I".

the manifold. By varying k and t we obtain a good approximation
of the stable manifold. A schematic of the flow near I" can be seen
in Fig. 4.

3.4. Obtaining the heteroclinic orbits

Finally, we compute the heteroclinic orbits resulting from the
transverse intersections of W*(0) and W*(I"). This is achieved in
two steps. We first compute the heteroclinic orbits by looking
at the transverse intersections of the invariant manifolds and
using an algorithm to find the two closest points (one from a
trajectory from the stable manifold of the periodic orbit, and
another from a trajectory from the unstable manifold of the fixed
point at the origin). So we initially compute the heteroclinics
using those two points integrating forward and backward in time.
We then use that trajectory to find its corresponding angle on the
parameterized circle K (as an initial guess) which we then refine
to compute the heteroclinic orbit but now by integrating a single
point, forward and backward in time.

The result is illustrated for IVDP in Fig. 5. In the first two parts
(a) and (b), we compute W"(0) for Eq. (7) and W*(I") respectively.
The parameters are set as »/¢ = 0.3, and n = 0.5. In Fig. 5(c),
we delineate the transverse intersections of W*(0) and W*(I") in
green and black in (x, y, p) space. In Fig. 5(d), we remove most of
WH(0) and W*5(I") leaving only the heteroclinic orbits (green and
black curves), and can clearly see that the intersections of the two
manifolds occur along 4 distinct curves.

4. Computing the Maslov index and conjugate points

A conjugate point occurs along a trajectory in W¥(0) when
the tangent space to the invariant manifold at a point on that
trajectory has a degenerate projection onto (x, y) space, see Defi-
nition 2.1. Such points can be found by tracking the tangent space
to W(0) along trajectories in W*(O).

4.1. The space of Lagrangian planes
Individual tangent vectors will satisfy the linearized equations

of Eq. (7). Since Eq. (7) is Hamiltonian, the linearized system can
be written in the form

U=AU, UeR*, (13)
where A = JB, with
P + Q8 pfxy + q8xy fo &

B— pfyx + qgyx pfyy + qgyy fy 8y
fi b 1.0
8x &y 0 1

Physica D 454 (2023) 133860

evaluated on a solution (x(t), y(t), p(t), q(t)) of Eq. (7), and J is
the usual 4 x 4 symplectic matrix

0 I
=5 ¢)

with I the 2 x 2 identity. Note that B is symmetric, which is a
consequence of the Hamiltonian structure.

Tangent spaces to invariant manifolds in a Hamiltonian system
have a special property, called Lagrangian.

Definition 4.1. A 2D subspace IT C R* is said to be Lagrangian
if JX,Y)=0forall X,Y e IT.

The collection of all 2D Lagrangian subspaces of R* is called the
space of Lagrangian planes, and denoted A(2). It can be viewed
as a submanifold of the Grassmannian of 2-planes in R*. It has
the amazing property that its fundamental group is the integers,
m1(A(2)) = Z. This allows one to define a phase in A(2) and
the standard definition of the Maslov Index is that it counts
the winding of this phase. The fundamental group of the full
Grassmannian is Z, and so that has no winding index, and thus
the Lagrangian property is critical in making the Maslov Index
work. We want to relate this characterization of the Maslov Index
as a winding number to the conjugate point definition given in
Definition 2.1.

An index, such as the Maslov Index, can be represented by an
intersection number. The simplest analogue here is the winding
of a curve in the punctured plane corresponding to the inter-
section number with a half-line (such as the positive y-axis).
For the object that will represent the Maslov Index through an
intersection number with a curve in A(2), we first need to define
the Dirichlet subspace.

Definition 4.2. The Dirichlet subspace of R* is
D={(u,w)eR*:u=0}.

It is not hard to check that D € A(2), i.e,, it is Lagrangian. The
Dirichlet subspace is key as a conjugate point occurs exactly when
the tangent space to W"(0) at a point of a trajectory non-trivially
intersects D. The train of D, which we denote S(D) is the set of
2D subspaces in R* that non-trivially intersect D. Although it is an
awkward way to state it, a conjugate point occurs exactly when
the tangent space to W¥(0) intersects the train S(D) in A(2).

For our case, the Maslov Index, as a winding number, can be
realized as the intersection of the curve of tangent spaces along
the trajectory in W*(0) with S(D). But that is exactly the number
of conjugate points.

4.2. Pliicker coordinates

Coordinates on the space of planes can be given that allow us
to track the tangent space to W"(0) along a trajectory. The key
is to form the Pliicker coordinates [37,38] of an individual plane
(2D subspace) in R*.

Let IT be a plane spanned by v; and v, with:

V11 U21
v v
V1 = 12 and Uy = 2
U1 U23
V14 V24
We set:
Vi1i Vyj .. . .
pi=1{ " l=dgAdxvi,v), 1<ij<4, i#j
V2i  Uyj

For our particular problem, p1; = dx A dy, p13 = dx Adp, p14a =
dx A dq, pp3 = dy Adp, pag = dy A dq, p3g = dp A dq.
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Fig. 5. (a) Plot of W¥(0), and (b) Plot of W*(I") for n = 0.5. One remark is that the phase portrait of Eq. (7) when projected onto the (x,y) space is independent of
noise strength so that one can recover one orbit for different noise values with the appropriate scaling in (p, q) coordinates. In (c) we plot W¥(0) (blue) and W*(I")
)

(magenta) and note their transverse intersections in (x,y,p) space. The heteroclinic orbits are plotted in (d

How the Pliicker coordinates of a plane vary can then be
captured by an ODE governing the variation in time of the plane’s
Pliicker coordinates. This can be calculated using the properties of
differential forms from Eq. (13) with U = (dx, dy, dp, dq).
dU R
i COR(ON (OXONE (14)

where U = (P12, P13, P145 P23, P24, P34) and

B(x,y,p.q) =
fx+gy 0 1 -1 0 0
—Pfxy — q8xy 0 —8x fy 0 0
—Pfyy — q8yy —fy fx— 8y 0 fy 1
Pfax + q8xx 8x 0 —fx+ gy —8x -1
Pfyx + q8yx 0 8x —fy 0 0
0 pfxy + a8y —DPfix —A8x Pfyy + a8y —Dfy — a8y —fx— &

Note that this is evaluated along a trajectory (x(t), y(t), p(t), q(t))
which we are taking to lie in W"(0). To restrict to the coordinates
of Lagrangian planes, we note that a plane is Lagrangian if (and

only if)
P13+ p24 = 0.

A conjugate point can be conveniently described in Pliicker
coordinates.

Lemma 4.3. The time t = t is a conjugate point for a trajectory
z(t) = (x(t), y(t), p(t), q(¢)) in W¥(0) if p12(t) = O for the Pliicker
coordinates of T,)W*"(0).

The trajectories in W!(0) are parameterized by angles 6 that
determine a point on the simple closed curve X C WY(0). The
methodology for finding conjugate points along a trajectory that
passes through 1C(0) is as follows:

1. Compute the trajectory z(t) backwards from x(6) until
close to the fixed point at O.

2. Form Pliicker coordinates of the unstable subspace of Eq. (7)
at O and initialize Eq. (14) with these coordinates at the
time and point found in the first step.

3. Integrate Eq. (14) forward in time and find the values of ¢
where pp; = 0.

In Fig. 6 we illustrate this for two key trajectories of IVDP,
namely the heteroclinic orbits that we computed from Section 3.
The plots on the right indicate where we detect a conjugate point
(p12 = 0) for the time interval that we specified, which we
tracked from a small neighborhood of O to the periodic orbit I”
of Eq. (7) for each of the associated heteroclinic orbits.

These computations confirm that one has Maslov Index 0 (the
one shown in panel (c)) and the other has Maslov Index 1 (panel
(a)). The former is thus #; and the latter #;.
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Fig. 6. (a) Plot of a heteroclinic orbit of Eq. (7) for n = 0.5. (b) Plot where we detect a conjugate point (where p;; = 0) for the heteroclinic orbit on the top left. (c)
Plot of another heteroclinic orbit of Eq. (7) for the same parameters and (d) reveals that there are no conjugate points for the associated heteroclinic orbit on the

left for the time interval that we specified.
5. Trajectories exiting over the periodic orbit

Under assumption (A3), there are two heteroclinic connec-
tions, #1 and #,, between the fixed point and I". We set 6; and 6,
to be the angles for points on K at which #; and #, pass through
K respectively. These are depicted in Fig. 3.

According to Lemma 2.3, there are 6-values near 6, for which
the associated trajectories pass over I", or more precisely through
Tr, and so are exit trajectories. The angles 6; and 6, divide the
circle into two parts. Without loss of generality, we can assume
that these exit trajectories correspond to 6 values between 6; and
6,. We will make the further assumption that all trajectories with
angles between 6; and 6, exit I".

(A5) Every trajectory associated with angles 6 € (6, 6,) crosses
I' when projected on the (x, y) space.

While this seems like a strong assumption, it captures the
situation we are imagining. We expect that between two hetero-
clinics the unstable manifold will leak out, but the complexity of
the problem makes that hard to prove in general and so we make
it as an assumption that can be verified numerically in examples
as needed (see Fig. 7).

5.1. The river

The term River will be used to describe the set of trajectories
on WY(0) that cross I with 6 values between 6; and 6,. The
curves H; and #H, form the “banks” of the river. In the following
definition, Z is a trajectory z(t) for t € (—oo, 0] satisfying Eq. (7).

10 4

Fig. 7. Trajectories associated with R (in blue) reaching I" (in black) in (x, y, p)
space. The red curve represents the intersection of the torus 7 and trajectories
associated with the river R projected in (x, y, p) space.

Definition 5.1. The full River R is defined as
R = {Z|z(t) € K(0) for some 6; < 6 < 6, and for some
7 < 0 and further z(0) € 7r}.

The full river R corresponding to the IVDP is depicted in
Fig. 8(a). Note that, we are parameterizing the trajectories so that
each one crosses the exit torus 7 at t = 0.
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Fig. 8. (a) Plot of the conjugate points for 201 paths in the river along with every 10th path. (b) Zoomed in plot that shows the conjugate points occur after the

paths have crossed the 0.32 border.
5.2. River trajectories as minimizers

We also define a sub-river R C R that consists of trajectories
with zero Maslov Index.

R :={Z e R| m(Z) = 0}. (15)

In Fig. 8, both in (a) and (b), we plot the conjugate points (in red)
for several paths in the river.

The main theorem states that the trajectories in R are mini-
mizers of the Friedlin-Wentzell functional given their respective
boundary value.

Theorem 5.2. Every trajectory in R is a local minimizer of the
Friedlin-Wentzell action functional among the trajectories with the
same boundary value (x(0), y(0)) € I.

Proof. Letz = (x, y, p, q) be an element of R. Let the columns of
V form a basis for the solution space of V' = A*V that belongs to
the unstable manifold at the origin, where A* is the linearization
of Eq. (7) about z. We can write A* as

. (B W
A_(—A —B"

where
A= Pfi + 48 Pfxy + q8xy B— fx fy
pfyx+agy  phy +48y )’ & &)

The second variation of the Friedlin-Wentzell functional is given
by

0
82I[hT, h] :/

where ||h|| = 1 is the direction of perturbation and - := %. We
note that h(0) = 0 and that h and its first derivative decays to zero
at exponential rate as x — —o0, and that A and B are uniformly
bounded since they asymptotically decay to constants states.
Thus the integrals given in the definition of I[h] and 8%I[h”, h]
converge. Following a standard calculation (for example see [39]),
define V; and V, so that V = (V], V])". Then

h"(B"B — A)h — h"B"h — A" Bh + h" hdt,

Vi =BV, +V,, V,=—AV,—B"V,.

Since there are no conjugate points associated with z, the matrix
V is full rank throughout its domain, and thus V; is invertible.
Define W = —V,V; " Then

W = -V vV vy

10

=A—B"W — W(BV; + V,)V;!

=A—B'W - WB+ W2,

Note that if the initial data is symmetric, then W is symmetric.
To see this, if W is a solution that satisfies W(ty) = Wy where
W] = W,, then W'(t) is also a solution of the Riccati equation
that has the same initial conditions. By uniqueness of solutions,
W(t) = WT(t).

We will shortly use the following fact. Note that for any C!
matrix valued function W : (—oo, 0] — R™" that

0=hwh"°

0 d
= / — (hWhT)dx
oo OX

-

Now

WWhT + hW'h" + hw(r').

0
8% = f h'(B'B — A)h — h"B"h — h"Bh + A" h

o0
0
/.
+h"h
0
/.

+h" (W =B+ h"h

h'(W + B"B — A)h + k" (W — BT)h + h"(W — B)h

h"(B'B — B"W — WB + W?)h + h"(W — B")h

0
/ ([B— W1h — h)"([B— W1h — h).
—00

Thus, the second variation is non-negative if there are no conju-
gate points. We now use a perturbation argument to show that
the second variation is actually bounded from below. Suppose
that for some > 0 there are no conjugate points for the system
V' =D,V, where

B
D= (—A — puld

Then we have 62I[h", h] > y [ h"h+h"h > ¢||h||?. Thus, to show
that z is a local minimum of I, we only need show that there exists
p > 0 such that V' = D,V has no conjugate points.

Now as t — —o0:

. Beo

(1- u)1d>
—BT .

_Bgo

(1- M)Id)
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where A, and B, are A and B evaluated at (0, 0, 0, 0), respec-
tively. We rewrite V' = D,V as an autonomous system:
V' =D, (t)V

,—2ul®) (16)
T =1,

(V, 1) € R*x(—00, 0]. Eq. (16) induces a flow on A(2) x (—o0, 0],
where A(2) is the space of Lagrangian 2 planes in R*, with the
associated equation:

v =d,(v, 7)
17
o =1, (17)

for some function d,(v, t), where v € A(2). Note here that the
perturbed system is also a linear Hamiltonian system.

Both Eqgs. (16) and (17) can be compactified, see [40], by a map
o :(—00,0] — [—1,0]. Setting s = o(7), Eq. (16) becomes

V' =D, (h(s))V
s’ =g(s),

where h(s) := o ~1(s) and g(s) := o’(h(s)), and Eq. (17) becomes
v =d, (v, h(s))

(18)

19
s’ =g(s), (19)
with g(—1) = 0.
Note that s = —1 corresponds to T = —oo and so
D, (h(s = —1)) =D,

d, (v, h(s = —1)) =d(v).

When 1 = 0, we have DJ° has 2 complex conjugate eigenval-
ues with negative real part and 2 complex conjugate eigenvalues
with positive real part. Now, s = —1 is invariant and the 2D
unstable subspace Vj of V' = D3°V becomes a fixed point vy of

(20)

Moreover it perturbs to a fixed point v,'j, if u > 0 is sufficiently
small, of v’ = djPv, since it is attracting in Eq. (20).

Next, consider Eq. (19) on A(2) x [—1, 0] when pu = 0, then
vg is a fixed point with 3D stable manifold, which lies inside
{s = —1}, and a 1D unstable manifold. The same will hold for
sufficiently small u > 0. The 1D unstable manifold is the object
we want. Moreover, by construction, it varies smoothly in . Thus
if V.= DoV, t € (—o0, 0] produces no conjugate points, then
V' =D,V also does not, as long as x > 0 is small enough. O

/__ jgoo
v =dg’v.

It needs to be emphasized here that we only expect these
trajectories to be local minimizers. There will be infinitely many
trajectories in W¥(0) that cross I at a fixed (x,y) € I' and
an infinite sequence of them will consist of local minimizers.
Moreover, they will have decreasing action value and the limit
will be the action value of #;.

This is the cycling phenomenon known to occur when there
is a periodic boundary, see [2]. the MPEP is the heteroclinic and,
as it is then the mode of the escaping trajectories, it will enforce
cycling of trajectories that escape. Our point is that this will only
occur in the limit of vanishing noise. Moreover, our contention is
that the trajectories in R play a key guiding role for the (noisy)
trajectories that escape in small but not vanishing noise.

The trajectories in R can be viewed as most probable paths
of a constrained problem. If we consider the problem of finding
the most probable path between O and a particular point (x, y) on
I, then the trajectories on R will appear. In probabilistic terms,
such a trajectory is a candidate for the most probable path when
conditioned on exiting I” at exactly that point.

If we further restrict the amount of cycling in the condition,
then there will be a path in R that will be a global minimizer.
To give an exact accounting of such a cycling condition is not

11
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straightforward and will not be taken up here. Nevertheless, this
idea should give some credence to our view that these trajectories
play a key role in understanding escape through the periodic
orbit.

5.3. Pivot point

The river R and the 0-Maslov Index sub-river R can be char-
acterized in terms of the points in the interval of angles: [61, 6;].
We introduce a transition map

GZ/C(91,92)—>T1", (2])

which takes each point on that part of X C W¥(0) to the point
where the trajectory through that point first crosses the periodic
orbit, i.e., lies in the torus 7 (which recall is H 0 with
(x,y) € I'). Since 6; and 6, are not included, we know that every
trajectory does indeed cross I".

We will refer to the image of G as the mouth of the river, see
red curve in Fig. 7 for some trajectories in R in (x, y, p) space. We
would like to find a subset J of K (91, 6,) so that G(J) = R but also
have this be an interval (in the angle). In general, this cannot be
guaranteed and so we take a subset of K (61, 6;) by the following
procedure.

By Lemma 2.3, we know that if 6 is sufficiently close to 6; then
G(K(9)) € R. Let

6 = inf{0|G(K(0)) € R}.

Then the set K(Gl,é) is non-empty and G(IC(61,(§)) C R

The end-point G (;c(e))
following lemma.

will not lie in R. In fact, we have the

A

Lemma 5.3. The trajectory emanating from K(6) will have Maslov
Index equaling 1 and the conjugate point will occur as the trajectory
crosses the periodic orbit, i.e.,, when it is in Tr.

ThesetQ =G (IC(91, 9)) plays a key role. It has the following
properties:

1. Q is an infinite spiral in 7,
2. Its projection onto the (x, y)-space is all of I".
3. It is pinned at one end by the pivot point.

The other end of this curve is the heteroclinic, but that is not seen
in 71 as it never reaches it. By Theorem 5.2, every point in Q is a
(local) minimizer of the Freidlin-Wentzell action functional with
fixed boundary condition, except the pivot point.

In the following sections, we shall see that the set Q plays a
key role in determining the escape hatch. But it is still too large,
because of Property 2 above.

From the Monte-Carlo simulations, we see that the escape
hatch is near the pivot point, and definitely does not extend
around all of I".

6. A perturbed action

In order to understand why the noisy escape trajectories do
not veer too far from the pivot point when crossing I", we need
to calculate the energy required by a path to escape to higher
order. This involves the Onsager-Machlup (OM) functional [41-
43], which becomes relevant when the noise is not necessarily
small.

Our viewpoint is to use the OM action as a selection mecha-
nism among the trajectories that we find as (local) minimizers of
the FW functional, in particular, the trajectories in R.

For IVDP, the set Q is exactly the part of the mouth of the
river corresponding to R. In the following, we will therefore not
distinguish between these two objects and take Q = RN I
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6.1. The Onsager-Machlup functional

The OM functional for a path z = z(t) on an interval [a, b], it
is given by

bz -F@))
[

where ¢ is the noise coefficient as usual. Applying this to IVDP,
we calculate

v-F(z)=v-F(x,y)=2n(x* —1).

For IVDP, it holds that [,.v - F(z)dt > 0. Hence the OM
functional I, with ¢ > 0, penalizes trajectories that cycle around
the periodic orbit. Since the heteroclinic orbits wind around a
neighborhood of I' infinitely many times, I, evaluated near a
heteroclinic orbit will tend to infinity. Thus, when the OM per-
turbation is added to the Friedlin-Wentzell (FW) functional, the
heteroclinic connections cease to be global minimizers.

I.(2) + e (v - F(z)) dt, (22)

6.2. A selection mechanism

Suppose we have a family of (local) minimizers of the FW
functional on an interval [0, T]

F ={z(t)|z(0) € A, z(T) € B},

where A and B are sets in RZ. We can attempt to find the global
minimizer of the FW functional Sr(z) over the trajectories in F.
But it may be that there is no global minimizer in F.

Exactly this situation occurs if A = C, a small circle around the
fixed point O and B = I. In this case, if we look for minimizers
of Sr(z) over F with fixed z(T) € 7, we will obtain exactly the
set R, which has found these minimizers as trajectories of Eq. (7)
and weeded out those with non-zero Maslov Index. The (global)
minimizer over F can now be found by sorting through the action
values and finding the member of F with least action. But such
a trajectory will not exist since the action decreases as the paths
tend to the heteroclinic, which is not in F. This is back to the
same issue that lies behind the cycling phenomenon, namely that
there is no global minimizer of the FW functional which crosses
I'. Note that, in this example, the circle C is used as a proxy for
z(t) - O ast — —oo, and that if C is small enough, i.e., close
enough to O, then the difference in action value of a member of
F from taking one circle C over another is negligible.

The idea then is to use the OM functional as a perturbation
of the FW functional to select which of these paths is the Most
Probable Escape Path for small but non-vanishing noise.

6.3. Evaluating OM along FW minimizers

Since the path z = z(t) is independent of ¢, the OM functional
I.(z) is linear in &, and

T
% :/ v - F(z)dt.
de 0

The right hand side of Eq. (23) can be evaluated on a trajectory
in R. Since R C R, the trajectories of interest are included. The
result for IVDP is shown in Fig. 9.

One caveat is that the integral in the OM functional would not
converge if computed along FW trajectories lying in W*(0) con-
sidered on the half-line (—oo, 0]. This is because v - F(z)|,—o # 0.
Integrating from t = 0 and initiating on a small circle is designed
to circumvent this challenge. In other words, we are computing
the action between the boundary of a small neighborhood of
the origin and the periodic orbit. The extra action one obtains
by shrinking the neighborhood around the origin varies less and
less among the orbits as the neighborhood gets small since v -

(23)
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F(z) converges to —2n at a uniform exponential rate. Hence, in
practice we obtain the most probable escape path predicted by
the OM functional to within numerical precision by truncating
orbits onto a finite domain.

6.4. A most probable escape path according to OM

The action plot for IVDP is shown in Fig. 9. The minimum
action occurs at O, ~ 4.44. This is the object that we claim
can be taken as an MPEP for this level of noise. It will be noise
dependent and, were the noise to be decreased toward 0, it would
move toward 64, i.e., the 6 value at the (stable) heteroclinic.

In Fig. 12, we compare the projection onto the (x,y)-plane
of the OM orbit corresponding to 6 4.44 with the most
probable exit locations as given by our Monte Carlo simulations.
The correspondence of the OM-selected path and the peak of
the exit distribution is striking. Details about the Monte Carlo
simulations and these comparisons are given in the next section
(Section 7).

7. Monte-Carlo simulations

The analysis we have carried out is aimed at finding a most
probable path of escape for noisy trajectories through a periodic
orbit that forms the boundary of the basin of attraction of the
attracting fixed point. The work has been predicated on the
notion that for small, but non-vanishing, noisy trajectories that
escape will not exhibit cycling but rather find an “escape hatch”
at a specific part of the periodic orbit. Moreover, they will choose
to leave the basin of attraction without overly cycling, at least not
near the boundary (periodic orbit).

In this section, we show this by carrying out Monte-Carlo
simulations on IVDP with added noise. In the computations, we
have set the noise level at /€ = .32, which corresponds to noise
strength & of approximately 0.1. It may be argued that this is
not all that small, it was derived by pushing the noise to the
smallest level for which we could obtain convergence on the exit
distributions within reasonable computing time. We note that we
find qualitatively the same results using /e = .3 or /e = .35.

7.1. IVDP with noise

The stochastic version of the first order IVDP system is given
by

dx =y dt 4+ /edWy,
dy = (—=x + 2ny(x*> — 1))dt + /edW,.

We numerically approximate the solutions of Eq. (24) using
the Euler-Maruyama method to create a discretized Markov
process [44] over the time interval [0, 200]. To apply the Euler-
Maruyama method, we partition the time interval into sub-
intervals of width At .005, and initialize the solution at
x = 0 and y = 0. To create the discretized Markov process, we
recursively define the system as

X1 = Xpn + YnAt + \/EAWU%
Ynt1 =Yn + (X0 + ZUJ/n(Xﬁ — 1)At + \/EAWZH'

A standard Wiener process, W, satisfies the property that Brow-
nian increments are independent and normally distributed with
mean zero and variance At. Therefore it follows that AW, =
Win — Win—1) can be numerically simulated using /At - N(0, 1).
This can be shown by manipulating the probability density func-
tion of N(0, At).

(24)

(25)
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2.5 3

Fig. 9. Plot of the Onsager-Machlup functional along trajectories in the full river R. The left and right dotted lines mark the value of 6 corresponding to the unstable

(6,) and stable (0;) heteroclinic connections respectively.

Fig. 10. Two sample paths of Eq. (24) (blue) on the interval [0, 200] with dt = .005, n = .5, 0y = 03, = .32, overlaid with I" (black). (a) The sample path does not
escape. (b) The sample path escapes and the red point denotes its exit location, (i, y;).

7.2. The algorithm

We want to find the realizations that have transitioned from
the origin to somewhere outside the unstable periodic orbit, and
capture where on I" they have exited. Let 7; denote the first time
a path, X;, crosses I". We define escape events to be the paths X;
that have t; < 200. Let the point of X; at t; be given by (x;, y;).
Refer to Fig. 10 for an example of realizations that have and have
not escaped on the finite time interval. Assume for N realizations
there are K escape events. We construct the distribution for the
x and y locations for the K escape events. To verify we have a
converged result for the distribution of the location of escape
events, we use the following process:

1. Bin the x (respectively y) locations of the K escape events
by the Freedman Diaconis rule [45]. This separates the K
escape events into B bins of equal length.

2. Run another N realizations of Eq. (24) on the same time
interval and with the same step size. Assume there are J

13

escape events. We bin the | escape events by the same
number of bins B found in Step 1.

3. There are now two vectors of the same length, D; and
D,, where each component of the vector represents the
amount of paths that tipped in that interval for the x
(respectively y) location. Calculate Err = W, which
is the relative error between the two data sets.

4, If Err < 0.1, we say we have found the converged distri-
bution. However, if Err > 0.1, we double the number of

samples and repeat this process.
In addition, we use the Kolmogorov-Smirnov Two Sample Test
[46] as a final verification that we have a converged distribution.

7.3. The escaping paths

We study Eq. (24) with n = .5 As mentioned above, we find
the same results if we use \/e = .3 or /e = .35 and /e = .32.
In these noise regimes, on the interval [0, 200], initialized at the
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(b)

Fig. 11. Parameters are set at n = .5, /€ = 0.32: (a) Heatmap of points (x;, y;) from 21801 realizations, (b) Jointplot of points (x;, y;) from 21801 realizations. In

both figures (a) and (b), we can clearly see two clear regions of exit points.

origin with a step size of dt = .005, we find the percentage
of samples that escape to be approximately [2%, 5.5%, 17.5%] for
J€ = [.3,.32,.35]. We focus on /e = .32 as it is the smallest
noise we can study without too much computational stress.

Using the process outlined above, we find converged distri-
butions for exit location in both x and y along I" for this noise
regime. We started with two sets of N = 50000 realizations,
doubled it to two sets of N = 100000, and then doubled again
to two sets of N = 200000. In this case, Erry = 0.055 < 0.1 and
Err, = 0.069 < 0.1. In total, there are 400000 simulations in
which 21801 realizations escape.

Collecting the points (x;, y;) from the paths that escaped, we
see that they fall on specific parts of I". In Fig. 11(b) and (c), we
plot both a heatmap and jointplot of the exit locations respec-
tively and see that there are two distinct spots on the I" where
trajectories mostly exit. Additionally, we see the symmetry of exit
locations along I".

8. Matching simulations and theory

The point here is to compare our theoretical prediction with
the Monte Carlo simulations and thus confirm our mathematical
derivation of the MPEP. The main takeaway is the connection
between the pivot point, the OM-selected point and the exit
distribution.

8.1. The escape hatch and the pivot point

In Section 5.3, we define a subset of the mouth of the River,
resulting from trajectories with Maslov Index 0, as a set Q. We
further define the pivot point from the mouth of the river where
the associated trajectory will pick up a conjugate point exactly on
Tr and delineates Q on one end. However, the set Q does not pick
out any particular part of the periodic orbit since its projection
onto the (x, y)-space is all of I". Nevertheless, the exit distribution
from Section 7 does pick out particular parts of I".

Surprisingly, the trajectories choose the initial part of Q for
their escape. Fig. 11 shows the dominating part of the escape
hatch through two different kinds of heatmap. They are clearly
in the southwest and northeast corners of the periodic orbit.
Recalling the symmetry, we can focus on one part, and we choose
the southwest corner.

In panel (a) of Fig. 12, the dashed blue curve represents the
trajectory of Eq. (7) that exits at the pivot point. This is seen to
be at the right hand end of the escape hatch as determined by
the Monte-Carlo simulations. Most of the trajectories clearly exit
beyond the pivot point in terms of the natural ordering on Q. But
they exit relatively close to it rather than continuing to follow the
unstable manifold along I' and exiting further later, after which
the action would have actually decreased.

8.2. The escape hatch and the OM point

The Onsager-Machlup functional shows why the noisy trajec-
tories choose to exit in a region only just beyond the pivot point.
In Fig. 12, the solid blue curve was computed from the minimum
of the OM functional along FW orbits. This is the selection mech-
anism we have discussed and we claim justifies the designation
of the OM-trajectory as the MPEP for the associated level of noise.
The angle is found from the graph in Fig. 9. The minimum occurs
around 6 = 0.44, which value is used to initiate the trajectory on
K, and we call this the OM-trajectory. The OM-selected point is
the point where this trajectory crosses the periodic orbit I".

The OM selected trajectory is shown as a solid blue curve in
Panel (a) of Fig. 12. The OM-point is represented by the solid,
vertical blue line in Panel (b). Fom Panel (b) the OM-point can
be seen to coincide with the peak of the exit distribution.

Panel (a) of Fig. 12 renders the entire trajectory, whereas
Panel (b) focuses on the exit set on I'. The vertical dashed and
solid lines give the location of the pivot point and OM-selected
point respectively. Their relationship with the exit distribution
is self-evident. The pivot point pins one end of the distribution,
while the OM selected point lies at the peak of the distribution.
We have not found a specific characterization of the left end of
the distribution, but it does appear to drop off rapidly after the
OM point. The distribution on the pivot point side has a much
gentler drop-off. Note that this is reminiscent of the Gumbel-type
distributions often seen in these situations.

The significance of the OM point as being at the peak of the
exit distribution is depicted further in Fig. 13. This figure shows
the striking coincidence of the center of the heatmap with the OM
point. Note that the pivot point is independent of the noise as it
only depends on the FW functional. On the other hand, the OM
point depends on the noise as it is based on the OM functional.
In this case, it is evaluated with the same level of noise as we use
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Bin Density

Fig. 12. In (a) the solid blue curve marks the predicted most probable escape path as determined by minimizing the action of the OM functional, computed as
a perturbation of the FW functional. The dashed blue curve depicts the trajectory that corresponds to the pivot point as describe in Section 5.3. The heat map
displayed on the periodic orbit depicts the probability of an escape event occurring at that location, as described in Section 7. The red curve in Figure (b) provides a
3D representation of the heat map displayed in Figure (a), and the vertical blue lines indicate the intersection of the orbits displayed in Figure (a) with the periodic

orbit.

Fig. 13. The solid red curve marks the predicted most probable escape path
as determined by minimizing the action of the OM functional, computed as a
perturbation of the FW functional. The blue heat map depicts the joint plot of
the exit locations of noisy paths on the periodic orbit.

for the Monte-Carlo simulations. We anticipate that, as noise is
reduced, it would move around the periodic orbit.

The exit points themselves on the periodic orbit I" have been
emphasized so far. We can compare the full trajectories with
the Monte-Carlo simulations to see that the noisy trajectories do
indeed closely follow the OM selected trajectory. In Fig. 14, an
estimate of the time slices of the noisy trajectories that exit is
shown as a series of dots. A kernel density estimate is used to
estimate the time slice distributions. The trajectories are repa-
rameterized to begin on a given circle around the origin. This
circle is chosen large enough so as to make the different future
time slices of the family of noisy trajectories comparable. While
there is some arbitrariness in this choice of time parameteriza-
tion, it gives an appropriate picture of the time evolution of the
distribution of noisy trajectories. The OM-trajectory is depicted
again as the solid blue curve and it is seen to give a fairly good
approximation of the time slices.
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The most important point to take away from Fig. 14 is not just
that the OM-point and the peak of the exit distribution match
on I', but that the OM-trajectory is matching the distribution of
noisy trajectories all along the path. Our interpretation is that the
OM-trajectory is acting as a guide for the exiting trajectories of
the stochastic system.

Furthermore, as the noise strength & becomes smaller, the
theory of Day [2] suggests that the escape hatch would smoothly
rotate around the periodic orbit. We believe that it in fact jumps
to another weak part of the periodic orbit. Due to the symmetry
in the IVDP problem, this will be approximately one-half period
around the orbit. This jumping behavior will be repeated when ¢
is reduced further.

This effect can be seen from the use of the OM functional.
Indeed, the OM point does jump, in a discontinuous fashion, to
the other side of the periodic orbit. This can be seen in panels (a)-
(c) of Fig. 15. Panel (a) gives the 6 value on the initiating circle for
the OM point (note that Border distance is from the periodic orbit
so that it being 0 means that we are minimizing the functional up
to where they cross I'). At a certain value of ¢ there is a jump in
the 6-value of the OM point and the corresponding trajectories
are seen to change from that shown to panel (b) - to the right
of the jump - to that shown in panel (c) to the left, i.e.,, when
¢ is smaller. Panels (d)-(e) show why this occurs by looking at
the value of the OM functional along the relevant FW orbits.
There is a local minimum to the right of the absolute minimum,
which corresponds to the OM point discussed in this paper. As
¢ is decreased, the value at this local minimum decreases and
takes over as the absolute minimum at a certain value of ¢. we
anticipate that there would be further minima to the right and
that these would correspond to further cycling.

9. Conclusion and discussion

We have developed a dynamical systems approach for com-
puting most probable escape paths where the boundary of the
basin of attraction is a periodic orbit, and the noise strength is
small but not vanishingly so. The key is the isolation of a subset
of the unstable manifold of the equilibrium solution surrounded
by the periodic orbit, which we call the River. This subset of
the unstable manifold is delineated by heteroclinic orbits which
connect the equilibrium solution to the periodic orbit. We use the
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Fig. 14. The OM-trajectory is depicted as a blue curve and the red dots represent the values of the kernel density estimates of the time slice distributions of exiting,

noisy trajectories.
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Fig. 15. (a) Plot of the value of 6 that corresponds to a global minimum of the Onsager-Machlup functional as determined as a perturbation of the Friedlin-Wentzell
functional, against the noise strength e. (b) Plot of the global minimizer corresponding to ¢ = 4.7595e—2, which corresponds to 6 = 4.616014. (c) Plot of the
global minimizer corresponding to ¢ = 2.2753e—3, which corresponds to 6 = 4.670036. (d)-(f) Plot of the action of the Onsager-Machlup functional against 6 for

& = 4.7595e—2, ¢ = 3.000e—3, and ¢ = 2.2753e—3, respectively.

Maslov index to distinguish local minimizers (subject to a fixed
boundary condition) from other extremizing orbits. In addition,
we establish a connection between the folding of W*(0) and the
appearance of conjugate points along its trajectories.

Much previous work has been done in studying MPEPs over
periodic boundaries. In [13], the authors studied the structure of
the escape trajectories and showed that the Most Probable Es-
cape Path (MPEP) reaches the limit cycle asymptotically with no
momentum. In [47], the authors also noted that in the case of an
unstable limit cycle coexisting with a stable fixed point, the MPEP
spirals toward the limit cycle asymptotically and its w-limit set is
the complete limit cycle; [3] showed that the MPEP does indeed
reach the limit cycle asymptotically and trajectories exiting are
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necessarily, optimal trajectories that are small perturbations of
the MPEP.

For intermediate noise regimes, the cycling is hardly evident
and a specific subset of the boundary appears to be chosen
through which the primary leakage of the escaping paths occurs.
Our work is aimed at providing a theoretical underpinning for this
phenomenon.

The core elements of the methodology can be summarized as
follows:

1. Use the 4D Hamiltonian system derived from the Euler-
Lagrange equations from the Friedlin-Wentzell functional
to compute stable and unstable manifolds for the periodic
orbit in H = 0 and the equilibrium solution respectively.
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2. Compute the heteroclinic orbits that arise from the trans-
verse intersections of those invariant sets.

3. Identify a set of trajectories delineated by the heteroclinic
orbits where the unstable manifold of the equilibrium so-
lutions leaks out of the periodic orbit (when projected on
the (x, y)-space). We call this the River.

4, Use the Maslov index to weed out the trajectories that do
not correspond to local minimizers.

5. Find the end-point of the set of trajectories with Maslov In-
dex 0. This is the pivot point and is characterized by having
a conjugate point exactly when crossing the periodic orbit.

6. Compute the action using the Onsager-Machlup functional
as a perturbation to the Friedlin-Wentzell functional for
trajectories in the part of the river found in the previous
step.

7. Use the OM trough (global minimum) to compute the as-
sociated trajectory in the 4D Hamiltonian system originally
derived from the Friedlin-Wentzell functional. This we call
the OM-trajectory and is the MPEP for the given level of
noise.

8. Verify that this trajectory has no conjugate point before
hitting the boundary.

9. Finally, superimpose these trajectories on the converged
result for the distribution of the location of escape events
on the periodic orbit in order to validate our computations.

For the IVDP, we carried out this program and showed a
striking correspondence between the exit distribution and the
OM-trajectory. Moreover, the pivot point acts as an anchor for
the exit distribution with the exit set of the noisy trajectories
choosing a region not much beyond it.

Considerable insight can be gained from taking this dynamical
systems perspective. The phenomenon in which parts of the
unstable manifold of the fixed point cross the periodic does not
occur in gradient systems and is a consequence of the transverse
intersection of a stable (for the periodic orbit) and an unstable
(for the fixed point) invariant manifold.

Since the Freidlin-Wentzell functional is independent of noise,
these dynamical constructions do not depend on the noise
strength. Nevertheless, Large Deviation Theory can only be in-
voked to see how the Euler-Lagrange equations guide the noisy
trajectories in the limit of vanishing noise. In our case, that
theory predicts cycling. Our objective was to use the theoretical
constructs of Freidlin-Wentzell theory to show how cycling is
actually resisted when noise is made slightly larger.
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