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a b s t r a c t

Analyzing when noisy trajectories, in the two dimensional plane, of a stochastic dynamical system
exit the basin of attraction of a fixed point is specifically challenging when a periodic orbit forms
the boundary of the basin of attraction. Our contention is that there is a distinguished Most Probable
Escape Path (MPEP) crossing the periodic orbit which acts as a guide for noisy escaping paths in the
case of small noise slightly away from the limit of vanishing noise. It is well known that, before
exiting, noisy trajectories will tend to cycle around the periodic orbit as the noise vanishes, but we
observe that the escaping paths are stubbornly resistant to cycling as soon as the noise becomes at
all significant. Using a geometric dynamical systems approach, we isolate a subset of the unstable
manifold of the fixed point in the Euler–Lagrange system, which we call the River. Using the Maslov
index we identify a subset of the River which is comprised of local minimizers. The Onsager–Machlup
(OM) functional, which is treated as a perturbation of the Friedlin–Wentzell functional, provides a
selection mechanism to pick out a specific MPEP. Much of the paper is focused on the system obtained
by reversing the van der Pol Equations in time (so-called IVDP). Through Monte-Carlo simulations, we
show that the prediction provided by OM-selected MPEP matches closely the escape hatch chosen by
noisy trajectories at a certain level of small noise.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that noise can work against the deterministic
otion of a dynamical system with an attracting fixed point. With
robability one, a noisy trajectory of a system with additive noise
ill, under natural conditions, leave the basin of attraction of the

ixed point, assuming it is bounded, at some point in time. Large
eviation theory is devoted to finding the most probable escape
ath (MPEP) and the expected time of escape. The MPEP can be
hought of as the mode of the probability distribution function of
aths that escape from the basin of attraction. The central results,
hich were largely formalized by Friedlin and Wentzell [1], are
symptotic in the level of noise.

.1. Stochastic differential equation

Mathematically, the framework is an SDE of the form (z ∈ Rn),
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dz = F (z)dt +
√
εσdW (1)

This is a stochastic perturbation of the deterministic system given
by the drift term: ż = F (z) where the noise strength is ε,
he structure of the noise is given by the n × n matrix σ , and

represents the standard Wiener process (here as a vector of
eparate processes). We will assume that the drift vector field
(z) is as smooth as needed, and generally that σ is the identity

matrix. Freidlin–Wentzell theory has its origins in the case of F (z)
being gradient: F (z) = −∇V (z) for some potential V . Friedlin
and Wentzell introduced the notion of a quasipotential in order
to generalize the theory and this provides a framework for an-
swering many questions. A particular challenge arises, however,
when the basin boundary is a periodic orbit. The work of Day [2]
gives a clear and comprehensive picture of what happens in this
case as the noise vanishes. Day showed that there is no preferred
exit point or region along the periodic orbit and that the periodic
motion causes the most probable exit point to cycle around as the
noise decreases. The work of Maier and Stein [3] also added to
this picture and a very detailed analysis was more recently given
by Berglund and Gentz [4,5]
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Fig. 1. Monte-Carlo simulations of noisy trajectories that escape the periodic
orbit of the IVDP with noise strength

√
ε = 0.32.

.2. Main example

Monte-Carlo simulations of standard examples of Eq. (1)
here z ∈ R2 and an attracting fixed point is surrounded by
n unstable periodic orbit, which is its basin boundary, show a
ifferent picture in practice. The example that is invoked more
han any other of this scenario is the Inverted van der Pol
quation (IVDP),

ẋ = y,
˙ = −x+ 2ηy(x2 − 1).

(2)

which, when noise is added and put in the form of Eq. (1) in R2,
exhibits a striking escape pattern that is at a rather definite part
of the periodic orbit. In Fig. 1, we take η = 0.5 and

√
ε = 0.32.

While this level of noise is decidedly not vanishingly small, it is
small and close to the limit of feasible Monte-Carlo simulations
that capture the MPEP without resorting to a strategy such as
importance sampling. The theory tells us that the escape will
indeed be carried around periodically. But it is also striking how
stubbornly the escape region shown in Fig. 1 persists when the
oise is small but not vanishingly so. It can be seen in [6] how
ard it is actually to see the cycling, even to get one iteration of
he escape region half way around the periodic.

.3. Dynamical systems approach

We take the opposite viewpoint from the more theoretical
iterature in this paper. Instead of trying to show that the the-
retically predicted cycling actually happens, we aim to show
hy non-cycling occurs at small noise, but slightly away from the

imit. The question we pose is whether the evident escape region
an be identified and understood using the tools of the asymptotic
heory.

There are a number of different approaches taken in analyz-
ng the escape phenomenon, for instance: matched asymptotics
WKB) [7,8], quasipotential theory (HJE) [2], and a dynamical sys-
ems approach using random Poincaré maps [9]. Various mixtures
f these approaches have been used, particularly in the physics
iterature [6,10–12].

In this work, a dynamical systems viewpoint is applied to the
uler–Lagrange system derived for the Freidlin–Wentzell (FW)
2

action functional of the SDE with IVDP dynamics. We identify a
specific part of the boundary from a careful study of the geomet-
ric structure of the unstable manifold of the fixed point in the
Euler–Lagrange system. We call this set of trajectories the River.
It is bordered by two specific trajectories that are heteroclinic
from the fixed point at the origin to the periodic. It is shown by
a number of authors [6,13] that the global minimizer of the FW
functional is a heteroclinic and it acts as a MPEP.

Of particular interest are the points on the periodic orbit
where the river trajectories cross as they escape. We further find
a subset of the river trajectories that has a close correspondence
with the escape hatch seen in the Monte-Carlo simulations. To
identify this set, we invoke the Onsager–Machlup functional to
account for the level of noise being small but away from the
asymptotic limit.

There is some irony in our approach in that we are using the
asymptotic theory (FW) to capture a phenomenon that we claim
lies outside the validity of that approach. One way to look at
this is that we are seeing which parts of the asymptotic theory
extrapolate to this level of noise and how it needs to be modified
to capture the effects in this parameter range.

1.4. Motivation

Our motivation comes from thinking about physical systems
relevant to the climate. Tipping from an apparently stable state
is particularly relevant in assessing climate change as abrupt
changes are known to take place in critical climate subsystems.
Moreover, the specter of their occurring in systems with large
impact on climate functioning has made their study pressing,
see [14–17]. Three distinct types of tipping have been identified
and distinguished from each other in the literature, see [18,19].
One of these is through the response of a system to external noise.
This noise may be identifiable as a known forcing of unknown
magnitude, or an accounting of missing physics. Mathematically,
noise is usually included through an additive stochastic perturba-
tion of the underlying differential equations (DE). The complexity
of the overall climate system makes this framework of stochasti-
cally perturbed DEs highly appropriate. Two questions then arise
naturally:

1. Within a certain time horizon, what is the probability of
tipping away from a given attracting state?

2. What is the most likely trajectory that the system will take
to tip?

From the climate viewpoint, the first question addresses how
dangerous the prospect of tipping might be, while the second will
point to the way it will most likely happen.

Tipping due to noise, so-called noise-induced or N-tipping,
has largely been studied as a problem in Large Deviation Theory,
see [20–25]. As mentioned in Section 1.1, large deviation theory
comprises a body of results that are valid in the limit of vanishing
noise. This is partly due to the connection of its development
with molecular chemistry, but also that, from the mathematical
viewpoint, it is a context in which rigorous analytical results
can be obtained. As a consequence, the results obtained may
only be valid for extremely long time scales, and these may be
beyond what is relevant for the climate. In the climate context,
we suggest that noise should be set to be small (otherwise the
noise is trying to capture mechanisms that should be included in
the model), but not vanishingly so. We shall refer to this as the
intermediate noise case, although it is known as ‘‘finite noise’’ in

the physics literature, see [26].
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.5. Plan of paper

The paper is organized as follows. In Section 2 we review
ome preliminary notions from Friedlin–Wentzell theory, discuss
he key ideas and give a roadmap for the work. In Section 3 we
iscuss our methodology for computing unstable manifolds of
ixed points and stable manifolds of periodic orbits, along with
ow we compute the heteroclinic orbits. Section 4 treats methods
or computing conjugate points and how we relate our approach
ith the Maslov index. In Section 5 we discuss trajectories that
xit the periodic orbit and relate them to (local) minimizers of
constrained variational problem. This is where we introduce

he notion of the River and of a pivot point. In Section 6 we
escribe our use of the Onsager–Machlup functional as a selection
echanism to pick out an MPEP for intermediate noise strength.

n Section 7, we derive a converged distribution for the location
f escape events. In Section 8 we discuss how we match our
imulations with the theory that we developed using the escape
atch, the pivot point, the OM point and the Monte Carlo simu-
ations. Finally, Section 9 is devoted to discussing our approach
nd concluding remarks.

. Background and key ideas

We will work with a general set-up as given by Eq. (1) with
∈ R2 and make assumptions that reflect the particular structure
f interest. Some of these are very general, while some require
xplanation and verification in specific cases. Our viewpoint is
hat this latter type of assumptions would be verified numerically
nd we illustrate this for the case of IVDP, see Eq. (2).

.1. Goal

In the case of small but not vanishing noise, it is commented
n Section 1.2 that the ‘‘escape hatch’’ through which noisy tra-
ectories will favor exiting is fairly distinctive. Our goal is to show
hat this subset of the periodic can be clearly identified through
construction rooted in theory.
The construction will be based on finding structures in the dy-

amical Euler–Lagrange equations generated by finding extrema
f the Freidlin–Wentzell action functional.

.2. Set-up

Start with Eq. (1), with σ = I , where I is the 2 × 2 identity

z = F (z)dt +
√
εIdW , (3)

The first assumptions are on the underlying deterministic
system

dz
dt

= F (z), (4)

defined on z = (x, y) ∈ R2, F = (f , g), to capture the dynamics in
which the escape of noisy paths, i.e. solutions of Eq. (3), is through
an unstable periodic orbit.

(A1) There is an (exponentially) attracting fixed point of Eq. (4),
which we will assume is at z = (0, 0), and it is the only
fixed point,

(A2) Eq. (4) has an (exponentially) repelling periodic orbit, which
we denote by Γ , surrounding the attracting fixed point at
the origin. Moreover there are no periodic orbits inside Γ .
 s

3

The theory of large deviations tells us that the most proba-
ble paths of escape from the attracting fixed point through the
unstable periodic orbit should minimize the Freidlin–Wentzell
functional [1]. In its most basic form, the functional is for paths
z = ϕ(t) on [0, T ]

ST (ϕ) =
1
2

∫ T

0
|ϕ̇ − F (ϕ)|2 dt, (5)

where ˙= d
dt .

The most likely path from z0 ∈ R2 to z1 ∈ R2 is given
by the path that minimizes Eq. (5) over absolutely continuous
functions from [0, T ] to R2 with z(0) = z0 and z1 = z(T ). The
minimization procedure works well if, in reference to a system
satisfying (A1) and (A2), the points z0 and z1 are inside Γ and
neither is the fixed point at the origin. If the paths involve (0, 0),
or cross Γ , then the situation is more complicated and this will
be our focus. Nevertheless, the basic theory associated with the
so-called action functional of Eq. (5) underpins everything we will
do.

2.3. Euler–Lagrange equations

The action functional of Eq. (5) can be written in terms of a
Lagrangian

ST (ϕ) =
1
2

∫ T

0
L(z, ż)dt, (6)

where, obviously L(z, ż) = |ϕ̇ − F (ϕ)|2. As in classical mechan-
ics, the Euler–Lagrange equations for extrema of Eq. (6) can be
written as a Hamiltonian system. We set

p = ẋ− f , q = ẏ− g.

The Euler–Lagrange equations as a Hamiltonian system then
reads,

ẋ = f + p
ẏ = g + q
ṗ = −fxp− gxq
q̇ = −fyp− gyq.

(7)

The Hamiltonian is given by

H(x, y, p, q) = f (x, y)p+ g(x, y)q+
p2 + q2

2
(8)

A key point to note is that p = q = 0 is invariant and that
invariant plane carries the deterministic flow given by Eq. (4),
recalling that z = (x, y). As a consequence, the fixed point at
the origin and periodic orbit Γ reappear with their attraction and
repulsion reproduced within the plane. Note that, with a slight
abuse of notation we shall use the same notation of O and Γ for
the fixed point and periodic orbit, respectively, in reference to
both Eqs. (4) and (7). Their stability properties change, however,
n the full 4-dimensional system of Eq. (7). This is the key to using
q. (7) for determining the most probable paths of escape from
he attracting fixed point out of its domain of attraction.

By assumption (A1), two of the eigenvalues of Eq. (7) lin-
arized at O have positive real part, which are the negative of the
deterministic) eigenvalues of Eq. (4). Thus the unstable manifold
f O, which we denote W u(O) is 2-dimensional. The periodic orbit
has one stable, two neutral, and one unstable Floquet mul-

ipliers. It may seem as though Γ should have a 1-dimensional
table manifold, but integrating this 1-dimensional stable direc-
ion results in a tangent bundle, which will be a 2-dimensional
anifold. It follows from Eq. (7) that Γ has a 2-dimensional un-

table manifold (in the deterministic plane) and a 2-dimensional
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table manifold W s(Γ ) which lies in the complement of the
eterministic plane in R4.
Both of these 2-dimensional objects will play central roles in

his work, and the unstable manifold W u(O) will be the main fo-
us. In the next section we relate it to the minimization procedure
hat renders the most probable paths.

.4. The quasipotential and W u(O)

Of particular interest are paths starting at the fixed point
nd escaping its basin of attraction, i.e., getting outside Γ . First,
onsider paths that reach some point z∗ possibly inside Γ from a
tart at the fixed point. The formulation of the action functional
uggests that we seek paths going from the fixed point to z∗
n time T . The time it takes to reach z∗ is something we want
o keep free, however, and so the following quantity, called the
uasipotential, see [1], is defined as

(z∗) = inf
T>0,ϕ∈XT

ST (ϕ), (9)

where XT is the set of absolutely continuous functions satisfying
the boundary conditions: ϕ(0) = 0, i.e., the fixed point, and
(T ) = z∗. It follows from Lemma 3.1 in [1] that any minimizer
ealizing the infimum in Eq. (9) must lie in the set H = 0. The
only point in H = 0 with z = (0, 0) is the fixed point of Eq. (7),
i.e., with p and q also equal to 0.

Since the only access to the fixed point at O in the zero-set
of the Hamiltonian of the 4D system of Eq. (7) is on the unstable
anifold W u(O), it follows that any minimizer must lie in W u(O)
nd the domain on which any minimizer is defined must be semi-
nfinite. By a reparameterization, if necessary, it can be taken to
e (−∞, 0].
For z∗ inside Γ , the infimum in Eq. (9) is realized by a tra-

ectory on W u(O). An important point is that for z∗ ∈ Γ , this is
ot the case even though there may be trajectories on W u(O) that
ross Γ .

emark 1.
By a quirk of the way the quasipotential is defined, the min-

mizer is not actually in the space on which the functional is
efined, namely XT , since a minimizing path cannot reach O in
inite (backward) time. This is rectified by considering what is
alled the Geometric Minimum Action, see [27]. The geometric
ction has the effect of reparameterizing the paths so that they
ll lie on a fixed bounded domain. One way this is achieved is
o use arc length to parameterize the paths. Since the paths on

u(O) with fixed end point z inside Γ have finite arc length,
he minimizing path does lie in the set of paths over which
he geometric action is minimized. Note that this does not work
or the trajectories in W s(Γ ) as the arc length of any trajectory
ending to Γ is necessarily infinite. It is for this reason that we
o not directly use the geometric minimum action in this work.

.5. Singularities of the quasipotential and folding of W u

It is well known that the quasipotential is not in general
mooth. Caustics can form, see [10], and there might be multiple
inimizers of the action functional with the same z∗ = (x, y)
alue. Viscosity solutions of the associated Hamilton–Jacobi equa-
ion are invoked to sort which is the global minimizer (infimum)
or that value of z∗, see [23].

The signature of a singularity of the quasipotential in the
nstable manifold is a fold in the manifold when projected onto
x, y)-space. Indeed, if over a set U ⊂ R2, the unstable manifold

u(O) is given by the graph of a function (p, q) = h(x, y) for
x, y) ∈ U , then the quasipotential will be smooth on U . Folds
an be detected by finding conjugate points (Definition 2.1) along
4

Fig. 2. Plot of paths sampled from the entire unstable manifold of O, indicating
no conjugate points occur before a path reaches the 0.32 border (in green).

trajectories, see Section 4. In actual fact, it is unlikely that the
full unstable manifold is the graph of a function of (x, y). This
is because of the complex tangling that occurs when there are
transverse intersections of stable and unstable manifolds along
heteroclinic orbits. By identifying where these folds happen and
looking at trajectories on W u(O) up to these fold points, we can
obtain a clear picture of the quasipotential in large regions inside
Γ . The key is the fold points are related to the minimization of
the action functional as they are conjugate points as used in the
calculus of variations. To see this, note that at a fold point the
tangent space to W u(O) will have a vertical tangent vector. This
orces there to be a conjugate point.

Since we are interested in trajectories on W u(O), we make a
efinition of conjugate point that is tailored to this situation.

efinition 2.1. If z(t) is a trajectory of Eq. (7) on W u(O) then
is said to be a conjugate point if the projection of the tangent

pace Tz(τ )W u(O) to (x, y) space is not of full rank (i.e., not onto).
This corresponds to the classical definition of a conjugate point

xtended to the case of an extremizing trajectory on a semi-
nfinite domain. Indeed, if τ is a conjugate point then there will
e a solution of the linearization of Eq. (7), denoted U(t), along
(t) that satisfies u(τ ) = 0 and u(t) → 0 as t → −∞ where
= (u, w) and u is the two-dimensional (linearized) variable

orresponding to (x, y).
The construction of W u(O) is achieved by taking a small circle

round O inside (x, y) space and growing it under the flow. This is
xplained in Section 3. We can see how far the unstable manifold
an be grown without hitting a conjugate point along any of the
rajectories.

We set a δ-collar of the periodic orbit as the set of points
in (x, y) space) inside Γ that are within a distance δ of Γ . It
s known that, see [4,5], if the trajectories are within O(

√
ϵ) of

he periodic then the diffusion will dominate and cycling will not
lay a significant role. It is thus interesting to see if we can reach
he δ ∼ O(

√
ϵ) collar without hitting a conjugate point. With√

ϵ = 0.32 in the IVDP system, we see that there are, in fact,
no conjugate points between this collar and the fixed point, see
Fig. 2. This has the consequence that the quasipotential is smooth
in this set as there will be no folding until the collar is reached,
where, as stated above, diffusion takes over.
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.6. Heteroclinic orbits

Evaluating the quasipotential for z∗ ∈ Γ requires special
onsideration. It must be constant on Γ as it costs nothing in
erms of V to traverse the periodic orbit since it is an orbit of the
eterministic system. From general variational arguments, there
ust be a minimizing trajectory, although its domain may not be

inite, or even semi-infinite. Since the minimizing trajectory must
e smooth, it follows that it must be a heteroclinic orbit from O
o Γ . In particular, its domain will be (−∞,+∞) and it lies in
oth W u(O) and W s(Γ ).
Generically, we expect there to be more than one heteroclinic

rbit. Indeed if the minimizing heteroclinic is realized by a trans-
erse intersection of W u(O) and W s(Γ ), then there must be, at
east, a second one. In the IVDP equation, we find exactly four,
ut there is a symmetry in that problem and so there are only
wo independent heteroclinics, the other two being given as a
irror image. We can distinguish trajectories that are minimizers
y their Maslov Index [28,29]. In the following definition, Z =

z(t)|t ∈ I} will be a trajectory of Eq. (7) on some interval I ⊂ R,
hich may be bounded, infinite or semi-infinite.

efinition 2.2. The Maslov Index of a trajectory Z on W u(O),
enoted m(Z), is the number of conjugate points in t ∈ I along
(t), counting multiplicity.

The multiplicity is that of the projection in the definition of
onjugate point.
We make the following assumptions about the configuration

f heteroclinic orbits in Eq. (7) which we will refer back to in
ections 4 and 5, and verify for IVDP.

(A3) There are two heteroclinic orbits of Eq. (7), denoted H1 and
H2, both from (0, 0) at −∞ to Γ at +∞. Moreover W u(O)
and W s(Γ ) intersect transversely along each of them.

We note that W u(O) and W s(Γ ) live in H = 0. If x and y are
fixed, then a convenient description can be given for H = 0.
By completing the square inside the expression for H = 0 the
coordinates (p, q) satisfy

(p+ f (x, y))2 + (q+ g(x, y))2 = f 2(x, y)+ g2(x, y), (10)

which is a circle with center at (f (x, y), g(x, y)) and radius (f 2(x, y)
+ g2(x, y))

1
2 .

Let C ⊂ R2 be a simple closed curve, parameterized by s ∈

[0, 1], enclosing the fixed point O and lying inside the periodic
orbit Γ . Putting the circles together for each s ∈ [0, 1] yields a
torus TC ⊂ R4. The intersection of W u(O) with TC , and of W s(Γ )
with TC , generically are closed curves in the toroidal direction
of T that do not wrap in the poloidal direction. Indeed, the
intersection cannot wrap in the poloidal direction because this
would correspond to W u(O) intersecting the p = q = 0 plane,
which it cannot do since that plane is invariant. Thus, if these
two closed curves intersect once, they must intersect at least
twice. That is, there exists a second heteroclinic connection H2. In
general, and generically, the number of crossings must be even,
corresponding to an even number of heteroclinic connections.
This gives a justification for seeking two heteroclinic orbits. We
will distinguish them through their Maslov indices.

(A4) The Maslov index of H1 is 0 and of H2 is 1.

Since an orbit with no critical points will minimize the action
unctional, the heteroclinic H1 will be a minimizer. On the other
and, we know that H2 will not be. A priori, we do not know
hat H1 is a global minimizer as there may be others with Maslov
Index equaling 0. Generically, there will be a finite number and
the global minimizer is found just by conducting a search through
action values. In the IVDP system, the 0-Maslov Index trajectory
(and its mirror image) are verified to be minimizers as there are
no others.
 h

5

2.7. Exit trajectories

A characteristic of 2-dimensional systems such as the one
we are considering is that, at least for generic problems, some
trajectories onW u(O) exit the periodic orbit (when projected onto
the (x, y) plane.) This cannot happen in 1-dimensional, nor in
gradient systems in 2D (which are not generic). Moreover, we can
show that some of these exit trajectories are (local) minimizers
of the FW action functional, see Section 5.

There must be at least one heteroclinic connection between
the origin O and the periodic Γ . Indeed, there exists a most
probable escape path that is a heteroclinic connection. We are as-
suming in (A3) that there are at least two heteroclinic connections
between O and Γ . For IVDP, we numerically verify the existence
f four such heteroclinic connections. We expect that heteroclinic
onnections come in pairs.
When W u(O) and W s(Γ ) intersect transversely along the hete-

oclinic orbits then complex tangling will occur. This is a familiar
icture in dynamical systems that is related to a homoclinic
angle and the Shilnikov mechanism for chaotic dynamics. While
his picture is very complicated, if we view it in terms of finite
ortions ofW u(O) as it is built up, then some clarity over the main
rajectories that play a role in guiding the stochastic trajectories
an be obtained. In Section 3, a procedure is articulated for
rowing the unstable manifold. By a finite portion of W u(O) we
ean the unstable manifold grown out to a fixed finite time from

ts generating circle. The following lemma spells out that there
ust exist exit trajectories if there is a transverse heteroclinic.

emma 2.3. In the neighborhood of a transverse heteroclinic orbit
ith Maslov Index 0 (as in (A3)), there are trajectories on W u(O)
hich exit Γ and, moreover have no conjugate points before exiting
.

The proof of this lemma is a standard dynamical systems proof
ased on the observation that, inside the 3D set H = 0,W u(O) will
traddle W s(Γ ), by transversality, and one part will have to exit
. The fact that there will be no conjugate points of the exiting

rajectories before exit follows from continuity of the tangent
pace to W u(O) as trajectories are perturbed.
Over the periodic orbit, the zero energy level H = 0 is a

orus as indicated above since Γ is a simple closed curve itself.
onsistently with the above notation. this torus is denoted TΓ
nd any trajectory exiting the periodic orbit (when projected onto
x, y)-space) must exit through TΓ .

A key object for understanding the MPEP structure for inter-
ediate noise is the set W u(O)∩TΓ . Due to the tangling of W u(O)

his set will be very complicated. But we will isolate a subset of it,
sing the Maslov Index, that we argue gives considerable insight
nto the escape hatch noted from Monte-Carlo simulations. This
ill be the subject of Section 5. In order to describe this set
roperly, we first need to delve further into the way we compute
he various invariant manifolds.

. Computing stable and unstable manifolds

Computing the unstable manifold proceeds in two steps. For
he first part we invoke a highly accurate method for calculating
he local unstable manifold near the fixed point at O. Since the
anifold is 2-dimensional, the full manifold can be generated
y initiating trajectories from a circle inside the local unstable
anifold. The set of trajectories so constructed form the global,
r full, unstable manifold.
Except for the heteroclinic orbits themselves, we are inter-

sted in trajectories that reach the periodic orbit Γ in finite time.
herefore we can focus on a finite portion of W u(O). Such a finite
ortion can be generated up to any desired accuracy by going to

igh enough order in the method described next.
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.1. Computing the local W u(O)

We use the parameterization method of [30–35] to accurately
compute the local unstable manifold of the fixed point O, and
grow the unstable manifold in order to compute the heteroclinic
connections and the set we call the River. By doing so, we ob-
tain a high-order approximation of W u(O). The parameterization
method lays out a general functional analytic framework for
studying invariant manifolds in a number of different contexts
and applications. The method is constructive and leads to efficient
and accurate numerics. The main idea is to examine an invariance
equation describing the invariant manifold. One plugs in a certain
formal series into the invariance equation and solves the problem
via a power matching scheme.

Given an analytic vector field F : R4
→ R4 with F (0) = 0,

and the conditions for a 2-dimensional unstable manifold, the
parameterization method seeks an embedding P : B2

1(0) → R4,
with P(0) = 0, B2

1(0) the unit disk centered at 0, and a linear
vector field R : B2

1(0) → R2 such that

F ◦ P(x) = DP(x)Rx. (11)

In other words, the goal is to obtain a conjugacy between the
flow on an invariant manifold of interest and the associated linear
problem restricted to the unit disk. We always restrict P to the
unit disk for the sake of numerical stability.

In our case, the spectrum of DF (0) is composed of distinct
eigenvalues {λu

i }
2
i=1, {λ

s
i }

2
i=1, where the real parts are positive for

λu
i and negative for λs

i (the superscripts s and u stand for stable
and unstable respectively). We can then take R to be the usual
(real) matrix associated with two complex conjugate eigenvalues.

The image of P is a smooth 2-dimensional manifold, and since
it will be invariant by Eq. (11), it is an invariant manifold for 0
in R4. Furthermore, if we denote by Φ : R4

× R → R4 the flow
generated by F and note that from [36], P must satisfy Eq. (11) if
and only if

Φ(P(x), t) = P(eRt (x)),

for all x and t for which it is defined, and thus it is a local unstable
manifold for the vector field F at 0.

The global unstable manifold can then be obtained by inte-
grating forward trajectories from this local unstable manifold. In
the next subsection, we describe a systematic way of doing this
which will allow to give a convenient description of the set of
exit trajectories we claim to be significant in understanding the
escape hatch of the stochastic system.

3.2. Generating the full W u(O)

The circle K = P(∂B2
1(0)) inside the local unstable manifold

will be used to generate the full W u(O). An explicit parameteri-
zation of K will be given that also gives more insight into how
the parameterization method works for approximating the local
unstable manifold.

The first step if to extend the real-analytic vector field F on
R4 to a complex analytic vector field on C4. A parameterization
P̂(z1, z2) of W u(O) in C4 is then sought. The map P̂ is taken to be
a double infinite sum

P̂(z1, z2) =
∞∑

m=0

∞∑
n=0

αmnzm1 zn2 .

To relate this to the flow, we can think of z1 = z01e
µ1t , z2 = z02e

µ2t ,
z01 , z

0
2 ∈ C, and µ1 and µ2 are the (complex) unstable eigenvalues

of the Jacobian of Eq. (7) evaluated at the fixed point O. Since
µ1 and µ2 are complex conjugate pairs, as are their eigenvectors,
the value of P̂(z , z ) is real if z and z are complex conjugate
1 2 1 2

6

Fig. 3. Orbits on W u(O) can be parameterized by a simple curve K ⊂ W u that
surrounds O. H1 and H2 can be obtained from θ1, θ2 ∈ [0, 2π ).

pairs. Another way of saying this is that when µ1, µ2 are complex
conjugates, the coefficients of P̂ have the symmetry ᾱnm = αmn
for all m + n ≥ 2. Choosing complex conjugate eigenvectors
ξ1 and ξ2 and setting α00 = O, α01 = ξ1, α10 = ξ2 enforces
the symmetry to all orders. The power series solution of P̂ has
complex coefficients, but we get the real image of P̂ by taking
complex conjugate variables. That is, we define, for example, for
the real parameters ζ1, ζ2, the function:

P(ζ1, ζ2) = P̂(ζ1 + iζ2, ζ1 − iζ2),

which parameterizes the real unstable manifold. Further, we scale
the eigenvectors we use in the construction of P , which af-
fect z01 , z

0
2 , so that the double infinite sum converges whenever

|z1|, |z2| ≤ 1.
We parameterize K with θ ∈ [0, 2π ) by setting z1(θ ) =

os(θ ) + i sin(θ ) and z2(θ ) = cos(θ ) − i sin(θ ). We then define

:= {P̂(z1(θ ), z2(θ )) : θ ∈ [0, 2π )}. (12)

That is, K is a simple closed curve in W u(O), parameterized by
∈ [0, 2π ), whose projection onto the (x, y)-plane is an ellipse

nclosing (0, 0). We denote by K(θ ) the point of K corresponding
o θ . The curve K is depicted as a green circle in Fig. 3.

.3. Computing W s(Γ )

Next, in order to compute the stable manifold of the periodic
rbit, we proceed as follows. We first divide up the periodic orbit
nto N points Γk, 0 ≤ k ≤ N . To each point there corresponds
time τk such that Γk = Γ (τk), where here Γ (t) is the periodic
rbit.
Let ξs0 be the eigenvector associated with the stable eigen-

alue of the monodromy matrix. This vector is tangent to the
table manifold at Γ0. The stability type of the state transition
atrix of any point Γk on the periodic orbit is independent of
and the eigenvectors can be computed if the state transition
atrix is known at a base point Γk. They are just the eigenvectors
f the monodromy matrix (which is computed at Γ0) multiplied
y the state transition matrix of the new point Γk,

sk = φ(0, τk)ξs0 .

Then for each Γk we compute the state transition matrix φ(0, τk)
and from this obtain the tangent space to the stable manifold
there, by the formula above. Set a tolerance ν. If ν is small enough
then

xsk (0) = Γk ± νξsk

are points very nearly on the stable manifold. We integrate these
initial conditions over some time interval [0, Tf ] obtaining the

orbits xsk (t). Then t along these orbits is the second coordinate on
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Fig. 4. Schematic of the flow near the periodic orbit Γ .

the manifold. By varying k and t we obtain a good approximation
of the stable manifold. A schematic of the flow near Γ can be seen
n Fig. 4.

.4. Obtaining the heteroclinic orbits

Finally, we compute the heteroclinic orbits resulting from the
ransverse intersections of W u(O) and W s(Γ ). This is achieved in
wo steps. We first compute the heteroclinic orbits by looking
t the transverse intersections of the invariant manifolds and
sing an algorithm to find the two closest points (one from a
rajectory from the stable manifold of the periodic orbit, and
nother from a trajectory from the unstable manifold of the fixed
oint at the origin). So we initially compute the heteroclinics
sing those two points integrating forward and backward in time.
e then use that trajectory to find its corresponding angle on the
arameterized circle K (as an initial guess) which we then refine
o compute the heteroclinic orbit but now by integrating a single
oint, forward and backward in time.
The result is illustrated for IVDP in Fig. 5. In the first two parts

a) and (b), we computeW u(O) for Eq. (7) andW s(Γ ) respectively.
he parameters are set as

√
ε = 0.3, and η = 0.5. In Fig. 5(c),

e delineate the transverse intersections of W u(O) and W s(Γ ) in
reen and black in (x, y, p) space. In Fig. 5(d), we remove most of
u(O) and W s(Γ ) leaving only the heteroclinic orbits (green and

lack curves), and can clearly see that the intersections of the two
anifolds occur along 4 distinct curves.

. Computing the Maslov index and conjugate points

A conjugate point occurs along a trajectory in W u(O) when
the tangent space to the invariant manifold at a point on that
trajectory has a degenerate projection onto (x, y) space, see Defi-
nition 2.1. Such points can be found by tracking the tangent space
to W u(O) along trajectories in W u(O).

4.1. The space of Lagrangian planes

Individual tangent vectors will satisfy the linearized equations
of Eq. (7). Since Eq. (7) is Hamiltonian, the linearized system can
be written in the form

U̇ = AU, U ∈ R4, (13)

where A = JB, with

B =

⎛⎜⎝pfxx + qgxx pfxy + qgxy fx gx
pfyx + qgyx pfyy + qgyy fy gy

fx fy 1 0

⎞⎟⎠

gx gy 0 1

7

evaluated on a solution (x(t), y(t), p(t), q(t)) of Eq. (7), and J is
the usual 4 × 4 symplectic matrix

J =
(

0 I2
−I2 0

)
with I2 the 2 × 2 identity. Note that B is symmetric, which is a
consequence of the Hamiltonian structure.

Tangent spaces to invariant manifolds in a Hamiltonian system
have a special property, called Lagrangian.

Definition 4.1. A 2D subspace Π ⊂ R4 is said to be Lagrangian
if ⟨JX, Y ⟩ = 0 for all X, Y ∈ Π .

The collection of all 2D Lagrangian subspaces of R4 is called the
space of Lagrangian planes, and denoted Λ(2). It can be viewed
as a submanifold of the Grassmannian of 2-planes in R4. It has
he amazing property that its fundamental group is the integers,
1(Λ(2)) = Z. This allows one to define a phase in Λ(2) and
he standard definition of the Maslov Index is that it counts
he winding of this phase. The fundamental group of the full
rassmannian is Z2 and so that has no winding index, and thus
he Lagrangian property is critical in making the Maslov Index
ork. We want to relate this characterization of the Maslov Index
s a winding number to the conjugate point definition given in
efinition 2.1.
An index, such as the Maslov Index, can be represented by an

ntersection number. The simplest analogue here is the winding
f a curve in the punctured plane corresponding to the inter-
ection number with a half-line (such as the positive y-axis).
or the object that will represent the Maslov Index through an
ntersection number with a curve in Λ(2), we first need to define
he Dirichlet subspace.

efinition 4.2. The Dirichlet subspace of R4 is

= {(u, w) ∈ R4
: u = 0}.

It is not hard to check that D ∈ Λ(2), i.e., it is Lagrangian. The
irichlet subspace is key as a conjugate point occurs exactly when
he tangent space to W u(O) at a point of a trajectory non-trivially
ntersects D. The train of D, which we denote S(D) is the set of
D subspaces in R4 that non-trivially intersect D. Although it is an
wkward way to state it, a conjugate point occurs exactly when
he tangent space to W u(O) intersects the train S(D) in Λ(2).

For our case, the Maslov Index, as a winding number, can be
ealized as the intersection of the curve of tangent spaces along
he trajectory in W u(O) with S(D). But that is exactly the number
f conjugate points.

.2. Plücker coordinates

Coordinates on the space of planes can be given that allow us
o track the tangent space to W u(O) along a trajectory. The key
s to form the Plücker coordinates [37,38] of an individual plane
2D subspace) in R4.

Let Π be a plane spanned by v1 and v2 with:

1 =

⎛⎜⎝v11
v12
v13
v14

⎞⎟⎠ and v2 =

⎛⎜⎝v21
v22
v23
v24

⎞⎟⎠
We set:

ρij =

⏐⏐⏐⏐v1i v1j
v2i v2j

⏐⏐⏐⏐ = dxi ∧ dxj(v1, v2), 1 ≤ i, j ≤ 4, i ̸= j.

For our particular problem, ρ12 = dx ∧ dy, ρ13 = dx ∧ dp, ρ14 =

dx ∧ dq, ρ = dy ∧ dp, ρ = dy ∧ dq, ρ = dp ∧ dq.
23 24 34
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Fig. 5. (a) Plot of W u(O), and (b) Plot of W s(Γ ) for η = 0.5. One remark is that the phase portrait of Eq. (7) when projected onto the (x, y) space is independent of
noise strength so that one can recover one orbit for different noise values with the appropriate scaling in (p, q) coordinates. In (c) we plot W u(O) (blue) and W s(Γ )
(magenta) and note their transverse intersections in (x,y,p) space. The heteroclinic orbits are plotted in (d).
How the Plücker coordinates of a plane vary can then be
captured by an ODE governing the variation in time of the plane’s
Plücker coordinates. This can be calculated using the properties of
differential forms from Eq. (13) with U = (dx, dy, dp, dq).

dÛ
dt

= B(x(t), y(t), p(t), q(t))Û, (14)

where Û = (ρ12, ρ13, ρ14, ρ23, ρ24, ρ34) and

B(x, y, p, q) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

fx + gy 0 1 −1 0 0
−pfxy − qgxy 0 −gx fy 0 0
−pfyy − qgyy −fy fx − gy 0 fy 1
pfxx + qgxx gx 0 −fx + gy −gx −1
pfyx + qgyx 0 gx −fy 0 0

0 pfxy + qgxy −pfxx − qgxx pfyy + qgyy −pfxy − qgxy −fx − gy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that this is evaluated along a trajectory (x(t), y(t), p(t), q(t))
which we are taking to lie in W u(O). To restrict to the coordinates
of Lagrangian planes, we note that a plane is Lagrangian if (and
only if)

ρ13 + ρ24 = 0.

A conjugate point can be conveniently described in Plücker
coordinates.
8

Lemma 4.3. The time t = τ is a conjugate point for a trajectory
z(t) = (x(t), y(t), p(t), q(t)) in W u(O) if ρ12(τ ) = 0 for the Plücker
coordinates of Tz(τ )W u(O).

The trajectories in W u(O) are parameterized by angles θ that
determine a point on the simple closed curve K ⊂ W u(O). The
methodology for finding conjugate points along a trajectory that
passes through K(θ ) is as follows:

1. Compute the trajectory z(t) backwards from K(θ ) until
close to the fixed point at O.

2. Form Plücker coordinates of the unstable subspace of Eq. (7)
at O and initialize Eq. (14) with these coordinates at the
time and point found in the first step.

3. Integrate Eq. (14) forward in time and find the values of t
where ρ12 = 0.

In Fig. 6 we illustrate this for two key trajectories of IVDP,
namely the heteroclinic orbits that we computed from Section 3.
The plots on the right indicate where we detect a conjugate point
(ρ12 = 0) for the time interval that we specified, which we
tracked from a small neighborhood of O to the periodic orbit Γ
of Eq. (7) for each of the associated heteroclinic orbits.

These computations confirm that one has Maslov Index 0 (the
one shown in panel (c)) and the other has Maslov Index 1 (panel

(a)). The former is thus H1 and the latter H2.
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Fig. 6. (a) Plot of a heteroclinic orbit of Eq. (7) for η = 0.5. (b) Plot where we detect a conjugate point (where ρ12 = 0) for the heteroclinic orbit on the top left. (c)
lot of another heteroclinic orbit of Eq. (7) for the same parameters and (d) reveals that there are no conjugate points for the associated heteroclinic orbit on the

left for the time interval that we specified.
D
R

5. Trajectories exiting over the periodic orbit

Under assumption (A3), there are two heteroclinic connec-
tions, H1 and H2, between the fixed point and Γ . We set θ1 and θ2
to be the angles for points on K at which H1 and H2 pass through
K respectively. These are depicted in Fig. 3.

According to Lemma 2.3, there are θ-values near θ1 for which
he associated trajectories pass over Γ , or more precisely through
TΓ , and so are exit trajectories. The angles θ1 and θ2 divide the
circle into two parts. Without loss of generality, we can assume
that these exit trajectories correspond to θ values between θ1 and
2. We will make the further assumption that all trajectories with
ngles between θ1 and θ2 exit Γ .

(A5) Every trajectory associated with angles θ ∈ (θ1, θ2) crosses
Γ when projected on the (x, y) space.

While this seems like a strong assumption, it captures the
ituation we are imagining. We expect that between two hetero-
linics the unstable manifold will leak out, but the complexity of
he problem makes that hard to prove in general and so we make
t as an assumption that can be verified numerically in examples
s needed (see Fig. 7).

.1. The river

The term River will be used to describe the set of trajectories
n W u(O) that cross Γ with θ values between θ1 and θ2. The
urves H1 and H2 form the ‘‘banks’’ of the river. In the following
efinition, Z is a trajectory z(t) for t ∈ (−∞, 0] satisfying Eq. (7).
9

Fig. 7. Trajectories associated with R (in blue) reaching Γ (in black) in (x, y, p)
space. The red curve represents the intersection of the torus TΓ and trajectories
associated with the river R projected in (x, y, p) space.

efinition 5.1. The full River R is defined as
= {Z |z(τ ) ∈ K(θ ) for some θ1 < θ < θ2 and for some

τ < 0 and further z(0) ∈ TΓ }.

The full river R corresponding to the IVDP is depicted in
Fig. 8(a). Note that, we are parameterizing the trajectories so that
each one crosses the exit torus T at t = 0.
Γ
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Fig. 8. (a) Plot of the conjugate points for 201 paths in the river along with every 10th path. (b) Zoomed in plot that shows the conjugate points occur after the
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5.2. River trajectories as minimizers

We also define a sub-river R̃ ⊂ R that consists of trajectories
ith zero Maslov Index.

˜ := {Z ∈ R| m(Z) = 0}. (15)

n Fig. 8, both in (a) and (b), we plot the conjugate points (in red)
or several paths in the river.

The main theorem states that the trajectories in R̃ are mini-
izers of the Friedlin–Wentzell functional given their respective
oundary value.

heorem 5.2. Every trajectory in R̃ is a local minimizer of the
riedlin–Wentzell action functional among the trajectories with the
ame boundary value (x(0), y(0)) ∈ Γ .

roof. Let z = (x, y, p, q) be an element of R̃. Let the columns of
form a basis for the solution space of V ′

= A∗V that belongs to
he unstable manifold at the origin, where A∗ is the linearization
of Eq. (7) about z. We can write A∗ as

A∗ =
(

B Id
−A −BT

)
where

A =

(
pfxx + qgxx pfxy + qgxy
pfyx + qgyx pfyy + qgyy

)
, B =

(
fx fy
gx gy

)
.

The second variation of the Friedlin–Wentzell functional is given
by

δ2I[hT , h] =
∫ 0

−∞

hT (BTB− A)h− hTBT ḣ− ḣTBh+ ḣThdt,

where ∥h∥ = 1 is the direction of perturbation and .
:=

d
dt . We

ote that h(0) = 0 and that h and its first derivative decays to zero
t exponential rate as x → −∞, and that A and B are uniformly
ounded since they asymptotically decay to constants states.
hus the integrals given in the definition of I[h] and δ2I[hT , h]
onverge. Following a standard calculation (for example see [39]),
efine V1 and V2 so that V = (V T

1 , V
T
2 )

T . Then

V̇1 = BV1 + V2, V̇2 = −AV1 − BTV2.

Since there are no conjugate points associated with z, the matrix
V is full rank throughout its domain, and thus V1 is invertible.
Define W = −V2V−1

1 . Then

Ẇ = −V̇ V−1
+ V V−1V̇ V−1
2 1 2 1 1 1

10
= A− BTW −W (BV1 + V2)V−1
1

= A− BTW −WB+W 2.

Note that if the initial data is symmetric, then W is symmetric.
To see this, if W is a solution that satisfies W (t0) = W0 where
W T

0 = W0, then W T (t) is also a solution of the Riccati equation
that has the same initial conditions. By uniqueness of solutions,
W (t) = W T (t).

We will shortly use the following fact. Note that for any C1

matrix valued function W : (−∞, 0] → Rn×n that

0 = hWhT
|
0
−∞

=

∫ 0

−∞

d
dx

(hWhT )dx

=

∫ 0

−∞

h′WhT
+ hW ′hT

+ hW (h′)T .

Now

2I =
∫ 0

−∞

hT (BTB− A)h− hTBTh− ḣTBh+ ḣTh

=

∫ 0

−∞

hT (Ẇ + BTB− A)h+ hT (W − BT )h+ ḣT (W − B)h

+ ḣT ḣ

=

∫ 0

−∞

hT (BTB− BTW −WB+W 2)h+ hT (W − BT )h

+ ḣT (W − B)h+ ḣT ḣ

=

∫ 0

−∞

([B−W ]h− ḣ)T ([B−W ]h− ḣ).

Thus, the second variation is non-negative if there are no conju-
ate points. We now use a perturbation argument to show that
he second variation is actually bounded from below. Suppose
hat for some µ > 0 there are no conjugate points for the system
′
= DµV , where

µ :=

(
B (1− µ)Id

−A− µId −BT

)
.

Then we have δ2I[hT , h] ≥ µ
∫
hTh+ḣT ḣ ≥ µ∥h∥2. Thus, to show

hat z is a local minimum of I , we only need show that there exists
> 0 such that V ′

= DµV has no conjugate points.
Now as t → −∞:

µ → D∞

µ :=

(
B∞ (1− µ)Id

T

)

−A∞ − µId −B

∞
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where A∞ and B∞ are A and B evaluated at (0, 0, 0, 0), respec-
ively. We rewrite V ′

= DµV as an autonomous system:
′
=Dµ(τ )V

τ ′ =1,
(16)

V , τ ) ∈ R4
×(−∞, 0]. Eq. (16) induces a flow on Λ(2)×(−∞, 0],

here Λ(2) is the space of Lagrangian 2 planes in R4, with the
ssociated equation:

v′ =dµ(v, τ )
′
=1,

(17)

or some function dµ(v, τ ), where v ∈ Λ(2). Note here that the
erturbed system is also a linear Hamiltonian system.
Both Eqs. (16) and (17) can be compactified, see [40], by a map
: (−∞, 0] → [−1, 0]. Setting s = σ (τ ), Eq. (16) becomes
′
=Dµ(h(s))V

s′ =g(s),
(18)

here h(s) := σ−1(s) and g(s) := σ ′(h(s)), and Eq. (17) becomes
′
=dµ(v, h(s))

s′ =g(s),
(19)

ith g(−1) = 0.
Note that s = −1 corresponds to τ = −∞ and so

Dµ(h(s = −1)) =D∞

µ ,

µ(v, h(s = −1)) =d∞µ (v).

When µ = 0, we have D∞

0 has 2 complex conjugate eigenval-
es with negative real part and 2 complex conjugate eigenvalues
ith positive real part. Now, s = −1 is invariant and the 2D
nstable subspace V u

0 of V ′
= D∞

0 V becomes a fixed point vu
0 of

′
= d∞0 v. (20)

oreover it perturbs to a fixed point vu
µ, if µ > 0 is sufficiently

mall, of v′ = d∞µ v, since it is attracting in Eq. (20).
Next, consider Eq. (19) on Λ(2) × [−1, 0] when µ = 0, then

u
0 is a fixed point with 3D stable manifold, which lies inside
s = −1}, and a 1D unstable manifold. The same will hold for
ufficiently small µ > 0. The 1D unstable manifold is the object
e want. Moreover, by construction, it varies smoothly in µ. Thus

f V ′
= D0V , t ∈ (−∞, 0] produces no conjugate points, then

′
= DµV also does not, as long as µ > 0 is small enough. □

It needs to be emphasized here that we only expect these
rajectories to be local minimizers. There will be infinitely many
rajectories in W u(O) that cross Γ at a fixed (x, y) ∈ Γ and
n infinite sequence of them will consist of local minimizers.
oreover, they will have decreasing action value and the limit
ill be the action value of H1.
This is the cycling phenomenon known to occur when there

s a periodic boundary, see [2]. the MPEP is the heteroclinic and,
s it is then the mode of the escaping trajectories, it will enforce
ycling of trajectories that escape. Our point is that this will only
ccur in the limit of vanishing noise. Moreover, our contention is
hat the trajectories in R̃ play a key guiding role for the (noisy)
rajectories that escape in small but not vanishing noise.

The trajectories in R̃ can be viewed as most probable paths
f a constrained problem. If we consider the problem of finding
he most probable path between O and a particular point (x, y) on
, then the trajectories on R̃ will appear. In probabilistic terms,
uch a trajectory is a candidate for the most probable path when
onditioned on exiting Γ at exactly that point.
If we further restrict the amount of cycling in the condition,

hen there will be a path in R̃ that will be a global minimizer.

o give an exact accounting of such a cycling condition is not d
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traightforward and will not be taken up here. Nevertheless, this
dea should give some credence to our view that these trajectories
lay a key role in understanding escape through the periodic
rbit.

.3. Pivot point

The river R and the 0-Maslov Index sub-river R̃ can be char-
cterized in terms of the points in the interval of angles: [θ1, θ2].
e introduce a transition map

: K (θ1, θ2) → TΓ , (21)

hich takes each point on that part of K ⊂ W u(O) to the point
here the trajectory through that point first crosses the periodic
rbit, i.e., lies in the torus TΓ (which recall is H = 0 with
x, y) ∈ Γ ). Since θ1 and θ2 are not included, we know that every
rajectory does indeed cross Γ .

We will refer to the image of G as the mouth of the river, see
ed curve in Fig. 7 for some trajectories in R in (x, y, p) space. We
ould like to find a subset J of K (θ1, θ2) so that G(J) = R̃ but also
ave this be an interval (in the angle). In general, this cannot be
uaranteed and so we take a subset of K (θ1, θ2) by the following
rocedure.
By Lemma 2.3, we know that if θ is sufficiently close to θ1 then

(K(θ )) ∈ R̃. Let

ˆ = inf{θ |G(K(θ )) ∈ R̃}.

hen the set K(θ1, θ̂ ) is non-empty and G
(
K(θ1, θ̂ )

)
⊂ R̃.

he end-point G
(
K(θ̂ )

)
will not lie in R̃. In fact, we have the

ollowing lemma.

emma 5.3. The trajectory emanating from K(θ̂ ) will have Maslov
ndex equaling 1 and the conjugate point will occur as the trajectory
rosses the periodic orbit, i.e., when it is in TΓ .

The set Q = G
(
K(θ1, θ̂ )

)
plays a key role. It has the following

roperties:

1. Q is an infinite spiral in TΓ ,
2. Its projection onto the (x, y)-space is all of Γ .
3. It is pinned at one end by the pivot point.

he other end of this curve is the heteroclinic, but that is not seen
n TΓ as it never reaches it. By Theorem 5.2, every point in Q is a
local) minimizer of the Freidlin–Wentzell action functional with
ixed boundary condition, except the pivot point.

In the following sections, we shall see that the set Q plays a
ey role in determining the escape hatch. But it is still too large,
ecause of Property 2 above.
From the Monte-Carlo simulations, we see that the escape

atch is near the pivot point, and definitely does not extend
round all of Γ .

. A perturbed action

In order to understand why the noisy escape trajectories do
ot veer too far from the pivot point when crossing Γ , we need
o calculate the energy required by a path to escape to higher
rder. This involves the Onsager–Machlup (OM) functional [41–
3], which becomes relevant when the noise is not necessarily
mall.
Our viewpoint is to use the OM action as a selection mecha-

ism among the trajectories that we find as (local) minimizers of
he FW functional, in particular, the trajectories in R̃.

For IVDP, the set Q is exactly the part of the mouth of the
iver corresponding to R̃. In the following, we will therefore not
istinguish between these two objects and take Q = R̃ ∩ Γ
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.1. The Onsager–Machlup functional

The OM functional for a path z = z(t) on an interval [a, b], it
s given by

ε(z) =
∫ b

a

(ż − F (z))2

2
+ ε (▽ · F (z)) dt, (22)

where ε is the noise coefficient as usual. Applying this to IVDP,
we calculate

▽ · F (z) = ▽ · F (x, y) = 2η(x2 − 1).

For IVDP, it holds that
∫
Γ
▽ · F (z)dt > 0. Hence the OM

functional Iε , with ε > 0, penalizes trajectories that cycle around
the periodic orbit. Since the heteroclinic orbits wind around a
neighborhood of Γ infinitely many times, Iε evaluated near a
heteroclinic orbit will tend to infinity. Thus, when the OM per-
turbation is added to the Friedlin–Wentzell (FW) functional, the
heteroclinic connections cease to be global minimizers.

6.2. A selection mechanism

Suppose we have a family of (local) minimizers of the FW
functional on an interval [0, T ]

F = {z(t)|z(0) ∈ A, z(T ) ∈ B},

where A and B are sets in R2. We can attempt to find the global
minimizer of the FW functional ST (z) over the trajectories in F .
ut it may be that there is no global minimizer in F .
Exactly this situation occurs if A = C , a small circle around the

ixed point O and B = Γ . In this case, if we look for minimizers
f ST (z) over F with fixed z(T ) ∈ TΓ , we will obtain exactly the
et R̃, which has found these minimizers as trajectories of Eq. (7)
nd weeded out those with non-zero Maslov Index. The (global)
inimizer over F can now be found by sorting through the action
alues and finding the member of F with least action. But such
trajectory will not exist since the action decreases as the paths
end to the heteroclinic, which is not in F . This is back to the
ame issue that lies behind the cycling phenomenon, namely that
here is no global minimizer of the FW functional which crosses
. Note that, in this example, the circle C is used as a proxy for
(t) → O as t → −∞, and that if C is small enough, i.e., close
nough to O, then the difference in action value of a member of
from taking one circle C over another is negligible.
The idea then is to use the OM functional as a perturbation

f the FW functional to select which of these paths is the Most
robable Escape Path for small but non-vanishing noise.

.3. Evaluating OM along FW minimizers

Since the path z = z(t) is independent of ε, the OM functional
Iε(z) is linear in ε, and

∂ Iε
∂ε

=

∫ T

0
▽ · F (z)dt. (23)

he right hand side of Eq. (23) can be evaluated on a trajectory
n R. Since R̃ ⊂ R, the trajectories of interest are included. The
esult for IVDP is shown in Fig. 9.

One caveat is that the integral in the OM functional would not
onverge if computed along FW trajectories lying in W u(O) con-
idered on the half-line (−∞, 0]. This is because ▽ · F (z)|z=0 ̸= 0.
ntegrating from t = 0 and initiating on a small circle is designed
o circumvent this challenge. In other words, we are computing
he action between the boundary of a small neighborhood of
he origin and the periodic orbit. The extra action one obtains
y shrinking the neighborhood around the origin varies less and
ess among the orbits as the neighborhood gets small since ▽ ·
 t
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(z) converges to −2η at a uniform exponential rate. Hence, in
ractice we obtain the most probable escape path predicted by
he OM functional to within numerical precision by truncating
rbits onto a finite domain.

.4. A most probable escape path according to OM

The action plot for IVDP is shown in Fig. 9. The minimum
ction occurs at θmin ≈ 4.44. This is the object that we claim
an be taken as an MPEP for this level of noise. It will be noise
ependent and, were the noise to be decreased toward 0, it would
ove toward θ1, i.e., the θ value at the (stable) heteroclinic.
In Fig. 12, we compare the projection onto the (x, y)-plane

f the OM orbit corresponding to θ = 4.44 with the most
robable exit locations as given by our Monte Carlo simulations.
he correspondence of the OM-selected path and the peak of
he exit distribution is striking. Details about the Monte Carlo
imulations and these comparisons are given in the next section
Section 7).

. Monte-Carlo simulations

The analysis we have carried out is aimed at finding a most
robable path of escape for noisy trajectories through a periodic
rbit that forms the boundary of the basin of attraction of the
ttracting fixed point. The work has been predicated on the
otion that for small, but non-vanishing, noisy trajectories that
scape will not exhibit cycling but rather find an ‘‘escape hatch’’
t a specific part of the periodic orbit. Moreover, they will choose
o leave the basin of attraction without overly cycling, at least not
ear the boundary (periodic orbit).
In this section, we show this by carrying out Monte-Carlo

imulations on IVDP with added noise. In the computations, we
ave set the noise level at

√
ϵ = .32, which corresponds to noise

strength ε of approximately 0.1. It may be argued that this is
ot all that small, it was derived by pushing the noise to the
mallest level for which we could obtain convergence on the exit
istributions within reasonable computing time. We note that we
ind qualitatively the same results using

√
ϵ = .3 or

√
ϵ = .35.

7.1. IVDP with noise

The stochastic version of the first order IVDP system is given
by

dx = y dt +
√
εdW1,

dy = (−x+ 2ηy(x2 − 1))dt +
√
εdW2.

(24)

e numerically approximate the solutions of Eq. (24) using
the Euler–Maruyama method to create a discretized Markov
process [44] over the time interval [0, 200]. To apply the Euler–
Maruyama method, we partition the time interval into sub-
intervals of width ∆t = .005, and initialize the solution at
x = 0 and y = 0. To create the discretized Markov process, we
ecursively define the system as

xn+1 = xn + yn∆t +
√
ϵ∆W1n,

yn+1 = yn + (−xn + 2ηyn(x2n − 1))∆t +
√
ϵ∆W2n.

(25)

standard Wiener process, W , satisfies the property that Brow-
ian increments are independent and normally distributed with
ean zero and variance ∆t . Therefore it follows that ∆Win =

in − Wi(n−1) can be numerically simulated using
√
∆t · N(0, 1).

his can be shown by manipulating the probability density func-
ion of N(0,∆t).
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(

Fig. 9. Plot of the Onsager–Machlup functional along trajectories in the full river R. The left and right dotted lines mark the value of θ corresponding to the unstable
θ2) and stable (θ1) heteroclinic connections respectively.
Fig. 10. Two sample paths of Eq. (24) (blue) on the interval [0, 200] with dt = .005, η = .5, σ1 = σ2 = .32, overlaid with Γ (black). (a) The sample path does not
escape. (b) The sample path escapes and the red point denotes its exit location, (xi, yi).
I
[

7

t

7.2. The algorithm

We want to find the realizations that have transitioned from
the origin to somewhere outside the unstable periodic orbit, and
capture where on Γ they have exited. Let τi denote the first time
a path, Xi, crosses Γ . We define escape events to be the paths Xi
that have τi ≤ 200. Let the point of Xi at τi be given by (xi, yi).
Refer to Fig. 10 for an example of realizations that have and have
not escaped on the finite time interval. Assume for N realizations
there are K escape events. We construct the distribution for the
x and y locations for the K escape events. To verify we have a
converged result for the distribution of the location of escape
events, we use the following process:

1. Bin the x (respectively y) locations of the K escape events
by the Freedman Diaconis rule [45]. This separates the K
escape events into B bins of equal length.

2. Run another N realizations of Eq. (24) on the same time
interval and with the same step size. Assume there are J
 I

13
escape events. We bin the J escape events by the same
number of bins B found in Step 1.

3. There are now two vectors of the same length, D1 and
D2, where each component of the vector represents the
amount of paths that tipped in that interval for the x
(respectively y) location. Calculate Err =

∥D1−D2∥2
∥D1∥2

, which
is the relative error between the two data sets.

4. If Err < 0.1, we say we have found the converged distri-
bution. However, if Err ≥ 0.1, we double the number of
samples and repeat this process.

n addition, we use the Kolmogorov–Smirnov Two Sample Test
46] as a final verification that we have a converged distribution.

.3. The escaping paths

We study Eq. (24) with η = .5 As mentioned above, we find
he same results if we use

√
ϵ = .3 or

√
ϵ = .35 and

√
ϵ = .32.

n these noise regimes, on the interval [0, 200], initialized at the
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Fig. 11. Parameters are set at η = .5,
√
ϵ = 0.32: (a) Heatmap of points (xi, yi) from 21801 realizations, (b) Jointplot of points (xi, yi) from 21801 realizations. In

oth figures (a) and (b), we can clearly see two clear regions of exit points.
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rigin with a step size of dt = .005, we find the percentage
f samples that escape to be approximately [2%, 5.5%, 17.5%] for
ϵ = [.3, .32, .35]. We focus on

√
ϵ = .32 as it is the smallest

oise we can study without too much computational stress.
Using the process outlined above, we find converged distri-

utions for exit location in both x and y along Γ for this noise
egime. We started with two sets of N = 50000 realizations,
oubled it to two sets of N = 100000, and then doubled again
o two sets of N = 200000. In this case, Errx = 0.055 < 0.1 and
Erry = 0.069 < 0.1. In total, there are 400000 simulations in
which 21801 realizations escape.

Collecting the points (xi, yi) from the paths that escaped, we
see that they fall on specific parts of Γ . In Fig. 11(b) and (c), we
plot both a heatmap and jointplot of the exit locations respec-
tively and see that there are two distinct spots on the Γ where
rajectories mostly exit. Additionally, we see the symmetry of exit
ocations along Γ .

8. Matching simulations and theory

The point here is to compare our theoretical prediction with
the Monte Carlo simulations and thus confirm our mathematical
derivation of the MPEP. The main takeaway is the connection
between the pivot point, the OM-selected point and the exit
distribution.

8.1. The escape hatch and the pivot point

In Section 5.3, we define a subset of the mouth of the River,
resulting from trajectories with Maslov Index 0, as a set Q . We
urther define the pivot point from the mouth of the river where
he associated trajectory will pick up a conjugate point exactly on
Γ and delineates Q on one end. However, the set Q does not pick
ut any particular part of the periodic orbit since its projection
nto the (x, y)-space is all of Γ . Nevertheless, the exit distribution
rom Section 7 does pick out particular parts of Γ .

Surprisingly, the trajectories choose the initial part of Q for
their escape. Fig. 11 shows the dominating part of the escape
atch through two different kinds of heatmap. They are clearly
n the southwest and northeast corners of the periodic orbit.
ecalling the symmetry, we can focus on one part, and we choose
he southwest corner.
14
In panel (a) of Fig. 12, the dashed blue curve represents the
rajectory of Eq. (7) that exits at the pivot point. This is seen to
e at the right hand end of the escape hatch as determined by
he Monte-Carlo simulations. Most of the trajectories clearly exit
eyond the pivot point in terms of the natural ordering on Q . But
hey exit relatively close to it rather than continuing to follow the
nstable manifold along Γ and exiting further later, after which
he action would have actually decreased.

.2. The escape hatch and the OM point

The Onsager–Machlup functional shows why the noisy trajec-
ories choose to exit in a region only just beyond the pivot point.
n Fig. 12, the solid blue curve was computed from the minimum
f the OM functional along FW orbits. This is the selection mech-
nism we have discussed and we claim justifies the designation
f the OM-trajectory as the MPEP for the associated level of noise.
he angle is found from the graph in Fig. 9. The minimum occurs
round θ = 0.44, which value is used to initiate the trajectory on
, and we call this the OM-trajectory. The OM-selected point is
he point where this trajectory crosses the periodic orbit Γ .

The OM selected trajectory is shown as a solid blue curve in
anel (a) of Fig. 12. The OM-point is represented by the solid,
ertical blue line in Panel (b). Fom Panel (b) the OM-point can
e seen to coincide with the peak of the exit distribution.
Panel (a) of Fig. 12 renders the entire trajectory, whereas

Panel (b) focuses on the exit set on Γ . The vertical dashed and
solid lines give the location of the pivot point and OM-selected
point respectively. Their relationship with the exit distribution
is self-evident. The pivot point pins one end of the distribution,
while the OM selected point lies at the peak of the distribution.
We have not found a specific characterization of the left end of
the distribution, but it does appear to drop off rapidly after the
OM point. The distribution on the pivot point side has a much
gentler drop-off. Note that this is reminiscent of the Gumbel-type
distributions often seen in these situations.

The significance of the OM point as being at the peak of the
exit distribution is depicted further in Fig. 13. This figure shows
the striking coincidence of the center of the heatmap with the OM
point. Note that the pivot point is independent of the noise as it
only depends on the FW functional. On the other hand, the OM
point depends on the noise as it is based on the OM functional.
In this case, it is evaluated with the same level of noise as we use
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Fig. 12. In (a) the solid blue curve marks the predicted most probable escape path as determined by minimizing the action of the OM functional, computed as
perturbation of the FW functional. The dashed blue curve depicts the trajectory that corresponds to the pivot point as describe in Section 5.3. The heat map
isplayed on the periodic orbit depicts the probability of an escape event occurring at that location, as described in Section 7. The red curve in Figure (b) provides a
D representation of the heat map displayed in Figure (a), and the vertical blue lines indicate the intersection of the orbits displayed in Figure (a) with the periodic
rbit.
Fig. 13. The solid red curve marks the predicted most probable escape path
as determined by minimizing the action of the OM functional, computed as a
perturbation of the FW functional. The blue heat map depicts the joint plot of
the exit locations of noisy paths on the periodic orbit.

for the Monte-Carlo simulations. We anticipate that, as noise is
reduced, it would move around the periodic orbit.

The exit points themselves on the periodic orbit Γ have been
emphasized so far. We can compare the full trajectories with
the Monte-Carlo simulations to see that the noisy trajectories do
indeed closely follow the OM selected trajectory. In Fig. 14, an
estimate of the time slices of the noisy trajectories that exit is
shown as a series of dots. A kernel density estimate is used to
estimate the time slice distributions. The trajectories are repa-
rameterized to begin on a given circle around the origin. This
circle is chosen large enough so as to make the different future
time slices of the family of noisy trajectories comparable. While
there is some arbitrariness in this choice of time parameteriza-
tion, it gives an appropriate picture of the time evolution of the
distribution of noisy trajectories. The OM-trajectory is depicted
again as the solid blue curve and it is seen to give a fairly good
approximation of the time slices.
15
The most important point to take away from Fig. 14 is not just
that the OM-point and the peak of the exit distribution match
on Γ , but that the OM-trajectory is matching the distribution of
noisy trajectories all along the path. Our interpretation is that the
OM-trajectory is acting as a guide for the exiting trajectories of
the stochastic system.

Furthermore, as the noise strength ε becomes smaller, the
theory of Day [2] suggests that the escape hatch would smoothly
rotate around the periodic orbit. We believe that it in fact jumps
to another weak part of the periodic orbit. Due to the symmetry
in the IVDP problem, this will be approximately one-half period
around the orbit. This jumping behavior will be repeated when ε
is reduced further.

This effect can be seen from the use of the OM functional.
Indeed, the OM point does jump, in a discontinuous fashion, to
the other side of the periodic orbit. This can be seen in panels (a)–
(c) of Fig. 15. Panel (a) gives the θ value on the initiating circle for
the OM point (note that Border distance is from the periodic orbit
so that it being 0 means that we are minimizing the functional up
to where they cross Γ ). At a certain value of ε there is a jump in
the θ-value of the OM point and the corresponding trajectories
are seen to change from that shown to panel (b) – to the right
of the jump – to that shown in panel (c) to the left, i.e., when
ε is smaller. Panels (d)–(e) show why this occurs by looking at
the value of the OM functional along the relevant FW orbits.
There is a local minimum to the right of the absolute minimum,
which corresponds to the OM point discussed in this paper. As
ε is decreased, the value at this local minimum decreases and
takes over as the absolute minimum at a certain value of ε. we
anticipate that there would be further minima to the right and
that these would correspond to further cycling.

9. Conclusion and discussion

We have developed a dynamical systems approach for com-
puting most probable escape paths where the boundary of the
basin of attraction is a periodic orbit, and the noise strength is
small but not vanishingly so. The key is the isolation of a subset
of the unstable manifold of the equilibrium solution surrounded
by the periodic orbit, which we call the River. This subset of
the unstable manifold is delineated by heteroclinic orbits which

connect the equilibrium solution to the periodic orbit. We use the
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Fig. 14. The OM-trajectory is depicted as a blue curve and the red dots represent the values of the kernel density estimates of the time slice distributions of exiting,
noisy trajectories.
Fig. 15. (a) Plot of the value of θ that corresponds to a global minimum of the Onsager–Machlup functional as determined as a perturbation of the Friedlin–Wentzell
functional, against the noise strength ε. (b) Plot of the global minimizer corresponding to ε = 4.7595e−2, which corresponds to θ = 4.616014. (c) Plot of the
global minimizer corresponding to ε = 2.2753e−3, which corresponds to θ = 4.670036. (d)–(f) Plot of the action of the Onsager–Machlup functional against θ for
ε = 4.7595e−2, ε = 3.000e−3, and ε = 2.2753e−3, respectively.
Maslov index to distinguish local minimizers (subject to a fixed
boundary condition) from other extremizing orbits. In addition,
we establish a connection between the folding of W u(O) and the
appearance of conjugate points along its trajectories.

Much previous work has been done in studying MPEPs over
periodic boundaries. In [13], the authors studied the structure of
the escape trajectories and showed that the Most Probable Es-
cape Path (MPEP) reaches the limit cycle asymptotically with no
momentum. In [47], the authors also noted that in the case of an
unstable limit cycle coexisting with a stable fixed point, the MPEP
spirals toward the limit cycle asymptotically and its ω-limit set is
the complete limit cycle; [3] showed that the MPEP does indeed
reach the limit cycle asymptotically and trajectories exiting are
16
necessarily, optimal trajectories that are small perturbations of
the MPEP.

For intermediate noise regimes, the cycling is hardly evident
and a specific subset of the boundary appears to be chosen
through which the primary leakage of the escaping paths occurs.
Our work is aimed at providing a theoretical underpinning for this
phenomenon.

The core elements of the methodology can be summarized as
follows:

1. Use the 4D Hamiltonian system derived from the Euler–
Lagrange equations from the Friedlin–Wentzell functional
to compute stable and unstable manifolds for the periodic
orbit in H = 0 and the equilibrium solution respectively.
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2. Compute the heteroclinic orbits that arise from the trans-
verse intersections of those invariant sets.

3. Identify a set of trajectories delineated by the heteroclinic
orbits where the unstable manifold of the equilibrium so-
lutions leaks out of the periodic orbit (when projected on
the (x, y)-space). We call this the River.

4. Use the Maslov index to weed out the trajectories that do
not correspond to local minimizers.

5. Find the end-point of the set of trajectories with Maslov In-
dex 0. This is the pivot point and is characterized by having
a conjugate point exactly when crossing the periodic orbit.

6. Compute the action using the Onsager–Machlup functional
as a perturbation to the Friedlin–Wentzell functional for
trajectories in the part of the river found in the previous
step.

7. Use the OM trough (global minimum) to compute the as-
sociated trajectory in the 4D Hamiltonian system originally
derived from the Friedlin–Wentzell functional. This we call
the OM-trajectory and is the MPEP for the given level of
noise.

8. Verify that this trajectory has no conjugate point before
hitting the boundary.

9. Finally, superimpose these trajectories on the converged
result for the distribution of the location of escape events
on the periodic orbit in order to validate our computations.

For the IVDP, we carried out this program and showed a
striking correspondence between the exit distribution and the
OM-trajectory. Moreover, the pivot point acts as an anchor for
the exit distribution with the exit set of the noisy trajectories
choosing a region not much beyond it.

Considerable insight can be gained from taking this dynamical
systems perspective. The phenomenon in which parts of the
unstable manifold of the fixed point cross the periodic does not
occur in gradient systems and is a consequence of the transverse
intersection of a stable (for the periodic orbit) and an unstable
(for the fixed point) invariant manifold.

Since the Freidlin–Wentzell functional is independent of noise,
these dynamical constructions do not depend on the noise
strength. Nevertheless, Large Deviation Theory can only be in-
voked to see how the Euler–Lagrange equations guide the noisy
trajectories in the limit of vanishing noise. In our case, that
theory predicts cycling. Our objective was to use the theoretical
constructs of Freidlin–Wentzell theory to show how cycling is
actually resisted when noise is made slightly larger.
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