
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Multi-Edge Server-Assisted Dynamic Federated
Learning With an Optimized Floating

Aggregation Point
Bhargav Ganguly, Seyyedali Hosseinalipour , Member, IEEE, Kwang Taik Kim , Senior Member, IEEE,

Christopher G. Brinton , Senior Member, IEEE, Vaneet Aggarwal , Senior Member, IEEE,
David J. Love , Fellow, IEEE, and Mung Chiang, Fellow, IEEE

Abstract— We propose cooperative edge-assisted dynamic
federated learning (CE-FL). CE-FL introduces a distributed
machine learning (ML) architecture, where data collection is
carried out at the end devices, while the model training is
conducted cooperatively at the end devices and the edge servers,
enabled via data offloading from the end devices to the edge
servers through base stations. CE-FL also introduces floating
aggregation point, where the local models generated at the devices
and the servers are aggregated at an edge server, which varies
from one model training round to another to cope with the net-
work evolution in terms of data distribution and users’ mobility.
CE-FL considers the heterogeneity of network elements in terms
of communication/computation models and the proximity to one
another. CE-FL further presumes a dynamic environment with
online variation of data at the network devices which causes a
drift at the ML model performance. We model the processes taken
during CE-FL, and conduct analytical convergence analysis of its
ML model training. We then formulate network-aware CE-FL
which aims to adaptively optimize all the network elements via
tuning their contribution to the learning process, which turns
out to be a non-convex mixed integer problem. Motivated by the
large scale of the system, we propose a distributed optimization
solver to break down the computation of the solution across the
network elements. We finally demonstrate the effectiveness of our
framework with the data collected from a real-world testbed.

Index Terms— Fog learning, federated learning, distributed
machine learning, cooperative learning, network optimization.

I. INTRODUCTION

RECENT advancements in smart devices (e.g., new chip-
sets in phones and smart cars) have made them capable

Manuscript received 25 March 2022; revised 17 September
2022 and 23 December 2022; accepted 9 March 2023; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Ioannidis. This
work was supported in part by NSF under Grant CNS-2146171, Grant
CCF1816013, and Grant EEC1941529; in part by NSC under Grant
W15QKN-15-9-1004; in part by ONR under Grant N000142112472; in
part by Cisco Inc.; and in part by ARL under Grant W911NF2020221.
(Bhargav Ganguly and Seyyedali Hosseinalipour contributed equally to this
work.) (Corresponding author: Seyyedali Hosseinalipour.)

Bhargav Ganguly and Vaneet Aggarwal are with the Department of Indus-
trial Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
bganguly@purdue.edu; vaneet@purdue.edu).

Seyyedali Hosseinalipour is with the Department of Electrical Engi-
neering, University at Buffalo-SUNY, Buffalo, NY 14228 USA (e-mail:
alipour@buffalo.edu).

Kwang Taik Kim, Christopher G. Brinton, David J. Love, and Mung Chiang
are with the Department of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN 47907 USA (e-mail: kimkt@purdue.edu;
cgb@purdue.edu; djlove@purdue.edu; chiang@purdue.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2023.3262482, provided by the authors.

Digital Object Identifier 10.1109/TNET.2023.3262482

Fig. 1. Conventional architecture of federated learning.

of collecting large amounts of data in real-time. In the example
case of smart cars, collection of more than 4 TB of data per
day is predicted [1]. Utilizing this data for training a machine
learning (ML) model (e.g., for driving assistance) is the main
motivation for implementing distributed ML techniques over
the network edge in 6G-and-beyond systems [2].

Federated learning (FL) has been promoted as one of the key
distributed ML techniques [3]. Its conventional model training
architecture [4] is depicted in Fig. 1. In FL, each device trains
a local model using its own dataset. The local models of
devices are periodically transmitted to a server and aggregated
together, e.g., via weighted averaging, to form a global model.
The server broadcasts the global model among the devices to
initiate the next round of local model training. FL keeps the
dataset of the devices local, which is desired in applications
with user privacy concerns, e.g., healthcare, and only uses the
server as an aggregator. However, implementing FL using its
conventional architecture over large-scale wireless networks
with heterogeneous communication/computation capabilities
faces major challenges discussed next.

A. Motivations and Challenges
As depicted in Fig. 2, we consider the implementation of

distributed ML over a network of multiple user equipments
(UEs), multiple edge data centers (DCs), and multiple base
stations (BSs), which is a realistic model for the network
edge [5]. Our foremost goal is to introduce a new ML model
training architecture to execute distributed ML across the
continuum of UEs to DCs. We further optimize the network-
element orchestration, through a distributed algorithm, to have
an efficient distributed ML model training procedure. Our
system design is motivated by challenges faced with the
implementation of FL model training architecture over our
hierarchical network of interest summarized below:

(C1) Conventional FL neglects the computation power of
the DCs and conducts ML model training solely at
the UEs. Meanwhile, some of the UEs may have large
volumes of data they are unable to process. At the
same time, these resource-constrained UEs might be
located near BSs with access to powerful DCs that can
efficiently process data. Also, excessive computation

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4266-4000
https://orcid.org/0000-0001-7089-7026
https://orcid.org/0000-0003-2771-3521
https://orcid.org/0000-0001-9131-4723
https://orcid.org/0000-0001-5922-4787

2 IEEE/ACM TRANSACTIONS ON NETWORKING

power of DCs can out-weigh the added latency of data
transfer (i.e., the latency caused by data transfer from
the straggling UEs to the DCs can be compensated by
faster data processing at DCs).

(C2) It is not clear which DC should be selected as the
model aggregator since the distribution of data changes
across time at the UEs. Also, UEs have different
channels to the BSs, while different BSs have different
delay of data/parameter transfer to different DCs.

(C3) There exists heterogeneity across the DCs and the UEs
in terms of computation and communication capability.
Thus, model training cannot be conducted arbitrary
across the network elements. Also, it is not practical
to consider the existence of a central controller with
global knowledge about the characteristics of the UEs,
BSs, and DCs that can solely obtain all the network
orchestration decisions.

(C4) Although data offloading is not considered in the
conventional FL architecture [6], it is a viable mech-
anism for many applications of FL. This is due to
the fact that in many FL applications users do not
have strict privacy concerns on their local data. For
example, autonomous driving is one of the envisioned
applications of FL, wherein data collected by the cars
are processed for training [7]. In such a setting, with
some form of incentivization (e.g., cashback points and
gas credits), vehicle users may become willing to share
their non-private data such as automobile sensor mea-
surements and pictures of traffic signs. Furthermore,
in privacy-sensitive applications, FL can be combined
with research in private representation learning [8],
which aims to tackle the privacy concerns associated
with the transfer of raw data by obfuscating sensitive
information attributes of the users. Also, encryption
methods [9] can help to facilitate end-to-end data
transfer between end devices and trusted servers.

To respond to the aforementioned challenges, we propose
cooperative edge-assisted dynamic/online federated learning
(CE-FL). CE-FL addresses (C1)&(C4) via exploiting the
computation capability of the edge servers in ML model
training, and considering cooperative process of data points
between the end devices and the servers, where the devices
offload a portion of their datasets to the BSs, which in turn
disperse the received data across the servers. To address (C2),
CE-FL introduces the idea of floating aggregation point,
where the edge server in charge of aggregating the models
varies from one model training round to another and is chosen
efficiently based on the dynamics of data variations across
the devices captured via model/concept drift, and the innate
characteristics of the servers, BSs, and the end devices. To
account for (C3), CE-FL considers heterogeneity of (i) the
number of stochastic gradient descent (SGD) iterations used
for model computation across the end devices and the edge
servers, (ii) the mini-batch sizes of the SGDs, and (iii) the
load and power consumption models across the devices and
the servers. Finally, CE-FL introduces a distributed network
orchestration technique, under which the contribution of all
the network elements to ML model training (e.g., number of
local SGD iterations, data offloading configuration and routing
across the network) is optimized.
CE-FL conducts cooperative model training exploiting

computation capability of both the devices and the servers,

Fig. 2. A schematic of our network model. We consider a three tiered network
consisting of end devices, base stations, and edge servers.

while achieving (a) a balanced computation load in the device
layer and edge server layer; (b) an efficient data disper-
sion/routing from the device layer to the BS layer and from
the BS layer to the edge server layer; and (iii) an efficient
parameter aggregation via selecting a floating aggregation
point.

B. Related Work
Conventional FL. FL has attracted tremendous attention

from both ML and wireless networking communities. In
the former literature [10], [11], fundamental convergence of
FL and a variety of new distributed learning techniques
inspired by FL have been invented, e.g., fully decentral-
ized learning [11]. In the networking literature [12], [13],
[14], [15], [16], researchers have been mostly studying the
performance of FL under communication and computation
heterogeneity. For example, researchers have studied the model
training performance under noisy channels [14], limited energy
devices [12], limited bandwidth [13], and wireless aggregation
of signals over the air [15]. Also, device sampling [16]
has been topics of research. Furthermore, a part of litera-
ture focuses on adapting FL for new technologies, such as
unmanned aerial vehicles [17], [18] and massive MIMO [19].
As compared to this literature, we consider a different network
model focusing on the distribution of ML model training
across the UE-BS-DC hierarchy.

New Network Architectures for FL. Some recent
works promote migrating from FL to new distributed
ML architectures. In [20], fog learning is proposed
that incorporates the cooperation among the devices
and multi-layer architecture of fog systems into ML.
In [21], collaborative FL via device-to-device (D2D)
communications for model relaying is introduced. In
[22], [23], semi-decentralized/hybrid FL is proposed, which
augments the global aggregations of FL with local aggrega-
tions conducted via D2D communications. In [24], democ-
ratized FL is studied to exploit the innate capability of
heterogeneous devices to train an ML model. Finally, par-
allel successive learning has been developed in [25] as a
dynamic/online cooperative learning method that optimizes
the utilization of D2D communications according to device
heterogeneity. We contribute to this literature via proposing a
novel ML network architecture consisting of multiple UEs,
BSs, DCs, for which we study efficient network-element
orchestration.

Hierarchical FL. One of the recent architectures of FL has
been hierarchical FL [26], [27], [28]. The literature in this area
is focused on managing the multi-stage model aggregations
across the end device-to-cloud continuum. In this literature,
researchers aim to reduce the latency of model training via

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

GANGULY et al.: MULTI-EDGE SERVER-ASSISTED DYNAMIC FL 3

conducting multiple rapid local aggregations at edge servers
or lower layers of the network before conducting one global
aggregation at the cloud server. However, they only use the
edge/cloud servers as “model aggregators” which do not con-
duct any data processing as in conventional FL. This neglects
the abundant computation capability of servers.

FL with Data Offloading. Although data sharing is not
considered in the original FL architecture [6], [29], it has
been promoted and investigated by the current literature.
In the popular work [30], a data sharing mechanism is
deployed at the edge devices to mitigate the performance drop
encountered as a consequence of non-i.i.d. local datasets. In
[20] and [16], device-to-device (D2D) data offloading is
leveraged to improve the efficiency of FL over heterogeneous
networks. In [7], a data offloading scheme is proposed for FL
to assist straggler vehicles through offloading their data to edge
servers. Compared to these works, we build a novel distributed
network orchestration scheme, in which the devices offload a
portion of their data to edge servers through base stations. In
particular, we consider joint data processing at the end devices
and edge servers. This leads us to consider joint load-balancing
across the end devices and the edge servers to process the data
for the ML task, and further consider optimal data routing
to transfer data across the network hierarchy. We further
formalize the floating aggregator notion into the learning
architecture of FL, where the aggregator server is carefully
selected to optimize a trade-off between model performance,
energy consumption, and delay. We also develop a distributed
network element orchestration scheme to optimize ML model
training. These make our system model and analysis unique
and different from existing works.

C. Outline and Summary of Contributions
Our contributions can be summarizes as follows:

• We introduce and develop cooperative edge-assisted multi-
edge server FL (CE-FL). We analytically characterize the
convergence characteristics of CE-FL, which leads to new
convergence bounds in distributed ML.

• We model the processes taken through CE-FL and inves-
tigate intrinsic heterogeneities existing at different network
layers. Our modeling gives insights on finding the opti-
mized device and server orchestration scheme to train an
ML model, which is carried out in conjunction with the
floating aggregator selection, to optimize the performance
of CE-FL.

• We propose network-aware CE-FL optimization problem
that captures the trade offs between ML performance,
energy consumption, and delay. The optimization problem
aims to configure the macro-decisions across the network
(e.g., data offloading and routing configuration across the
network, and the floating aggregator), which leads to
(i) load balancing across the devices and servers, and
(ii) optimized data routing across the network layers. It
also obtains the micro-decisions, which tunes each network
element (e.g., the CPU frequency cycles of the devices,
number of local SGD iterations and SGD min-batch sizes
at both end devices and edge servers).

• We carefully investigate the characteristics of the optimiza-
tion problem, which turns out to be a highly non-convex
mixed-integer problem. We propose a distributed network
optimization solver with drawing a connection between two
methods of surrogate function, used in successive convex

optimization, and consensus-based optimization. We further
study the optimality of our optimization solver. To the best
of our knowledge, our developed solver is among the first
decentralized device orchestration mechanisms in the area
of network-aware distributed machine learning.
In the following, we first describe the hierarchical network

structure among the UEs, BSs, and DCs, as well as conducting
distributed ML under a given network element orchestration
scheme in Sec. II. In Sec. III, we present our theoretical
results on the ML model convergence behavior of CE-FL. In
Sec. IV, we aim to optimize the network orchestration scheme
involving ML training, data and parameter offloading, and
communication/computations overheads through formulating
a network optimization problem. We then develop a decen-
tralized solver to optimize device orchestration for distributed
ML in Sec. V. In Sec. VI, we present our ablation study and
proof-of-concept experiments to demonstrate how the tuned
parameters manifested themselves in network costs and ML
performance. Finally, in Sec. VII we conclude the paper.

II. SYSTEM MODEL AND MACHINE LEARNING TASK

In this section, first, we describe the network structure of
our interest (Sec. II-A). Second, we introduce the dynamic
model tracking problem (Sec. II-B). Third, we provide an
overview of our proposed cooperative distributed ML method-
ology (Sec. II-C). Fourth, we detail the ML model training
(Sec. II-D). We finally model communications, computations,
and the floating aggregator (Sec. II-E). A summary of the
key mathematical symbols that we will introduce throughout
the paper can be found in Appendix A in the supplementary
material.

A. Network Architecture
We consider a hierarchical edge/fog computing network

[5], [20], which consists of multiple user equipments (UEs),
multiple base stations (BSs), and multiple edge server/data
centers (DCs). A schematic of our network is depicted in
Fig. 2. The UEs, BSs, and DCs are collected via the sets N ,
B, and S , respectively. Each user UE n ∈ N can potentially
upload/receive data to/from all of the BSs although connecting
to some of the BSs may require prohibitively large transmit
power. Also, each BS can potentially upload/receive data
to/from all the DCs, although data transfers between some
BS-DC pairs may impose large delay (e.g., when data needs
to go through multiple switch/routers before reaching the
destination).

Our proposed framework can be considered as an intercon-
nection between mobile edge computing [5] and distributed
ML, where the resource limited UEs aim to exploit the
abundant resource of DCs to conduct an ML task with a high
efficiency.

B. Dynamic/Online Model Tracking Problem
We consider a slotted time representation of the system

dynamics, where t ∈ N∪{0} denotes an arbitrary time index.
In our network each t is associated with one global model
training and aggregation round which will be described later.
We assume distributed model training for an ML task, where
the data is collected at the UEs at the bottom layer of our
network hierarchy. At each time instant t, let D(t)

n denote the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

dataset at UE n ∈ N consisting of D
(t)

n ≜ |D(t)

n | data points.
In contrast to most of the existing literature on federated
learning, we consider a dynamic environment, in which the
number of data points and subsequently the distribution of data
across the clients may vary over time [25]. Each data point
ξ ∈ D(t)

n , ∀n, is associated with a feature vector, e.g., RGB
colors of a picture, and a label, e.g., the weather condition in
the picture.

Let f(x; ξ) denote the loss of the ML model (e.g., a neural
network classifier) on data point ξ parameterized by model
parameter x ∈ RP , where P denotes the dimension of the
model parameter. At each time instant t, for a model parameter
x, each device n ∈ N is associated with a local loss function

F
(t)

n (x) =
1

D
(t)

n

∑
ξ∈D(t)

n

f(x; ξ). (1)

The instantaneous global loss function of the system is

F (t)(x) =
1

D(t)

∑
n∈N

D(t)
n F

(t)

n (x), (2)

where D(t) =
∑

n∈N D
(t)

n is the total number of data points.
The goal of the dynamic/online model tracking is to mini-

mize the instantaneous global loss function, i.e., at each time
instant t, it aims to find the model parameter x(t)⋆

such that
x(t)⋆

= arg min
x∈RP

F (t)(x). (3)

Let T denote the duration of ML model training and [T] ≜
{0, . . . , T−1}. It is evident that the sequence {x(t)⋆}t∈[T] is a
function of devices local dataset dynamics. In our ML model-
ing, we quantify dynamics of data distributions at the devices
via introducing model/concept drift in Definition 1 in Sec. III.
Model/concept drift draws a mathematical connection between
the ML model performance and ML model training delay.

The ML training formulation described by (3) aims to
obtain optimal instantaneous models for conducting down-
stream tasks in real-time suitable for time-varying datasets at
the devices [31]. We will later incorporate the performance of
online model training obtained in Sec. III into our network
element orchestration formulation in Sec. IV, wherein the
inherent trade-off between instantaneous ML performance,
energy consumption, and delay is optimized.

C. CE-FL Overview

We introduce cooperative edge-assisted federated learning
(CE-FL) to conduct distributed ML over our hierarchical
network. To solve (3), in CE-FL, part of the dataset of the
UEs are offloaded to the DCs. CE-FL then simultaneously
exploits the computation resources at the UEs (bottom layer)
and the DCs (top layer) for ML model training, while the
BSs (middle layer) are used for data and model parameter
relaying. In particular, CE-FL encompasses four processes:
(i) UEs data offloading to BSs, (ii) BSs dispersing data among
DCs, (iii) UEs and DCs conducting model training, and (iv)
model parameter transfer/pulling and aggregation at a floating
aggregation DC, which are describe below.
1) Data offloading from UEs to BSs: At time instant t, each

UE offloads/disperses part of its generated data across a
subset of BSs. After the data offloading process, we denote
the collected dataset at the each BS b ∈ B via D(t)

b and the
remaining dataset at each UE n ∈ N by D(t)

n ⊆ D
(t)

n .

2) Data relaying from BSs to the DCs: Each BS
offloads/disperses its collected data among a subset
of DCs. Since BSs do not have computation power, no
data is kept at the BSs. We use D(t)

s to denote the dataset
collected at DC s ∈ S .

3) ML model training at UEs and DCs: Each UE executes
ML model training on the its remaining dataset. Also, ML
model training begins at the DCs once BSs relay their data.

4) Parameter transfer across the network and aggregation at
a floating point: After model training ends, the local ML
models of UEs and DCs are aggregated at a floating DC,
which varies from one model training round to another. The
aggregator is adaptively chosen, while taking into account
energy and delay of parameter transfer across the network.
We refer to the set of UEs and DCs as data processing units

(DPU) and use index i ∈ N∪S to refer to an arbitrary UE/DC.
Next, we will carefully model and formulate the four processes
outlined above. We first describe the local model training for
a given dataset at the UEs and DCs and then describe how the
data and parameter offloading and relaying are carried out.

D. Distributed Model Training in CE-FL

As described above, in CE-FL, parts of the local datasets
of the UEs gets transferred to the DCs through BSs and DCs
possess a collected dataset at each time (model training round)
t. We will describe how the data gets transferred in Sec. II-E
and obtain the optimal data configuration and routing across
the network in Sec. IV. In the following, we describe the
procedure carried out across the UEs and DCs to conduct ML
model training for an arbitrary data configuration across them.

To capture the performance of the ML model across UEs
and DCs, we describe the local ML loss at each DPU (i.e., a
UE or a DC) i ∈ N ∪ S at time t as1

F
(t)
i (x) =

1

D
(t)
i

∑
ξ∈D(t)

i

f(x; ξ). (4)

Since (2) measures the ML loss per data point and data points
do not get generated and lost during the data transfer stage of
CE-FL, it is straightforward to verify that F (t)(x) in (2) can
be equivalently written as F (t)(x) = 1

D(t)

∑
i∈N∪S

D(t)
i F

(t)

i (x).

To solve (3), CE-FL orchestrates both UEs and DCs in local
ML model training, where each DPU i aims to minimize its
local loss F (t)

i (x) given by (4) via local ML model training.
To conduct local ML model training we exploit the FedProx
method [32], which consists of a series of local stochastic
gradient descent (SGD) iterations at each DPU i on the
regularized local loss using its local dataset D(t)

i . FedProx
is shown to be particularly effective for handling non-iid data
across the clients which is the case in our system of interest.
To cope with the communication/computation heterogeneities
of network elements, CE-FL uses FedProx with different
number of local SGD iterations and mini-batch sizes across
the network elements, which is among the first in literature.

In CE-FL, the ML model training starts with an initial
model broadcast x(0) from a predetermined DC across all the
DPUs. Each subsequent global model training round t ≥ 1
starts with broadcasting of a global model x(t) from the
respective elected floating aggregation DC. Given x(t), each

1As compared to (1), the loss in (4) is defined on the actual dataset under
which the ML model training is carried out in the index of the summation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

GANGULY et al.: MULTI-EDGE SERVER-ASSISTED DYNAMIC FL 5

DPU i first initializes its local model parameter as x(t,0)
i =

x(t) and then conducts γ(t)
i ∈ N local descent updates on its

regularized local loss gi(x,x(t)) = F
(t)
i (x) + µ

2 ∥x − x(t)∥2,
which ensures the closeness of the local model to the global
model x(t) controlled by regularization parameter µ. The
evolution of the local model of each DPU i during the local
descent iterations is given by

x(t,k)
i = x(t,k−1)

i − η∇̃gi(x
(t,k−1)
i ,x(t)), k = 1, · · · , γ(t)

i ,
(5)

where η denotes the step size and ∇̃gi(x
(t,k−1)
i ,x(t)) is the

stochastic gradient of the regularized local loss given by

∇̃gi(x
(t,k−1)
i ,x(t)) = ∇̃F (t)

i (x(t,k−1)
i) + µ(x(t,k−1)

i − x(t)).
(6)

The stochastic gradient of local loss function ∇̃F (t)
i (x(t,k−1)

i)
is obtained via sampling a mini-batch (i.e., collection) of data
points D(t,k−1)

i ⊆ D(t)
i with size D(t,k−1)

i = m
(t)
i D

(t)
i , where

m
(t)
i ∈ (0, 1] denotes the mini-batch fraction, as follows:

∇̃F (t)
i (x(t,k−1)

i) =
1

m
(t)
i D

(t)
i

∑
ξ∈D(t,k−1)

i

∇f(x(t,k−1)
i ; ξ). (7)

Replacing (6) in (5) and recursively expanding the result
implies the following relationship between the instantaneous
local model and the initial local model at each DPU i:

x(t,k)
i − x(t) = −η

k−1∑
ℓ=0

a
(t)
i,ℓ∇̃F

(t)
i (x(t,ℓ)

i), (8)

where a
(t)
i,ℓ = (1 − ηµ)γ

(t)
i −1−ℓ. We further define a(t)

i =[
a
(t)
i,0, · · · , a

(t)

i,γ
(t)
i −1

]
.

At the end of local model training period, each DPU i
computes its accumulated gradient, which using (8), can be
obtained based on the difference between the final local model
parameter and the initial model parameter as

γ
(t)
i −1∑
ℓ=0

a
(t)
i,ℓ∇̃F

(t)
i (x(t,ℓ)

i) =
(
x(t) − x(t,γ

(t)
i)

i

)
/η, (9)

and subsequently obtains its normalized accumulated gradient

d(t)
i =

1

∥a(t)
i ∥1

γ
(t)
i −1∑
ℓ=0

a
(t)
i,ℓ∇̃F

(t)
i (x(t,ℓ)

i). (10)

The normalization is a necessity to ensure that that the
global ML model is not biased towards the DPUs that conduct
more local SGD iterations [33]. Since DPUs possess different
number of datapoints, each DPU i sends vector D

(t)
i d(t)

i ,
called scaled accumulated gradient, to the selected floating
aggregation server. We assume that each BS can receive scaled
accumulated gradients of multiple UEs,2 in which case it sums
all the received vectors together to keep the dimension of the
transmitted vector to the aggregation server fixed (e.g., see
Fig. 3 of [20]). The aggregation DC finally obtains the next
global model parameter via first summing all the received
vectors together to obtain

∑
i∈N∪S D

(t)
i d(t)

i and then scaling
the resulting vector to carry out the update

x(t+1) = x(t) − ϑη 1
D(t)

∑
i∈N∪S

D
(t)
i d(t)

i , (11)

2Our modeling in Sec. II-E ensures that each UE is associated with one
BS during scaled accumulated gradient transfer to avoid reception of multiple
replicas of the gradient of the same UE at the aggregation server.

where ϑ is a scaling factor introduced to compensate for the
normalization introduced in (10).

Remark 1: In this work, we use a single global model
for the downstream task at the devices, which is a common
approach in FL literature [10], [11], [12], [13]. It is worth
mentioning that personalized FL, which aims to learn a global
ML model from which local models are obtained specific to the
local distribution of data at the devices [34], would be another
potential approach. We leave the extension of the framework
of CE-FL to support personalized FL as future work.

E. Communication, Computation, and Floating Aggregation
We next describe the models for data/parameter communi-

cations, SGD local computations, and floating aggregation.
1) UEs-BSs Communications: UE-to-BS communications

are carried out through wireless channels. For the uplink
communications, we consider that the data rate between UE
n ∈ N and BS b ∈ B at time instant t is given by

R
(t)
n,b = V

(t)
n,b log2

(
1 + P

(t)
n,b|h

(t)
n,b|

2
/
(ϕ(t)

n,b)
2
)
, (12)

where V (t)
n,b is the bandwidth, (ϕ(t)

n,b)
2 = N0V

(t)
n,b is the noise

power with N0 denoting the noise spectral density, P (t)
n,b is

the transmit power, and h(t)
n,b is the channel gain between the

respective UE-BS pair.
Remark 2: Interference caused by concurrent UE transmis-

sions in shared spectrum bands can also impact the data
rate expression in (12), which would add a coupling among
transmit powers in the optimization in Sec. IV. We do not
incorporate interference management in our analysis, similar
to works on computation offloading in multi-BS systems, multi-
DC mobile edge computing systems [5], and related work
in the FL literature focused on MAC layer design [13]. In
Appendix K in the supplementary material, we discuss how our
methodology can be complemented with a network interference
management framework.

Similarly, for the downlink, the data rate between BS b and
UE n is given by

R
(t)
b,n = V

(t)
b log2

(
1 + P

(t)
b |h

(t)
b,n|

2
/
(ϕ(t)

b)2
)
, (13)

where V (t)
b denotes the downlink channel bandwidth, Pb

(t) is
the BS b transmit power, h(t)

b,n is the channel gain between
the respective BS and UE, and (ϕ(t)

b)2 = N0V
(t)
b is the

noise power. Note that the BS-to-UEs communications are
performed in broadcast mode and thus the BS does not use
different transmit powers to transmit signals to different UEs.

2) BSs-DCs Communications: BS-to-DC communications
are mostly enabled via wireline communications. We consider
the deployed data rate R(t)

b,s for communication from BS b ∈ B
to DC s ∈ S , which is later optimized. Furthermore, for the
uplink communication channel between BSs-DCs we denote
the maximum rate over the link between an arbitrary (b, s)
pair as Rmax

b,s . Also, the maximum capacity, in terms of the
arriving data rate, of an arbitrary server is denoted by Rmax

s .
Therefore, we have the following constraints pertaining to the
uplink rates at global aggregation round t:

0 ≤ R(t)
b,s ≤ R

max
b,s , ∀b ∈ B, ∀s ∈ S, ∀t ∈ [T], (14)∑

b∈B

R
(t)
b,s ≤ R

max
s ∀s ∈ S, ∀t ∈ [T]. (15)

We further let R(t)
s,b denote the data rate for communication

from DC s ∈ S to BS b ∈ B in downlink. Since the downlink

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

is only used for the broadcast of ML model parameter, the
capacity constraints are not considered.

3) DCs-DCs Communications: Similar to BS-to-DC com-
munications, DC-to-DC information exchange mostly occur
over wirelines. We let R(t)

s,s′ denote the data rate between DC
s and DC s′ at time instant t, which is time varying due
to the congestion over the links. In general, R(t)

s,s′ ̸= R
(t)
s′,s,

∀s, s′ ∈ S . Similarly, since DC-to-DC communications are
only used for ML parameter aggregations and broadcasting,
the capacity constraints are not considered.

4) Data Configuration at the UE Devices, BSs, and DCs:
To capture the data offloading at each UE n, we introduce
a continues variable ρ

(t)
n,b ∈ [0, 1] to denote the fraction of

dataset of that UE which is offloaded to BS b at time t, where∑
b∈B ρ

(t)
n,b ≤ 1, ∀n ∈ N since some part of the dataset might

be kept local. Given the initial dataset at UE n (i.e., D(t)

n with
size D

(t)

n) and the remaining dataset at UE n (i.e., D(t)
n ⊆ D

(t)

n

with size D(t)
n ≜ |D(t)

n |), let D(t)
n,b ⊆ D

(t)
n with size D(t)

n,b ≜

|D(t)
n,b| denote the offloaded dataset from UE n to BS b, where

D
(t)
n,b = D

(t)

n ρ
(t)
n,b, D(t)

n =

(
1−

∑
b∈B

ρ
(t)
n,b

)
D

(t)

n . (16)

The dataset collected at each BS b ∈ B denoted by D(t)
b is the

union of the received data points from UEs with size

D
(t)
b ≜ |D(t)

b | =
∑
n∈N

ρ
(t)
n,bD

(t)

n . (17)

The BS then disperses all of its collected data across a subset
of DCs since it is assumed to have no data processing power.
At time t, let ρ(t)

b,s ∈ [0, 1] denote the fraction of dataset of
BS b ∈ B offloaded to DC s ∈ S , where

∑
s∈S

ρ
(t)
b,s = 1. Let

D(t)
b,s ⊆ D

(t)
b denote the portion of dataset transferred from BS

b to DC s and D(t)
s the dataset collected at DC s. We have

D
(t)
b,s ≜ |D(t)

b,s|=ρ
(t)
b,sD

(t)
b , D(t)

s ≜ |D(t)
s |=

∑
b∈B

ρ
(t)
b,sD

(t)
b . (18)

Each DPU i ∈ N ∪ S (i.e., a UE or a DC) subsequently
uses its local dataset D(t)

i (i.e., D(t)
n in case of UE n and D(t)

s

in case of DC s) to conduct ML model training.
Remark 3: We note that some recent works have intro-

duced GANs in federated learning [35], [36]. However, GAN
architectures, given their long training duration, do not pro-
duce favorable results upon being implemented for time-
varying data distributions. Consequently, since we consider
dynamic/time-varying data distributions at the devices, it is
not straightforward to replace the data offloading with GAN
architectures at the DCs to reproduce the data of the UEs. Nev-
ertheless, designing of GAN models that require short training
time at the DCs and their effectiveness on reconstruction of
online data at the devices are interesting future directions.

5) Energy Consumption and Delay Modeling: Energy
consumption and delay are incurred by two mechanisms:
(i) data/parameter transfer across the network, and (ii) data
processing for ML model training across the network. We
model these two mechanisms in the following.

Data and Gradient Transfer Across the Network. Let
βD and βM denote the number of bits used to represent a data
point and vector of scaled accumulated gradient, respectively.
The delay of data and gradient transfer from UE n to BS b

denoted by δD,(t)
n,b and δM,(t)

n,b , respectively, are

δ
D,(t)
n,b = βDD

(t)

n ρ
(t)
n,b/R

(t)
n,b, δ

M,(t)
n,b = βM/R

(t)
n,b. (19)

Also, the energy consumption of data and model transfer from
UE n to BS b denoted by ED

n,b and EM
n,b, respectively, are

E
D,(t)
n,b = δ

D,(t)
n,b P

(t)
n,b, E

M,(t)
n,b = δ

M,(t)
n,b P

(t)
n,b. (20)

Similarly, the delay of data and parameter transfer from BS
b to DC s denoted by δD,(t)

b,s and δM,(t)
b,s , respectively, are

δ
D,(t)
b,s = βDD

(t)
b ρ

(t)
b,s/R

(t)
b,s, δ

M,(t)
b,s = βM/R

(t)
b,s. (21)

Thus, assuming that the data transfer from the BSs to the DCs
starts after reception of all the datapoints at all the BSs,3 the
delay of data collection at each DC s ∈ S is given by

δD,(t)
s = max

b∈B
{δD,(t)

b,s }+ max
n∈N ,b∈B

{δD,(t)
n,b }. (22)

The energy consumption of data and parameter transfer from
BS b to DC s denoted by ED,(t)

b,s and EM,(t)
b,s , respectively, are

E
D,(t)
b,s = δ

D,(t)
b,s P

(t)
b,s , E

M,(t)
b,s = δ

M,(t)
b,s P

(t)
b,s , (23)

where P
(t)
b,s is the transmit power consumption (during one

second period) over the outgoing link from BS b to DC s.
Communications between two DCs are only conducted for

parameter transfer and aggregation in our system. The delay
and energy associated with parameter transfer between two
DCs s, s′ ∈ S denoted by δM,(t)

s,s′ and EM,(t)
s,s′ , respectively, are

δ
M,(t)
s,s′ = βM/R

(t)
s,s′ , E

M,(t)
s,s′ = δ

M,(t)
s,s′ P

(t)
s,s′ , (24)

where P
(t)
s,s′ is the transmit power consumption over the

outgoing wirelines from DC s to DC s′ (δM,(t)
s,s′ = 0 if s = s′.).

Data Processing Across the Network. For UE n, let f (t)
n ∈

[fmin
n , fmax

n] denote the CPU frequency used to process the
datapoints at time t and cn denote the number of required
CPU cycles to process one data point. Then, the delay and
energy consumption of data processing at UE n are [13]

δP,(t)
n = cnγ

(t)
n m(t)

n D(t)
n /f (t)

n , (26)

EP,(t)
n = cnγ

(t)
n m(t)

n D(t)
n (f (t)

n)2αn/2. (27)

In (26) and (27), γ(t)
n is the number of SGD iterations at

the device, m(t)
n ∈ [0, 1] is the mini-batch ratio (i.e., the

fraction of D(t)
n data points processed at the device in each

SGD iterations), and αn/2 is the device effective chip-set
capacitance.

Also, for each DC s, we adopt the DC data processing
model [37], [38], where each DC s consists of Ms identical
server machines. Each machine is assumed to operate at
the speed of processing z

(t)
s data points per second. Let Cs

denote the processing capacity of the machines at DC s (i.e.,
z
(t)
s ≤ Cs). The delay and energy of data processing at DC s

are

δP,(t)
s =

γ
(t)
s m

(t)
s D

(t)
s

Msz
(t)
s

, (28)

EP,(t)
s = δP,(t)

s ×

ϱ(z(t)
s

Cs

)2

P sMs+(1− ϱ)P sMs

 , (29)

where γ(t)
s is the number of SGD iterations, ms(t) ∈ [0, 1] is

the mini-batch ratio, (1−ϱ) is the fraction of power consumed
in idle state (typically around 0.4), and P s is the peak energy
consumption of a server belonging to DC s.

3This assumption is imposed to make the formulation more tractable.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

GANGULY et al.: MULTI-EDGE SERVER-ASSISTED DYNAMIC FL 7

Modeling the Floating Aggregation. To capture the model
aggregation at the floating aggregation DC, we let the binary
indicator I(t)

s ∈ {0, 1} identify whether DC s aggregates the
ML model parameters at t (I(t)

s = 1) or not (I(t)
s = 0). We

assume that upon completion of the local model training, each
UE n offloads its scaled accumulated gradient to a BS, who
then aggregates/sums the received gradients and relays the
result to the aggregation DC. For the uplink, let indicator I(t)

n,b
take the value of 1 if UE n offloads its gradient to BS b after
the model training, and 0 otherwise. Also, for the downlink,
let indicator I(t)

b,n take the value of 1 if UE n receives the
aggregated model parameters from BS b and 0 otherwise.4

We then express the delay and energy consumption of
transferring model parameters from UE n to the aggregation
server, which are denoted by δ

A,(t)
n and E

A,(t)
n , respectively,

as
δA,(t)
n =

∑
b∈B

δ
M,(t)
n,b I

(t)
n,b +

∑
b∈B

∑
s∈S

δ
M,(t)
b,s I(t)

s I
(t)
n,b, (30)

EA,(t)
n =

∑
b∈B

E
M,(t)
n,b I

(t)
n,b +

∑
b∈B

∑
s∈S

E
M,(t)
b,s I(t)

s I
(t)
n,b. (31)

Also, the delay and energy consumption of transferring model
parameters from DC s to the aggregator server are given by

δA,(t)
s =

∑
s′∈S

δ
M,(t)
s,s′ I

(t)
s′ , EA,(t)

s =
∑
s′∈S

E
M,(t)
s,s′ I

(t)
s′ . (32)

Since transferring of gradient across the network occurs
in parallel, the delay and energy of gradient aggregation
at the aggregator DC (i.e., obtaining

∑
i∈N∪S D

(t)
i d(t)

i and
conducting (11)) can be written as

δA,(t) = max
{

max
n∈N
{δA,(t)

n + δP,(t)
n }︸ ︷︷ ︸

(a)

,

max
s∈S
{δD,(t)

s + δP,(t)
s + δA,(t)

s }︸ ︷︷ ︸
(b)

}
, (34)

EA,(t) =
∑
n∈N

EA,(t)
n +

∑
s∈S

EA,(t)
s . (35)

4Note that BSs broadcast the received aggregated global model from the
floating aggregator DC. Thus, each UE may receive the aggregated global
model from multiple BSs. Thus, introducing I

(t)
b,n will ensure the association

of a UE to at least one BS for global parameter reception.

In (34), term (a) corresponds to the time that it takes for the
reception of all the gradients of the UEs, which consists of
local processing time and uploading the resulting gradients to
the aggregating DC from the UEs. Also, term (b) captures the
time required for the reception of the gradients of the DCs
at the aggregator DC, which consists of data reception time
at the DCs, local processing time at the DCs, and uploading
the resulting gradient to the aggregation DC. Note that data
offloading to the BSs from the UEs and local processing at the
UEs can be conducted in parallel, which is the reason behind
the existence of the outer max function in (34) (e.g., UEs can
process their local data while their offloaded data is transferred
across the network hierarchy to reach the designated DCs).

After aggregation DC aggregates the models via (11), it
propagates the resulting model to the BSs and the DCs. The
delay and energy consumption of global parameter reception
at BS b from the floating aggregator DC are given by

δ
R,(t)
b =

∑
s∈S

δ
M,(t)
s,b I(t)

s , E
R,(t)
b =

∑
s∈S

E
M,(t)
s,b I(t)

s , (36)

respectively. After arriving at BSs, the global model is broad-
cast by each BS with the delay and energy consumption of

δ
B,(t)
b = max

n∈N

{
δ
M,(t)
b,n I

(t)
b,n

}
, E

B,(t)
b = δ

B,(t)
b P

(t)
b , (37)

respectively. Also, the delay and energy consumption of
parameter reception at DC s from the aggregation DC are

δR,(t)
s =

∑
s′∈S

δ
M,(t)
s′,s I

(t)
s′ , ER,(t)

s =
∑
s′∈S

E
M,(t)
s′,s I

(t)
s′ , (38)

respectively. The overall delay and energy consumption of
parameter reception from the aggregation DC are

δR,(t) = max
{

max
b∈B
{δR,(t)

b + δ
B,(t)
b },max

s∈S
{δB,(t)

s }
}
, (39)

ER,(t) =
∑
b∈B

[
E

R,(t)
b + E

B,(t)
b

]
+
∑
s∈S

ER,(t)
s , (40)

respectively.

III. ML CONVERGENCE ANALYSIS OF CE-FL

We next investigate the ML model performance obtained via
CE-FL. In our analysis, we make the following assumptions:

Assumption 1 (Smoothness): For each DPU i ∈ N ∪
S , the local loss function is L-smooth, i.e., ∥∇F (t)

i (x) −
∇F (t)

i (y)∥ ≤ L∥x − y∥, ∀x,y ∈ Rp, where ∥.∥ denotes the
2-norm.

1
T

T−1∑
t=0

E
[∥∥∇F (t)(x(t))

∥∥2
]
≤ 4(F (0)(x0)− F ⋆)

ϑηT︸ ︷︷ ︸
(a)

+
4

ϑηT

T−1∑
t=0

∑
i∈N∪S

τ (t)∆(t)
i︸ ︷︷ ︸

(b)

+ 16ηLϑ

[
1
T

T−1∑
t=0

∑
i∈N∪S

(p(t)
i)2(1−m(t)

i)Θi(σ̃
(t)
i)2

m
(t)
i D

(t)
i

∥a(t)
i ∥22

∥a(t)
i ∥21︸ ︷︷ ︸

(c)

]

+ 12η2L2ζ2

(
max
t∈[T]

max
i∈N∪S

(γ(t)
i)2(∥a(t)

i ∥1 − [a(t)
i,−1])

∥a(t)
i ∥1︸ ︷︷ ︸

(d)

)

+ 12η2L2

[
1
T

T−1∑
t=0

∑
i∈N∪S

(1−m(t)
i)(D(t)

i − 1)Θi(σ̃
(t)
i)2p(t)

i γ
(t)
i

m
(t)
i ∥a

(t)
i ∥1(D

(t)
i)2

(∥a(t)
i ∥

2
2 − [a(t)

i,−1]
2)︸ ︷︷ ︸

(e)

]
(25)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Assumption 2 (Local Data Variability): The local data
variability at each DPU i ∈ N ∪ S is measured via a
finite constant Θi ≥ 0 that satisfies the following inequality
∀x ∈ Rp:
∥∇f(x; ξ)−∇f(x; ξ′)∥ ≤ Θi∥ξ − ξ′∥, ∀ξ, ξ′ ∈ D(t)

i , ∀t.
(41)

Assumption (Bounded Dissimilarity of Local Loss Func-
tions): For a set of arbitrarily normalized coefficients {pi},
where i ∈ N ∪ S , pi ≥ 0 and

∑
i∈N∪S

pi = 1, there exist two

finite constants ζ1 ≥ 1 and ζ2 ≥ 0 such that the following
inequality holds for any choice of model parameter x ∈ Rp:∑

i∈N∪S
pi

∥∥∇F (t)
i (x)

∥∥2 ≤ ζ1
∥∥∥ ∑

i∈N∪S
pi∇F (t)

i (x)
∥∥∥2

+ ζ2, ∀t.

(42)
It can be seen that ζ1 and ζ2 in the above definition measure

the level of data heterogeneity across the clients. If the data is
completely homogeneous (i.e., i.i.d.) across the DPUs we will
have ζ1 = 1 and ζ2 = 0 and these parameters will increase
as the data across the DPUs become more heterogeneous.
In Appendix I in the supplementary material, we introduce
a methodology to estimate the parameters introduced in the
above three assumptions.

We next define model/concept drift, which was first charac-
terized by us in [25] for dynamic ML. This quantity measures
the shift in the local loss imposed by the variation of the local
data. We slightly modify the definition in [25] and incorporate
the duration of global aggregation into the definition:

Definition 1 (Model/Concept Drift): For DPU i ∈ N ∪ S ,
the online model/concept drift for two consecutive rounds of
global aggregation t and t+1 is measured by ∆(t)

i ∈ R, which
captures the maximum variation of the fractional loss function
for any x ∈ Rp per unit time according to

D
(t+1)
i

D(t+1)
F

(t+1)
i (x)− D

(t)
i

D(t)
F

(t)
i (x) ≤ τ (t)∆(t)

i , (43)

where τ (t) is the duration between global aggregation t and
t+ 1, during which model training is not conducted.

Letting data variance σ(t)
i denote the sampled variance of

data at DPU i at time t, we next obtain the general convergence
behavior of CE-FL (proof provided in Appendix D in the
supplementary material):

Theorem 1 (General Convergence of CE-FL): Assume

that η satisfies 4η2L2max
t∈[T]

max
i∈N∪S

γ2
i (t)(∥a(t)

i ∥1−[a
(t)
i,−1])

∥a(t)
i ∥1

≤
1

2ζ2
1+1

. Under CE-FL, the cumulative average of the global
loss satisfies (25), as shown at the bottom of the previous
page, where F ∗ ≜ min

t∈[T]
min
x∈Rp

F (t)(x).

The bound in (25) demonstrates convergence characteristics
of CE-FL. It reveals the relationship between the loss gap
imposed based on the choice of initial model parameter (term
(a)). It reveals that as data variability {Θi} and data variance
{σi} (in terms (c) and (e)) increase across the devices, the

system experiences a worse convergence performance. This is
due to the fact that, given a fixed mini-batch size across the
devices, larger values of {Θi} and {σi} would imply a higher
noise in estimation of true gradient via SGD. Finally, the
effect of increasing the local SGD iterations can be particularly
seen in term (d), where as γ

(t)
i increases the convergence

bound increases proportionally to the data heterogeneity across
the devices (ζ2 in the coefficient of term (d)). Note that ζ1,
ζ2 quantity the extent of spatial data heterogeneity in terms
of ML model loss across the network. Thus, as the data
heterogeneity increases, the ML convergence bound favors
lesser locally conducted SGD iterations to avoid local model
bias. Furthermore, the bound imposed on the step size η in the
statement of Theorem 1 implies that as the data heterogeneity
measure ζ1 or number of local SGD iterations {γi} increase,
the smaller values of step size are tolerable to avoid local
model bias.

Given the general convergence behavior obtained in Theo-
rem 1, we next obtain a specific choice of step size, conditions
on the noise of SGD, and a condition on the model drift, under
which CE-FL converges (proof provided in Appendix E in the
supplementary material):

Corollary 1 (Convergence of CE-FL): Consider the condi-
tions stated in Theorem 1. Further assume that η is small
enough such that η =

√
d/(γ̄T), where d = |N ∪S| and γ̄ =

t=T∑
t=1

∑
i∈N∪S

γ
(t)
i . If (i) the local data variability satisfy Θi ≤

Θmax, ∀i, for some positive Θmax, (ii) the variances of datasets
satisfy σ̃(t)

i ≤ σ̃max, ∀i, for some positive σ̃max, (iii) the mini-
batch ratios satisfy m(t)

i ≥ mmin, ∀i, for some positive mmin,
(iv) the number of SGD iterations satisfy γ(t)

i ≤ γmax, ∀i, for
some positive γmax, and (v) the duration of global aggregations

is bounded as τ (t) ≤ max
{ τ̃

T
∑

i∈N∪S ∆(t)
i

, 0
}

, for some

positive τ̃ , then the cumulative average of the global loss
satisfies (33), as shown at the bottom of the page, implying
1
T

T∑
t=1

E
[∥∥∇F (t)(x(t))

∥∥2
]

= O(1/
√
T).

Remark 4: Since time varying local loss functions are
of our interest, we used the cumulative average of the
online global loss as a performance metric. If data is
static across the DPUs, i.e., zero model drift, the global
loss function becomes time-invariant and the above corollary
implies 1

T

∑T
t=1 E

[∥∥∇F (x(t))
∥∥2
]

= O(1/
√
T), revealing

that CE-FL approaches a stationary point of the global loss
function.

Considering Corollary 1, guaranteeing the convergence
requires sufficiently small step size, bounded noise of SGD,
and reasonably fast global aggregations. In particular, the con-
dition between (τ (t)) and model/concept drift (∆(t)

i) implies
that the speed of triggering new global aggregations should
be inversely proportional to the model/concept drift: higher

1
T

T−1∑
t=0

E
[
∥∇F (t)(x(t))∥2

]
≤ 4

√
γ̄

ϑ
√
dT

[
F (0)(x(0))− F ∗

]
+

4τ̃
√
γ̄

ϑ
√
dT

+ 16
LϑΘmaxσ̃

2
max

mmin

√
d

γ̄T
+

12L2dΘmaxσ̃
2
maxγmax

γ̄mminT
+

12L2ζ2dγ
2
max

γ̄T
(33)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

GANGULY et al.: MULTI-EDGE SERVER-ASSISTED DYNAMIC FL 9

concept drift should be met with rapid global aggregations to
ensure that the global model can track the variations of the
UEs’ datasets.

It is worth mentioning that the theoretical convergence
results obtained in Theorem 1 and Corollary 1 describe the
ML model performance over the online datasets at the devices
used for training, which is a common approach in the literature
of FL. In practice, the generalization of the trained model to
an unseen test dataset is facilitated via regularization methods
and proper split of test vs. train datasets [39].

IV. NETWORK-AWARE MODEL TRAINING
THROUGH CE-FL

We will next tie the ML performance of CE-FL to the char-
acteristics of the network elements. In particular, to formulate
our problem, in our proposed ML model training paradigm,
heterogeneity at four levels should be considered: (i) UEs
with different computation/communication capabilities; (ii)
DCs with different number of servers and power consumption
profiles; (iii) BSs with different access to the DCs and data
transfer rates; (iv) data distribution across the DPUs. To
jointly consider all of these heterogeneities, we formulate the
network-aware CE-FL:

(P) :min π1
1
T

T−1∑
t=0

E
[
∥∇F (t)(x(t))∥2

]
︸ ︷︷ ︸

(a)

+ π2

T−1∑
t=0

[
δA,(t) + δR,(t)

]︸ ︷︷ ︸
(b)

+π3

T−1∑
t=0

[
π3,1

∑
n∈N

∑
b∈B

E
D,(t)
n,b +π3,2

∑
b∈B

∑
s∈S

E
D,(t)
b,s︸ ︷︷ ︸

(c)

]

+ π3

T−1∑
t=0

[
π3,3

∑
n∈N

EP,(t)
n + π3,4

∑
s∈S

EP,(t)
s︸ ︷︷ ︸

(d)

]

(44)

+ π3

T−1∑
t=0

[
π3,5E

A,(t) + π3,6E
R,(t)︸ ︷︷ ︸

(e)

]
s.t. (14), (15), (16), (18), (20), (22), (23),

(26), (27), (28), (29), (35), (40),∑
b∈B

ρ
(t)
n,b ≤ 1, n ∈ N (44a)∑

s∈S
ρ
(t)
b,s = 1, b ∈ B (44b)∑

s∈S
I(t)
s = 1 (44c)∑

b∈B

I
(t)
n,b = 1, ∀n ∈ N (44d)∑

b∈B

I
(t)
b,n = 1, ∀n ∈ N (44e)

δA,(t)
n + δP,(t)

n ≤ δA,(t), ∀n ∈ N (44f)

δD,(t)
s + δP,(t)

s + δA,(t)
s ≤ δA,(t), ∀s ∈ S (44g)

δ
R,(t)
b + δ

B,(t)
b ≤ δR,(t), ∀b ∈ B (44h)

δB,(t)
s ≤ δR,(t), ∀s ∈ S (44i)

0 ≤ z(t)
s ≤ Cs, s ∈ S (44j)

0 ≤ ρ(t)
n,b ≤ 1, n ∈ N , b ∈ B (44k)

0 ≤ ρ(t)
b,s ≤ 1, b ∈ B, s ∈ S (44l)

fmin
n ≤ f (t)

n ≤ fmax
n , n ∈ N (44m)

0 ≤ m(t)
i ≤ 1, i ∈ N ∪ S (44n)

γ
(t)
i ≥ 0, i ∈ N ∪ S (44o)

δA,(t) ≥ 0, δR,(t) ≥ 0 (44p)

I
(t)
n,b ∈ {0, 1} , I

(t)
b,n ∈ {0, 1}, n ∈ N , b ∈ B (44q)

I(t)
s ∈ {0, 1}, s ∈ S (44r)

Variables:
w : {[ρ(t)

n,b]n∈N ,b∈B, [ρ
(t)
b,s]b∈B,s∈S ,

[f (t)
n]n∈N , [z(t)

s]s∈S ,

[γ(t)
i]i∈N∪S , [m

(t)
i]i∈N∪S , [I(t)

s]s∈S , [I
(t)
n,b]n∈N ,b∈B,

[I(t)
b,n]b∈B,n∈N , δ

A,(t), δR,(t), [R(t)
b,s]b∈B,s∈S}Tt=1

1) Objective and Variables: The objective of P captures a
trade-off between ML model performance (term (a)), which
is replaced with the right hand side of the bound in (33), the
delay of obtaining new global parameters (term (b)), and the
energy consumption of model training (term (c), (d), (e)). In
bound (33), we replace τ (t) with δA,(t) + δR,(t), which is an
upper bound on it, for the tractability of the solution. Constants
π1, π2, π3 weigh these (possibly competing) objectives.

Also, the constants π3,1 − π3,6 in terms (c), (d), (e) weigh
the impact of consumed energy for data transfer (term (c)),
local model computation (term (d)), and model aggregation
(term (e)). The value of these coefficients may vary in different
applications. The optimization variables of our problem are
the UE-BS data offloading ratios [ρ(t)

n,b]n∈N ,b∈B, BS-DC data
offloading rations [ρ(t)

b,s]b∈B,s∈S , CPU frequency at the devices
[f (t)

n]n∈N , speed of data processing at the DCs [z(t)
s]s∈S ,

number of SGD iterations at DPUs [γ(t)
i]i∈N∪S , mini-batch

size of SGD [m(t)
i]i∈N∪S , the index of the floating aggre-

gation DC captured via [Is(t)]s∈S , UE-to-BS association for
offloading the final UE’s local gradient [I(t)

n,b]n∈N ,b∈B, BS-
to-UE association for receiving the aggregated global model
[I(t)

b,n]b∈B,n∈N , ∀t.
Constraints (20),(23),(27),(29),(34),(35),(39), and (40),

describe the terms used in the objective function. Also, con-
straints (44a) and (44b) guarantee a feasible data dispersion
in UE-BS and BS-DC communications. Also, (44c) and (44r)
ensure the existence of only one floating aggregation DC
at each global aggregation. Similarly, (44d) and (44e) along
with (44q) guarantee proper BS-UE communications. To help
with the decomposition of the problem, we revisited (34)
and considered δA,(t) as an optimization variable accompanied
with constraints (44f) and (44g). Using a similar argument for
(39), we made δR,(t) an optimization variable and incorporated
(44h) and (44i). Finally, (44j)-(44o) ensure the feasibility of
the solution.

Roughly speaking, P aims to achieve the lowest model
loss, while minimizing the delay and energy consumption.
This will result in (i) a simultaneous load balancing across

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

the UEs and DCs for data processing, and (ii) an efficient
data/parameter routing across the network hierarchy, and (iii)
optimized floating aggregation DC that causes minimal delay
and energy of parameter aggregation and reception.

2) Challenges Faced in Solving the Problem: There are
three challenges faced in solving P discussed below.
1) P belongs to the category of mixed integer optimization

problems, which are in general highly non-trivial to solve.
This is due the existence of discrete/binary variables used
to denote the floating server selection (i.e., I(t)

s , ∀s ∈ S)
and UE-BS association in uplink and downlink communi-
cations (i.e., I(t)

n,b and I(t)
b,n, ∀b ∈ B, n ∈ N) in conjunction

with the rest of the continuous optimization variables.
2) The objective of P given by (44) is highly non-convex

with respect to the continuous optimization variables. In
particular, in (44), the ML loss term (a) given by (33) is
non-convex with respect to local SGD iteration counts (i.e,
γ

(t)
i , ∀i ∈ N ∪ S and the offloading parameters (i.e., ρ(t)

n,b

and ρ
(t)
b,s, ∀n ∈ N , b ∈ B, s ∈ S , which are incorporated

in the number of data points D(t)
i in the bound in (33)

through (16) and (18)). Furthermore, term (b) in (44) is
non-convex with respect to the optimization variables due
to the multiplication between the optimization variables
in (26) and (28), which are encapsulated in the processing
delay (i.e., δP,(t)

s and δP,(t)
n) in δA,(t) as described by (34).

Similarly, the computation energy expressions given by
(27) and (29) are non-convex.

3) In a large-scale network, there is no central entity to solve
P . In particular, it is impractical to consider a central DC
with the knowledge of all the DPUs capabilities and link
data rates, which are prerequisites to solve the problem.

We are thus motivated to develop a unique network element
orchestration scheme via (i) effective relaxation of the integer
variables, (ii) successive convexification of the problem, and
(iii) distributing the solution computation across the network
elements. Nevertheless, achieving this goal is not trivial and
requires a careful investigation of P , which is carried out next.

V. DISTRIBUTED NETWORK ORCHESTRATION IN CE-FL

We next develop a distributed solution for P , where the
computation burden of obtaining the solution is spread across
the network elements (i.e., UEs, BSs, and DCs). It is worth
mentioning that our methodology is among the first dis-
tributed network element orchestration schemes in the broad
area of network-aware distributed machine learning, where
we show how distributed optimization techniques can be
exploited to orchestrate the devices for a distributed ML
task. In our methodology, each network element will solve
a reduced/truncated version of P to obtain its associated
optimization variables (e.g., mini-batch size and number of
SGD iterations at the UEs), while forming a consensus with
other network elements on the rest of the variables (e.g., the
floating aggregator DC). We also study the optimality of the
obtained solution.

The design of the distributed solution framework addresses
the three challenges associated with P (Sec. IV-.2). In the
following, we discuss our approach to addressing them.

Relaxing the Integer Variables. We first relax the integer
variables to be continuous (i.e., I(t)

s ∈ [0, 1], ∀s ∈ S , and
I
(t)
n,b, I

(t)
b,n ∈ [0, 1], ∀b ∈ B, n ∈ N). Then, we force them to

take binary values via incorporating the following constraints:∑
s∈S

I(t)
s

(
1− I(t)

s

)
≤ 0, (45)∑

b∈B

I
(t)
n,b

(
1− I(t)

n,b

)
≤ 0, n ∈ N , (46)∑

b∈B

I
(t)
b,n

(
1− I(t)

b,n

)
≤ 0, n ∈ N , (47)∑

s∈S
I(t)
s = 1,

∑
b∈B

I
(t)
n,b =

∑
b∈B

I
(t)
b,n = 1, n ∈ N , (48)

I(t)
s ∈ [0, 1], s ∈ S, (49)

I
(t)
n,b, I

(t)
b,n ∈ [0, 1], b ∈ B, n ∈ N . (50)

The above constraints ensure that the indicated continuous
variables would take binary values under any feasible solution.
Also, they guarantee that only one DC will be selected as
the aggregator and only one BS will be associated with each
UE during uplink/downlink parameter transfer. Note that the
introduced constraints in (45)-(47) are non-convex.

Distribution/Decomposition of Variables of P . We break
down the optimization variables in P into two categories: (i)
local variables, which are obtained locally at each network
element, and (ii) shared variables, which are first optimized
locally and then synchronized via a consensus mechanism
across the adjacent network elements (e.g., UE-BS or BS-
DC pairs). The UE-BS offloading parameters denoted by
{[ρ(t)

n,b]n∈N ,b∈B}Tt=1 determine the number of datapoints accu-
mulated at the BSs, and subsequently dictate the dataset
gathered at the DCs. Thus, ρ(t)

n,b for a given UE and BS
n ∈ N , b ∈ B are shared variables. A similar justification leads
to ρ(t)

b,s being shared by the constituent BS and DC b ∈ B, s ∈
S . The floating server selection indicators {[I(t)

s]s∈S}Tt=1 are
also shared variables among all the network elements (i.e.,
N ∪ S ∪ B) as it impacts the delay of parameter transfer.
Furthermore, it is evident from (44f)-(44g) that aggregation
delay {[δA,(t)]}Tt=1 are shared variables for set of nodes in
N ∪ S . Also, (44h)-(44i) imply that the reception delay
{[δR,(t)]}Tt=1 are shared variables between the nodes in B∪S .
Rest of the variables associated with P are local variables
assigned to their respective individual nodes. For instance,
the variables associated with ML model training and data
processing at each UE n ∈ N (i.e., SGD mini-batch ratio
{[m(t)

n]}Tt=1, the number of SGD iterations {[γ(t)
n]}Tt=1, and

CPU frequency {[f (t)
n]}Tt=1) are local variables.

To compute the shared variables, we first expand the solu-
tion vector w of problem P by creating local copies of the
shared variables at their constituent nodes and introducing
equality constraints to enforce agreement among the local
copies. We summarize the variables computed at each node
below:
1) Each UE n: wLocal

n =
{
[f (t)

n], [m(t)
n], [γ(t)

n], [I(t)
n,b]b∈B

}T

t=1
,

wShared
n =

{
[ρ(t),n

n,b]b∈B, [I
(t),n
s]s∈S , [δA,(t),n]

}T

t=1
, where

ρ
(t),n
n,b , I

(t),n
s , δA,(t),n denote the local copies of the shared

variables (i.e., ρ
(t)
n,b, I

(t)
s , δA,(t)) at node n.

2) Each BS b: wLocal
b =

{
[I(t)

b,n]n∈N
}T

t=1
,wShared

b ={
[ρ(t),b

n,b]n∈N , [ρ
(t),b
b,s]s∈S , [I

(t),b
s]s∈S , [δA,(t),b], [δR,(t),b],

[R(t),b
b,s]s∈S

}T

t=1
where ρ

(t),b
n,b , ρ

(t),b
b,s , I

(t),b
s , δA,(t),b, δR,(t),b,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

GANGULY et al.: MULTI-EDGE SERVER-ASSISTED DYNAMIC FL 11

R
(t),b
b,s denote the local copies of the respective shared

variables (i.e., ρ(t)
n,b, ρ

(t)
b,s, I

(t)
s , δA,(t), δR,(t), R(t)

b,s) at node b.

3) Each DC s: wLocal
s =

{
[z(t)

s], [γ(t)
s], [m(t)

s]
}T

t=1
,wShared

s ={
[ρ(t),s

n,b]n∈N ,b∈B, [ρ
(t),s
b,s]b∈B, [I

(t),s
s]s∈S , [δA,(t),s], [δR,(t),s],

[R(t),s
b,s]b∈B

}T

t=1
where ρ

(t),s
n,b , ρ

(t),s
b,s , δA,(t),s, I

(t),s
s , δR,(t),s

denote the local copies of the respective shared variables
(i.e., ρ(t)

n,b, ρ
(t)
b,s, δ

A,(t), I
(t),s
s , δR,(t), R

(t)
b,s) at node s.

4) For each network element d ∈ N ∪ S ∪ B, we let wd

encompass all the associated variables: wd = wLocal
d ∪

wShared
d . Thus, with some abuse of notation we denote the

extended variable space of P via w defined as

w = [wd]d∈N∪S∪B ≜
⋃

d∈N∪S∪B

wd. (51)

Additionally, equality constraints introduced to P to enforce
the equality of the local copies of the shared variables are

ρ
(t),n
n,b − ρ

(t),b
n,b = 0, ∀n ∈ N , b ∈ B, ∀t, (52)

ρ
(t),n
n,b − ρ

(t),s
n,b = 0, ∀n ∈ N , s ∈ S, b ∈ B, ∀t, (53)

ρ
(t),b
b,s − ρ

(t),s
b,s = 0, ∀b ∈ B, s ∈ S, ∀t, (54)

I(t),d
s − I(t),d′

s = 0, ∀d, d′ ∈ N ∪ B ∪ S, s ∈ S, ∀t,
(55)

δA,(t),d − δA,(t),d′
= 0, ∀d, d′ ∈ N ∪ S, ∀t, (56)

δR,(t),d − δR,(t),d′
= 0, ∀d, d′ ∈ B ∪ S, ∀t, (57)

R
(t),b
b,s −R

(t),s
b,s = 0, ∀b ∈ B, s ∈ S, ∀t. (58)

Imposing (52)-(58) leads to separability of the optimization
problem while ensuring agreement on the shared variables,
allowing the development of a distributed solution later. We
first highlight some characteristics of P , which are exploited
in our distributed solution framework.

Structure of P . Let us denote the objective of
P given by (44) as J . We note that the convex
constraints of P comprise linear summations in (44a)-
(44e) and variable ranges in (44j)-(44p), (49)-(50), defined
independently across nodes. We thus combine these convex
constraints for each node d ∈ N ∪ B ∪ S as constraint
vector Dd(wd) ≤ 0 The constraints (16),(18),(20),(22),
(23),(26),(27),(28),(29),(35),(40),(44f),(44g),(44h),(44i),(45)-
(47) associated with P are non-convex and can be jointly
denoted by vector of constraints C(w) ≤ 0. Furthermore,
we observe that (52)-(58) are linear equality constraints
involving one or more network elements, thus can be
equivalently written as an equality constraint in vector form,
i.e.,

∑
d∈N∪S∪B G(wd) = 0. Then, the augmented version of

P denoted by P̂ which encompasses all the aforementioned
constraints can be written as

P̂ :min
w

J (w) (59)

s.t. C(w) ≤ 0 (59a)∑
d∈N∪S∪B

G(wd) = 0 (59b)

Dd(wd) ≤ 0, d ∈ N ∪ S ∪ B. (59c)
Next we describe our successive convex methodology,

which is an iterative procedure, wherein P̂ is solved.
Successive Convex Solver. The psudo-code of our suc-

cessive convex solver is given in Algorithm 1. The algo-
rithm starts with an initial feasible point w(0) satisfying the
constraints of P . During each iteration ℓ of the algorithm,

Algorithm 1 Successive Convex Solver Wrapper

1: Input: Initialize w(0), step size ζ
2: Output: Final iterate w
3: Initialize iteration count ℓ = 0.
4: while w(ℓ) has not converged do
5: Compute ŵ(w(ℓ)), the distributed parallel solution of

P̂w(ℓ) using PD CE-FL (Algorithm 2)
6: Obtain w(ℓ+1) using update rule (60)
7: ℓ←− ℓ+ 1
8: end while

we convexify P̂ at the given feasible point w(ℓ) to obtain
surrogate problem P̂w(ℓ) which can be further distributed and
solved across the network elements d ∈ N ∪S ∪B in parallel.
We denote the distributed solution of the surrogate problem
P̂w(ℓ) by ŵ(w(ℓ)). Subsequently, we update the variables as
(ψ < 1)

w(ℓ+1) = w(ℓ) + ψ(ŵ(w(ℓ))−w(ℓ)). (60)
The key aspects of Algorithm 1 are thus (i) obtaining the
convex approximation, i.e., P̂w(ℓ) , and (ii) the design of the
distributed solution. Henceforth, we first describe the convex
approximation technique used to relax our original problem,
and then build our parallel distributed solver.

Convexification of P̂ . We use a proximal gradient method
to relax the objective J (w). The non-convex constraints C(w)
are also convexified such that the approximations upper-bound
the original constraints. In particular, at iteration ℓ of our
successive convex solver (Algorithm 1), given the current
solution of P̂ , i.e., w(ℓ), we obtain convex approximations
of objective J and non-convex constraints C denoted by J̃
and C̃, respectively, as

J̃ (w; w(ℓ)) =
∑

d∈N∪S∪B

J̃d(wd; w(ℓ)), (61)

J̃ d(wd; w(ℓ)) =
1

|N ∪ S ∪ B|
J (w(ℓ))

+∇wd
J (w(ℓ))⊤(wd −w

(ℓ)
d)

+
λ1

2
∥wd −w

(ℓ)
d ∥

2. (62)

C̃(w; w(ℓ)) =
∑

d∈N∪S∪B

C̃d(wd; w(ℓ)), (63)

C̃d(wd; w(ℓ)) =
1

|N ∪ S ∪ B|
C(w(ℓ))

+∇wd
C(w(ℓ))⊤(wd −w

(ℓ)
d)

+
L∇C

2
∥wd −w

(ℓ)
d ∥

2. (64)

In (63)-(64), L∇C is the Lipschitz constant which is a char-
acteristic of the constraint function C. The above formulation
implies that C̃(w; w(ℓ)) ≥ C(w) [40], [41]. With λ1 > 0, the
proximal gradient-based relaxation in (61)-(62) ensures strong
convexity of the surrogate objective function J̃ . Thus, at each
iteration ℓ of Algorithm 1, we formulate the relaxed convex
approximation of P̂ at current iterate w(ℓ), i.e., P̂w(ℓ) , as

P̂w(ℓ) :min
w

∑
d∈N∪S∪B

J̃d(wd; w(ℓ)) (65)

s.t.
∑

d∈N∪S∪B

C̃d(wd; w(ℓ)) ≤ 0 (65a)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

∑
d∈N∪S∪B

G(wd) = 0 (65b)

Dd(wd) ≤ 0, d ∈ N ∪ S ∪ B. (65c)
The convex constraint (65c) is separable across the nodes.

However, (65a)-(65b) are in the form of summation over
nodes, which does not let the problem to be trivially dis-
tributed. To facilitate a parallel distributed solution to P̂w(ℓ) ,
we perform Lagrangian-based dualization for constraints
(65a)-(65b) as

L(w,Λ,Ω; w(ℓ)) =
∑

d∈N∪S∪B

J̃d(wd; w(ℓ))

+ Λ⊤(∑
d∈N∪S∪B

C̃d(wd; w(ℓ))
)

+ Ω⊤(∑
d∈N∪S∪B

G(wd)
)
. (66)

In (66), w and {Λ,Ω} are the primal and dual variables,
respectively. Also, Λ and Ω are the Lagrangian multipli-
ers associated with the convexified inequality constraints
C̃.(.,w(ℓ)) and linear equality constraints G(.), respectively.

Based on the above formulation, we next define the follow-
ing max-min optimization problem:

max
Λ≥0

min
w
L(w,Λ,Ω; w(ℓ))

s.t. Dd(wd) ≤ 0, d ∈ N ∪ S ∪ B. (67)
Note that solution to the above max-min problem is optimal
for P̂w(ℓ) due to its strongly-convex objective and convex con-
straints. In (67), for fixed values of dual parameters {Λ,Ω},
the inner minimization problem can be distributed across the
network elements, where each node d aims to solve the partial
Lagrangian minimization problem of the following format:

min
wd

J̃d(wd; w(ℓ)) + Λ⊤ C̃d(wd; w(ℓ)) + Ω⊤G(wd)

s.t. Dd(wd) ≤ 0. (68)
With the above max-min formulation and the division of the
problem into sub-problems given by (67)-(68), in the following
we construct a solution framework which enables parallel
updates of the primal variables followed by a decentralized
consensus scheme to update the dual-variables alternately.

Iterative Distributed Primal-Dual Algorithm with
Decentralized Consensus. The pseudo-code of our iterative
distributed primal-dual method is given in Algorithm 2. We
first initialize the dual variables as {Λ[0],Ω[0]}. Then, dur-
ing each iteration i, for current estimates of dual variables
{Λ[i−1],Ω[i−1]}, we first highlight that the partial Lagrangian
based minimization subproblem, i.e., (68), has a convex objec-
tive function. Also, the constraint Dd(wd) ≤ 0 consists
of box and polyhedrons constraints given by (44a)-(44p),
(49)-(50), which are closed convex projection sets. Hence, we
leverage gradient projection algorithm (GPA) [42] and obtain
the solution of the primal variable minimization subproblems
given by (68) for each individual node d at each iteration i as

ŵ
[i]
d (w(ℓ)) = arg min

wd:Dd(wd)≤0

L(wd,Λ
[i−1]
d ,Ω[i−1]

d ; w(ℓ)).

(69)

Upon obtaining {ŵ[i]
d (w(ℓ))}d∈N∪S∪B, we perform gradient

ascent updates on dual variables {Λ,Ω}. These correspond
to the outer maximization in (67), and thus involve computa-
tion of gradient of the Lagrangian function L(w,Λ,Ω; w(ℓ))
defined in (66) at the current primal variable estimates

Algorithm 2 Iterative Distributed Primal Dual Method (PD
CE-FL)

1: Input: Initialize Λ[0] ≥ 0,Ω[0]

2: Output: Final iterates of {Λ, Ω}
3: Iteration count i = 0
4: while {Λd, Ωd} not converged ∀d ∈ N ∪ S ∪ B do
5: for d ∈ N ∪ S ∪ B parallely do
6: Obtain ŵ

[i]
d (w(ℓ)) via gradient projection method

on (69) %% primal descent
7: Obtain {Λ[i]

d ,Ω
[i]
d } using (72)-(74) %% dual ascent

8: end for
9: i←− i+ 1

10: end while

Algorithm 3 Iterative Decentralized Consensus Method (Con-
sensus CE-FL)

1: Input: Initialization of variables Γ{0}
d = [Λ[i]

d ,Ω
[i]
d] at

each node d, maximum number of consensus rounds J
2: Output: Final local iterates {Γ{J}

d }d∈N∪S∪B at conver-
gence

3: Initialize iteration count iteration count j = 0
4: while j ≤ J do
5: for d ∈ N ∪ S ∪ B parallely do
6: Receive {Γ{j−1}

d′ }(d,d′)∈E

7: Communicate Γ{j−1}
d to neighbors {d′ : (d, d′) ∈ E}

8: Obtain Γ{j}
d using consensus update rule (75)

9: end for
10: j ←− j + 1
11: end while

{ŵ[i]
d (w(ℓ))}d∈N∪S∪B solved distributedly via (69). During

each iteration i of Algorithm 2, this update is described as

Λ[i]

=

[
Λ[i−1] +

κ ∇ΛL
(
ŵ

[i]
d (w(ℓ)),Λ[i−1],Ω[i−1]; w(ℓ)

)
|N ∪ S ∪ B|

]+

=

[
Λ[i−1]+

κ

|N ∪ S ∪ B|
∑

d∈N∪S∪B

C̃d

(
ŵ

[i]
d (w(ℓ)); w(ℓ)

)
︸ ︷︷ ︸

(a)

]+

,

(70)

Ω[i]

= Ω[i−1] +
ε ∇ΩL(ŵ[i]

d (w(ℓ)),Λ[i−1],Ω[i−1]; w(ℓ))
|N ∪ S ∪ B|

= Ω[i−1] +
ε

|N ∪ S ∪ B|
∑

d∈N∪S∪B

G
(
ŵ

[i]
d (w(ℓ))

)
︸ ︷︷ ︸

(b)

, (71)

where κ and ε are the step sizes. (a) and (b) in (70) and (71)
cannot be computed directly due to the need for a central
processor; however, we desire to update {Λ,Ω} locally to
obtain a distributed solution. To this end, we conduct updates
of dual variables via a decentralized consensus scheme, where
the dual-ascent update consists of two steps. First, local copies
of the dual variables get updated at each node d of the network

Λ[i]
d = Λ[i−1]

d + κ C̃d(ŵ
[i]
d (w(ℓ)); w(ℓ)), (72)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

GANGULY et al.: MULTI-EDGE SERVER-ASSISTED DYNAMIC FL 13

Ω[i]
d = Ω[i−1]

d + ε Gd(ŵ
[i]
d (w(ℓ))). (73)

Then, the nodes exchange their local copies with neighboring
nodes to form a consensus on the dual variables as follows:
[Λ[i]

d ,Ω
[i]
d] = Consensus CE-FL(d, [Λ[i]

d ,Ω
[i]
d]),

Λ[i]
d =

[
Λ[i]

d

]+
. (74)

The alternating optimization of primal and dual variables
described by (69), (72)-(74) continues until convergence of
sequence {Λd, Ωd}d∈N∪S∪B. The Consensus CE-FL in (74)
is described in Algorithm 3, which relies on local message
exchange across neighboring nodes, which we discuss next.

Decentralized Network-Wide Consensus (Algorithm 3).
We consider a 0-1 edge connection between the nodes, where
two nodes either engage in sharing optimization variables or do
not communicate. We consider a bi-level hierarchical structure
for this communication graph (see Fig. 2) wherein the UEs
can possibly perform D2D communications with other UEs
in their vicinity as well as uplink-downlink communications
with at least one BSs (no direct communication link between
DCs and UEs is assumed). We also assume that each BS is
capable of communication to at least a DC, but it may or may
not be communicating to other BSs.

Let H = (V , E) denote this communication graph with
vertex set V = N ∪ B ∪ S and edge set E , where (d, d′) ∈ E
implies the communication between two nodes d, d′ during the
computation of solution of the network optimization. Also, let
A = [Ad,d′]d,d′∈N∪S∪B denote its adjacency matrix, where
Ad,d′ = 1, ∀(d, d′) ∈ E , Ad,d′ = 0 ∀(d, d′) /∈ E . Since

there is no connection between the UEs and DCs, we have
An,s = 0, ∀s ∈ S, n ∈ N . Also, since each UE is connected
to at least one BS, we have ∃b ∈ B : An,b = 1, ∀n ∈ N .
Finally, since each BS engages in variable transfer to at least
one DC: ∃s ∈ S : Ab,s = 1, ∀b ∈ B. Also, we assume
that each DC is at least connected to another DC: ∃s′ ∈ S :
As,s′ = 1, ∀s ∈ S .

We next describe the consensus procedure performed over
H to locally update the dual variables in (70)-(71). Our
procedure is described in Algorithm 3. For notation simplicity,
we represent the dual variables via a vector Γ = [Λ,Ω]. At
iteration i of PD CE-FL (Algorithm 2) the call of Consensus
CE-FL subroutine (Algorithm 3) via (74) is triggered with
initialization Γ{0}

d = [Λ(i)
d ,Ω(i)

d]. Afterward, at each iteration
j of Algorithm 3, each network node d ∈ N ∪ S ∪ B
sends its current local value of dual variables, i.e., Γ{j−1}

d ,
and in turn receives the value of which from its neighbors,
i.e., {Γ{j−1}

d′ }(d,d′)∈E . Subsequently, the following update is
executed at each network node d:

Γ{j}
d = Γ{j−1}

d Wd,d +
∑

d′:(d,d′)∈E

Γ{j−1}
d′ Wd,d′ , (75)

where Wd,d′ is the weight that node d assigns to its neigh-
bor d′. It is important to construct Wd,d′ for all pairs of
neighboring nodes (d, d′) so that the local estimates of the
dual variables asymptotically attain their global values. Let-
ting degree(d) denote the degree of node d, we consider
the consensus weights as Wd,d = 1 − χ × degree(d), and
Wd,d′ = χ ∀(d, d′) ∈ E , where χ is a constant satisfying z <

1
maxd∈∈N∪S∪B degree(d)

, which is proven to show fast convergence

for consensus [43]. With the knowledge of z (e.g., trivially
chosen as χ = 1

|N∪S∪B|− χ̂ for a small χ̂ > 0), the consensus
weights can be distributedly obtained. We next study the
convergence of our optimization solver (proof provided in
Appendix F in the supplementary material).

TABLE I
ENERGY CONSUMPTION COMPARISON ACROSS

VARYING TARGET ACCURACIES

Theorem 2 (Convergence of the Optimization Solver): If
J → ∞ (see Algorithm 3), the sequence {w(ℓ)} generated
by Algorithm 1 is feasible for P and non-increasing, which
asymptotically reaches a stationary solution of P .

In Appendix J in the supplementary material, we provide
the complexity analysis for our CE-FL methodology.

VI. NUMERICAL EVALUATIONS

A. Simulations Setup and Testbed Configuration
We acquire realistic models of communication models and

the units’ power consumption through data gathering from
5G/4G and CBRS network testbeds that include BSs, UEs, and
DCs. The data collection technique is explained in Appendix G
in the supplementary material. The DCs for the 5G/4G data
collection are located at the Indy 5G Zone [44], Discovery
Park District [45], Wisconsin, Utah, and Clemson, respectively
[46]. Following that, a larger default network setting was
generated for the numerical evaluations by post-processing
the measured data (see Appendix G–D in the supplementary
material). The capacity of DCs is chosen Rmax

s ∈ [40, 50]Gbps,
∀s, and capacity of each BS-DC link is chosen as Rmax

b,s ∈
[3, 4]Gbps, ∀b, s. The created dataset consists of 20 UEs, 10
BSs, and 5 DCs, with each server along with 2 BSs and 4 UEs
comprising a sub-network. Each sub-network is characterized
by high intra-network and low inter-network data transfer
rates.

B. Results and Discussion
We perform an ablation study on P by isolating different

sets of optimization variables to show the behavior of P
under different network settings. The default network setting
is described in Appendix H in the supplementary material.

1) Performance of CE-FL for Dynamic ML Model Train-
ing: We compare the ML model performance of CE-FL in
terms of energy consumption and delay against FedNova [33]
in terms of classification accuracy obtained on Fashion-
MNIST [47] and CIFAR-10 [48] datasets in Table I and II
respectively (See Appendix H in the supplementary material
for the description of the datasets). We consider time-varying
datasets at the UEs, where at each global aggregation round,
UEs acquire datasets with sizes distributed according to nor-
mal distribution with mean 2000 and variance 200. We note
that ML training under FedNova was performed with average
CPU/data-processing frequencies, mini-batch sizes and num-
ber of SGD iterations at the DPUs. Tables I, II demonstrate the
energy and delay savings that CE-FL obtains against FedNova
and AedAvg upon reaching different classification accuracies.
We observe that CE-FL outperforms FedNova, which in turn
beats FedAvg, in terms of network delay and energy costs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. Datapoint distribution, E2E data rate distribution, and CE-FL aggregation DC switching pattern against baseline methods.

TABLE II
MODEL TRAINING DELAY COMPARISON ACROSS

VARYING TARGET ACCURACIES

2) Floating Aggregation Point in CE-FL: We examine how
time varying and unequal data at DPUs control the aggregation
DC throughout the ML training in Fig. 3.

For the experiments, we consider two greedy baselines:
(i) datapoint greedy, and (ii) data rate greedy. The datapoint
greedy strategy chooses the DC whose subnetwork has the
highest concentration of datapoints at each global aggregation
as the floating aggregator. Also, data rate greedy method
designs a strategy based on the end-to-end (E2E) data transfer
rates between UEs and the DCs. Mathematically, we define
the E2E data-rate between arbitrary UE n and DC s as

RE2E,(t)
n,s = max

b∈B

 1
1

R
(t)
n,b

+ 1
Rmax

b,s

 . (76)

Then, at each round of global aggregation, the DC with the
highest average E2E data rate across all the UEs is chosen
as the floating aggregator DC. We depict the evolution of
datapoint concentration and average E2E data rates at the DC
across global aggregation rounds in Figs. 3a and 3b, and how
the choice of the aggregator varies in the greedy strategies
in comparison to CE-FL in Fig. 3c. Comparing the data
distribution across the network depicted in Fig. 3a and the
optimal aggregator selected in CE-FL in Fig. 3c reveals an
interesting phenomenon. In particular, the optimal aggregator
selection of CE-FL matches that of the datapoint greedy
method (i.e., selecting the DC in the area with the highest
data concentration) when data concentrations are extremely
skewed across the network (i.e., t = 5). A similar takeaway
can be obtained via comparing Fig. 3b and 3c, where CE-FL
only matches that of the data rate greedy strategy (at t = 2)
when the E2E data rate is skewed toward Utah DC, which
also has a high data concentration.

However, Fig. 3c reveals that CE-FL does not always
favor the DCs with the highest data concentration (i.e., t ∈
{1, 2, 3, 4}). This is due to the fact that congestion across the
links and heterogeneity of the network elements in terms of
computation and proximity are further considered in active
aggregation DC selection in P .

Fig. 4. Delay and energy comparison between CE-FL and the baselines.

We then investigate the energy and delay savings obtained
under CE-FL active aggregator selection against fixed aggre-
gator strategy (averaged over the 5 DCs) and the greedy
method. Fig. 4a, 4b confirms the efficacy of the active selection
paradigm in CE-FL in terms of network resource savings,
highlighting the need to jointly taking into account the het-
erogeneities of network elements, congestion of the links,
and uneven data concentrations as in CE-FL to select the
aggregation DC.

3) Impact of Model Drift on the Behavior of CE-FL: Fig. 5
reveals how time varying model drift dictates the delay of
conducting global aggregation rounds and the frequency of
data processing at the UEs. It can be seen that increasing the
model drift results in reduced global aggregation delays and
faster data processing. This implies that when the temporal
variations of the local datasets at the DPUs is large, to
have an adequate ML model for the online datasets at the
devices, CE-FL promotes rapid global aggregations and fast
data processing.

4) Impact of ML Performance Weight on Local Model
Training: We characterize the impact of ML performance
weight (i.e., π1 in the objective of P) on the mini-batch
ratios and the energy consumption at the DPUs in Fig. 6.
As can be seen from the two subplots, increasing the ML
performance importance results in an increase in the SGD
mini-batch ratios to have more accurate local models and
consequently increases the energy consumption at the DPUs.
This implies that in applications where the accuracy of the
ML model is of particular importance, CE-FL will sacrifice
resource savings to obtain an ML model with a better accuracy.

5) Decentralized Network Optimization Solver: We first
develop the centralized solver for P and investigate the per-
formance of our decentralized solver against it for a network
with |N | = 20, |B| = 10 and |S| = 5. The centralized solver
solves P via Algorithm 1 and Algorithm 2 while assuming
the knowledge of all the intrinsic parameters of all the UEs,
DCs and BSs used in P . Thus, the centralized solver performs
global dual updates (70), (71) without the requirement Con-
sensus CE-FL (Algorithm 3). The comparisons are depicted in
Fig. 7. As can be seen from Fig. 7a, our distributed solver has
a comparable performance to the centralized counterpart under
various consensus rounds J ∈ {10, 50, 70} (see Algorithm 3);

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

GANGULY et al.: MULTI-EDGE SERVER-ASSISTED DYNAMIC FL 15

Fig. 5. Impact of model drift on system behavior.

Fig. 6. Impact of ML loss importance on the system.

Fig. 7. Performance of our decentralized optimization solver.

as the number of consensus rounds increases the gap between
the performance of the two narrows. We next demonstrate the
performance of our distributed solver under varying network
sizes while keeping number of consensus rounds J = 30 in
Fig. 7b. We vary the number of UEs as |N | ∈ {10, 15, 20, 30}
while fixing |B| = 10 and |S| = 5. From Fig. 7b, it
can be seen that increasing the size of the network indeed
improves the solution of the solver due to processing larger
number of datapoints across the DPUs leading to a better
ML performances. However, 7b also highlights the shrinking
gains of increasing the number of UE devices, where an initial
increase in |N | = 10 to |N | = 15 results in significant
performance enhancement; whereas, further increase in the
number of UEs doesn’t translate to notable improvements.
This indicates that as the number of DPUs are increased
beyond a certain limit, the ML performance gains are obscured
by the larger cumulative network energy consumption and
network delays attributed to data offloading, ML processing
and aggregations.

VII. CONCLUSION AND FUTURE WORK

We proposed CE-FL, which presumes a scenario in which
the data processing for ML model training occurs simulta-
neously across the DCs and the UEs, which is enabled via
offloading a part of the local datasets of the UEs to the DCs
through the BSs. CE-FL further assumes a realistic scenario in
which the number of datapoints and the data distribution across
the UEs varies over time and incorporates the concept of float-
ing aggregation DC to the distributed ML model training. We
analytically characterized the ML performance of CE-FL and
formulated network-aware CE-FL as an optimization problem,
which will lead to a joint load balancing across the UEs and
DCs and efficient data routing across the network hierarchies.

We then developed a distributed optimization solver to solve
our formulated problem. For the future work, studying the
performance of CE-FL under device dropouts, link failures,
and asynchronous model transfers can be considered. Also,
we have done some experimental works in [49] to quantify
the effect of varying aggregator in a decentralized setting
under proof-of-work-based metrics, the extension of which to
concretized formulations is open.

ACKNOWLEDGMENT

The authors would like to thank Hyoyoung Lim for her help
in data collection from 5G testbed.

REFERENCES

[1] R. Miller, “Autonomous cars could drive a deluge of data center
demand,” Data Center Frontier, 2017.

[2] S. Ali et al., “6G white paper on machine learning in wireless commu-
nication networks,” 2020, arXiv:2004.13875.

[3] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui, “Federated
learning for 6G: Applications, challenges, and opportunities,” 2021,
arXiv:2101.01338.

[4] J. Konečnỳ, H. McMahan, F. Yu, P. Richtárik, A. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication effi-
ciency,” in Proc. NIPS WKSHP Private Multi-Party Mach. Learn., 2016,
pp. 1–10.

[5] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework for
cooperative resource management in mobile cloud computing,” IEEE
J. Sel. Areas Commun., vol. 31, no. 12, pp. 2685–2700, Dec. 2013.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. FL, USA: PMLR, 2017,
pp. 1273–1282.

[7] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computa-
tion offloading for edge-assisted federated learning,” IEEE Trans. Veh.
Technol., vol. 70, no. 9, pp. 9330–9344, Sep. 2021.

[8] S. S. Azam, T. Kim, S. Hosseinalipour, C. Joe-Wong, S. Bagchi, and
C. Brinton, “Can we generalize and distribute private representation
learning?” in Proc. Int. Conf. Artif. Intell. Stat., 2022, pp. 11320–11340.

[9] R. Arora, A. Parashar, and C. C. I. Transforming, “Secure user data in
cloud computing using encryption algorithms,” Int. J. Eng. Res. Appl.,
vol. 3, no. 4, pp. 1922–1926, 2013.

[10] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2020, pp. 1–10.

[11] F. Haddadpour and M. Mahdavi, “On the convergence of local descent
methods in federated learning,” 2019, arXiv:1910.14425.

[12] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Mar. 2019.

[13] C. T. Dinh et al., “Federated learning over wireless networks: Con-
vergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398–409, Feb. 2021.

[14] F. Ang, L. Chen, N. Zhao, Y. Chen, W. Wang, and F. R. Yu, “Robust
federated learning with noisy communication,” IEEE Trans. Commun.,
vol. 68, no. 6, pp. 3452–3464, Jun. 2020.

[15] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022–2035, Mar. 2020.

[16] S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chiang, and
C. G. Brinton, “Device sampling for heterogeneous federated learning:
Theory, algorithms, and implementation,” in Proc. IEEE Conf. Comput.
Commun., May 2021, pp. 1–10.

[17] B. Brik, A. Ksentini, and M. Bouaziz, “Federated learning for UAVs-
enabled wireless networks: Use cases, challenges, and open problems,”
IEEE Access, vol. 8, pp. 53841–53849, 2020.

[18] S. Wang, S. Hosseinalipour, M. Gorlatova, C. G. Brinton, and
M. Chiang, “UAV-assisted online machine learning over multi-tiered net-
works: A hierarchical nested personalized federated learning approach,”
IEEE Trans. Netw. Service Manage., early access, Oct. 21, 2022.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

[19] T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and
R. H. Middleton, “Cell-free massive MIMO for wireless federated learn-
ing,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6377–6392,
Oct. 2020.

[20] S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 41–47, Dec. 2020.

[21] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications for
collaborative federated learning,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 48–54, Dec. 2020.

[22] F. P.-C. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and
N. Michelusi, “Semi-decentralized federated learning with cooperative
D2D local model aggregations,” IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3851–3869, Dec. 2021.

[23] S. Hosseinalipour et al., “Multi-stage hybrid federated learning over
large-scale D2D-enabled fog networks,” IEEE/ACM Trans. Netw.,
vol. 30, no. 4, pp. 1569–1584, Aug. 2022.

[24] M. N. H. Nguyen et al., “Self-organizing democratized
learning: Towards large-scale distributed learning systems,” 2020,
arXiv:2007.03278.

[25] S. Hosseinalipour et al., “Parallel successive learning for dynamic
distributed model training over heterogeneous wireless networks,” 2022,
arXiv:2202.02947.

[26] M. S. H. Abad, E. Ozfatura, D. GUndUz, and O. Ercetin, “Hierarchical
federated learning ACROSS heterogeneous cellular networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020,
pp. 8866–8870.

[27] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1–6.

[28] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical SGD,” 2020,
arXiv:2010.12998.

[29] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[30] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

[31] E. Rizk, S. Vlaski, and A. H. Sayed, “Dynamic federated learning,” in
Proc. IEEE 21st Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), May 2020, pp. 1–10.

[32] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., vol. 2, 2020, pp. 429–450.

[33] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimiza-
tion,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 33, Dec. 2020,
pp. 7611–7623.

[34] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 3557–3568.

[35] X. Cao, G. Sun, H. Yu, and M. Guizani, “PerFED-GAN: Personalized
federated learning via generative adversarial networks,” IEEE Internet
Things J., vol. 10, no. 5, pp. 3749–3762, Mar. 2023.

[36] J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning attack in
federated learning using generative adversarial nets,” in Proc. 18th IEEE
Int. Conf. Trust, Secur. Privacy Comput. Commun./13th IEEE Int. Conf.
Big Data Sci. Eng., Aug. 2019, pp. 374–380.

[37] T. Chen, A. G. Marques, and G. B. Giannakis, “DGLB: Distributed
stochastic geographical load balancing over cloud networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 7, pp. 1866–1880, Jul. 2017.

[38] S. Hosseinalipour, A. Nayak, and H. Dai, “Power-aware allocation of
graph jobs in geo-distributed cloud networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 4, pp. 749–765, Apr. 2020.

[39] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring
generalization in deep learning,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 1–10.

[40] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1989.

[41] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed
methods for constrained nonconvex optimization—Part I: Theory,” IEEE
Trans. Signal Process., vol. 65, no. 8, pp. 1929–1944, Apr. 2017.

[42] M. Su and H. Xu, “Remarks on the gradient-projection algorithm,”
J. Nonlinear Anal. Optim., vol. 1, pp. 35–43, Jan. 2010.

[43] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[44] NineTwelve. (2022). Indy 5G Zone. [Online]. Available: https://
indiana5gzone.com

[45] Discovery Park District. (2022). The Convergence Center for Innovation
and Collaboration. [Online]. Available: https://discoveryparkdistrict.
com/the-convergence-center/

[46] D. Duplyakin et al., “The design and operation of CloudLab,” in Proc.
USENIX ATC, 2019, pp. 1–14.

[47] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[48] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2009.

[49] H. T. Nguyen, R. Morabito, K. T. Kim, and M. Chiang, “On-the-fly
resource-aware model aggregation for federated learning in heteroge-
neous edge,” in Proc. IEEE Global Common. Conf. (GLOBECOM),
Spain, 2021, pp. 1–6.

[50] A. O. Al-Abbasi, V. Aggarwal, and M.-R. Ra, “Multi-tier caching anal-
ysis in CDN-based over-the-top video streaming systems,” IEEE/ACM
Trans. Netw., vol. 27, no. 2, pp. 835–847, Apr. 2019.

[51] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, “Subgra-
dient methods and consensus algorithms for solving convex optimiza-
tion problems,” in Proc. 47th IEEE Conf. Decis. Control, Apr. 2008,
pp. 4185–4190.

[52] D. Bienstock, G. Muñoz, and S. Pokutta, “Principled deep neural
network training through linear programming,” 2018, arXiv:1810.03218.

[53] X. Mao, A. Maaref, and K. H. Teo, “Adaptive soft frequency reuse
for inter-cell interference coordination in SC-FDMA based 3GPP LTE
uplinks,” in Proc. IEEE Global Telecommun. Conf., Jul. 2008, pp. 1–6.

[54] M. Qian, W. Hardjawana, Y. Li, B. Vucetic, X. Yang, and J. Shi,
“Adaptive soft frequency reuse scheme for wireless cellular networks,”
IEEE Trans. Veh. Technol., vol. 64, no. 1, pp. 118–131, Jan. 2015.

[55] M. Qian, W. Hardjawana, Y. Li, B. Vucetic, J. Shi, and X. Yang, “Inter-
cell interference coordination through adaptive soft frequency reuse in
LTE networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2012, pp. 1618–1623.

[56] B. Gao, J.-M. J. Park, and Y. Yang, “Uplink soft frequency reuse for self-
coexistence of cognitive radio networks,” IEEE Trans. Mobile Comput.,
vol. 13, no. 6, pp. 1366–1378, Jun. 2014.

Bhargav Ganguly received the dual B.Tech. and M.Tech. degrees in EE from
IIT Kanpur in 2019. He is currently pursuing the Ph.D. degree with Purdue
University.

Seyyedali Hosseinalipour (Member, IEEE) received the Ph.D. degree in EE
from NCSU in 2020. He is currently an Assistant Professor with University
at Buffalo (SUNY).

Kwang Taik Kim (Senior Member, IEEE) received the Ph.D. degree in
ECE from Cornell University in 2008. He is currently a Research Assistant
Professor with Purdue University.

Christopher G. Brinton (Senior Member, IEEE) received the Ph.D. degree in
EE from Princeton University in 2016. He is currently an Assistant Professor
of ECE with Purdue University.

Vaneet Aggarwal (Senior Member, IEEE) received the Ph.D. degree in EE
from Princeton University in 2010. He is currently a Professor with Purdue
University.

David J. Love (Fellow, IEEE) received the Ph.D. degree in EE from The
University of Texas at Austin in 2004. He is currently a Nick Trbovich
Professor of ECE with Purdue University.

Mung Chiang (Fellow, IEEE) received the Ph.D. degree from Stanford
University in 2003. He is currently the President of Purdue University and a
Roscoe H. George Distinguished Professor of ECE.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Purdue University. Downloaded on November 20,2023 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

