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Abstract 11 
This paper presents a data-driven framework to quantitatively analyze the disturbance 12 
amplification behavior of automated vehicles in car-following (CF). The data-driven framework can 13 
be applied to unknown CF controllers based on the concept of empirical frequency response 14 
function (FRF). Specifically, a well-known signal processing method, Welch’s method, together 15 
with a short time Fourier transformation is developed to extract the empirical transfer functions 16 
from vehicle trajectories. The method is first developed assuming a generic linear controller with 17 
time-invariant CF control features (e.g., control gains) and later extended to capture time-variant 18 
features. The proposed methods are evaluated for estimation consistencies via synthetic data-19 
based simulations. The evaluation includes the performances of the linear approximation accuracy 20 
for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. 21 
Results indicate that our framework can provide reasonably consistent results as theoretical ones 22 
in terms of disturbance amplification. Further it can perform better than a linear theoretical 23 
analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The 24 
methods are applied to existing field data collected from vehicles with adaptive cruise control 25 
(ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, 26 
particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles 27 
exhibit time-varying features in terms of disturbance amplification ratio depending on the leading 28 
vehicle trajectories.  29 
  30 
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1. Introduction  1 
Adaptive cruise control (ACC) is one of the most well-known automation functions that can 2 
achieve Society of Automotive Engineers (SAE) Level 1 and 2 automation. Numerous studies 3 
suggest that ACC can potentially improve traffic safety, traffic throughput, and energy efficiency 4 
(e.g., Hu et al., 2016; Milanés & Shladover, 2014). Due to its potential, ACC has been widely studied 5 
in the last few decades. Based on the approach, ACC can be largely divided into three groups: (1) 6 
analytical form linear/nonlinear controllers, (2) hard-constrained optimal control based 7 
controllers, and (3) deep reinforcement learning based controllers. Analytical linear/nonlinear 8 
controllers are usually represented in a feedback fashion to regulate the gap and speed difference 9 
with the preceding vehicle. They can be further categorized into linear feedback controllers (Arem 10 
et al., 2006; Bian et al., 2019; Li et al., 2018; Zhou and Ahn, 2019; Zhou et al., 2020; Gunter et al., 11 
2021), proportional derivative controllers (Gong et al., 2019; Milanés et al., 2014; Wang et al., 12 
2019), proportional integrated derivative controllers (Wu et al., 2016), and other types of 13 
nonlinear controllers (Talebpour and Mahmassani, 2016; Jin and Orosz, 2018; Qin and Orosz, 14 
2017). Due to the simplicity in their analytical form, the analytical linear/nonlinear controllers 15 
have received great attention for both theoretical analysis and experimental validation. However, 16 
these controllers lack explicit objective functions and physical constraints such as 17 
acceleration/deceleration limits. 18 
 19 
In contrast, optimal control based controllers, which rely on optimization techniques, can achieve 20 
multi-objective control and directly incorporate physical constraints. Furthermore, it can be 21 
implemented in a rolling horizon fashion, as in model predictive control (MPC), to handle time-22 
varying disturbances (Gong and Du, 2018; Gong et al., 2016; Wang et al., 2014; Zhou et al., 2017; 23 
Zhou et al., 2019a). Nevertheless, the computation time of MPC depends on the complexity of the 24 
objective function and constraints (e.g., nonlinearities), which can hinder real-time 25 
implementations.  26 
 27 
To overcome these limitations, some studies proposed deep learning based controllers. This type 28 
of controller, particularly the ones based on reinforcement learning, can easily handle different 29 
forms of objective function and constraints through reward functions (Cheng et al., 2019; Qu et 30 
al., 2020; Shi et al., 2021). Further, these controllers can be computationally efficient, achieved by 31 
an offline training process, which makes it suitable for real-time implementations. However, the 32 
performance depends greatly on the accuracy and scenario coverage of the training dataset. A 33 
more systematic review of ACC controllers can be found in Zhou et al., (2017) and Zhou et al., 34 
(2019a). In summary, the aforementioned approaches have distinct advantages and disadvantages, 35 
and the best choice of controllers remains an open question.    36 
   37 
Regardless of controller type, disturbance amplification through vehicle string is an important and 38 
desirable property. Particularly, traffic oscillations, characterized by a recurring pattern of 39 
deceleration and acceleration in congested traffic, can amplify in traffic streams, resulting in traffic 40 
inefficiency (Chen et al., 2014; Zheng et al., 2011) and potential safety issues (Zheng et al., 2010). 41 
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Due to the importance, researches of autonomous vehicle longitudinal control The disturbance 1 
amplification can be described by a mathematically derived transfer function/frequency response 2 
function (FRF) of the leading vehicle speed and the following vehicle speed in the frequency 3 
domain. By interpreting a norm of the transfer function, we can clearly understand the degree of 4 
disturbance amplification over each frequency. Numerous studies (Naus & Ploeg, 2010; Ploeg et 5 
al., 2013; Swaroop, 1996; Swaroop et al., 1994; Wilson & Ward, 2011) have investigated the ‘string 6 
stability’ of an automated vehicle platoon by requiring the infinity norm of the transfer function 7 
to be less than or equal to one to ensure the non-amplification of disturbances. Though elegant, 8 
this analytical approach requires exact knowledge of the car-following (CF) model considered. 9 
Based on that, the transfer function can be theoretically derived based on the linearization of the 10 
CF model and a Laplacian (or Fourier) transformation (Bian et al., 2019b; Wang et al., 2018; Zhou 11 
et al., 2020).  12 

 13 
The current literature lacks an approach to derive a norm of the transfer function to examine 14 
disturbance amplification if the CF controller is unknown or is not in closed form. This is a major 15 
disadvantage because well-known controllers, such as constrained optimal controllers and deep 16 
learning based controllers, do not have closed-form formulations. Furthermore, for partially 17 
automated vehicles (AVs) with ACC (ACC vehicles hereon) on the market, the control algorithm is 18 
proprietary and thus unknown to the public. In recent years, ACC vehicles have become more 19 
available for field testing, which made it possible to evaluate their disturbance amplification 20 
behavior (Basselink et al., 2017; Naus et al., 2010; Wu et al., 2017; Zhao et al., 2020). However, 21 
these evaluations were largely model-based given a customized closed-form linear controller 22 
(Milanés and Shladover, 2014; Naus et al., 2010; Stern et al., 2018), or by fitting a linear controller 23 
or a CF model for human-driven vehicles (e.g., Intelligent Drivers Model (Kesting et al., 2010) and 24 
Optimal Velocity Model (Bando et al., 1998)) for an unknown controller using field data (Gunter et al, 25 
2020). The latter approach may lead to model mismatch that can render an inaccurate analysis of 26 
disturbance amplification, especially after linearization. Further, calibration error resulting from model 27 
mismatch can further induce inaccuracy in disturbance amplification analysis. 28 
 29 
To remedy the aforementioned problems, this paper presents a data-driven disturbance 30 
amplification analysis to systematically evaluate a wide variety of CF controllers, including 31 
unknown controllers. Rather than assuming a certain controller type, we extract the frequency 32 
domain characteristics of the speed and acceleration of CF vehicles. Specifically, by treating the 33 
speed and acceleration as compounding signals consisting of multiple sinusoidal waves of 34 
different frequencies, we adopt Welch’s method to robustly estimate the empirical transfer 35 
function based on a linear time invariant CF law assumption. Based on the empirical transfer 36 
function, we can readily calculate the norm of transfer function, which can be directly used to 37 
evaluate the disturbance amplification ratio. Considering noisy measurements and stochasticity 38 
that may be introduced by the estimation method itself, we further propose a stochastic 39 
framework to evaluate the disturbance amplification in a probabilistic fashion. Further, 40 
considering the potential time-variant behaviors of CF law, we also extend our framework 41 
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integrating with short term Fourier transformation, to enable disturbance amplification analysis 1 
in a joint temporal-frequency domain, based on the linear-variant CF law assumption.  2 
  3 
This paper is organized as follows. Section 2 provides the general philosophy of our approach 4 
based on the concept of empirical transfer function with a linear time-invariant system 5 
assumption. Section 3 provides a numerical algorithm to estimate the empirical transfer function 6 
under noisy measurement in a stochastic and time-variant fashion. Section 4 conducts multiple 7 
synthetic experiments to test the consistencies of our framework with theoretical derivations. 8 
Section 6 applies our framework for field-collected commercial ACC data, and Section 6 provides 9 
concluding remarks and future research directions. 10 
 11 
2. Disturbance Amplification Analysis based on a Linear Time-invariant Behavior 12 

Approximation 13 
In this section, we begin with a well-known model-based transfer function for a linear CF controller 14 
to illustrate how the transfer function is used to describe disturbance amplification for CF 15 
behaviors, which can be further used for string stability analysis. Based on this concept, we 16 
establish a data-driven approach to analyze disturbance amplification. 17 
  18 
2.1 Model-based FRF 19 
A model-based FRF, also known as a transfer function, has been widely applied in control theory, 20 
aiming to theoretically derive the input-output relationship of different frequencies. For CF 21 
analysis, the transfer function between the leading and the following vehicle speeds has been 22 
widely applied to evaluate string stability; i.e., how a disturbance evolves through each CF pair. 23 
This is done based on the exact knowledge of the CF control model (Wang, 2018; Zhou and Ahn, 24 
2019b) or by assuming a CF control form and calibrating the parameters (Gunter et al., 2020; Stern 25 
et al., 2018). Based on the control law, linearization together with Laplacian transformation is 26 
usually applied to derive the theoretical transfer function, 𝐺𝑖(𝑗𝜔) , between leading vehicle’s 27 
speed 𝑣𝑖−1(𝑗𝜔) and following vehicle’s speed 𝑣𝑖(𝑗𝜔), ∀𝑖, in the frequency domain, as given in 28 
Eq.(1).  29 

 𝐺𝑖(𝑗𝜔) =
𝑣𝑖(s)
𝑣𝑖−1(s)

                                                       (1) 30 

where j is an imaginary unit, and ω is the frequency. Details of the derivation can be found in 31 
several studies (Naus & Ploeg, 2010; Ploeg et al., 2013; Swaroop, 1996; Wang, 2018). 32 
  33 
𝐺𝑖(𝑗𝜔) delivers rich information for analyzing disturbance amplification. Specifically, 𝐺𝑖(𝑗𝜔) =34 
|𝐺𝑖(𝑗𝜔)|∡𝐺𝑖(𝑗𝜔) , where |𝐺𝑖(𝑗𝜔)|  is the norm of 𝐺𝑖(𝑗𝜔) , denoting the disturbance 35 
amplification ratio over each frequency ω , and ∡𝐺𝑖(𝑗𝜔)  denotes the phase shift. Thus, 36 
|𝐺𝑖(𝑗𝜔)|  can be used to evaluate string stability: the CF pair is string stable iff ‖𝐺𝑖(𝑗𝜔)‖∞ =37 
𝑠𝑢𝑝𝜔|𝐺𝑖(𝑗𝜔)| ≤ 1  (Naus et al., 2012, Swaroop et al., 1996, Zhou et al., 2020), and we can 38 
conclude that the disturbance is not amplified under all frequency. Though string stability has 39 
been widely investigated by different criteria such as 𝐿∞ norm and 𝐿𝑃  norm (Shuo et al., 2019), 40 
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𝐻∞ norm (Jin & Oroz, 2014, Vittoria et al., 2020) is adopted in our paper considering its wide 1 
application and direct interpretation of disturbance amplification over different frequencies. 2 
 3 
The model-based analysis shown above has the following limitations: 1) The CF control law must 4 
have a closed form; 2) A vehicle dynamics equation and its parameters need to be exactly 5 
known; 3) Even if the CF control law has a closed-form, it must be differentiable and linearizable. 6 
These precludes the application of the model-based analysis for certain CF control approaches 7 
including model predictive control and reinforcement learning approaches. Further, for ACC 8 
vehicles on the market, control laws are usually unknown, and assuming a closed-form control 9 
law risks introducing significant errors to the frequency domain behavior and thus an inaccurate 10 
string stability evaluation. To remedy these limitations, we propose a data-driven method to 11 
analyze disturbance amplification by extracting the frequency domain behavior of ACC CF 12 
controllers. Details follow. 13 
 14 
 15 
2.2 Data-driven FRF 16 
This subsection describes the principle, in which the frequency domain characteristics of CF 17 
behavior are extracted from measured data. Specifically, rather than deriving 𝐺𝑖(𝑗𝜔), we aim to 18 
approximate 𝐺𝑖(𝑗𝜔)  from data. If we measure noise-free speeds for a CF pair with a high 19 
sampling frequency (approaching infinity) for a long period (approaching infinity), we can estimate 20 
the theoretical 𝐺𝑖(𝑗𝜔) by a data-driven transfer function based on a best linear time-invariant 21 

approximation, 𝐺̂𝑖(𝑗𝜔), as follows:  22 

𝐺̂𝑖(𝑗𝜔) =
𝑣̂𝑖(𝑗𝜔)
𝑣̂𝑖−1(𝑗𝜔)

                                                      (2) 23 

where 𝑣̂𝑖(𝑗𝜔)  denotes the Fourier transformation of the measured speed for vehicle 𝑖 , and 24 

𝐺̂𝑖(𝑗𝜔) is the estimated transfer function (usually known as FRF) using measurements. However, 25 
measurements usually contain noise as shown in Fig. 1, and the sampling frequency can also be 26 
limited.   27 

 28 

Fig. 1 FRF representation (a) theoretical case; (b) noisy case. 29 
 30 
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To address the issue of measurement noise, a spectral analysis technique (Randall, 2008) is 1 
adopted to estimate an empirical transfer function more robustly. Specifically, 𝐺𝑖+1(𝑗𝜔) can be 2 
asymptotically estimated by: 3 

𝐺̂𝑖(𝑗𝜔) =
𝑅𝑖−1,𝑖(𝑗𝜔)
𝑅𝑖−1,𝑖−1(𝑗𝜔)

                                                   (3) 4 

where 𝑅𝑖,𝑖+1(𝑗𝜔) is the cross spectral density function describing the cross ‘energy’ distribution 5 
over each frequency component: 6 

𝑅𝑖−1,𝑖(𝑗𝜔) = ∫ [∫ 𝑣̂𝑖−1(𝜏) × 𝑣̂𝑖(𝑡 + 𝜏)
+∞
−∞ 𝑑𝜏]𝑒−𝑗2𝜋𝜔𝑡𝑑𝑡+∞

−∞                     (4) 7 

𝑅𝑖−1,𝑖−1(𝑗𝜔) is the auto-spectral density function for vehicle 𝑖 − 1, describing the self ‘energy’ 8 
distribution over each frequency component: 9 

𝑅𝑖−1,𝑖−1(𝑗𝜔) = ∫ [∫ 𝑣̂𝑖(𝜏) × 𝑣̂𝑖(𝑡 + 𝜏)
+∞
−∞ 𝑑𝜏]𝑒−𝑗2𝜋𝜔𝑡𝑑𝑡+∞

−∞                      (5) 10 

Based on 𝐺̂𝑖(𝑗𝜔), we can readily evaluate the disturbance amplification behavior without 11 
assuming a CF control law. Though the linearity and time-invariance property of CF without 12 
assuming details of CF laws and the corresponding parameter values. This approach can be 13 
further treated as a data-driven linear time-invariant approximation for the transfer function by 14 
simply utilizing vehicle speed. 15 
 16 
3. Numerical Estimation Algorithm and Time-variant Extension 17 
This section describes how to estimate the auto/cross spectral density, and the corresponding FRF 18 
in an unbiased fashion using discrete data with noise. We further extend the framework to a 19 
stochastic treatment of the FRF by basic statistics, considering the estimation error caused by 20 
algorithm itself and noisy measurements to facilitate a robust evaluation of disturbance 21 
amplification. Based on that, we extend the method to a time-variant fashion to better capture 22 
the time-variant behavior of ACC control. 23 
 24 
3.1 Spectrum numerical estimation algorithm and data-driven string stability 25 
Estimating the auto-spectrum and cross-spectrum requires some caution, as directly applying 26 
discrete Fourier transformation (DFT) is not consistent (Schoukens and Godfrey, 2018). The main 27 
reason is that when the number of measurements increases, DFT will only increase the resolution 28 
of spectrum (sampling frequency) but fail to ‘average’ the spectrum over the increased 29 
measurements. (Note that the frequency upper bound is determined by the sampling interval, 30 
and the frequency resolution is determined by the number of measurements. Hence, we apply a 31 
method that can properly average the estimations of auto-spectrum and cross-spectrum. 32 
Specifically, we apply the Welch method (Welch, 1967), a powerful tool to estimate auto-spectrum 33 
and cross spectrum, as illustrated in Fig. 2. The main idea of the Welch method is to decompose 34 
the signal into multiple overlapped segments, a windowed DFT is applied to extract the spectrum 35 
and phase angle in each segment given potential measurement noise. Finally, we average the 36 
spectra and phase angles to reduce the variance of the estimate. 37 
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 1 
Fig. 2 Illustration of the Welch method 2 

 3 
The detailed steps of the Welch method are given below: 4 
 5 

Step 1: Input the (discrete) speed measurements of vehicle 𝑖 for set 𝑙 (e.g., from the 𝑙𝑡ℎ  field 6 
test run) denoted by 𝑣̂𝑙,𝑖[𝑗], where 𝑗 = 0,⋯ ,𝑁𝑙 − 1, and 𝑁𝑙  is the total number of 7 
measurements for set 𝑙. 8 
 9 
Step 2: For each set 𝑙, we divide the data sequence into 𝐾𝑙 segments, where each segment 10 
includes 𝐿 data points, and successive segments are offset by 𝐷 points (see Fig. 2). Then, the 11 
𝑘𝑡ℎ segment can be described as: 𝑣̂𝑙,𝑖,𝑘[𝑛] = 𝑣̂𝑙,𝑖[𝑛 + 𝑘𝐷], ∀𝑛 = 1, … , 𝐿, 𝑘 = 1,2, … ,𝐾𝑙 . Notice 12 
that overlapping segments have 𝐿 − 𝐷 points, and thus, 𝑁𝑙 = 𝐿 + 𝐷(𝐾𝑙 − 1). The main 13 
intention for overlapping segments is to increase the number of segments and reduce the 14 
variance of spectrum analysis (Schoukens and Godfrey, 2018). As suggested by Welch (1967), 𝐷 15 
is usually selected from 𝐿/2 to 2𝐿/3 (by trial and error). 16 
  17 
Step 3: For each segment 𝑘 = 1,2, ⋯𝐾𝑙, a windowed finite Fourier transform is conducted as 18 

𝑉𝑘[ℎ] =
1
𝐿
∑ 𝑣𝑘[𝑚]𝑤[𝑚]

𝐿−1
𝑚=0 𝑒−𝑗2𝑘𝑚ℎ/𝐿 , where j is the imaginary unit; 𝑤[𝑚]  is the window 19 

(weight) function; and ℎ = 0,⋯ , 𝐿 2⁄  . Some typical windows are rectangular, Kaiser, Harm or 20 
Hanning, Hamming, Blackman, and Blackman-Harris. Specifically, the rectangular window has a 21 
clear peak in the graph showing the power spectrum estimation. The spectral resolution of the 22 
rectangular window and Kaiser window is higher, but the noise level near the frequency of the 23 
analyzed signal is also higher. It is considered that both rectangular window and Kaiser window 24 
are suitable for high precision spectrum estimation of signals with a high signal-to-noise ratio. 25 
Hanning window is more effective for spectrum leakage suppression, but the frequency resolution 26 
is relatively low. Thus, it is suitable for the general frequency estimation of signals with a low 27 
signal-to-noise ratio. Interested readers are referred to Çakrak and Loughlin (2001) and Eberhard 28 
(1973) for more details on these windows. As suggested by Ponn et al., (2019) the signal-to-noise 29 
ratio can be relatively low (e.g., < 0.1) based on current sensors instrumented on autonomous 30 
vehicles. Hence we adopt the Hanning window, whose detailed form is given below: 31 
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𝑤[𝑚] = 𝑠𝑖𝑛2(𝜋𝑚
𝐿
)                                                   (6) 1 

The main reason to employ a window function is two-fold: (1) to reduce the ‘spectral leakage 2 
effect’ caused by dividing the data sequence into multiple segments and (2) to increase the 3 
performance of finite Fourier transform. The spectral leakage effect is the smearing of power 4 
across a frequency spectrum, which occurs when the signal is not periodic in the sample interval. 5 
A well-designed window function should increase the frequency range of the main lobe (usually 6 
manifested by higher power) for precision while reducing the power of the sidelobe to suppress 7 
noisy measurement contamination. 8 

 9 
Step 4: For each segment 𝑘 = 1,2, ⋯𝐾𝑙 in each set, compute the corresponding modified auto-10 
spectrum value by Eq. (7): 11 

𝐼𝑘(𝜔ℎ) =
𝐿
𝑈
|𝑉𝑘[ℎ]|2, 𝑘 = 1,2,⋯𝐾𝑙                                     (7) 12 

where 𝜔ℎ =
ℎ
𝐿
× 𝑓𝑠, ℎ = 0,⋯ , 𝐿 2⁄  . 𝑓𝑠   is the sampling frequency and 𝑈 = 1

𝐿
∑ 𝑤2(𝑚)𝐿−1

𝑚=0   is 13 

the mean value of the squared window weights. According to Eq. (7), the resolution of the 14 
spectrum estimation is positively correlated with the segment length 𝐿.  15 
 16 
Step 5: Average the modified spectrum for all segments within each set 𝑙 to obtain the average 17 
auto-spectrum estimate: 18 

𝑅̂𝑙(𝜔ℎ) =
1
𝐾𝑙
∑ 𝐼𝑘(𝜔ℎ)

𝐾𝑙
𝑘=1                                             (8) 19 

Further, we take the average of the estimated auto-spectrum for all filed experiment runs 𝑀: 20 

𝐸[𝑅̂𝑙(𝜔ℎ)] =
1
𝑀
∑ 𝑅̂𝑙(𝜔ℎ)

M
𝑙=1                                          (9) 21 

It is worth noting that bias is due to the window associated with truncation and increases as the 22 
segment length decrease. For a given window and fixed data length, increasing the number of 23 
segments reduces the variance but increases the bias (Welch, 1967). 24 
 25 
Similarly, we can approximate the average cross-spectrum within each set 𝑙 through Steps 1 to 5, 26 
while replacing Eq. (7) by calculating the cross-spectrum for each segment as below: 27 

𝐽𝑘(𝜔ℎ) =
𝐿
𝑈
|𝐶𝑘[ℎ]|2, 𝑘 = 1,2,⋯𝐾𝑙                                     (10) 28 

Then, the cross-spectrum for all segments within each set 𝑙 can be approximated as: 29 

𝑆̂𝑙(𝜔ℎ) =
1
𝐾𝑙
∑ 𝐽𝑘(𝜔ℎ)

𝐾𝑙
𝑘=1                                            (11) 30 

And the general average of the cross-spectrum can be approximated as: 31 

𝐸[𝑆̂𝑙(𝜔ℎ)] =
1
𝑀
∑ 𝑆̂𝑙(𝜔ℎ)

M
𝑙=1                                           (12) 32 

According to Eq. (9), we can now calculate the FRF of each set 𝑙 and the general average FRF for 33 
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an experiment: 1 

𝐺̂𝑖(𝜔ℎ) =
𝑆̂𝑙(𝜔ℎ)
𝑅̂𝑙(𝜔ℎ)

                                                    (13) 2 

𝐸[𝐺̂𝑖(𝜔ℎ)] = ∑
𝑆̂𝑙(𝜔ℎ)
𝑅̂𝑙(𝜔ℎ)

𝑀
𝑙=1                                              (14) 3 

 4 
Though the above data-driven transfer function highly relies on the assumption that the system is 5 
linear and time-invariant, it can still be applied to nonlinear systems as a best linear and time-6 
invariant approximation for practicality. To account for nonlinearities and potential time-variant 7 
behaviors, we take a stochastic approach by describing an empirical cumulative density function 8 
(ECDF) for the data-driven transfer function based on 𝑀 experiment runs, as below: 9 

  Pr(𝐺̂𝑖(𝜔ℎ) ≤ γ) = ∑ 𝟏𝐺𝑙(𝜔ℎ)≤γ/𝑀
𝑀
𝑙=1                                     (15) 10 

where 𝟏𝐺𝑙(𝜔ℎ)≤γ  is the indicator function, for which the event 𝐺̂𝑙(𝜔ℎ) ≤ γ  happens 11 
(𝟏𝐺𝑙(𝜔ℎ)≤γ = 1) or not. 12 

 13 

Based on that, we use the 𝐹(γ), the ECDF of the maximum value of 𝐺̂𝑙(𝜔ℎ) over all frequency 14 
components 𝜔ℎ (ECDFM) to characterize the H-infinity norm of the estimated transfer function 15 
in a probabilistic way. The detailed equation is defined as:   16 

𝐹(γ) = Pr(∪𝜔ℎ {𝐺̂𝑙(𝜔ℎ) ≤ γ}) = Pr (𝑚𝑎𝑥𝜔ℎ[𝐺̂𝑙(𝜔ℎ)] ≤ γ)                (16) 17 
Given the lack of evidence showing dependence among different frequencies, we assume 18 
independence of each frequency 𝜔ℎ. Hence, we have the following relationship between 𝐹(γ) 19 
and 𝐹𝜔ℎ(γ) 20 

𝐹(γ) = ∏ 𝐹𝜔ℎ(γ)𝜔ℎ                                                  (17) 21 

Eq. (20) provides a tool to analyze the string stability in a stochastic data-driven fashion. By the 22 
definition of the theoretical string stability given in Section 2.1, a homogenous vehicular platoon 23 

of length N with the averaged FRF Ĝl(ωh) and its ECDFM F̅(γ) is strong string stable with a 24 
probability greater than or equal to α, if F̅(1) ≥ α. 25 
 26 
In many existing controllers, the transfer function 𝐺𝑖(𝑗𝜔) → 1 when ω → 0, which may make 27 
Fωh(1) very sensitive to the measurement error and estimation error of the proposed technique. 28 
To address this possible sensitivity, we give the estimation of Fωh(γ) a small buffer β (e.g., 0.06) 29 

when γ = 1 . With the buffered estimation of empirical cumulative distribution, denoted by 30 

Fωh
β (γ), it is less likely to draw the unstring stable conclusion due to those errors. The buffered 31 

ECDF over each frequency ωh can be systematically defined as: 32 

𝐹𝜔ℎ
𝛽 (γ) = ∑ 𝟏𝐺𝑙(𝜔ℎ)≤γ+𝛽

𝑀
𝑙=1 /𝑀                                          (18) 33 

And we can define the buffered ECDFM as: 34 

𝐹𝛽(γ) = ∏ 𝐹𝜔ℎ
𝛽 (γ)𝜔ℎ                                                   (19) 35 
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Based on that, we get the buffered string stability: a homogenous vehicular platoon is practically 1 

buffered string stable with a probability greater than or equal to α, if 𝐹𝛽(1) ≥ 𝛼. 2 
 3 
The time-invariant analysis above is more suited to describe general CF behavior with different 4 
leading vehicle trajectories by the statistical maneuver given by Eqs. (15)-(19). To capture more 5 
nuanced CF behavior that varies over time, a time-variant extension is given in Section 3.2. 6 
 7 
3.2 Time-variant extension of FRF 8 
Here we extend the framework above and assume that the CF controller is time-variant under 9 
different leading vehicle trajectories. To incorporate the time-variant behavior, we extend the FRF 10 
from the frequency domain, 𝐺𝑖(𝑗𝜔), into a response function in the joint time-frequency domain, 11 

𝐺𝑖(𝑡, 𝑗𝜔) . Analogous to the time-invariant approximation, 𝐺̂𝑖(𝑗𝜔)  in Eq. (6), the time-variant 12 
extension of the theoretical FRF 𝐺𝑖(𝑡, 𝑗𝜔)  could be approximated as 𝐺̂𝑖(𝑡, 𝑗𝜔)  in the time-13 
frequency domain: 14 

𝐺̂𝑖(𝑡, 𝑗𝜔) =
𝑣̂𝑖(𝑡,𝑗𝜔)
𝑣̂𝑖−1(𝑡,𝑗𝜔)

                                                    (20) 15 

Where 𝑣̂𝑖(𝜏, 𝑗𝜔)  is the short-time Fourier transformation of measured speed for vehicle 𝑖 , 16 
providing both the temporal and frequency resolutions and frequency resolution. Different from 17 
the time-invariant case, we apply the discrete Short Time Fourier Transformation (STFT) to 18 
estimate the auto spectrum in the joint time-frequency domain to capture the time-variant 19 
features of speed energy change:  20 

   𝑣̂𝑖(𝑡, 𝑗𝜔) = ∑ 𝑣̂𝑖(𝑡)∞
−∞ 𝑤(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡                                      (21) 21 

where 𝑤(𝑡 − 𝜏) is the time window with the center at 𝜏, as discussed in Section 3.1. Note that 22 
there is trade-off in selecting the STFT time window function (also named block length). A short 23 
block length would provide a finer time resolution but degrade the frequency resolution. In 24 
contrast, when the block length is larger, more frequency information will be averaged over the 25 
time interval. Generally, there is no optimal STFT window. To numerically approximate 𝑣̂𝑖(𝑡, 𝑗𝜔), 26 
we similarly apply the discrete STFT based Welch method while considering the time-variant 27 
feature. Details follow. 28 
 29 
Similar to Step 2 in Section 3.1, for a 𝑙, we divide the speed data for vehicle 𝑖 into 𝐾𝑙 segments, 30 
where each segment includes 𝐿 data points, and successive segments are offset by 𝐷 (usually 31 

D = 𝐿
2
) points for robustness as mentioned in Section 3.1. For each segment, we conduct a DFT 32 

transformation for the measured speed as: 33 

𝑉𝑘[ℎ] =
1
𝐿
∑ 𝑣𝑘[𝑚]𝑤[𝑚]

𝐿−1
𝑚=0 𝑒−𝑗2𝑘𝑚ℎ/𝐿                                   (22) 34 

and the corresponding auto-spectrum as: 35 

𝐼𝑘(𝜔ℎ) =
𝐿
𝑈
|𝑉𝑘[ℎ]|2, 𝑘 = 1,2,⋯𝐾𝑖                                        (23) 36 
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where 𝜔ℎ =
ℎ
𝐿
× 𝑓𝑠, ℎ = 0,⋯ , 𝐿 2⁄  . 𝑓𝑠   is the sampling frequency and 𝑈 = 1

𝐿
∑ 𝑤2(𝑚)𝐿−1

𝑚=0   is 1 

the mean value of the squared window weights as described in Section 3.1. Then, the norm of 2 
time variant transfer function can be approximated as:  3 

   |𝑣𝑖(𝑡, 𝑗𝜔)|2 ≈ |𝑣𝑖(𝑡, 𝑗𝜔ℎ)|2 =

{
 
 

 
 𝐼𝑘(𝜔ℎ)   𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤

𝐿
2𝑓𝑠

𝐼𝑘(𝜔ℎ)+𝐼𝑘(𝜔ℎ)
2

𝑤ℎ𝑒𝑛 𝐿𝑘
2𝑓𝑠
≤ 𝑡 ≤ 𝐿(𝑘+1)

2𝑓𝑠

𝐼𝐾𝑖(𝜔ℎ)    𝑤ℎ𝑒𝑛 
𝐿𝑘
2𝑓𝑠
≤ 𝑡 ≤ 𝐿(𝑘+1)

2𝑓𝑠

          (23) 4 

Similarly, we can approximate auto-spectrum of vehicle 𝑖 − 1, and then approximate |𝐺̂𝑖(𝑡, 𝑗𝜔)| 5 
by: 6 

|𝐺̂𝑖(𝑡, 𝑗𝜔)| ≈ √
|𝑣̃𝑖(𝑡,𝑗𝜔ℎ)|2

|𝑣̃𝑖−1(𝑡,𝑗𝜔ℎ)|2
                                             (24) 7 

Similar to the time-invariant case, |𝐺̂𝑖(𝑡, 𝑗𝜔)| denotes the disturbance amplification ratio at time 8 

𝑡 and is thus string stable if sup
𝑡,𝜔
|𝐺̂𝑖(𝑡, 𝑗𝜔)| ≤ 1. Note that |𝐺̂𝑖(𝑡, 𝑗𝜔)| is directly related to 𝑡, 9 

which means that the analysis fits for analyzing the time-varying CF behavior under non-steady 10 
state leading vehicle trajectories (e.g., with speed change, etc.).  11 
 12 
The analysis above suggests a trade-off in the temporal and frequency domain resolutions in 13 
relation to 𝐿: a larger value of 𝐿 increases the frequency domain resolution while sacrificing the 14 
temporal domain resolution. There is no optimal setting for 𝐿, and it needs to be determined 15 
based on the analysis resolution. Similar to the window function selection in Step 3 in Section 3.1, 16 
we choose the Hanning window and add the 50% overlap between adjacent blocks to make the 17 
STFT smoother, satisfy the completeness condition, and avoid the spectral leakage (Wexler and 18 
Raz 1990, Avargel and Cohen 2007). Note that discrete wavelet transformation is an alternative 19 
solution to a multi-resolution analysis in the time-frequency domain. However, it is sensitive to 20 
minute variations, especially for noisy speed signals (Faust et al. 2015). 21 
 22 
For the above analysis, we select the speed variation 𝑣𝑖(𝑠) as a surrogate variable for stability 23 
since it is widely used in traffic flow analysis. For a homogenous vehicular platoon (i.e., same 24 

control law and control parameters), it can be proved that 𝑣𝑖(𝑠)
𝑣𝑖−1(𝑠)

= 𝑎𝑖(𝑠)
𝑎𝑖−1(𝑠)

= 𝑑𝑖(𝑠)
𝑑𝑖−1(𝑠)

= Δ𝑣𝑖(𝑠)
Δ𝑣𝑖−1(𝑠)

 25 

regardless of the control law, where 𝑎𝑖(𝑠), 𝑑𝑖(𝑠), 𝑣𝑖(𝑠), and Δ𝑣𝑖(𝑠) respectively represent the 26 
acceleration, spacing, speed, and relative speed for vehicle 𝑖  in the frequency domain. For a 27 

heterogenous platoon, 𝑣𝑖(𝑠)
𝑣𝑖−1(𝑠)

= 𝑎𝑖(𝑠)
𝑎𝑖−1(𝑠)

= 𝐺𝑖(𝑠)  and 𝑑𝑖(𝑠)
𝑑𝑖−1(𝑠)

= Δ𝑣𝑖(𝑠)
Δ𝑣𝑖−1(𝑠)

= 𝐹𝑖(𝑠) , but usually 28 

𝐹𝑖(𝑠) ≠ 𝐺𝑖(𝑠) .  Thus, 𝐹𝑖(𝑠)  and 𝐺𝑖(𝑠)  need to be estimated separately by changing the 29 
surrogate variable for stability. Nevertheless, our framework can be still applied.  30 
 31 
 32 



13 
 

4. Evaluation of the Method via Numerical Simulation 1 
In this section, we systematically validate the proposed analysis for data-driven stochastic string 2 
stability and estimation consistency of transfer function using numerical simulation. We generate 3 
synthetic data from a known linear controller to check whether the data-driven approach can 4 
provide a transfer function consistent with the mathematical derivation in both time-invariant and 5 
time-variant fashions. We also check whether the time-invariant data-driven FRF serves as a good 6 
approximation for a nonlinear controller. Since the describing function analysis can only be applied 7 
to controllers with certain types of nonlinearities, we select a linear controller with bounded 8 
acceleration and deceleration as a special case for the evaluation. 9 
  10 
4.1 Synthetic test for a linear controller 11 
We first generate leading vehicle trajectories with the equilibrium speed of 15 𝑚/𝑠 , and to 12 
reproduce the oscillatory feature, we add compounding oscillatory speed as an excitation (a 13 
disturbance to trigger the frequency response) for the CF simulation. These features are selected 14 
based on the reconstructed NGSIM data (Montanino and Punzo, 2015; Punzo et al., 2011). Given 15 
the leading vehicle trajectories, we simulate the following vehicle trajectories based on an 16 
assumed controller. Particularly, we adopt the linear controller by Zhou et al. (2019b) as an 17 
illustrative example, whose transfer function can be mathematically derived as below: 18 

𝐺𝑖(s) =
(𝑘𝑠+𝑘𝑣𝑠+𝑘𝑓𝑠2)

𝑇𝐿𝑠3−(𝑘𝑎−1)𝑠2+(𝜏𝑖
∗𝑘𝑠+𝑘𝑣)𝑠+𝑘𝑠

                                         (25) 19 

where 𝑘𝑠, 𝑘𝑣, 𝑘𝑎  are feedback gains for the deviation from equilibrium spacing, speed difference, 20 
and acceleration. 𝑘𝑓  is the feedforward gains.  𝑇𝐿 and 𝜏𝑖∗ are the time engine coefficient and 21 

constant time gap for vehicle 𝑖. The corresponding transfer function norm can be obtained as in 22 
Eq. (26): 23 

|𝐺𝑖(𝑗𝜔)| =
𝑘𝑠2+𝑘𝑣2𝜔2+𝑘𝑓

2𝜔4−2𝑘𝑠𝑘𝑓ω2

𝑇𝐿
2ω6+[−2𝑇𝐿(𝑘𝑠𝜏𝑖

∗+𝑘𝑣)+(𝑘𝑎−1)2]𝜔4+[(𝑘𝑠𝜏𝑖
∗+𝑘𝑣)

2+2𝑘𝑠(𝑘𝑎−1)]𝜔2+𝑘𝑠2
             (26) 24 

 25 
To simulate real-world sensor measurements, we add normally distributed white noise with the 26 
standard deviation of 0.1 𝑚/𝑠  (NHTSA, 2013 March) for both leading and following vehicle 27 
trajectories. Using these synthetic data, we apply the Welch method to extract the transfer 28 
function in a probabilistic fashion and check the accuracy of the data-driven transfer function 29 
estimation. Considering the trade-off between the resolution and the number of segments to 30 
average the estimation, the parameter values for the Welch method are set as shown in Table 1. 31 
The detailed process of the numerical simulation analysis is given in Fig. 3. 32 
 33 

Table 1. Default parameters for the Welch method 34 

𝑓𝑠  0.1 Hz 
𝐿 12 sec 
M 1000 
𝐷 6 sec 
𝑁𝑙  6 sec 

https://www.sciencedirect.com/science/article/pii/S0968090X17301997#b0120
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 1 

 2 
Fig. 3 Evaluation process based on synthetic data simulation  3 

 4 
To test whether the proposed method can distinguish different string stability behaviors by 5 
different controller parameters, we design three scenarios: (1) string stable, (2) string unstable, 6 
and (3) slightly string unstable. The parameter settings and the corresponding theoretical infinity 7 
norms for the three scenarios are given in Table 2, and other parameters follow Zhou et al. (2020). 8 
For the three scenarios, we evaluate the accuracy of the estimated norm of transfer functions 9 
against the empirical two-sided 90 percent boundaries extracted from the synthetic data. We 10 
conducted 1000 simulation runs, with each run containing 3.5 minutes of trajectories for the 11 
proceeding and following vehicles. The discretization step of the simulation is set as 0.1 sec. 12 
 13 

Table 2. Controller parameters and 𝑯∞ norm for different scenarios 14 

Scenario Feedback gains 
[𝑘𝑠, 𝑘𝑣, 𝑘𝑎] 

𝑯∞ norm 

1 [0.3, 1.5, -0.6] 1 
2 [1.5, 0.3, -0.6] 1.11 
3 [1,1,-1] 1.03 

 15 
For the three scenarios, we evaluate the accuracy of the estimated norm of transfer functions 16 
against the empirical [5%, 95%] boundaries extracted from the synthetic data. We conducted 1000 17 
simulation runs, in which each run contains 3.5 minutes of trajectories for the proceeding and 18 
following vehicles. The discretization step of the simulation is set as 0.1 sec. The estimated norm 19 
of the transfer function for each run under three scenarios is given in Fig. 4(a)-(c). Furthermore, 20 
Fig. 4(d)-(f) show the average norm and the empirical two-sided 90 percent boundaries, compared 21 
against the theoretical norm. They show that overall, the average norms based on the proposed 22 
method (red curves) are nearly superimposed with the theoretical norms (blue curves) in all three 23 
scenarios. This suggests that the proposed method can produce accurate and consistent results in 24 
various scenarios by averaging the estimations, which demonstrates the robustness of our 25 
proposed method. Note that though negligible, the proposed method is less accurate in lower 26 
frequency regions (e.g., < 0.06 Hz), and results in a 0.01 discrepancy with the theoretical value. 27 
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The main reason is that estimating an empirical transfer function over a low-frequency region 1 
requires a long period of measurements and thus a relatively large 𝐿  in our framework. The 2 
number of low-frequency signals given limited measurements can be small. Further, a large 𝐿 can 3 
significantly reduce the number of segments used to average the transfer functions, leading to 4 
potential inaccuracy. Another factor is the magnitude of measurement noise. Nonetheless, our 5 
results indicate that when the standard deviation of the speed measurement is less than 0.05m/s, 6 
our estimation can produce results close to the theoretical ones.  7 

 8 
Fig. 4 Empirical norm of estimated transfer functions (a-c) all experimental empirical norm of 9 

transfer functions for Scenario 1 to 3; (d-f) norm of the average empirical transfer function and 10 
empirical boundaries 11 

 12 
We further analyzed the empirical [5%, 95%] confidence interval given in Fig. 4(d)-(f). Specifically, 13 
we adopt Proposition 3 to check whether the proposed method can properly determine string 14 
stability and instability for the three scenarios designed above. The details are provided in Fig. 5. 15 
As in Section 3.1, we first analyze the buffered string instability probability for each frequency, 𝜔ℎ, 16 
i.e., the probability that the norm of the estimated transfer function is greater than 1 + 𝛽 (with 17 

𝛽 = 0.06), 1 − 𝐹𝜔ℎ
𝛽 (1) in Eq. (19); see the blue bars in the figure. Then we compute the buffered 18 

complementary cumulative string stability probability 𝐹𝛽(γ) ; see the red curve in the figure. The 19 
buffered string instability probability (blue bars) mainly lies in the low-frequency part. Further, 20 
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scenario 1 (strong string stable case) has the least likelihood of string instability across different 1 
frequencies, scenario 2 (strong string unstable case) has the highest likelihood, and scenario 3 2 
(slightly string stable case) has a likelihood in between. For the general string stability conclusion, 3 
the red curve shows that the complementary cumulative string stability probabilities for scenarios 4 
1, 2, and 3 are respectively 76%, 0%, and 30%. The results demonstrate that the proposed method 5 
can accurately distinguish strong string stability and instability cases, and further identify which 6 
frequency domain the ACC might be string unstable. However, the proposed method is more likely 7 
to produce a higher probability of string instability in the low-frequency regions as expected based 8 
on Remark 1. The probability of strong string stability depends on the choice of hyper-parameter 9 
𝛽. With proper tuning of the parameter, the proposed method can produce justifiable results.   10 

 11 

Fig. 5 𝟏 − 𝑭𝝎𝒉
𝜷 (𝟏) and 𝑭̅𝜷(𝟏) (a) scenario 1; (b) scenario 2; (c) scenario 3 12 

 13 
4.2 Synthetic test for a non-linear controller 14 
Since deriving the theoretical transfer function of a nonlinear controller is extremely challenging, 15 
we can only evaluate our method in limited scope. The complexity depends on the nonlinearity 16 
form of CF law and if the CF law is even analytical. Inspired by Li et al. (2012), we apply a describing 17 
function analysis to provide a theoretical transfer function derivation for a simple nonlinear 18 
control law. Specifically, in this section, we analyze a nonlinear controller, which is piecewise linear, 19 
given as below: 20 

𝑢𝑖(𝑡) = 𝑚𝑖𝑑 {𝑎𝑚𝑖𝑛,  𝑘𝑖𝑥𝑖(𝑡),  𝑎𝑚𝑎𝑥}                                      (27) 21 
where 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 denote the deceleration and acceleration limits, respectively. Given the 22 
simplicity, the above controller can be theoretically derived by a describing function analysis 23 
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method if the leading vehicle acceleration portfolio is dominated by a frequency ω  with a 1 
magnitude 𝐴𝑖−1, rendering 𝑎𝑖−1(𝑡) = 𝐴𝑖−1𝑠𝑖𝑛(𝜔𝑡). The core idea is to decompose the signal of 2 
the following vehicle trajectories by Fourier Transformation as: 3 

𝑎𝑖(𝑡) = 𝑌1,1𝑠𝑖𝑛(𝜔𝑡) + 𝑌1,2𝑐𝑜𝑠(𝜔𝑡) + 𝑌2,1𝑠𝑖𝑛(2𝜔𝑡) + 𝑌2,2𝑐𝑜𝑠(2𝜔𝑡) + ⋯        (28) 4 
By assuming the low-pass property of CF law (i.e., 𝑌1,1, 𝑌1,2 ≫ 𝑌𝑘,1, 𝑌𝑘,2, for 𝑘 ≥ 2), 𝑎𝑖(𝑡) can 5 
be approximated as: 6 

𝑎𝑖(𝑡) ≈ 𝑌1,1𝑠𝑖𝑛(𝜔𝑡) + 𝑌1,2𝑐𝑜𝑠(𝜔𝑡)                                       (29) 7 
where  8 

𝑌1,1 =
1
𝜋 ∫ 𝑎𝑖(𝑡) sin(𝜔𝑡) 𝑑(𝜔𝑡)

2𝜋−θ
−𝜃                                        (30) 9 

𝑌1,2 =
1
𝜋 ∫ 𝑎𝑖(𝑡) cos(𝜔𝑡) 𝑑(𝜔𝑡)

2𝜋−θ
−𝜃                                        (31) 10 

 11 
Then the relationship between 𝑎𝑖−1(𝑡) and 𝑎𝑖(𝑡) can be described by a describing function, 12 
𝐻𝑛𝑙(𝑗𝜔), defined as multiplication of a norm function |𝐻𝑛𝑙(𝑗𝜔)|: 13 

𝐻𝑛𝑙(𝑗𝜔) = |𝐻𝑛𝑙(𝑗𝜔)|∡𝐻𝑛𝑙(𝑗𝜔)                                         (32) 14 
where, 15 

|𝐻𝑛𝑙(𝑗𝜔)| =
√𝑌1,12 +𝑌1,22

𝐴𝑖−1
                                                 (33) 16 

∡𝐻𝑛𝑙(𝑗𝜔) = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑌1,2
𝑌1,1
)                                              (34) 17 

For simplicity, we set 𝑎𝑚𝑎𝑥 = −𝑎𝑚𝑖𝑛 = 𝑎𝑏𝑜𝑢𝑛𝑑. Hence, in an oscillation cycle [−𝜃, 2𝜋 − θ], we 18 
can mathematically represent the following vehicle acceleration based on two conditions: 19 

Condition 1 (Inactive boundary): when 𝑎𝑏𝑜𝑢𝑛𝑑
𝐴𝑖−1𝐾𝐿(𝜔) 

≤ 1  20 

 𝑎𝑖(𝑡) = |𝐺𝑖(𝑗𝜔)|𝑣𝑖(𝜔𝑡 + ∡𝐺𝑖(𝑗𝜔))                                     (35) 21 
Condition 1 follows an exact linear control law that has already been evaluated.  22 
 23 

Condition 2 (Active boundary): when 𝑎𝑏𝑜𝑢𝑛𝑑
𝐴𝑖−1|𝐺𝑖(𝑗𝜔)| 

> 1 24 

𝑎𝑖(𝑡) =

{
 
 

 
 |𝐺𝑖(𝑗𝜔)|𝑣𝑖(𝜔𝑡 + ∡𝐺𝑖(𝑗𝜔)) 𝑖𝑓 − 𝛽 − ∡𝐺𝑖(𝑗𝜔) < 𝜔𝑡 ≤ 𝛽 − ∡𝐺𝑖(𝑗𝜔)

𝑎𝑏𝑜𝑢𝑛𝑑 𝑖𝑓 𝛽 − ∡𝐺𝑖(𝑗𝜔) < 𝜔𝑡 ≤ 𝜋 − 𝛽 − ∡𝐺𝑖(𝑗𝜔)
|𝐺𝑖(𝑗𝜔)|𝑣𝑖(𝜔𝑡 + ∡𝐺𝑖(𝑗𝜔)) 𝑖𝑓 𝜋 − 𝛽 − ∡𝐺𝑖(𝑗𝜔) < 𝜔𝑡 ≤ 𝜋 + 𝛽 − ∡𝐺𝑖(𝑗𝜔)

−𝑎𝑏𝑜𝑢𝑛𝑑 𝑖𝑓 𝜋 + 𝛽 − ∡𝐺𝑖(𝑗𝜔) < 𝜔𝑡 ≤ 2𝜋 − 𝛽 − ∡𝐺𝑖(𝑗𝜔)

 (36) 25 

The details are given in Fig. 6. 26 
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 1 

Fig. 6 𝒂̂𝒊−𝟏(𝒕) vs.  𝒂̂𝒊(𝒕) plane 2 
 3 

By letting β = sin−1 ( 𝑎𝑏𝑜𝑢𝑛𝑑
𝐴𝑖−1|𝐺𝑖(𝑗𝜔)|

), we have: 4 

Y1,1 =
1
𝜋 ∫ 𝑎𝑖(𝑡) sin(𝜔𝑡) 𝑑(𝜔𝑡)

2𝜋−θ
−𝜃 = 4𝑎𝑚𝑎𝑥 cos(𝛽) cos(𝜃)+𝐴𝑖−1|𝐺𝑖(𝑗𝜔)|cos (𝜃)(2𝛽−𝑠𝑖𝑛(2𝛽))

π
  (37) 5 

Y1,2 =
1
𝜋 ∫ 𝑎𝑖(𝑡) cos(𝜔𝑡) 𝑑(𝜔𝑡)

2𝜋−𝜃
−𝜃 = 4𝑎𝑚𝑎𝑥 cos(𝛽) sin(𝜃)+𝐴𝑖−1|𝐺𝑖(𝑗𝜔)|sin(𝜃)(2𝛽−𝑠𝑖𝑛(2𝛽))

π
  (38) 6 

Further, based on (40), we have: 7 

|𝐻𝑛𝑙(𝑗𝜔)| =
√𝑌1,12 +𝑌1,22

𝐴𝑖−1
= |4𝑎𝑏𝑜𝑢𝑛𝑑 cos(∡|𝐺𝑖(𝑗𝜔)|)−𝐴𝑖−1|𝐺𝐼(𝑗𝜔)|sin(2𝛽)+2𝐴𝑖−1|𝐺𝑖(𝑗𝜔)𝛽|

𝐴𝑖−1π
        (39) 8 

∡𝐻𝑛𝑙(𝑗𝜔) = ∡𝐺𝑖(𝑗𝜔)                                                    (40) 9 
As notable by Eq. (40), the theoretical describing function analysis based on a FRF norm is 10 
apparently affected by the leading vehicle oscillation magnitude 𝐴𝑖−1  and 11 
acceleration/deceleration boundaries 𝑎𝑏𝑜𝑢𝑛𝑑, in contrast to the theoretical linear controller. As a 12 
comparison, we further analyze if the data-driven linear (time-invariant) FRF can provide a 13 
reasonable approximation for the theoretical non-linear FRF. As an example, we select a leading 14 
vehicle's acceleration oscillating at 5Hz with its magnitude varying from 6 to 8 𝑚/𝑠2 to make the 15 
acceleration and deceleration boundaries active. As shown in Fig. 7, the data-driven linear FRF is 16 
very similar to the nonlinear theoretical approximation under different leading vehicle oscillation 17 
magnitudes. However, there is an apparent discrepancy between the linear theoretical one and 18 
nonlinear theoretical one, and the discrepancy increases as the magnitude of the leading vehicle 19 
oscillations grows. The example provided highlights the limitation of the linear theoretical string 20 
stability analysis and the potential of our proposed data-driven method for disturbance 21 
amplification analysis. Furthermore, ACC algorithms of vehicles on the market are usually 22 
unknown. Even if the CF algorithm is fully known and well calibrated, the linear theoretical string 23 
stability still renders unsatisfied results.     24 
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 1 

Fig. 7 Disturbance amplification ratio under different leading vehicle acceleration oscillation 2 
magnitude 3 

 4 
4.3 Synthetic test for a linear time-varying controller 5 
We further validate our time-variant method using synthetic data similar to the time-invariant 6 
case. We design the leading vehicle trajectory to travel at 15 m/s and oscillate at the frequency 7 
of 0.25 Hz and 0.5Hz, with the magnitude of 1.5 m/s  and 1 m/s . We apply the same linear 8 
control law with time-varying control gains to reflect the potential time-varying features. The 9 
detailed theoretical time-variant transfer function is given as: 10 

𝐺𝑖(t, s) =
(𝑘𝑠(𝑡)+𝑘𝑣(𝑡)𝑠+𝑘𝑓(𝑡)𝑠2)

𝑇𝑖,𝐿𝑠3−(𝑘𝑎(𝑡)−1)𝑠2+(𝜏𝑖
∗𝑘𝑠(𝑡)+𝑘𝑣(𝑡))𝑠+𝑘𝑠(𝑡)

                               (41) 11 

and 12 

[𝑘𝑠(𝑡), 𝑘𝑣(𝑡), 𝑘𝑎(𝑡)] = {
[0.3, 1.5, −0.6]         𝑤ℎ𝑒𝑛 𝑡 ≤ 90𝑠
[1.5,0.3,−0.6]          𝑤ℎ𝑒𝑛 𝑡 ≥ 90𝑠                      (42) 13 

 14 
Considering the trade-off between the time domain and frequency domain resolutions, we let 15 
L = 60 s, assuming the CF behavior remains unchanged for 30 s. Following the method shown in 16 
Section 3.2, the auto-spectrum of leading vehicle speed, CF pair speed evolvement, norm of 17 
theoretical FRF and norm of empirical FRF are given in Fig. 8. The result given in Fig. 8 shows that 18 
when the control gains suddenly change at t = 90 s, there is a discrepancy between theoretical 19 
and empirical FRF as anticipated, due to the nature of STFT assuming that the behavior remains 20 
unchanged over each 𝐿. Other than the discrepancy around the change, our method provides 21 
consistent estimations.  22 
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 1 

Fig. 8 (a) Auto-spectrum of leading vehicle speed; (b) speed portfolio; (c) Norm of Theoretical 2 
FRF (d) Norm of Empirical FRF 3 

5. Analysis of commercial ACC Vehicles 4 
In this section, we apply our proposed method to systematically quantify the disturbance 5 
dampening behaviors of ACC vehicles on the market. Considering the experiment duration and 6 
scenarios design, we apply the linear time-invariant FRF approach to describe the general 7 
behaviors using the OpenACC dataset (Makridis et al., 2020). Further, we also apply the linear 8 
time-variant FRF approach to describe the nuanced behavior concerning specific leading vehicle 9 
trajectories using the Massachusetts experiment dataset (Li et al., 2021).   10 
 11 
5.1 Linear Time-Invariant FRF based Analysis 12 
The OpenACC database includes trajectory and speed data of five ACC vehicles in three CF test 13 
campaigns with different driving paths, study durations, and platoon formations. We analyze the 14 
data from the third campaign with fewer deployment issues, which was conducted in 2019 on a 15 
5.7-km rural road section of the AstaZero test track in a protected environment. The details of the 16 
experimental set-up are provided in (Makridis et al., 2020). The path layout is shown in Fig. 9. In 17 
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this campaign, a platoon of five vehicles (referred to as vehicle types 1-5 in this paper) was chosen 1 
as study objects to test the ACC capability during traffic oscillations. The vehicle position and 2 
speed data were measured through high-fidelity differential Global Navigation Satellite Systems 3 
(GNSSs) by recording the GPS coordinates (latitude, longitude, altitude), ENU coordinates, 4 
instantaneous inter-vehicle distances, and speeds of each vehicle at a certain frequency. The 5 
initial frequency provided by the data acquisition system is more than 100 Hz. However, the 6 
frequency has been reduced to 10Hz in the open-source data to reduce the noise caused by high-7 
frequency sampling. A low-pass filter and linear interpolation were also applied to deal with 8 
invalid and missing data. 9 

 10 
Fig. 9. Path layout of the third experiment in OpenACC dataset (Makridis et al., 2020) 11 

 12 
Field testing has been conducted for the above-mentioned vehicle platoon under speed 13 
disturbances of different frequencies around the target speed. To estimate the transfer function 14 
over the entire potential frequency range, we first examine vehicle trajectories during traffic 15 
oscillations, which tend to exhibit wider frequency ranges. An example of vehicle trajectories and 16 
the corresponding speeds are shown in Fig. 10. All vehicles started from rest. The first leading 17 
vehicle accelerated from rest to the designed target speed of 60 mph at the average rate of 18 
0.95  m/s2 . After that, the first vehicle intentionally decelerated and accelerated around the 19 
target speed to create traffic oscillations of different magnitudes and frequencies. It is observed 20 
that the speed oscillations were amplified through the vehicle string, which intuitively indicates 21 
string instability.  22 

 23 

Fig. 10. Examples of (a) vehicles trajectories and (b) speeds 24 
 25 
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 1 

Fig. 11 Norm of average empirical transfer functions for ACC vehicles (a) vehicle 2; (b) vehicle 2 
3; (c) vehicle 4; (d) vehicle 5 3 

 4 
To further investigate the frequency-domain properties, we used trajectory and speed data over 5 
the duration of 2.6 hours to estimate the empirical transfer function and the corresponding 6 
empirical and practical cumulative distribution of practical string stability. The results in Fig. 11 7 
show that the norm of the average empirical transfer function varies by vehicle 8 
model/manufacturer, suggesting varying ACC performance in terms of string stability. 9 
Furthermore, we find that all vehicle models exhibit large norm values in the low-frequency region. 10 
Contrary to the linear controllers tested in Section 4.1, the ACC vehicles on the market also exhibit 11 
large norm values in high-frequency regions (e.g., > 4Hz). We suspect that with a high-frequency 12 
disturbance, vehicle dynamics such as actuation delay may exacerbate the follower response. In 13 
comparison, vehicle 3 is most string unstable, especially in the low-frequency region below 0.5 Hz, 14 
where the norm reaches nearly 1.5. Vehicles 2, 4, and 5 are all string unstable, though vehicle 4 15 
performs better with the lowest H∞  norm value of transfer function and the smallest string 16 
unstable regions. To further evaluate the strong string stability in a probabilistic manner, we 17 
calculate the string stability probability for each frequency component and cumulative string 18 
stability probability. The results are given in Fig. 12.  19 
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 1 

Fig. 12 𝟏 − 𝑭𝝎𝒉
𝜷 (𝟏) and 𝑭̅𝜷(𝟏) : (a) vehicle 2; (b) vehicle 3; (c) vehicle 4; (d) vehicle 5 2 

 3 
From the probability perspective, the cumulative probability of string instability in the low-4 
frequency region is very high for all vehicles, while the buffered ECDFM approaches zero. The 5 
results suggest that the ACC vehicles do not perform well in terms of string stability with a low-6 
frequency disturbance, which supports the results of the deterministic string stability conclusion 7 
in Fig. 11. Furthermore, there is still some possibility of string instability in the high-frequency 8 
region (~ 5Hz). While the general conclusion that the tested ACC vehicles are string unstable is 9 
consistent with Gunter et al. (2020), our analysis reveals more detailed results – the frequency 10 
ranges in which the vehicles are string unstable and the probabilistic degree of string instability. 11 
 12 
We are further interested in the time-variant behavior of commercial ACC. For this, we analyze 13 
the Massachusetts ACC data collected by Li et al. (2021); see Fig. 13(a) for an example trajectory. 14 
In that experiment, the leading vehicle trajectory is designed to travel at a constant speed initially, 15 
then decelerate to create a disturbance (at time 25 s), and eventually accelerate to resume the 16 
initial speed (at time 50 s). As shown in Fig. 13(b) and 13(c), the largest STFT norms with the 17 
magnitude of 50-60 𝑚/𝑠 can be found in the low-frequency domain below 0.2 Hz, when the 18 
leading vehicle maintains a constant speed. The autospectrum of the higher frequency range (0.2 19 
to 0.5 Hz) becomes larger when the vehicles experience a disturbance from 25 s to 45 s in the time 20 
domain. We further applied the time-variant extension of the FRF to explore the time-frequency 21 
domain characteristics; see Fig. 13(d). Rather than analyzing over all frequency ranges, we focus 22 
on the range with significant time-frequency features. The result suggests that the commercial 23 
ACC in the experiment exhibits significant time-variant features in terms of disturbance 24 
dampening ratio, especially when the leading vehicle decelerates. The disturbance dampening 25 
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ratio can reach up to 2.5 in the frequency range from 0.3 to 0.5 Hz, which suggests that the 1 
disturbance get amplified significantly during deceleration process compared with the relative 2 
steady state process. Though the disturbance amplification is to a less extent, we can also find that 3 
commercial ACC is not string stable from 0.1 Hz to 0.3 Hz in general, which is consistent with the 4 
finding from the OpenACC dataset. The above analysis in Section 5, provided a detailed analysis 5 
of time-frequency range of disturbance amplification for commercial ACC. These finding can be 6 
applied to leading CAV’s trajectory design (e.g., Ma et al., 2017) as well as mixed traffic 7 
stabilization via adaptive adjustment of CAV control parameters (e.g., Zhou et al., 2020). 8 
 9 

 10 

Fig. 13 Time-Variant Extension of the FRF (a) Speed portfolio of the analyzed CF pair; (b) 11 
Spectrogram of the leading vehicle; (c) Spectrogram of the following vehicle; (d) Norm of time-12 
varying FRF 13 
 14 

 15 
 16 

6. Conclusion 17 
Disturbance attenuation is an important property for CF control of AVs. This paper presented 18 

a data-driven method to approximate the empirical FRF of CF control, whose norm can be used to 19 
evaluate the degree of disturbance amplification. Specifically, a data-driven stochastic analysis 20 
method was developed based on a linear time-invariant approximation of CF control law to 21 
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describe the general CF behavior. We further relaxed the time-invariant assumption and provided 1 
a linear time-variant approximation of CF law to describe more detailed time-varying CF features. 2 
To facilitate the analysis above, a well-known signal processing method, Welch’s method, together 3 
with a STFT are developed to extract the empirical transfer function from vehicle trajectories. 4 
Based on the empirical FRF, we developed a deterministic and time-invariant data-driven string 5 
stability criterion for a qualitative evaluation of string stability classification (i.e., whether a vehicle 6 
is string stable or not). Our stochastic and time-variant framework considers measurement noise, 7 
estimation error, and time-varying CF features. Further, beyond the qualitative assessment of string 8 
stability (i.e., whether a vehicle is string stable or not), our method provides a quantitative assessment 9 
of to what extent the system is string stable over frequency and time.   10 

The evaluation using synthetic data showed that the proposed method can estimate transfer 11 
function norms close to the theoretical norms and effectively distinguish different levels of string 12 
stable/unstable cases. Further, the result also suggests that our data-driven linear approximation 13 
can reproduce the disturbance amplification behavior of nonlinear controllers better than the 14 
linear theoretical string stability analysis. We further applied the proposed method to evaluate 15 
the string stability of ACC vehicles currently on the market using field data. Our results indicate 16 
that the tested vehicles are all string unstable in both deterministic and stochastic senses, 17 
particularly for low-frequency disturbances (< 0.5 Hz). Further, the results also demonstrate that 18 
commercial ACC vehicles exhibit time-varying CF features, especially when the leading vehicle 19 
decelerates. This result can be used to tune control parameters, such that the ACC system can 20 
better dampen disturbances in this range.    21 

The main contribution of the present paper lies in facilitating a disturbance amplification 22 
analysis using data even when the CF controller is unknown or too complex for theoretical analysis. 23 
Furthermore, the probabilistic and time-variant extension provides a deeper quantitative insight 24 
into the disturbance amplification level over each frequency and time, rather than giving a 25 
qualitative conclusion as previously done. Results also demonstrate the potential of our approach 26 
to better estimate disturbance amplification for nonlinear CF laws in a data-driven way. The 27 
proposed method should be further verified using real field data with known controllers, and a 28 
more advanced transfer function method is desirable to better describe the disturbance 29 
amplification with high-order CF characteristics. Furthermore, for a more general analysis 30 
framework, different norm criteria for a data-driven disturbance amplification analysis should be 31 
investigated in the future. Finally, a more in-depth investigation of ACC vehicles on the market is 32 
desired to identify the sources of instability in the high-frequency region. Despite these 33 
shortcomings, the present study significantly expands the use domain of string stability analysis 34 
beyond the simple, known linear controllers.   35 
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Appendix 1 Disturbance Amplification Analysis for DRL-based Controller 1 
To further show the wide application and potential of the proposed designed framework, we 2 
applied our framework to DRL based ACC. Specifically, we use the NGSIM data filtered by 3 
Montanino and Punzo (2015) as leading vehicle trajectories, and the following vehicles trajectories 4 
are generated by the method developed by Shi et al., (2021). We further split the dataset into two 5 
sets: a training set and test set. Each set contains 14 different leader-follower trajectories whose 6 
example leader-follower trajectories and speed are given in Fig A1 (a-b). The mean and the 7 
standard deviation of the estimated FRF norm for both sets are given in Fig. A1(c-d). As shown, 8 
our method can estimate the disturbance amplification for DRL based ACC in a decent manner.9 

    10 
Fig. A1 DRL based ACC Analysis (a) Example CF pair trajectories; (b) Example CF pair trajectories; 11 
(c) Estimated average FRF Norm; (d) Standard deviation of estimated FRF Norm 12 
 13 
  14 
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