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Abstract

This paper presents a data-driven framework to quantitatively analyze the disturbance
amplification behavior of automated vehicles in car-following (CF). The data-driven framework can
be applied to unknown CF controllers based on the concept of empirical frequency response
function (FRF). Specifically, a well-known signal processing method, Welch’s method, together
with a short time Fourier transformation is developed to extract the empirical transfer functions
from vehicle trajectories. The method is first developed assuming a generic linear controller with
time-invariant CF control features (e.g., control gains) and later extended to capture time-variant
features. The proposed methods are evaluated for estimation consistencies via synthetic data-
based simulations. The evaluation includes the performances of the linear approximation accuracy
for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller.
Results indicate that our framework can provide reasonably consistent results as theoretical ones
in terms of disturbance amplification. Further it can perform better than a linear theoretical
analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The
methods are applied to existing field data collected from vehicles with adaptive cruise control
(ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances,
particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles
exhibit time-varying features in terms of disturbance amplification ratio depending on the leading
vehicle trajectories.
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1. Introduction

Adaptive cruise control (ACC) is one of the most well-known automation functions that can
achieve Society of Automotive Engineers (SAE) Level 1 and 2 automation. Numerous studies
suggest that ACC can potentially improve traffic safety, traffic throughput, and energy efficiency
(e.g., Huetal., 2016; Milanés & Shladover, 2014). Due to its potential, ACC has been widely studied
in the last few decades. Based on the approach, ACC can be largely divided into three groups: (1)
analytical form linear/nonlinear controllers, (2) hard-constrained optimal control based
controllers, and (3) deep reinforcement learning based controllers. Analytical linear/nonlinear
controllers are usually represented in a feedback fashion to regulate the gap and speed difference
with the preceding vehicle. They can be further categorized into linear feedback controllers (Arem
et al., 2006; Bian et al., 2019; Li et al., 2018; Zhou and Ahn, 2019; Zhou et al., 2020; Gunter et al.,
2021), proportional derivative controllers (Gong et al., 2019; Milanés et al., 2014; Wang et al.,
2019), proportional integrated derivative controllers (Wu et al., 2016), and other types of
nonlinear controllers (Talebpour and Mahmassani, 2016; Jin and Orosz, 2018; Qin and Orosz,
2017). Due to the simplicity in their analytical form, the analytical linear/nonlinear controllers
have received great attention for both theoretical analysis and experimental validation. However,
these controllers lack explicit objective functions and physical constraints such as
acceleration/deceleration limits.

In contrast, optimal control based controllers, which rely on optimization techniques, can achieve
multi-objective control and directly incorporate physical constraints. Furthermore, it can be
implemented in a rolling horizon fashion, as in model predictive control (MPC), to handle time-
varying disturbances (Gong and Du, 2018; Gong et al., 2016; Wang et al., 2014; Zhou et al., 2017,
Zhou et al., 2019a). Nevertheless, the computation time of MPC depends on the complexity of the
objective function and constraints (e.g., nonlinearities), which can hinder real-time
implementations.

To overcome these limitations, some studies proposed deep learning based controllers. This type
of controller, particularly the ones based on reinforcement learning, can easily handle different
forms of objective function and constraints through reward functions (Cheng et al., 2019; Qu et
al., 2020; Shi et al., 2021). Further, these controllers can be computationally efficient, achieved by
an offline training process, which makes it suitable for real-time implementations.-However, the
performance depends greatly on the accuracy and scenario coverage of the training dataset. A
more systematic review of ACC controllers can be found in Zhou et al., (2017) and Zhou et al.,
(2019a). In summary, the aforementioned approaches have distinct advantages and disadvantages,
and the best choice of controllers remains an open question.

Regardless of controller type, disturbance amplification through vehicle string is an important and
desirable property. Particularly, traffic oscillations, characterized by a recurring pattern of
deceleration and acceleration in congested traffic, can amplify in traffic streams, resulting in traffic
inefficiency (Chen et al., 2014; Zheng et al., 2011) and potential safety issues (Zheng et al., 2010).
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Due to the importance, researches of autonomous vehicle longitudinal control The disturbance
amplification can be described by a mathematically derived transfer function/frequency response
function (FRF) of the leading vehicle speed and the following vehicle speed in the frequency
domain. By interpreting a norm of the transfer function, we can clearly understand the degree of
disturbance amplification over each frequency. Numerous studies (Naus & Ploeg, 2010; Ploeg et
al., 2013; Swaroop, 1996; Swaroop et al., 1994; Wilson & Ward, 2011) have investigated the ‘string
stability’ of an automated vehicle platoon by requiring the infinity norm of the transfer function
to be less than or equal to one to ensure the non-amplification of disturbances. Though elegant,
this analytical approach requires exact knowledge of the car-following (CF) model considered.
Based on that, the transfer function can be theoretically derived based on the linearization of the
CF model and a Laplacian (or Fourier) transformation (Bian et al., 2019b; Wang et al., 2018; Zhou
et al., 2020).

The current literature lacks an approach to derive a norm of the transfer function to examine
disturbance amplification if the CF controller is unknown or is not in closed form. This is a major
disadvantage because well-known controllers, such as constrained optimal controllers and deep
learning based controllers, do not have closed-form formulations. Furthermore, for partially
automated vehicles (AVs) with ACC (ACC vehicles hereon) on the market, the control algorithm is
proprietary and thus unknown to the public. In recent years, ACC vehicles have become more
available for field testing, which made it possible to evaluate their disturbance amplification
behavior (Basselink et al., 2017; Naus et al., 2010; Wu et al., 2017; Zhao et al., 2020). However,
these evaluations were largely model-based given a customized closed-form linear controller
(Milanés and Shladover, 2014; Naus et al., 2010; Stern et al., 2018), or by fitting a linear controller
or a CF model for human-driven vehicles (e.g., Intelligent Drivers Model (Kesting et al., 2010) and
Optimal Velocity Model (Bando et al., 1998)) for an unknown controller using field data (Gunter et al,
2020). The latter approach may lead to model mismatch that can render an inaccurate analysis of
disturbance amplification, especially after linearization. Further, calibration error resulting from model

mismatch can further induce inaccuracy in disturbance amplification analysis.

To remedy the aforementioned problems, this paper presents a data-driven disturbance
amplification analysis to systematically evaluate a wide variety of CF controllers, including
unknown controllers. Rather than assuming a certain controller type, we extract the frequency
domain characteristics of the speed and acceleration of CF vehicles. Specifically, by treating the
speed and acceleration as compounding signals consisting of multiple sinusoidal waves of
different frequencies, we adopt Welch’s method to robustly estimate the empirical transfer
function based on a linear time invariant CF law assumption. Based on the empirical transfer
function, we can readily calculate the norm of transfer function, which can be directly used to
evaluate the disturbance amplification ratio. Considering noisy measurements and stochasticity
that may be introduced by the estimation method itself, we further propose a stochastic
framework to evaluate the disturbance amplification in a probabilistic fashion. Further,
considering the potential time-variant behaviors of CF law, we also extend our framework
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integrating with short term Fourier transformation, to enable disturbance amplification analysis
in a joint temporal-frequency domain, based on the linear-variant CF law assumption.

This paper is organized as follows. Section 2 provides the general philosophy of our approach
based on the concept of empirical transfer function with a linear time-invariant system
assumption. Section 3 provides a numerical algorithm to estimate the empirical transfer function
under noisy measurement in a stochastic and time-variant fashion. Section 4 conducts multiple
synthetic experiments to test the consistencies of our framework with theoretical derivations.
Section 6 applies our framework for field-collected commercial ACC data, and Section 6 provides
concluding remarks and future research directions.

2. Disturbance Amplification Analysis based on a Linear Time-invariant Behavior
Approximation

In this section, we begin with a well-known model-based transfer function for a linear CF controller

to illustrate how the transfer function is used to describe disturbance amplification for CF

behaviors, which can be further used for string stability analysis. Based on this concept, we

establish a data-driven approach to analyze disturbance amplification.

2.1 Model-based FRF
A model-based FRF, also known as a transfer function, has been widely applied in control theory,
aiming to theoretically derive the input-output relationship of different frequencies. For CF
analysis, the transfer function between the leading and the following vehicle speeds has been
widely applied to evaluate string stability; i.e., how a disturbance evolves through each CF pair.
This is done based on the exact knowledge of the CF control model (Wang, 2018; Zhou and Ahn,
2019b) or by assuming a CF control form and calibrating the parameters (Gunter et al., 2020; Stern
et al., 2018). Based on the control law, linearization together with Laplacian transformation is
usually applied to derive the theoretical transfer function, G;(jw), between leading vehicle’s
speed v;_;(jw) and following vehicle’s speed v;(jw), Vi, in the frequency domain, as given in
Eq.(1).

Gi(jo) = 7 (1)
where j is an imaginary unit, and w is the frequency. Details of the derivation can be found in
several studies (Naus & Ploeg, 2010; Ploeg et al., 2013; Swaroop, 1996; Wang, 2018).

G;(jw) delivers rich information for analyzing disturbance amplification. Specifically, G;(jw) =
|G;i(jw)|4G;(jw) , where |G;(jw)| is the norm of G;(jw) 6 denoting the disturbance
amplification ratio over each frequency w, and AG;(jw) denotes the phase shift. Thus,
|G;(jw)| can be used to evaluate string stability: the CF pair is string stable iff ||G;(jw)|l =
sup, |Gi(jw)| <1 (Naus et al., 2012, Swaroop et al., 1996, Zhou et al., 2020), and we can
conclude that the disturbance is not amplified under all frequency. Though string stability has
been widely investigated by different criteria suchas L., normand Lp norm (Shuo etal., 2019),
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H,, norm (Jin & Oroz, 2014, Vittoria et al., 2020) is adopted in our paper considering its wide
application and direct interpretation of disturbance amplification over different frequencies.

The model-based analysis shown above has the following limitations: 1) The CF control law must
have a closed form; 2) A vehicle dynamics equation and its parameters need to be exactly
known; 3) Even if the CF control law has a closed-form, it must be differentiable and linearizable.
These precludes the application of the model-based analysis for certain CF control approaches
including model predictive control and reinforcement learning approaches. Further, for ACC
vehicles on the market, control laws are usually unknown, and assuming a closed-form control
law risks introducing significant errors to the frequency domain behavior and thus an inaccurate
string stability evaluation. To remedy these limitations, we propose a data-driven method to
analyze disturbance amplification by extracting the frequency domain behavior of ACC CF
controllers. Details follow.

2.2 Data-driven FRF

This subsection describes the principle, in which the frequency domain characteristics of CF
behavior are extracted from measured data. Specifically, rather than deriving G;(jw), we aim to
approximate G;(jw) from data. If we measure noise-free speeds for a CF pair with a high
sampling frequency (approaching infinity) for a long period (approaching infinity), we can estimate
the theoretical G;(jw) by a data-driven transfer function based on a best linear time-invariant
approximation, G;(jw), as follows:

Gi(jw) = 502 @
where 7;(jw) denotes the Fourier transformation of the measured speed for vehicle i, and
éiﬁw) is the estimated transfer function (usually known as FRF) using measurements. However,
measurements usually contain noise as shown in Fig. 1, and the sampling frequency can also be
limited.

Vi1 (jw) vi(jw)

[\]W——’ Gi(j) ——"/V\/\/

(a)

9i-1(je) . f‘wjf s 9i(jo)
Gi(jw) W\l
®)

Fig. 1 FRF representation (a) theoretical case; (b) noisy case.
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To address the issue of measurement noise, a spectral analysis technique (Randall, 2008) is
adopted to estimate an empirical transfer function more robustly. Specifically, G;,;(jw) can be
asymptotically estimated by:

Gi(jo) = Rf_li_li](jz) )
where R; ;.1 (jw) isthe cross spectral density function describing the cross ‘energy’ distribution
over each frequency component:

Riz1,iGw) = [10 117 911 (¥) X it + ) dr]e/2motde (4)
R;_1i;-1(jw) is the auto-spectral density function for vehicle i — 1, describing the self ‘energy’
distribution over each frequency component:

Ri—1i-aGw) = [T7177 9,(2) x 0y(t + 1) drle /27t dt (5)
Based on @i(jw), we can readily evaluate the disturbance amplification behavior without
assuming a CF control law. Though the linearity and time-invariance property of CF without
assuming details of CF laws and the corresponding parameter values. This approach can be
further treated as a data-driven linear time-invariant approximation for the transfer function by

simply utilizing vehicle speed.

3. Numerical Estimation Algorithm and Time-variant Extension

This section describes how to estimate the auto/cross spectral density, and the corresponding FRF
in an unbiased fashion using discrete data with noise. We further extend the framework to a
stochastic treatment of the FRF by basic statistics, considering the estimation error caused by
algorithm itself and noisy measurements to facilitate a robust evaluation of disturbance
amplification. Based on that, we extend the method to a time-variant fashion to better capture
the time-variant behavior of ACC control.

3.1 Spectrum numerical estimation algorithm and data-driven string stability

Estimating the auto-spectrum and cross-spectrum requires some caution, as directly applying
discrete Fourier transformation (DFT) is not consistent (Schoukens and Godfrey, 2018). The main
reason is that when the number of measurements increases, DFT will only increase the resolution
of spectrum (sampling frequency) but fail to ‘average’ the spectrum over the increased
measurements. (Note that the frequency upper bound is determined by the sampling interval,
and the frequency resolution is determined by the number of measurements. Hence, we apply a
method that can properly average the estimations of auto-spectrum and cross-spectrum.
Specifically, we apply the Welch method (Welch, 1967), a powerful tool to estimate auto-spectrum
and cross spectrum, as illustrated in Fig. 2. The main idea of the Welch method is to decompose
the signal into multiple overlapped segments, a windowed DFT is applied to extract the spectrum
and phase angle in each segment given potential measurement noise. Finally, we average the
spectra and phase angles to reduce the variance of the estimate.
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Fig. 2 lllustration of the Welch method
The detailed steps of the Welch method are given below:

Step 1: Input the (discrete) speed measurements of vehicle i forset [ (e.g., fromthe It* field
test run) denoted by ¥, ;[j], where j =0,---,N; —1,and N; is the total number of
measurements for set [.

Step 2: For each set [, we divide the data sequence into K; segments, where each segment
includes L data points, and successive segments are offset by D points (see Fig. 2). Then, the
k" segment can be described as: ¥;; [n] = D;;[n + kD],vn =1, ...,L, k = 1,2, ..., K;. Notice
that overlapping segments have L — D points, and thus, N; = L + D(K; — 1). The main
intention for overlapping segments is to increase the number of segments and reduce the
variance of spectrum analysis (Schoukens and Godfrey, 2018). As suggested by Welch (1967), D
is usually selected from L/2 to 2L/3 (by trial and error).

Step 3: For each segment k = 1,2, - K;, a windowed finite Fourier transform is conducted as

Vi[h] = % an_:lo v [m]w[m] e J2kmh/L where j is the imaginary unit; w[m] is the window

(weight) function; and h = 0,---,L/2. Some typical windows are rectangular, Kaiser, Harm or
Hanning, Hamming, Blackman, and Blackman-Harris. Specifically, the rectangular window has a
clear peak in the graph showing the power spectrum estimation. The spectral resolution of the
rectangular window and Kaiser window is higher, but the noise level near the frequency of the
analyzed signal is also higher. It is considered that both rectangular window and Kaiser window
are suitable for high precision spectrum estimation of signals with a high signal-to-noise ratio.
Hanning window is more effective for spectrum leakage suppression, but the frequency resolution
is relatively low. Thus, it is suitable for the general frequency estimation of signals with a low
signal-to-noise ratio. Interested readers are referred to Cakrak and Loughlin (2001) and Eberhard
(1973) for more details on these windows. As suggested by Ponn et al., (2019) the signal-to-noise
ratio can be relatively low (e.g., < 0.1) based on current sensors instrumented on autonomous
vehicles. Hence we adopt the Hanning window, whose detailed form is given below:
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wlm] = sin?(57) (6)

The main reason to employ a window function is two-fold: (1) to reduce the ‘spectral leakage
effect’ caused by dividing the data sequence into multiple segments and (2) to increase the
performance of finite Fourier transform. The spectral leakage effect is the smearing of power
across a frequency spectrum, which occurs when the signal is not periodic in the sample interval.
A well-designed window function should increase the frequency range of the main lobe (usually
manifested by higher power) for precision while reducing the power of the sidelobe to suppress
noisy measurement contamination.

Step 4: For each segment k = 1,2,--- K; in each set, compute the corresponding modified auto-
spectrum value by Eq. (7):

Ie(@n) = CIVi[R]12 k = 1,2, K, (7)

L-1

where wy, = %x foh=20,-,L/2. f; is the sampling frequency and U = % Zm:o w?(m) is

the mean value of the squared window weights. According to Eq. (7), the resolution of the
spectrum estimation is positively correlated with the segment length L.

Step 5: Average the modified spectrum for all segments within each set [ to obtain the average
auto-spectrum estimate:

~ 1 Kk
Ri(wp) = X 2 ey I(@n) (8)
Further, we take the average of the estimated auto-spectrum for all filed experiment runs M:
s 1 oM 4
E[R(wp)] =+ 2, Ri(wp) (9)

It is worth noting that bias is due to the window associated with truncation and increases as the
segment length decrease. For a given window and fixed data length, increasing the number of
segments reduces the variance but increases the bias (Welch, 1967).

Similarly, we can approximate the average cross-spectrum within each set [ through Steps 1to 5,
while replacing Eq. (7) by calculating the cross-spectrum for each segment as below:

L

Je(wp) = 5|Ck[h]|2»k =12,K (10)
Then, the cross-spectrum for all segments within each set [ can be approximated as:

A 1 vk

Si(wn) = 2 ey Je(@n) (11)
And the general average of the cross-spectrum can be approximated as:

A 1 <M 4
E[Si(wn)] = 2, Si(wn) (12)

According to Eqg. (9), we can now calculate the FRF of each set [ and the general average FRF for

9
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Gi(wn) = 8 (13)
A S1(wp)

E[Gi(wn)] = XLy ot (14)

Though the above data-driven transfer function highly relies on the assumption that the system is
linear and time-invariant, it can still be applied to nonlinear systems as a best linear and time-
invariant approximation for practicality. To account for nonlinearities and potential time-variant
behaviors, we take a stochastic approach by describing an empirical cumulative density function
(ECDF) for the data-driven transfer function based on M experiment runs, as below:

Pr(G;(wp) <v) = XL 16,00y <y/M (15)

where 1 (,,)<y is the indicator function, for which the event G,(wp) <y happens
(16,wp=y =1 ornot.

Based on that, we use the F(y), the ECDF of the maximum value of G,(wp,) over all frequency
components wy (ECDFM) to characterize the H-infinity norm of the estimated transfer function
in a probabilistic way. The detailed equation is defined as:

F(y) = Pr(Ug, {Gi(wp) < v}) = Pr (max,,,[G,(wp)] <) (16)
Given the lack of evidence showing dependence among different frequencies, we assume
independence of each frequency wy,. Hence, we have the following relationship between F(y)
and F,, (v)

F(Y) = Hwh th(Y) (17)
Eg. (20) provides a tool to analyze the string stability in a stochastic data-driven fashion. By the
definition of the theoretical string stability given in Section 2.1, a homogenous vehicular platoon
of length N with the averaged FRF G;(wy,) and its ECDFM F(Y) is strong string stable with a
probability greater than or equal to «, if F(1) > a.

In many existing controllers, the transfer function G;(jw) - 1 when w — 0, which may make
th(l) very sensitive to the measurement error and estimation error of the proposed technique.
To address this possible sensitivity, we give the estimation of F, (y) asmallbuffer § (e.g., 0.06)
when y = 1. With the buffered estimation of empirical cumulative distribution, denoted by

FE,h (y), itis less likely to draw the unstring stable conclusion due to those errors. The buffered

ECDF over each frequency wy can be systematically defined as:

th (Y) = Z%Vil 1Gl(wh)sy+ﬁ /M (18)

And we can define the buffered ECDFM as:
FP(Y) = w, E ) (19)

10
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Based on that, we get the buffered string stability: a homogenous vehicular platoon is practically
buffered string stable with a probability greater than or equal to «, if FF(1) > a.

The time-invariant analysis above is more suited to describe general CF behavior with different
leading vehicle trajectories by the statistical maneuver given by Egs. (15)-(19). To capture more
nuanced CF behavior that varies over time, a time-variant extension is given in Section 3.2.

3.2 Time-variant extension of FRF
Here we extend the framework above and assume that the CF controller is time-variant under
different leading vehicle trajectories. To incorporate the time-variant behavior, we extend the FRF
from the frequency domain, G;(jw), into a response function in the joint time-frequency domain,
G;(t,jw). Analogous to the time-invariant approximation, G;(jw) in Eq. (6), the time-variant
extension of the theoretical FRF G;(t,jw) could be approximated as G;(t,jw) in the time-
frequency domain:
Di(tjw)

Di—1(tjw)

Gi(t,jw) = (20)

Where 7;(t,jw) is the short-time Fourier transformation of measured speed for vehicle i,
providing both the temporal and frequency resolutions and frequency resolution. Different from
the time-invariant case, we apply the discrete Short Time Fourier Transformation (STFT) to
estimate the auto spectrum in the joint time-frequency domain to capture the time-variant
features of speed energy change:

Di(t, jw) = Y2, D; () w(t — T)eJ@t (21)
where w(t — 1) is the time window with the center at 7, as discussed in Section 3.1. Note that
there is trade-off in selecting the STFT time window function (also named block length). A short
block length would provide a finer time resolution but degrade the frequency resolution. In
contrast, when the block length is larger, more frequency information will be averaged over the
time interval. Generally, there is no optimal STFT window. To numerically approximate ¥;(t, jw),
we similarly apply the discrete STFT based Welch method while considering the time-variant
feature. Details follow.

Similar to Step 2 in Section 3.1, for a [, we divide the speed data for vehicle i into K; segments,
where each segment includes L data points, and successive segments are offset by D (usually
D= g) points for robustness as mentioned in Section 3.1. For each segment, we conduct a DFT
transformation for the measured speed as:

1 wL-1 i
V[h] =7 X, _ vi[mlw[m] e7/2fmn/L (22)

and the corresponding auto-spectrum as:

Le(@n) = CIVi[R]12 k = 1,2, K; (23)

11
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L-1
m=0

where w; = %xfs,h =0,-,L/2. f; is the sampling frequency and U = 1 Z

- w2(m) is

the mean value of the squared window weights as described in Section 3.1. Then, the norm of
time variant transfer function can be approximated as:

( I(wp) when0<t< zi

S

Ix(wp)+ 1k (wn) L(k+1)

POV S Lk
19,6, j) 2 = [5,(t, jop)|? = | LI oy 2 < < LEE (23)
Lk L(k+1)
Ix,(wp) when 27 = t < 2

Similarly, we can approximate auto-spectrum of vehicle i — 1, and then approximate |@i(t,ja))|

by:
T I
Gite ] = 5 onr (24)

Similar to the time-invariant case, @i(t,jw)| denotes the disturbance amplification ratio at time

t and is thus string stable if sup|@i(t,jw)| < 1. Note that |@i(t,jw)| is directly related to t,
t,w

which means that the analysis fits for analyzing the time-varying CF behavior under non-steady
state leading vehicle trajectories (e.g., with speed change, etc.).

The analysis above suggests a trade-off in the temporal and frequency domain resolutions in
relationto L:alarger value of L increases the frequency domain resolution while sacrificing the
temporal domain resolution. There is no optimal setting for L, and it needs to be determined
based on the analysis resolution. Similar to the window function selection in Step 3 in Section 3.1,
we choose the Hanning window and add the 50% overlap between adjacent blocks to make the
STFT smoother, satisfy the completeness condition, and avoid the spectral leakage (Wexler and
Raz 1990, Avargel and Cohen 2007). Note that discrete wavelet transformation is an alternative
solution to a multi-resolution analysis in the time-frequency domain. However, it is sensitive to
minute variations, especially for noisy speed signals (Faust et al. 2015).

For the above analysis, we select the speed variation v;(s) as a surrogate variable for stability
since it is widely used in traffic flow analysis. For a homogenous vehicular platoon (i.e., same

vi(s) _ ai(s) _ di(s) _ Av(s)
Viea(s)  @i-1(s)  di—1(S)  Avi_4(s)

regardless of the control law, where a;(s), d;(s), v;(s), and Av;(s) respectively represent the

control law and control parameters), it can be proved that

acceleration, spacing, speed, and relative speed for vehicle i in the frequency domain. For a

vi(s) _ _ais) _ di(s) _ _Avi(s)
heterogenous platoon, vi,l(s)_ai,l(s)_cl(s) and 1)~ Boia(s)

Fi(s) # Gi(s). Thus, Fi(s) and G;(s) need to be estimated separately by changing the
surrogate variable for stability. Nevertheless, our framework can be still applied.

= Fi(s), but usually

12



© 00 N O o A W N B

e e T o
0 N O U WN RO

19

20
21
22
23

24

25
26
27
28
29
30
31
32
33
34

4. Evaluation of the Method via Numerical Simulation

In this section, we systematically validate the proposed analysis for data-driven stochastic string
stability and estimation consistency of transfer function using numerical simulation. We generate
synthetic data from a known linear controller to check whether the data-driven approach can
provide a transfer function consistent with the mathematical derivation in both time-invariant and
time-variant fashions. We also check whether the time-invariant data-driven FRF serves as a good
approximation for a nonlinear controller. Since the describing function analysis can only be applied
to controllers with certain types of nonlinearities, we select a linear controller with bounded
acceleration and deceleration as a special case for the evaluation.

4.1 Synthetic test for a linear controller

We first generate leading vehicle trajectories with the equilibrium speed of 15 m/s, and to
reproduce the oscillatory feature, we add compounding oscillatory speed as an excitation (a
disturbance to trigger the frequency response) for the CF simulation. These features are selected
based on the reconstructed NGSIM data (Montanino and Punzo, 2015; Punzo et al., 2011). Given
the leading vehicle trajectories, we simulate the following vehicle trajectories based on an
assumed controller. Particularly, we adopt the linear controller by Zhou et al. (2019b) as an
illustrative example, whose transfer function can be mathematically derived as below:

(ks+kys+krs?)
Gi(s) = L

T1s3—(kg—1)s2+(t] ks+ky)s+ks

(25)

where kg, k,, k, are feedback gains for the deviation from equilibrium spacing, speed difference,
and acceleration. k; is the feedforward gains. T; and 7; are the time engine coefficient and
constant time gap for vehicle i. The corresponding transfer function norm can be obtained as in
Eq. (26):

1G;(jw)| =

kE+kFw? +kfw*—2kskw?

26
T wb+[~2T (kg7 +hy)+ (g —1)2 |+ (ks T} +iey) *+ 2k (kq—1)| w2 +K2 (26)

To simulate real-world sensor measurements, we add normally distributed white noise with the
standard deviation of 0.1 m/s (NHTSA, 2013 March) for both leading and following vehicle
trajectories. Using these synthetic data, we apply the Welch method to extract the transfer
function in a probabilistic fashion and check the accuracy of the data-driven transfer function
estimation. Considering the trade-off between the resolution and the number of segments to
average the estimation, the parameter values for the Welch method are set as shown in Table 1.
The detailed process of the numerical simulation analysis is given in Fig. 3.

Table 1. Default parameters for the Welch method

fs 0.1Hz
L 12 sec
M 1000
D 6 sec
N, 6 sec

13
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Fig. 3 Evaluation process based on synthetic data simulation

To test whether the proposed method can distinguish different string stability behaviors by
different controller parameters, we design three scenarios: (1) string stable, (2) string unstable,
and (3) slightly string unstable. The parameter settings and the corresponding theoretical infinity
norms for the three scenarios are given in Table 2, and other parameters follow Zhou et al. (2020).
For the three scenarios, we evaluate the accuracy of the estimated norm of transfer functions
against the empirical two-sided 90 percent boundaries extracted from the synthetic data. We
conducted 1000 simulation runs, with each run containing 3.5 minutes of trajectories for the
proceeding and following vehicles. The discretization step of the simulation is set as 0.1 sec.

Table 2. Controller parameters and H,, norm for different scenarios

Scenario Feedback gains | H,, norm
ks, ky, kgl
1 [0.3,1.5,-0.6] 1
[1.5,0.3,-0.6] 1.11
[1,1,-1] 1.03

For the three scenarios, we evaluate the accuracy of the estimated norm of transfer functions
against the empirical [5%, 95%] boundaries extracted from the synthetic data. We conducted 1000
simulation runs, in which each run contains 3.5 minutes of trajectories for the proceeding and
following vehicles. The discretization step of the simulation is set as 0.1 sec. The estimated norm
of the transfer function for each run under three scenarios is given in Fig. 4(a)-(c). Furthermore,
Fig. 4(d)-(f) show the average norm and the empirical two-sided 90 percent boundaries, compared
against the theoretical norm. They show that overall, the average norms based on the proposed
method (red curves) are nearly superimposed with the theoretical norms (blue curves) in all three
scenarios. This suggests that the proposed method can produce accurate and consistent results in
various scenarios by averaging the estimations, which demonstrates the robustness of our
proposed method. Note that though negligible, the proposed method is less accurate in lower
frequency regions (e.g., < 0.06 Hz), and results in a 0.01 discrepancy with the theoretical value.
14
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The main reason is that estimating an empirical transfer function over a low-frequency region
requires a long period of measurements and thus a relatively large L in our framework. The
number of low-frequency signals given limited measurements can be small. Further, alarge L can
significantly reduce the number of segments used to average the transfer functions, leading to
potential inaccuracy. Another factor is the magnitude of measurement noise. Nonetheless, our
results indicate that when the standard deviation of the speed measurement is less than 0.05m/s,
our estimation can produce results close to the theoretical ones.
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Fig. 4 Empirical norm of estimated transfer functions (a-c) all experimental empirical norm of
transfer functions for Scenario 1 to 3; (d-f) norm of the average empirical transfer function and
empirical boundaries

We further analyzed the empirical [5%, 95%] confidence interval given in Fig. 4(d)-(f). Specifically,
we adopt Proposition 3 to check whether the proposed method can properly determine string
stability and instability for the three scenarios designed above. The details are provided in Fig. 5.
As in Section 3.1, we first analyze the buffered string instability probability for each frequency, wy,
i.e., the probability that the norm of the estimated transfer function is greater than 14+ f (with

B =0.06), 1— th(l) in Eq. (19); see the blue bars in the figure. Then we compute the buffered

complementary cumulative string stability probability FZ(y) ; see the red curve in the figure. The
buffered string instability probability (blue bars) mainly lies in the low-frequency part. Further,
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scenario 1 (strong string stable case) has the least likelihood of string instability across different
frequencies, scenario 2 (strong string unstable case) has the highest likelihood, and scenario 3
(slightly string stable case) has a likelihood in between. For the general string stability conclusion,
the red curve shows that the complementary cumulative string stability probabilities for scenarios
1, 2, and 3 are respectively 76%, 0%, and 30%. The results demonstrate that the proposed method
can accurately distinguish strong string stability and instability cases, and further identify which
frequency domain the ACC might be string unstable. However, the proposed method is more likely
to produce a higher probability of string instability in the low-frequency regions as expected based
on Remark 1. The probability of strong string stability depends on the choice of hyper-parameter
B. With proper tuning of the parameter, the proposed method can produce justifiable results.

101
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©)

Fig.5 1 — Ff)h(l) and FA(1) (a) scenario 1; (b) scenario 2; (c) scenario 3

4.2 Synthetic test for a non-linear controller
Since deriving the theoretical transfer function of a nonlinear controller is extremely challenging,
we can only evaluate our method in limited scope. The complexity depends on the nonlinearity
form of CF law and if the CF law is even analytical. Inspired by Li et al. (2012), we apply a describing
function analysis to provide a theoretical transfer function derivation for a simple nonlinear
control law. Specifically, in this section, we analyze a nonlinear controller, which is piecewise linear,
given as below:

ui(t) = mid {amin' kixi(t)' amax} (27)
where api, and anq, denote the deceleration and acceleration limits, respectively. Given the
simplicity, the above controller can be theoretically derived by a describing function analysis

16



0 N o o0k 0N

©

10

11
12
13
14
15

16

17

18
19

20

21
22
23

24

25

26

method if the leading vehicle acceleration portfolio is dominated by a frequency w with a
magnitude A;_;, rendering a;_;(t) = A;_;sin(wt). The core idea is to decompose the signal of
the following vehicle trajectories by Fourier Transformation as:

a;(t) =Y, 1sin(wt) + Y ycos(wt) + Y, 1sin(Rwt) + Y, ,cos 2wt) + -+ (28)
By assuming the low-pass property of CF law (i.e., Y; 1, Y1, » Y4, Yio, for k > 2), a;(t) can
be approximated as:

a;(t) = Yy 1sin(wt) + Y ycos(wt) (29)
where

Yi1= % _2;1—9 a;(t) sin(wt) d(wt) (30)

Yz == 25" a(®) cos(wt) d(wt) (1)

Then the relationship between a;_;(t) and a;(t) can be described by a describing function,
H,,;(jw), defined as multiplication of a norm function |H,,;(jw)|:

Hy(jw) = |Hy (jw)|4Hy (o) (32)

where,
) /Y1%1+Y1%2
|Hu(jw)| = ~——— (33)
-1
4H,(jw) = arctan(% (34)
1,1

For simplicity, we set Gpax = —Qmin = Apound- HENCE, in an oscillation cycle [—6, 2w — 6], we

can mathematically represent the following vehicle acceleration based on two conditions:

Condition 1 (Inactive boundary): when —22nd_ <
Aj—1Kp(w)
a;(t) = |G;jw)|vi(wt + £6;(jw)) (35)

Condition 1 follows an exact linear control law that has already been evaluated.

Ahound
Ai-1]Gi(jw)|
( 1G;(jw)|vi(wt + 4G;(jw)) if — B — 46,(jw) < wt < B — 4G;(jw)
Apound lfﬁ - AGi(jw) <wt=m-— ﬁ - 461‘(].(‘))
1G;jw)|vi(wt + 46;(jw)) if 1 — B — 46,(jw) < wt <7+ f — 4G;(jw)
—Apouna f T+ B —4G;(jw) < wt <21 — B — 4G;(jw)
The details are given in Fig. 6.

Condition 2 (Active boundary): when

a;(t) = (36)

17



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

T ai (t)

Apound

—B G; w):
T }3 > a4 (t)

Fig. 6 a@;_4(t) vs. a;(t) plane

Apound

By letting B = sin™" (="

), we have:

_0 ] G e
Y1,1 — %f_zg ai(t) Sln(a)t) d(a)t) — 4apmqx €OS(B) cos(8)+A4; 1|TC[;1(]‘U)|C°5 (6)(2p—sin(2p)) (37)

Y1,2 _ %IZTE—G ai(t) cos(wt) d(wt) _ 40max c0s(B) sin(0)+A4;—1|Gi(jw)|sin(0)(2B-sin(2p)) (38)

-0 s

Further, based on (40), we have:

2 2
YR gy cos(a16i (@)D —Aia 16 () sin(2B)+ 24, |G,(w) B
|Hpy (jw)| = =

Aj—1 AT

(39)

AHy (jw) = 46;(jw) (40)
As notable by Eqg. (40), the theoretical describing function analysis based on a FRF norm is
apparently affected by the leading vehicle oscillation magnitude A;_4 and
acceleration/deceleration boundaries ay,yng, in contrast to the theoretical linear controller. As a
comparison, we further analyze if the data-driven linear (time-invariant) FRF can provide a
reasonable approximation for the theoretical non-linear FRF. As an example, we select a leading
vehicle's acceleration oscillating at 5Hz with its magnitude varying from 6 to 8 m/s? to make the
acceleration and deceleration boundaries active. As shown in Fig. 7, the data-driven linear FRF is
very similar to the nonlinear theoretical approximation under different leading vehicle oscillation
magnitudes. However, there is an apparent discrepancy between the linear theoretical one and
nonlinear theoretical one, and the discrepancy increases as the magnitude of the leading vehicle
oscillations grows. The example provided highlights the limitation of the linear theoretical string
stability analysis and the potential of our proposed data-driven method for disturbance
amplification analysis. Furthermore, ACC algorithms of vehicles on the market are usually
unknown. Even if the CF algorithm is fully known and well calibrated, the linear theoretical string
stability still renders unsatisfied results.
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4.3 Synthetic test for a linear time-varying controller
We further validate our time-variant method using synthetic data similar to the time-invariant
case. We design the leading vehicle trajectory to travel at 15 m/s and oscillate at the frequency
of 0.25 Hz and 0.5Hz, with the magnitude of 1.5 m/s and 1 m/s. We apply the same linear
control law with time-varying control gains to reflect the potential time-varying features. The
detailed theoretical time-variant transfer function is given as:
(ks(t)+ky (t)s+kf(t)s?)

Gits) = Ti153 = (ka ()=1)s2+(T7 ks (6)+K () s+ (t) (41)
and
_ ([0.3,1.5,—0.6] whent < 90s
Lkes (8, Ko (8, ko (O] = {[1.5,0.3, —0.6] whent > 90s (42)

Considering the trade-off between the time domain and frequency domain resolutions, we let
L = 60 s, assuming the CF behavior remains unchanged for 30 s. Following the method shown in
Section 3.2, the auto-spectrum of leading vehicle speed, CF pair speed evolvement, norm of
theoretical FRF and norm of empirical FRF are given in Fig. 8. The result given in Fig. 8 shows that
when the control gains suddenly change at t = 90 s, there is a discrepancy between theoretical
and empirical FRF as anticipated, due to the nature of STFT assuming that the behavior remains
unchanged over each L. Other than the discrepancy around the change, our method provides
consistent estimations.
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5. Analysis of commercial ACC Vehicles

In this section, we apply our proposed method to systematically quantify the disturbance
dampening behaviors of ACC vehicles on the market. Considering the experiment duration and
scenarios design, we apply the linear time-invariant FRF approach to describe the general
behaviors using the OpenACC dataset (Makridis et al., 2020). Further, we also apply the linear
time-variant FRF approach to describe the nuanced behavior concerning specific leading vehicle
trajectories using the Massachusetts experiment dataset (Li et al., 2021).

5.1 Linear Time-Invariant FRF based Analysis

The OpenACC database includes trajectory and speed data of five ACC vehicles in three CF test
campaigns with different driving paths, study durations, and platoon formations. We analyze the
data from the third campaign with fewer deployment issues, which was conducted in 2019 on a
5.7-km rural road section of the AstaZero test track in a protected environment. The details of the
experimental set-up are provided in (Makridis et al., 2020). The path layout is shown in Fig. 9. In
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this campaign, a platoon of five vehicles (referred to as vehicle types 1-5 in this paper) was chosen
as study objects to test the ACC capability during traffic oscillations. The vehicle position and
speed data were measured through high-fidelity differential Global Navigation Satellite Systems
(GNSSs) by recording the GPS coordinates (latitude, longitude, altitude), ENU coordinates,
instantaneous inter-vehicle distances, and speeds of each vehicle at a certain frequency. The
initial frequency provided by the data acquisition system is more than 100 Hz. However, the
frequency has been reduced to 10Hz in the open-source data to reduce the noise caused by high-
frequency sampling. A low-pass filter and linear interpolation were also applied to deal with
invalid and missing data.

", - PROVING GROUND CENTER

[ &=

X

Fig. 9. Path layout of the third experiment in OpenACC dataset (Makridis et al., 2020)

Field testing has been conducted for the above-mentioned vehicle platoon under speed
disturbances of different frequencies around the target speed. To estimate the transfer function
over the entire potential frequency range, we first examine vehicle trajectories during traffic
oscillations, which tend to exhibit wider frequency ranges. An example of vehicle trajectories and
the corresponding speeds are shown in Fig. 10. All vehicles started from rest. The first leading
vehicle accelerated from rest to the designed target speed of 60 mph at the average rate of
0.95 m/s?. After that, the first vehicle intentionally decelerated and accelerated around the
target speed to create traffic oscillations of different magnitudes and frequencies. It is observed
that the speed oscillations were amplified through the vehicle string, which intuitively indicates
string instability.

x10° > 100
66 80
= I fd T I
c 65 ; ‘LV It | W | AR
5 30 “1 W‘ '\TM| \‘i
= e o o |
8 6.4 = i £ ‘ ‘ |
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6.3 =~ Vehicle 3 20 Vehicle 3
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Fig. 10. Examples of (a) vehicles trajectories and (b) speeds
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Fig. 11 Norm of average empirical transfer functions for ACC vehicles (a) vehicle 2; (b) vehicle
3; (c) vehicle 4; (d) vehicle 5

To further investigate the frequency-domain properties, we used trajectory and speed data over
the duration of 2.6 hours to estimate the empirical transfer function and the corresponding
empirical and practical cumulative distribution of practical string stability. The results in Fig. 11
show that the norm of the average empirical transfer function varies by vehicle
model/manufacturer, suggesting varying ACC performance in terms of string stability.
Furthermore, we find that all vehicle models exhibit large norm values in the low-frequency region.
Contrary to the linear controllers tested in Section 4.1, the ACC vehicles on the market also exhibit
large norm values in high-frequency regions (e.g., > 4Hz). We suspect that with a high-frequency
disturbance, vehicle dynamics such as actuation delay may exacerbate the follower response. In
comparison, vehicle 3 is most string unstable, especially in the low-frequency region below 0.5 Hz,
where the norm reaches nearly 1.5. Vehicles 2, 4, and 5 are all string unstable, though vehicle 4
performs better with the lowest H,, norm value of transfer function and the smallest string
unstable regions. To further evaluate the strong string stability in a probabilistic manner, we
calculate the string stability probability for each frequency component and cumulative string
stability probability. The results are given in Fig. 12.
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Fig. 12 1 — Ff,h(l) and FA(1) :(a) vehicle 2; (b) vehicle 3; (c) vehicle 4; (d) vehicle 5

From the probability perspective, the cumulative probability of string instability in the low-
frequency region is very high for all vehicles, while the buffered ECDFM approaches zero. The
results suggest that the ACC vehicles do not perform well in terms of string stability with a low-
frequency disturbance, which supports the results of the deterministic string stability conclusion
in Fig. 11. Furthermore, there is still some possibility of string instability in the high-frequency
region (~ 5Hz). While the general conclusion that the tested ACC vehicles are string unstable is
consistent with Gunter et al. (2020), our analysis reveals more detailed results — the frequency
ranges in which the vehicles are string unstable and the probabilistic degree of string instability.

We are further interested in the time-variant behavior of commercial ACC. For this, we analyze
the Massachusetts ACC data collected by Li et al. (2021); see Fig. 13(a) for an example trajectory.
In that experiment, the leading vehicle trajectory is designed to travel at a constant speed initially,
then decelerate to create a disturbance (at time 25 s), and eventually accelerate to resume the
initial speed (at time 50 s). As shown in Fig. 13(b) and 13(c), the largest STFT norms with the
magnitude of 50-60 m/s can be found in the low-frequency domain below 0.2 Hz, when the
leading vehicle maintains a constant speed. The autospectrum of the higher frequency range (0.2
to 0.5 Hz) becomes larger when the vehicles experience a disturbance from 25 s to 45 s in the time
domain. We further applied the time-variant extension of the FRF to explore the time-frequency
domain characteristics; see Fig. 13(d). Rather than analyzing over all frequency ranges, we focus
on the range with significant time-frequency features. The result suggests that the commercial
ACC in the experiment exhibits significant time-variant features in terms of disturbance
dampening ratio, especially when the leading vehicle decelerates. The disturbance dampening
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ratio can reach up to 2.5 in the frequency range from 0.3 to 0.5 Hz, which suggests that the
disturbance get amplified significantly during deceleration process compared with the relative
steady state process. Though the disturbance amplification is to a less extent, we can also find that
commercial ACC is not string stable from 0.1 Hz to 0.3 Hz in general, which is consistent with the
finding from the OpenACC dataset. The above analysis in Section 5, provided a detailed analysis
of time-frequency range of disturbance amplification for commercial ACC. These finding can be
applied to leading CAV’s trajectory design (e.g., Ma et al.,, 2017) as well as mixed traffic
stabilization via adaptive adjustment of CAV control parameters (e.g., Zhou et al., 2020).
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Fig. 13 Time-Variant Extension of the FRF (a) Speed portfolio of the analyzed CF pair; (b)
Spectrogram of the leading vehicle; (c) Spectrogram of the following vehicle; (d) Norm of time-
varying FRF

6. Conclusion

Disturbance attenuation is an important property for CF control of AVs. This paper presented
a data-driven method to approximate the empirical FRF of CF control, whose norm can be used to
evaluate the degree of disturbance amplification. Specifically, a data-driven stochastic analysis
method was developed based on a linear time-invariant approximation of CF control law to
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describe the general CF behavior. We further relaxed the time-invariant assumption and provided
a linear time-variant approximation of CF law to describe more detailed time-varying CF features.
To facilitate the analysis above, a well-known signal processing method, Welch’s method, together
with a STFT are developed to extract the empirical transfer function from vehicle trajectories.
Based on the empirical FRF, we developed a deterministic and time-invariant data-driven string
stability criterion for a qualitative evaluation of string stability classification (i.e., whether a vehicle
is string stable or not). Our stochastic and time-variant framework considers measurement noise,
estimation error, and time-varying CF features. Further, beyond the qualitative assessment of string
stability (i.e., whether a vehicle is string stable or not), our method provides a quantitative assessment
of to what extent the system is string stable over frequency and time.

The evaluation using synthetic data showed that the proposed method can estimate transfer
function norms close to the theoretical norms and effectively distinguish different levels of string
stable/unstable cases. Further, the result also suggests that our data-driven linear approximation
can reproduce the disturbance amplification behavior of nonlinear controllers better than the
linear theoretical string stability analysis. We further applied the proposed method to evaluate
the string stability of ACC vehicles currently on the market using field data. Our results indicate
that the tested vehicles are all string unstable in both deterministic and stochastic senses,
particularly for low-frequency disturbances (< 0.5 Hz). Further, the results also demonstrate that
commercial ACC vehicles exhibit time-varying CF features, especially when the leading vehicle
decelerates. This result can be used to tune control parameters, such that the ACC system can
better dampen disturbances in this range.

The main contribution of the present paper lies in facilitating a disturbance amplification
analysis using data even when the CF controller is unknown or too complex for theoretical analysis.
Furthermore, the probabilistic and time-variant extension provides a deeper quantitative insight
into the disturbance amplification level over each frequency and time, rather than giving a
qualitative conclusion as previously done. Results also demonstrate the potential of our approach
to better estimate disturbance amplification for nonlinear CF laws in a data-driven way. The
proposed method should be further verified using real field data with known controllers, and a
more advanced transfer function method is desirable to better describe the disturbance
amplification with high-order CF characteristics. Furthermore, for a more general analysis
framework, different norm criteria for a data-driven disturbance amplification analysis should be
investigated in the future. Finally, a more in-depth investigation of ACC vehicles on the market is
desired to identify the sources of instability in the high-frequency region. Despite these
shortcomings, the present study significantly expands the use domain of string stability analysis
beyond the simple, known linear controllers.
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1  Appendix 1 Disturbance Amplification Analysis for DRL-based Controller
2  To further show the wide application and potential of the proposed designed framework, we
3 applied our framework to DRL based ACC. Specifically, we use the NGSIM data filtered by
4 Montanino and Punzo (2015) as leading vehicle trajectories, and the following vehicles trajectories
5  are generated by the method developed by Shi et al., (2021). We further split the dataset into two
6 sets: a training set and test set. Each set contains 14 different leader-follower trajectories whose
7  example leader-follower trajectories and speed are given in Fig Al (a-b). The mean and the
8  standard deviation of the estimated FRF norm for both sets are given in Fig. Al(c-d). As shown,
9 our method can estimate the disturbance amplification for DRL based ACC in a decent manner.
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11 Fig. A1 DRL based ACC Analysis (a) Example CF pair trajectories; (b) Example CF pair trajectories;
12 (c) Estimated average FRF Norm; (d) Standard deviation of estimated FRF Norm
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