Theoretical Computer Science 975 (2023) 114127

journal homepage: www.elsevier.com/locate/tcs

Theoretical Computer Science

Contents lists available at ScienceDirect

On computing discretized Ricci curvatures of graphs: Local R

algorithms and (localized) fine-grained reductions

She Check for
- updates

Bhaskar DasGupta®*!, Elena Grigorescu 2, Tamalika Mukherjee -2

4 Department of Computer Science, University of Illinois Chicago, Chicago, 60607, IL, USA
b pepartment of Computer Science, Purdue University, West Lafayette, 47907, IN, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 15 September 2022
Accepted 9 August 2023
Available online 18 August 2023
Communicated by P. Lu

Keywords:

Network shape

Discrete Ricci curvature
Query-based local algorithms

Characterizing shapes of high-dimensional objects via Ricci curvatures plays a critical
role in many research areas in mathematics and physics. However, even though several
discretizations of Ricci curvatures for discrete combinatorial objects such as networks have
been proposed and studied by mathematicians, the computational complexity aspects of
these discretizations have escaped the attention of theoretical computer scientists to a large
extent. In this paper, we study one such discretization, namely the Ollivier-Ricci curvature,
from the perspective of efficient computation by fine-grained reductions and local query-
based algorithms. Our main contributions are the following.

> We relate our curvature computation problem to minimum weight perfect matching
problem on complete bipartite graphs via fine-grained reduction.

> We formalize the computational aspects of the curvature computation problems in
suitable frameworks so that they can be studied by researchers in local algorithms.

> We provide the first known lower and upper bounds on queries for query-based
algorithms for the curvature computation problems in our local algorithms framework.
En route, we also illustrate a localized version of our fine-grained reduction.

We believe that our results bring forth an intriguing set of research questions, motivated
both in theory and practice, regarding designing efficient algorithms for curvatures of
geometrical objects.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

A suitable notion of “shape” plays a critical role in investigating objects in mathematics, mathematical physics and other
research areas. Various kinds of curvatures are very natural measures of shapes of higher dimensional objects in mainstream
physics and mathematics [1,2]. To quantify the shape of a higher-dimensional geometric object, one often fixes shapes of
objects with specific properties as the “baseline shape” and then quantifies the shape of a given object with respect to these

W

* Corresponding author.

This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

E-mail addresses: bdasgup@uic.edu (B. DasGupta), elena-g@purdue.edu (E. Grigorescu), tmukherj@purdue.edu (T. Mukherjee).

1 Supported by NSF grant 11S-1814931.

2 Supported in part by NSF grants CCF-1910659 and CCF-1910411.

https://doi.org/10.1016/j.tcs.2023.114127
0304-3975/© 2023 Elsevier B.V. All rights reserved.

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

baseline shapes. For example, consider the case of the two-dimensional metric space. For this space, a baseline could be
selected as the standard Euclidean plane in which the three angles of a triangle sum up to exactly 180°, and then one can
quantify the shape of the given two-dimensional space by the deviations of the sum of the three angles of triangles in
this space from the baseline of 180°. An alternative approach is to avoid selecting baseline shapes explicitly and instead
directly quantify the shape of a given geometric object. Quantification of shape is often referred to as the curvature of the
corresponding object. Quantification of shapes can be either local or global. A local shape of the object is usually computed
for a specific local neighborhood of the object (e.g., the Ricci curvature). In contrast, a global shape of the object is usually
computed over the entire object (e.g., the Gromov-hyperbolicity measure). Any attempt to extend notions of curvature
measures from non-network domains to networks®> (and other discrete combinatorial structures) need to overcome at least
three key challenges, namely that (a) networks are discrete (non-continuous) combinatorial objects, (b) networks may not
necessarily have an associated natural geometric embedding, and (c) the extension need to be useful and non-trivial, i.e.,
a network curvature measure should saliently encode non-trivial higher-order correlations among nodes and edges that
cannot be obtained by other popular network measures.

1.1. Motivations behind studying shapes of networks

Although studying measures of shapes of networks (and hypergraphs) is mathematically intriguing, it is natural to ask
if there are other valid reasons for such studies. Network shape measures can encode non-trivial topological properties
that are not expressed by more established network-theoretic measures such as degree distributions, clustering coefficients
or betweenness centralities (e.g., see [3,4]). Moreover, these shape measures can explain many phenomena one frequently
encounters in real network-theoretic applications, such as (i) paths mediating up- or down-regulation of a target node
starting from the same regulator node in biological regulatory networks often have many small crosstalk paths [3] and (ii)
existence of congestions in a node that is not a hub in traffic networks [3,5], that are not easily explained by other non-
shape measures. Recently, shape measures have also found applications in traditional social networks applications such as
community finding [6], and in neuroscience applications such as comparing brain networks to study slowly progressing
brain diseases such as attention deficit hyperactivity disorder [4] and autism spectrum disorder [7,8].

1.2. Brief history of existing notions of shapes for networks

There are several ways previous researchers have attempted to formulate notions of shapes of networks. Below we
discuss three major directions in this regard. For further details and other approaches, the reader is referred to papers and
books such as [9,1,10-16,3,17-23,4].

One notion of network shapes, first suggested by Gromov in a non-network group theoretic context [24], is via the
Gromov-hyperbolicity of networks. First defined for infinite continuous metric space [1], the measure was later adopted
for finite graphs. Usually this measure is defined via properties of geodesic triangles or equivalently via 4-node conditions,
though Gromov originally defined the measure using Gromov-product nodes in [24]. Informally, any infinite metric space has
a finite Gromov-hyperbolicity measure if it behaves metrically in the large scale as a negatively curved Riemannian manifold,
and thus the value of this measure can be correlated to the standard scalar curvature of a hyperbolic manifold. For a finite
network the measure is related to the properties of the set of exact and approximate geodesics of the network. There is a
large body of research works dealing with theoretical and empirical aspects of this measure, e.g., see [14,15,17,16,18,25] for
theoretical aspects, and see [3,5,26] for applications to real-world networks (such as traffic congestions in a road network).
Gromov-hyperbolicity is a global measure in the sense that it assigns one scalar value to the entire network.

A second notion of shape of a network can be obtained by extending Forman’s discretization of Ricci curvature for
(polyhedral or CW) complexes (the “Forman-Ricci curvature”) [19] to networks. Informally, the Forman-Ricci curvature is
applied to networks by topologically associating components (sub-networks) of a given network with higher-dimensional
objects. The topological association itself can be carried out several ways. Although formulated relatively recently, there are
already a number of papers investigating properties of these measures [20-22,14,23,4].

In contrast to both of the above approaches, the network curvature considered in this paper is obtained via a discretiza-
tion of curvatures from Riemannian manifolds to the network domain to capture metric properties of the manifold that are
different from those captured by the Forman-Ricci curvature. More concretely, the network curvature studied in this paper
is Ollivier’s earth-mover’s distances based discretization of Ricci curvature (the “Ollivier-Ricci curvature”) [10-13]. For some
theoretical comparison between Ollivier-Ricci curvature and Forman-Ricci curvature over graphs, see [4].

1.3. Basic definitions and notations

Let G = (V,E) be a given undirected unweighted graph. The following notations related to a graph G will be used
subsequently:

3 In this paper, we will use the two terms “graph” and “network” interchangeably.

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

> Nbrg(x) ={y|{x, y} € E} and deg;(x) = |Nbrg(x) | are the set of neighbors and the degree, respectively, of a node x.
> distg(x, y) is the distance (i.e., number of edges in a shortest path) between the nodes x and y in G.

The following standard notations and terminologies from the field of approximation algorithms are used to facilitate further
discussions:

> OPT is the value of the objective of an optimal solution of the problem under discussion.
> A («, &)-estimate for a minimization problem under discussion is a polynomial-time algorithm that produces a solution
whose objective value 8 satisfies OPT < 8 <o OPT +¢. A (1, ¢)-estimate is also called an additive e-approximation.

2. Ollivier-Ricci curvatures: intuition, definitions and simple bounds

To define the Ollivier-Ricci curvatures for the components of a graph, we first need to use the following standard defini-
tion of the earth mover’s distance (also called the L1 Wasserstein distance) in the specific context of a edge-weighted complete
bipartite graph.

Definition 1 (Earth mover’s distance (EMD) over a edge-weighted complete bipartite graph). Let H = (V, Vg, w) be an edge-
weighted complete bipartite graph with w : V| x Vg = R* U {0} being the edge-weight function, and let P, : V| > R¥
and P : Vg — R* be two arbitrary distributions over the nodes in V| and Vg, respectively. The earth mover’s distance
corresponding to the distributions P, and Pk, denoted by Empy (IPr, Pg) (or simply EmD), is the value of the objective
function of an optimal solution of the following linear program that has a variable zy , for every pair of nodes x € V; and
y e Vg:

minimize Y Y w(x.y)zxy
xeVy yeVg
subject to Z zxy =Pi(x), forallxeV;
yeVr 0
Z zx,y =Pr(y), forallye Vg
xeVy
zx,y >0, forallxeVyandye Vg

Let G = (V, E) be an undirected unweighted graph. Consider an edge e = {u, v} € E. Define the edge-weighted complete

bipartite graph G, , = (L] . R} ,, w§) as follows:

> L, = (u) UNbrg (),
> RS, ={v}UNbrg(v), and
> the edge-weight function w§ , is given by w§ ,(u’,v') =distc(u’, v/) for all v’ € LS ,, v/ € RS ,,.

Let P¢ and P{ denote the two uniform distributions over the nodes in LS , and R, respectively, i.e.,

VxelC 'PG(X)=;
v 1+ degg(u)

1
VxeR¢ ‘Plx)= —
XeRy B () 14 degg(v)

We can now state the precise definitions of the curvatures used in this paper.

> The Ollivier-Ricci curvature of the edge e = {u, v} of G is defined as [10]*

¢(e) & e, v) =1— Empg, , (P, PC))

> The Ollivier-Ricci curvature of a node v is calculated by taking the average of the Ollivier-Ricci curvatures of all the
edges incident on v, ie.,

4 For this paper, it is crucial to note that the computation of € (e) requires only the value of EMDCU’V(]P’,JG,]P’VG) and does not require an explicit enu-
meration of the solution (variable values) of the linear program (1). This distinction is important in the context of designing efficient local algorithms. For
example, given a graph G with n nodes in which the maximum degree of any node is O(1) and a constant & > 0, one can compute a number that is an
additive en-approximation of the size of maximum matching of G in O(1) time in expectation [27], but of course if we were required to output an actual
maximum matching we would take at least Q(n) time.

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

1

= dege)

Z Cele) (3)

e={u,v}eE

> Finally, the average Ollivier-Ricci curvature of a graph G is calculated by taking the average of the Ollivier-Ricci curva-
tures of all the edges in G, i.e.,

1
Cag(©) = 7 > 2o (4)

ecE

For easy quick reference, we explicitly write below the version of the linear program in (1) as used in the calculation of
Ce(u, v):

minimize Z Z distg (x, ¥) zx,y
xe{u}UNbrg (u) ye{v}UNbrg (v)
subject to
1
Z Zyy=——-———, forallxe {u} UNbrg(u) (LP-¢¢)
ye{v}UNbrg(v) 1+ degc(u)
1
Z Zyy=————, forally e {v}UNbrg(v)
xe{u}UNbrg (u) 1+ de'gG (Ll)
Zx,y >0, forallx e {v}UNbrg(v)and y e {u} UNbrg(u)

Assuming deg.(u) < degc(v), the linear program in (LP-C¢) has degq(u) x degs(v) = O((degq(v))?) variables and
deg; (u) + degg(v) < 2 degg(v) constraints. The best time-complexity for solving the linear program in (LP-¢¢) can be
estimated as follows:

> Based on the state-of-the-art algorithms for solving linear program for this situation [28], an exact solution of (LP-¢)
can be found in O((deg¢(v))>/?) time.

> Based on the results in publications such as [29,30], an additive ¢-approximation of (LP-€;) can be obtained in
0 (% degg(u) degg(v)) = O((degg(v))?) time.

The following observation is crucial for this paper.
Observation 1. The values dist¢ (x, y) in the linear program in (LP-C¢) satisfy the property that distg (x, y) € {0, 1, 2, 3}.

It is not difficult to see that Observation 1 implies 0 < EMDg, (PS,]P’f) <3 and therefore —2 < €¢(e) < 1. For comput-
ing €¢(u, v) and related quantities, we assume that deg;(u) < deg¢(v) without any loss of generality throughout the rest
of the paper. Moreover, we also assume without loss of generality that deg¢(v) = w(1) since otherwise EmD Gu_v(]P’uG, IP’VG)
can be computed in O (1) time.

2.1. Intuition behind the discretization resulting in definition of €¢(e)

For an intuitive understanding of the definition of € (e), we recall the notion of Ricci curvature for a smooth Riemannian
manifold. The Ricci curvature at a point x in the manifold along a direction can be thought of transporting a small ball
centered at x along that direction and measuring the “distortion” of that ball due to the shape of the surface by comparing
the distance between the two small balls with the distance between their centers. In the definition of ¢ (e), the role of
the direction is captured by the edge e = {u, v}, the roles of the balls at the two points are played by the two closed

neighborhoods LS , and RS ,, and the role of the distance between the two balls is captured by the earth mover’s distance

between the two distributions P and P¢ over the nodes in LS, and RS, on the metric space of shortest paths in G. For

further intuition, see publications such as [10]. The Forman-Ricci curvature also assigns a number to each edge of the given
graph, but the numbers are calculated in quite a different way from that in the Ollivier-Ricci curvature to capture different
metric properties of the manifold.

2.2. Equivalent reformulation of linear program (LP-C¢) when deg¢ (u) = degg(v)

The following claim holds based on results in prior publications such as [31,32]. For the convenience of the reader, we
provide a self-contained proof in the appendix.

5 The standard O notation in algorithmic analysis hides poly-logarithmic terms, e.g., terms like log"/ 3 degg (v).

4

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Fact 1.[31,32] If deg(u) = degg(v) then the following claims are true regarding some optimal solution of the linear pro-
gram (LP-Cg):

. : : 1

(i) The values of the variables z,/ s are either 0 or T

(ii) The edges in { W, v}zy v = m } form a minimum-weight perfect matching in Gy, that uses the zero-weight edges
{u’,u'} for all u" € {u, v} U (Nbrg (1) N Nbrg (v)).

Based on Fact 1, for the case when deg; (u) = deg(v) an optimal solution of the linear program (LP-C¢) can be obtained
by finding a minimum-weight perfect matching for a complete edge-weighted bipartite graph H = (L, R, w) where

> L=Nbrg(u) \ (Nbrg(v) U {v}),
> R=Nbrg(v) \ (Nbrg(u) U {u}), and
> the edge-weight function w: L x R+ {1, 2,3} is given by w(x, y) =distg(x, y).

Note that |L| = |R| =degs(v) — 1 — [Nbrg(u) N Nbrg (v)|. Letting M(H) € {|R|, |R|+1,...,3|R]|} denote the total weight of a
minimum-weight perfect matching of H, we have

. M(H)
1+ degg(v)

Cgle) =1
Proposition 1. An additive &|R|-approximation of M(H) implies an additive e-approximation of € (e), and vice versa.
Proof. This follows from the facts that |R| < M(H) <3|R| and deg;(v) > [R]. O
2.3. Some simple bounds for EMDg, , (IPy, Py) and & (e)
We use a calculation similar to the one used in [31]. Extend the distributions P¢ and P¢ to P¢" and P¢" over LS, URS ,
by letting]P’UG’ (x)=0forxe Ry v \Lyyv and IP’VG/ (x) =0 for x € Ly y \ Ry,v. For notational simplicity, let k = Nbrg (u) \ Nbrg (v),

£ = Nbrg (u) NNbrg(v), and m = Nbrg (v) \ Nbrg (1), thus degg (u) =k+¢ and deg; (v) = m+£. By straightforward calculation,
the total variation distance (TVD) between IP;, and PP} is

1 k—1 —1 1 1
1P} — Py lltvp = 5 X <k+£+1 + gt T (€ +2) x (m - m))

=1— +2
- deg(v)+1

Since 1 <distg(u’,v/) <3 forall u’, v’ € LS,V U RLG,,,,, u’ # v/, by standard relationships between EMD and TVD (e.g., see [33])

it follows that || P, — P} ||tvp < EmDg, , (Py, Py) <3 x || P, — P} ||tvD, thereby giving

3¢+6 L+2
2+ —— <) ———
degg(v) +1 degg(v) +1

Furthermore, if G has no cycles of length 5 or less containing e then distg(u’,v/) =3 for all u’, v’ € LLG,,V U Rijv and £=0
giving €¢(e) = degcﬁw

3. Synopsis of our results

The main goal of this paper is to study algorithmic complexities of efficient computation of our network curvature
measures. To this effect, our main contributions are threefold:

> We relate various cases of our curvature computation problems via fine-grained reduction.

> We formalize the computational aspects of the curvature computation problems in suitable frameworks so that they can
be studied by researchers in local algorithms.

> We provide the first known lower and upper bounds on queries for query-based algorithms for the curvature computation
problems in our local algorithms framework. En route, we also illustrate a localized version of our fine-grained reduction.

A summary of our contribution in the rest of this paper is the following.

Q In Section 4 we relate via Theorem 3 the minimum weight perfect matching problem on complete bipartite graphs with
ternary weights to computing € (e) via fine-grained reduction.

5

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Q In Section 5 we present our results for computing € (e) in the framework of local algorithms.

o In Sections 5.1 - 5.2 we provide details of the query models relevant to our case and prior related works on these
query models.

o In Sections 5.4 - 5.6 Theorem 4, Theorem 5 and Theorem 6 provide query bounds for exact or approximate calculations
of the curvature using the query models. The bounds are succinctly summarized in Section 5.3 via Table 1.

Q In Section 6 Lemma 8 provides our results for computing the Ollivier-Ricci curvature € (v) for nodes and for computing
the average Ollivier-Ricci curvature €,y(G) for graphs using “black box” additive approximation algorithms for €¢(e) and
neighbor queries.

Q We conclude in Section 7 with some possible future research problems.

4. Fine-grained reduction: relating minimum weight perfect matching on complete bipartite graphs to computing €¢ (e)

Frameworks for characterizing polynomial-time solvable problems via fine-grained reduction have garnered considerable
attention in recent years (e.g., see [34] for a survey and [35-37] for a few well-known results in this direction). Essentially
these fine-grained reductions are used to show that, given two problems .A and B and two constants a, b > 0, if an instance
I of size |Zg| of problem B can be solved in O(|Zg|?) time then an instance Z 4 of size |Z 4| of problem 4 can be solved
in 0(|Z 4| time.

To begin, we first formally state the minimum weight perfect matching problem on complete bipartite graphs with ternary
edge weights.

Definition 2 (Minimum weight perfect matching on complete bipartite graphs with ternary weights (MpMcT)). Given a complete
edge-weighted bipartite graph H = (A, B, w) where |A| = |B| and w: A x B+ {1, 2, 3} is the edge-weight function, find the
value of ‘%‘ where | M)] is the value (sum of weights of edges) in a minimum-weight perfect matching M of H.

For MPMcT, exact solution takes O(|A[>/2) time [28], and an e-additive approximation takes 6(5%|A|2) time. The fol-
lowing theorem related MpMcT to the problem of computing a solution of the linear program in (LP-¢¢) via a fine-grained
reduction.

Theorem 3. Suppose that we have an algorithm 2 that provides (c, €)-estimate for MpmcT in O (|A|?>T#) time for some . > 0 for a
given input instance H = (A, B, w).

Then, there exists an algorithm 2A_ that provides the following estimates for the linear program in (LP-C¢) in O (degg (v)?T#)
time:

(i) (o, e)-estimate if deg; (v) + 1 is an integral multiple of deg; (u) + 1, and
(i1) («, &+ 8)-estimate (for § > 0) provided § satisfies at least one of the following conditions:

(b) degc(u) < (8/3) x degg(v), or
(b) degc(u) > (1 —(8/3)) x deg¢(v).

Remark 1. An illustration of the result in Theorem 3 is as follows. Suppose that we can solve MpmcT exactly in O (|A|*>%)
time (implying o =1 and ¢ = 0). Then, such an algorithm can be used to obtain a degc(v)_”z—additive approxima-
tion of (LP-C;) (ie., 6§ = degG(v)’]/z) in O((degc(v))“) time provided at least one of the following conditions holds:

(a) degg(u) < —Vdeg‘;("). (b) deg¢(u) > degg(v) — —Vdegc(v), or (c) degs(v) + 1 is an integral multiple of degg (u) + 1. Such a
result will improve the best possible running time for a degc(v)’l/z-additive approximation of (LP-C;).

Proof. Let Nbrg(u) U {u} = {x1,..., Xdegwy+1}, and Nbrg(v) U {v} = {y1, ..., Ydegv)+1}, Where Xgeg) = Vdeg,(v) = U and
Xdeg, (u)+1 = Ydego(v)+1 = V. Let dego(v) + 1 =a(degs(u) + 1) + b for two integers a > 1 and 0 < b < degg(u) + 1. We

construct a new graph G, , = (LS, RS ,, w§,) from G,y in the following manner:

> We set RS, = RS,

> Every node x; is replaced by a nodes xil,x!in LE:V. Moreover, we have b additional “special” nodes ry,...,r, in LE:V.
Note that after these modifications |LS, | = |R5;V| =1+degc(v).

> We set the new weights WS:V as follows:

wC' (!, yo) = distc (xi, yo) fori e {1,..., degg (u) + 1),
jefl,...;a},and £ € {1,...,degs(v) + 1}

6

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

w8, (ri,ye) =3forie{1,...,b},and £ € {1, ..., degc(v) + 1}

> The two new probability distributions P,Cnv and P.Cuv over the nodes in LE;V and Rfffv are as follows: Puv (x) = PS(x)

for all X € {y1, ..., Ydegc(v)+1}, and P{uv(x) = Hdelw for all x e U,‘,j{x,!} Ufry,....mh
Since |Lf,ffv| = |R v| =1+ degg(v), using the reformulations as discussed in Section 2.2 it follows that G; , is a valid
instance H = (A, B, w) of MpmcT with |A| =deg;(v)+1 and w(p,q) = u.v(p,). Note that building the graph G/, , takes

0 ((deg¢ (v))?) time, and algorithm 2(provides a (o, &)-estimate for EMD G, V(IP‘L(,:L»V, IP’VGL-V) in O ((degc (v))?*t#) time. Thus,
to complete the proof it suffices to show that

EMDGU.V(]P]P)< EMDGr (]Pu v]P)Vuv)< EMDGuv(]P)G PG)+8

The linear program for EMD¢; | (IP’ wy IP’Gu) is a straightforward modified version of (LP-¢) with appropriate change of
subscripts of the variables. We w111 refer to this modified version by (LP-C¢).
We can show EmDg; | (Pu“ v, IP’VG" vy < EMDGu,V(Pu ,IP’VG) + & as follows. Consider an optimal solution of the linear pro-

gram (LP-¢¢) of value Empg, ,(P¢,PS). From this solution we can create a feasible solution of the linear program (LP-¢¢)’
in the following manner.

> Fori=1,...,degs(u)+ 1 and j=1,...,degs(v) + 1, if Zy,y; > 0 then distribute the value of Zy;,y; among the corre-
sponding variables of (LP-C¢) as follows:

e Repeatedly select a variable from {x}, ..., x¢}, say x{, such that x{ < Increase x! to min {

1 1,
1+degg(v)* (T+degg (v))® “Xi-Yj [
and decrease Zxy; by the amount by which xf was increased. Note that WE:V (xi, yj) = distg (x;, ¥). Repeat this step
until zy, ,; becomes zero or no such variable X! exists.
o If zy y; > O after the previous step ends then execute the following steps. Repeatedly select a variable from
1 : 1
{r1,...,1p}, say rg, such that ry, < THdego v Increase ry to min { [Fdegcmy) 24.95 } and decrease Zx.y; by the amount

by which r; was increased. Note that ngv (xi, yj) <distg(x;, yj) + 3. Repeat this step until Zxy; becomes zero.

A straightforward calculation shows that Emb g/ V(IP’E"W, I[’VG&-V) < EMDGH(P IPG) + Fegc (M1 (v)+1 Therefore it suffices if we

have % < 4. If degg(u)+1 is an integral multiple of deg(v)+1 then b =0 and this proves the claim in (i). Otherwise,
since b < degg(u) +1 <degg(v)+1 and b < (degg(v) + 1) — (degg (u) + 1) = degg (v) — degq (u) we get

degg (1) < (8/3) x degs(v) = b < dege(u) +1 < (§/3) x degg(v) + 1= goby < LWL <

degg (1) > (1—(8/3)) x degg(v) = degg(v) — degg(u) < (§/3) x degg(v) = qeipy < otal) < 5

The proof of Empg,,(PS, PY) < EMDg V(IP’L,G/W, PCuv) is similar. O
5. Computing € (e) in the framework of local algorithms

By now designing local algorithms for efficient solution of graph-theoretic problems has become a well-established
research area in theoretical computer science and data mining with a large body of publications (e.g., see [38,27,39]). A
basic idea behind many of these algorithms is to suitably sample a small “local” neighborhood of the graph to infer the
value of some non-local property of a graph. Frameworks for graph-theoretic applications of local algorithms hinge on the
following two premises:

> We assume that our algorithm has a list of all nodes in the graph in a suitable format that allows for sampling a node
based on some distribution.

> The edges and their weights are not known to our algorithm a priori. Instead, the algorithm uses a “query” on a node or
a pair of nodes to discover an edge and its weight. Different query models for local algorithms arise based on what kind
of queries are allowed. Later in Section 5.2 we will provide details of query models that are applicable to our problems.

> The performance of the algorithm is measured by the number of queries used.

Additional notations and conventions

For the case when deg;(u) = deg;(v), we will use the reformulations of the linear program (LP-¢¢) as discussed in
Section 2.2 and the associated notations contained therein. We will use the following additional notations and conventions
related to the graph H = (L, R, w) mentioned in Section 2.2:

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

> |[L|=|R|=n, L={uq,...,up} and R ={vq,...,vp}.
> For j e {1,2} degy j(x) denotes the number of edges of weight j incident on node x in a graph H.

Note that H has 2n nodes. Moreover, for any edge-weighted graph F = (V,E,w) with w: E — R, wt-degg(u) =
ZV:{U,V}EE w(u, v) denotes the weighted degree of node u in F, and M (F) denotes the total weight of a minimum-weight
perfect matching of F.

5.1. Prior related works

Designing sublinear time and sketching algorithms for the general earth mover’s distance on the shortest path metric
for arbitrary graphs have been investigated in prior research papers such as [40,41]. In particular, for an edge-weighted
tree with W being the maximum weight of any edge and for any two unknown probability distributions on the nodes, the

authors in [40] show that an estimate of the EMD with e-additive error can be achieved by using (~)(W;2”2) samples from
the two distributions and observe that their algorithm is optimal up to polylog factors. To the best of our knowledge, local

algorithms for computing the Ollivier-Ricci curvatures of a graph have not been investigated explicitly before.

5.2. Query models for edge-weighted complete bipartite graphs

Two standard query models that appear in the local algorithms literature for unweighted graphs (e.g., see [38]) are as
follows: the node-pair query model (the query is a pair of nodes and the answer is whether an edge between them exists
or not), and the neighbor query model (the query is a node and the answer is a random not-yet-explored adjacent node if
it exists). Since our given graph is an edge-weighted complete bipartite graph H = (L, R, w) via the reformulation described
in Section 2.2, natural extensions lead to the following query models for our case:

> weighted node-pair query model: the query is a pair of nodes x, y and the answer is the weight w(x, y).

> neighbor query model: the query is a node x and the answer is a random “not-yet-explored” node adjacent to x (if no
such node exists then the query returns a special symbol to indicate that). Note that such a query does not give any useful
information (beyond simply picking a node uniformly at random) for the graph H since it is a complete graph. We will only use
this type of query for the entire given graph G for computing € (v) and €4,¢(G) in Section 6.

> weighted neighbor query model: the query is (x, y) where x is a node and y is a number, and the answer is a random
“not-yet-explored” node z such that w(x,z) = y (if no such node exists then the query returns a special symbol to
indicate that).

> weighted selective degree query model: the query is (x, y) where x is a node and y is a number, and the answer is the
number of edges of weight y that are incident on x.

5.3. Summary of our query bounds on computing €¢(e)

For the convenience of the reader, we summarize our query bounds for computing €;(e) in Table 1. Subsequent sub-
sections in this section provide proofs of these bounds.

5.4. Lower bounds on number of queries for computing € (e)

Note that for query lower bounds it suffices to prove the lower bound for complete edge-weighted bipartite graph
reformulations of the problem as discussed in Section 2.2. Any complete bipartite graph H = (L, R, w) used in our lower
bound proofs will satisfy L N R =, thereby implying n = deg;(v) — 1. Since we provide our inputs in the form of such
graphs H, we first need to show that there exists a graph G with the edge {u, v} such that G, , = H in the notations used
in Section 2.2.

Proposition 2. Given any complete edge-weighted bipartite graph H = (L, R, w) where w : L x R — {1, 2, 3} there exists a graph
G = (V, E) such that Gy,y = H.

Proof. Start with the edge {u, v} in G, connect the nodes uq, ..., u, to u, and connect the nodes v1,..., v, to v. For every
pair of nodes (u;,vj) e L x R, if w(uj, v;) =1 then add the edge {u;, v;} to G. Otherwise if w(uj, vj) =2 then add a new
node x; j to G and add the two edges {u;,x; ;} and {x; j,vj} to G. O

A common thread in our lower bound proofs is the following easy but crucial observation.

Observation 2. Suppose that we have two separate classes of (complete edge-weighted bipartite, as described in Section 2.2) graphs
G1 and Go, two numbers 1 < o < B < 3, and an algorithm A such that the following holds:

> Every graph H € G, satisfiesn < M(H) <an.

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Table 1
A summary of query bounds for computing € (e); €1, &2, 8 are arbitrary constants satisfying 0 < &y <2 and
&2, §>0.
query additive expected result(s) additional
types approx. # of queries remark(s)
. Coa exact (degg (V)—1)2 "
weighted node-pair computation e Theorem 4(a)-(i)
lower . . exact degg (v)—1 s
bounds weighted neighbor computation > —=C—— Theorem 4(a)-(ii) @
weighted node-pair 2 —¢&; > degG(T")’] Theorem 4(b)
weighted neighbor 1+¢; o) Theorem 5(a) @
. . 1
upper weighted neighbor 5 t+é& o) Theorem 5(b) @
bounds weighted neighbor 1+e+$6 o) Corollary 7(i) @
weighted neighbor T+er+s 0(1) Corollary 7(ii) ®

even if degy (x) <1, degy ,(x) =0 for every node x, and any number of weighted
selective degree queries are allowed.

@ if degy 1 (x) = 0(1) for every node x, and degg (u) = degg (v).
@ if both degy 1(x) = 0(1) and degy ,(x) = 0(1) for every node x, and deg (u) = degg (v).
@ if degy 1 (x) = 0(1) for every node x, and degg (u) > (1 —(8/3)) x degg (v).

@ if both degy 1(x) = 0(1) and degy ,(x) = O(1) for every node x, and degg (u) > (1 —(8/3)) x degg(v).

> Every graph H € G, satisfies fn < M(H) < 3n.
> Given a graph from G1 U G», algorithm A cannot determine in which class the given graph belongs.

Then, using Proposition 1, it follows that algorithm A cannot provide an additive (8 — o — €)-approximation of € (e) for any constant
e>0.

Our proofs in Theorem 4 for lower bounds on the number of queries will use the well-known Yao’s minimax principle
for randomized algorithms [42]. Namely, we will construct two separate classes G; and G, of graphs and show that any
deterministic algorithm that picks graphs uniformly at random from these two classes will need at least a certain number
of queries, say q, to be able to decide from which class the graph was selected with at least a certain probability, say p.
Then, the expected number of queries performed by any deterministic algorithms on inputs drawn from the aforementioned
distribution is at least pq, and thus by the minimax principle the expected number of queries for any randomized algorithm
over all possible inputs is also at least pq. Note that since our input instances are complete bipartite graphs, two graphs are
differentiated based on the assignments of weights to all possible edges (see [38] for further elaborations on this point).

Theorem 4. Consider any local algorithm that is allowed to make an unlimited number of weighted selective degree queries. Let Q
be the expected number of queries, excluding all weighted selective degree queries, performed by the algorithm for computing €¢(e).
Then the following claims hold.

(a) Suppose that we want to compute € (e) exactly. Then the following bounds hold.

(i) Q > n*/6 if the queries used are weighted node-pair queries.
(ii) Q > n/6 if the queries used are weighted neighbor queries.

(b) Forevery0 < & < 2, any randomized algorithm computing an additive (2 — &)-approximation of €¢ (e) requires Q > n/6 weighted
node-pair queries.

Proof. All the bipartite graphs H = (L, R, w) in our proofs will satisfy that degy ;(x) =1 and degy ,(x) = 0 for every node
x € LUR, and therefore any number of weighted selective degree queries will provide no information about the value of

¢s(e).
Proof of (a)

Corresponding to every node pair (u;, vj) with u; e L and v; € R, the class Gy contains a graph in which w(u;, vj) =1
and all other edges have weight 3. The class G, contains just one graph in which all edge weights are set to 3. Note that the

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

minimum weight of a perfect matching for each graph in Gy is 3n — 2, whereas the minimum weight of a perfect matching
for the graph in G, is 3n.

Proof of (a)-(i)

Suppose that our algorithm has already made t queries (edges) eq, ..., e; for t <n?—1 with w(e;) =---=w(e;) =3 and
let e;+1 be the next query. Consider a graph G; € G; that is consistent with the first t queries with w(e¢+1) = 1. Note that
there is exactly one such graph in G;. Since there are at least n*> — (t + 1) node pairs (edges) that have not been queried
after the (t + 1)™ query, we have at least n2 — (t + 1) distinct graphs in G; with w(e;41) = 3 that is consistent with the
first t queries (set the weight of exactly one of the n®> — (t + 1) edges to 1 and the weight of the remaining edges to 3).
Since graphs are selected uniformly at random from G; it follows that Priw(er+1) =1|w(e1) =---=w(er) =3]1 < m
Summing over all t, we get

Pr[number of queries needed is at leastt + 1]

=1 — Pr[one of the t queries contain an edge of weight 1]1>1 — m

Putting t = 1%/3, the probability that “the number of queries is at least 1+ 1°/3” is at least 1/2.

Proof of (a)-(ii)

Suppose that our algorithm has already made t queries (nodes, weights) (x1, y1),..., X, ¥¢) € (LUR) x {1,2,3} for
t<n—1. Let ey ={x1,x]},...,ec = {xr, x{} be the answers (edges) to these queries with w(e;) =---=w(e;) =3 and let
(Xt+1, Ye+1) be the next query that reveals the weight of an edge e;41 = {xH],x;H}. Consider a graph Gi € Gy that is
consistent with the first t queries with w(e¢+1) = yr+1 = 1. Note that there is exactly one such graph in Gp. Since there
are at least n — (t + 1) nodes in each of L and R that have not been queried after the (t + 1)™ query, we have at least
(n — (t+1))? distinct graphs in G; with w(e;41) =3 that is consistent with the first t queries (set the weight of exactly one
edge among these nodes to 1 and the weights of all remaining edges to 3). Since graphs are selected uniformly at random
from G it follows that Priw(e;+1) =1|w(e1) =---=w(e) =3]1 < m Summing over all t, we get

Pr[number of queries needed is at least t + 1]

=1 — Pr[one of the t queries contain an edge of weight 1]>1 — m

Putting t = n/2, the probability that “the number of queries is at least 1+ n/2” is at least 1 — %

Proof of (b)

Corresponding to each of the possible n! perfect matchings, the class G; contains a graph in which the edges in the
matching have weight 1 and all other non-matching edges have weight 3. The class G, contains just one graph in which
all edge weights are set to 3. Note that the minimum weight of a perfect matching for each graph in G; is n, whereas the
minimum weight of a perfect matching for the graph in G, is 3n. Suppose that our algorithm has already made t (edge)

queries eq,...,e;) for t <n—1 with w(e;) =---=w(e;) =3 and let e;;1 be the next (edge) query.
We first show that as long as t < n there exists at least one graph in G; that is consistent with the weight assignments
of the first ¢ queries. Consider a random perfect matching M = {{u1, vz 1)}, ..., {un, Vz@m}} given by a random permutation

m of 1,...,n. The probability of the event £; that the jt query ej is in M is w = 1/n. It follows that Pr[A§:15_j] =
1-— Pr[vgzlgj] >1-— Zs.:] Pri€i1>1— % > 0 and therefore G; contains at least one such graph.

Assume without loss of generality that e;y; = (un, vy) and let M be a perfect matching of the nodes in L and R, say
M = {{u1,v1},...,{un, vp}}, that is consistent with the first t queries, and includes e;{; as a matched edges (note that
w(uq, v1) =--- = w(Uy, vy) = 1). If such a matching M does not exist then Pr[w(up, vy) =1|w(e1) =---=w(e;) =3]=0.
Otherwise, note that there are at least n —t nodes in each of L and R, say ui,...,us—t € L and vq,..., vy—; € R, such that
the edges (un, vj) and (uj, vy) for j=1,...,n —t have not been queried yet. For every such perfect matching M, we can
then construct a set Sy of at least n — t distinct perfect matchings with w(e;y1) = 3 that is consistent with the first t
queries as follows: in the oth perfect matching set w(ug, v¢) = w(uy, vq) =3 and set w(uy, v¢) = w(ug, vq) = 1. It is also
easy to see that any two matchings from two different sets Sy; and Sy differ in at least one edge. Since graphs are selected
uniformly at random from Gy it follows that Pr{w(u,, vy) =1|w(e1) =---=w(e) =31 < ﬁ Summing over all t, we get

Pr[number of queries needed is at least t + 1]
=1 — Pr[any of the t queries contain an edge of weight 1] > 1 — ﬁ

Putting t = n/3, the probability that “the number of queries is at least 14 7/3” is at least 1/2. O

10

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

m =0 m =3z my=mp=n m1=§ m2=%"

Mopt = 31 Mopt = 21 Mopt = 21 Mopt = 3%' Mopt = %" Mopt = %"

0—oO v /

O O O0—-=O @) !
n/3
O O O0—-=O @) |
O O O0—-=O 2 O t
n/3
O O O0—O @) b
L R L R L R L R L R L R
. weight 1 edge — weight1 edge
— weight2 e(?ge weight 2 edge ———— weight2 edge
missing edges are of weight 3 missing edges are of weight 3 missing edges are of weight 3

(a) ®) ()

Fig. 1. (a) Example showing tightness of bounds in Theorem 5 when only estimate for m; is known. (b) Example showing tightness of bounds in Theorem 5
when estimates for my, mp, myy are known. (c) Example showing that better than additive %—approximation is not possible if only estimates for m; and
my are used for the case in Theorem 5(b).

5.5. Upper bounds on number of queries for computing € (e) when deg(u) = deg(v)

The proofs in Theorem 4 do not use any edge of weight 2 and have at most one edge of weight 1 incident on any node
with the additional restriction that these edges of weight 1 provide a unique matching for the nodes that are end-points
of these edges. In this section we show that if weighted neighbor queries are allowed then O(1) expected number of
queries will suffice for a non-trivial additive approximation for a class of weighted complete bipartite graphs that properly
includes the instances generated by the proofs in Theorem 4 (note that for the instances (graphs) generated by the proofs
in Theorem 4 we have degy ;(x) <1 and degy ,(x) =0 for every node x).

Theorem 5. Assume that deg. (u) = deg¢ (v), and let d, € > 0 be two fixed constants. Then, using O (1) expected number of weighted
neighbor queries® we can obtain the following type of approximations for ¢¢ (e):

(a) an additive (1 + &)-approximation when maxy{degy ;(x)} <d, and
(b) an additive (% + e)—approximation when maxy{degy 1(X)} < d and
maxy{degy ,(x)} <d.

Remark 2. Let mq, my and my, be as defined in the proof of this theorem. The bounds in Theorem 5 are tight in the sense
that no algorithm that knows only estimates of my (resp. estimates of mq, my, mq2) can provide better additive ratios for
parts (a) (resp. (b)); see Fig. 1 (a)-(b). The example in Fig. 1 (c) shows that no algorithm can provide better than additive
%—approximation for the case in Theorem 5(b) if the estimate for mq, is not used.

Proof. Since deg;(u) = deg;(v) we can use the reformulations of the linear program (LP-¢) outlined in Section 2.2. Let
8 > 0 be a constant to be fixed later. Let Hy, H and Hp, be the subgraphs of H induced by the edges in H of weight 1,
edges in H of weight 2, and edges in H of weights 1 and 2, respectively. Fix maximum-cardinality matchings M1, M, and
My of Hy, Hy and Hy; having min, man and my2n edges, respectively. Also, fix a minimum-weight perfect matching Mopt
of H of total weight mqp 11, and let mopt, ¢ n be the number of edges of weight £ € {1, 2, 3} in Mop. The following inequalities
will be useful during the rest of the proof:

Mopt,1 <M1, Mopt2 <M2, Mope,3 >1—my, miz > max{my, my},

Mopt = Mopt,1 + 2Mopt2 + 3(1 — Mopt,1 — Mopt,2) = 3 — 2Mopt,1 — Mopt,2 = 2 — 2Mgpe,1 = 2 — 2mMy
Let M be a perfect matching of H generated by taking all the edges (of weight 1) in M and pairing the remaining nodes
from L and R arbitrarily. Note that the total weight mgn of the edges in M; satisfies mop <m; and mg <mq +3(1 —my) =
3 — 2my; thus it follows that 3 —2my > mgp. Similarly, taking M to be a perfect matching of H of total weight mgn

6 The constant in O(1) depends on d and ¢.

11

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

generated by taking all the edges (of weight 2) in M, and pairing the remaining nodes from L and R arbitrarily we get
Mopt < Mg and m; < 2my 4 3(1 —my) =3 —my; thus it follows that 3 —my > mgp.

Our algorithm proceeds in two main steps. The first common step in our algorithm for both (a) and (b) is to determine
the set of nodes in L and R from Nbrg(u) and Nbrg(v). This can be done by comparing the list of nodes in Nbrg(u) and
Nbrg (v) to identify all nodes in Nbrg (1) N Nbrg(v) and setting L = Nbrg (1) \ (Nbrg (u) N Nbrg(v)), R = Nbrg (v) \ (Nbrg(u) N
Nbrc(v)). Note that this step does not use any query at all. The remaining parts of our algorithms will only use weighted
neighbor queries (x,s) for xe LUR and s € {1, 2}.

Proof of (a)

Since maxyeiur{degy, (v)} < d, then using the results of Yoshida et al. [27] we can compute a number my using
d0/6% (1/5)0(1/%) — 0 (1) expected number of queries such that myn — 8n < fil;n < myn. It is straightforward to see that
each query in Yoshida et al. [27] can be implemented by a weighted neighbor query (x,1) for some appropriate x € L UR.
After using O (1) expected number of weighted neighbor queries to compute iy n we output the number A = (3 —2m1) as
our estimate for mep¢. Note that A > (3 —2myq) > Mept, and A —mgpt = (3 — 2Mq) — Mopt < (3—2m1) +268 —Mgpe <1+ 26.
Our proof is completed by taking § = ¢/2.

Proof of (b)

Since maxyeruridegy, (v)} <d and maxyecrur{degy,(v)} <d, using the results of Yoshida et al. [27] we can compute
numbers iy, fity, and ity using (2d)°(1/8)(1/5)°(1/8) = 0(1) expected number of queries such that men —8n <fi,n <men
for ¢ € {1,2,12}. It is straightforward to see that each query in Yoshida et al. [27] can be implemented by a weighted
neighbor query (x,s) for some appropriate x € L UR and s € {1, 2}. We perform the following case analysis to provide our
estimate A of mgpt.

Case 1: i < 1/4. Our estimate for mgp is A =3 — 1. Note that A >3 — my > mgp. For the additive error estimation, we
have

A—mopt:3—fﬁZ—moptf(3—mz—2m])'|‘2m1'1'5—mopt
< (3 —Mopt,2 _zmopt,1)+2(%+5)+5—mopt:%4—35

Case 2: iy < 1/2 0r My > 1/2 0r fiyy < 3/4. Our estimate for mgpr is A =3 — 2fi;. Note that A >3 — 2my > mgy. For the
additive error bounds, we have the following:

> If My <1/2 then A —mgpr =3 — 21 —Mopr = B —my —2mq) + My + 28 —Mopr < (3 —Mopt,2 — 2Mopt,1) +1/2+38 —
Mopt < 3 +38.

> If M1 > 1/2 then since the smallest possible total weight that any perfect matching of H could have is achieved by
taking all the m n edges of weight 1 and the remaining (1—m1)n edges of weight 2 we get mopt > m+2(1—my) =
2 — my. Consequently,

A—Mopt < (3—2M1) —2-m) <1-m+28<3+25

> If My < 3/4 then since mgp,3 > 1 — myy the smallest possible total weight that any perfect matching of H could
achieve is by taking mqn edges of weight 1, (1 —m1)n edges of weight 3, and the remaining (mi; —my)n edges of
weight 2 we get mgpe > my + 2(my2 —my) + 3(1 —myq2) =3 —mq — mq2. Consequently,

A—mMopt < (3—2M1) — B —my —mi2) (M2 —m1) +28 <G +5—) +28=3+36
Case 3: when Cases 1 and Case 2 do not apply. For this case the following inequalities hold:

Vo< <12 = 1a<my <1248, My>12=my>12+§
ﬁ”t]z >3/4 = My >3/4

For this case, we use the following lower bound for mgpt. Since mopt,3 > 1 —myy the smallest possible total weight that
any perfect matching of H could have is achieved by taking min edges of weight 1, (1 — mq2)n edges of weight 3, and
the remaining (m2 —mq)n edges of weight 2. This implies mgp > mq + 2(m12 —my) +3(1 —myz) =3 —my —my2.

Let @ = max{mq2 —2my, 0}. Suppose that M3 contains m’1 <mj edges of weight 1. Consider the following process:
we start with the edges in M, remove m} edges of weight 1 from it, add m; edges of weight 1 from M; to it
and finally remove (“knock out”) the edges of weight 2 that share an end-point with the edges of M added to our
collection. Since m; edges of weight 1 can knock out at most 2my edges of weight 2, it follows that there are at least «
“surviving” edges of weight 2 that do not share any end-point with the edges in M. We now have the following two
sub-cases.

12

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Case 3.1: i1 » < 27 + 8. Note that My <2y + & implies my > <2my + 28. Our estimate for mep; is A =3 — 2.
Note that A >3 —2m1 > mgp. For the additive error estimation, note that

A —mopt < (3 —21f11) — 3 —my —mip) <Mz —my+28 <my+48<3+58

Case 3.2: 11y » > 2111 + 8. Our estimate for mop is A =3 —Mq . Note that iy » > 2y +8 implies mq 5 > 2my +3. Thus,
for this case, ® =m3 —2mq > § > 0. Let M’ be a perfect matching of H generated by taking all the edges (of weight
1) in M, the o surviving edges of weight 2, and pairing the remaining nodes from L and R arbitrarily. Then, the
total weight m’n of the edges in M’ satisfies my +2(mi2 —2my) +3(1 — (my + (M2 —2my))) =3 —my2 = m’ = mop,
and it follows that A > 3 —my 2 > mgp. For the additive error estimation, note that

A—Mop <(3—M12)— B —mg —mp) <mg+38 < % +26
In all cases, setting § = ¢/5 provides an additive (% + 8)—appr0ximation. a

5.6. Upper bounds on number of queries for computing €¢ (e) when deg(u) # deg(v) using “localized” fine-grained reduction

Theorem 5 provides non-trivial approximation of €¢(e) when deg (u) = deg¢(v). In this section, we show that a “local-
ized” version of the fine-grained reduction used in Theorem 3 can be applied to extend these local approximation algorithms
to some cases when deg (u) and deg¢(v) are not necessarily equal. Such a localized version of the fine-grained reduction is
not allowed to construct the reduction explicitly, but instead the details of the reduction need to be revealed incrementally
to the local algorithm on a “need-to-know” basis to simulate the queries of the local algorithm on the graph constructed by
the fine-grained reduction. The overall simulation is summarized in Theorem 6.

Theorem 6 (Computing €g(e) via localized fine-grained reduction). Suppose that we have an algorithm B_ that provides an (o, €)-
estimate for € (e) when deg (u) = degg (v) using t queries g}, ..., q; when each query q; is either a weighted node-pair query, a
weighted neighbor query or a weighted selective degree query.

Then, letting § > 0 denote any constant, we can design an algorithm 5 _ for the case when deg (u) # deg (v) using B_ with the
following properties:

(a) Corresponding to each query q;, B - performs at most one weighted selective degree query and at most one additional query of
the same type as q; on Gy y.

(b) B provides an («, €)-estimate for €¢(e) if deg; (u) + 1 is an integral multiple of deg; (v) + 1.

(c) B provides an («, € + §)-estimate for €¢ (e) if either degg (u) < (8/3) x degg (v) or degg (u) > (1 — (8/3)) x degg(v).

Corollary 7.If degc(u) > (1 — (6/3)) x degg(v) for some constant § > 0 then maxy{deg¢ , 1(X)} = O(1) (respectively,
maxy{degg, , 2(X)} = 0(1)) implies maxx{degca ,L1®}=0() (respectively, maxx{degcil 2@} = '0(1)), and thus each weighted
selective degree query for the weight 1 (respectively, for the weight 2) can be trivially simulated by 0 (1) weighted neighbor queries
for the weight 1 (respectively, for the weight 2) on Gy, .. Thus, combining Theorem 6 with the approximations in Theorem 5 gives us
algorithms of the following types for the case when deg. (u) # degg(v):

(i) additive (1 + & + 8)-approximation using O (1) weighted neighbor queries’ if maxy{degy 1 (x)} = 0(1) and deg; (u) > (1 —
(3/3)) x degg (v),

(ii) additive (% +e+ 8)—approximation using O (1) weighted neighbor queries” if maxy{degy ()} = O (1), maxy{degy ,(X)} =
0(1), and degg(u) = (1 — (8/3)) x degg (V).

Proof. We will reuse the notations and the reduction used in the proof of Theorem 3; in particular in those notations the
graph H is also the graph G, . Our algorithm B has a list of nodes in the graph G} , and also the numbers a and b. We
show next how the value of a query g; on G , can be obtained from the values of a collection Q; of (at most two) queries
on Gy, by B_.

> Case 1:q§ is a weighted node-pair query. If g} is of the form (x{ ,ye) then Q; ={(x;, y¢)} and B_ returns the value of the

query (x;, y¢) on Gy y as the value of qg. If q§ is of the form (rj, y¢) then Q; =@ and B returns 3 as the value of q;.
> Case 2: qg is a weighted selective degree query. Let s be a number from the set {1, 2, 3}.

e If g} is of the form (x{ ,s) then Q; = {(x;,s)} and B_ returns the value of the weighted selective degree query (x;, s)
on Gy as the value of g;.

7 The constant in O(1) depends on the value of ﬁm)

13

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

o If g; is of the form (r,s) then Q; = and B_ returns 3degg(v) + 3 if s =3 and 0 otherwise as the value of g;.
o If g is of the form (y.,s) then Q; ={(ye,s)}, and B returns the following as the value of g;:

- the value of the weighted selective degree query (y,, s) on G,y times a if s € {1, 2}, and
- the value of the weighted selective degree query (y¢,s) on Gy , times a plus b otherwise.

> Case 3: qg is a weighted neighbor query. Let s be a number from the set {1, 2, 3}.

> Case 3.1: qg is of the form (x,j ,S). The following example illustrates the subtlety of this case. Suppose that x; is con-
nected to four nodes y1, y2, y3, ¥4 via edges of weight s in G, . Then each of the nodes x}, ..., x{ is connected to
¥1.¥2, Y3, ¥4 via edges of weight s in G|, .

e As a first attempt, one may simulate the answer to the query (x{,s) by performing a query (x1,s) on Gy, y.
However, this will not provide new nodes with the correct probabilities required for random uniform selection
among not-yet-explored nodes. For example, suppose that 8. already made the query (x},s) giving the node
y1. If now B_ makes another query (x%, s) then such a simulation will return a node uniformly randomly from
the set of nodes {y», ¥3, y4} but the correct simulation would have been to select a node uniformly randomly
from the set of nodes {y1, ¥2, y3, ¥4}. Moreover, if B_ has already made the queries (x},s), (x%, s), (x?, s), (x‘ll, s)
using such a simulation then this simulation of a new query (x?, s) will simply return the special symbol.

e As a second attempt, to simulate the answer to a query (x{,s) one may first check if the answer to a query
(x{’, s) for some j' # j is already available, and if so simply return that answer. But, in this case, the answers to

the queries (X{, s) and (x{", s) will not be statistically independent.

To address these and other subtleties we design Algorithm 25 _ to handle all queries of the form (x{ ,s) for each specific
i and s in the following manner. Let Sy, s be the set of (not initially known to B.) o; s = |Sy,; s| nodes connected to x;
in Gy, via edges of weight s.

(i) If not already done before, we make one new weighted selective degree query (x;,s) on G,y giving us the value of
o; s (if the value of o is already available we simply use it without making a query).

(ii) For each xi] , we keep a count Ky of how many times the query (xi],s) has been asked involving the node x{
!
before the current query and store the answers to these queries in a set 7;; 5 We also maintain 7; s = U{}=]7;j s
i i
and «; s = |7 s|. Note the following:

o If Ko <O0igs then performing a new weighted neighbor query (x{,s) on G;“, must return a node uni-
!
formly at random from the set of nodes A= Sxis \ 7;1- s with probability 1/AXJ- . where hig=IA =
i i i v i i
Ojs — Kxj s
-

o If ;s < 0; s then performing a new weighted neighbor query (x;,s) on Gy,y returns a node uniformly at
random from the set of nodes A;s = Sy, s \ Ti,s with probability 1/x;; where A s = |Aj 5| = 0i s — Ki .

e Note that we know all the elements of 7;; in particular, this means that we can sample a node from a
subset of 7; s uniformly at random.

(iii) For a query (xij ,S), we have the following cases.
» Casel:kjs=o0ijs. In this case T;; = Sy, 5.

» Casel-a: chi,-’s < ki s. We select a node uniformly at random from the set 7; \7;14-’5 =Sx.s \7;{.3 and return

it as the answer to the query.
» Casel-b:k o ¢ = Kis- We return an invalid entry as the answer to the query.
5

» Case II: ki s < 0js. We make a new query (x;,s) on Gy, giving us a node y, € Ajs = Sx; s \ Ti,s with the

property that Pr[y, € A;; is returned | = ﬁ

» Case II-a: K =Kis. For this case, 7; s = 7;1- s and A5 = Ay We return the node y, as the answer to
i o i i
the query and update all relevant sets and counters appropriately.

14

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

» Case II-b: K,i ¢ <Ki,s. For this case 7;4- Ne Tis CSxis0 Miys = |Sx,s \ Tiosl > 0, and A o= [Sxis \ 7;; o> Ais.
i? i’ i’ i’
We sample the nodes in {y,}J (77,5 \ 7;; s) based on the following probability distribution and update all
relevant sets and counters appropriately:l

Pr[y, is selected] = %
Xi .S

VyeeTis\ T, : Priye is selected] = —

X; .S

=~

Thus, the answer to the query (x{, s) is selected uniformly at random from the set ij = Sxis \ ’7;,' s since
i i

. Ai
Yyr€Sys\Tis: Prlygisselected] = /\3_5 X i ,\]j

X35 X; .S

1

VyeeTis\ 7;1’5 : Prlygisselected] = 5

X

L

s

> Case 3.2: q§ is of the form (rj, s). We keep a count v(r;) of how many times the query (r;, 3) has been asked involving
the node r; before the current query, and store the answers to these queries in the set Sy,. If s % 3 or v(r;) = degg (v) +
1 we return the special symbol. Otherwise, we return a node selected uniformly at random from the set of nodes
{¥1,-.., Ydegc(v)+1} \ Sr; as the answer and update all relevant sets and counters appropriately.

> Case 3.3: q§ is of the form (y,, s). This case is similar in spirit to Case 3.1. We show how to handle all queries of the
form (y,, s) for each specific ¢ and s.

(i) Assume without loss of generality that y, is connected, via edges of weight s, to (not initially known to 6_) a
set Sy, = {x1,..., %} S {X1,..., Xdeg .)+1} Of V1 = |8y, | nodes. If not already done before, we make one new
weighted selective degree query (y,,s) on Gy, giving us the value of vy (if vy is already known we simply use
it without making a query).

(ii) Define the set S,, of v, =1S,,| € {0,b} nodes as S,, ={r1,..., 1} if s=3 and S,, = otherwise. Note that we
know the value of v, since we know the value of s.

(iii) We keep a count ¥ of how many times the query (y, s) has been asked involving the node y, before the current
query, and let 7, be the set of those k = |7, | nodes of G, , that have been returned because of these prior
queries. Note that if ¥ <avq + v then performing a new weighted neighbor query (y,s) on G, , must return

a node uniformly at random from the set of nodes A, = (U;’;l U‘}:]{x{} u sz) \ T, with probability 1/x, where
A = |Ael = (av1 +v2) — k.

(iv) Assume without loss of generality that S;l = {x1, X2, .. "XVi} C Sy, be the set of v] = |S,’)1| < min{k, v1}} nodes
in G,y that have been returned as a result of the queries on G, , due to the simulation of prior ¥ queries on
Gy~ Note that if v; < vq then performing a new weighted neighbor query (y¢,s) on Gy,y returns a new node
uniformly at random from the set of nodes ® =S, \S,’)1 with probability 1/p where ¢ = |®|=v; —].

(v) Define the subset Aj C A, of nodes of G, as A} = (U U‘}:1{xf} Usz) \ 7T¢. Note that we know all the

elements of Aj and A =|A | = (av] + v2) — k. In particular, this means that we can sample a node from A}
uniformly at random.
(vi) For a new query (y,,s), we have the following cases.

/
Y1

i=

» Case I: k > vy. In this case, V| =i, A} = A, and A = A,. We select as our answer to the query a node
uniformly at random from A, and update all relevant sets and counters appropriately.
» Casell: k < vq. In this case, v} < vy, and ¢ > 0. We simulate the query as follows.

e We make a new query (y¢,s) on Gy, giving us a node x, € ® for p € {v; +1,..., v} with probability 1/e.
We select j € {1,...,a} uniformly at random giving us a node x{,.

o We sample a node from {x{,} U A}, based on the following probability distribution and update all relevant
sets and counters appropriately:

js __agp
Pr[x, is selected | = e

J r. s _ 1
VX; € Al - Prx; is selected | = 5

Note that Pr[xij € A \ A), is selected]= é X % = % as desired. To verify that all the probabilities add up
to 1, note that Pr{xj, is selected]+ ZX{EM(Pr[x] € Al is selected]= % +(av + vy — k) x m =

1. O

15

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

6. Computing € (v) and €,y (G) using “black box” additive approximation algorithms for €¢ (e)

In this section we provide efficient local algorithms to compute €g(v) and €,yg(G). The following assumptions are used
by our algorithms:

> For a fixed t, we have an efficient local algorithm B for an additive v-approximation, say €:(e), of €¢(e) for an edge e.
> We have access to the neighbor query model mentioned in Section 5.2.

Lemma 8. With probability at least 2/3 the following two claims hold.

(a) We can compute an additive 2t-approximation of € (v) using 0 (1/v%) neighbor queries and O (1/t?) invocations of algorithm
B on the edges incident on v, and

(b) If the degrees of all the nodes of G are known then we can compute an additive 2t-approximation of €;¢(G) using 0(1/t%)
neighbor queries and 0 (1/¢2) invocations of algorithm B over all edges in G.

Proof. (a) Let k be a parameter to be specified later. We use k' = min{k, deg. (v)} neighbor queries to get k' nodes adjacent
to v, say ui,..., Uy, compute (v, uy),...,EC5(v, up) using algorithm 9B, and return @E;(v) =% ’J‘/:] Ci(v,uj) as our
answer.

If k > deg;(v) then €g(v) = % ’;/:1 Cg(v,uj) and thus @E;(v) is in fact an additive t-approximation of €¢(v). Other-
wise, assume that k < deg;(v) and therefore k' = k. For any number x, we use the notation x H p to indicate a number y
that satisfies x < y <x+ p. Observe that

k

k
_ 1 . 1 L
E[Cc(v)]= X ZE [Cev.up]= k Z Z (€6 (W, v)) Hr) x degq (v)

j=1 j=1ueNbrg (u)
1 k
=— Cc(v)Hv)=Cc(v)Hr
. Z(c(v)) =6(v)
j=1
Since the %Qﬁé(v, u;)’s are mutually independent for j=1,...,k, and each %Qﬁé(v, u;) lies in the interval [—2/k, 1/k] (cf.

see Section 2.3), applying Hoeffding’s inequality [43, Theorem 2] we get

Pr{Cc (v) > €6(v) + 2t] < Pr[Cc(v) > E[CG (V)] + 1]

) S R 252 2)
= exD(Zi-;l(z/k—(—l/k»Z) - eXp(ok’

Setting k = ®(t~2) we get Pr[é‘:&(v) > Co(v) +2t] < 1/3.

(b) The algorithm and its proof is very similar to those in (a). For this case, we need to randomly sample k' =
min{0(1/t?), |[E|} edges eq, ..., ey from E, compute &i(er), ..., €f(ey) using algorithm 9B, and return %Z’]‘-lﬁ Ci(ej) as
our answer. The only remaining part of the proof is to show how to sample an edge uniformly at random from the set of
edges E of G. Since the degrees of all nodes are known, the following procedure can be used. We first select a node x € V
with probability %, then we select a random neighbor of x, say y, using one neighbor query, and finally we select
the edge {x, y}. Thegproof is completed by observing that

Pr[{u, v} € E is selected] = Pr[x € V is selected] x Pr[y € Nbrg(x) is selected]

+ Pr[y € V is selected] x Pr[x € Nbrg(y) is selected]
degg (x) 1 degg (¥) 1 1

= Y dege@ X Tege® T Y., dege@ X degc(y) I

O

7. Concluding remarks

We hope that this paper will stimulate further attention from computer scientists concerning the exciting interplay
between notions of curvatures from network and non-network domains. An obvious candidate for future research is im-
provement of the query complexities for local algorithms for computing the Ollivier-Ricci curvature for networks. Another
possible future research direction is to investigate computational complexity issues of other discretizations of Ricci curva-
tures. For example, another discretization of Ricci curvature for networks proposed by Ollivier and Villani [44] is guided
by the observation that the infinite-dimensional version of the well-known Brunn-Minkowski inequality over R" [45] can
be tightened in the presence of a positive curvature for a smooth Riemannian manifold [46,47]. To our knowledge, these
discretizations have largely escaped computational complexity considerations.

16

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Appendix A. A self-contained proof of Fact 1

Let degg (u) = deg;(v) = . Build a directed single-source single-sink flow network [48] Gﬁqv from Gy in the following

manner: add a new source node s and a new sink node t, add an arc (directed edge) from s to every node of L,fyv of

weight zero and capacity 1, add an arc from every node of RLG,’V to t of weight zero and capacity 1, orient every edge

{u’,v'} of Gy from u’ to v’ and set its capacity to 1. Since |L{ ,| =[RS | =o + 1, we have P (') =P (v) = 011? for all
u’ € Nbr® (u) U {u} and v/ € Nbr¢(v) U {v}. Thus, since G, is a complete bipartite graph, by a simple scaling it follows that
EMDg, , (B¢, PS) = 2 where M is the total weight of a minimum-weight maximum s-t flow on G/ . since the node-
arc incidence matrix of a directed graph is totally unimodular, the flow value of every arc of any extreme-point optimal

solution of the minimum-weight maximum s-t flow on Gﬂ’v is integral and therefore O or 1 (see Theorem 13.3 and its
corollary in [48]). This integrality of flow values and the fact that G, v is a complete bipartite graph imply M is also the
total weight of a minimum-weight perfect matching of Gy y.

We now show that there is such a minimum-weight perfect matching that uses all the zero-weight edges {u’,u’} for

all u" e {u,vju (Nbrc wn Ner(V)). For a contradiction, suppose that the edge {u’, u’} is not used for some u’ € {u, v} U

(Nbrg (1) N Nbrg(v))}. Since our solution is a perfect matching, the nodes u’ € LS,V and u’ € RE,‘, must be matched to some

other nodes, say to nodes v” € RLG“, and u” € LLG,YV, respectively. Then, if we instead use the edges {u’,u’} and {u”, v"} then

using the triangle inequality it follows that the total weight of this modified perfect matching is no more than that of the
original perfect matching since:

G G G G G G
Wu,v(u/’ u/) + Wu,v(u”’ VN) — Wu,v(u”’ VN) < Wu,v(u”’ u/) + Wu,v(ul’ Ll/) + Wu,v(u/v V”)

=wy, @' u)+wg, @, V")
References

[1] M.R. Bridson, A. Hafliger, Metric Spaces of Non-Positive Curvature, 1st edition, Springer-Verlag, Berlin Heidelberg, 1999.

[2] M. Berger, A Panoramic View of Riemannian Geometry, 1st edition, Springer-Verlag, Berlin Heidelberg, 2003.

[3] R. Albert, B. DasGupta, N. Mobasheri, Topological implications of negative curvature for biological and social networks, Phys. Rev. E 89 (2014) 032811,
https://doi.org/10.1103/PhysRevE.89.032811, https://link.aps.org/doi/10.1103/PhysRevE.89.032811.

[4] T. Chatterjee, R. Albert, S. Thapliyal, N. Azarhooshang, B. DasGupta, Detecting network anomalies using Forman-Ricci curvature and a case study for
human brain networks, Sci. Rep. 11 (2021), https://doi.org/10.1038/s41598-021-87587-z.

[5] E. Jonckheere, M. Lou, F. Bonahon, Y. Baryshnikov, Euclidean versus hyperbolic congestion in idealized versus experimental networks, Internet Math.
71 (2011) 1-27, https://doi.org/10.1080/15427951.2010.554320.

[6] J. Sia, E. Jonckheere, P. Bogdan, Ollivier-Ricci curvature-based method to community detection in complex networks, Sci. Rep. 9 (2019) 9800, https://
doi.org/10.1038/s41598-019-46079-x.

[7] AK. Simhal, K.L.H. Carpenter, S. Nadeem, J. Kurtzberg, A. Song, A. Tannenbaum, G. Sapiro, G. Dawson, Measuring robustness of brain networks in autism
spectrum disorder with Ricci curvature, Sci. Rep. 10 (2020) 10819, https://doi.org/10.1038/s41598-020-67474-9.

[8] P. Elumalai, Y. Yadav, N. Williams, E. Saucan,]. Jost, A. Samal, Graph Ricci curvatures reveal atypical functional connectivity in autism spectrum disorder,
bioRxiv, https://doi.org/10.1101/2021.11.28.470231, 2021, URL https://www.biorxiv.org/content/early/2021/12/21/2021.11.28.470231.

[9] B. Chow, F. Luo, Combinatorial Ricci flows on surfaces, J. Differ. Geom. 63 (1) (2003) 97-129, https://doi.org/10.4310/jdg/1080835659.

[10] Y. Ollivier, A visual introduction to Riemannian curvatures and some discrete generalizations, in: G. Dafni, R]. McCann, A. Stancu (Eds.), Analysis and
Geometry of Metric Measure Spaces, Montréal, 2011, in: Lecture Notes of the 50th Séminaire de Mathématiques Supérieures (SMS), vol. 56, American
Mathematical Society, Providence, RI, USA, 2013, pp. 197-219, https://hal.archives-ouvertes.fr/hal-00858008, 2013.

[11] Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal. 256 (2009) 810-864, https://doi.org/10.1016/j.jfa.2008.11.001.

[12] Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, in: M. Kotani, M. Hino, T. Kumagai (Eds.), Advanced Studies in Pure
Mathematics, vol. 57, Mathematical Society of Japan, 2010, pp. 343-381.

[13] Y. Ollivier, Ricci curvature of metric spaces, C. R. Math. 345 (11) (2007) 643-646, https://doi.org/10.1016/j.crma.2007.10.041, https://www.sciencedirect.
com/science/article/pii/S1631073X07004414.

[14] B. DasGupta, M.V. Janardhanan, F. Yahyanejad, Why did the shape of your network change? (on detecting network anomalies via non-local curvatures),
Algorithmica 82 (7) (2020) 1741-1783, https://doi.org/10.1007/s00453-019-00665-7.

[15] B. DasGupta, M. Karpinski, N. Mobasheri, F. Yahyanejad, Effect of Gromov-hyperbolicity parameter on cuts and expansions in graphs and some algo-
rithmic implications, Algorithmica 80 (2) (2018) 772-800, https://doi.org/10.1007/s00453-017-0291-7.

[16] 1. Benjamini, Expanders are not hyperbolic, Isr. J. Math. 108 (1998) 33-36, https://doi.org/10.1007/BF02783040.

[17]]. Chalopin, V. Chepoi, EF. Dragan, G. Ducoffe, A. Mohammed, Y. Vaxeés, Fast approximation and exact computation of negative curvature parameters of
graphs, Discrete Comput. Geom. 65 (2021) 856-892, https://doi.org/10.1007/s00454-019-00107-9.

[18] H. Fournier, A. Ismail, A. Vigneron, Computing the Gromov hyperbolicity of a discrete metric space, Inf. Process. Lett. 115 (6) (2015) 576-579, https://
doi.org/10.1016/j.ipl.2015.02.002.

17

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

[19] R. Forman, Bochner’s method for cell complexes and combinatorial Ricci curvature, Discrete Comput. Geom. 29 (3) (2003) 323-374, https://doi.org/10.
1007/s00454-002-0743-x.

[20] R.P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, A. Samal, Forman curvature for complex networks, J. Stat. Mech. Theory Exp. 2016 (6) (2016) 063206,
https://doi.org/10.1088/1742-5468/2016/06/063206.

[21] R.P. Sreejith, J. Jost, E. Saucan, A. Samal, Systematic evaluation of a new combinatorial curvature for complex networks, Chaos Solitons Fractals 101
(2017) 50-67, https://doi.org/10.1016/j.chaos.2017.05.021, https://www.sciencedirect.com/science/article/pii/S0960077917302102.

[22] M. Weber, E. Saucan, J. Jost, Characterizing complex networks with Forman-Ricci curvature and associated geometric flows, J. Complex Netw. 5 (4)
(2017) 527-550, https://doi.org/10.1093/comnet/cnw030.

[23] A. Samal, R.P. Sreejith, J. Gu, S. Liu, E. Saucan,]. Jost, Comparative analysis of two discretizations of Ricci curvature for complex networks, Sci. Rep. 8
(2018) 8650, https://doi.org/10.1038/s41598-018-27001-3.

[24] M. Gromov, Hyperbolic groups, in: S.M. Gersten (Ed.), Essays in Group Theory, vol. 8, Springer, New York, NY, 1987, pp. 75-263.

[25] V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxés, Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs, in:
Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, SCG '08, Association for Computing Machinery, New York, NY, USA,
2008, pp. 59-68.

[26] F. Papadopoulos, D. Krioukov, M. Boguna, A. Vahdat, Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces, in:
2010 Proceedings IEEE INFOCOM, 2010, pp. 1-9.

[27] Y. Yoshida, M. Yamamoto, H. Ito, Improved constant-time approximation algorithms for maximum matchings and other optimization problems, SIAM
J. Comput. 41 (4) (2012) 1074-1093, https://doi.org/10.1137/110828691.

[28] Y.T. Lee, A. Sidford, Efficient inverse maintenance and faster algorithms for linear programming, in: 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, 2015, pp. 230-249.

[29] K. Quanrud, Approximating optimal transport with linear programs, in:]J.T. Fineman, M. Mitzenmacher (Eds.), 2nd Symposium on Simplicity in Al-
gorithms (SOSA 2019), in: OpenAccess Series in Informatics (OASIcs), vol. 69, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2018, 6, http://drops.dagstuhl.de/opus/volltexte/2018/10032.

[30] P. Dvurechensky, A. Gasnikov, A. Kroshnin, Computational optimal transport: complexity by accelerated gradient descent is better than by Sinkhorn’s
algorithm, in: J. Dy, A. Kraus (Eds.), Proceedings of the 35th International Conference on Machine Learning, in: Proceedings of Machine Learning
Research, vol. 80, PMLR, 2018, pp. 1367-1376, https://proceedings.mlr.press/v80/dvurechensky18a.html.

[31] N. Azarhooshang, P. Sengupta, B. DasGupta, A review of and some results for Ollivier-Ricci network curvature, Mathematics 8 (1416) (2020), https://
doi.org/10.3390/math8091416.

[32] G. Peyré, M. Cuturi, Computational optimal transport: with applications to data science, Found. Trends Mach. Learn. 11 (5-6) (2019) 355-607, https://
doi.org/10.1561/2200000073.

[33] A.L. Gibbs, EE. Su, On choosing and bounding probability metrics, Int. Stat. Rev. (Revue Internationale de Statistique) 70 (3) (2002) 419-435, https://
doi.org/10.2307/1403865, http://www.jstor.org/stable/1403865.

[34] V.V. Williams, On some fine-grained questions in algorithms and complexity, in: Proceedings of the International Congress of Mathematicians (ICM
2018), 2019, pp. 3447-3487.

[35] A. Abboud, F. Grandoni, V.V. Williams, Subcubic equivalences between graph centrality problems, APSP and diameter, in: Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 15, Society for Industrial and Applied Mathematics, USA, 2015, pp. 1681-1697.

[36] M. Patrascu, Towards polynomial lower bounds for dynamic problems, in: Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC '10, Association for Computing Machinery, New York, NY, USA, 2010, pp. 603-610.

[37] L. Lee, Fast context-free grammar parsing requires fast Boolean matrix multiplication, J. ACM 49 (1) (2002) 1-15, https://doi.org/10.1145/505241.
505242.

[38] M. Parnas, D. Ron, Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms, Theor. Comput. Sci. 381 (1)
(2007) 183-196, https://doi.org/10.1016/j.tcs.2007.04.040, https://www.sciencedirect.com/science/article/pii/S0304397507003696.

[39] K. Onak, D. Ron, M. Rosen, R. Rubinfeld, A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size, in: Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2012, pp. 1123-1131.

[40] K.D. Ba, H.L. Nguyen, H.N. Nguyen, R. Rubinfeld, Sublinear time algorithms for Earth Mover’s distance, Theory Comput. Syst. 48 (2) (2011) 428-442,
https://doi.org/10.1007/s00224-010-9265-8.

[41] A. McGregor, D. Stubbs, Sketching Earth-Mover distance on graph metrics, in: P. Raghavendra, S. Raskhodnikova, K. Jansen,].D.P. Rolim (Eds.), Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, in: Lecture Notes in Computer Science, vol. 8096, Springer, Berlin,
Heidelberg, 2013, pp. 274-286.

[42] A.C.-C. Yao, Probabilistic computations: toward a unified measure of complexity, in: 18th Annual Symposium on Foundations of Computer Science,
1977, pp. 222-227.

[43] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58 (301) (1963) 13-30, http://www.jstor.org/stable/
2282952.

[44] Y. Ollivier, C. Villani, A curved Brunn-Minkowski inequality on the discrete hypercube, or: what is the Ricci curvature of the discrete hypercube?, SIAM
J. Discrete Math. 26 (3) (2012) 983-996, https://doi.org/10.1137/11085966X.

[45] RJ. Gardner, The Brunn-Minkowski inequality, Bull. Am. Math. Soc. 39 (3) (2002) 355-405, https://doi.org/10.1090/S0273-0979-02-00941-2.

[46] D. Cordero-Erausquin, RJ. McCann, M. Schmuckenschldger, A Riemannian interpolation inequality a la Borell, Brascamp and Lieb, Invent. Math. 146
(2001) 219-257, https://doi.org/10.1007/s002220100160.

[47] D. Cordero-Erausquin, R.J. McCann, M. Schmuckenschldger, Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal
transport, Ann. Fac. Sci. Toulouse Math. Ser. 6 15 (4) (2006) 613-635, https://doi.org/10.5802/afst.1132, https://afst.centre-mersenne.org/articles/10.
5802/afst.1132/.

[48] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Inc., NJ, USA, 1982.

18

	On computing discretized Ricci curvatures of graphs: Local algorithms and (localized) fine-grained reductions
	1 Introduction
	1.1 Motivations behind studying shapes of networks
	1.2 Brief history of existing notions of shapes for networks
	1.3 Basic definitions and notations

	2 Ollivier-Ricci curvatures: intuition, definitions and simple bounds
	2.1 Intuition behind the discretization resulting in definition of CG(e)
	2.2 Equivalent reformulation of linear program (LP-CG) when degG(u)=degG(v)
	2.3 Some simple bounds for EmdGu,v(Pu,Pv) and CG(e)

	3 Synopsis of our results
	4 Fine-grained reduction: relating minimum weight perfect matching on complete bipartite graphs to computing CG(e)
	5 Computing CG(e) in the framework of local algorithms
	5.1 Prior related works
	5.2 Query models for edge-weighted complete bipartite graphs
	5.3 Summary of our query bounds on computing CG(e)
	5.4 Lower bounds on number of queries for computing CG(e)
	5.5 Upper bounds on number of queries for computing CG(e) when deg(u)=deg(v)
	5.6 Upper bounds on number of queries for computing CG(e) when deg(u)∕=deg(v) using ‘‘localized’’ fine-grained reduction

	6 Computing CG(v) and Cavg(G) using ‘‘black box’’ additive approximation algorithms for CG(e)
	7 Concluding remarks
	Declaration of competing interest
	Data availability
	Appendix A A self-contained proof of Fact 1
	References

