
Theoretical Computer Science 975 (2023) 114127

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On computing discretized Ricci curvatures of graphs: Local

algorithms and (localized) fine-grained reductions✩

Bhaskar DasGupta a,∗,1, Elena Grigorescu b,2, Tamalika Mukherjee b,2

a Department of Computer Science, University of Illinois Chicago, Chicago, 60607, IL, USA
b Department of Computer Science, Purdue University, West Lafayette, 47907, IN, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 September 2022
Accepted 9 August 2023
Available online 18 August 2023
Communicated by P. Lu

Keywords:

Network shape
Discrete Ricci curvature
Query-based local algorithms

Characterizing shapes of high-dimensional objects via Ricci curvatures plays a critical

role in many research areas in mathematics and physics. However, even though several

discretizations of Ricci curvatures for discrete combinatorial objects such as networks have

been proposed and studied by mathematicians, the computational complexity aspects of

these discretizations have escaped the attention of theoretical computer scientists to a large

extent. In this paper, we study one such discretization, namely the Ollivier-Ricci curvature,

from the perspective of efficient computation by fine-grained reductions and local query-

based algorithms. Our main contributions are the following.

� We relate our curvature computation problem to minimum weight perfect matching

problem on complete bipartite graphs via fine-grained reduction.

� We formalize the computational aspects of the curvature computation problems in

suitable frameworks so that they can be studied by researchers in local algorithms.

� We provide the first known lower and upper bounds on queries for query-based

algorithms for the curvature computation problems in our local algorithms framework.

En route, we also illustrate a localized version of our fine-grained reduction.

We believe that our results bring forth an intriguing set of research questions, motivated

both in theory and practice, regarding designing efficient algorithms for curvatures of

geometrical objects.

 2023 Elsevier B.V. All rights reserved.

1. Introduction

A suitable notion of “shape” plays a critical role in investigating objects in mathematics, mathematical physics and other

research areas. Various kinds of curvatures are very natural measures of shapes of higher dimensional objects in mainstream

physics and mathematics [1,2]. To quantify the shape of a higher-dimensional geometric object, one often fixes shapes of

objects with specific properties as the “baseline shape” and then quantifies the shape of a given object with respect to these

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.
E-mail addresses: bdasgup@uic.edu (B. DasGupta), elena-g@purdue.edu (E. Grigorescu), tmukherj@purdue.edu (T. Mukherjee).

1 Supported by NSF grant IIS-1814931.
2 Supported in part by NSF grants CCF-1910659 and CCF-1910411.

https://doi.org/10.1016/j.tcs.2023.114127

0304-3975/ 2023 Elsevier B.V. All rights reserved.

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

baseline shapes. For example, consider the case of the two-dimensional metric space. For this space, a baseline could be

selected as the standard Euclidean plane in which the three angles of a triangle sum up to exactly 180◦ , and then one can

quantify the shape of the given two-dimensional space by the deviations of the sum of the three angles of triangles in

this space from the baseline of 180◦ . An alternative approach is to avoid selecting baseline shapes explicitly and instead

directly quantify the shape of a given geometric object. Quantification of shape is often referred to as the curvature of the

corresponding object. Quantification of shapes can be either local or global. A local shape of the object is usually computed

for a specific local neighborhood of the object (e.g., the Ricci curvature). In contrast, a global shape of the object is usually

computed over the entire object (e.g., the Gromov-hyperbolicity measure). Any attempt to extend notions of curvature

measures from non-network domains to networks3 (and other discrete combinatorial structures) need to overcome at least

three key challenges, namely that (a) networks are discrete (non-continuous) combinatorial objects, (b) networks may not

necessarily have an associated natural geometric embedding, and (c) the extension need to be useful and non-trivial, i.e.,

a network curvature measure should saliently encode non-trivial higher-order correlations among nodes and edges that

cannot be obtained by other popular network measures.

1.1. Motivations behind studying shapes of networks

Although studying measures of shapes of networks (and hypergraphs) is mathematically intriguing, it is natural to ask

if there are other valid reasons for such studies. Network shape measures can encode non-trivial topological properties

that are not expressed by more established network-theoretic measures such as degree distributions, clustering coefficients

or betweenness centralities (e.g., see [3,4]). Moreover, these shape measures can explain many phenomena one frequently

encounters in real network-theoretic applications, such as (i) paths mediating up- or down-regulation of a target node

starting from the same regulator node in biological regulatory networks often have many small crosstalk paths [3] and (ii)

existence of congestions in a node that is not a hub in traffic networks [3,5], that are not easily explained by other non-

shape measures. Recently, shape measures have also found applications in traditional social networks applications such as

community finding [6], and in neuroscience applications such as comparing brain networks to study slowly progressing

brain diseases such as attention deficit hyperactivity disorder [4] and autism spectrum disorder [7,8].

1.2. Brief history of existing notions of shapes for networks

There are several ways previous researchers have attempted to formulate notions of shapes of networks. Below we

discuss three major directions in this regard. For further details and other approaches, the reader is referred to papers and

books such as [9,1,10–16,3,17–23,4].

One notion of network shapes, first suggested by Gromov in a non-network group theoretic context [24], is via the

Gromov-hyperbolicity of networks. First defined for infinite continuous metric space [1], the measure was later adopted

for finite graphs. Usually this measure is defined via properties of geodesic triangles or equivalently via 4-node conditions,

though Gromov originally defined the measure using Gromov-product nodes in [24]. Informally, any infinite metric space has

a finite Gromov-hyperbolicity measure if it behaves metrically in the large scale as a negatively curved Riemannian manifold,

and thus the value of this measure can be correlated to the standard scalar curvature of a hyperbolic manifold. For a finite

network the measure is related to the properties of the set of exact and approximate geodesics of the network. There is a

large body of research works dealing with theoretical and empirical aspects of this measure, e.g., see [14,15,17,16,18,25] for

theoretical aspects, and see [3,5,26] for applications to real-world networks (such as traffic congestions in a road network).

Gromov-hyperbolicity is a global measure in the sense that it assigns one scalar value to the entire network.

A second notion of shape of a network can be obtained by extending Forman’s discretization of Ricci curvature for

(polyhedral or CW) complexes (the “Forman-Ricci curvature”) [19] to networks. Informally, the Forman-Ricci curvature is

applied to networks by topologically associating components (sub-networks) of a given network with higher-dimensional

objects. The topological association itself can be carried out several ways. Although formulated relatively recently, there are

already a number of papers investigating properties of these measures [20–22,14,23,4].

In contrast to both of the above approaches, the network curvature considered in this paper is obtained via a discretiza-

tion of curvatures from Riemannian manifolds to the network domain to capture metric properties of the manifold that are

different from those captured by the Forman-Ricci curvature. More concretely, the network curvature studied in this paper

is Ollivier’s earth-mover’s distances based discretization of Ricci curvature (the “Ollivier-Ricci curvature”) [10–13]. For some

theoretical comparison between Ollivier-Ricci curvature and Forman-Ricci curvature over graphs, see [4].

1.3. Basic definitions and notations

Let G = (V , E) be a given undirected unweighted graph. The following notations related to a graph G will be used

subsequently:

3 In this paper, we will use the two terms “graph” and “network” interchangeably.

2

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

� NbrG(x) = { y | {x, y} ∈ E} and degG(x) = | NbrG(x) | are the set of neighbors and the degree, respectively, of a node x.

� distG(x, y) is the distance (i.e., number of edges in a shortest path) between the nodes x and y in G .

The following standard notations and terminologies from the field of approximation algorithms are used to facilitate further

discussions:

� OPT is the value of the objective of an optimal solution of the problem under discussion.

� A (α, ε)-estimate for a minimization problem under discussion is a polynomial-time algorithm that produces a solution

whose objective value β satisfies OPT ≤ β ≤ α OPT + ε. A (1, ε)-estimate is also called an additive ε-approximation.

2. Ollivier-Ricci curvatures: intuition, definitions and simple bounds

To define the Ollivier-Ricci curvatures for the components of a graph, we first need to use the following standard defini-

tion of the earth mover’s distance (also called the L1 Wasserstein distance) in the specific context of a edge-weighted complete

bipartite graph.

Definition 1 (Earth mover’s distance (Emd) over a edge-weighted complete bipartite graph). Let H = (V L, V R , w) be an edge-

weighted complete bipartite graph with w : V L × V R �→ R+ ∪ {0} being the edge-weight function, and let PL : V L �→ R+

and PR : V R �→ R+ be two arbitrary distributions over the nodes in V L and V R , respectively. The earth mover’s distance

corresponding to the distributions PL and PR , denoted by EmdH (PL, PR) (or simply Emd), is the value of the objective

function of an optimal solution of the following linear program that has a variable zx,y for every pair of nodes x ∈ V L and

y ∈ V R :

minimize
∑

x∈V L

∑

y∈V R

w(x, y) zx,y

subject to
∑

y∈V R

zx,y = PL(x), for all x ∈ V L

∑

x∈V L

zx,y = PR(y), for all y ∈ V R

zx,y ≥ 0, for all x ∈ V L and y ∈ V R

(1)

Let G = (V , E) be an undirected unweighted graph. Consider an edge e = {u, v} ∈ E . Define the edge-weighted complete

bipartite graph Gu,v = (LGu,v , R
G
u,v , w

G
u,v) as follows:

� LGu,v = {u} ∪ NbrG(u),

� RG
u,v = {v} ∪ NbrG(v), and

� the edge-weight function wG
u,v is given by wG

u,v(u
′, v ′) = distG(u′, v ′) for all u′ ∈ LGu,v , v

′ ∈ RG
u,v .

Let P G
u and P G

v denote the two uniform distributions over the nodes in LGu,v and RG
u,v , respectively, i.e.,

∀ x ∈ LGu,v : P
G
u (x) =

1

1+ degG(u)

∀ x ∈ RG
u,v : P

G
v (x) =

1

1+ degG(v)

We can now state the precise definitions of the curvatures used in this paper.

� The Ollivier-Ricci curvature of the edge e = {u, v}e = {u, v}e = {u, v} of G is defined as [10]4

CG(e)
def
= CG(u, v) = 1− EmdGu,v (P

G
u ,P

G
v) (2)

� The Ollivier-Ricci curvature of a node vvv is calculated by taking the average of the Ollivier-Ricci curvatures of all the

edges incident on v , i.e.,

4 For this paper, it is crucial to note that the computation of CG (e) requires only the value of EmdGu,v (P
G
u , P G

v) and does not require an explicit enu-
meration of the solution (variable values) of the linear program (1). This distinction is important in the context of designing efficient local algorithms. For
example, given a graph G with n nodes in which the maximum degree of any node is O (1) and a constant ε > 0, one can compute a number that is an
additive εn-approximation of the size of maximum matching of G in O (1) time in expectation [27], but of course if we were required to output an actual
maximum matching we would take at least �(n) time.

3

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

CG(v) =
1

degG(v)

∑

e={u,v}∈E

CG(e) (3)

� Finally, the average Ollivier-Ricci curvature of a graph GGG is calculated by taking the average of the Ollivier-Ricci curva-

tures of all the edges in G , i.e.,

Cavg(G) =
1

|E|

∑

e∈E

CG(e) (4)

For easy quick reference, we explicitly write below the version of the linear program in (1) as used in the calculation of

CG(u, v):

minimize
∑

x∈{u}∪NbrG (u)

∑

y∈{v}∪NbrG (v)

distG(x, y) zx,y

subject to

∑

y∈{v}∪NbrG (v)

zx,y =
1

1+ degG(u)
, for all x ∈ {u} ∪ NbrG(u)

∑

x∈{u}∪NbrG (u)

zx,y =
1

1+ degG(u)
, for all y ∈ {v} ∪ NbrG(v)

zx,y ≥ 0, for all x ∈ {v} ∪ NbrG(v) and y ∈ {u} ∪ NbrG(u)

(LP-CG)

Assuming degG(u) ≤ degG(v), the linear program in (LP-CG) has degG(u) × degG(v) = O ((degG(v))2) variables and

degG(u) + degG(v) ≤ 2 degG(v) constraints. The best time-complexity for solving the linear program in (LP-CG) can be

estimated as follows:

� Based on the state-of-the-art algorithms for solving linear program for this situation [28], an exact solution of (LP-CG)

can be found in O ((degG(v))5/2) time.

� Based on the results in publications such as [29,30], an additive ε-approximation of (LP-CG) can be obtained in

Õ
(

1
ε2

degG(u) degG(v)
)
= Õ

(
1
ε2

(degG(v))2
)
time.5

The following observation is crucial for this paper.

Observation 1. The values distG(x, y) in the linear program in (LP-CG) satisfy the property that distG(x, y) ∈ {0, 1, 2, 3}.

It is not difficult to see that Observation 1 implies 0 ≤ Emd Gu,v (P
G
u , P G

v) ≤ 3 and therefore −2 ≤ CG(e) ≤ 1. For comput-

ing CG(u, v) and related quantities, we assume that degG(u) ≤ degG(v) without any loss of generality throughout the rest

of the paper. Moreover, we also assume without loss of generality that degG(v) = ω(1) since otherwise Emd Gu,v (P
G
u , P G

v)

can be computed in O (1) time.

2.1. Intuition behind the discretization resulting in definition of CG(e)

For an intuitive understanding of the definition of CG (e), we recall the notion of Ricci curvature for a smooth Riemannian

manifold. The Ricci curvature at a point x in the manifold along a direction can be thought of transporting a small ball

centered at x along that direction and measuring the “distortion” of that ball due to the shape of the surface by comparing

the distance between the two small balls with the distance between their centers. In the definition of CG (e), the role of

the direction is captured by the edge e = {u, v}, the roles of the balls at the two points are played by the two closed

neighborhoods LGu,v and RG
u,v , and the role of the distance between the two balls is captured by the earth mover’s distance

between the two distributions P G
u and P G

v over the nodes in LGu,v and RG
u,v on the metric space of shortest paths in G . For

further intuition, see publications such as [10]. The Forman-Ricci curvature also assigns a number to each edge of the given

graph, but the numbers are calculated in quite a different way from that in the Ollivier-Ricci curvature to capture different

metric properties of the manifold.

2.2. Equivalent reformulation of linear program (LP-CG) when degG(u) = degG(v)

The following claim holds based on results in prior publications such as [31,32]. For the convenience of the reader, we

provide a self-contained proof in the appendix.

5 The standard Õ notation in algorithmic analysis hides poly-logarithmic terms, e.g., terms like log4/3 degG (v).

4

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Fact 1. [31,32] If degG(u) = degG(v) then the following claims are true regarding some optimal solution of the linear pro-

gram (LP-CG):

(i) The values of the variables zu′,v ′ are either 0 or 1
degG (v)

.

(ii) The edges in

{
{u′, v ′} | zu′,v ′ = 1

degG (v)

}
form a minimum-weight perfect matching in Gu,v that uses the zero-weight edges

{u′, u′} for all u′ ∈ {u, v} ∪
(

NbrG(u) ∩ NbrG(v)
)
.

Based on Fact 1, for the case when degG(u) = degG(v) an optimal solution of the linear program (LP-CG) can be obtained

by finding a minimum-weight perfect matching for a complete edge-weighted bipartite graph H = (L, R, w) where

� L = NbrG(u) \
(
NbrG(v) ∪ {v}

)
,

� R = NbrG(v) \
(
NbrG(u) ∪ {u}

)
, and

� the edge-weight function w : L × R �→ {1, 2, 3} is given by w(x, y) = distG(x, y).

Note that |L| = |R| = degG(v) − 1 − |NbrG(u) ∩ NbrG(v)|. Letting M(H) ∈ {|R|, |R| + 1, . . . , 3 |R|} denote the total weight of a

minimum-weight perfect matching of H , we have

CG(e) = 1−
M(H)

1+ degG(v)

Proposition 1. An additive ε|R|-approximation of M(H) implies an additive ε-approximation of CG(e), and vice versa.

Proof. This follows from the facts that |R| ≤ M(H) ≤ 3 |R| and degG(v) > |R|. �

2.3. Some simple bounds for Emd Gu,v (Pu, Pv) and CG(e)

We use a calculation similar to the one used in [31]. Extend the distributions P G
u and P G

v to P G ′

u and P G ′

v over LGu,v ∪RG
u,v

by letting P G ′

u (x) = 0 for x ∈ Ru,v \ Lu,v and P G ′

v (x) = 0 for x ∈ Lu,v \ Ru,v . For notational simplicity, let k = NbrG(u) \NbrG(v),

� = NbrG(u) ∩NbrG(v), and m = NbrG(v) \NbrG(u), thus degG(u) = k +� and degG(v) =m +�. By straightforward calculation,

the total variation distance (TVD) between P ′
u and P ′

v is

||P ′
u − P

′
v ||TVD = 1

2
×

(
k−1

k+�+1
+ m−1

m+�+1
+ (� + 2) ×

(
1

k+�+1
− 1

m+�+1

))

= 1− �+2
deg(v)+1

Since 1 ≤ distG(u′, v ′) ≤ 3 for all u′, v ′ ∈ LGu,v ∪ RG
u,v , u

′ �= v ′ , by standard relationships between Emd and TVD (e.g., see [33])

it follows that || P ′
u − P ′

v ||TVD ≤ Emd Gu,v (Pu, Pv) ≤ 3 × || P ′
u − P ′

v ||TVD , thereby giving

−2 +
3� + 6

degG(v) + 1
≤ CG(e) ≤

� + 2

degG(v) + 1

Furthermore, if G has no cycles of length 5 or less containing e then distG(u′, v ′) = 3 for all u′, v ′ ∈ LGu,v ∪ RG
u,v and � = 0

giving CG(e) = 2
degG (v)+1

.

3. Synopsis of our results

The main goal of this paper is to study algorithmic complexities of efficient computation of our network curvature

measures. To this effect, our main contributions are threefold:

� We relate various cases of our curvature computation problems via fine-grained reduction.

� We formalize the computational aspects of the curvature computation problems in suitable frameworks so that they can

be studied by researchers in local algorithms.

� We provide the first known lower and upper bounds on queries for query-based algorithms for the curvature computation

problems in our local algorithms framework. En route, we also illustrate a localized version of our fine-grained reduction.

A summary of our contribution in the rest of this paper is the following.

❑ In Section 4 we relate via Theorem 3 the minimum weight perfect matching problem on complete bipartite graphs with

ternary weights to computing CG(e) via fine-grained reduction.

5

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

❑ In Section 5 we present our results for computing CG (e) in the framework of local algorithms.

◦ In Sections 5.1 – 5.2 we provide details of the query models relevant to our case and prior related works on these

query models.

◦ In Sections 5.4 – 5.6 Theorem 4, Theorem 5 and Theorem 6 provide query bounds for exact or approximate calculations

of the curvature using the query models. The bounds are succinctly summarized in Section 5.3 via Table 1.

❑ In Section 6 Lemma 8 provides our results for computing the Ollivier-Ricci curvature CG(v) for nodes and for computing

the average Ollivier-Ricci curvature Cavg(G) for graphs using “black box” additive approximation algorithms for CG(e) and

neighbor queries.

❑ We conclude in Section 7 with some possible future research problems.

4. Fine-grained reduction: relating minimum weight perfect matching on complete bipartite graphs to computing CG (e)

Frameworks for characterizing polynomial-time solvable problems via fine-grained reduction have garnered considerable

attention in recent years (e.g., see [34] for a survey and [35–37] for a few well-known results in this direction). Essentially

these fine-grained reductions are used to show that, given two problems A and B and two constants a, b > 0, if an instance

IB of size |IB| of problem B can be solved in O (|IB|b) time then an instance IA of size |IA| of problem A can be solved

in O (|IA|a) time.

To begin, we first formally state the minimum weight perfect matching problem on complete bipartite graphs with ternary

edge weights.

Definition 2 (Minimum weight perfect matching on complete bipartite graphs with ternary weights (Mpmct)). Given a complete

edge-weighted bipartite graph H = (A, B, w) where |A| = |B| and w : A × B �→ {1, 2, 3} is the edge-weight function, find the

value of
|M|
|A|

where |M| is the value (sum of weights of edges) in a minimum-weight perfect matching M of H .

For Mpmct, exact solution takes O (|A|5/2) time [28], and an ε-additive approximation takes Õ
(

1
ε2

|A|2
)
time. The fol-

lowing theorem related Mpmct to the problem of computing a solution of the linear program in (LP-CG) via a fine-grained

reduction.

Theorem 3. Suppose that we have an algorithm A that provides (α, ε)-estimate for Mpmct in O (|A|2+μ) time for some μ ≥ 0 for a

given input instance H = (A, B, w).

Then, there exists an algorithm A< that provides the following estimates for the linear program in (LP-CG) in O (degG(v)2+μ)

time:

(i) (α, ε)-estimate if degG(v) + 1 is an integral multiple of degG(u) + 1, and

(ii) (α, ε + δ)-estimate (for δ > 0) provided δ satisfies at least one of the following conditions:

(b) degG(u) ≤ (δ/3) × degG(v), or

(b) degG(u) ≥ (1 − (δ/3)) × degG(v).

Remark 1. An illustration of the result in Theorem 3 is as follows. Suppose that we can solve Mpmct exactly in O (|A|2.4)

time (implying α = 1 and ε = 0). Then, such an algorithm can be used to obtain a degG(v)−1/2-additive approxima-

tion of (LP-CG) (i.e., δ = degG(v)−1/2) in O ((degG(v))2.4) time provided at least one of the following conditions holds:

(a) degG(u) ≤

√
degG (v)

3
, (b) degG(u) ≥ degG(v) −

√
degG (v)

3
, or (c) degG(v) + 1 is an integral multiple of degG(u) + 1. Such a

result will improve the best possible running time for a degG(v)−1/2-additive approximation of (LP-CG).

Proof. Let NbrG(u) ∪ {u} = {x1, . . . , xdeg(u)+1}, and NbrG(v) ∪ {v} = {y1, . . . , ydeg(v)+1}, where xdegG (u) = ydegG (v) = u and

xdegG (u)+1 = ydegG (v)+1 = v . Let degG(v) + 1 = a (degG(u) + 1) + b for two integers a ≥ 1 and 0 ≤ b < degG(u) + 1. We

construct a new graph G ′
u,v = (LG

′

u,v , R
G ′

u,v , w
G ′

u,v) from Gu,v in the following manner:

� We set RG ′

u,v = RG
u,v .

� Every node xi is replaced by a nodes x1i , . . . , x
a
i in LG

′

u,v . Moreover, we have b additional “special” nodes r1, . . . , rb in LG
′

u,v .

Note that after these modifications |LG
′

u,v | = |RG ′

u,v | = 1 + degG(v).

� We set the new weights wG ′

u,v as follows:

wG ′

u,v(x
j

i
, y�) = distG(xi, y�) for i ∈ {1, . . . ,degG(u) + 1},

j ∈ {1, . . . ,a}, and � ∈ {1, . . . ,degG(v) + 1}

6

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

wG ′

u,v(ri, y�) = 3 for i ∈ {1, . . . ,b}, and � ∈ {1, . . . ,degG(v) + 1}

� The two new probability distributions Pu
G ′
u,v and Pv

G ′
u,v over the nodes in LG

′

u,v and RG ′

u,v are as follows: Pv
G ′
u,v (x) = P G

v (x)

for all x ∈ {y1, . . . , ydegG (v)+1}, and Pu
G ′
u,v (x) = 1

1+degG (v)
for all x ∈

⋃
i, j{x

j

i
} ∪ {r1, . . . , rb}.

Since |LG
′

u,v | = |RG ′

u,v | = 1 + degG(v), using the reformulations as discussed in Section 2.2 it follows that G ′
u,v is a valid

instance H = (A, B, w) of Mpmct with |A| = degG(v) + 1 and w(p, q) = wG ′

u,v(p, q). Note that building the graph G ′
u,v takes

O ((degG(v))2) time, and algorithm A provides a (α, ε)-estimate for Emd G ′
u,v

(Pu
G ′
u,v , Pv

G ′
u,v) in O ((degG(v))2+μ) time. Thus,

to complete the proof it suffices to show that

EmdGu,v (P
G
u ,P

G
v) ≤ EmdG ′

u,v
(Pu

G ′
u,v ,Pv

G ′
u,v) ≤ EmdGu,v (P

G
u ,P

G
v) + δ

The linear program for Emd G ′
u,v

(Pu
G ′
u,v , Pv

G ′
u,v) is a straightforward modified version of (LP-CG) with appropriate change of

subscripts of the variables. We will refer to this modified version by (LP-CG)
′ .

We can show Emd G ′
u,v

(Pu
G ′
u,v , Pv

G ′
u,v) ≤ EmdGu,v (P

G
u , P G

v) + δ as follows. Consider an optimal solution of the linear pro-

gram (LP-CG) of value Emd Gu,v (P
G
u , P G

v). From this solution we can create a feasible solution of the linear program (LP-CG)
′

in the following manner.

� For i = 1, . . . , degG(u) + 1 and j = 1, . . . , degG(v) + 1, if zxi ,y j
> 0 then distribute the value of zxi ,y j

among the corre-

sponding variables of (LP-CG)
′ as follows:

• Repeatedly select a variable from {x1
i
, . . . , xa

i
}, say x�

i
, such that x�

i
< 1

1+degG (v)
. Increase x�

i
to min

{
1

(1+degG (v))
, zxi ,y j

}
,

and decrease zxi ,y j
by the amount by which x�

i
was increased. Note that wG ′

u,v (xi, y j) = distG(xi, y j). Repeat this step

until zxi ,y j
becomes zero or no such variable x�

i
exists.

• If zxi ,y j
> 0 after the previous step ends then execute the following steps. Repeatedly select a variable from

{r1, . . . , rb}, say r� , such that r� < 1
1+degG (v)

. Increase r� to min
{

1
(1+degG (v))

, zxi ,y j

}
, and decrease zxi ,y j

by the amount

by which r� was increased. Note that wG ′

u,v (xi, y j) ≤ distG(xi, y j) + 3. Repeat this step until zxi ,y j
becomes zero.

A straightforward calculation shows that Emd G ′
u,v

(Pu
G ′
u,v , Pv

G ′
u,v) ≤ EmdGu,v (P

G
u , P G

v) + 3b
degG (v)+1

. Therefore it suffices if we

have 3b
deg(v)+1

≤ δ. If degG(u) +1 is an integral multiple of degG(v) +1 then b = 0 and this proves the claim in (i). Otherwise,

since b < degG(u) + 1 ≤ degG(v) + 1 and b ≤ (degG(v) + 1) − (degG(u) + 1) = degG(v) − degG(u) we get

degG(u) ≤ (δ/3) × degG(v) ⇒ b < degG(u) + 1 ≤ (δ/3) × degG(v) + 1 ⇒ 3b
deg(v)+1

<
δ×degG (v)+1

deg(v)+1
≤ δ

degG(u) ≥ (1− (δ/3)) × degG(v) ⇒ degG(v) − degG(u) ≤ (δ/3) × degG(v) ⇒ 3b
deg(v)+1

≤
δ×degG (v)

deg(v)+1
< δ

The proof of Emd Gu,v (P
G
u , P G

v) ≤ Emd G ′
u,v

(Pu
G ′
u,v , Pv

G ′
u,v) is similar. �

5. Computing CG (e) in the framework of local algorithms

By now designing local algorithms for efficient solution of graph-theoretic problems has become a well-established

research area in theoretical computer science and data mining with a large body of publications (e.g., see [38,27,39]). A

basic idea behind many of these algorithms is to suitably sample a small “local” neighborhood of the graph to infer the

value of some non-local property of a graph. Frameworks for graph-theoretic applications of local algorithms hinge on the

following two premises:

� We assume that our algorithm has a list of all nodes in the graph in a suitable format that allows for sampling a node

based on some distribution.

� The edges and their weights are not known to our algorithm a priori. Instead, the algorithm uses a “query” on a node or

a pair of nodes to discover an edge and its weight. Different query models for local algorithms arise based on what kind

of queries are allowed. Later in Section 5.2 we will provide details of query models that are applicable to our problems.

� The performance of the algorithm is measured by the number of queries used.

Additional notations and conventions

For the case when degG(u) = degG(v), we will use the reformulations of the linear program (LP-CG) as discussed in

Section 2.2 and the associated notations contained therein. We will use the following additional notations and conventions

related to the graph H = (L, R, w) mentioned in Section 2.2:

7

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

� |L| = |R| = n, L = {u1, . . . , un} and R = {v1, . . . , vn}.

� For j ∈ {1, 2} degH, j(x) denotes the number of edges of weight j incident on node x in a graph H .

Note that HHH has 2n2n2n nodes. Moreover, for any edge-weighted graph F = (V , E, w) with w : E �→ R, wt-degF (u) =∑
v:{u,v}∈E w(u, v) denotes the weighted degree of node u in F , and M(F) denotes the total weight of a minimum-weight

perfect matching of F .

5.1. Prior related works

Designing sublinear time and sketching algorithms for the general earth mover’s distance on the shortest path metric

for arbitrary graphs have been investigated in prior research papers such as [40,41]. In particular, for an edge-weighted

tree with W being the maximum weight of any edge and for any two unknown probability distributions on the nodes, the

authors in [40] show that an estimate of the Emd with ε-additive error can be achieved by using Õ (W 2n2

ε2
) samples from

the two distributions and observe that their algorithm is optimal up to polylog factors. To the best of our knowledge, local

algorithms for computing the Ollivier-Ricci curvatures of a graph have not been investigated explicitly before.

5.2. Query models for edge-weighted complete bipartite graphs

Two standard query models that appear in the local algorithms literature for unweighted graphs (e.g., see [38]) are as

follows: the node-pair query model (the query is a pair of nodes and the answer is whether an edge between them exists

or not), and the neighbor query model (the query is a node and the answer is a random not-yet-explored adjacent node if

it exists). Since our given graph is an edge-weighted complete bipartite graph H = (L, R, w) via the reformulation described

in Section 2.2, natural extensions lead to the following query models for our case:

� weighted node-pair query model: the query is a pair of nodes x, y and the answer is the weight w(x, y).

� neighbor query model: the query is a node x and the answer is a random “not-yet-explored” node adjacent to x (if no

such node exists then the query returns a special symbol to indicate that). Note that such a query does not give any useful

information (beyond simply picking a node uniformly at random) for the graph H since it is a complete graph. We will only use

this type of query for the entire given graph G for computing CG(v) and Cavg(G) in Section 6.

� weighted neighbor query model: the query is (x, y) where x is a node and y is a number, and the answer is a random

“not-yet-explored” node z such that w(x, z) = y (if no such node exists then the query returns a special symbol to

indicate that).

� weighted selective degree query model: the query is (x, y) where x is a node and y is a number, and the answer is the

number of edges of weight y that are incident on x.

5.3. Summary of our query bounds on computing CG(e)

For the convenience of the reader, we summarize our query bounds for computing CG (e) in Table 1. Subsequent sub-

sections in this section provide proofs of these bounds.

5.4. Lower bounds on number of queries for computing CG(e)

Note that for query lower bounds it suffices to prove the lower bound for complete edge-weighted bipartite graph

reformulations of the problem as discussed in Section 2.2. Any complete bipartite graph H = (L, R, w) used in our lower

bound proofs will satisfy L ∩ R = ∅, thereby implying n = degG(v) − 1. Since we provide our inputs in the form of such

graphs H , we first need to show that there exists a graph G with the edge {u, v} such that Gu,v = H in the notations used

in Section 2.2.

Proposition 2. Given any complete edge-weighted bipartite graph H = (L, R, w) where w : L × R �→ {1, 2, 3} there exists a graph

G = (V , E) such that Gu,v = H.

Proof. Start with the edge {u, v} in G , connect the nodes u1, . . . , un to u, and connect the nodes v1, . . . , vn to v . For every

pair of nodes (ui, v j) ∈ L × R , if w(u j, v j) = 1 then add the edge {ui, v j} to G . Otherwise if w(u j, v j) = 2 then add a new

node xi, j to G and add the two edges {ui, xi, j} and {xi, j, v j} to G . �

A common thread in our lower bound proofs is the following easy but crucial observation.

Observation 2. Suppose that we have two separate classes of (complete edge-weighted bipartite, as described in Section 2.2) graphs

G1 and G2 , two numbers 1 ≤ α < β ≤ 3, and an algorithm A such that the following holds:

� Every graph H ∈ G1 satisfies n ≤M(H) ≤ α n.

8

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Table 1

A summary of query bounds for computing CG (e); ε1, ε2, δ are arbitrary constants satisfying 0 < ε1 ≤ 2 and
ε2, δ > 0.

query additive expected result(s) additional

types approx. # of queries remark(s)

lower

bounds

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

weighted node-pair
exact

computation
>

(degG (v)−1)2

6
Theorem 4(a)-(i)

⎤
⎥⎥⎥⎥⎦
①weighted neighbor

exact

computation
>

degG (v)−1
2

Theorem 4(a)-(ii)

weighted node-pair 2 − ε1 >
degG (v)−1

6
Theorem 4(b)

upper

bounds

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

weighted neighbor 1+ ε2 O (1) Theorem 5(a) ②

weighted neighbor 1
2

+ ε2 O (1) Theorem 5(b) ③

weighted neighbor 1+ ε2 + δ O (1) Corollary 7(i) ④

weighted neighbor 1
2

+ ε2 + δ O (1) Corollary 7(ii) ⑤

①
even if degH,1(x) ≤ 1, degH,2(x) = 0 for every node x, and any number of weighted

selective degree queries are allowed.

② if degH,1(x) = O (1) for every node x, and degG (u) = degG (v).

③ if both degH,1(x) = O (1) and degH,2(x) = O (1) for every node x, and degG (u) = degG (v).

④ if degH,1(x) = O (1) for every node x, and degG (u) ≥ (1− (δ/3)) × degG (v).

⑤ if both degH,1(x) = O (1) and degH,2(x) = O (1) for every node x, and degG (u) ≥ (1− (δ/3)) × degG (v).

� Every graph H ∈ G2 satisfies β n ≤M(H) ≤ 3n.

� Given a graph from G1 ∪ G2 , algorithm A cannot determine in which class the given graph belongs.

Then, using Proposition 1, it follows that algorithm A cannot provide an additive (β −α −ε)-approximation of CG(e) for any constant

ε > 0.

Our proofs in Theorem 4 for lower bounds on the number of queries will use the well-known Yao’s minimax principle

for randomized algorithms [42]. Namely, we will construct two separate classes G1 and G2 of graphs and show that any

deterministic algorithm that picks graphs uniformly at random from these two classes will need at least a certain number

of queries, say q, to be able to decide from which class the graph was selected with at least a certain probability, say p.

Then, the expected number of queries performed by any deterministic algorithms on inputs drawn from the aforementioned

distribution is at least pq, and thus by the minimax principle the expected number of queries for any randomized algorithm

over all possible inputs is also at least pq. Note that since our input instances are complete bipartite graphs, two graphs are

differentiated based on the assignments of weights to all possible edges (see [38] for further elaborations on this point).

Theorem 4. Consider any local algorithm that is allowed to make an unlimited number of weighted selective degree queries. Let Q

be the expected number of queries, excluding all weighted selective degree queries, performed by the algorithm for computing CG(e).

Then the following claims hold.

(a) Suppose that we want to compute CG(e) exactly. Then the following bounds hold.

(i) Q > n2/6 if the queries used are weighted node-pair queries.

(ii) Q > n/6 if the queries used are weighted neighbor queries.

(b) For every 0 < ε < 2, any randomized algorithm computing an additive (2 −ε)-approximation of CG(e) requires Q > n/6 weighted

node-pair queries.

Proof. All the bipartite graphs H = (L, R, w) in our proofs will satisfy that degH,1(x) = 1 and degH,2(x) = 0 for every node

x ∈ L ∪ R , and therefore any number of weighted selective degree queries will provide no information about the value of

CG(e).

Proof of (a)

Corresponding to every node pair (ui, v j) with ui ∈ L and v j ∈ R , the class G1 contains a graph in which w(ui, v j) = 1

and all other edges have weight 3. The class G2 contains just one graph in which all edge weights are set to 3. Note that the

9

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

minimum weight of a perfect matching for each graph in G1 is 3n − 2, whereas the minimum weight of a perfect matching

for the graph in G2 is 3n.

Proof of (a)-(i)

Suppose that our algorithm has already made t queries (edges) e1, . . . , et for t < n2 −1 with w(e1) = · · · = w(et) = 3 and

let et+1 be the next query. Consider a graph G1 ∈ G1 that is consistent with the first t queries with w(et+1) = 1. Note that

there is exactly one such graph in G1 . Since there are at least n
2 − (t + 1) node pairs (edges) that have not been queried

after the (t + 1)th query, we have at least n2 − (t + 1) distinct graphs in G1 with w(et+1) = 3 that is consistent with the

first t queries (set the weight of exactly one of the n2 − (t + 1) edges to 1 and the weight of the remaining edges to 3).

Since graphs are selected uniformly at random from G1 it follows that Pr[w(et+1) = 1 | w(e1) = · · · = w(et) = 3] ≤ 1
n2−(t+1)

.

Summing over all t , we get

Pr[number of queries needed is at least t + 1]

= 1− Pr[one of the t queries contain an edge of weight 1] ≥ 1− t
n2−(t+1)

Putting t = n2/3, the probability that “the number of queries is at least 1 + n2/3” is at least 1/2.

Proof of (a)-(ii)

Suppose that our algorithm has already made t queries (nodes, weights) (x1, y1), . . . , (xt , yt) ∈ (L ∪ R) × {1, 2, 3} for

t < n − 1. Let e1 = {x1, x
′
1}, . . . , et = {xt , x

′
t} be the answers (edges) to these queries with w(e1) = · · · = w(et) = 3 and let

(xt+1, yt+1) be the next query that reveals the weight of an edge et+1 = {xt+1, x
′
t+1}. Consider a graph G1 ∈ G1 that is

consistent with the first t queries with w(et+1) = yt+1 = 1. Note that there is exactly one such graph in G1 . Since there

are at least n − (t + 1) nodes in each of L and R that have not been queried after the (t + 1)th query, we have at least

(n − (t +1))2 distinct graphs in G1 with w(et+1) = 3 that is consistent with the first t queries (set the weight of exactly one

edge among these nodes to 1 and the weights of all remaining edges to 3). Since graphs are selected uniformly at random

from G1 it follows that Pr[w(et+1) = 1 | w(e1) = · · · = w(et) = 3] ≤ 1
(n−(t+1))2

. Summing over all t , we get

Pr[number of queries needed is at least t + 1]

= 1− Pr[one of the t queries contain an edge of weight 1] ≥ 1− t
(n−(t+1))2

Putting t = n/2, the probability that “the number of queries is at least 1 + n/2” is at least 1 − 2
n
.

Proof of (b)

Corresponding to each of the possible n! perfect matchings, the class G1 contains a graph in which the edges in the

matching have weight 1 and all other non-matching edges have weight 3. The class G2 contains just one graph in which

all edge weights are set to 3. Note that the minimum weight of a perfect matching for each graph in G1 is n, whereas the

minimum weight of a perfect matching for the graph in G2 is 3n. Suppose that our algorithm has already made t (edge)

queries e1, . . . , et) for t < n − 1 with w(e1) = · · · = w(et) = 3 and let et+1 be the next (edge) query.

We first show that as long as t < n there exists at least one graph in G1 that is consistent with the weight assignments

of the first t queries. Consider a random perfect matching M = { {u1, vπ(1)}, . . . , {un, vπ(n)} } given by a random permutation

π of 1, . . . , n. The probability of the event E j that the jth query e j is in M is (n−1)!
n!

= 1/n. It follows that Pr[∧t
j=1E j] =

1 − Pr[∨t
j=1E j] ≥ 1 −

∑t
j=1 Pr[E j] ≥ 1 − t

n
> 0 and therefore G1 contains at least one such graph.

Assume without loss of generality that et+1 = (un, vn) and let M be a perfect matching of the nodes in L and R , say

M = { {u1, v1}, . . . , {un, vn} }, that is consistent with the first t queries, and includes et+1 as a matched edges (note that

w(u1, v1) = · · · = w(un, vn) = 1). If such a matching M does not exist then Pr[w(un, vn) = 1 | w(e1) = · · · = w(et) = 3] = 0.

Otherwise, note that there are at least n − t nodes in each of L and R , say u1, . . . , un−t ∈ L and v1, . . . , vn−t ∈ R , such that

the edges (un, v j) and (u j, vn) for j = 1, . . . , n − t have not been queried yet. For every such perfect matching M , we can

then construct a set SM of at least n − t distinct perfect matchings with w(et+1) = 3 that is consistent with the first t

queries as follows: in the �th perfect matching set w(u�, v�) = w(un, vn) = 3 and set w(un, v�) = w(u�, vn) = 1. It is also

easy to see that any two matchings from two different sets SM and SM′ differ in at least one edge. Since graphs are selected

uniformly at random from G1 it follows that Pr[w(un, vn) = 1 | w(e1) = · · · = w(et) = 3] ≤ 1
n−t

. Summing over all t , we get

Pr[number of queries needed is at least t + 1]

= 1− Pr[any of the t queries contain an edge of weight 1] > 1− t
n−(t−1)

Putting t = n/3, the probability that “the number of queries is at least 1 + n/3” is at least 1/2. �

10

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Fig. 1. (a) Example showing tightness of bounds in Theorem 5 when only estimate for m1 is known. (b) Example showing tightness of bounds in Theorem 5

when estimates for m1, m2, m12 are known. (c) Example showing that better than additive 2
3
-approximation is not possible if only estimates for m1 and

m2 are used for the case in Theorem 5(b).

5.5. Upper bounds on number of queries for computing CG(e) when deg(u) = deg(v)

The proofs in Theorem 4 do not use any edge of weight 2 and have at most one edge of weight 1 incident on any node

with the additional restriction that these edges of weight 1 provide a unique matching for the nodes that are end-points

of these edges. In this section we show that if weighted neighbor queries are allowed then O (1) expected number of

queries will suffice for a non-trivial additive approximation for a class of weighted complete bipartite graphs that properly

includes the instances generated by the proofs in Theorem 4 (note that for the instances (graphs) generated by the proofs

in Theorem 4 we have degH,1(x) ≤ 1 and degH,2(x) = 0 for every node x).

Theorem 5. Assume that degG(u) = degG(v), and let d, ε > 0 be two fixed constants. Then, using O (1) expected number of weighted

neighbor queries6 we can obtain the following type of approximations for CG(e):

(a) an additive (1+ ε)-approximation when maxx{degH,1(x)} ≤ d, and

(b) an additive
(
1
2

+ ε
)
-approximation when maxx{degH,1(x)} ≤ d and

maxx{degH,2(x)} ≤ d.

Remark 2. Let m1 , m2 and m12 be as defined in the proof of this theorem. The bounds in Theorem 5 are tight in the sense

that no algorithm that knows only estimates of m1 (resp. estimates of m1, m2, m12) can provide better additive ratios for

parts (a) (resp. (b)); see Fig. 1 (a)–(b). The example in Fig. 1 (c) shows that no algorithm can provide better than additive
2
3
-approximation for the case in Theorem 5(b) if the estimate for m12 is not used.

Proof. Since degG(u) = degG(v) we can use the reformulations of the linear program (LP-CG) outlined in Section 2.2. Let

δ > 0 be a constant to be fixed later. Let H1 , H2 and H12 be the subgraphs of H induced by the edges in H of weight 1,

edges in H of weight 2, and edges in H of weights 1 and 2, respectively. Fix maximum-cardinality matchings M1 , M2 and

M12 of H1 , H2 and H12 having m1 n, m2 n and m12 n edges, respectively. Also, fix a minimum-weight perfect matching Mopt

of H of total weight mopt n, and let mopt,� n be the number of edges of weight � ∈ {1, 2, 3} in Mopt . The following inequalities

will be useful during the rest of the proof:

mopt,1 ≤m1, mopt,2 ≤m2, mopt,3 ≥ 1−m12, m12 ≥ max{m1,m2},

mopt = mopt,1 + 2mopt,2 + 3(1 − mopt,1 − mopt,2) = 3 − 2mopt,1 − mopt,2 ≥ 2 − 2mopt,1 ≥ 2 − 2m1

Let Ms be a perfect matching of H generated by taking all the edges (of weight 1) in M1 and pairing the remaining nodes

from L and R arbitrarily. Note that the total weight ms n of the edges in Ms satisfies mopt ≤ms and ms ≤m1 + 3(1 −m1) =

3 − 2 m1; thus it follows that 3 − 2 m1 ≥ mopt . Similarly, taking Ms to be a perfect matching of H of total weight ms n

6 The constant in O (1) depends on d and ε.

11

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

generated by taking all the edges (of weight 2) in M2 and pairing the remaining nodes from L and R arbitrarily we get

mopt ≤ms and ms ≤ 2 m2 + 3(1 −m2) = 3 −m2; thus it follows that 3 −m2 ≥mopt .

Our algorithm proceeds in two main steps. The first common step in our algorithm for both (a) and (b) is to determine

the set of nodes in L and R from NbrG(u) and NbrG(v). This can be done by comparing the list of nodes in NbrG(u) and

NbrG(v) to identify all nodes in NbrG(u) ∩ NbrG(v) and setting L = NbrG(u) \
(
NbrG(u) ∩ NbrG(v)

)
, R = NbrG(v) \

(
NbrG(u) ∩

NbrG(v)
)
. Note that this step does not use any query at all. The remaining parts of our algorithms will only use weighted

neighbor queries (x, s) for x ∈ L ∪ R and s ∈ {1, 2}.

Proof of (a)

Since maxv∈L∪R{degH1
(v)} ≤ d, then using the results of Yoshida et al. [27] we can compute a number m̃1 using

dO (1/δ2)(1/δ)O (1/δ) = O (1) expected number of queries such that m1 n − δn ≤ m̃1 n ≤ m1 n. It is straightforward to see that

each query in Yoshida et al. [27] can be implemented by a weighted neighbor query (x, 1) for some appropriate x ∈ L ∪ R .

After using O (1) expected number of weighted neighbor queries to compute m̃1 n we output the number
 = (3 − 2 ̃m1) as

our estimate for mopt . Note that
 ≥ (3 − 2 m1) ≥mopt , and
 −mopt = (3 − 2 ̃m1) −mopt ≤ (3 − 2 m1) + 2 δ −mopt ≤ 1 + 2 δ.

Our proof is completed by taking δ = ε/2.

Proof of (b)

Since maxv∈L∪R{degH1
(v)} ≤ d and maxv∈L∪R{degH2

(v)} ≤ d, using the results of Yoshida et al. [27] we can compute

numbers m̃1 , m̃2 , and m̃12 using (2d)O (1/δ2)(1/δ)O (1/δ) = O (1) expected number of queries such that m� n − δn ≤ m̃� n ≤m� n

for � ∈ {1, 2, 12}. It is straightforward to see that each query in Yoshida et al. [27] can be implemented by a weighted

neighbor query (x, s) for some appropriate x ∈ L ∪ R and s ∈ {1, 2}. We perform the following case analysis to provide our

estimate
 of mopt .

Case 1: m̃1 ≤ 1/4. Our estimate for mopt is
 = 3 − m̃2 . Note that
 ≥ 3 −m2 ≥ mopt . For the additive error estimation, we

have

 −mopt = 3− m̃2 −mopt ≤ (3 −m2 − 2m1) + 2m1 + δ −mopt

≤ (3−mopt,2 − 2mopt,1) + 2
(
1
4

+ δ
)
+ δ −mopt = 1

2
+ 3 δ

Case 2: m̃2 ≤ 1/2 or m̃1 ≥ 1/2 or m̃12 ≤ 3/4. Our estimate for mopt is
 = 3 − 2 ̃m1 . Note that
 ≥ 3 − 2 m1 ≥ mopt . For the

additive error bounds, we have the following:

� If m̃2 ≤ 1/2 then
 −mopt = 3 −2 ̃m1 −mopt = (3 −m2 −2 m1) +m2 +2 δ −mopt ≤ (3 −mopt,2 −2 mopt,1) + 1/2+3 δ −

mopt ≤ 1
2

+ 3 δ.

� If m̃1 ≥ 1/2 then since the smallest possible total weight that any perfect matching of H could have is achieved by

taking all the m1 n edges of weight 1 and the remaining (1 −m1) n edges of weight 2 we get mopt ≥m1+2(1 −m1) =

2 −m1 . Consequently,

 −mopt ≤ (3− 2m̃1) − (2−m1) ≤ 1−m1 + 2 δ ≤ 1
2

+ 2 δ

� If m̃12 ≤ 3/4 then since mopt,3 ≥ 1 − m12 the smallest possible total weight that any perfect matching of H could

achieve is by taking m1 n edges of weight 1, (1 −m12)n edges of weight 3, and the remaining (m12 −m1)n edges of

weight 2 we get mopt ≥m1 + 2(m12 −m1) + 3(1 −m12) = 3 −m1 −m12 . Consequently,

 −mopt ≤ (3− 2m̃1) − (3−m1 −m12) ≤ (m12 −m1) + 2 δ ≤ (3
4

+ δ − 1
4
) + 2 δ = 1

2
+ 3 δ

Case 3: when Cases 1 and Case 2 do not apply. For this case the following inequalities hold:

1/4 < m̃1 < 1/2 ⇒ 1/4 <m1 < 1/2 + δ, m̃2 > 1/2 ⇒ m2 > 1/2 + δ

m̃12 > 3/4 ⇒ m12 > 3/4

For this case, we use the following lower bound for mopt . Since mopt,3 ≥ 1 −m12 the smallest possible total weight that

any perfect matching of H could have is achieved by taking m1 n edges of weight 1, (1 −m12)n edges of weight 3, and

the remaining (m12 −m1)n edges of weight 2. This implies mopt ≥m1 + 2(m12 −m1) + 3(1 −m12) = 3 −m1 −m12 .

Let α = max{m12 − 2 m1, 0}. Suppose that M12 contains m′
1 ≤m1 edges of weight 1. Consider the following process:

we start with the edges in M12 , remove m′
1 edges of weight 1 from it, add m1 edges of weight 1 from M1 to it

and finally remove (“knock out”) the edges of weight 2 that share an end-point with the edges of M1 added to our

collection. Since m1 edges of weight 1 can knock out at most 2 m1 edges of weight 2, it follows that there are at least α
“surviving” edges of weight 2 that do not share any end-point with the edges in M1 . We now have the following two

sub-cases.

12

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Case 3.1: m̃1,2 ≤ 2m̃1 + δ. Note that m̃1,2 ≤ 2 ̃m1 + δ implies m1,2 ≤ 2 m1 + 2 δ. Our estimate for mopt is
 = 3 − 2 ̃m1 .

Note that
 ≥ 3 − 2 m1 ≥mopt . For the additive error estimation, note that

 −mopt ≤ (3− 2m̃1) − (3−m1 −m12) ≤m12 −m1 + 2 δ ≤m1 + 4 δ < 1
2

+ 5 δ

Case 3.2: m̃1,2 > 2m̃1 + δ. Our estimate for mopt is
 = 3 −m̃1,2 . Note that m̃1,2 > 2 ̃m1 +δ implies m1,2 > 2 m1 +δ. Thus,

for this case, α =m12−2 m1 > δ > 0. Let M′ be a perfect matching of H generated by taking all the edges (of weight

1) in M1 , the α surviving edges of weight 2, and pairing the remaining nodes from L and R arbitrarily. Then, the

total weight m′ n of the edges in M′ satisfies m1 +2(m12 −2 m1) +3(1 − (m1 + (m12 −2 m1))) = 3 −m12 ≥m′ ≥mopt ,

and it follows that
 ≥ 3 −m1,2 ≥mopt . For the additive error estimation, note that

 −mopt ≤ (3− m̃1,2) − (3−m1 −m12) ≤m1 + δ < 1
2

+ 2 δ

In all cases, setting δ = ε/5 provides an additive
(
1
2

+ ε
)
-approximation. �

5.6. Upper bounds on number of queries for computing CG(e) when deg(u) �= deg(v) using “localized” fine-grained reduction

Theorem 5 provides non-trivial approximation of CG(e) when degG(u) = degG(v). In this section, we show that a “local-

ized” version of the fine-grained reduction used in Theorem 3 can be applied to extend these local approximation algorithms

to some cases when degG(u) and degG(v) are not necessarily equal. Such a localized version of the fine-grained reduction is

not allowed to construct the reduction explicitly, but instead the details of the reduction need to be revealed incrementally

to the local algorithm on a “need-to-know” basis to simulate the queries of the local algorithm on the graph constructed by

the fine-grained reduction. The overall simulation is summarized in Theorem 6.

Theorem 6 (Computing CG(e)CG(e)CG(e) via localized fine-grained reduction). Suppose that we have an algorithm B= that provides an (α, ε)-

estimate for CG(e) when degG(u) = degG(v) using t queries q′
1, . . . , q

′
t when each query q′

i
is either a weighted node-pair query, a

weighted neighbor query or a weighted selective degree query.

Then, letting δ > 0 denote any constant, we can design an algorithm B< for the case when degG(u) �= degG(v) using B= with the

following properties:

(a) Corresponding to each query q′
i
, B< performs at most one weighted selective degree query and at most one additional query of

the same type as q′
i
on Gu,v .

(b) B< provides an (α, ε)-estimate for CG(e) if degG(u) + 1 is an integral multiple of degG(v) + 1.

(c) B< provides an (α, ε + δ)-estimate for CG(e) if either degG(u) ≤ (δ/3) × degG(v) or degG(u) ≥ (1 − (δ/3)) × degG(v).

Corollary 7. If degG(u) ≥ (1 − (δ/3)) × degG(v) for some constant δ > 0 then maxx{degGu,v ,1(x)} = O (1) (respectively,

maxx{degGu,v ,2(x)} = O (1)) implies maxx{degG ′
u,v ,1

(x)} = O (1) (respectively, maxx{degG ′
u,v ,2

(x)} = O (1)), and thus each weighted

selective degree query for the weight 1 (respectively, for the weight 2) can be trivially simulated by O (1) weighted neighbor queries

for the weight 1 (respectively, for the weight 2) on G ′
u,v . Thus, combining Theorem 6 with the approximations in Theorem 5 gives us

algorithms of the following types for the case when degG(u) �= degG(v):

(i) additive (1+ ε + δ)-approximation using O (1) weighted neighbor queries7 if maxx{degH,1(x)} = O (1) and degG(u) ≥ (1 −

(δ/3)) × degG(v),

(ii) additive
(
1
2

+ ε + δ
)
-approximation using O (1) weighted neighbor queries7 if maxx{degH,1(x)} = O (1), maxx{degH,2(x)} =

O (1), and degG(u) ≥ (1 − (δ/3)) × degG(v).

Proof. We will reuse the notations and the reduction used in the proof of Theorem 3; in particular in those notations the

graph H is also the graph Gu,v . Our algorithm B< has a list of nodes in the graph G ′
u,v and also the numbers a and b. We

show next how the value of a query q′
i
on G ′

u,v can be obtained from the values of a collection Qi of (at most two) queries

on Gu,v by B< .

� Case 1: q′
i

q′
iq
′
i
is a weighted node-pair query. If q′

i
is of the form (x

j

i
, y�) then Qi = {(xi, y�)} and B< returns the value of the

query (xi, y�) on Gu,v as the value of q′
i
. If q′

i
is of the form (ri, y�) then Qi = ∅ and B< returns 3 as the value of q′

i
.

� Case 2: q′
i

q′
iq
′
i is a weighted selective degree query. Let s be a number from the set {1, 2, 3}.

• If q′
i is of the form (x

j

i , s) then Qi = {(xi, s)} and B< returns the value of the weighted selective degree query (xi, s)

on Gu,v as the value of q′
i
.

7 The constant in O (1) depends on the value of 1
1−(δ/3)

.

13

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

• If q′
i
is of the form (ri, s) then Qi = ∅ and B< returns 3 degG(v) + 3 if s = 3 and 0 otherwise as the value of q′

i
.

• If q′
i is of the form (y�, s) then Qi = {(y�, s)}, and B< returns the following as the value of q′

i :

– the value of the weighted selective degree query (y�, s) on Gu,v times a if s ∈ {1, 2}, and

– the value of the weighted selective degree query (y�, s) on Gu,v times a plus b otherwise.

� Case 3: q′
i

q′
iq
′
i
is a weighted neighbor query. Let s be a number from the set {1, 2, 3}.

� Case 3.1: q′
i

q′
iq
′
i is of the form (x

j

i , s)(x
j

i
, s)(x
j

i , s). The following example illustrates the subtlety of this case. Suppose that x1 is con-

nected to four nodes y1, y2, y3, y4 via edges of weight s in Gu,v . Then each of the nodes x11, . . . , x
a
1 is connected to

y1, y2, y3, y4 via edges of weight s in G ′
u,v .

• As a first attempt, one may simulate the answer to the query (x
j
1, s) by performing a query (x1, s) on Gu,v .

However, this will not provide new nodes with the correct probabilities required for random uniform selection

among not-yet-explored nodes. For example, suppose that B< already made the query (x11, s) giving the node

y1 . If now B< makes another query (x21, s) then such a simulation will return a node uniformly randomly from

the set of nodes {y2, y3, y4} but the correct simulation would have been to select a node uniformly randomly

from the set of nodes {y1, y2, y3, y4}. Moreover, if B< has already made the queries (x11, s), (x
2
1, s), (x

3
1, s), (x

4
1, s)

using such a simulation then this simulation of a new query (x51, s) will simply return the special symbol.

• As a second attempt, to simulate the answer to a query (x
j
1, s) one may first check if the answer to a query

(x
j′

1 , s) for some j′ �= j is already available, and if so simply return that answer. But, in this case, the answers to

the queries (x
j
1, s) and (x

j′

1 , s) will not be statistically independent.

To address these and other subtleties we design Algorithm B< to handle all queries of the form (x
j

i
, s) for each specific

i and s in the following manner. Let Sxi ,s be the set of (not initially known to B<) σi,s = |Sxi ,s| nodes connected to xi
in Gu,v via edges of weight s.

(i) If not already done before, we make one new weighted selective degree query (xi, s) on Gu,v giving us the value of

σi,s (if the value of σi,s is already available we simply use it without making a query).

(ii) For each x
j

i
, we keep a count κ

x
j
i
,s

of how many times the query (x
j

i
, s) has been asked involving the node x

j

i

before the current query and store the answers to these queries in a set T
x
j
i
,s
. We also maintain Ti,s = ∪a

j=1Tx
j
i
,s

and κi,s = |Ti,s|. Note the following:

• If κ
x
j
i
,s

< σi,s then performing a new weighted neighbor query (x
j

i , s)(x
j

i
, s)(x
j

i , s) on G ′
u,vG ′
u,vG ′
u,v must return a node uni-

formly at random from the set of nodes

x
j
i
,s

= Sxi ,s \ T
x
j
i
,s

with probability 1/λ
x
j
i
,s
where λ

x
j
i
,s

= |

x
j
i
,s
| =

σi,s − κ
x
j
i
,s
.

• If κi,s < σi,s then performing a new weighted neighbor query (xi, s) on Gu,vGu,vGu,v returns a node uniformly at

random from the set of nodes
i,s = Sxi ,s \ Ti,s with probability 1/λi,s where λi,s = |
i,s| = σi,s − κi,s .

• Note that we know all the elements of Ti,s; in particular, this means that we can sample a node from a

subset of Ti,sTi,sTi,s uniformly at random.

(iii) For a query (x
j

i
, s), we have the following cases.

� Case I: κi,s = σi,sκi,s = σi,sκi,s = σi,s . In this case Ti,s = Sxi ,s .

� Case I-a: κ
x
j
i
,s

< κi,sκ
x
j
i
,s

< κi,sκ
x
j
i
,s

< κi,s . We select a node uniformly at random from the set Ti,s \T
x
j
i
,s

= Sxi ,s \Tx
j
i
,s

and return

it as the answer to the query.

� Case I-b: κ
x
j
i
,s

= κi,sκ
x
j
i
,s

= κi,sκ
x
j
i
,s

= κi,s . We return an invalid entry as the answer to the query.

� Case II: κi,s < σi,sκi,s < σi,sκi,s < σi,s . We make a new query (xi, s) on Gu,v giving us a node yp ∈
i,s = Sxi ,s \ Ti,s with the

property that Pr[yp ∈
i,s is returned] = 1
λi,s

.

� Case II-a: κ
x
j
i
,s

= κi,sκ
x
j
i
,s

= κi,sκ
x
j
i
,s

= κi,s . For this case, Ti,s = T
x
j
i
,s

and λi,s =

x
j
i
,s
. We return the node yp as the answer to

the query and update all relevant sets and counters appropriately.

14

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

� Case II-b: κ
x
j
i
,s

< κi,sκ
x
j
i
,s

< κi,sκ
x
j
i
,s

< κi,s . For this case Tx
j
i
,s

⊂ Ti,s ⊂ Sxi ,s , λi,s = |Sxi ,s \ Ti,s| > 0, and λ
x
j
i
,s

= |Sxi ,s \ T
x
j
i
,s
| > λi,s .

We sample the nodes in {yp}
⋃(

Ti,s \ T
x
j
i
,s

)
based on the following probability distribution and update all

relevant sets and counters appropriately:

Pr[yp is selected] =
λi,s

λ
x
j
i
,s

∀ y� ∈ Ti,s \ T
x
j
i
,s

: Pr[y� is selected] = 1
λ
x
j
i
,s

Thus, the answer to the query (x
j

i
, s) is selected uniformly at random from the set

x
j
i
,s

= Sxi ,s \ T
x
j
i
,s

since

∀ y� ∈ Sxi ,s \ Ti,s : Pr[y� is selected] = 1
λi,s

×
λi,s

λ
x
j
i
,s

== 1
λ
x
j
i
,s

∀ y� ∈ Ti,s \ T
x
j
i
,s

: Pr[y� is selected] = 1
λ
x
j
i
,s

� Case 3.2: q′
i

q′
iq
′
i
is of the form (ri, s)(ri, s)(ri, s). We keep a count ν(ri) of how many times the query (ri, 3) has been asked involving

the node ri before the current query, and store the answers to these queries in the set Sri . If s �= 3 or ν(ri) = degG(v) +

1 we return the special symbol. Otherwise, we return a node selected uniformly at random from the set of nodes

{y1, . . . , ydegG (v)+1} \ Sri as the answer and update all relevant sets and counters appropriately.

� Case 3.3: q′
i

q′
iq
′
i
is of the form (y�, s)(y�, s)(y�, s). This case is similar in spirit to Case 3.1. We show how to handle all queries of the

form (y�, s) for each specific � and s.

(i) Assume without loss of generality that y� is connected, via edges of weight s, to (not initially known to B<) a

set Sν1 = {x1, . . . , xν1 } ⊆ {x1, . . . , xdegG (u)+1} of ν1 = |Sν1 | nodes. If not already done before, we make one new

weighted selective degree query (y�, s) on Gu,v giving us the value of ν1 (if ν1 is already known we simply use

it without making a query).

(ii) Define the set Sν2 of ν2 = |Sν2 | ∈ {0, b} nodes as Sν2 = {r1, . . . , rb} if s = 3 and Sν2 = ∅ otherwise. Note that we

know the value of ν2 since we know the value of s.

(iii) We keep a count κ of how many times the query (y�, s) has been asked involving the node y� before the current

query, and let Tκ be the set of those κ = |Tκ | nodes of G ′
u,v that have been returned because of these prior

queries. Note that if κ < aν1 + ν2 then performing a new weighted neighbor query (y�, s) on G ′
u,v must return

a node uniformly at random from the set of nodes
κ =
(
∪

ν1
i=1 ∪a

j=1{x
j

i } ∪ Sν2

)
\ Tκ with probability 1/λκ where

λκ = |
κ | = (aν1 + ν2) − κ .
(iv) Assume without loss of generality that S ′

ν1
= {x1, x2, . . . , xν ′

1
} ⊆ Sν1 be the set of ν ′

1 = |S ′
ν1

| ≤ min{κ, ν1}} nodes

in Gu,v that have been returned as a result of the queries on Gu,v due to the simulation of prior κ queries on

G ′
u,v . Note that if ν

′
1 < ν1 then performing a new weighted neighbor query (y�, s) on Gu,vGu,vGu,v returns a new node

uniformly at random from the set of nodes � = Sν1 \ S ′
ν1

with probability 1/ϕ1/ϕ1/ϕ where ϕ = |�| = ν1 − ν ′
1 .

(v) Define the subset
′
κ ⊆
κ of nodes of G ′

u,v as
′
κ =

(
∪

ν ′
1

i=1 ∪a
j=1{x

j

i
} ∪ Sν2

)
\ Tκ . Note that we know all the

elements of
′
κ and λ′

κ = |
′
κ | = (aν ′

1 + ν2) − κ . In particular, this means that we can sample a node from
′
κ

uniformly at random.

(vi) For a new query (y�, s), we have the following cases.

� Case I: κ ≥ ν1κ ≥ ν1κ ≥ ν1 . In this case, ν ′
1 = ν1 ,

′
κ =
κ and λ′

κ = λκ . We select as our answer to the query a node

uniformly at random from
′
κ , and update all relevant sets and counters appropriately.

� Case II: κ < ν1κ < ν1κ < ν1 . In this case, ν ′
1 < ν1 , and ϕ > 0. We simulate the query as follows.

• We make a new query (y�, s) on Gu,v giving us a node xp ∈ � for p ∈ {ν ′
1 + 1, . . . , ν1} with probability 1/ϕ.

We select j ∈ {1, . . . , a} uniformly at random giving us a node x
j
p .

• We sample a node from {x
j
p} ∪
′

κ based on the following probability distribution and update all relevant

sets and counters appropriately:

Pr[x
j
p is selected] =

aϕ
λκ

∀ x
j

i
∈
′

κ : Pr[x
j

i
is selected] = 1

λκ

Note that Pr[x
j

i
∈
κ \
′

κ is selected] = 1
aϕ ×

aϕ
λκ

= 1
λκ

, as desired. To verify that all the probabilities add up

to 1, note that Pr[x
j
p is selected] +

∑
x
j
i
∈
′

κ
Pr[x

j

i
∈
′

κ is selected] =
a(ν1−ν ′

1)

aν1+ν2−κ + (aν ′
1 +ν2 −κ) × 1

aν1+ν2−κ =

1. �

15

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

6. Computing CG (v) and Cavg(G) using “black box” additive approximation algorithms for CG (e)

In this section we provide efficient local algorithms to compute CG (v) and Cavg(G). The following assumptions are used

by our algorithms:

� For a fixed r, we have an efficient local algorithm B for an additive r-approximation, say Cr

G(e), of CG(e) for an edge e.

� We have access to the neighbor query model mentioned in Section 5.2.

Lemma 8. With probability at least 2/3 the following two claims hold.

(a) We can compute an additive 2r-approximation of CG(v) using O (1/r2) neighbor queries and O (1/r2) invocations of algorithm

B on the edges incident on v, and

(b) If the degrees of all the nodes of G are known then we can compute an additive 2r-approximation of Cavg(G) using O (1/r2)

neighbor queries and O (1/r2) invocations of algorithm B over all edges in G.

Proof. (a) Let k be a parameter to be specified later. We use k′ = min{k, degG(v)} neighbor queries to get k′ nodes adjacent

to v , say u1, . . . , uk′ , compute Cr

G(v, u1), . . . , C
r

G(v, uk′) using algorithm B, and return C̃G(v) = 1
k′

∑k′

j=1 C
r

G(v, u j) as our

answer.

If k > degG(v) then CG(v) = 1
k′

∑k′

j=1 CG(v, u j) and thus C̃G(v) is in fact an additive r-approximation of CG(v). Other-

wise, assume that k ≤ degG(v) and therefore k′ = k. For any number x, we use the notation x � ρ to indicate a number y

that satisfies x ≤ y ≤ x + ρ . Observe that

E
[
C̃G(v)

]
=

1

k

k∑

j=1

E
[
C
r

G(v,u j)
]
=

1

k

k∑

j=1

∑

u∈NbrG (u)

(CG((u, v))� r) ×
1

degG(v)

=
1

k

k∑

j=1

(CG(v)� r) = CG(v)� r

Since the 1
k
C
r

G(v, u j)’s are mutually independent for j = 1, . . . , k, and each 1
k
C
r

G(v, u j) lies in the interval [−2/k, 1/k] (cf.

see Section 2.3), applying Hoeffding’s inequality [43, Theorem 2] we get

Pr[C̃G(v) > CG(v) + 2r] ≤ Pr[C̃G(v) > E[C̃G(v)] + r]

< exp

(
− 2r2∑k

i=1(2/k−(−1/k))2

)
= exp

(
− 2

9
k2r2

)

Setting k = �(r−2) we get Pr[C̃G(v) > CG(v) + 2r] < 1/3.

(b) The algorithm and its proof is very similar to those in (a). For this case, we need to randomly sample k′ =

min{O (1/r2), |E|} edges e1, . . . , ek′ from E , compute Cr

G(e1), . . . , C
r

G(ek′) using algorithm B, and return 1
k′

∑k′

j=1 C
r

G(e j) as

our answer. The only remaining part of the proof is to show how to sample an edge uniformly at random from the set of

edges E of G . Since the degrees of all nodes are known, the following procedure can be used. We first select a node x ∈ V

with probability
degG (x)∑
z∈V degG (z)

, then we select a random neighbor of x, say y, using one neighbor query, and finally we select

the edge {x, y}. The proof is completed by observing that

Pr[{u, v} ∈ E is selected] = Pr[x ∈ V is selected] × Pr[y ∈ NbrG(x) is selected]

+ Pr[y ∈ V is selected] × Pr[x ∈ NbrG(y) is selected]

=
degG (x)∑
z∈V degG (z)

× 1
degG (x)

+
degG (y)∑
z∈V degG (z)

× 1
degG (y)

= 1
|E|

�

7. Concluding remarks

We hope that this paper will stimulate further attention from computer scientists concerning the exciting interplay

between notions of curvatures from network and non-network domains. An obvious candidate for future research is im-

provement of the query complexities for local algorithms for computing the Ollivier-Ricci curvature for networks. Another

possible future research direction is to investigate computational complexity issues of other discretizations of Ricci curva-

tures. For example, another discretization of Ricci curvature for networks proposed by Ollivier and Villani [44] is guided

by the observation that the infinite-dimensional version of the well-known Brunn-Minkowski inequality over Rn [45] can

be tightened in the presence of a positive curvature for a smooth Riemannian manifold [46,47]. To our knowledge, these

discretizations have largely escaped computational complexity considerations.

16

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Appendix A. A self-contained proof of Fact 1

Let degG(u) = degG(v) = α. Build a directed single-source single-sink flow network [48] G
f
u,v from Gu,v in the following

manner: add a new source node s and a new sink node t , add an arc (directed edge) from s to every node of LGu,v of

weight zero and capacity 1, add an arc from every node of RG
u,v to t of weight zero and capacity 1, orient every edge

{u′, v ′} of Gu,v from u′ to v ′ and set its capacity to 1. Since |LGu,v | = |RG
u,v | = α + 1, we have P G

u (u′) = P G
v (v ′) = 1

α+1
for all

u′ ∈ Nbr
G(u) ∪ {u} and v ′ ∈ Nbr

G(v) ∪ {v}. Thus, since Gu,v is a complete bipartite graph, by a simple scaling it follows that

Emd Gu,v (P
G
u , P G

v) = M
α+1

where M is the total weight of a minimum-weight maximum s-t flow on G
f
u,v . Since the node-

arc incidence matrix of a directed graph is totally unimodular, the flow value of every arc of any extreme-point optimal

solution of the minimum-weight maximum s-t flow on G
f
u,v is integral and therefore 0 or 1 (see Theorem 13.3 and its

corollary in [48]). This integrality of flow values and the fact that Gu,v is a complete bipartite graph imply M is also the

total weight of a minimum-weight perfect matching of Gu,v .

We now show that there is such a minimum-weight perfect matching that uses all the zero-weight edges {u′, u′} for

all u′ ∈ {u, v} ∪
(

NbrG(u) ∩ NbrG(v)
)
. For a contradiction, suppose that the edge {u′, u′} is not used for some u′ ∈ {u, v} ∪

(NbrG(u) ∩ NbrG(v))}. Since our solution is a perfect matching, the nodes u′ ∈ LGu,v and u′ ∈ RG
u,v must be matched to some

other nodes, say to nodes v ′′ ∈ RG
u,v and u′′ ∈ LGu,v , respectively. Then, if we instead use the edges {u′, u′} and {u′′, v ′′} then

using the triangle inequality it follows that the total weight of this modified perfect matching is no more than that of the

original perfect matching since:

wG
u,v(u

′,u′) + wG
u,v(u

′′, v ′′) = wG
u,v(u

′′, v ′′) ≤ wG
u,v(u

′′,u′) + wG
u,v(u

′,u′) + wG
u,v(u

′, v ′′)

= wG
u,v(u

′′,u′) + wG
u,v(u

′, v ′′)

References

[1] M.R. Bridson, A. Häfliger, Metric Spaces of Non-Positive Curvature, 1st edition, Springer-Verlag, Berlin Heidelberg, 1999.
[2] M. Berger, A Panoramic View of Riemannian Geometry, 1st edition, Springer-Verlag, Berlin Heidelberg, 2003.
[3] R. Albert, B. DasGupta, N. Mobasheri, Topological implications of negative curvature for biological and social networks, Phys. Rev. E 89 (2014) 032811,

https://doi .org /10 .1103 /PhysRevE .89 .032811, https://link.aps .org /doi /10 .1103 /PhysRevE .89 .032811.
[4] T. Chatterjee, R. Albert, S. Thapliyal, N. Azarhooshang, B. DasGupta, Detecting network anomalies using Forman-Ricci curvature and a case study for

human brain networks, Sci. Rep. 11 (2021), https://doi .org /10 .1038 /s41598 -021 -87587 -z.
[5] E. Jonckheere, M. Lou, F. Bonahon, Y. Baryshnikov, Euclidean versus hyperbolic congestion in idealized versus experimental networks, Internet Math.

71 (2011) 1–27, https://doi .org /10 .1080 /15427951.2010 .554320.
[6] J. Sia, E. Jonckheere, P. Bogdan, Ollivier-Ricci curvature-based method to community detection in complex networks, Sci. Rep. 9 (2019) 9800, https://

doi .org /10 .1038 /s41598 -019 -46079 -x.
[7] A.K. Simhal, K.L.H. Carpenter, S. Nadeem, J. Kurtzberg, A. Song, A. Tannenbaum, G. Sapiro, G. Dawson, Measuring robustness of brain networks in autism

spectrum disorder with Ricci curvature, Sci. Rep. 10 (2020) 10819, https://doi .org /10 .1038 /s41598 -020 -67474 -9.
[8] P. Elumalai, Y. Yadav, N. Williams, E. Saucan, J. Jost, A. Samal, Graph Ricci curvatures reveal atypical functional connectivity in autism spectrum disorder,

bioRxiv, https://doi .org /10 .1101 /2021.11.28 .470231, 2021, URL https://www.biorxiv.org /content /early /2021 /12 /21 /2021.11.28 .470231.
[9] B. Chow, F. Luo, Combinatorial Ricci flows on surfaces, J. Differ. Geom. 63 (1) (2003) 97–129, https://doi .org /10 .4310 /jdg /1080835659.

[10] Y. Ollivier, A visual introduction to Riemannian curvatures and some discrete generalizations, in: G. Dafni, R.J. McCann, A. Stancu (Eds.), Analysis and
Geometry of Metric Measure Spaces, Montréal, 2011, in: Lecture Notes of the 50th Séminaire de Mathématiques Supérieures (SMS), vol. 56, American
Mathematical Society, Providence, RI, USA, 2013, pp. 197–219, https://hal .archives -ouvertes .fr /hal -00858008, 2013.

[11] Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal. 256 (2009) 810–864, https://doi .org /10 .1016 /j .jfa .2008 .11.001.
[12] Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, in: M. Kotani, M. Hino, T. Kumagai (Eds.), Advanced Studies in Pure

Mathematics, vol. 57, Mathematical Society of Japan, 2010, pp. 343–381.
[13] Y. Ollivier, Ricci curvature of metric spaces, C. R. Math. 345 (11) (2007) 643–646, https://doi .org /10 .1016 /j .crma .2007.10 .041, https://www.sciencedirect .

com /science /article /pii /S1631073X07004414.
[14] B. DasGupta, M.V. Janardhanan, F. Yahyanejad, Why did the shape of your network change? (on detecting network anomalies via non-local curvatures),

Algorithmica 82 (7) (2020) 1741–1783, https://doi .org /10 .1007 /s00453 -019 -00665 -7.
[15] B. DasGupta, M. Karpinski, N. Mobasheri, F. Yahyanejad, Effect of Gromov-hyperbolicity parameter on cuts and expansions in graphs and some algo-

rithmic implications, Algorithmica 80 (2) (2018) 772–800, https://doi .org /10 .1007 /s00453 -017 -0291 -7.
[16] I. Benjamini, Expanders are not hyperbolic, Isr. J. Math. 108 (1998) 33–36, https://doi .org /10 .1007 /BF02783040.
[17] J. Chalopin, V. Chepoi, F.F. Dragan, G. Ducoffe, A. Mohammed, Y. Vaxès, Fast approximation and exact computation of negative curvature parameters of

graphs, Discrete Comput. Geom. 65 (2021) 856–892, https://doi .org /10 .1007 /s00454 -019 -00107 -9.
[18] H. Fournier, A. Ismail, A. Vigneron, Computing the Gromov hyperbolicity of a discrete metric space, Inf. Process. Lett. 115 (6) (2015) 576–579, https://

doi .org /10 .1016 /j .ipl .2015 .02 .002.

17

B. DasGupta, E. Grigorescu and T. Mukherjee Theoretical Computer Science 975 (2023) 114127

[19] R. Forman, Bochner’s method for cell complexes and combinatorial Ricci curvature, Discrete Comput. Geom. 29 (3) (2003) 323–374, https://doi .org /10 .
1007 /s00454 -002 -0743 -x.

[20] R.P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, A. Samal, Forman curvature for complex networks, J. Stat. Mech. Theory Exp. 2016 (6) (2016) 063206,
https://doi .org /10 .1088 /1742 -5468 /2016 /06 /063206.

[21] R.P. Sreejith, J. Jost, E. Saucan, A. Samal, Systematic evaluation of a new combinatorial curvature for complex networks, Chaos Solitons Fractals 101
(2017) 50–67, https://doi .org /10 .1016 /j .chaos .2017.05 .021, https://www.sciencedirect .com /science /article /pii /S0960077917302102.

[22] M. Weber, E. Saucan, J. Jost, Characterizing complex networks with Forman-Ricci curvature and associated geometric flows, J. Complex Netw. 5 (4)
(2017) 527–550, https://doi .org /10 .1093 /comnet /cnw030.

[23] A. Samal, R.P. Sreejith, J. Gu, S. Liu, E. Saucan, J. Jost, Comparative analysis of two discretizations of Ricci curvature for complex networks, Sci. Rep. 8
(2018) 8650, https://doi .org /10 .1038 /s41598 -018 -27001 -3.

[24] M. Gromov, Hyperbolic groups, in: S.M. Gersten (Ed.), Essays in Group Theory, vol. 8, Springer, New York, NY, 1987, pp. 75–263.
[25] V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxès, Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs, in:

Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, SCG ’08, Association for Computing Machinery, New York, NY, USA,
2008, pp. 59–68.

[26] F. Papadopoulos, D. Krioukov, M. Boguna, A. Vahdat, Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces, in:
2010 Proceedings IEEE INFOCOM, 2010, pp. 1–9.

[27] Y. Yoshida, M. Yamamoto, H. Ito, Improved constant-time approximation algorithms for maximum matchings and other optimization problems, SIAM
J. Comput. 41 (4) (2012) 1074–1093, https://doi .org /10 .1137 /110828691.

[28] Y.T. Lee, A. Sidford, Efficient inverse maintenance and faster algorithms for linear programming, in: 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, 2015, pp. 230–249.

[29] K. Quanrud, Approximating optimal transport with linear programs, in: J.T. Fineman, M. Mitzenmacher (Eds.), 2nd Symposium on Simplicity in Al-
gorithms (SOSA 2019), in: OpenAccess Series in Informatics (OASIcs), vol. 69, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2018, 6, http://drops .dagstuhl .de /opus /volltexte /2018 /10032.

[30] P. Dvurechensky, A. Gasnikov, A. Kroshnin, Computational optimal transport: complexity by accelerated gradient descent is better than by Sinkhorn’s
algorithm, in: J. Dy, A. Kraus (Eds.), Proceedings of the 35th International Conference on Machine Learning, in: Proceedings of Machine Learning
Research, vol. 80, PMLR, 2018, pp. 1367–1376, https://proceedings .mlr.press /v80 /dvurechensky18a .html.

[31] N. Azarhooshang, P. Sengupta, B. DasGupta, A review of and some results for Ollivier-Ricci network curvature, Mathematics 8 (1416) (2020), https://
doi .org /10 .3390 /math8091416.

[32] G. Peyré, M. Cuturi, Computational optimal transport: with applications to data science, Found. Trends Mach. Learn. 11 (5–6) (2019) 355–607, https://
doi .org /10 .1561 /2200000073.

[33] A.L. Gibbs, F.E. Su, On choosing and bounding probability metrics, Int. Stat. Rev. (Revue Internationale de Statistique) 70 (3) (2002) 419–435, https://
doi .org /10 .2307 /1403865, http://www.jstor.org /stable /1403865.

[34] V.V. Williams, On some fine-grained questions in algorithms and complexity, in: Proceedings of the International Congress of Mathematicians (ICM
2018), 2019, pp. 3447–3487.

[35] A. Abboud, F. Grandoni, V.V. Williams, Subcubic equivalences between graph centrality problems, APSP and diameter, in: Proceedings of the Twenty-

Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, Society for Industrial and Applied Mathematics, USA, 2015, pp. 1681–1697.
[36] M. Patrascu, Towards polynomial lower bounds for dynamic problems, in: Proceedings of the Forty-Second ACM Symposium on Theory of Computing,

STOC ’10, Association for Computing Machinery, New York, NY, USA, 2010, pp. 603–610.
[37] L. Lee, Fast context-free grammar parsing requires fast Boolean matrix multiplication, J. ACM 49 (1) (2002) 1–15, https://doi .org /10 .1145 /505241.

505242.

[38] M. Parnas, D. Ron, Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms, Theor. Comput. Sci. 381 (1)
(2007) 183–196, https://doi .org /10 .1016 /j .tcs .2007.04 .040, https://www.sciencedirect .com /science /article /pii /S0304397507003696.

[39] K. Onak, D. Ron, M. Rosen, R. Rubinfeld, A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size, in: Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2012, pp. 1123–1131.

[40] K.D. Ba, H.L. Nguyen, H.N. Nguyen, R. Rubinfeld, Sublinear time algorithms for Earth Mover’s distance, Theory Comput. Syst. 48 (2) (2011) 428–442,
https://doi .org /10 .1007 /s00224 -010 -9265 -8.

[41] A. McGregor, D. Stubbs, Sketching Earth-Mover distance on graph metrics, in: P. Raghavendra, S. Raskhodnikova, K. Jansen, J.D.P. Rolim (Eds.), Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, in: Lecture Notes in Computer Science, vol. 8096, Springer, Berlin,
Heidelberg, 2013, pp. 274–286.

[42] A.C.-C. Yao, Probabilistic computations: toward a unified measure of complexity, in: 18th Annual Symposium on Foundations of Computer Science,
1977, pp. 222–227.

[43] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58 (301) (1963) 13–30, http://www.jstor.org /stable /
2282952.

[44] Y. Ollivier, C. Villani, A curved Brunn–Minkowski inequality on the discrete hypercube, or: what is the Ricci curvature of the discrete hypercube?, SIAM
J. Discrete Math. 26 (3) (2012) 983–996, https://doi .org /10 .1137 /11085966X.

[45] R.J. Gardner, The Brunn-Minkowski inequality, Bull. Am. Math. Soc. 39 (3) (2002) 355–405, https://doi .org /10 .1090 /S0273 -0979 -02 -00941 -2.
[46] D. Cordero-Erausquin, R.J. McCann, M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146

(2001) 219–257, https://doi .org /10 .1007 /s002220100160.
[47] D. Cordero-Erausquin, R.J. McCann, M. Schmuckenschläger, Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal

transport, Ann. Fac. Sci. Toulouse Math. Ser. 6 15 (4) (2006) 613–635, https://doi .org /10 .5802 /afst .1132, https://afst .centre -mersenne .org /articles /10 .
5802 /afst .1132/.

[48] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Inc., NJ, USA, 1982.

18

	On computing discretized Ricci curvatures of graphs: Local algorithms and (localized) fine-grained reductions
	1 Introduction
	1.1 Motivations behind studying shapes of networks
	1.2 Brief history of existing notions of shapes for networks
	1.3 Basic definitions and notations

	2 Ollivier-Ricci curvatures: intuition, definitions and simple bounds
	2.1 Intuition behind the discretization resulting in definition of CG(e)
	2.2 Equivalent reformulation of linear program (LP-CG) when degG(u)=degG(v)
	2.3 Some simple bounds for EmdGu,v(Pu,Pv) and CG(e)

	3 Synopsis of our results
	4 Fine-grained reduction: relating minimum weight perfect matching on complete bipartite graphs to computing CG(e)
	5 Computing CG(e) in the framework of local algorithms
	5.1 Prior related works
	5.2 Query models for edge-weighted complete bipartite graphs
	5.3 Summary of our query bounds on computing CG(e)
	5.4 Lower bounds on number of queries for computing CG(e)
	5.5 Upper bounds on number of queries for computing CG(e) when deg(u)=deg(v)
	5.6 Upper bounds on number of queries for computing CG(e) when deg(u)∕=deg(v) using ‘‘localized’’ fine-grained reduction

	6 Computing CG(v) and Cavg(G) using ‘‘black box’’ additive approximation algorithms for CG(e)
	7 Concluding remarks
	Declaration of competing interest
	Data availability
	Appendix A A self-contained proof of Fact 1
	References

