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Diffusion-mediated binding of molecules under the influence of discrete spatially confining poten-
tials is a commonly encountered scenario in systems subjected to explicit fields or implicit fields
arising from tethering restraints. Here, we derive analytical expressions for the mean binding time
of two random walkers geometrically confined by means of two harmonic potentials in one and two
dimensional systems, which show excellent agreement with Brownian dynamics simulations. As
demonstration of its utility, we use this theory to maximize the communication speed in existing
DNA walkers, obtaining quantitative agreement with previously reported experimental findings.
The analytical expressions derived in this work are broadly applicable to diverse systems, providing
new ways to characterize communication processes and optimize the rate of signal propagation for
sensing and computing applications at the nanoscale.

I. INTRODUCTION

Diffusion-mediated molecular binding events play a
central role in biology, catalysis, molecular sensing, med-
ical diagnostics, and nanotechnology [1, 2]. A commonly
encountered scenario is that of a freely diffusing parti-
cle binding to a fixed target, and the problem of pre-
dicting its associated binding time has attracted much
theoretical interest [3]. Due to the stochastic nature of
both diffusion and binding, a probabilistic approach is
required to characterize binding times, usually in terms
of their distribution and mean. This typically entails
deriving a differential equation governing the “survival”
probability of the particle [1], and solving the resulting
equation in the diffusion domain Q C R with appropri-
ate boundary conditions that reflect the geometry and
nature (absorbing, partly absorbing, or reflecting) of the
boundary and the target. Such formalism has been ap-
plied to a wide spectrum of problems, ranging from basic
ones involving geometrically simple domains whose en-
tire boundaries serve as targets [4, 5], to more complex
ones involving: small targets on the domain boundary
(narrow-escape problem [6]); multiple targets on a sur-
face [7]; infinite periodic lattices of particles and targets
[8]; non-convex domain geometries such as networks and
fractals [9]; anomalous diffusion due to crowding or vis-
coelastic effects [10]; coupled diffusive processes in multi-
ple dimensions [11]; and external biasing potentials [12].

There exists another binding scenario—that of diffus-
ing particles binding to each other instead of to fixed
targets—which has received far less attention [13]. The
first attempt at solving the binding rate for this bimolec-
ular scenario can be traced back to the works of Smolu-
chowski [14], who reduced a system of two species of
freely diffusing particles in an infinite domain into an ef-
fective one-walker scenario, wherein a single walker (rep-
resenting the distance between the two original walkers)
diffuses towards a fixed target. In the presence of domain
boundaries, the additional length and timescales associ-
ated with particle collisions with the boundaries gener-

ally make unsuitable such approaches used to estimate
binding rates for free diffusion [13, 15]. However, when
the explicit physical confinement is replaced by a more
implicit confinement due to the action of an external op-
tical, electric, or magnetic field [16], or due to soft physi-
cal attachment of the particle (for instance, via polymer
tethers [17]), some of these approaches may still be sal-
vaged [18]. While advances in modeling binding under
such confinement have been made [19], no explicit expres-
sions for the mean binding time of two particles diffusing
in independent harmonic potentials have been reported
to this date. In this work, such expressions are derived
for one and two dimensional systems by combining the
approach proposed by Smoluchowski to reduce the di-
mensionality of the system with a first passage time ap-
proach introduced by Szabo et al. [20]. These expressions
are compared against discrete-space and continuous-time
Brownian dynamics simulations [21], showing excellent
agreement. To show how these expressions can be used
to study real-life molecular binding processes, explicit es-
timates for the mean binding time of a system of com-
municating DNA walkers introduced by Li et al. [22] are
derived, providing theoretical insight into how to enhance
signal propagation and revealing a reaction-limited upper
bound for the communication speed of this nanotechnol-
ogy only suggested experimentally heretofore. While we
use binding of DNA walkers as one illustration of the use-
fulness of our proposed theory, the scope of our theory
extends much further than this example. The spread of
infections in animal motion from home ranges [19], the
kinetics of V-DJ recombination in chromatin [23], the
modulation of protein-ligand activity through tethering
of binding agents [24], and molecular detection through
tethered particle sandwich assays [25], all these processes
involve the binding of partners diffusing within confining
potentials, and their dynamics could be treated using the
formalism introduced in this article.



II. ANALYTICAL MODEL

A. Derivation in one dimension

Consider two identical random walkers of diffusion co-
efficient D moving in one dimension (d = 1) around at-
tractive centers located at xop = 0 and z; = a (> 0),
respectively. By modeling the attraction to these cen-
ters through identical harmonic potentials with second
derivative k, the joint probability of finding the particles
at positions x and ' is given by
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where 8 = 1/kpT is the reciprocal of the thermal energy.
Writing ' = x + r, integrating the probability over all
values of z, and normalizing the result for r € [e, +o0],
where € is the distance at which the walkers bind (or
react), the probability density for a distance r between
the walkers is given by
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where erfc is the complementary error function. This
probability density is displayed in Fig. 1 for different
separations a of the attracting centers. As the particles
prefer to be located at the centers of their respective har-
monic wells, a maximum is found at r = a.

We note that the effect of this bias on the binding dy-
namics of two walkers is similar to that of an external
potential U(r) = 7%111[@(7")] on the dynamics of a single
one-dimensional walker moving as the distance between
the two walkers r € [¢, +00]. The problem of finding the
mean binding time 7 of the two walkers then becomes
equivalent to that of determining the mean first pas-
sage time (MFPT) of a one-dimensional walker through
a partially absorbing wall at » = €. Since this exter-
nal potential is confining to the walker (U — +oco as
r > a), the MFPT is expected to be finite. Assuming
Boltzmann-distributed initial positions of the walker, the
MFPT through the wall is given by [20]
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where a diffusion coefficient of 2D is imposed, as our new
walker exhibits a mean square displacement in coordinate
r that is twice that of the original walkers in coordinates x
and 2’ [1]. The parameter « (in units of length per time)
accounts for the reactivity of the wall: when kK — oo the
walkers bind instantly upon first contact, while for xk = 0
the walkers are reflected back at every encounter [26, 27].

Decomposing the MFPT obtained from Egs. 2 and 3 as
T = Tp+74x, where the first term represents the MFPT to
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FIG. 1. Probability density Q(r) of observing two random
walkers a distance r apart in d = 1 (dashed lines) and d = 2
(solid lines) for e = 0. For d =2, Q — 0 as r — 0 due to van-
ishing entropy (Jacobian factor) with r in dimensions higher
than one. Inset: Illustration of two walkers in 2D diffusing
in distinct harmonic wells whose centers are a distance a = 4
apart. In all plots Sk is set equal to 1.

a fully absorbing wall and the second term accounts for
reflections on a partially absorbing one, and normalizing
all lengths and times by 1/+/Bk and 1/2Dpk, we find
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where a* = \/Bka, € = \/Bke, 1}, = 2DBkrp, T =
2DBkT., \* = 2D\/Bk/k, and a* = a* — ¢*. For small
values of \*, binding is diffusion limited and the MFPT
is determined merely by the first encounter time of the
walkers 75,. For moderate or large values of A\*, the
MFPT depends on the first encounter of the two walkers
and all subsequent excursion times in the domain.
Figures 2a and 2b display 7}, and 7;} as a function of
e* for multiple values of a*. As expected, both times
decay with increasing binding distance € of the walkers.
Furthermore, because 7p and 7, are functions of the dif-
ference in a and € (Egs. 4a and 4b), changes in a merely
shift the binding time curve laterally in the e direction
without changing its shape. Interesting conclusions can
also be drawn by analyzing the limiting behaviors of 7p
and 7, at a* =~ 0 (two walkers diffusing in the same po-
tential) and o* > 1 (two walkers diffusing in potentials
whose centers are far apart). Estimating the integral in
Eq. 4a by its value from 0 to infinity for a* ~ 0 and
using the imaginary error function for a* > 1, we obtain
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While the first encounter time decreases with the diffu-
sion coefficient as D~ (and so does the tail of the survival
probability, which may be estimated by S(t) ~ e */7
[20]), the behavior with respect to v/ is non-monotonic:
steep potentials expedite encounters for small separations
and hinder them for larger ones (Fig. 2c). As 7, includes
the dynamics of the walkers upon reflection, this behav-
ior with /Bk is also observed for 7., as shown in Fig. 2d.
Detailed derivations of Egs. 2-5 can be found in Sec. 1
of [28].

B. Derivation in two dimensions

The approach introduced above can be extended to
the case of two random walkers (of diffusion coefficients
D) moving in two dimensions (d = 2) within harmonic
potentials (of second derivative k£ in both dimensions)
centered at ro = (0,0) and r{, = (a,0), respectively. The
joint probability of finding our particles at positions (z, y)
and (z,y’) is given by
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FIG. 2. Variation of the mean binding time with binding
distance and steepness of potential: (a,b) Components 77,
and 75 /A" as a function of €* for d = 1 (dashed lines) and
d = 2 (solid lines). (c,d) 7p and 7. /A = 7.k+/BE as a function
of Bk for different values of a with D =1 and x = 1 (dashed
lines for d = 1 and € = 0, solid lines for d = 2 and € = 0.1).
All other lines (colored black) represent analytical asymptotes
(large a® approximations evaluated at a = 2, X = 1). In
(c), squares (1D) and circles (2D) represent average MFPTs
obtained from 100 Brownian simulations carried out for each
set of parameters with D = 1 and a spatial mesh spacing of
A =1/20, as described in Sec. 3 of [28]

Writing the position of the walker moving around a in
a system of polar coordinates centered on the walker
moving around the origin [z' = z 4 rcos(d) and ¢y’ =
y+rsin(f)] and integrating over all values of z, y, and 6,
an effective orientationally averaged probability density
devoid of any anisotropy is derived, which characterizes
the probability density for observing a distance r between
the walkers,
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where Iy is the modified Bessel function of the first kind
and order zero (see Sec. 2.1 of [28] for a detailed deriva-
tion of Eq. 7). Fig. 1 shows Q(r) for different values of
a. Except for the zero intercept at r = 0, this density
exhibits strong similarity with that of one-dimensional
walkers. Substituting our radially symmetric distribu-
tion function (Eq. 7) in Eq. 3, normalizing all lengths
by 1/+/Bk, all times by 1/2Dfk, and decomposing the
MFPT as 7" = 7, + 7, we obtain
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The two components are plotted in Figs. 2a and 2b
as a function of €* for multiple values of a*. While these
expressions were numerically determined, we will study a
few limiting cases to uncover scalings of the mean binding
time. In the limit of two walkers moving in the same
interval (a* — 0), 7 simplifies to
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which decreases with increasing +/Bk, as in the d = 1
case. While collisions happen in finite times for any con-
fined domain in one dimension, there is a vanishing prob-
ability of finding a point in dimensions higher than one
[19], and thus 7 blows up as € — 0 for d = 2. For large
a* and small €*, the mean binding time scales as
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for a suitable value of X found to be between 1/1/Bk and
2/+/Bk that best approximates the behavior of Eq. 8a (see
Sec. 2.2 of [28] for details). These expressions show that,
for large values of a*, T rises sharply with increasing v/8k
(also see Fig. 2¢), as in the d = 1 case, and it blows up
as € — 0. This behavior with /Bk is also observed for
Tk, as shown in Fig. 2d.



An underlying hypothesis here is that the MFPT de-
rived from an ensemble-average of the MFPTs associ-
ated with Boltzmann-distributed initial positions of the
two walkers in the original 4-dimensional potential en-
ergy surface can be approximated by the MFPT of an
ensemble-averaged effective energy landscape describing
the probability distribution of the distance between the
walkers. This same hypothesis was considered by Bell
and Terentjev [18] to characterize the rate of binding of
a grafted polymer to a surface receptor. The accuracy of
this hypothesis was tested by comparing our analytical
MFPTs for the d = 1 and d = 2 scenarios against explicit
overdamped Brownian dynamics simulations of random
walkers in discrete space and continuous time using a re-
cently proposed algorithm [21]. This comparison shown
in Fig. 2¢, and in Sec. 3 of [28], indicates excellent agree-
ment between theory and simulations.

IIT. APPLICATION TO DNA
NANOTECHNOLOGY

To demonstrate the utility of the model developed
here, we apply it to quantify the communication speed
of the “DNA acrobats” introduced by Li et al. [22],
and make use of the non-monotonic behavior of 7 seen
in Figs. 2c and 2d to optimize these nanostructures
for faster communication. These short DNA molecules,
roughly 10 to 20 bp long and tethered to a DNA
origami platform through a 3-nucleotide stretch of ss-
DNA (Fig. 3a), transport a particular strand of DNA
along neighboring acrobats through strand-displacement
reactions [29] initiated at the non-tethered end of the
donor molecule. The stiffness of the foothold introduces
a bias in the positions sampled by this free end, which
may be approximated by means of a harmonic potential
(Fig. 3b). Due to their short length (much smaller than
persistence length of dsDNA), these molecules are rela-
tively rigid and sample conformations on a hemispherical
surface (Fig. 3c). The binding-time expressions derived
here for harmonically restrained two-dimensional walkers
should then model well the kinetics of strand exchange
between a pair of molecules which communicate through
their non-tethered ends, a process that can be idealized as
a reaction between these ends diffusing in separated but
identical two-dimensional quadratic energy landscapes,
or between two molecules which communicate end-to-
foothold, a process that can be idealized as a reaction be-
tween a non-tethered end diffusing in a two-dimensional
quadratic energy landscape and a fixed target.

Several parameters of the model need to be determined
before our theory can be applied to this system. The
standard deviation o of the displacement of the free end
of an acrobat around its mean position (which then yields
the stiffness of the harmonic potential via k = 1/802)
and its intrinsic diffusion coefficient D are both obtained
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from coarse-grained simulations [30, 31], as shown in
Sec. 4 of [28]. Such accurate modeling of the foothold
via simulations was required because the interactions be-
tween the surface and the tethered end of the acrobat can
dramatically influence the dynamics of the non-tethered
end [32].

The remaining parameter, , can be roughly estimated
through flux balance from the bimolecular rate constant
kon of the displacement reaction in solution. For a lo-
cal concentration of invading strands ¢y (approximated
by the bulk one), the total flux J of these strands (in
units of molecules per unit time) across a surface of ra-
dius € is given by J = &k le|=e cods, which can be written
as 4me?cok. As strand displacement proceeds when the
molecules are within a distance e, removing molecules
at a frequency of k,,co, the total flux is given by J =
(konco)(3medco) and, therefore, k = kopnco€/3. Using the
phenomenological model of reversible toehold exchange
derived by Zhang and Winfree [29, 33], kon = kX Dpmatoe
where k¢ ~ 3x10% M~'s™! is their fitted rate constant for
toehold hybridization and pyy,|iee is the probability of a
successful completion of branch migration once this pro-
cess has been initiated (see Appendix A.I). It is then eas-
ily shown that the communication between DNA walkers
is severely reaction limited as \* = 2D+/Bk/k > 1 under
the experimental conditions of interest (co = 10~* M,
o> 1nm, e <a~7nmand Pym|re < 1 [22]).

Using Eq. 10b for the reaction-limited binding sce-
nario, a linear communication speed may be defined as
a/Ty ~ g\/aeﬁk/we_%(“_e)z for small values of €* and
large values of a*. This suggests an optimal spacing be-
tween walkers of the order of the standard deviation of
their motion (fluctuations) a =~ €/2 + \/e2/4+ 1/5k =~
€/2 + o for fixed o (obtained via d(a/7:)/0€|, = 0), or
an optimal fluctuation standard deviation o ~ (a—¢)/v/2
for a fixed a (obtained via d(a/7)/0c|, = 0), suggesting
an intrinsic match between walker length and foothold
spacing which maximizes communication speed. While
the foothold spacing on DNA origami platforms has to
be a multiple of a turn of the helix (~3.5 nm), there is
more control over the fluctuation size o, which may be
tuned by changing the length of the DNA walkers (Fig.
3d). In Fig. 3e we evaluate our predicted communica-
tion speeds a/7 under experimental conditions for the
scenario of two walkers binding with constant reactiv-
ity & through their non-tethered ends (solid blue -dark-
line) along with three other scenarios introduced further
below. While branch migration models alone provide
results of the same order of magnitude as experiments
[22], they predict an inverse relation between communi-
cation speed and length of the walker, contrary to exper-
imental findings of an optimal length which maximizes
communication speed. In contrast, such a maximum in
communication speed is correctly captured by our model
(Eq. 10b), which shows a minimum in the binding time
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FIG. 3. Application to DNA acrobats: (a) 19-bp long DNA walker simulated through oxDNA. (b) Histogram of the position
of the free end of this walker with respect to its foothold along two orthonormal axes parallel to the DNA origami platform.
Fitting to a normal distribution (dashed lines) yields a standard deviation of o = 3.5 nm. (c) Positions sampled by the free
end follow a roughly hemispherical surface. (d) Standard deviation of the motion of free ends for walkers of different lengths
(symbols). Dashed line denotes linear fit to data. (e) Comparison of theoretical and experimental communication speeds for
a = 7 nm, ¢ = 2 nm (roughly the diameter of a dsDNA molecule) and different experimentally tested dsDNA lengths. Blue
(dark) and green (light) lines correspond to 7, for end-to-end and end-to-foothold communication scenarios. For each case, we

examined length-dependent (dashed) and length-averaged (solid) reactivity .

7, (Fig. 2d) with respect to the stiffness of the confin-
ing potential (directly related to the walker length, as
shown in Fig. 3d). In fact, the location of this maximum
(0 = (a —€)/v2 ~ 3.5 nm corresponding to a 19 bp
walker) coincides with experimental findings.

While this model reproduces well the experimental re-
sults, the probability of a successful completion of branch
migration, and thereby k, generally decreases with the
length of the walker (see Appendix A.I). Also, strands are
typically exchanged across walkers in an end-to-foothold
rather than an end-to-end manner [22]. A model that
incorporates both these effects, that is, a confined two-
dimensional walker binding to a fixed target with vari-
able reactivity k, captures equally well the maximum
and its location in the communication speed versus o plot
(dashed green -light- line, Fig. 3e). Interestingly, employ-
ing a length-dependent reactivity in the two-walker sce-
nario (dashed blue -dark- line) and a length-independent
reactivity in the one-walker scenario (solid green -light-
line) shifts the position of the maximum towards shorter
and longer walker lengths, respectively. The derivation of
binding times for these additional scenarios are provided
in Appendix B.

IV. CONCLUSIONS

In this work, we derived analytical expressions for the
mean binding time of two walkers geometrically con-
fined by means of harmonic potentials, both for one and
two dimensional systems. These expressions were tested

against a recently proposed Brownian dynamics algo-
rithm for the estimation of MFPTs, and were shown to
be in excellent agreement for different parameter regimes.
While the analytical expressions derived here have been
applied in the context of DNA nanotechnology, they open
up avenues for understanding, predicting, and optimizing
the binding or reaction kinetics of molecular systems of
diverse nature under soft confinement, a scenario that
is increasingly being encountered with the development
of field- and chemistry-based approaches for controlling
motion of nanoscopic and colloidal moieties.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the
National Science Foundation (Grant No. CMMI-
1921955) and the Department of Energy (Grant No. DE-
SC0020996), Wolfgang Pfeifer for providing the design
file of the DNA origami platform used in this work, and
the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin for providing HPC re-
sources for carrying out the simulations presented in this
work.



Appendix A. Branch Migration Probability and
Length Dependence

A.I. Model for Toehold-Mediated Strand
Displacement Reactions

Using the phenomenological model of reversible toe-
hold exchange derived by Zhang and Winfree [29, 33],
the bimolecular rate constant k,, can be written as
kon = kf X Dym|toe, Where kj is their fitted rate constant
for toehold hybridization, and pym|s.e is the probability
of a successful completion of branch migration once this
process has been initiated. This probability may be esti-
mated through
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is the calculated unimolecular rate constant for toehold
dissociation with |[AG?| the absolute free energy of bind-
ing between the toehold and its complement, b — 1 is the
number of bases left to displace after the first base has
been displaced, and
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is their fitted rate constant for crossing the “half-way
point” of branch migration. From the literature, ky =
3 x 105 M~1s7! and AG® ~ —5.3 keal/mol for the toe-
hold used in the experiments (AATGAG, whose energy
we approximate to the energy of a weak toehold of length
6 [29]). While b is an integer number, we consider a
continuum approximation b = f(o), where f is the in-
verse of the fitting function which relates the standard
deviation ¢ with the length of the walker [28]. With
these values, we get pym|ioe = 0.044, 0.028 and 0.02 for
branch migrations involving 12, 19 and 26 bases, respec-
tively, and therefore we used py|toe = 0.03 as our length-
independent probability.

A.Il. Effect of Length-Dependence on the Location
of the Maxima

Note that the length-dependence of x shifts the loca-
tion of the maxima. For two moving walkers which bind

in a 2D landscape (and small values of €¢* / large values
of a*),
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and taking the derivative of this expression with respect
to o, we can find the values of ¢ which maximize speed
by solving 2 30 () =0,

krew Of (0)
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which yields the location specified in the main

manuscript for f(o) = 1, and shifts it an amount trivial
to determine numerically for any other values of f(o).

Appendix B. Extension of our Methodology to
Fixed Targets

B.I. One walker binding to a fixed target in 1D

Consider a single walker of diffusion coefficient D mov-
ing in one dimension around an attractive center located
at = 0. By modeling the attraction to this center
through a harmonic potentials with second derivative k,
the probability of finding this particle at a location z is

given by
k
P(x) = (’gﬂ) e~

Measuring the distance of this walker to a fixed target
placed at x = a, and writing x = a + r, the probability
density for a distance r between the walker and the target
is given by
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and the reaction-limited MFPT is nothing more than
Tw = 1/RQ(€).
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B.II. One walker binding to a fixed target in 2D

Consider a single walker of diffusion coefficient D mov-
ing in two dimensions around an attractive center located
at (z,y) = (0,0). By modeling the attraction to this cen-
ter through a harmonic potentials with second derivative
k, the probability of finding this particle at a location
(z,y) is given by

P(z) = (ﬁk> —EE,

- (B.3)



Measuring the distance of this walker to a fixed target
placed at (x,y) = (a,0), and writing x = a + rcos(6),
y = rsin(#) analogous to the two walker case we can show
that the probability density for a distance r between the
walker and the target is given by

re= %I, (Bkar)
f:oo re= %71, (Bkar) dr

Q(r) = (B.4)

and the reaction-limited MFPT is nothing more than
T = 1/KQ(€).
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