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ABSTRACT. We study the discretization of a linear evolution partial differential
equation when its Green’s function is known or well approximated. We provide
error estimates both for the spatial approximation and for the time stepping
approximation. We show that, in fact, an approximation of the Green function
is almost as good as the Green function itself. For suitable time-dependent
parabolic equations, we explain how to obtain good, explicit approximations
of the Green function using the Dyson-Taylor commutator method that we
developed in J. Math. Phys. 51 (2010), n. 10, 103502 (reference [15]). This
approximation for short time, when combined with a bootstrap argument, gives
an approximate solution on any fixed time interval within any prescribed tol-
erance.

1. Introduction. We consider an initial value problem (IVP) of the form
Ouu(t) — L(t)u(t) = f, 0<s<t,
u(s) = h,

where we require u(t) and h to belong to certain Sobolev spaces on RY.

Let us assume f = 0. The solution operator, if it exists, is then U% (¢, s)h = u(t).
It defines what is called an evolution system [1, 43, 48] (we recall the definition of
an evolution system in Definition 2.1). We have

U (2, 5)h] / GE, (. y)h(y)dy (2)

when such a distribution GF,(z,y) exists. We call this distribution Gf,(z,y) the

(1)

Green function of the evolution system UZ. The existence of G under mild conditions
on L(t) follows by the Schwartz Kernel Theorem (see e.g. [16]). (In the cases
considered in this paper, it will be a true function. We shall also say that gt%s(x, Y)
is the Green function of 0y — L. The terminology fundamental solution of Oy — L is
also used for GF,(z,y).)

In this paper we consider the following problems:
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(1) Assuming that the Green function GF (x,y) of the evolution system U* is
known, establish the properties of the approximations of u(t) in suitable dis-
cretization spaces S.

(2) Show that suitable good approximations of the Green function are (almost)
as good as the Green function itself.

(3) Provide a method to find good approximations of the Green function, includ-
ing complete error estimates.

We address the problems above under some mild, customary assumptions. First,
we assume that

N N
L(t) =Y ai(t,2)0;0; + Y _ bi(t, 2)0; + c(t, ), (3)
(2¥] 3
with © = (21,...,xn) € RN, 0, := %, and ¢t € I, where, throughout this paper,
I C [0,00) is an interval containing 0. Most of the results pertaining to points (1)
and (2) above extend to bounded domains Q C R¥ of sufficient regularity under
suitable boundary conditions. However, the Green function approximation in point
(3) changes significantly. Therefore, we choose to work on RY in this paper. The
coeflicients a;;, b;, and c all their derivatives are assumed smooth and bounded
(i.e., they are assumed to be in W*°(RT x RY) = C° (R x RY)). For simplicity,
we assume as well that these coefficients are real and that the resulting matrix is
symmetric, namely a;; = a;; for all 7,5. We impose a uniform strong ellipticity
condition on the operators L(t), meaning that there exists a constant v > 0 such
that

Zaij(tam)figj Z’YH§H27 vt >0, z, §€RN7 g;é() (4)
We collectively denote by L., the class of operators L = (L(t))ier of the form (3)
satisfying the ellipticity condition (4) and the coefficients of which, together with
all their derivatives, are bounded (see Definition 4.1).

Let us discuss in more detail the three main contributions of our work to the
problems (1)-(3)

(1) The contribution to the first problem ( “Assuming that the Green function
Q£S($,y) of the evolution system U is known, to establish the properties of the
approzimations of u(t) in suitable discretization spaces S”) addresses a very nat-
ural question. Even if, theoretically, the knowledge of the initial data h and of
the Green functions G/, (x,y) determines the solution u via integration: wu(t,z) =
IRN gfo(x,y)h(y)dy, applying this result in practice leads to at least two issues.
The first one is that we can store only a finite dimensional space V of potential
solutions and initial data computationally. We thus need to discretize our equa-
tion and to approrimate both the initial data and the solution with elements of
V. Our first result, Theorem 3.3 gives a “proof of concept” result on how such a
discretization (in the space variable) works. The main point of the result is that the
projection error has to decrease in time at the same order as the time itself (unlike
in the time independent case, see Theorem 3.3, especially the Condition 9). In our
setting, we know few error estimates of this kind, but in the general framework of
Finite Difference or Finite Element methods for evolution equations, there are some
similar results [23, 33, 37, 49, 54].

(2) Our contribution to the second problem ( “To show that suitable good approz-
imations of the Green function are (almost) as good as the Green function itself”)
addresses another natural question, which is what kind of approximations of the
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Green functions would be acceptable in case the Green function itself is not known.
Thus, let us assume that an approximate Green function g?s (z,y) is given. We also
assume that the discretization in space is to divide the time interval [0, 7] in n equal
size intervals (in this paper, we will always use this very common discretization).
If the error |G, — §f5|| is of the order of (t — s)®, then we show that the order of
the error due to time discretization (or bootstrap) is of the order n*~%. This shows
that we need a good approximation of the Green function (i.e., & > 1). The boot-
strap method is the one we developed in [13, 14]. It is a common method in Finite
Difference and Finite Element methods [23, 33, 37, 49, 54]. For Green functions, a
similar method was more recently suggested in [41].

A common issue in both space and time discretization (i.e., in (1) and (2)) is
that we need to find error estimates that are at least of the order of (¢t —s) (in fact,
even better for (2)). We know very few earlier results in the line of (1) and (2).

(3) Our contribution to the third problem (“To provide a method to find good
approximations of the Green function, including complete error estimates”) fits into
a very long sequence of results concerning heat kernel approximations and Dyson
series expansions. The literature on the subject is truly vast, but we nevertheless
mention the papers [9, 10, 17, 18, 21, 27, 30, 31], which are some of the papers
preceding and most closely related to the articles [15, 13, 12, 14] (in chronological
order), in which we have developed the Dyson-Taylor commutator method used in
this paper. Let us mention also the more recent papers [20, 22, 25, 26, 28, 29, 42,
57], where the reader will be able to find further references. Some general related
monographs include [19, 32, 39].

For the Green function approximation, we use the Dyson-Taylor commutator
method developed in [15, 13, 12, 14], which we also expand and make more precise.
A similar method was employed more recently in [41, 42]. The main result regarding
this third questions is a sharp error estimate in weighted Sobolev spaces. This error
estimate, when combined with the results of (2) and using the bootstrap argument
we developed in [13] gives an approximate solution on any fixed time interval within
any prescribed tolerance. Our method is such that also derivatives of the solution
can be effectively approximated with verified bounds (with the price of increasing
the order of approximation). Our error estimates are in exponentially weighted
Sobolev spaces WIP(RN) = e~ @ W P(RY), >0, 1 < p < 00, a € R, defined in
Equation (17), where (z) := /1 + |z|? is given in (16).

Our main result is the following. (The L., was introduced above, but see 4.1 for
more details.)

Theorem 1.1. Let L be an operator in the class L. Then L generates an evolution
system U¥ in the Sobolev space WI'P(RN), r > 0, 1 < p < o0, a € R. Given

u € N, there exists an explicitly computable smooth function ’g}“‘j (z,y), given in

Definition 6.2, such that the distribution kernel GF,(x,y) of U*(t,s) (that is, the
Green function of O; — L) can be represented as
Gty(a.) = Gl (e ) + (£ = )W EY (@),
]

where the remainder Et[us, when regarded as an integral operator, satisfies

1B gllyyrinm < C(t=5) 52| gllwrs, 0<s<t<T, keN

with a bound C depending on L, u,a,k,r,p, and 0 < T < oo, but independent of g
and s,t € [0,T], s < t.
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Together with Theorem 3.6, this theorem yields an approximation of the solution
u of our Initial Value problem (1).

The paper is organized as follows. In Section 2, we remind some standard facts
about non-autonomous, second-order initial value problems (9; — L(t))u(t,z) = 0
and the evolution system they generate. In Section 3, we establish space discretiza-
tion and time discretization (bootstrap) error estimates in a general, abstract set-
ting. The setting is that of an evolution system that satisfies some standard ex-
ponential bounds. These exponential bounds are satisfied both in the parabolic
and hyperbolic settings, so they are realistic. (They are automatically satisfied if
L is independent of time.) Beginning with Section 4, we specialize to the case of
operators L € LL,. In that section, we introduce weighted Sobolev spaces and we
study the evolution system generated by L € L.. Using the theory of analytic
semigroups, we establish explicit mapping properties that allow us to make sense
of the integrals appearing in the iterative time-ordered expansions that we use (the
resulting formulas are sometimes called Dyson-series and are well known and much
used in the Physics literature). The time-ordered expansion is obtained, as usual,
using Duhamel’s principle iteratively. Section 5 contains a formal derivation of the
asymptotic expansion of the solution operator for the Equation (1). This deriva-
tion allows us to use the method from [15] for computing the time-ordered integral
appearing in the resulting Dyson series expansion using Hadamard’s formula:

AR = (B +A, B+ %[A, 14, B + %[A 14, [A, Bl + .. ) A ()

Here we use the crucial observation in [15] that, in the cases of interest for us, this
series reduces to a finite, explicit sum. In Section 6, we introduce our approxi-
mate Green function, we prove Theorem 1.1, and we complete our error analysis.
Technically, this section is one of the most demanding.

Throughout the paper, unless explicitly mentioned, C' will denote a generic con-
stant that may be different each time when it is used. We employ standard notation
for function spaces throughout, in particular W™, 1 < p < oo, r € R for standard
LP-based Sobolev spaces on R”, and H* = W*?2. We also denote the space of con-
tinuous functions (which may take values in a Banach space) with C, and by W>
the Sobolev space of bounded functions with bounded derivatives of all orders. By
the Sobolev Embedding Theorem, the elements of W°°° are smooth functions.

The results of this paper are based in great part and extend some results in [12]
and an unpublished 2011 IMA preprint [14]. See [25, 42, 57] for some recent, related
results to that preprint. However, Section 3 is essentially new. Also, we did not
include the numerical test and the explicit calculations of the SABR model from
[14] in order to keep this paper more focused (and to limit its size).

Convention: we use throughout the usual multi-index notation for derivatives with

respect to the space variable x, that is, 0% =0 ..., a = (ai,...,an) € Z¥,
N o) ; 0

and |a| =31, o5, 05 = Ba; 0 while Oy = 3.

2. Preliminaries on evolution systems . We refer the reader to [1, 43, 48] for
further results and details on the functional analytic framework that we employ.
Let (X, - ||) be a Banach space and let A : D(A) — X be a (possibly unbounded)
closed linear operator with domain D(A) C X. We let p(A) denote its resolvent
set, that is, the set of A € C such that A — A : D(A) — X is a bijection. We let
R\ A):=(A—A)"1: X — X be its resolvent, for X € p(A).
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Throughout, £(X71, X5) is the space of all bounded linear operators on X; — X5
for two normed spaces X; and Xy. Welet £(X) = L(X, X). For ease of notation, we
let ||+ || x,,x, and || || x denote the corresponding norms. Let arg : C\ (—o00,0] — C
be the imaginary part of the branch of log that satisfies log(1) = 0.

2.1. Properties of evolution systems. Recall that, throughout this paper, I C
[0,00) is an interval containing 0. In this section, we show that L = (L(t))ier
generates an evolution system on Sobolev spaces. We recall below the definition of
an evolution system and some basic properties for the reader’s convenience. (We
refer to [43] for an in-depth discussion. See also [1, 48])

Definition 2.1. Let I C [0,00) be an interval containing 0 (as always). A two
parameter family of bounded linear operators U(t,t') on X, 0 <t <t € I, is called
an evolution system if the following three conditions are satisfied

1. U(t,t) = 1, the identity operator, for all ¢t € I;

2. U, t\UW, ") =U(t,t") for 0 <t <t <tel;

3. U(t,t) is strongly continuous in ¢t and ¢’ for all 0 <’ <t e I.
If U(t,t') depends only on t — ¢/, then U is called autonomous.

Informally, we shall say that the family of unbounded operators L = (L(¢))ter
generates the evolution system U if 0;U(t, s)€ = L(t)U(t,s)¢ for all t0 < s <t el
and £ in a suitable large subspace. We prefer not to give a formal definition for
what “large” means in this setting, as for the families L that we will consider, this
will happen everywhere.

Definition 2.2. Let I C [0,00) be an open interval containing 0, as always in this
paper. A family of operators L = (L(t))ter, L(t) : D(L(t)) C X — X, t € I, will
be called uniformly sectorial if the following conditions are satisfied:
1. The domains D(L(t)) =: D are independent of ¢ and dense in X;
2. D can be endowed with a Banach space norm such that the injection D — X
is continuous and I 3 t — L(t) € £(D,X) is uniformly Hélder continuous
with exponent a € (0, 1].
3. There exist w € R, 0 € (7/2,7), and M > 0 such that, for any ¢ € [0,T),

p(L(t)) D Sow = {AeC, N #w, |arg(A —w)| < 6},
IR, L) < VA € S

M
A—w|?

The following well known proposition (see again [43, page 43] for a proof) gives
a sufficient condition that guarantees the sectoriality of an operator.

Proposition 2.3. Let A: D(A) C X — X be a linear operator. Assume that there
exist w € R and M > 0 such that p(A) contains the half plane {\ € C, Re X > w}
and

AR\, A)||x <M, VReA>w.

Then A is sectorial.

We recall that uniform sectoriality implies generation of an evolution system [43,
page 212]. (This is the “uniform parabolic case,” see also sections 5.6 and 5.7 in
[48].) Specifically, we have the following result that applies to our setting, which
is introduced in Section 4. (See, for example, [43, Corollary 6.1.8, page 219], for a
proof.)
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Theorem 2.4. Suppose L = (L(t))icr is uniformly sectorial with common do-
main D, then there exists an evolution system U(t,s), 0 < s < t € I, such that
U (t,s)§ = Lt)U(t, s)§ for all € € D and s < t. This evolution system is unique
and the following hold:

1. The functions

U s)lx, (t=s)IUEs)lxp, [LOUEs)lp,x
are uniformly bounded for 0 < s <t el and
2. 9,U(t,s) = =Ul(t,s)L(s), for s < t.

If L and U are as in the above theorem, then we shall say that L generates U
and denote it U”. We now return to the study of the IVP (1). We shall use the
following notion of solution (see e.g. [43, pages 123-124]).

Definition 2.5. Let X be a Banach space, h € X, and f € L'((0,7), X).

1. By a strong solution in X of (1) on the interval [0,T), we mean a function
ueC([0,T),X) NWHH((0,T), X) (6)

such that u(t) € D(L) and Qsu(t) = L(t)u(t) + f(¢t) in X for almost all
t € (0,T), and u(0) = h.
2. By a classical solution in X of (1) on the interval [0,7T), we mean a function

ueC([0,7),X)NC'((0,T),X)NC((0,T),D(L(t))) (7)
such that du(t) = L(t)u(t) + f(t) in X for 0 <t < T, and u(0) = h.

Every classical solution is also a strong solution. Theorem 2.4 shows that, if
f=0and L(t) is uniformly sectorial, then the IVP (1) has a unique strong solution
for all h € X and this solution is also a classical solution. It will be convenient to
formalize our presentation using the following definitions.

Definition 2.6. Let J be an arbitrary index set. A family of norms ||| - |||¢, t € J,
on X will be called uniformly equivalent to the given norm || - || on X if there exists
C > 0 with the property that, for all x € X and all t € J, we have

C Mzl < |llzllle < Clll-
The following concept will play an important role in what follows.

Definition 2.7. We shall say that an evolution system U(¢,s), 0 < s <t € I, has
exponential bounds if there exist wy € R and My > 0 such that, for all z € X and
all 0 < s <t eI, we have the estimate

Ut )]l < My e~ ||z .

Clearly, any autonomous evolution system has exponential bounds (a simple
consequence of the Banach-Steinhaus uniform boundedness principle) [1, 43, 48].
We will need the following result (see again [1, 43, 48]).

Lemma 2.8. Assume that U(t,s), 0 < s <t € I, is an evolution system that has
exponential bounds (with bounds My and wy, as in Definition 2.7). Then, there
exists a family of norms ||| - |||¢, t € I, on X that are uniformly equivalent to the
given norm of X such that, for all0 < s <t el and all x € X, they satisfy

U, s)llle < e ]|, -
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The point of this lemma is, of course, that we can assume My = 1 in Definition
2.7, with the price of admitting time-dependent norms. We include a proof for
completeness.

Proof. Set V(t,s) = e «v(t=9)U(t,s), then it is clear that V(¢,s) is uniformly
bounded by My. We define a new norm as

lzllls := sup [V (£, s)x]l.
s<tel
From the first part, we then obtain ||z| < |||z|||s < My||z||, for all s € I. Thus, the
family ||| - |||s, 0 < s € I, is uniformly equivalent to || - || on X. Note that by our
definition, for all 0 < s <t e I,
WV s)zllle = sup [[V(r)V(ts)z| = sup [[V(r,s)z|
t<rel t<rel
< sup [[V(rs)z|| = [||z]]]s -

s<rel

Substituting V (¢, s) = e”“v(¢=5)U(t, s), we obtain the desired estimate. O

We now state the desired form of this result.

Corollary 2.9. Assume that the family L = (L(t)te; of operators on a Banach
space (X, || - ||) is uniformly sectorial and let UL be the evolution system it gen-
erates. Then U* has exponential bounds. Let wy be as in Definition 2.7 (with
U replaced with U*). Consequently, there exists a uniformly equivalent family of
time-dependent norms ||| - |||¢, t € I, such that, for all0 <s<tel and allz € X,

U, s)allle < e[l -

Proof. The first part is well known [1, 43, 48]. The second part follows easily from
Lemma 2.8 and is also known. O

Again, the main point of this result is that there is no additional factor My
in front of the factor e“v(*=%)  This will be crucial in the error estimates of the
following section.

3. Discretization and bootstrap error estimates. In this section, we study the
discretization error when we compress our evolution system U = (U(t, s))o<s<ter,
U(t,s) € L(X), to asubspace S C X and the bootstrap error when we approximate
U with some other two-parameter family of operators K. Recall that, throughout
this paper, I C [0,00) is an interval containing 0.

Throughout this section, let U(t,s), 0 < s <t € I, be an evolution system acting
on some Banach space (X, | -|). We assume that U has exponential bounds, see
Definition 2.7. In particular, wy € R and My > 0 will be as in that definition (i.e.
|U(t, s)z|| < My e?v®=5) ||z|| for all z € X and all 0 < s < ¢ € I). Recall then
from Lemma 2.8 that there exists a uniformly equivalent family of time-dependent
norms ||| - |||¢, t € I, on X which makes the factor My unnecessary. That is, there
exist Cy > 0 such that

Cy'llz]l < [[lallle < Cullzll and
U, s)ellle < e[l ,

forall z € X and all 0 < s < ¢ € I (with wy as above). We stress that there is
no additional bound My in front of the exponential in the last estimate, and this
is indeed crucial in our error estimates below. The need for such estimates is one

(8)
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feature that is specific to time dependent equations. Below, U, Cy, and wy will
always be as in the above equation. We recall that evolution systems generated
by uniform parabolic (the case in the following sections) or uniform hyperbolic
generators will satisfy our assumptions [48].

Let X = X, but with the norm |||-|||s. I T € £(X), welet |||T|||s,e :== | Tl x.,x,»
the norm on £(X,, X¢). We shall need the following simple lemmata.

Lemma 3.1. We let Cy and the norms ||| - ||| on X be as in Equation (8). Then,
for all Q € L(X), we have |||Q|||s. < C#||Q]x-

The proof is immediate. We have stated this lemma only for the purpose of
referencing it.

Lemma 3.2. Let V(t,s),G(t,s) € L(X),0<s<tel, and ||| |||s¢ =1 - | x.,x:5
as above. Let S C X be a closed subspace. Suppose that there exist w € R, a > 1,
and Cq > 0 such that following conditions hold for all0 < s <t e I:

L[|Vt 8)|lls,p < et

2. |[V(t,s) — G(t,9)|ls,x < Cal(t—s)*.
Then there exists w' € R such that |||G(t, s)€||; < e E=9)|€||s for all0 < s<tel
and £ € S.

Proof. We first notice that, by Lemma 3.1, for all ¢ € Sand all 0 < s <t € I, we
have |||(V (¢, s) — G(t,5))¢]|] < CECq(t — 5)*||€]|s. Then, we notice that, for large
w’ fixed, we have

e“lt=sl 1 CZCqlt — s|*

su <1,
ogs,FeR ew'lt=s| -
since a > 1. The result then follows from the triangle inequality. O

We remark that, if @ < 1, then, in general, the lemma will not be true anymore.
We are ready now to prove an error estimate for the spatial discretization. To
simplify the notation, in the following, we shall let Uy := U ((k + 1)é, k).

Theorem 3.3. Let U(t,s), 0 < s < t € I be an evolution system on a Banach
space X as in Equation (8). Let P: X — S C X be a continuous linear projection
and let Cp > 0 be such that

[(1=P)U(,s)Pllx < Cp(t—s) (9)
for all0 < s <t € I. Then there exists w' > 0 with the following property. Let
neN,Tyel,o:=Ty/n,x0€ X,y €S, Uy := U((k+1)§, k§), and zpy1 = Ugxy
and yx+1 = PUgyg, for k=0,...,(n—1). Then

||xn - ynH < Cl%ew,TO (on - yOH + OZQJCPTOHyOH) :

Proof. We let wy, Cy, and the norms ||| - |||+ be as in Equation (8). The families of
operators V := U and G := PU satisfy the assumptions of Lemma 3.2 with w = wy,
a =1, and the given subspace S since, for all 0 < s <t € I, we have

NVt ) lse = U 8)||]s0 < e =) by (8)
V(t,s)— G, s)|lsx <|U(E,s)P—PU(,s)P||x <Cp(t—-s) by (9).

That lemma then shows that there exists w’ € R such that, for all 0 < s <t e I
and £ € 9,

IIPU(t, )&l < e C=]][¢]]], (10)
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Then, from this equation, by induction on k since all y, € S, we obtain that

ywlllks < e lllyolllo - (11)

Since we can always increase w’, we may assume that ' > max{wy, 0} without
loss of generality. Let us then prove by induction the estimate

e = yelllks < € (lllzo = wolllo + CGCrkd|[lyolllo ) , (12)

for all 0 < k < n. Indeed, it is true for Kk = 0 (we even have equality in that
case). Assume it next to be true for k, and let us prove it for (k + 1). Let Uy :=
U((k+1)8,k6), as before. We then have.

lzr+1 = yerilllerrys = Ukzk — PURYE|] (k115
< NUk(zr = y)lllg+1s + 111X = P)Uskykll| k+1)6
< MUl s vys.ksllzn — ynlllks + 1L = PYUrPI||541)8.85 | [ys] |16
< e [[llzx — yellles + CECP|ynlllns ]

< e3[R (Jllao = yolllo + C3 Crhdlllyolllo ) + CECroe™golllo ]

= 0 (2o — yolllo + CECr(k + 13zl ) -

where the last two inequalities are obtained, in order, from Lemma 3.1, from the
assumption (9), from the induction hypothesis (12), and from the estimate (11).
(The other inequalities are obvious.) This proves (12) for all & < n. The result
follows from this relation for k = n, using also Lemma 3.1, since nd = Tp. O

In applications, the following remark may be useful

Remark 3.4. The bound w’ depends on Cp and it is a non-decreasing function of
Cp. Thus, if a sequence of projections Py is given such that Cp, is bounded, then
we can choose w’ independent of k.

Remark 3.5. We stress that the appearance of the factor (t — s) in Equation (9)
is crucial and is a typical feature of the conditions needed for the error estimates
in our bootstrap method. Let L = (L(t)) be the generator of U. This condition
can be achieved if the commutator [P, L(t)] := PL(t) — L(t)P is bounded on X. In
turn, if L = A, for instance and X = L?(R"), then we can construct a subspace S
with these properties using a periodic partition of unity and GFEM discretization
spaces. (See [6, 7, 8, 24, 45] for some general references to GFEM. See [50] and [24]
for papers specifically devoted to evolution equations.) The constant Cp, on the
other hand, can account for the spatial discretization error.

The last theorem is relevant if we know U(t, s) explicitly. This is however rarely
the case. Instead (and this is one of the reasons why we are writing this paper), we
can usually approximate U (t, s). A general example of how to do that will be given
in Section 5. We keep the settings of Lemma 3.2.

Theorem 3.6. Let V(t,s),G(t,s) € L(X),0<s<te€l,a>1, and Cg >0 be
as in Lemma 3.2, but S = X (and hence |V (t,8) — G(t, s)||x < Ca(t — s)* for all
0<s<tel) Then there exists w' > 0 such that

1 |Gt 8)|[]sx < e %) for all0< s <tel.
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2. Letn €N, Ty € I, § :=Ty/n, mo, y— € X satisfy zpy1 = V ((k + 1)8,kd)xy,
and yp41 = G((k +1)8,k6)yi. Then

/ TS
e —ynll < €2 (llzo = yoll + C3 Co—L5 lyoll ) -

Proof. Let Cy > 0 and wy € R be as in Equation (8). Lemma 3.1 then gives
that there exists w’ € R that satisfies (1). Hence, if G := G((k + 1)6, kd) satisfies

Gl et1y5.06 < €72
We proceed as in the proof of Theorem 3.3. First, we similarly obtain, by induc-
tion, that

's
1yxllles < € [llyolllo (13)

By increasing w’, if necessary, we can assume that w’ > wy in what follows (and
hence that |||V (t,s)|||s.c < e~ %) for all 0 < s < t € I). Let V := V((k + 1)d, ko)
Let Cy := C[%Cg. The result will then follow from the estimate

llze = yrllles < € (lllzo = yolllo + Cokd|[lyolllo ) (14)

valid for all 0 < k < n, which we prove again by induction on k. Indeed, the estimate
is true for k = 0 (we even have equality in that case). Assume it next to be true
for k, and let us prove it for (k+1). Lemma 3.1 gives that |||V (¢, s) — G(t, s)||]s,t <
Co(t — )™ for all 0 < s <t € I, with Cy := C}Cg. We have

llorsr = yraalllorns = [Vize = Geyelll gt
< Vi = yelllgesns + Ve = Gelwilllgesnys
< Velllgesnysaslllzn = vellles + 11Vi = Gilllgrays sol ol
< ' (Jlla = yulles + C20*lyillls )

< e3[e5'5 (]|]zo — yolllo + 2k llyolllo ) + €' C25% ol ll
= D5 (|l — yolllo + Calk + 1)6% llwolllo )

where the last two inequalities are obtained, in order, from (1), from the estimates
[V (t,s) — G(t,8)|||ls. < Calt —s)®, from Equation (14) (the induction hypothesis
for k), from the estimate (13). This proves (14) for all k. The result follows from
this relation for k = n, using also Lemma 3.1. O

Since the first condition of Lemma 3.2 is automatically satisfied by an evolu-
tion system that satisfies exponential bounds. By taking xg = yo in the previous
theorem, we obtain the following result.

Corollary 3.7. Let U(t, s) be an evolution system on X that salisfies exponential
bounds and G(t,s) € L(X), 0 < s <t € I. Assume that there exist « > 1 and
Cg > 0 such that ||U(t,s) — G(t,s)|lx < Ca(t—s)* for all0 < s <t el. Then
there are w' > 0 and Cy g > 0 with the following property. Letn € N, Ty € I,
d:=To/n, yo € X, and yg41 = G((k + 1)4, k:é)yk, for 0 <k <n. Then

CU,G ew ToTe
[y — U(To, 0)yol| < Tlo llvoll -

Here, of course, Cy ¢ is independent of n, yo, and Tp. In particular,
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Corollary 3.8. Using the notation of Corollary 3.7, we have that, for any n € N
and any Ty € I,

n—1 ’

H k+ 1)1y KT, Cyge oTg
HU(TO’O) B G(( ) 0’ n0> H = = -

k=

n noc—l

See [23, 33, 37, 40, 49, 54] for some more general results on evolution equations
that put our results into perspective.

4. Analytic semigroups and Duhamel’s formula. In this section, we introduce
the class of uniformly strongly elliptic operators that we study and we particularize
to them the theory recalled in Section 2. These operators are particularly well suited
to be studied via perturbative expansions. In particular, in this section, using the
theory of analytic semigroups, we carefully check that all the integrals appearing in
Duhamel’s formula and in perturbative series expansions are well defined.

4.1. Properties of the class IL,. Since the dimension [V is fixed throughout the
paper, we will usually write W™ for WP(RY). Similarly, we shall often write L?
instead of LP?(R™). When 1 < p < oo, the dual of WP is the Sobolev space W
with 1/p+1/p = 1.

Definition 4.1. Let I C [0,00) be an interval containing 0. Let L be the set of
second-order differential operators L = (L(t))es of the form

N N
L(t) = Z aij(t, .’L‘)al‘(r“)j + Z bk(t, x)@k + C(t, .’L‘), (15)
1,j=1 k=1

where the matrix [a;;] is symmetric and a;j, b, c € W (I x RN) are real valued.
Let L, be the subset of operators L € L satisfying the uniformly strong ellipticity
condition (4) with given ellipticity constant .

We shall use the symbol calculus for pseudo-differential operators (¥DOs for
short) to establish several results. We begin by recalling some basic facts about
UDOs. (See [34, 38, 51, 52, 56] for the definition and basic properties of pseudodif-
ferential operators.)

We deal only with classical symbols in Hérmander’s class 577, m € R, and denote
the symbol of a pseudo-differential operator P by o(P) with o¢(P) its principal
symbol. Conversely, given a symbol in ST, we denote the associated pseudo-
differential operator with P = o(x,D), D = %8. We recall that any operator
with symbol in S7>° = (), ST is a smoothing operator. We let U7, denote
the space of operators with symbols in S7%. Every YDO has distributional kernel
o(x,D)(z,y) by the Schwartz Kernel Theorem (see e.g. [53]). We will need to deal
only with integral operators with smooth kernels.

Notation. If an operator T has smooth kernel, we will denote it by T'(z,y).

If P =o0(z,D) is smoothing, then there is a one-to-one correspondence between
the symbol and the kernel:

o(x, D)(z,y) = (F5 o) (z,z —y),
where F3 the Fourier transform in the second variable of a function of two variables.

We will also use the standard fact that multiplication with a smoothing symbol is
continuous on any symbol class.
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We recall that elliptic WDOs in U7, m € Z, generate equivalent norms in Sobolev
spaces [44]. This is a general fact that holds in the greater generality of manifolds
with bounded geometry [5, 3, 11, 44]. We shall use this fact for L, C ¥3,. In
particular, we have the following result.

Lemma 4.2. Suppose L = (L(t))ier € Ly, 1 < p < 00, and m € Zy. Then the
following two norms are equivalent

[ullwome ~ [Julle + [L™ @)ul Lo,
with bounds that are uniform int € I.

Next we show that if L = (L(t)):er € L., then L(t) is Holder continuous in t,
and uniformly sectorial for ¢t € I between the Sobolev spaces W?2¥+2.P and W2k,
1 < p < oo, for each k € Z,. These properties in turn give the needed mapping
bounds for the evolution system discussed in Subsection 2.1. (See [1, 43, 48] for
instance.)

Proposition 4.3. Recall that WP = WFP(RN). Let L = (L(t))ter € Ly, k € Z4,
and 1 <p < 0.

1. The function I >t — L(t) € LOW*+2P WFP) is uniformly Lipschitz contin-
uous.

2. For each t € I and k, the operator L(t) : W2k+2P — W2kP s sectorial.

3. The family (L(t))ier is uniformly sectorial.

Proof. The first part follows from the fact that coefficients of the operators L(t)
depend smoothly on time, with bounded derivatives as functions from I to W+,
for each k, by the definition of the space L. D L. We first note that, by definition,
L(t) defines a continuous map W2*+2P — W2kP and that, by Garding’s inequality
and the isomorphism (1 + L(t))* : Ws+2k:P — WP the resolvent set p(L(t) of L(t)
contains a half plane {\ € C, Re A > w} For p = 2, this result is standard (see e.g.
[1, 43, 48]). For p # 2, we use here that the spectrum, and hence the resolvent, of
a uniformly elliptic operator on LP is independent of p € (1,00) (see e.g. [36, 46]
and references therein).

Next, we fix t = t; and simply write Ly = L(to). For any u € W2?*? and
A € p(Lg), we have R(\, Lo)u € W2FP by the definition of the resolvent set p(Ly).
Then, using the norm equivalence of Lemma (4.2) twice, the fact that L(t) is sec-
torial on LP, and standard properties of the resolvent, we obtain

INR(A, Lo)ullwzrs < CIAR(A, Lo)ullLe + [ALGR(A, Lo)ullr)
< C(llullzr + ILGullzr) < Cllullwzes,

with C independent of X. Proposition 2.3 then imply that Lo : W2k+2:p — J/2k:p
is sectorial. Lastly, all constants appearing in the proof of sectoriality depend only
on bounds of the coefficients in W°°°_ which are uniform by hypothesis, hence the
operator is uniformly sectorial. O

Recall that, by Theorem 2.4, if f = 0 and L(t) is uniformly sectorial, then the
IVP (1) has a unique strong and classical solution for all A € X. In particular,
if L € L., we have well-posedness in W*?, k > 0, 1 < p < oo for our IVP,
Equation (1). By duality and interpolation, we can obtain mapping properties
between fractional Sobolev spaces WP,
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Corollary 4.4. Suppose L = (L(t))ier € L. Then L generates an evolution
system U in WP s >0, 1 < p < 00, such that, for any fized Ty > 0, the functions

U ) lwerwsr,  |LOOUEE ) werzewer, (& =t)UEE) lwer etz
are uniformly bounded for 0 <t <tel, t <t +Ty.

From Corollary 4.4, the fact that L is Lipschitz and U is bounded uniformly in
time on I as elements of £(W+2P W*P) implies the following.

Corollary 4.5. Given s > 0, 1 < p < oo, there exists C > 0 such that, for any
0<t' <tel, t<t +1,
IU(E) = UE ) lwesaes < Cle—t].
In particular,
[t',00) NI >t — Ultt) e LOVST2P TWHP)
defines a Lipschitz continuous map.

For the applications we have in mind, the initial data h may not be integrable.
An example is provided by the payoff function of a European call option. To include
such cases, we therefore introduce ezponentially weighted Sobolev spaces. Given a
fixed point w € RV, we set

(@) = (@ —w) = (L+ |z — w[*)/?, (16)

with (,) the Japanese bracket. For notational ease, we denote p,(r) = e*®v  with
w implicit. Then, for k€ Z;,a e R, 1 < p < o0,

WEERY) == {u: RN = R, 0%(pu) € LP(RY) |o < k}, (17)
with norm
lull?, 1y = loatul, = 37 10% (put) I,
’ |o| <k
Weighted fractional spaces WL, s > 0, can then be defined by interpolation, and

negative spaces by duality W, 5P = (Wff:w)' , with p’ the conjugate exponent to
p. The parameter w will be called the weight center. Different choices of w give
equivalent norms and we also write W7, = WP, since this vector space does not
depend on w.

Recall that p,(z) := e®®w. We study the operator L(t) on the weighted spaces
by conjugation. To this end, we define the operator Ly(t) := p,L(t)p; ' and observe

that L: Wb — W2k if, and only if, L, : WP — WP,
Lemma 4.6. If L = (L(t))ter € Ly and a € R, then p,Lp; ' = (L4(t)) € L,.
Proof. We compute L, (t) — L(t):

[La(t) — L(t)]u = p;t [Z 205,000 + (3 00100+ biaipa)} u,

for u regular enough. Since (x),, has bounded derivatives, Lo (t)— L(t) is a first order
differential operator the coefficients of which are smooth with all their derivatives
uniformly bounded. Hence L, (t) satisfies the same assumptions as L(t). O

Remark 4.7. By Lemma 4.6, we can then reduce to study the case a = 0. There-
fore, for instance, Lq(t) : Wit?P — WP is well defined and continuous for any
a, since this is true for a = 0. More generally, the results of Corollary 4.5 and 4.9
apply with W¥® replaced by Waok, for any w and a.
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See also [2, 3, 4, 44] for further, related results.

4.2. Analytic semigroups. In the construction of the asymptotic expansion for
U(t,0) in Section 4 below, we will need smoothing properties for the semigroup
generated by a certain time-independent operator Lg related to L. To this end, we
recall needed basic facts about analytic semigroups. (We refer again to [1, 43, 48]
for a more complete treatment.)

If A is sectorial (and hence, in particular, densely defined), then it generates an
analytic semigroup. One of the most important properties of analytic semigroups
is the following smoothing properties, which we state only for time-independent
operators Lg in the class L acting on the Sobolev space WF».

Proposition 4.8. Let L € L., be time independent. Then, ' Lo js a Cy-semigroup,
and for 0 <t <Tp,

e fllwre < Crys, To) 2| fllwer, >,
with C(r, s,Ty) independent of t.

A proof for generators of abstract analytic semigroups can be found in [48] [The-
orem 6.13, p. 74] for instance. We use it here together with the fact that, as
operators on LP, D(L*) = W*P. When applied to the operator sL, the constant
C(r,s) can be chosen uniform in z at least if z belong to a bounded subset of RY.

An immediate consequence of the above result is the following corollary.

Corollary 4.9. Lets,r € R be arbitrary and Lo € L, be time independent. Then,
the map
(0,00) 2t — etlo LWL, W,oP)

is infinitely many times differentiable.

4.3. Duhamel’s formula. We assume next that we are given a time independent
operator Lo € L, for a fixed v > 0 and let L € L,. We write
L(t) = Lo + V(1) (18)

and study the classical question of relating the evolution system U (¢, s) generated
by L to the semigroup e*’0 generated by Lg [1, 43]. Typically, Lo will be obtained
from L by freezing its coefficients at (0, z).

We write the general IVP for Lj as

{ dyu(t,z) — Lou(t,z) = f(t, z), in (0, 00) x RY

u(0,2) = h(z), on {0} x RV, (19)

where h belongs to a suitable function space to be specified each time in what
follows depending on the type of solution we seek.

Lemma 4.10. Leth € LP, 1 <p < oo, and let 0 < T < oo. If f € L*((0,T),LP)N
C((0,T7,LP) and u is the unique strong solution to (19) on [0,T)], then u is given by

t
u(t,z) = etlon +/ etDLof(rydr, 0<t<T.
0

If f satisfies in addition f € C*((0,T); L?) for some 0 < a, then (19) has a unique
strong solution u.

Proof. This proof is standard (see e.g. [48, Theorem 2.9, p. 107, Corollary 3.3, p.
123]), using the fact that Ly generates an analytic semigroup. O
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We obtain the following consequence.

Corollary 4.11. Let u(t) be the unique classical solution of the IVP (1) with f = 0.
Then u solves the Volterra-type equation

t
u(t) = U(t,0)h = etloh + / et Loy (7yu(r)d T
0

where V' is given in (18).

Proof. By density, we first assume that h € W?2P, and observe that, formally, the
solution the IVP (1) satisfied (19) with the forcing term f replaced by

Vu(t,x) = (L(t) — Lo)u(t, z) = we(t, ) — LoU(¢,0)h.

Since the solution operator U(t,0) of the IVP (1) satisfies U(t,0) : W2P — W?2P as
a bounded operator that is strongly continuous for ¢ > 0 and continuously differen-
tiable for ¢ > 0, LoU(t,0)h € LP has this regularity. But u; € LP share the same
regularity, given that w is a classical solution. Therefore, by Lemma 4.10 and the
uniqueness of classical solutions, v must agree with the solution of Corollary 4.11.
Next, given h € LP, there exists h, € W?P, h, — h in LP. Let u,, be the strong
solution with w,(0) = h,,. Then w,, satisfies

t
un(t) = U(t,0)hy, = e"0h, + / eV () uy (1) dr.
0
We would like to pass to the limit n — oo on the right-hand side of the expression
above. In order to do so, we will use the mapping properties of the semigroup e’°
(Proposition 4.8) and of the evolution system U(¢,0) (Corollary 4.4) to show that
the integral is the action of a continuous operator on LP. Indeed,

Lr

| /Ote@—T)LDV(T)U(T, 0)dr|

t
S/ e s 1o [V (D) llwro w10 |U (7, 0) | o, wrwdr
0

L |
g/omﬁd7<oo (20)

The proof is complete. O

Remark 4.12. Solutions to the Volterra-type equation of Corollary 4.11 are called
mild solutions. Under the assumptions of the Lemma, classical and strong solutions
of (19) are mild solutions, which are in particular unique. In fact, if f is locally
Holder’s continuous in time, mild solutions are classical solutions (19) [48, Theorem
3.2, page 111].

Using this lemma, we can generalize the bounds contained in Corollary 4.4.

Lemma 4.13 (Mapping properties of U(t,t')). Let U(t,t'), 0 < t' <t € I, be the
evolution system generated by the operator L € L, on [0,T]. For any 0 < k <,
a€eR, 1 <p<oo, Ult): szp = Wel if 0 <t <t <t +1, there exists C > 0
independent of ty, to such that

HU(t, t/)HWf;zp,W;:g S C(t _ t/)(k—T’)/Z.
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Proof. We set a = 0 by Lemma 4.6 and, as p is fixed, write W* = WFP. We
temporarily assume that k < r < k + 2. Using the properties of evolution systems
in Definition 2.1, given h € W*, v(t) = U(t,t;)h solves:

Opv— L(t)v =0, t>t,
’U(tl) = h.

Hence from Corollary 4.11, for any 0 <t <t¢; <1 and any h € Wk,
t1—to
Ulty, to)h = etr—t2)lop 4 / ettr=t2=Lo /() Uty 4 1, t5) h dr.
0

From the triangle inequality, using the mapping properties for U and Lg in Corollary
4.4 and Proposition 4.8, it follows that

U (1 t2)llwe wre < e 722 [y e

ty—to
2
+ / et =20 iy [V () [ w2 [|U (7 + b2, t2) lwe woe dr
0

t1—to
b ey IV s U 8,82y

1—t
2
t1—tg

k—r 2 k—2—r
SC((tl—tQ)Q +/ (tl—tg—T) 2 dr
0

k—r
2

t1—t2 .
+/ (th—ty—7)° 2 7_1d7> <Ot —ta)' 7,

t1—to

2

exploiting also that 0 < (r — k)/2 < 1, by hypothesis. This proves the result for
k <r < k+2. Next, let r > k, otherwise arbitrary, and choose m € Z, such that
m > % Set § = % and note that 0 < ¢ < 2. Then for j = 1,...,m, we can
apply the estimate already obtained by replacing k with k£ + (j — 1)d and r with
k+ j6 and we apply it on the time interval (t; — (j — 1)2=%2 ¢ — j8=12) obtaining

k—r

t1 —t t1 —t t1 —t 2m

lv(a-G-v=—"=1-2=)| .. | s0(1 2) :
m m Wht(G—1)6 4 Wktis m

for j =1,2,--- ,m. Therefore,

k—r

th—t\" (k—r)/2
Ut t2) lwe—wr < C o =C(t1 — ta) ,

where C' depends on k,r,p but not on t1, ts. O

In particular, the solution operator U(t,0) of (1) is smoothing of infinite order
on any Sobolev space W(f;f with & > 0 (in fact, by duality, on any Sobolev space)
if t > 0, as it is the case for etlo.

Corollary 4.14. If L(t) € L, and U(t,t') = UL(t,t)), 0 < ¢/ < t € I is the
associated evolution system, then

(t',+o0) 2t = U(t,t") € LWL, WP)

a,z)

is infinitely many times differentiable for any s,m,a € R, 1 < p < oo, and z € RV,
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We omit the proof as it is very similar to that of Corollary 4.9. Another con-
sequence of Lemma 4.13 is that the distributional kernel of the operator U, the
Green’s function or fundamental solution of (1), G, € C* (RN x RY). In fact, GF,
is given by

gtl,/s(xv y) = <59€, U(t7 5)5y> ’
where (-,-) is the duality pairing between C>°(R") and compactly supported dis-
tributions, and where §, is the Dirac delta centered at z. One of the goals of this
work is to obtain explicit approximations of GX(x,y) with good error bounds.

Remark 4.15. For each k € Z, we let

Y = {T = (T07T1,...7Tk) S Rk+1, Tj > O,ZTj = 1}
~{o=(01,...,0k) eERF, 1>01>00>...00_1 > 0} >0},
the standard unit simplex of dimension k. The bijection above is given by o; =

Tj +Tj+1+ ...+ 7. Using this bijection and the notation do := doy, ... do, for any
continuous, Banach space valued function F' on RY, we define

/ F(7)dSk(T // / F1—01,01 02,...,0k_1 — Ok, 0%) do,
i

where dSj, is the infinitesimal measure induced by the projection along a coordinate
axis. It is multiple of the measure induced by the Euclidean metric. For instance,
dS1(7) = dr, but in higher dimension the factor is no longer 1.

We begin with a preliminary technical lemma.

Lemma 4.16. Letk € Z4 and L; € Ly and V; € e Vi1, j=1,...,k, for some
b= (by,...,bg) € Rﬁ, Assume that L; is time independent for j < k and that
E(1,) = e™ %) or E(1),) = U (13,,0). Then, for all a,r,s € R and 1 < p < oo,

(1) = emoloyienty | eme-1lioiyy B(7), T € g,
defines a continuous function ® : Xy — LWL, W, 7p\b| L)

The assumption that L; be time independent for j < k is, of course, not necessary,
but is the setting in which we will use our result. Also, recall that W = W22 (RY).

Proof. It suffices to prove that ® is continuous on each of the sets V; = {r; >
1/(k+2)}, j =0,...,k, since they cover ¥j. It also suffices to consider the case
r > s.

Let us prove the continuity on Vy. We define recursively numbers ¢; = ¢j41—bj11,
cy=a,7; =7j41 —4, 1, =sfor j=1,...,k —1. By the assumption on the Vj's
and thanks to Proposition 4.8 and Corollary 4.5, each of the functions

0,00) 375 — Vet € LWIHHP WIT ) 1< j <k,
J J
[0,00) 3 71 = Vi E(7i) € LW EHP, Wi )

Ck— bk
is continuous, and hence their composition is continuous as a bounded map W;? —
—4k —4k
W |b"p . Since €™k is continuous as a bounded operator W} |b"p — WP, if
T0 > 703 +2 thanks to Corollary 4.5, we conclude that the map

Vo 37 = W(7) = emtoVien Ve b € L(WEP, W)

—1b]

is continuous. The continuity of the sets V; with j < k is completely similar.
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For 7 € V., we use instead Proposition 4.8 to show continuity of e™%0 in W;f" bl
for 79 € [0,+00), and Corollary 4.14 to show continuity of the map

(0,00) 3 7 = E(ri) € LW, PP, Wom, ).

This proves the continuity of ® on Vj, and completes our proof. O

Remark 4.17. In particular, Corollary 4.11 gives the following equality

t
U(t,0) = etko —|—/ eIV () U(r,0)d T,
0

as operators in L(W;2, W;P), for all a,s,m € R and 1 < p < oo.

a,z?

We can now state the well-known result giving an iterative time-order expansion
of the operator U(1,0). Let L = Ly + V as in Equation (18) (that is, L, Ly € L,
with Lg time independent).

Proposition 4.18. Recall that dSy is the measure on the simplex ¥y induced by
projection (a multiple of the measure induced by the Euclidean metric). Let V (t) =
L(t) — Lo be as in (18) and UL the evolution system generated by L. For any
d € Z,, we have the following perturbative expansion

UL(1,1) = L0+/ LoV ()em B0 dSy (1) + ...
¥

+ / Lo (ry)enito | eramiLoy (r)emiko 45, ()
g1

+ / eTULOV(Tl)eTlLO N €TdLOV(Td+1)U(Td+1, 0) de(’T) N (21)
PP

where each integral is a well-defined Banach-valued Riemann-Stieltjes integral with
values in LWL, W;P).

a,z?

The positive integer d will be called the iteration level of the approximation.
Later on, V will be replaced by a Taylor approximation of L, so that V' will have
polynomial coefficients in = and t¢.

Proof. We proceed inductively on d. First, we note that each term in the pertur-
bative expansion of U = U" is well defined by Lemma 4.16.

The perturbative expansion for d = 1 is just Volterra’s formula of Corollary 4.11
written in terms of operators (see also Remark 4.17). Suppose now that the formula
holds for d — 1, that is, that

U(1,0)

1
= eLO +/ S(I_UI)LOV((H)GGILO do1
0
1 o1
+ / / e(lfal)LOV(Ul)ewl7”2)L°V(02)672L“ doadoy + ...
o Jo
1 o1 oq—1 d—1
+/ / / 6(1701)L0V(0'1)...6<dd727ud71)L0V(O’d_l)U(Ud_l,0) Hdo’d_]‘.
o Jo 0 =1
Applying the formula for d = 1 to U(o4—1,0) then gives:

1
U(1,0) = elo +/ ey (g )e? b0 doy + ..
0



PARABOLIC EQUATIONS 19

1 ror Od—1 d—1
+/ / / =V (gy) . eloa-2m0e DoV (5 1)U (04-1,0) ] doa-;
o Jo 0 )

J

1 1 o1 Td—1 gd
:eL°+/ e(lfal)L“V(al)e‘”L” d01+...+/ / / /
0 0 0 0 0

d—1

1=V (1) .V (0g-1)el 7 =70V (04)U (04,0) dog [ [ doa—; -
j=1

which is the desired perturbative expansion for d. O

By sending d — 400, we formally represent the evolution system as a series of
iterated, time-ordered integrals. Such series appear in different contexts and are
known as Dyson series in the Physics literature.

5. Dilations and Taylor expansion. In this section we employ suitable space-
time dilations to reduce the computation of the Green’s function g,ft, to that of

a related operator L® at a fixed time (say 1) where s = /¢ . For given, fixed
s > 0, we then obtain an expression of the Green’s function associated to L® by
Taylor expanding its coefficients as functions of s up to order n and combining such
expansion with the time-ordered expansion of Proposition 4.18 up to level d. In
particular, the Taylor expansion will provide a natural choice for the operator Ly
and V (¢) to which the splitting (18) of L® applies. We follow here closely [15], which
treats the case of time-independent operators. In particular, we use the crucial
observation from that paper that, for any second order differential operator with
constant coefficients Ly and any differential operator with polynomial coefficients
L,,, we have eXoL,, = L,,e™ for some other differential operator with polynomial
coefficients L,,. (We also extend this result to higher order operators Lg.) Similar
methods, including the time dependent case, were employed in [12, 13, 14, 41, 42,
47].
Throughout this section, we fiz an arbitrary dilation center z € RV

5.1. Parabolic rescaling. For any sufficiently regular functions v(¢,z) and f(z),
we set

vi(t,x) = v(st, 2 + s(x — 2)), (22a)

)= fz+s(z - 2)). (22b)

We therefore interpret s as the dilation factor and z as the dilation center. For any
given operator L(t) € L., we similarly define

N N
L*(t) = Z aj; (8%, 2+ s(x — 2))0;0; + s Z b (s, 2 + s(x — 2))0;
ij=1 i=1
+ 82c%(s%t, 2 + s(x — 2)). (23)

It is not difficult to show that, if u(t, z) is a solution of Equation (1), then u®(t, z)

given by (22) is a solution of the following IVP:
Ot (t,z) — Lsu®(t,x) =0 in (0,00) x RY (24)
u®(0,2) = g°(x), on {0} x RV .

Clearly, if L = (L(t))ter € L., then L® is an operator in the same class, but
with a possibly different I. Since our estimates will be uniform up to a finite
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time, we shall assume from now on that I = [0,7], for some fixed T' > 0, and we
shall consider L°(¢) only for s € [0,1] and ¢ € [0,7] = I. Based on our earlier
discussion L® = (L*(t))o<i<T generates an evolution system, which we denote by
UL, The Green’s function of the IVP (24) will be denoted instead with G (x, ).
The Green’s functions for the original and for the dilated problems are simply
related via a change of variables.

Lemma 5.1. Given any z € RN and s > 0, we have

- s xr —Zz Yy—z
Gt = 04 5 1)

In particular, when s = \/t,

Glafary) = 70l (24 =7 4 2 7) @)

By this lemma, it suffices to approximate gfj)(x, y) and then set s = /1.

5.2. Taylor expansion of the operator L®. We next Taylor expand the coeffi-
cients of the operator L*, given by (23), up to order n € Z,, as functions of s > 0.
The purpose of this Taylor expansion is to replace the operator V in (18) with oper-
ators having polynomial coefficients for which the time-ordered integrals appearing
in Proposition 4.18 can be explicitly computed as in [15].

We obtain the representation

L® = Lo+ Z §™ Ly, + s" LT (26)

m=1
1 /dm .

Lm_!(dsmL)so’ 0<m<n, (27)
and L)}, comes from the remainder of the Taylor expansion. (Recall that z is the
dilation center.) For m, L,, = (L., (t))o<i<r is a family of differential operators
with coefficients that are polynomials in (z — z) and ¢, but are independent of s.
That is, for m < n,

Zal]ka — 2)°t%9;0; —&—Zb%a 2)*tk9; —|—Zc (z — 2)*t" | (28)

ijka ika

where

where i,7 = 1,...,d, 0 < |a| + 2k < m, with the coefficients al¥ = altl(z), bl =
blil(2), il = clkl(2) € R obtained from the partial derivatives of the coefficients of
L at (t,z) = (0,z). However, L7, does depend on s as well. Generally, we shall
drop the depence on z from the notation from now on.

We will obtain a perturbative expansion of the form appearing in Proposition 4.18
for UL (1,0) with each V(7;) replaced by the operator L; introduced above. The
following easy corollary will justify that each term of this perturbative expansion is
well defined. We record it for further use. We notice that Lo(t) is independent of
t, so we shall write simply Lo. As in Remark 4.15, given 7 = (11,...,7%) € X, we
letoj =1+ +...+1,forj=1,... k.

Corollary 5.2. Let L = (L(t))ier € L., let k € Z4, and let L,,,, 0 <m < n+1,
be from the Taylor expansion of L, Equation (26). For T € Xy, let us set

O(1) = eT"LOle (al)e”Losz(ag) ijfl(ak,l)ekalLoij (o) E(Tk),
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with 0 < j; < n+ 1 and either E(t,) = e or B(r,) = UY (13,,0). Then, for
any € > 0, a,r,s € R, and 1 < p < 00, & : By = LIWSP(RN), WL (RY)) is
continuous

Proof. This follows from Lemma 4.16 with b= (b1,...,bx) € RE, b; = €/k. O

5.3. Asymptotic expansion of the evolution system. In this section, we define

an approximation E]vt[’;] of the evolution system U(t, s) satisfying the conditions of
Theorem 3.6.

Definition 5.3 (Spaces of Differentials). Given non-negative integers a, b, we de-
note by D(a,b) the vector space of all differential operators of order at most b with
coefficients that are polynomials in z and ¢ of degree at most a. We extend this
definition to negative indices by defining D(a,b) = {0} if either a or b is nega-
tive. By the degree of an operator A € D(a,b), we mean the highest power of the
polynomials appearing as coefficients of A.

Definition 5.4 (Adjoint Representation). For any two operators A; € D(aq,b)
and Ay € D(az, by) we define ad 4, (A2) by

ada, (Ag) = [A1, Ag] = A1 Ay — As Ay = —[A, Ad],
and, for any integer j > 1, we define adf41 (A2) recursively by

ad’y (As) = ada, (ad’y, ' (42)), ad)), (A2) == As.

Above, the iterated commutators are well defined if we take the space C2°(RY)
as common domain D of A; and As, for instance.

Lemma 5.5. Suppose Ay € D(ay,b1) and Ay € D(ag,bs). Then for any integer
k>1,

ady, (A2) € D(k(ay — 1) + az, k(by — 1) + by).
Proof. A direct computation using the properties of the class D(a,b) and the defi-

nition of the commutator gives ada,(A2) € D(ay — 1+ ag, by — 1+ by). The result
then follows by iterating k& times this relation. O

As in [13, 15], we obtain the following consequence of this lemma.

Proposition 5.6. Let Q € D(0,n) and Q.,, € D(m,m’). We have the following:
1. ad ™ (Qm) = 0;
2. the following sum is finite
exp(adg)(Qm) = D (7)™ adj(Qum);
j>0
3. exp(adg)(P1P;) = exp(adg)(P1)exp(adg)(P2) for all Pi, Py in the algebra
D= Un,n’D(na n/);
4. assume that Q generates a Cy-semigroup e!? on L*(R), t > 0, then

e?Q,n = exp(adQ)(Qm)eQ )

Proof. The first relation follows from adg(Qm) € D(m — k,m' + k(n — 1)) and
the fact that the later space is 0 when k£ > m. This then gives immediately that
exp(adg) is defined. The third relation follows from the fact that adg is a derivation
of D and the exponential of a derivation (when defined) is an algebra isomorphism
(see e.g. [35]). Finally, to prove the last relation, let us consider the function
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F(t) := €%Q,, — exp(adg)(Qm)e'?. It is a continuous function with values in
L(p ¢ L*(RN), p@ L2(RN)) for a large (a > m/ + (m + 1)(n — 1)). Then F(0) =0
and F'(t) = adg(F(t)). Hence F(t) =0 for all ¢ > 0. O

A consequence of our discussions is that we obtain an automorphism ¢g : D — D
of the algebra D := U, ,D(n,n’), given by the formula ¢o(Q)e’L0 = e?LoQ. See
also [12, 14, 41, 42, 47].

Lemma 5.7. Let m be a fixed positive integer and L,,, 0 < m < n, be defined as
in (27), then for any 0 € R,

e1=0Lor, (0) = Pp(0,2 — z,8)et=D Lo, (29)

where P (0,2 — 2,0) := ¢1-9(Lin(0)) is a differential operator with coefficients
polynomials in 6 and (x — z). (There is no t, since we specialized at t = 6 in the
formula for L,.)

Next, we rewrite the perturbative expansion of Proposition 4.18 in a more com-
putable and explicit form. We recall that d is the level of the iteration in the Dyson
series and n is the order of the Taylor expansion of L°. In principle, d and n are
unrelated, but we will find it convenient later on to choose d = n.

For ease of notation, we shall sometimes write L))}, = Ly41, even though this
operator does depend on s and z. Inserting (26) into the perturbative expansion of
Proposition 4.18 and collecting iterated integrals in the same number of variables,
we have:

d
UL (1) _ eLO + § Sa1+m+ak/ e(l_Ul)LO Lal (O_l)e(ol—ag)Lo
k=1 i=1,...k i
1<a;<n+1
e(ak—lfffk)Lo Lak (Uk) eakLo do + § g1t Fadty / 6(1701)110
i=1,...,d+1 Yat1
1<a;<n+1

« Loy (01) elr7o2) ko [ gloa=oar)lop  (5401)U(0g41,0)do,  (30)

where, for notational ease, we have set do = doy ...do; and where, in each integral
term above, ¢ varies from 1 to d + 1.

To simplify the above expression, we now introduce some helpful combinatorial
notation to keep track of the indexes

Definition 5.8. For any integers 1 < k <d+1land1<{¢< (n+1)d+1), we
denote by 2, the set of multi-indexes a = (ay,ag,...,a;) € {0,1,...,n + 1}¥,
such that |a| ==Y a; =¢.

Clearly, since a;; > 1, the set Ry, ¢ is empty if £ < k. If ov € Ay, ¢, then £ represents
the order in powers of s of the corresponding term in (30), while k represents the
level of iteration in the time-ordered expansion. For each a € 2, ¢, we then set

A, = / e=oLor, (o)) elrmo2)ko  glov—i=on)lor, (g5 ) e Lo dg (31a)
ps
ifk<d+1, and

Ao :/ eIV, (o) 1T glamrasilop  (0400) U (0441,0) do,
Za41

(31b)
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if k = d+ 1, respectively, using the notation do of Equation (30). (We recall that
we suppress the explicit dependence of Ly on s and z, if k = d + 1.) Also, since
we keep the dilation center z fixed for the time being, we also suppress the explicit
dependence on z.

A simple but useful result about A, is the following lemma, which we record for
later use.

Lemma 5.9. Recall the differential operators Py of Lemma 5.7. For any given
maulti-index o € Ay o withk <d and1 < o; <n,i=1,...,k,

Ao = Polz— z,0)elo
where

Pa(y76) = / Pal (Ul7ya 6‘)Pa2 (027y7 a) e Pak (Uka y7a)d0
Xk

is a differential operator with coefficients polynomials in y (in particular, it is in-
dependent of t or s).

Proof. Applying Lemma 5.7 repeatedly gives

Ay :/ e=o)lof,  (gy)elor=02) ko elon1=ou)lof,  (g1)e " Lo do
2k

= P, (01,2 — 2, d)elt=o2)Lo . e("’“*l_”’“)LULak (op)e* o da
Sy

(/ Pal (Ul’x o Z’a)Pa’Z(U?ax - 278) o 'Pak (Ukax - Z’a)dg)eLO.
Yk

This completes the proof. O
To further simplify some of the formulas, we define
min(£,d+1)
A= > N A, L= (32)
k=1  a€y,

For convenience, we let A? = elo.

We combine the results obtained so far in this section in the following represen-
tation theorem. We will perform an error analysis in the Sobolev spaces Wff in
Section 6.

Lemma 5.10 (Definition of the local approximation). Let d be the iteration level
in the time-ordered expansion the perturbative expansion of Proposition 4.18, let n
be the order of the Taylor expansion (26) of L*®, as before, and let m € Z.. Let

o0
fn,d,n _ Z S@—m—lAé )
l=m-+1
(The sum is actually finite.) Then

ULl (1,0) = ebfo 4 ZSZAZ + "B g0
=1

Assume that £ < min{d,n}. Then A* does not depend on d, n, or s, and, conse-

quently, E7, , , also does not depend on d and n, if m < min{d,n} as well.
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Proof. This follows from the fact that, if o € ™y ¢, then k <l := a1 +aa+... + oy,
since all o; > 1. O

Consequently, when m < min{d, n}, we shall write ES, = E’*, . since E’°,
does not depend on d and n and z is fixed.

Remark 5.11. The idea pursued here (following [15]) relies on the following three
analysis points

e UL (t,t') depends smoothly on s € [0, 1];

e we can explicitly identify UL’ (t,#/) = e(t=t)Lo;

e the sum ef0 + 37" s°Af is the Taylor polynomial of (the distribution kernel

of) UF'(1,0) at s = 0.

Note that Lg is obtained from the operator L by freezing its coefficients at (0, z)
(t = 0 in time and z in space). We can thus try to approximate U (1,0) with its
Taylor polynomial. In turn, after rescaling back, this approximation will yield an
approximation of U%(s2,0), that is, for short time. Note that UL (1,0) does not
exhibit any singularities at s = 0, but rescaling back introduces a strong singularity
at s = 0 in U%(s2,0), however, repeating ourselves, that singularity is entirely due
to the rescaling. The next section will make this construction explicit to define the
approximate Green’s function of UL(t,s) for ¢t — s > 0 small.

6. The approximate Green’s function and error analysis. In this section
we introduce our approximate Green’s function, we prove Theorem 1.1, and we
complete our error analysis. Our error estimates are using the norm of linear maps
between weighted Sobolev spaces. A different kind of estimate (pointwise in (z,y))
was obtained in [47].

6.1. Definition of the approximate Green’s function. We are now ready to
introduce our approximation of the Green’s function

gwfl:s('rv y) = UL(tv S)(JZ, y)

of the operator UL (t,s) following the idea outlined in Remark 5.11. Since the
problem is translation invariant, we may assume s = 0. Soon, we will replace z
(which was fixed in the previous section) with a function of z and y. We first
introduce the conditions that such a function must satisfy.

Definition 6.1. A smooth function z : R?Y — RY will be called admissible if
z(x,x) = z, for all z € RY and all partial derivatives (of positive orders) of z are
bounded.

A typical example is z(z, y) = Ax+(1— M)y, for some fixed parameter A. A simple
application of the mean value theorem gives that (z —x) < C(y—z) for some C' > 0.
From the point of view of application, z(x,y) = = will give us the simplest formula
to approximate the Green’s function. However, as discussed in [13], other more
suitable choices are possible, for instance, z(z,y) = (z + y)/2 seems to be often
better. In what follows, we fix an admissible z = z(x,y). We now fix for the rest of
the paper an admissible function z : R?N — R¥. It will be the dilation center used
to approximate the Green’s functions at (z,y).

Assume we want an approximation of order m (that is, up to s™ = t™/2). We
shall use the formulas and the results of Lemma 5.10. We shall choose then in that

Lemma n,d > m, so that the terms A’ are independent of s (and t) and adon
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is independent of d and n, so we can write E7, , = E;, for the “error term.”
Motivated by Lemmata 5.1 and 5.10, we now introduce the following.

Definition 6.2. We assume p < min{d,n} and let the order u approzimation
gt’g] (2,y) of the Green’s function G/, (x,y) of U (t,0) be

Gl y) = 3 NN (o D2 VR
=0

\/E Vit

where z is some admissible function. By replacing L with a translation of size t’
in time, we define similarly the approximation gt t]/(:n y) using the p—approximate
kernel at (¢t —t’,0) for this translated operator.

For this definition, it suffices to choose n = d = m, but for the proof of our error
estimates, the freedom to choose much larger n and d will be useful. This will be
especially the case when dealing with the error term:

Blj(w.y) = 02 [ Gly(e.y) - Gy (33)
of Theorem 1.1.

6.2. Convergence analysis. In this section, we show that our approximate
Green’s function gt '(z,y) satisfies the assumptions of Theorem 3.6. We shall
primarily use pseudo differential techniques. For all relevant properties of pseudo-
differential operators, we refer to [51, 55]. For the moment, we continue to keep z,
the dilation center, fixed.

We start by analyzing in more detail the properties of the operators L,, in ex-
pansion (27). We recall that (z), = (x —z). We also recall that L,,, 0 <m < n+1,
are second-order differential operator with polynomial coefficients, independent of
the dilation factor s. Moreover, L,, has coeflicients of degree at most m in x — z.
An immediate consequence of this fact is recorded in the following lemma.

Lemma 6.3. Let L;, 0 < j < n+ 1 be the operators of Equation (26), with
Ly = LZ’jl depending also on s (all these operators depend on z). The family

{(x)z_ij, (x);"~ 1Lfb_f_1; €(0,1], z € RN, j=0,...,n+ 1}
defines a bounded subset of LL.,.

We recall that, for convenience, we have dropped the dependence on z in the
notation of the polynomials L,,. The next Lemma allows to change the center of
the dilation z. This change is needed when z is replaced by a function z = z(x,y).
It also allows to reduce to the case a = 0 to establish bounds in W(fj , as long as a
belongs to a bounded set.

Lemma 6.4. For each given € > 0, the family
{e‘dz)we_E(m)“’Lj, s€(0,1], zzweRYN, j=0,...,n+1}
is a bounded subset of L. .
Proof. The triangle inequality shows that
(x —2) — (x —w) < (w— 2).
Therefore e ((z=2)=(z=w)=(w=2)) < 1 and hence the family
ec(z—2)—(z—w)—(w=2)) o—e(@). Li = e—€(z—w) o—e(@)w L:
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is bounded in W for s € (0,1] and j =0,1,2,--- ,n+ 1 as claimed, by Lemma
6.3. O

Lemma 4.16 and Lemma 6.4 yield the following result.

Corollary 6.5. For any a € Ay, z,w € RN, ;s € R, 1 < p < 00, and € > 0,

Ao ::/ €™ 0 Lo, (m1) eTFo e oL (m)e™0dS(r), k<d
Yk

and
Ay = / eT‘)LOLa1 (ry)emto. .. erLOLadJrl (Ta+1)U(Ta+41,0)dSq41(T)
a4t
are bounded linear operators from Wit to Wt . - Moreover, we have that

IAallwsnwre < Carpace ™),

for a bound Cs y p a.c that does not depend on z or w. In particular, each A, is an
operator with smooth kernel Ay (z,y).

In order to treat the resulting kernels and the resulting remainder term, Corollary
6.5 is not sufficient and we need refined estimates. We address first the terms
comprising g% of the expansion introduced in Definition 6.2 via pseudo-differential
calculus and treat the terms in the remainder next via direct kernel estimates.

6.3. Bounds on QN% We bound each operator A, appearing in Definition 6.2
separately, where A,, is defined in (31). To this end, we define the operator

Looflz)=s" /RN Aa(z+ s @ —2),24+5 (y—2)fly)dy, (34)

We show below that, for an admissible function z, and o = (a1, ..., k) € Ake,
k < n, a; < n, the operator L, , is a pseudo-differential operator with a good
symbol. We shall then use symbol calculus to derive the desired operator estimates.
By Lemma 4.6, it is enough to assume a = 0 in WP (in which case, w becomes
unnecessary).

Since we keep z fixed, the operator Lg is constant coefficient and its Green’s
function G can be computed explicitly as:

Ot
e (w469t —3)t (A0 "L (@460t —y)
4t

@) det(A0) ’

where AY is the matrix with entries a;;(2). A direct computation gives the following
lemma, using the explicit form of the kernel G of elo.

G(a:,y) =

Lemma 6.6. Fiz z € RN. Consider the operator T = (z — 2)P9)e*, where 3 and
v are multi-indices. Then the distributional kernel of T is given by

T(z,y) = (z-2)°(0)G)(z — y).

The next theorem characterizes the symbol of L, , belonging to the principal
term of the expansion.

Theorem 6.7. Let o € Ay e, k < n, oy < n. Let z : RY x RV — RN bpe an
admissible function. Then there exists a uniformly bounded family {0s}se0,1] in
S=(RN x RN) such that

£s,a = US(.T,D) = Qs(anD)v 05(-7776) = Qs<x355)~
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Proof. By Lemma 5.9, A, is a finite sum of terms of the form a(z)(x — 2)%8) el
with a € W, We recall that a is smooth with bounded derivatives of all orders.
Let k. (z,y) be the distribution kernel of a(z)(z — 2)?97e and set

Ko(z,y) =s Nk (z+s Nz —2),24+ 5 (y—2)), z=2z(z7y).

By abuse of notation, we shall denote also by K the integral operator with kernel
K. Tt is enough to show that there exists a uniformly bounded family {QS}SE(OJ]
in ST such that

Ks; = os(z,sD).
A direct calculation shows that
K(w,y) = a(z)s™ /7N (@ = 2)7((z,s (@ —y), 2= =2(2,y),
with ¢(z,z) the kernel of 97e0. Then the symbol of K, o,(z,£) is given by

os(z, &) = / e Wea(2)sTBITN (1 — 2)P¢(z, sy dy, 2= z(z,z—y).
RN
If we denote
os(x, &) = / e~ Wea(2)sT (@ — 2)P¢(2,y)dy, 2= z(z,x — sy),
RN

we have os(z, &) = os(x, s§). We show next that g, is a bounded family in S~°.
This follows from the continuity of multiplication with smoothing symbols, given
that a(z) € S(1 o) and s Hxj — zj(z, @ — sy)) € S?l,O) and they form bounded
families for s € [0, 1]. O

A simple change of variables and the definition of the symbol class ST, gives the
lemma below.

Lemma 6.8. Let o(x,&) be a symbol in S™, then s¥o(x, s€) is a symbol in Sig
uniformly bounded in (0, 1] with respect to s.

The symbol calculus gives mapping properties on Sobolev spaces by standard
results.

Theorem 6.9. In the hypotheses of Theorem 6.7, for any 1 < p < oo, any r € R,
Sk”L ) < Ck,r,p7 (35)

for Cirp z'ndependent of s. The same estimate is valid for the integral operators
with kernels QSQ o(w,y) (see Definition 6.2).

Proof. The first part follows from the definition of £ o, Theorem 6.7, and Lemma

6.8. The last part follows from the definition of G[M in terms of the operators L 4,
Equation (32) and Definition 6.2. O

By Definition 6.2, the above theorem translates into a corresponding bound on
the principal part G;g ikl of the asymptotic expansion for the Green’s function.

Corollary 6.10. Let g = fRN Qt“g (z,y)f(y)dy (that is, the operator with
kernel Qf%] (z,y)). Let T > O, 1 < p<oo, and r € R, then the family of operators
Qw is uniformly bounded in WP for t € (0,T).
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6.4. Bounds on E%} In this subsection, we study the error term Et[fg] in (33),

which is a particular case of the error term E‘}T,] in Theorem 1.1. The case t’ # 0 is
obtained from the case t’ = 0 by a translation in time. For our error estimate, we
recall that, if d and n are large enough, both QN% (z,y) and Et[“()] are independent of
d and n. Next, we replace p with M > p 4+ r — 1 in Definition 6.2, with » > 0 to
be chosen. Then we increase d and n accordingly to satisfy d,n > M, remembering

that E‘H (z,y) does not depend on d and n as long as d,n > pu. We can decompose
Et[’f)] (z,y) as follows:
N M
Bfj(a,y) = Y (NN 417 2@ = 2), 2 4172y — 2)
l=p+1
+t MR B @), (36)
The first M — p — 1 terms in this expressions are pseudo-differential operators of
the type discussed in Subsection 6.3. The last term contains operators A, with
either a € 2,41 ps or for some a; = n+ 1. In this range, we generally do not know
whether A, is a pseudo-differential operator or not. Instead of symbol calculus,
it will be enough to apply a well-known result, sometimes referred to as Riesz’s

Lemma, which we recall for the reader’s sake (see for example [53, Proposition 5.1,
page 573]).

Lemma 6.11. Assume K is an integral operator with kernel k(x,y) on a measure
space (X, ). If for all y and for all x, respectively,

[ e ldnte) < 1, [ hGep)lduty) < (37)
X X
then K is a bounded operator on LP(X, u), p € [1,00]. Moreover,

Ikl < CPes’ 1p+1/g=1,

By Lemma 4.6, in the proofs following results, we need only consider the case a =
0in Wi = Wat, (R™). In that case, the norms on our spaces become independent
of w as well. The following result is similar to Theorem 6.9, but it has no constraints
on the indices.

Lemma 6.12. Let z : RN x RY — RY be admissible and let 1 < p < co. Then,
for any o and any k > 0, there exists Ci p.o > 0 such that

Sk”ES’a |W0’P,W’“7P < Ck,p,ow (38)

Proof. First, we assume that k is a positive integer. By Riesz’s Lemma it suffices
to show that, for any multi-index v with |vy| < &,

/ Sh‘|a;;y‘cs,a($7y)‘dy S C‘17/ s|7||8;£5,a(gc,y)|da: S 027 (39)
RN RN

where C7; and C5 are independent of x and y respectively. We observe that
01 Ls o(x,y) is the sum of terms of the form

st*jagaf/(‘?g”Aa(z +s5 Nz —2), 24+ 5y —2)) - &(2), (40)

where j < || and &(2) is the product of derivatives of z with respect to z, which
is bounded as z is admissible. This expression follows from (34) and the fact that
A, is a finite sum of terms of the form (z — 2)?97e by Lemma 5.9. Keeping z, y
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fixed, we bound each of these terms, using the Schwartz Kernel Theorem, since A,
is a smoothing operator:

1020500 Aa(a,y)| = [(0°6,,07 A, 07 6,)|

< Y080 o107 Nallzr-osrre 1107 Syller—o,  (41)

where (-,-) denotes again the pairing between smooth functions and compactly
supported distributions. Above, we employed Corollary 6.5 with p =2, ¢ = 0, and
w =2z (and H} := Wff)) Next we estimate the three norms at the right hand side
of the above inequality. Choosing ¢ > N + || gives for all € > 0,

||aﬂ5m||H:q — ||e—6<w—Z(w7y)>555zHH_q < Qe cle—z(y))

and similarly for 8" dy. Since all the coefficients and their derivatives of L(t) are
bounded, OflAa satisfies the same mapping properties as A,. Thus by Corollary
6.5, H@ZB/AQHH_Q_)HE < Ce*=*) . Consequently,

107070, Aalz,y)| < Ce0 <=2 < €

and we obtain
5N 90802 0 Aalz + 57w — )5 + 57y — ) € < CsTNDL

Finally, the change of variable A = == allows us to verify that (39) holds. The
case of non-integer exponent k follows by interpolation. O

Lemma 6.12 implies immediately

Corollary 6.13. Let z be admissible, and let k € Z, 1 < p < oco. Then, for any
r >0 and a, there exists Ci pp,o > 0 such that
SN Lo allwro wrers < Chrpa- (42)
Let E‘t[uo} denote also the “error” integral operator with kernel E‘t[’g (z,9), as in
Theorem 1.1.

Theorem 6.14. Under the hypotheses of Theorem 6.9, the error operator E%] of
Theorem 1.1 satisfies

NEY lwro wrstr < Crppm s . (43)

Proof. Recall the splitting (36). Then, applying Theorem 6.9 and Corollary 6.13
gives

M 4
D DI ) DD W V4 e

l=m+1 k=m+1acAy ,
+ sM+1_m||5t[M]||W,,.,p7W7-+k,p < Os7F(1 4 sMTlmmg™) < Os7F.
This completes the proof. O

Our main result, Theorem 1.1, now follows from Definition 6.2, the expansion of
the operator Ay, and the error analysis of this section.

Remark 6.15. It is not difficult to show that the approximation introduced in
Theorem 1.1 is invariant under affine transformations, a useful fact in applications.
We refer to [12] for more details.
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Combining our previous results we obtain the following.

Theorem 6.16. Let L € L, for v > 0, and let U = UL be the evolution system
generated by L on WEP k€ Z,, w € RV, 1 < p < o0, and a € R. Let gt[f;]/ be

the pt"-order approximation of the Green function for O — L(t), u > 1 (Definition
6.2). Then there exist w, M > 0 such that, for all t > 0, we have

n—1 (m+1)/2
5lul t ¢
|U(t,0) — H (g(k+1)t/n7kt/n) lwse < Mme“

Proof. Theorems 1.1 shows that the assumptions of Theorem 3.6 are satisfied with
a = (p+ 1)/2. Substituting yields the claimed result. O

In particular, we have the following convergence.

Corollary 6.17. In the hypotheses of Theorem 0.16, if p > 2, then, for t > 0, we
have

i . olul o
nh—>ngo (g(k'f‘l)t/n,kt/n) - U(t70)a

in norm in L(WED).
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