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Abstract. We study the discretization of a linear evolution partial di↵erential
equation when its Green’s function is known or well approximated. We provide
error estimates both for the spatial approximation and for the time stepping
approximation. We show that, in fact, an approximation of the Green function
is almost as good as the Green function itself. For suitable time-dependent
parabolic equations, we explain how to obtain good, explicit approximations
of the Green function using the Dyson-Taylor commutator method that we
developed in J. Math. Phys. 51 (2010), n. 10, 103502 (reference [15]). This
approximation for short time, when combined with a bootstrap argument, gives
an approximate solution on any fixed time interval within any prescribed tol-
erance.

1. Introduction. We consider an initial value problem (IVP) of the form
(

@tu(t)� L(t)u(t) = f , 0  s  t ,

u(s) = h ,
(1)

where we require u(t) and h to belong to certain Sobolev spaces on RN .
Let us assume f = 0. The solution operator, if it exists, is then U

L(t, s)h = u(t).
It defines what is called an evolution system [1, 43, 48] (we recall the definition of
an evolution system in Definition 2.1). We have

⇥
U

L(t, s)h
⇤
(x) =

Z

⌦
GL

t,s
(x, y)h(y)dy (2)

when such a distribution GL

t,s
(x, y) exists. We call this distribution GL

t,s
(x, y) the

Green function of the evolution system U
L. The existence of G under mild conditions

on L(t) follows by the Schwartz Kernel Theorem (see e.g. [16]). (In the cases
considered in this paper, it will be a true function. We shall also say that GL

t,s
(x, y)

is the Green function of @t �L. The terminology fundamental solution of @t �L is
also used for GL

t,s
(x, y).)

In this paper we consider the following problems:
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(1) Assuming that the Green function GL

t,s
(x, y) of the evolution system U

L is
known, establish the properties of the approximations of u(t) in suitable dis-
cretization spaces S.

(2) Show that suitable good approximations of the Green function are (almost)
as good as the Green function itself.

(3) Provide a method to find good approximations of the Green function, includ-
ing complete error estimates.

We address the problems above under some mild, customary assumptions. First,
we assume that

L(t) :=
NX

i,j

aij(t, x)@i@j +
NX

i

bi(t, x)@i + c(t, x) , (3)

with x = (x1, ..., xN ) 2 RN , @k := @

@xk
, and t 2 I, where, throughout this paper,

I ⇢ [0,1) is an interval containing 0. Most of the results pertaining to points (1)
and (2) above extend to bounded domains ⌦ ⇢ RN of su�cient regularity under
suitable boundary conditions. However, the Green function approximation in point
(3) changes significantly. Therefore, we choose to work on RN in this paper. The
coe�cients aij , bi, and c all their derivatives are assumed smooth and bounded
(i.e., they are assumed to be in W

1,1(R+⇥RN ) = C1
b
(R+⇥RN )). For simplicity,

we assume as well that these coe�cients are real and that the resulting matrix is
symmetric, namely aij = aji for all i, j. We impose a uniform strong ellipticity
condition on the operators L(t), meaning that there exists a constant � > 0 such
that X

aij(t, x)⇠i⇠j � �k⇠k2, 8t � 0, x, ⇠ 2 RN
, ⇠ 6= 0 . (4)

We collectively denote by L� the class of operators L = (L(t))t2I of the form (3)
satisfying the ellipticity condition (4) and the coe�cients of which, together with
all their derivatives, are bounded (see Definition 4.1).

Let us discuss in more detail the three main contributions of our work to the
problems (1)-(3)

(1) The contribution to the first problem (“Assuming that the Green function
GL

t,s
(x, y) of the evolution system U

L is known, to establish the properties of the
approximations of u(t) in suitable discretization spaces S”) addresses a very nat-
ural question. Even if, theoretically, the knowledge of the initial data h and of
the Green functions GL

t,s
(x, y) determines the solution u via integration: u(t, x) =R

RN GL

t,0(x, y)h(y)dy, applying this result in practice leads to at least two issues.
The first one is that we can store only a finite dimensional space V of potential
solutions and initial data computationally. We thus need to discretize our equa-
tion and to approximate both the initial data and the solution with elements of
V . Our first result, Theorem 3.3 gives a “proof of concept” result on how such a
discretization (in the space variable) works. The main point of the result is that the
projection error has to decrease in time at the same order as the time itself (unlike
in the time independent case, see Theorem 3.3, especially the Condition 9). In our
setting, we know few error estimates of this kind, but in the general framework of
Finite Di↵erence or Finite Element methods for evolution equations, there are some
similar results [23, 33, 37, 49, 54].

(2) Our contribution to the second problem (“To show that suitable good approx-
imations of the Green function are (almost) as good as the Green function itself”)
addresses another natural question, which is what kind of approximations of the
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Green functions would be acceptable in case the Green function itself is not known.
Thus, let us assume that an approximate Green function eGL

t,s
(x, y) is given. We also

assume that the discretization in space is to divide the time interval [0, T ] in n equal
size intervals (in this paper, we will always use this very common discretization).
If the error kGL

t,s
� eGL

t,s
k is of the order of (t� s)↵, then we show that the order of

the error due to time discretization (or bootstrap) is of the order n1�↵. This shows
that we need a good approximation of the Green function (i.e., ↵ > 1). The boot-
strap method is the one we developed in [13, 14]. It is a common method in Finite
Di↵erence and Finite Element methods [23, 33, 37, 49, 54]. For Green functions, a
similar method was more recently suggested in [41].

A common issue in both space and time discretization (i.e., in (1) and (2)) is
that we need to find error estimates that are at least of the order of (t� s) (in fact,
even better for (2)). We know very few earlier results in the line of (1) and (2).

(3) Our contribution to the third problem (“To provide a method to find good
approximations of the Green function, including complete error estimates”) fits into
a very long sequence of results concerning heat kernel approximations and Dyson
series expansions. The literature on the subject is truly vast, but we nevertheless
mention the papers [9, 10, 17, 18, 21, 27, 30, 31], which are some of the papers
preceding and most closely related to the articles [15, 13, 12, 14] (in chronological
order), in which we have developed the Dyson-Taylor commutator method used in
this paper. Let us mention also the more recent papers [20, 22, 25, 26, 28, 29, 42,
57], where the reader will be able to find further references. Some general related
monographs include [19, 32, 39].

For the Green function approximation, we use the Dyson-Taylor commutator
method developed in [15, 13, 12, 14], which we also expand and make more precise.
A similar method was employed more recently in [41, 42]. The main result regarding
this third questions is a sharp error estimate in weighted Sobolev spaces. This error
estimate, when combined with the results of (2) and using the bootstrap argument
we developed in [13] gives an approximate solution on any fixed time interval within
any prescribed tolerance. Our method is such that also derivatives of the solution
can be e↵ectively approximated with verified bounds (with the price of increasing
the order of approximation). Our error estimates are in exponentially weighted
Sobolev spaces W

r,p

a
(RN ) = e

�ahxi
W

r,p(RN ), r � 0, 1 < p < 1, a 2 R, defined in
Equation (17), where hxi :=

p
1 + |x|2 is given in (16).

Our main result is the following. (The L� was introduced above, but see 4.1 for
more details.)

Theorem 1.1. Let L be an operator in the class L� . Then L generates an evolution
system U

L in the Sobolev space W
r,p

a
(RN ), r � 0, 1 < p < 1, a 2 R. Given

µ 2 N, there exists an explicitly computable smooth function eG[µ]
t,s

(x, y), given in
Definition 6.2, such that the distribution kernel GL

t,s
(x, y) of UL(t, s) (that is, the

Green function of @t � L) can be represented as

GL

t,s
(x, y) := eG[µ]

t,s
(x, y) + (t� s)(µ+1)/2 eE[µ]

t,s
(x, y) ,

where the remainder eE[µ]
t,s

, when regarded as an integral operator, satisfies

k eE[µ]
t,s

gk
W

r+k,p
a

 C (t� s)�k/2kgkW r,p
a

, 0  s < t  T, k 2 N
with a bound C depending on L, µ, a, k, r, p, and 0 < T < 1, but independent of g
and s, t 2 [0, T ], s  t.
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Together with Theorem 3.6, this theorem yields an approximation of the solution
u of our Initial Value problem (1).

The paper is organized as follows. In Section 2, we remind some standard facts
about non-autonomous, second-order initial value problems (@t � L(t))u(t, x) = 0
and the evolution system they generate. In Section 3, we establish space discretiza-
tion and time discretization (bootstrap) error estimates in a general, abstract set-
ting. The setting is that of an evolution system that satisfies some standard ex-
ponential bounds. These exponential bounds are satisfied both in the parabolic
and hyperbolic settings, so they are realistic. (They are automatically satisfied if
L is independent of time.) Beginning with Section 4, we specialize to the case of
operators L 2 L� . In that section, we introduce weighted Sobolev spaces and we
study the evolution system generated by L 2 L� . Using the theory of analytic
semigroups, we establish explicit mapping properties that allow us to make sense
of the integrals appearing in the iterative time-ordered expansions that we use (the
resulting formulas are sometimes called Dyson-series and are well known and much
used in the Physics literature). The time-ordered expansion is obtained, as usual,
using Duhamel’s principle iteratively. Section 5 contains a formal derivation of the
asymptotic expansion of the solution operator for the Equation (1). This deriva-
tion allows us to use the method from [15] for computing the time-ordered integral
appearing in the resulting Dyson series expansion using Hadamard’s formula:

e
A
B =

✓
B + [A,B] +

1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . .

◆
e
A
. (5)

Here we use the crucial observation in [15] that, in the cases of interest for us, this
series reduces to a finite, explicit sum. In Section 6, we introduce our approxi-
mate Green function, we prove Theorem 1.1, and we complete our error analysis.
Technically, this section is one of the most demanding.

Throughout the paper, unless explicitly mentioned, C will denote a generic con-
stant that may be di↵erent each time when it is used. We employ standard notation
for function spaces throughout, in particular W r,p, 1  p  1, r 2 R for standard
L
p-based Sobolev spaces on Rn, and H

s = W
s,2. We also denote the space of con-

tinuous functions (which may take values in a Banach space) with C, and by W
1,1

the Sobolev space of bounded functions with bounded derivatives of all orders. By
the Sobolev Embedding Theorem, the elements of W1,1 are smooth functions.

The results of this paper are based in great part and extend some results in [12]
and an unpublished 2011 IMA preprint [14]. See [25, 42, 57] for some recent, related
results to that preprint. However, Section 3 is essentially new. Also, we did not
include the numerical test and the explicit calculations of the SABR model from
[14] in order to keep this paper more focused (and to limit its size).

Convention: we use throughout the usual multi-index notation for derivatives with
respect to the space variable x, that is, @

↵ = @
↵1
1 . . . @

↵N
N

, ↵ = (↵1, . . . ,↵N ) 2 ZN

+ ,

and |↵| =
P

N

i=1 ↵j, @j =
@

@xj
, while @t =

@

@t
.

2. Preliminaries on evolution systems . We refer the reader to [1, 43, 48] for
further results and details on the functional analytic framework that we employ.
Let (X, k · k) be a Banach space and let A : D(A) ! X be a (possibly unbounded)
closed linear operator with domain D(A) ⇢ X. We let ⇢(A) denote its resolvent
set, that is, the set of � 2 C such that A � � : D(A) ! X is a bijection. We let
R(�, A) := (��A)�1 : X ! X be its resolvent, for � 2 ⇢(A).
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Throughout, L(X1, X2) is the space of all bounded linear operators on X1 ! X2

for two normed spacesX1 andX2. We let L(X) = L(X,X). For ease of notation, we
let k ·kX1,X2 and k ·kX denote the corresponding norms. Let arg : Cr (�1, 0] ! C
be the imaginary part of the branch of log that satisfies log(1) = 0.

2.1. Properties of evolution systems. Recall that, throughout this paper, I ⇢
[0,1) is an interval containing 0. In this section, we show that L = (L(t))t2I

generates an evolution system on Sobolev spaces. We recall below the definition of
an evolution system and some basic properties for the reader’s convenience. (We
refer to [43] for an in-depth discussion. See also [1, 48])

Definition 2.1. Let I ⇢ [0,1) be an interval containing 0 (as always). A two
parameter family of bounded linear operators U(t, t0) on X, 0  t

0  t 2 I, is called
an evolution system if the following three conditions are satisfied

1. U(t, t) = 1, the identity operator, for all t 2 I;
2. U(t, t0)U(t0, t00) = U(t, t00) for 0  t

0  t
0  t 2 I;

3. U(t, t0) is strongly continuous in t and t
0 for all 0  t

0  t 2 I.

If U(t, t0) depends only on t� t
0, then U is called autonomous.

Informally, we shall say that the family of unbounded operators L = (L(t))t2I

generates the evolution system U if @tU(t, s)⇠ = L(t)U(t, s)⇠ for all t0  s < t 2 I

and ⇠ in a suitable large subspace. We prefer not to give a formal definition for
what “large” means in this setting, as for the families L that we will consider, this
will happen everywhere.

Definition 2.2. Let I ⇢ [0,1) be an open interval containing 0, as always in this
paper. A family of operators L = (L(t))t2I , L(t) : D(L(t)) ⇢ X ! X, t 2 I, will
be called uniformly sectorial if the following conditions are satisfied:

1. The domains D(L(t)) =: D are independent of t and dense in X;
2. D can be endowed with a Banach space norm such that the injection D ,! X

is continuous and I 3 t ! L(t) 2 L(D, X) is uniformly Hölder continuous
with exponent ↵ 2 (0, 1].

3. There exist ! 2 R, ✓ 2 (⇡/2,⇡), and M > 0 such that, for any t 2 [0, T ),
(

⇢(L(t)) � S✓,! := {� 2 C, � 6= !, | arg(�� !)| < ✓},

kR(�, L(t))k  M

|��!| , 8� 2 S✓,!.

The following well known proposition (see again [43, page 43] for a proof) gives
a su�cient condition that guarantees the sectoriality of an operator.

Proposition 2.3. Let A : D(A) ⇢ X ! X be a linear operator. Assume that there
exist ! 2 R and M > 0 such that ⇢(A) contains the half plane {� 2 C, Re� � !}
and

k�R(�, A)kX  M, 8Re� � !.

Then A is sectorial.

We recall that uniform sectoriality implies generation of an evolution system [43,
page 212]. (This is the “uniform parabolic case,” see also sections 5.6 and 5.7 in
[48].) Specifically, we have the following result that applies to our setting, which
is introduced in Section 4. (See, for example, [43, Corollary 6.1.8, page 219], for a
proof.)
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Theorem 2.4. Suppose L = (L(t))t2I is uniformly sectorial with common do-
main D, then there exists an evolution system U(t, s), 0  s  t 2 I, such that
@tU(t, s)⇠ = L(t)U(t, s)⇠ for all ⇠ 2 D and s < t. This evolution system is unique
and the following hold:

1. The functions

kU(t, s)kX , (t� s)kU(t, s)kX,D, kL(t)U(t, s)kD,X

are uniformly bounded for 0  s < t 2 I and
2. @sU(t, s) = �U(t, s)L(s), for s < t.

If L and U are as in the above theorem, then we shall say that L generates U

and denote it U
L. We now return to the study of the IVP (1). We shall use the

following notion of solution (see e.g. [43, pages 123-124]).

Definition 2.5. Let X be a Banach space, h 2 X, and f 2 L
1((0, T ), X).

1. By a strong solution in X of (1) on the interval [0, T ), we mean a function

u 2 C([0, T ), X) \W
1,1((0, T ), X) (6)

such that u(t) 2 D(L) and @tu(t) = L(t)u(t) + f(t) in X for almost all
t 2 (0, T ), and u(0) = h.

2. By a classical solution in X of (1) on the interval [0, T ), we mean a function

u 2 C([0, T ), X) \ C1((0, T ), X) \ C((0, T ),D(L(t))) (7)

such that @tu(t) = L(t)u(t) + f(t) in X for 0 < t < T , and u(0) = h.

Every classical solution is also a strong solution. Theorem 2.4 shows that, if
f = 0 and L(t) is uniformly sectorial, then the IVP (1) has a unique strong solution
for all h 2 X and this solution is also a classical solution. It will be convenient to
formalize our presentation using the following definitions.

Definition 2.6. Let J be an arbitrary index set. A family of norms ||| · |||t, t 2 J ,
on X will be called uniformly equivalent to the given norm k · k on X if there exists
C > 0 with the property that, for all x 2 X and all t 2 J , we have

C
�1kxk  |||x|||t  Ckxk .

The following concept will play an important role in what follows.

Definition 2.7. We shall say that an evolution system U(t, s), 0  s  t 2 I, has
exponential bounds if there exist !U 2 R and MU > 0 such that, for all x 2 X and
all 0  s  t 2 I, we have the estimate

kU(t, s)xk  MU e
!U (t�s) kxk .

Clearly, any autonomous evolution system has exponential bounds (a simple
consequence of the Banach-Steinhaus uniform boundedness principle) [1, 43, 48].
We will need the following result (see again [1, 43, 48]).

Lemma 2.8. Assume that U(t, s), 0  s  t 2 I, is an evolution system that has
exponential bounds (with bounds MU and !U , as in Definition 2.7). Then, there
exists a family of norms ||| · |||t, t 2 I, on X that are uniformly equivalent to the
given norm of X such that, for all 0  s  t 2 I and all x 2 X, they satisfy

|||U(t, s)x|||t  e
!U (t�s)|||x|||s .
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The point of this lemma is, of course, that we can assume MU = 1 in Definition
2.7, with the price of admitting time-dependent norms. We include a proof for
completeness.

Proof. Set V (t, s) = e
�!U (t�s)

U(t, s), then it is clear that V (t, s) is uniformly
bounded by MU . We define a new norm as

|||x|||s := sup
st2I

kV (t, s)xk .

From the first part, we then obtain kxk  |||x|||s  MUkxk, for all s 2 I. Thus, the
family ||| · |||s, 0  s 2 I, is uniformly equivalent to k · k on X. Note that by our
definition, for all 0  s  t 2 I,

|||V (t, s)x|||t = sup
tr2I

kV (r, t)V (t, s)xk = sup
tr2I

kV (r, s)xk

 sup
sr2I

kV (r, s)xk =: |||x|||s .

Substituting V (t, s) = e
�!U (t�s)

U(t, s), we obtain the desired estimate.

We now state the desired form of this result.

Corollary 2.9. Assume that the family L = (L(t)t2I of operators on a Banach
space (X, k · k) is uniformly sectorial and let U

L be the evolution system it gen-
erates. Then U

L has exponential bounds. Let !U be as in Definition 2.7 (with
U replaced with U

L). Consequently, there exists a uniformly equivalent family of
time-dependent norms ||| · |||t, t 2 I, such that, for all 0  s  t 2 I and all x 2 X,

|||UL(t, s)x|||t  e
!U (t�s)|||x|||s .

Proof. The first part is well known [1, 43, 48]. The second part follows easily from
Lemma 2.8 and is also known.

Again, the main point of this result is that there is no additional factor MU

in front of the factor e
!U (t�s). This will be crucial in the error estimates of the

following section.

3. Discretization and bootstrap error estimates. In this section, we study the
discretization error when we compress our evolution system U = (U(t, s))0st2I ,
U(t, s) 2 L(X), to a subspace S ⇢ X and the bootstrap error when we approximate
U with some other two-parameter family of operators K. Recall that, throughout
this paper, I ⇢ [0,1) is an interval containing 0.

Throughout this section, let U(t, s), 0  s  t 2 I, be an evolution system acting
on some Banach space (X, k · k). We assume that U has exponential bounds, see
Definition 2.7. In particular, !U 2 R and MU > 0 will be as in that definition (i.e.
kU(t, s)xk  MU e

!U (t�s) kxk for all x 2 X and all 0  s  t 2 I). Recall then
from Lemma 2.8 that there exists a uniformly equivalent family of time-dependent
norms ||| · |||t, t 2 I, on X which makes the factor MU unnecessary. That is, there
exist CU > 0 such that

C
�1
U

kxk  |||x|||t  CUkxk and

|||U(t, s)x|||t  e
!U (t�s)|||x|||s ,

(8)

for all x 2 X and all 0  s  t 2 I (with !U as above). We stress that there is
no additional bound MU in front of the exponential in the last estimate, and this
is indeed crucial in our error estimates below. The need for such estimates is one
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feature that is specific to time dependent equations. Below, U , CU , and !U will
always be as in the above equation. We recall that evolution systems generated
by uniform parabolic (the case in the following sections) or uniform hyperbolic
generators will satisfy our assumptions [48].

Let Xs = X, but with the norm |||·|||s. If T 2 L(X), we let |||T |||s,t := kTkXs,Xt ,
the norm on L(Xs, Xt). We shall need the following simple lemmata.

Lemma 3.1. We let CU and the norms ||| · |||t on X be as in Equation (8). Then,
for all Q 2 L(X), we have |||Q|||s,t  C

2
U
kQkX .

The proof is immediate. We have stated this lemma only for the purpose of
referencing it.

Lemma 3.2. Let V (t, s), G(t, s) 2 L(X), 0  s  t 2 I, and ||| · |||s,t := k · kXs,Xt ,
as above. Let S ⇢ X be a closed subspace. Suppose that there exist ! 2 R, ↵ � 1,
and CG > 0 such that following conditions hold for all 0  s  t 2 I:

1. |||V (t, s)|||s,t  e
!(t�s).

2. kV (t, s)�G(t, s)kS,X  CG(t� s)↵.

Then there exists !0 2 R such that |||G(t, s)⇠|||t  e
!

0(t�s)k⇠ks for all 0  s  t 2 I

and ⇠ 2 S.

Proof. We first notice that, by Lemma 3.1, for all ⇠ 2 S and all 0  s  t 2 I, we
have |||(V (t, s)�G(t, s))⇠|||t  C

2
U
CG(t� s)↵k⇠ks. Then, we notice that, for large

!
0 fixed, we have

sup
0s,t2R

e
!|t�s| + C

2
U
CG|t� s|↵

e!
0|t�s|  1 ,

since ↵ � 1. The result then follows from the triangle inequality.

We remark that, if ↵ < 1, then, in general, the lemma will not be true anymore.
We are ready now to prove an error estimate for the spatial discretization. To
simplify the notation, in the following, we shall let Uk := U

�
(k + 1)�, k�

�
.

Theorem 3.3. Let U(t, s), 0  s  t 2 I be an evolution system on a Banach
space X as in Equation (8). Let P : X ! S ⇢ X be a continuous linear projection
and let CP > 0 be such that

k(1� P )U(t, s)PkX  CP (t� s) (9)

for all 0  s  t 2 I. Then there exists !
0 � 0 with the following property. Let

n 2 N, T0 2 I, � := T0/n, x0 2 X, y0 2 S, Uk := U
�
(k+1)�, k�

�
, and xk+1 = Ukxk

and yk+1 = PUkyk, for k = 0, . . . , (n� 1). Then

kxn � ynk  C
2
U
e
!

0
T0
�
kx0 � y0k+ C

2
U
CPT0ky0k

�
.

Proof. We let !U , CU , and the norms ||| · |||t be as in Equation (8). The families of
operators V := U and G := PU satisfy the assumptions of Lemma 3.2 with ! = !U ,
↵ = 1, and the given subspace S since, for all 0  s  t 2 I, we have
(

|||V (t, s)|||s,t = |||U(t, s)|||s,t  e
!U (t�s) by (8)

kV (t, s)�G(t, s)kS,X  kU(t, s)P � PU(t, s)PkX  CP (t� s) by (9) .

That lemma then shows that there exists !
0 2 R such that, for all 0  s  t 2 I

and ⇠ 2 S,

|||PU(t, s)⇠|||t  e
!

0(t�s)|||⇠|||s . (10)
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Then, from this equation, by induction on k since all yk 2 S, we obtain that

|||yk|||k�  e
k!

0
�|||y0|||0 . (11)

Since we can always increase !
0, we may assume that !0 � max{!U , 0} without

loss of generality. Let us then prove by induction the estimate

|||xk � yk|||k�  e
k!

0
�
�
|||x0 � y0|||0 + C

2
U
CP k�|||y0|||0

�
, (12)

for all 0  k  n. Indeed, it is true for k = 0 (we even have equality in that
case). Assume it next to be true for k, and let us prove it for (k + 1). Let Uk :=
U
�
(k + 1)�, k�

�
, as before. We then have.

|||xk+1 � yk+1|||(k+1)� = |||Ukxk � PUkyk|||(k+1)�

 |||Uk(xk � yk)|||(k+1)� + |||(1� P )Ukyk|||(k+1)�

 |||Uk|||(k+1)�,k�|||xk � yk|||k� + |||(1� P )UkP |||(k+1)�,k�|||yk|||k�
 e

!
0
�
⇥
|||xk � yk|||k� + C

2
U
CP �|||yk|||k�

⇤

 e
!

0
�

h
e
k!

0
�
�
|||x0 � y0|||0 + C

2
U
CP k�|||y0|||0

�
+ C

2
U
CP �e

k!
0
�|||y0|||0

i

= e
(k+1)!0

�

⇣
|||x0 � y0|||0 + C

2
U
CP (k + 1)�|||y0|||0

⌘
,

where the last two inequalities are obtained, in order, from Lemma 3.1, from the
assumption (9), from the induction hypothesis (12), and from the estimate (11).
(The other inequalities are obvious.) This proves (12) for all k  n. The result
follows from this relation for k = n, using also Lemma 3.1, since n� = T0.

In applications, the following remark may be useful

Remark 3.4. The bound !
0 depends on CP and it is a non-decreasing function of

CP . Thus, if a sequence of projections Pk is given such that CPk is bounded, then
we can choose !

0 independent of k.

Remark 3.5. We stress that the appearance of the factor (t� s) in Equation (9)
is crucial and is a typical feature of the conditions needed for the error estimates
in our bootstrap method. Let L = (L(t)) be the generator of U . This condition
can be achieved if the commutator [P,L(t)] := PL(t)�L(t)P is bounded on X. In
turn, if L = �, for instance and X = L

2(RN ), then we can construct a subspace S

with these properties using a periodic partition of unity and GFEM discretization
spaces. (See [6, 7, 8, 24, 45] for some general references to GFEM. See [50] and [24]
for papers specifically devoted to evolution equations.) The constant CP , on the
other hand, can account for the spatial discretization error.

The last theorem is relevant if we know U(t, s) explicitly. This is however rarely
the case. Instead (and this is one of the reasons why we are writing this paper), we
can usually approximate U(t, s). A general example of how to do that will be given
in Section 5. We keep the settings of Lemma 3.2.

Theorem 3.6. Let V (t, s), G(t, s) 2 L(X), 0  s  t 2 I, ↵ � 1, and CG > 0 be
as in Lemma 3.2, but S = X (and hence kV (t, s)�G(t, s)kX  CG(t� s)↵ for all
0  s  t 2 I). Then there exists !

0 � 0 such that

1. |||G(t, s)|||s,t  e
!

0(t�s) for all 0  s  t 2 I.
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2. Let n 2 N, T0 2 I, � := T0/n, x0, y� 2 X satisfy xk+1 = V
�
(k + 1)�, k�

�
xk

and yk+1 = G
�
(k + 1)�, k�

�
yk. Then

kxn � ynk  C
2
U
e
!

0
T0

⇣
kx0 � y0k+ C

2
U
CG

T
↵

0

n↵�1
ky0k

⌘
.

Proof. Let CU > 0 and !U 2 R be as in Equation (8). Lemma 3.1 then gives
that there exists !0 2 R that satisfies (1). Hence, if Gk := G((k + 1)�, k�) satisfies
kGkk(k+1)�,k�  e

!
0
�.

We proceed as in the proof of Theorem 3.3. First, we similarly obtain, by induc-
tion, that

|||yk|||k�  e
k!

0
�|||y0|||0 . (13)

By increasing !
0, if necessary, we can assume that !

0 � !U in what follows (and
hence that |||V (t, s)|||s,t  e

!
0(t�s) for all 0  s  t 2 I). Let Vk := V ((k + 1)�, k�)

Let C2 := C
2
U
CG. The result will then follow from the estimate

|||xk � yk|||k�  e
k!

0
�
�
|||x0 � y0|||0 + C2k�

↵|||y0|||0
�
, (14)

valid for all 0  k  n, which we prove again by induction on k. Indeed, the estimate
is true for k = 0 (we even have equality in that case). Assume it next to be true
for k, and let us prove it for (k+1). Lemma 3.1 gives that |||V (t, s)�G(t, s)|||s,t 
C2(t� s)↵ for all 0  s  t 2 I, with C2 := C

2
U
CG. We have

|||xk+1 � yk+1|||(k+1)� = |||Vkxk �Gkyk|||(k+1)�

 |||Vk(xk � yk)|||(k+1)� + |||
⇥
Vk �Gk

⇤
yk|||(k+1)�

 |||Vk|||(k+1)�,k�|||xk � yk|||k� + |||Vk �Gk|||(k+1)�,k�|||yk|||k�
 e

!
0
�
�
|||xk � yk|||k� + C2�

↵|||yk|||k�
�

 e
!

0
�

h
e
k!

0
�
�
|||x0 � y0|||0 + C2k�

↵|||y0|||0
�
+ e

k!
0
�
C2�

↵|||y0|||0
i

= e
(k+1)!0

�

⇣
|||x0 � y0|||0 + C2(k + 1)�↵|||y0|||0

⌘
,

where the last two inequalities are obtained, in order, from (1), from the estimates
|||V (t, s)�G(t, s)|||s,t  C2(t� s)↵, from Equation (14) (the induction hypothesis
for k), from the estimate (13). This proves (14) for all k. The result follows from
this relation for k = n, using also Lemma 3.1.

Since the first condition of Lemma 3.2 is automatically satisfied by an evolu-
tion system that satisfies exponential bounds. By taking x0 = y0 in the previous
theorem, we obtain the following result.

Corollary 3.7. Let U(t, s) be an evolution system on X that satisfies exponential
bounds and G(t, s) 2 L(X), 0  s  t 2 I. Assume that there exist ↵ � 1 and
CG > 0 such that kU(t, s) � G(t, s)kX  CG(t � s)↵ for all 0  s  t 2 I. Then
there are !

0 � 0 and CU,G > 0 with the following property. Let n 2 N, T0 2 I,
� := T0/n, y0 2 X, and yk+1 = G

�
(k + 1)�, k�

�
yk, for 0  k  n. Then

kyn � U(T0, 0)y0k  CU,G e
!

0
T0T

↵

0

n↵�1
ky0k .

Here, of course, CU,G is independent of n, y0, and T0. In particular,



PARABOLIC EQUATIONS 11

Corollary 3.8. Using the notation of Corollary 3.7, we have that, for any n 2 N
and any T0 2 I,

���U(T0, 0) �
n�1Y

k=0

G

⇣ (k + 1)T0

n
,
kT0

n

⌘���  CU,G e
!

0
T0T

↵

0

n↵�1
.

See [23, 33, 37, 40, 49, 54] for some more general results on evolution equations
that put our results into perspective.

4. Analytic semigroups and Duhamel’s formula. In this section, we introduce
the class of uniformly strongly elliptic operators that we study and we particularize
to them the theory recalled in Section 2. These operators are particularly well suited
to be studied via perturbative expansions. In particular, in this section, using the
theory of analytic semigroups, we carefully check that all the integrals appearing in
Duhamel’s formula and in perturbative series expansions are well defined.

4.1. Properties of the class L�. Since the dimension N is fixed throughout the
paper, we will usually write W

r,p for W r,p(RN ). Similarly, we shall often write L
p

instead of Lp(RN ). When 1 < p < 1, the dual of W r,p is the Sobolev space W�r,p
0

with 1/p+ 1/p0 = 1.

Definition 4.1. Let I ⇢ [0,1) be an interval containing 0. Let L be the set of
second-order di↵erential operators L = (L(t))t2I of the form

L(t) =
NX

i,j=1

aij(t, x)@i@j +
NX

k=1

bk(t, x)@k + c(t, x), (15)

where the matrix [aij ] is symmetric and aij , bk, c 2 W
1,1(I ⇥RN ) are real valued.

Let L� be the subset of operators L 2 L satisfying the uniformly strong ellipticity
condition (4) with given ellipticity constant �.

We shall use the symbol calculus for pseudo-di↵erential operators ( DOs for
short) to establish several results. We begin by recalling some basic facts about
 DOs. (See [34, 38, 51, 52, 56] for the definition and basic properties of pseudodif-
ferential operators.)

We deal only with classical symbols in Hörmander’s class Sm

1,0, m 2 R, and denote
the symbol of a pseudo-di↵erential operator P by �(P ) with �0(P ) its principal
symbol. Conversely, given a symbol in S

m

1,0, we denote the associated pseudo-

di↵erential operator with P = �(x,D), D = 1
i
@. We recall that any operator

with symbol in S
�1 =

T
m2R S

m

1,0 is a smoothing operator. We let  m

1,0 denote
the space of operators with symbols in S

m

1,0. Every  DO has distributional kernel
�(x,D)(x, y) by the Schwartz Kernel Theorem (see e.g. [53]). We will need to deal
only with integral operators with smooth kernels.

Notation. If an operator T has smooth kernel, we will denote it by T (x, y).

If P = �(x,D) is smoothing, then there is a one-to-one correspondence between
the symbol and the kernel:

�(x,D)(x, y) = (F�1
2 �)(x, x� y),

where F2 the Fourier transform in the second variable of a function of two variables.
We will also use the standard fact that multiplication with a smoothing symbol is
continuous on any symbol class.
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We recall that elliptic DOs in m

1,0,m 2 Z, generate equivalent norms in Sobolev
spaces [44]. This is a general fact that holds in the greater generality of manifolds
with bounded geometry [5, 3, 11, 44]. We shall use this fact for L� ⇢  2

1,0. In
particular, we have the following result.

Lemma 4.2. Suppose L = (L(t))t2I 2 L� , 1 < p < 1, and m 2 Z+. Then the
following two norms are equivalent

kukW 2m,p ⇠ kukLp + kLm(t)ukLp ,

with bounds that are uniform in t 2 I.

Next we show that if L = (L(t))t2I 2 L� , then L(t) is Hölder continuous in t,
and uniformly sectorial for t 2 I between the Sobolev spaces W

2k+2,p and W
2k,p,

1 < p < 1, for each k 2 Z+. These properties in turn give the needed mapping
bounds for the evolution system discussed in Subsection 2.1. (See [1, 43, 48] for
instance.)

Proposition 4.3. Recall that W k,p = W
k,p(RN ). Let L = (L(t))t2I 2 L� , k 2 Z+,

and 1 < p < 1.

1. The function I 3 t ! L(t) 2 L(W k+2,p
,W

k,p) is uniformly Lipschitz contin-
uous.

2. For each t 2 I and k, the operator L(t) : W 2k+2,p ! W
2k,p is sectorial.

3. The family (L(t))t2I is uniformly sectorial.

Proof. The first part follows from the fact that coe�cients of the operators L(t)
depend smoothly on time, with bounded derivatives as functions from I to W

k,1,
for each k, by the definition of the space L � L� . We first note that, by definition,
L(t) defines a continuous map W

2k+2,p ! W
2k,p, and that, by Gárding’s inequality

and the isomorphism (1+L(t))k : W s+2k,p ! W
s,p, the resolvent set ⇢(L(t) of L(t)

contains a half plane {� 2 C, Re� � !} For p = 2, this result is standard (see e.g.
[1, 43, 48]). For p 6= 2, we use here that the spectrum, and hence the resolvent, of
a uniformly elliptic operator on L

p is independent of p 2 (1,1) (see e.g. [36, 46]
and references therein).

Next, we fix t = t0 and simply write L0 = L(t0). For any u 2 W
2k,p and

� 2 ⇢(L0), we have R(�, L0)u 2 W
2k,p, by the definition of the resolvent set ⇢(L0).

Then, using the norm equivalence of Lemma (4.2) twice, the fact that L(t) is sec-
torial on L

p, and standard properties of the resolvent, we obtain

k�R(�, L0)ukW 2k,p  C(k�R(�, L0)ukLp + k�Lk

0R(�, L0)ukLp)

 C(kukLp + kLk

0ukLp)  CkukW 2k,p ,

with C independent of �. Proposition 2.3 then imply that L0 : W 2k+2,p ! W
2k,p

is sectorial. Lastly, all constants appearing in the proof of sectoriality depend only
on bounds of the coe�cients in W

1,1, which are uniform by hypothesis, hence the
operator is uniformly sectorial.

Recall that, by Theorem 2.4, if f ⌘ 0 and L(t) is uniformly sectorial, then the
IVP (1) has a unique strong and classical solution for all h 2 X. In particular,
if L 2 L� , we have well-posedness in W

k,p, k � 0, 1 < p < 1 for our IVP,
Equation (1). By duality and interpolation, we can obtain mapping properties
between fractional Sobolev spaces W s,p.
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Corollary 4.4. Suppose L = (L(t))t2I 2 L� . Then L generates an evolution
system U in W

s,p, s � 0, 1 < p < 1, such that, for any fixed T0 > 0, the functions

kU(t, t0)kW s,p,W s,p , kL(t)U(t, t0)kW s+2,p,W s,p , (t� t
0)kU(t, t0)kW s,p,W s+2,p

are uniformly bounded for 0  t
0  t 2 I, t  t

0 + T0.

From Corollary 4.4, the fact that L is Lipschitz and U is bounded uniformly in
time on I as elements of L(W s+2,p

,W
s,p) implies the following.

Corollary 4.5. Given s � 0, 1 < p < 1, there exists C > 0 such that, for any
0  t

0  t 2 I, t  t
0 + 1,

kU(t, t0)� U(t0, t0))kW s+2,p,W s,p  C |t� t
0| .

In particular,
[t0,1) \ I 3 t ! U(t, t0) 2 L(W s+2,p

,W
s,p)

defines a Lipschitz continuous map.

For the applications we have in mind, the initial data h may not be integrable.
An example is provided by the payo↵ function of a European call option. To include
such cases, we therefore introduce exponentially weighted Sobolev spaces. Given a
fixed point w 2 RN , we set

hxiw := hx� wi = (1 + |x� w|2)1/2, (16)

with h, i the Japanese bracket. For notational ease, we denote ⇢a(x) = e
ahxiw , with

w implicit. Then, for k 2 Z+, a 2 R, 1 < p < 1,

W
k,p

a,w
(RN ) := {u : RN ! R, @

↵
�
⇢au
�
2 L

p(RN ) |↵|  k}, (17)

with norm
kukp

W
k,p
a,w

:= k⇢aukpWk,p =
X

|↵|k

k@↵
�
⇢au
�
kp
Lp .

Weighted fractional spaces W s,p

a,w
, s � 0, can then be defined by interpolation, and

negative spaces by duality W
�s,p

a,w
= (W s,p

0

�a,w
)0, with p

0 the conjugate exponent to
p. The parameter w will be called the weight center. Di↵erent choices of w give
equivalent norms and we also write W

s,p

a,w
= W

s,p

a
, since this vector space does not

depend on w.
Recall that ⇢a(x) := e

ahxiw . We study the operator L(t) on the weighted spaces
by conjugation. To this end, we define the operator La(t) := ⇢aL(t)⇢�1

a
and observe

that L : W s,p

a,w
! W

s,p

a,w
if, and only if, La : W s,p ! W

r,p.

Lemma 4.6. If L = (L(t))t2I 2 L� and a 2 R, then ⇢aL⇢
�1
a

= (La(t)) 2 L� .

Proof. We compute La(t)� L(t):

[La(t)� L(t)]u = ⇢
�1
a

hX
2aij@i⇢a@j +

�X

i,j

@i@j⇢a +
X

bi@i⇢a

�i
u,

for u regular enough. Since hxiw has bounded derivatives, La(t)�L(t) is a first order
di↵erential operator the coe�cients of which are smooth with all their derivatives
uniformly bounded. Hence La(t) satisfies the same assumptions as L(t).

Remark 4.7. By Lemma 4.6, we can then reduce to study the case a = 0. There-
fore, for instance, La(t) : W s+2,p

a,z
! W

s,p

a,z
is well defined and continuous for any

a, since this is true for a = 0. More generally, the results of Corollary 4.5 and 4.9
apply with W

k,p replaced by W
s,p

a,w
for any w and a.
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See also [2, 3, 4, 44] for further, related results.

4.2. Analytic semigroups. In the construction of the asymptotic expansion for
U(t, 0) in Section 4 below, we will need smoothing properties for the semigroup
generated by a certain time-independent operator L0 related to L. To this end, we
recall needed basic facts about analytic semigroups. (We refer again to [1, 43, 48]
for a more complete treatment.)

If A is sectorial (and hence, in particular, densely defined), then it generates an
analytic semigroup. One of the most important properties of analytic semigroups
is the following smoothing properties, which we state only for time-independent
operators L0 in the class L� acting on the Sobolev space W

k,p

a,z
.

Proposition 4.8. Let L0 2 L� be time independent. Then, et L0 is a C0-semigroup,
and for 0 < t  T0,

ketL0fkW r,p
a,z

 C(r, s, T0) t
(s�r)/2kfkW s,p

a,z
, r � s,

with C(r, s, T0) independent of t.

A proof for generators of abstract analytic semigroups can be found in [48] [The-
orem 6.13, p. 74] for instance. We use it here together with the fact that, as
operators on L

p, D(L↵) = W
↵,p. When applied to the operator sLz

0, the constant
C(r, s) can be chosen uniform in z at least if z belong to a bounded subset of RN .

An immediate consequence of the above result is the following corollary.

Corollary 4.9. Let s, r 2 R be arbitrary and L0 2 L� be time independent. Then,
the map

(0,1) 3 t ! e
tL0 2 L(W s,p

a,z
,W

r,p

a,z
)

is infinitely many times di↵erentiable.

4.3. Duhamel’s formula. We assume next that we are given a time independent
operator L0 2 L� for a fixed � > 0 and let L 2 L� . We write

L(t) = L0 + V (t), (18)

and study the classical question of relating the evolution system U(t, s) generated
by L to the semigroup e

tL0 generated by L0 [1, 43]. Typically, L0 will be obtained
from L by freezing its coe�cients at (0, z).

We write the general IVP for L0 as
(

@tu(t, x)� L0u(t, x) = f(t, x), in (0,1)⇥ RN

u(0, x) = h(x), on {0}⇥ RN
,

(19)

where h belongs to a suitable function space to be specified each time in what
follows depending on the type of solution we seek.

Lemma 4.10. Let h 2 L
p, 1 < p < 1, and let 0 < T  1. If f 2 L

1((0, T ), Lp)
T

C((0, T ], Lp) and u is the unique strong solution to (19) on [0, T ], then u is given by

u(t, x) = e
tL0h+

Z
t

0
e
(t�⌧)L0f(⌧)d⌧, 0  t  T.

If f satisfies in addition f 2 C
↵((0, T );Lp) for some 0 < ↵, then (19) has a unique

strong solution u.

Proof. This proof is standard (see e.g. [48, Theorem 2.9, p. 107, Corollary 3.3, p.
123]), using the fact that L0 generates an analytic semigroup.
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We obtain the following consequence.

Corollary 4.11. Let u(t) be the unique classical solution of the IVP (1) with f = 0.
Then u solves the Volterra-type equation

u(t) = U(t, 0)h = e
tL0h+

Z
t

0
e
(t�⌧)L0V (⌧)u(⌧)d ⌧

where V is given in (18).

Proof. By density, we first assume that h 2 W
2,p, and observe that, formally, the

solution the IVP (1) satisfied (19) with the forcing term f replaced by

V u(t, x) = (L(t)� L0)u(t, x) = ut(t, x)� L0U(t, 0)h.

Since the solution operator U(t, 0) of the IVP (1) satisfies U(t, 0) : W 2,p ! W
2,p as

a bounded operator that is strongly continuous for t � 0 and continuously di↵eren-
tiable for t > 0, L0U(t, 0)h 2 L

p has this regularity. But ut 2 L
p share the same

regularity, given that u is a classical solution. Therefore, by Lemma 4.10 and the
uniqueness of classical solutions, u must agree with the solution of Corollary 4.11.
Next, given h 2 L

p, there exists hn 2 W
2,p, hn ! h in L

p. Let un be the strong
solution with un(0) = hn. Then un satisfies

un(t) = U(t, 0)hn = e
tL0hn +

Z
t

0
e
(t�⌧)L0 V (⌧)un(⌧) d⌧.

We would like to pass to the limit n ! 1 on the right-hand side of the expression
above. In order to do so, we will use the mapping properties of the semigroup e

tL0

(Proposition 4.8) and of the evolution system U(t, 0) (Corollary 4.4) to show that
the integral is the action of a continuous operator on L

p. Indeed,

���
Z

t

0
e
(t�⌧)L0V (⌧)U(⌧, 0)d⌧

���
Lp


Z

t

0
ke(t�⌧)L0kW�1,p,LpkV (⌧)kW 1,p,W�1,pkU(⌧, 0)kLp,W 1,pd⌧


Z

t

0

1p
t� ⌧

1p
⌧
d⌧ < 1 (20)

The proof is complete.

Remark 4.12. Solutions to the Volterra-type equation of Corollary 4.11 are called
mild solutions. Under the assumptions of the Lemma, classical and strong solutions
of (19) are mild solutions, which are in particular unique. In fact, if f is locally
Hölder’s continuous in time, mild solutions are classical solutions (19) [48, Theorem
3.2, page 111].

Using this lemma, we can generalize the bounds contained in Corollary 4.4.

Lemma 4.13 (Mapping properties of U(t, t0)). Let U(t, t0), 0  t
0  t 2 I, be the

evolution system generated by the operator L 2 L� on [0, T ]. For any 0  k  r,
a 2 R, 1 < p < 1, U(t, t0) : W k,p

a,z
! W

r,p

a,z
if 0  t

0
< t  t

0 + 1, there exists C > 0
independent of t1, t2 such that

kU(t, t0)k
W

k,p
a,z ,W

r,p
a,z

 C(t� t
0)(k�r)/2

.
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Proof. We set a = 0 by Lemma 4.6 and, as p is fixed, write W
k = W

k,p. We
temporarily assume that k  r < k + 2. Using the properties of evolution systems
in Definition 2.1, given h 2 W

k, v(t) = U(t, t1)h solves:
(

@tv � L(t)v = 0, t > t1,

v(t1) = h.

Hence from Corollary 4.11, for any 0  t2  t1  1 and any h 2 W
k,

U(t1, t2)h = e
(t1�t2)L0 h+

Z
t1�t2

0
e
(t1�t2�⌧)L0 V (⌧)U(t2 + ⌧, t2)h d⌧.

From the triangle inequality, using the mapping properties for U and L0 in Corollary
4.4 and Proposition 4.8, it follows that

kU(t1, t2)kWk,W r  ke(t1�t2)L0kWk,W r

+

Z t1�t2
2

0
ke(t1�t2�⌧)L0kWk�2,W rkV (⌧)kWk,Wk�2kU(⌧ + t2, t2)kWk,Wk d⌧

+

Z
t1�t2

t1�t2
2

ke(t1�t2�⌧)L0kWk,W rkV (⌧)kWk+2,WkkU(⌧ + t2, t2)kWk,Wk+2 d⌧

 C

 
(t1 � t2)

k�r
2 +

Z t1�t2
2

0
(t1 � t2 � ⌧)

k�2�r
2 d⌧

+

Z
t1�t2

t1�t2
2

(t1 � t2 � ⌧)
k�r
2 ⌧

�1
d⌧

!
 C(t1 � t2)

k�r
2 ,

exploiting also that 0 < (r � k)/2 < 1, by hypothesis. This proves the result for
k  r < k + 2. Next, let r � k, otherwise arbitrary, and choose m 2 Z+ such that
m >

r�k

2 . Set � = r�k

m
and note that 0  � < 2. Then for j = 1, . . . ,m, we can

apply the estimate already obtained by replacing k with k + (j � 1)� and r with
k+ j� and we apply it on the time interval (t1 � (j � 1) t1�t2

m
, t� j

t1�t2
m

), obtaining

���U
⇣
t1 � (j � 1)

t1 � t2

m
, t� j

t1 � t2

m

⌘���
Wk+(j�1)�!Wk+j�

 C

✓
t1 � t2

m

◆ k�r
2m

,

for j = 1, 2, · · · ,m. Therefore,

kU(t1, t2)kWk!W r  C

✓
t1 � t2

m

◆m
k�r
2m

= C(t1 � t2)
(k�r)/2

,

where C depends on k, r, p but not on t1, t2.

In particular, the solution operator U(t, 0) of (1) is smoothing of infinite order
on any Sobolev space W

k,p

a,z
with k � 0 (in fact, by duality, on any Sobolev space)

if t > 0, as it is the case for etL0 .

Corollary 4.14. If L(t) 2 L� and U(t, t0) = U
L(t, t0), 0  t

0  t 2 I is the
associated evolution system, then

(t0,+1) 3 t ! U(t, t0) 2 L(W s,p

a,z
,W

m,p

a,z
)

is infinitely many times di↵erentiable for any s,m, a 2 R, 1 < p < 1, and z 2 RN .
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We omit the proof as it is very similar to that of Corollary 4.9. Another con-
sequence of Lemma 4.13 is that the distributional kernel of the operator U , the
Green’s function or fundamental solution of (1), GL

t,s
2 C1(RN ⇥RN ). In fact, GL

t,s

is given by
GL

t,s
(x, y) = h�x, U(t, s)�yi ,

where h·, ·i is the duality pairing between C1(RN ) and compactly supported dis-
tributions, and where �z is the Dirac delta centered at z. One of the goals of this
work is to obtain explicit approximations of GL

t
(x, y) with good error bounds.

Remark 4.15. For each k 2 Z+, we let

⌃k := {⌧ = (⌧0, ⌧1, . . . , ⌧k) 2 Rk+1
, ⌧j � 0,

X
⌧j = 1}

' {� = (�1, . . . ,�k) 2 Rk
, 1 � �1 � �2 � . . .�k�1 � �k � 0 } ,

the standard unit simplex of dimension k. The bijection above is given by �j =
⌧j + ⌧j+1+ . . .+ ⌧k. Using this bijection and the notation d� := d�k . . . d�1, for any
continuous, Banach space valued function F on RN , we define
Z

⌃k

F (⌧) dSk(⌧) :=

Z 1

0

Z
�1

0
. . .

Z
�k�1

0
F (1� �1,�1 � �2, . . . ,�k�1 � �k,�k) d�,

where dSk is the infinitesimal measure induced by the projection along a coordinate
axis. It is multiple of the measure induced by the Euclidean metric. For instance,
dS1(⌧) = d⌧ , but in higher dimension the factor is no longer 1.

We begin with a preliminary technical lemma.

Lemma 4.16. Let k 2 Z+ and Lj 2 L� and Vj 2 e
�bjhxizL, j = 1, . . . , k, for some

b = (b1, . . . , bk) 2 Rk

+. Assume that Lj is time independent for j < k and that
E(⌧k) = e

⌧kLk(0) or E(⌧k) = U
Lk(⌧k, 0). Then, for all a, r, s 2 R and 1 < p < 1,

�(⌧) = e
⌧0L0V1e

⌧1L1 . . . e
⌧k�1Lk�1VkE(⌧k), ⌧ 2 ⌃k,

defines a continuous function � : ⌃k ! L(W s,p

a,z
,W

r,p

a�|b|,z).

The assumption that Lj be time independent for j < k is, of course, not necessary,
but is the setting in which we will use our result. Also, recall thatW s,p

a,z
= W

s,p

a,z
(RN ).

Proof. It su�ces to prove that � is continuous on each of the sets Vj := {⌧j >

1/(k + 2)}, j = 0, . . . , k, since they cover ⌃k. It also su�ces to consider the case
r � s.

Let us prove the continuity on V0. We define recursively numbers cj = cj+1�bj+1,
ck = a, rj = rj+1 � 4, rk = s for j = 1, . . . , k � 1. By the assumption on the V

0
j
s

and thanks to Proposition 4.8 and Corollary 4.5, each of the functions

[0,1) 3 ⌧j ! Vje
⌧jLj 2 L(W rj+4,p

cj
,W

rj ,p

cj�bj
), 1  j < k,

[0,1) 3 ⌧k ! VkE(⌧k) 2 L(W rk+4,p
ck

,W
rk,p

ck�bk
),

is continuous, and hence their composition is continuous as a bounded map W
s,p

a
!

W
s�4k,p
a�|b| . Since e

⌧0L0 is continuous as a bounded operator W
s�4k,p
a�|b| ! W

r,p

a�|b| if

⌧0 >
1

k+2 thanks to Corollary 4.5, we conclude that the map

V0 3 ⌧ !  (⌧) = e
⌧0L0V1e

⌧1L1 ...Vke
⌧kLk 2 L(W s,p

a
,W

r,p

a�|b|)

is continuous. The continuity of the sets Vj with j < k is completely similar.
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For ⌧ 2 Vk, we use instead Proposition 4.8 to show continuity of e⌧0L0 in W
r,p

a�|b|
for ⌧0 2 [0,+1), and Corollary 4.14 to show continuity of the map

(0,1) 3 ⌧k ! E(⌧k) 2 L(W s�4k,p
a�|b| ,W

r,p

a�|b|).

This proves the continuity of � on Vk and completes our proof.

Remark 4.17. In particular, Corollary 4.11 gives the following equality

U(t, 0) = e
tL0 +

Z
t

0
e
(t�⌧)L0V (⌧)U(⌧, 0)d ⌧ ,

as operators in L(W s,p

a,z
,W

m,p

a,z
), for all a, s,m 2 R and 1 < p < 1.

We can now state the well-known result giving an iterative time-order expansion
of the operator U(1, 0). Let L = L0 + V as in Equation (18) (that is, L,L0 2 L�

with L0 time independent).

Proposition 4.18. Recall that dSk is the measure on the simplex ⌃k induced by
projection (a multiple of the measure induced by the Euclidean metric). Let V (t) =
L(t) � L0 be as in (18) and U

L the evolution system generated by L. For any
d 2 Z+, we have the following perturbative expansion

U
L(1, 1) = e

L0 +

Z

⌃1

e
⌧0L0V (⌧1)e

⌧1L0 dS1(⌧) + . . .

+

Z

⌃d�1

e
⌧0L0V (⌧1)e

⌧1L0 . . . e
⌧d�1L0V (⌧d)e

⌧dL0 dSd�1(⌧)

+

Z

⌃d

e
⌧0L0V (⌧1)e

⌧1L0 . . . e
⌧dL0V (⌧d+1)U(⌧d+1, 0) dSd(⌧) , (21)

where each integral is a well-defined Banach-valued Riemann-Stieltjes integral with
values in L(W s,p

a,z
,W

r,p

a,z
).

The positive integer d will be called the iteration level of the approximation.
Later on, V will be replaced by a Taylor approximation of L, so that V will have
polynomial coe�cients in x and t.

Proof. We proceed inductively on d. First, we note that each term in the pertur-
bative expansion of U = U

L is well defined by Lemma 4.16.
The perturbative expansion for d = 1 is just Volterra’s formula of Corollary 4.11

written in terms of operators (see also Remark 4.17). Suppose now that the formula
holds for d� 1, that is, that

U(1, 0)

= eL0 +

Z 1

0

e(1��1)L0V (�1)e
�1L0 d�1

+

Z 1

0

Z �1

0

e(1��1)L0V (�1)e
(�1��2)L0V (�2)e

�2L0 d�2d�1 + . . .

+

Z 1

0

Z �1

0

. . .

Z �d�1

0

e(1��1)L0V (�1) . . . e
(�d�2��d�1)L0V (�d�1)U(�d�1, 0)

d�1Y

j=1

d�d�j .

Applying the formula for d = 1 to U(�d�1, 0) then gives:

U(1, 0) = e
L0 +

Z 1

0
e
(1��1)L0V (�1)e

�1L0 d�1 + . . .
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+

Z 1

0

Z
�1

0
. . .

Z
�d�1

0
e
(1��1)L0V (�1) . . . e

(�d�2��d�1)L0V (�d�1)U(�d�1, 0)
d�1Y

j=1

d�d�j

= e
L0 +

Z 1

0
e
(1��1)L0V (�1)e

�1L0 d�1 + . . .+

Z 1

0

Z
�1

0
. . .

Z
�d�1

0

Z
�d

0

e
(1��1)L0V (�1) . . . V (�d�1)e

(�d�1��d)L0V (�d)U(�d, 0) d�d

d�1Y

j=1

d�d�j .

which is the desired perturbative expansion for d.

By sending d ! +1, we formally represent the evolution system as a series of
iterated, time-ordered integrals. Such series appear in di↵erent contexts and are
known as Dyson series in the Physics literature.

5. Dilations and Taylor expansion. In this section we employ suitable space-
time dilations to reduce the computation of the Green’s function GL

t,t0 to that of

a related operator L
s at a fixed time (say 1) where s =

p
t . For given, fixed

s > 0, we then obtain an expression of the Green’s function associated to L
s by

Taylor expanding its coe�cients as functions of s up to order n and combining such
expansion with the time-ordered expansion of Proposition 4.18 up to level d. In
particular, the Taylor expansion will provide a natural choice for the operator L0

and V (t) to which the splitting (18) of Ls applies. We follow here closely [15], which
treats the case of time-independent operators. In particular, we use the crucial
observation from that paper that, for any second order di↵erential operator with
constant coe�cients L0 and any di↵erential operator with polynomial coe�cients
Lm, we have e

L0Lm = L̃me
L0 for some other di↵erential operator with polynomial

coe�cients L̃m. (We also extend this result to higher order operators L0.) Similar
methods, including the time dependent case, were employed in [12, 13, 14, 41, 42,
47].

Throughout this section, we fix an arbitrary dilation center z 2 RN .

5.1. Parabolic rescaling. For any su�ciently regular functions v(t, x) and f(x),
we set

v
s(t, x) := v(s2t, z + s(x� z)), (22a)

f
s(x) := f(z + s(x� z)). (22b)

We therefore interpret s as the dilation factor and z as the dilation center. For any
given operator L(t) 2 L� , we similarly define

L
s(t) :=

NX

ij=1

a
s

ij
(s2t, z + s(x� z))@i@j + s

NX

i=1

b
s

i
(s2t, z + s(x� z))@i

+ s
2
c
s(s2t, z + s(x� z)). (23)

It is not di�cult to show that, if u(t, x) is a solution of Equation (1), then u
s(t, x)

given by (22) is a solution of the following IVP:
(

@tu
s(t, x)� L

s
u
s(t, x) = 0 in (0,1)⇥ RN

u
s(0, x) = g

s(x), on {0}⇥ RN
.

(24)

Clearly, if L = (L(t))t2I 2 L� , then L
s is an operator in the same class, but

with a possibly di↵erent I. Since our estimates will be uniform up to a finite
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time, we shall assume from now on that I = [0, T ], for some fixed T > 0, and we
shall consider L

s(t) only for s 2 [0, 1] and t 2 [0, T ] = I. Based on our earlier
discussion L

s = (Ls(t))0tT generates an evolution system, which we denote by
U

L
s

. The Green’s function of the IVP (24) will be denoted instead with GL
s

t
(x, y).

The Green’s functions for the original and for the dilated problems are simply
related via a change of variables.

Lemma 5.1. Given any z 2 RN and s > 0, we have

GL

t,t0(x, y) = s
�NGL

s

s�2t,s�2t0

⇣
z +

x� z

s
, z +

y � z

s

⌘
.

In particular, when s =
p
t,

GL

t,0(x, y) = t
�N/2GL

p
t

1,0

⇣
z +

x� zp
t

, z +
y � zp

t

⌘
. (25)

By this lemma, it su�ces to approximate GL
s

1,0(x, y) and then set s =
p
t.

5.2. Taylor expansion of the operator L
s
. We next Taylor expand the coe�-

cients of the operator Ls, given by (23), up to order n 2 Z+, as functions of s > 0.
The purpose of this Taylor expansion is to replace the operator V in (18) with oper-
ators having polynomial coe�cients for which the time-ordered integrals appearing
in Proposition 4.18 can be explicitly computed as in [15].

We obtain the representation

L
s = L0 +

nX

m=1

s
m
Lm + s

n+1
L
s,z

n+1 , (26)

where

Lm =
1

m!

✓
d
m

dsm
L
s

◆����
s=0

, 0  m  n , (27)

and L
s,z

n+1 comes from the remainder of the Taylor expansion. (Recall that z is the
dilation center.) For m, Lm = (Lm(t))0tT is a family of di↵erential operators
with coe�cients that are polynomials in (x � z) and t, but are independent of s.
That is, for m  n,

Lm(t) =
X

ijk↵

a
[µ]
ijk↵

(x� z)↵tk@i@j +
X

ik↵

b
[µ]
ik↵

(x� z)↵tk@i +
X

k↵

c
[µ]
k↵

(x� z)↵tk , (28)

where i, j = 1, . . . , d, 0  |↵| + 2k  m, with the coe�cients a
[µ] = a

[µ](z), b[µ] =
b
[µ](z), c[µ] = c

[µ](z) 2 R obtained from the partial derivatives of the coe�cients of
L at (t, x) = (0, z). However, Ls,z

n+1 does depend on s as well. Generally, we shall
drop the depence on z from the notation from now on.

We will obtain a perturbative expansion of the form appearing in Proposition 4.18
for U

L
s

(1, 0) with each V (⌧j) replaced by the operator Lj introduced above. The
following easy corollary will justify that each term of this perturbative expansion is
well defined. We record it for further use. We notice that L0(t) is independent of
t, so we shall write simply L0. As in Remark 4.15, given ⌧ = (⌧1, . . . , ⌧k) 2 ⌃k, we
let �j := ⌧j + ⌧j+1 + . . .+ ⌧k for j = 1, . . . , k.

Corollary 5.2. Let L = (L(t))t2I 2 L� , let k 2 Z+, and let Lm, 0  m  n + 1,
be from the Taylor expansion of L, Equation (26). For ⌧ 2 ⌃k, let us set

�(⌧) := e
⌧0L0Lj1(�1)e

⌧1L0Lj2(�2) . . . Ljk�1(�k�1)e
⌧k�1L0Ljk(�k)E(⌧k),
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with 0  ji  n + 1 and either E(⌧k) = e
⌧kL0 or E(⌧k) = U

L
s

(⌧k, 0). Then, for
any ✏ > 0, a, r, s 2 R, and 1 < p < 1, � : ⌃k ! L(W s,p

a,z
(RN ),W r,p

a�✏
(RN )) is

continuous

Proof. This follows from Lemma 4.16 with b = (b1, . . . , bk) 2 Rk

+, bj = ✏/k.

5.3. Asymptotic expansion of the evolution system. In this section, we define

an approximation eG[µ]
t,s

of the evolution system U(t, s) satisfying the conditions of
Theorem 3.6.

Definition 5.3 (Spaces of Di↵erentials). Given non-negative integers a, b, we de-
note by D(a, b) the vector space of all di↵erential operators of order at most b with
coe�cients that are polynomials in x and t of degree at most a. We extend this
definition to negative indices by defining D(a, b) = {0} if either a or b is nega-
tive. By the degree of an operator A 2 D(a, b), we mean the highest power of the
polynomials appearing as coe�cients of A.

Definition 5.4 (Adjoint Representation). For any two operators A1 2 D(a1, b1)
and A2 2 D(a2, b2) we define adA1(A2) by

adA1(A2) := [A1, A2] = A1A2 �A2A1 = �[A2, A1] ,

and, for any integer j � 1, we define adj
A1

(A2) recursively by

adj
A1

(A2) := adA1(ad
j�1
A1

(A2)), ad0
A1

(A2) := A2.

Above, the iterated commutators are well defined if we take the space C
1
c
(RN )

as common domain D of A1 and A2, for instance.

Lemma 5.5. Suppose A1 2 D(a1, b1) and A2 2 D(a2, b2). Then for any integer
k � 1,

adk
A1

(A2) 2 D(k(a1 � 1) + a2, k(b1 � 1) + b2).

Proof. A direct computation using the properties of the class D(a, b) and the defi-
nition of the commutator gives adA1(A2) 2 D(a1 � 1 + a2, b1 � 1 + b2). The result
then follows by iterating k times this relation.

As in [13, 15], we obtain the following consequence of this lemma.

Proposition 5.6. Let Q 2 D(0, n) and Qm 2 D(m,m
0). We have the following:

1. adm+1
Q

(Qm) = 0;
2. the following sum is finite

exp(adQ)(Qm) :=
X

j�0

(j!)�1 adj
Q
(Qm) ;

3. exp(adQ)(P1P2) = exp(adQ)(P1) exp(adQ)(P2) for all P1, P2 in the algebra
D := [n,n0D(n, n0);

4. assume that Q generates a C0-semigroup e
tQ on L

2(R), t � 0, then

e
Q
Qm = exp(adQ)(Qm)eQ .

Proof. The first relation follows from adk
Q
(Qm) 2 D(m � k,m

0 + k(n � 1)) and
the fact that the later space is 0 when k > m. This then gives immediately that
exp(adQ) is defined. The third relation follows from the fact that adQ is a derivation
of D and the exponential of a derivation (when defined) is an algebra isomorphism
(see e.g. [35]). Finally, to prove the last relation, let us consider the function



22 WEN CHENG, ANNA L. MAZZUCATO AND VICTOR NISTOR

F (t) := e
tQ
Qm � exp(adQ)(Qm)etQ. It is a continuous function with values in

L(⇢�a

w
L
2(RN ), ⇢a

w
L
2(RN )) for a large (a � m

0 + (m + 1)(n � 1)). Then F (0) = 0
and F

0(t) = adQ(F (t)). Hence F (t) = 0 for all t > 0.

A consequence of our discussions is that we obtain an automorphism �✓ : D ! D
of the algebra D := [n,n0D(n, n0), given by the formula �✓(Q)e✓L0 = e

✓L0Q. See
also [12, 14, 41, 42, 47].

Lemma 5.7. Let m be a fixed positive integer and Lm, 0  m  n, be defined as
in (27), then for any ✓ 2 R,

e
(1�✓)L0Lm(✓) = Pm(✓, x� z, @)e(1�✓)L0 , (29)

where Pm(✓, x � z, @) := �1�✓(Lm(✓)) is a di↵erential operator with coe�cients
polynomials in ✓ and (x � z). (There is no t, since we specialized at t = ✓ in the
formula for Lm.)

Next, we rewrite the perturbative expansion of Proposition 4.18 in a more com-
putable and explicit form. We recall that d is the level of the iteration in the Dyson
series and n is the order of the Taylor expansion of Ls. In principle, d and n are
unrelated, but we will find it convenient later on to choose d = n.

For ease of notation, we shall sometimes write L
s,z

n+1 = Ln+1, even though this
operator does depend on s and z. Inserting (26) into the perturbative expansion of
Proposition 4.18 and collecting iterated integrals in the same number of variables,
we have:

U
L

s

(1) = e
L0 +

dX

k=1

X

i=1,...,k
1↵in+1

s
↵1+···+↵k

Z

⌃k

e
(1��1)L0 L↵1(�1) e

(�1��2)L0

. . . e
(�k�1��k)L0 L↵k(�k) e

�kL0 d� +
X

i=1,...,d+1
1↵in+1

s
↵1+···+↵d+1

Z

⌃d+1

e
(1��1)L0

· L↵1(�1) e
(�1��2)L0 . . . e

(�d��d+1)L0 L↵d+1(�d+1)U(�d+1, 0) d� , (30)

where, for notational ease, we have set d� = d�` . . . d�1 and where, in each integral
term above, ` varies from 1 to d+ 1.

To simplify the above expression, we now introduce some helpful combinatorial
notation to keep track of the indexes

Definition 5.8. For any integers 1  k  d + 1 and 1  `  (n + 1)(d + 1), we
denote by Ak,` the set of multi-indexes ↵ = (↵1,↵2, . . . ,↵k) 2 {0, 1, . . . , n + 1}k,
such that |↵| :=

P
↵j = `.

Clearly, since ↵i � 1, the set Ak,` is empty if ` < k. If ↵ 2 Ak,`, then ` represents
the order in powers of s of the corresponding term in (30), while k represents the
level of iteration in the time-ordered expansion. For each ↵ 2 Ak,`, we then set

⇤↵ =

Z

⌃k

e
(1��1)L0L↵1(�1) e

(�1��2)L0 . . . e
(�k�1��k)L0L↵k(�k) e

�kL0 d�, (31a)

if k < d+ 1, and

⇤↵ =

Z

⌃d+1

e(1��1)L0L↵1(�1) e
(�1��2)L0 . . . e(�d��d+1)L0L↵d+1(�d+1)U

Ls

(�d+1, 0) d�,

(31b)
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if k = d + 1, respectively, using the notation d� of Equation (30). (We recall that
we suppress the explicit dependence of Lk on s and z, if k = d + 1.) Also, since
we keep the dilation center z fixed for the time being, we also suppress the explicit
dependence on z.

A simple but useful result about ⇤↵ is the following lemma, which we record for
later use.

Lemma 5.9. Recall the di↵erential operators Pk of Lemma 5.7. For any given
multi-index ↵ 2 Ak,` with k  d and 1  ↵i  n, i = 1, . . . , k,

⇤↵ = P↵(x� z, @)eL0

where

P↵(y, @) =

Z

⌃k

P↵1(�1, y, @)P↵2(�2, y, @) · · ·P↵k(�k, y, @)d�

is a di↵erential operator with coe�cients polynomials in y (in particular, it is in-
dependent of t or s).

Proof. Applying Lemma 5.7 repeatedly gives

⇤↵ =

Z

⌃k

e
(1��1)L0L↵1(�1)e

(�1��2)L0 . . . e
(�k�1��k)L0L↵k(�k)e

�kL0d�

=

Z

⌃k

P↵1(�1, x� z, @)e(1��2)L0 · · · e(�k�1��k)L0L↵k(�k)e
�kL0d�

...

=
⇣Z

⌃k

P↵1(�1, x� z, @)P↵2(�2, x� z, @) · · ·P↵k(�k, x� z, @)d�
⌘
e
L0 .

This completes the proof.

To further simplify some of the formulas, we define

⇤` :=

min(`,d+1)X

k=1

X

↵2Ak,`

⇤↵ , ` � 1 . (32)

For convenience, we let ⇤0 = e
L0 .

We combine the results obtained so far in this section in the following represen-
tation theorem. We will perform an error analysis in the Sobolev spaces W

k,p

a,z
in

Section 6.

Lemma 5.10 (Definition of the local approximation). Let d be the iteration level
in the time-ordered expansion the perturbative expansion of Proposition 4.18, let n
be the order of the Taylor expansion (26) of Ls, as before, and let m 2 Z+. Let

E
s

m,d,n
=

1X

`=m+1

s
`�m�1⇤`

.

(The sum is actually finite.) Then

U
L

s

(1, 0) = e
L0 +

mX

`=1

s
`⇤` + s

m+1
E

s

m,d,n
.

Assume that `  min{d, n}. Then ⇤` does not depend on d, n, or s, and, conse-
quently, Es

m,d,n
also does not depend on d and n, if m  min{d, n} as well.
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Proof. This follows from the fact that, if ↵ 2 Ak,`, then k  ` := ↵1+↵2+ . . .+↵k,
since all ↵i � 1.

Consequently, when m  min{d, n}, we shall write E
s

m
= E

s,z

m,d,n
, since E

s,z

m,d,n

does not depend on d and n and z is fixed.

Remark 5.11. The idea pursued here (following [15]) relies on the following three
analysis points

• U
L

s

(t, t0) depends smoothly on s 2 [0, 1];

• we can explicitly identify U
L

0

(t, t0) = e
(t�t

0)L0 ;
• the sum e

L0 +
P

m

`=1 s
`⇤` is the Taylor polynomial of (the distribution kernel

of) UL
s

(1, 0) at s = 0.

Note that L0 is obtained from the operator L by freezing its coe�cients at (0, z)
(t = 0 in time and z in space). We can thus try to approximate U

L
s

(1, 0) with its
Taylor polynomial. In turn, after rescaling back, this approximation will yield an
approximation of UL(s2, 0), that is, for short time. Note that U

L
s

(1, 0) does not
exhibit any singularities at s = 0, but rescaling back introduces a strong singularity
at s = 0 in U

L(s2, 0), however, repeating ourselves, that singularity is entirely due
to the rescaling. The next section will make this construction explicit to define the
approximate Green’s function of UL(t, s) for t� s > 0 small.

6. The approximate Green’s function and error analysis. In this section
we introduce our approximate Green’s function, we prove Theorem 1.1, and we
complete our error analysis. Our error estimates are using the norm of linear maps
between weighted Sobolev spaces. A di↵erent kind of estimate (pointwise in (x, y))
was obtained in [47].

6.1. Definition of the approximate Green’s function. We are now ready to
introduce our approximation of the Green’s function

GL

t,s
(x, y) := U

L(t, s)(x, y)

of the operator U
L(t, s) following the idea outlined in Remark 5.11. Since the

problem is translation invariant, we may assume s = 0. Soon, we will replace z

(which was fixed in the previous section) with a function of x and y. We first
introduce the conditions that such a function must satisfy.

Definition 6.1. A smooth function z : R2N ! RN will be called admissible if
z(x, x) = x, for all x 2 RN and all partial derivatives (of positive orders) of z are
bounded.

A typical example is z(x, y) = �x+(1��)y, for some fixed parameter �. A simple
application of the mean value theorem gives that hz�xi  Chy�xi for some C > 0.
From the point of view of application, z(x, y) = x will give us the simplest formula
to approximate the Green’s function. However, as discussed in [13], other more
suitable choices are possible, for instance, z(x, y) = (x + y)/2 seems to be often
better. In what follows, we fix an admissible z = z(x, y). We now fix for the rest of
the paper an admissible function z : R2N ! RN . It will be the dilation center used
to approximate the Green’s functions at (x, y).

Assume we want an approximation of order m (that is, up to s
m = t

m/2). We
shall use the formulas and the results of Lemma 5.10. We shall choose then in that
Lemma n, d � m, so that the terms ⇤` are independent of s (and t) and E

s

m,d,n
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is independent of d and n, so we can write E
s

m,d,n
= E

s

m
for the “error term.”

Motivated by Lemmata 5.1 and 5.10, we now introduce the following.

Definition 6.2. We assume µ  min{d, n} and let the order µ approximation
eG[µ]
t,0(x, y) of the Green’s function GL

t,0(x, y) of U
L(t, 0) be

eG[µ]
t,0(x, y) :=

µX

`=0

t
(`�N)/2⇤`

⇣
z +

x� zp
t

, z +
y � zp

t

⌘
,

where z is some admissible function. By replacing L with a translation of size t
0

in time, we define similarly the approximation eG[µ]
t,t0(x, y) using the µ–approximate

kernel at (t� t
0
, 0) for this translated operator.

For this definition, it su�ces to choose n = d = m, but for the proof of our error
estimates, the freedom to choose much larger n and d will be useful. This will be
especially the case when dealing with the error term:

eE[µ]
t,0(x, y) := t

�(µ+1)/2
h
GL

t,0(x, y)� eG[µ]
t,0(x, y)

i
(33)

of Theorem 1.1.

6.2. Convergence analysis. In this section, we show that our approximate

Green’s function eG[µ]
t,t0(x, y) satisfies the assumptions of Theorem 3.6. We shall

primarily use pseudo-di↵erential techniques. For all relevant properties of pseudo-
di↵erential operators, we refer to [51, 55]. For the moment, we continue to keep z,
the dilation center, fixed.

We start by analyzing in more detail the properties of the operators Lm in ex-
pansion (27). We recall that hxiz = hx�zi. We also recall that Lm, 0  m  n+1,
are second-order di↵erential operator with polynomial coe�cients, independent of
the dilation factor s. Moreover, Lm has coe�cients of degree at most m in x � z.
An immediate consequence of this fact is recorded in the following lemma.

Lemma 6.3. Let Lj, 0  j  n + 1 be the operators of Equation (26), with
Ln+1 = L

s,z

n+1 depending also on s (all these operators depend on z). The family

{hxi�j

z
Lj , hxi�n�1

z
L
s,z

n+1; s 2 (0, 1], z 2 RN
, j = 0, . . . , n+ 1}

defines a bounded subset of L� .

We recall that, for convenience, we have dropped the dependence on z in the
notation of the polynomials Lm. The next Lemma allows to change the center of
the dilation z. This change is needed when z is replaced by a function z = z(x, y).
It also allows to reduce to the case a = 0 to establish bounds in W

k,s

a,z
, as long as a

belongs to a bounded set.

Lemma 6.4. For each given ✏ > 0, the family

{e�✏hziwe�✏hxiwLj , s 2 (0, 1], z, w 2 RN
, j = 0, . . . , n+ 1}

is a bounded subset of L� .

Proof. The triangle inequality shows that

hx� zi � hx� wi  hw � zi.
Therefore e

✏ (hx�zi�hx�wi�hw�zi)  1, and hence the family

e
✏(hx�zi�hx�wi�hw�zi)

e
�✏hxiz Lz

j
= e

�✏hz�wi
e
�✏hxiw L

z

j
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is bounded in W
1,1 for s 2 (0, 1] and j = 0, 1, 2, · · · , n+ 1 as claimed, by Lemma

6.3.

Lemma 4.16 and Lemma 6.4 yield the following result.

Corollary 6.5. For any ↵ 2 Ak,`, z, w 2 RN , r, s 2 R, 1 < p < 1, and ✏ > 0,

⇤↵ :=

Z

⌃k

e
⌧0L0L↵1(⌧1) e

⌧1L0 · · · e⌧k�1L0L↵k(⌧k)e
⌧kL0dSk(⌧), k  d

and

⇤↵ :=

Z

⌃d+1

e
⌧0L0L↵1(⌧1) e

⌧1L0 · · · e⌧dL0L↵d+1(⌧d+1)U(⌧d+1, 0)dSd+1(⌧)

are bounded linear operators from W
s,p

a,w
to W

r,p

a�✏,w
. Moreover, we have that

k⇤↵kW s,p
a,w,W

r,p
a�✏,w

 Cs,r,p,a,✏ e
k✏hz�wi

,

for a bound Cs,r,p,a,✏ that does not depend on z or w. In particular, each ⇤↵ is an
operator with smooth kernel ⇤↵(x, y).

In order to treat the resulting kernels and the resulting remainder term, Corollary
6.5 is not su�cient and we need refined estimates. We address first the terms
comprising eG[µ]

t,0 of the expansion introduced in Definition 6.2 via pseudo-di↵erential
calculus and treat the terms in the remainder next via direct kernel estimates.

6.3. Bounds on eG[µ]
t,0 . We bound each operator ⇤↵ appearing in Definition 6.2

separately, where ⇤↵ is defined in (31). To this end, we define the operator

Ls,↵ f(x) = s
�N

Z

RN

⇤↵(z + s
�1(x� z), z + s

�1(y � z))f(y) dy , (34)

We show below that, for an admissible function z, and ↵ = (↵1, . . . ,↵k) 2 Ak,`,
k  n, ↵i  n, the operator Ls,↵ is a pseudo-di↵erential operator with a good
symbol. We shall then use symbol calculus to derive the desired operator estimates.
By Lemma 4.6, it is enough to assume a = 0 in W

s,p

a,w
(in which case, w becomes

unnecessary).
Since we keep z fixed, the operator L0 is constant coe�cient and its Green’s

function G can be computed explicitly as:

G(x, y) =
e
c
0
t

p
(4⇡t)n det(A0)

e
(x+b0t�y)t(A0)�1(x+b0t�y)

4t ,

where A0 is the matrix with entries aij(z). A direct computation gives the following
lemma, using the explicit form of the kernel G of eL0 .

Lemma 6.6. Fix z 2 RN . Consider the operator T = (x� z)�@�

x
e
L0 , where � and

� are multi-indices. Then the distributional kernel of T is given by

T (x, y) = (x� z)�(@�

x
G)(x� y) .

The next theorem characterizes the symbol of Ls,↵ belonging to the principal
term of the expansion.

Theorem 6.7. Let ↵ 2 Ak,`, k  n, ↵i  n. Let z : RN ⇥ RN ! RN be an
admissible function. Then there exists a uniformly bounded family {%s}s2(0,1] in
S
�1(RN ⇥ RN ) such that

Ls,↵ = �s(x,D) := %s(x, sD), �s(x, ⇠) = %s(x, s⇠).
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Proof. By Lemma 5.9, ⇤↵ is a finite sum of terms of the form a(z)(x � z)�@�

x
e
L

z
0

with a 2 W
1,1. We recall that a is smooth with bounded derivatives of all orders.

Let kz(x, y) be the distribution kernel of a(z)(x� z)�@�

x
e
L

z
0 and set

Ks(x, y) := s
�N

kz(z + s
�1(x� z), z + s

�1(y � z)), z = z(x, y).

By abuse of notation, we shall denote also by Ks the integral operator with kernel
Ks. It is enough to show that there exists a uniformly bounded family {%s}s2(0,1]

in S
�1 such that

Ks = %s(x, sD).

A direct calculation shows that

Ks(x, y) = a(z)s�|�|�N (x� z)�⇣(z, s�1(x� y)), z = z(x, y),

with ⇣(z, x) the kernel of @�

x
e
L

z
0 . Then the symbol of Ks, �s(x, ⇠) is given by

�s(x, ⇠) =

Z

RN

e
�ıy·⇠

a(z)s�|�|�N (x� z)�⇣(z, s�1
y)dy, z = z(x, x� y).

If we denote

%s(x, ⇠) =

Z

RN

e
�ıy·⇠

a(z)s�|�|(x� z)�⇣(z, y)dy, z = z(x, x� sy),

we have �s(x, ⇠) = %s(x, s⇠). We show next that %s is a bounded family in S
�1.

This follows from the continuity of multiplication with smoothing symbols, given
that a(z) 2 S

0
(1,0) and s

�1(xj � zj(x, x � sy)) 2 S
0
(1,0) and they form bounded

families for s 2 [0, 1].

A simple change of variables and the definition of the symbol class Sm

1,0 gives the
lemma below.

Lemma 6.8. Let %(x, ⇠) be a symbol in S
�1, then s

k
%(x, s⇠) is a symbol in S

�k

1,0

uniformly bounded in (0, 1] with respect to s.

The symbol calculus gives mapping properties on Sobolev spaces by standard
results.

Theorem 6.9. In the hypotheses of Theorem 6.7, for any 1 < p < 1, any r 2 R,

s
kkLs,↵kW r,p,W r+k,p  Ck,r,p, (35)

for Ck,r,p independent of s. The same estimate is valid for the integral operators

with kernels eG[µ]
s2,0(x, y) (see Definition 6.2).

Proof. The first part follows from the definition of Ls,↵, Theorem 6.7, and Lemma

6.8. The last part follows from the definition of eG[µ] in terms of the operators Ls,↵,
Equation (32) and Definition 6.2.

By Definition 6.2, the above theorem translates into a corresponding bound on

the principal part eG[µ]
t,0 of the asymptotic expansion for the Green’s function.

Corollary 6.10. Let eG[µ]
t,0f(x) :=

R
RN
eG[µ]
t,0(x, y)f(y) dy (that is, the operator with

kernel eG[µ]
t,0(x, y)). Let T > 0, 1 < p < 1, and r 2 R, then the family of operators

eG[µ]
t,0 is uniformly bounded in W

r,p for t 2 (0, T ].
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6.4. Bounds on eE[µ]
t,0 . In this subsection, we study the error term eE[m]

t,0 in (33),

which is a particular case of the error term eE[m]
t,t0 in Theorem 1.1. The case t

0 6= 0 is
obtained from the case t

0 = 0 by a translation in time. For our error estimate, we

recall that, if d and n are large enough, both eG[µ]
t,0(x, y) and eE

[µ]
t,0 are independent of

d and n. Next, we replace µ with M � µ + r � 1 in Definition 6.2, with r > 0 to
be chosen. Then we increase d and n accordingly to satisfy d, n � M , remembering

that eE[µ]
t,0(x, y) does not depend on d and n as long as d, n � µ. We can decompose

eE[µ]
t,0(x, y) as follows:

eE[µ]
t,0(x, y) =

MX

`=µ+1

t
(`�N�µ�1)/2⇤`(z + t

�1/2(x� z), z + t
�1/2(y � z))

+ t
(M�µ�N)/2 eE[M ]

t,0 (x, y). (36)

The first M � µ � 1 terms in this expressions are pseudo-di↵erential operators of
the type discussed in Subsection 6.3. The last term contains operators ⇤↵ with
either ↵ 2 An+1,M or for some ↵i = n+ 1. In this range, we generally do not know
whether ⇤↵ is a pseudo-di↵erential operator or not. Instead of symbol calculus,
it will be enough to apply a well-known result, sometimes referred to as Riesz’s
Lemma, which we recall for the reader’s sake (see for example [53, Proposition 5.1,
page 573]).

Lemma 6.11. Assume K is an integral operator with kernel k(x, y) on a measure
space (X,µ). If for all y and for all x, respectively,

Z

X

|k(x, y)|dµ(x)  C1,

Z

X

|k(x, y)|dµ(y)  C2 (37)

then K is a bounded operator on L
p(X,µ), p 2 [1,1]. Moreover,

kKk  C
1/p
1 C

1/q
2 , 1/p+ 1/q = 1.

By Lemma 4.6, in the proofs following results, we need only consider the case a =
0 in W

s,p

a,w
= W

s,p

a,w
(RN ). In that case, the norms on our spaces become independent

of w as well. The following result is similar to Theorem 6.9, but it has no constraints
on the indices.

Lemma 6.12. Let z : RN ⇥ RN ! RN be admissible and let 1 < p < 1. Then,
for any ↵ and any k � 0, there exists Ck,p,↵ > 0 such that

s
kkLs,↵kW 0,p,Wk,p  Ck,p,↵. (38)

Proof. First, we assume that k is a positive integer. By Riesz’s Lemma it su�ces
to show that, for any multi-index � with |�|  k,

Z

RN

s
|�||@�

x
Ls,↵(x, y)|dy  C1,

Z

RN

s
|�||@�

x
Ls,↵(x, y)|dx  C2, (39)

where C1 and C2 are independent of x and y respectively. We observe that
@
�

x
Ls,↵(x, y) is the sum of terms of the form

s
�N�j

@
�

x
@
�
0

z
@
�
00

y
⇤↵(z + s

�1(x� z), z + s
�1(y � z)) · ⇠(z), (40)

where j  |�| and ⇠(z) is the product of derivatives of z with respect to x, which
is bounded as z is admissible. This expression follows from (34) and the fact that
⇤↵ is a finite sum of terms of the form (x� z)�@�

x
e
L

z
0 by Lemma 5.9. Keeping x, y
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fixed, we bound each of these terms, using the Schwartz Kernel Theorem, since ⇤↵

is a smoothing operator:

|@�

x
@
�
0

z
@
�
00

y
⇤↵(x, y)| = |h@�

�x, @
�
0

z
⇤↵@

�
00

�yi|

 Ck@�
�xkH�q

�✏
k@�

0

z
⇤↵kH�q!H

q
�✏
k@�

00

�ykH�q , (41)

where h·, ·i denotes again the pairing between smooth functions and compactly
supported distributions. Above, we employed Corollary 6.5 with p = 2, a = 0, and
w = z (and H

k

a
:= W

k,2
a,w

). Next we estimate the three norms at the right hand side
of the above inequality. Choosing q > N + |�| gives for all ✏ > 0,

k@�
�xkH�q

�✏
:= ke�✏hx�z(x,y)i

@
�
�xkH�q  Ce

�✏hx�z(x,y)i

and similarly for @
�
00
�y. Since all the coe�cients and their derivatives of L(t) are

bounded, @�
0

z
⇤↵ satisfies the same mapping properties as ⇤↵. Thus by Corollary

6.5, k@�
0

z
⇤↵kH�q!H

q
�✏

 Ce
✏hz�xi. Consequently,

|@�

x
@
�
0

z
@
�
00

y
⇤↵(x, y)|  Ce

✏hz�xi�✏hx�zi  C,

and we obtain

|s�N�j
@
�

x
@
�
0

z
@
�
00

y
⇤↵(z + s

�1(x � z), z + s
�1(y � z)) · ⇠(z)|  Cs

�N�|�|
.

Finally, the change of variable � = y�x

s
allows us to verify that (39) holds. The

case of non-integer exponent k follows by interpolation.

Lemma 6.12 implies immediately

Corollary 6.13. Let z be admissible, and let k 2 Z+, 1 < p < 1. Then, for any
r � 0 and ↵, there exists Ck,r,p,↵ > 0 such that

s
k+rkLs,↵kW r,p,W r+k,p  Ck,r,p,↵. (42)

Let eE[µ]
t,0 denote also the “error” integral operator with kernel eE[µ]

t,0(x, y), as in
Theorem 1.1.

Theorem 6.14. Under the hypotheses of Theorem 6.9, the error operator eE[µ]
t,0 of

Theorem 1.1 satisfies

k eE[µ]
t,0kW r,p,W r+k,p  Cr,k,p,m s

�k
. (43)

Proof. Recall the splitting (36). Then, applying Theorem 6.9 and Corollary 6.13
gives

kE [m]
t

kW r,p,W r+k,p 
MX

`=m+1

s
`�m�1

`X

k=m+1

X

↵2Ak,`

kL↵kW r,p,W r+k,p

+ s
M+1�mkE [M ]

t
kW r,p,W r+k,p  Cs

�k(1 + s
M+1�m

s
�r)  Cs

�k
.

This completes the proof.

Our main result, Theorem 1.1, now follows from Definition 6.2, the expansion of
the operator ⇤`, and the error analysis of this section.

Remark 6.15. It is not di�cult to show that the approximation introduced in
Theorem 1.1 is invariant under a�ne transformations, a useful fact in applications.
We refer to [12] for more details.
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Combining our previous results we obtain the following.

Theorem 6.16. Let L 2 L� for � > 0, and let U = U
L be the evolution system

generated by L on W
k,p

a,w
, k 2 Z+, w 2 RN , 1 < p < 1, and a 2 R. Let eG[µ]

t,t0 be

the µ
th-order approximation of the Green function for @t � L(t), µ � 1 (Definition

6.2). Then there exist !,M > 0 such that, for all t � 0, we have

kU(t, 0)�
n�1Y

k=0

⇣
eG[µ]
(k+1)t/n,kt/n

⌘
k
W

k,p
a,w

 M
t
(m+1)/2

n(m�1)/2
e
!t
.

Proof. Theorems 1.1 shows that the assumptions of Theorem 3.6 are satisfied with
↵ = (µ+ 1)/2. Substituting yields the claimed result.

In particular, we have the following convergence.

Corollary 6.17. In the hypotheses of Theorem 6.16, if µ � 2, then, for t > 0, we
have

lim
n!1

nY

k=1

⇣
eG[µ]
(k+1)t/n,kt/n

⌘
= U(t, 0),

in norm in L(W k,p

a,w
).
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