
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022 1

Synthetic image generation for robot simulation:
quantifying the impact of model modifications on

perception
Asher Elmquist, Radu Serban and Dan Negrut

Abstract— Modeling cameras for the simulation
of autonomous robotics is critical for generating
synthetic images with appropriate realism to ef-
fectively evaluate a perception algorithm in sim-
ulation. In many cases though, simulated images
are produced by traditional rendering techniques
that exclude or superficially handle processing
steps and aspects encountered in the actual cam-
era pipeline. The purpose of this contribution is
to quantify the effect that modifying the camera
model has on the perception algorithm evaluated in simulation. We investigate what happens if one ignores aspects
tied to processes from within the physical camera, e.g., lens distortion, noise, and signal processing; scene effects,
e.g., lighting and reflection; and rendering quality. The results quantifiably indicate that, for the evaluated task, modeling
modifications that result in large-scale changes to color, scene, and location had far greater impact on perception than
model aspects concerned with local, feature-level artifacts.

Index Terms— camera modeling and simulation, model analysis, image-based perception

I. INTRODUCTION

SYNTHETIC image generation is a prerequisite for simu-
lating robots as image-based perception is foundational for

robot autonomy. The quality of image generation is dictated
by the fidelity of the camera models used to capture the
appearance of the environment in which the robot oper-
ates. Research in modeling and simulation has been steadily
improving the visual quality of simulation engines owing
to the ongoing development of photorealistic techniques for
games and rendering engines [1], [2]. However, autonomy
perception tasks are not the primary consideration of these
gaming graphics improvements. For simulation of autonomy,
the downstream consumers of images are computer-based
perception algorithms, not humans. Therefore, photorealism
in these applications should be determined by the perception
algorithm, not the human eye.

In recent work [3], we introduced a methodology that
leverages a perception algorithm, e.g., object detection or
semantic segmentation, to quantify the difference between
simulated (synthetic) and real images. Herein, we seek to
use this technique to understand which aspects of camera
simulation have significant impact on the performance of
the downstream perception algorithm in an autonomy task.
This exercise reveals which aspects of the camera simulation
provide the greatest return on investment and warrant further

A. Elmquist, R. Serban and D. Negrut are with the University of
Wisconsin-Madison. emails: {amelmquist,serban,negrut}@wisc.edu

investigation for improving the use of simulation in robotics.
To refer to the components of simulation which seeks to
capture some quality of a real camera or real images, we use
the term “camera model.” These can include physics-based
models of the camera internals or empirical models of image
phenomena which are calibrated from real data. Specifically,
in this paper we assess the degree to which (a) refinements in
a camera model’s components, and (b) image enhancements
techniques, impact the performance of two object detection
and image segmentation tasks. At the onset of this study,
one should keep in mind that fast simulation places stringent
constraints on the level of sophistication that a camera model
can possess when used in robot simulation. Indeed, real-
time or faster simulation speed inevitably limits the level of
sophistication that a camera model can enjoy.

The two tasks considered in this work are an indoor lab
environment and an on-road urban environment. The lab
environment allows a high degree of configuration of the en-
vironment and simulation, giving insights into specific aspects
of the camera model and potential image modifications. The
lab environment is associated with the research of a 1/6th
scale autonomous vehicle to understand how the behavior
in simulation reflects the behavior in reality [4]. This task
and associated environment allow for testing in real scenarios
which can be subsequently recreated in simulation. From this
application, we can identify modifications to simulation that
demonstrate significant impact on the object detector used by
the scaled autonomous vehicle. The urban environment allows

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

the conclusions drawn from the indoor lab to be tested in
an independent environment and using a different perception
algorithm (semantic segmentation), thus giving insights into
the generalization of the conclusions.

The contributions of this manuscript are summarized as
follows.

1) We quantitatively measure the impact of a subset of
camera model components and image alterations on the
behavior of a down-stream perception algorithm.

2) We quantify the relative importance of scene character-
istics and image-level alterations, such as lighting and
color representation, as compared to pixel-level artifacts
such as noise.

The two environments, along with simulation modifications
considered, are described in Sec. II and Sec. III. The dataset
and model overview is followed by a description of the
comparison approach in Sec. IV and results in Sec. V.

A. Related Work
There are three main areas of modeling and simulating

images covered by this contribution: camera modeling, cam-
era validation, and the study of camera model effects. The
most comprehensive and high-fidelity camera modeling and
simulation known to the authors comes from the field of
computational camera modeling where the focus is the ability
to simulate prototype camera designs. While this field focuses
more extensively on the camera internals, typically at the
expense of simulation speed and versatility, it also provides
high-fidelity models of the entire camera system.

These approaches can capture spectral scene modeling, full
lens characteristics, precise noise estimation, and complete
image processing. Examples of the full pipeline can be found
in [5], [6]. An overview of camera modeling and closed-loop
simulation for robotics, and the inclusion of camera component
models in such frameworks, can be found in [7].

Often, to validate such component models, research focuses
on pixel- and structural-level comparison between simulated
and real images, with comparison performed at a data level.
Examples of this methodology are found in [8]–[10] and
typically require highly controlled and simple scenes. The
approach has been shown to be effective in validation of
component level models, and was proposed as a two-stage
validation strategy in [11].

While such approaches can be beneficial for understanding
pixel-level models, they place an unnecessary burden on
camera simulation, potentially resulting in models that are
higher fidelity than needed for perception. Additionally, the
controlled nature of the scenes that can be validated makes
it difficult to validate the camera models in the complex,
uncontrollable scenes where the cameras and associated au-
tonomy algorithms will operate. Therefore, in this work we
perform the analysis using an application-focused strategy,
where comparison is conducted at the output of a downstream
perception algorithm. Our work builds on a recent validation
methodology introduced in [3] and [12].

For the model component evaluation, our work follows a set
of inquiries similar to those of Liu et al. [13] who analyzed

camera model parameters to understand their impact on object
detection generalization to other datasets. Our work differs in
three primary respects:

• We are not interested in the generalization of the percep-
tion algorithm, but instead are interested in the predictive
nature of the simulation (i.e. the performance in simula-
tion accurately representing the performance in reality).
In simulation, we want to be able to accurately predict
real-behavior, even for networks with high specificity. For
a given perception algorithm, we seek to produce a simu-
lator that accurately predicts the algorithm’s performance
in reality, such that lessons learned in closed-loop testing
of the algorithm can be reliable and general.

• We embrace a closed-loop simulation perspective rather
than a camera prototyping and system simulation perspec-
tive as with ISET/ISET-Auto [6], [14]. Consequently, the
rendering pipeline can produce sequences of images in a
rapid and efficient manner. To that end, we are interested
in understanding which types of models induce significant
response in the perception algorithms tested in simulation
in order to understand where higher-fidelity camera mod-
els might warrant further study and/or modeling effort.

• We are less interested in the effect of the model param-
eters and more interested in the impact of the model
or image transformation itself to understand if it has an
impact on the perception algorithm.

Additional work from Liu et al. [15] considered the proto-
typing of new sensor designs to optimize perception algorithm
capability and therefore further considered the impact of
sensor parameters on the resulting images and subsequent
detection algorithm. Where the current work considers param-
eter effect, we look at model effect to understand the fidelity
of simulation needed for closed-loop and online testing of
autonomous systems.

Other studies have been conducted on the impact of artifacts
on neural networks, by and large the technology of choice for
image-based perception, but have focused more on the impact
on perception of general artifacts (increasing magnitude of
noise, image blur, etc.) rather than the camera models and
the impact of their associated phenomena on image-based
perception [16], [17].

II. CAMERA MODELS AND INDOOR LAB DATASETS

A. Simulation framework
For the lab environment, simulation is provided by Chrono

[18], [19], with the camera simulated using Chrono::Sensor
[20]. Chrono::Sensor is a module of Chrono that leverages
physically-based rendering and real-time ray tracing [21] to
allow modeling of sensors for robotic applications. Beyond
camera simulation, Chrono::Sensor supports several other sen-
sors, e.g., lidar, radar, and IMU. The camera model supports
geometric lens distortion using either the radial model [22]
or FOV model [22] of geometric distortion. It allows noise
that can be linearly dependent on pixel intensity. Lighting and
material modeling in Chrono::Sensor is based on physically-
based rendering techniques [23] to represent diffuse and specu-
lar reflections. Optionally, Chrono::Sensor can capture indirect

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST et al.: SYNTHETIC IMAGE GENERATION FOR ROBOT SIMULATION: QUANTIFYING THE IMPACT OF MODEL MODIFICATIONS ON PERCEPTION 3

(a) Real image (b) Simulated image

Fig. 1: Example real and simulated indoor lab environment
with cones.

Fig. 2: Illustration of the imaging pipeline, showing the
progression of light and data through a camera.

lighting using a stochastic sampling technique combined with
the OptiX denoiser [21]. Because Chrono is focused on time-
evolving simulations, Chrono::Sensor supports sensor update
lag and motion blur; however the effect of time-based distor-
tion is beyond the scope of this study.

The virtual lab environment was constructed in Blender
from reference image of the real lab. The cone locations
where measured using a motion capture system and placed
in simulation to reflect the real configuration. Models of the
cones were generated in CAD with appropriate geometry
and color. The cone and environment geometry and textures
were based on the physical version, and not on the visual
reconstruction of the objects in Chrono. The simulation scene
was lit with 20 point lights to approximate the ceiling lights
of the real environment.

The camera model is based on the real camera which
was used to collect images in the real lab. The update rate
was measured from the real camera, and images were taken
from the same position as with the real camera, as measured
by the motion capture system. The lens model in Chrono
was calibrated from the real camera using MATLAB’s image
calibration toolbox [24]. Example real and simulated cone
images are provided in Fig. 1.

B. Overview and modeling pipeline
Camera modeling can be broken down into component

models of the imaging pipeline illustrated in Fig. 2, which
are typically implemented within a render engine or graphics
pipeline. A detailed description of this pipeline is available
in [25]. More information on camera modeling, specifically
for autonomous vehicle and robotics, is provided in [7]. This
contribution considers each section of the imaging pipeline
to understand how it impacts the accuracy of an image-based
robot perception algorithm.

For each component of the camera pipeline, we consider
a limited set of camera models and image transformation
which could alter how the perception algorithm processes the
simulated images. When the considered model change directly
relates to a potential model of the real camera, we quantify
the magnitude of improved realism. When the model is not
based on the real camera, we instead seek to understand
how sensitive the perception algorithm is to the considered

(a) Full image from single-light
simulation (modified)

(b) Single light
(modified)

(c) Multiple lights
(baseline)

Fig. 3: Example of modifying simulation by using a single
point light source (modified) vs 20 point lights (baseline). Note
the difference in the shading of the cones.

change. Each time a component is considered, the initial
simulation is referred to as the “baseline” and the simulation
with the considered alteration is referred to as “modified”. An
illustrative example is provided each time such a modification
is introduced. An example of the baseline simulation is shown
in Fig. 1b.

C. Scene modeling

In the use of simulated data for training perception algo-
rithms, the virtual environment is understood to play a major
role in the realism of simulated data. The domain gap (sim-
to-real gap) is a combination of both the appearance and the
content differences [26]. The content differences can induce
bias in training and are largely attributable to more variety
and entropy present in real environments. Appearance, or
how the objects are represented in the data, including texture
differences, texture variation, object shapes and colors, scene
lighting, etc., can also be significant in testing and training
perception algorithms. A question we consider in this paper is
the level of importance of scene appearance relative to camera
modeling. The effect of content modifications on simulation
are beyond the scope of this paper.

To investigate the impact of changes to the environment,
we consider the lighting of the scene as well as the reflection
of cones on the floor as these could play a significant role
in object detection. The two light configurations tested are:
(baseline simulation) 20 point lights that approximate the
ceiling lights in the lab and create specular highlights on the
floor; and (modified simulation) a single point light above the
environment which provides even lighting and no reflective
highlights. Example of the single-light configuration, with a
highlighted region of interest is shown in Fig. 3. For the
single light case, the illumination of the cones causes different
shading and results in no specular highlights on the floor,
even though the floor in both cases has the same reflectance
parameters (note the same cone reflections).

Since reflections were prominent in the real images (see
Fig. 1), the floor material parameters were calibrated to pro-
duce visually similar reflections for the baseline simulation. A
simulation variant with no floor reflections is also considered
to evaluate the impact of the reflections on the perception
algorithm. See Fig. 4 for an example of the difference with no
reflection on the floor. To remove the reflections of the cones,
the floor’s roughness parameter was set to 1.0 and the metallic
parameter set to 0.0 such that no reflections were possible.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

(a) Full image from simulation
without reflection (modified)

(b) No reflections
(modified)

(c) Reflections
(baseline)

Fig. 4: Example of modifying simulation using floor material
parameters to limit reflections. Reflection in controlled via the
roughness and metallic material parameters [23].

(a) Full image from simulation
with single sample per pixel (mod-
ified)

(b) Single sample
(modified)

(c) Four samples
(baseline)

Fig. 5: Example of altering simulation to use a single ray-
per pixel (modified) rather than four rays-per-pixel (baseline).
Note the hard edges of the single ray-per-pixel image.

D. Data acquisition: image quality
Rendering can be performed via two general algorithms:

rasterization and ray tracing. As the simulation in this contri-
bution uses ray tracing, we will focus on the number of rays
that are used, per pixel, to sample the scene to determine the
final colors in the image. When a single ray is used, each pixel
can only include the color from a single object. For example,
near the edge of a cone, a ray either hits the cone or goes
past, so the edges of object will be hard and zoomed-in views
of those obstacles may appear pixelated (see Fig. 5b). When
additional rays (in this case 4) are used, these can be used
to super sample the pixel in multiple locations, producing an
anti-aliased image and a better approximation of soft edges
for real images. Due to how the camera collects data, a model
with multiple samples represents a higher-fidelity model of
light acquisition. To compare the impact of this image quality,
we generated a modified dataset using one sample (ray) per
pixel (SPP), with the baseline using four SPP. An example
image rendered with one SPP, with a highlighted region of
interest, alongside the same region of interest from the baseline
simulation is shown in Fig. 5.

E. Optical model: lens distortion
Lens systems play a key role in the accumulation of light

on the image sensor. Particularly when considering wide angle
lenses, geometric distortion can be substantial near the edges
of the image. The real camera used for data collection in
the lab environment demonstrates this wide-angle geometric
distortion. As such, we consider three models of the lens with
increasing fidelity. First, a pinhole camera is used, which is a
common non-distorted model employed in game engines. Sec-
ond, we analyze a single-parameter model based on geometric

(a) Pinhole model (b) Radial model (c) FOV model

Fig. 6: Checkerboard rendered with each of the three lens
models (left-to-right: pinhole, radial, fov-model). Each model
is set to have the same effective horizontal field-of-view.

(a) Full image from simulation
with pinhole model (modified)

(b) Pinhole model
(modified)

(c) Radial model
(baseline)

Fig. 7: Example of altering simulation by removing lens
distortion in the camera. Note the wider appearance of cones
near the edges of the image relative to the baseline simulation.

considerations of a single, spherical lens. This is called the
FOV model [22] and can recreate limited geometric distortion.
Lastly, we consider the radial model [22] which is commonly
used in computer vision. This distorts pixels radially based
on polynomial coefficients which can be calibrated from real
images, for example using the MATLAB image calibration
toolbox [24].

For the cone environment simulation, the radial model was
calibrated to match the distortion measured on the real camera.
After calibration, the radial model was found to give geometric
distortions accurate to within 1% of the distortion of the real
camera. The implemented FOV model was parameterized by
the calibrated field of view from the radial model. Finally, the
pinhole model was parameterized to have the same effective
horizontal field of view as the radial model to limit the
difference in the content obtained within the images.

The baseline simulation used the radial distortion model.
However, here we seek to understand the magnitude of the
perceived difference between the other two models supported
in Chrono::Sensor (pinhole and FOV models). The cone
dataset was therefore regenerated with the pinhole model and
the radial model. An example of using the pinhole model as
the modified simulation is shown in Fig. 7, which highlight
significant geometric distortion of the cones near the edge of
the images. An example of the FOV model used to alter the
simulation is shown in Fig. 8. This example shows that the
FOV model can recreate similar distortions to those of the
radial model.

F. Image sensor: noise
The image sensor’s noise can be modeled using several

approaches which have been found to effectively approximate
noise and the image sensor level [28]–[30]. Accurate noise
modeling in the image, however, is not straightforward, since
onboard processing of the raw image can significantly dis-
tort the pixel- and chromatically-independent noise through

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST et al.: SYNTHETIC IMAGE GENERATION FOR ROBOT SIMULATION: QUANTIFYING THE IMPACT OF MODEL MODIFICATIONS ON PERCEPTION 5

(a) Full image from simulation
with FOV model (modified)

(b) FOV model
(modified)

(c) Radial model
(baseline)

Fig. 8: Example of altering simulation with a lower-fidelity,
single-parameter distortion model (FOV model [27]) in the
simulation. Note the slight difference in cones near the edges
of the image.

(a) Full image from simulation
with AWGN (modified)

(b) AWGN (mod-
ified)

(c) No noise
(baseline)

Fig. 9: Example of altering simulation with a low-fidelity
noise model by adding white Gaussian noise (σ = 0.01) to
the simulated cone images.

algorithms such as demosaicing, denoising, deblurring, gamma
correction, and compression. Therefore, these existing noise
models may not precisely capture the noise in the final image.

Due to images being rendered in sRGB space, estimated
noise on the real images being low, and the scene radiance
being unknown, higher fidelity models were excluded from
comparison in favor of understanding the more general impact
of noise on training and testing perception. The noise model
considered here is an additive white Gaussian noise (AWGN).
AWGN is a simplistic noise model applied to make the data
less idealistic and often only used when the noise is of
unknown origin. The estimated noise of the real images had
standard deviation less than half the image precision. This
indicates that, between image processing and downsizing, very
little noise remained and as such noise was excluded from
the baseline simulation. Although the real data demonstrated
negligible noise, for the study, we seek to understand the
impact of noise on a downstream perception algorithm. Since
we will not compare realism, we can chose the noise levels
of interest based on other considerations. To understand the
impact of this change, AWGN was applied with σ = 0.01 to
images with color 0-1. For an 8-bit-per-channel image, this
is approximately 2.5× the image precision. We will consider
and discuss the choice of magnitude further when analyzing
the impact in Section V. Example of a noisy image can be
seen in Fig. 9.

G. Image signal processing (ISP): demosaicing,
exposure, and color balance

Cameras capture intensity over an array of light-sensitive
pixels, called the image sensor. To capture distinct red, green,
and blue values that make up the three channels of an RGB

(a) Example ISP [33] showing a col-
lection of algorithms that can alter the
quality of an image.

(b) Image viewed with
Bayer RGGB pattern

Fig. 10: Image signal processing

(a) Full image from simulation
with demosaicing (modified)

(b) With demo-
saicing (modified)

(c) Without demo-
saicing (baseline)

Fig. 11: Example of altering simulation by recreating a raw-
to-RGB demosaicing conversion in the camera.

image, the sensor leverages a mosaic of color filters which
provide the intensity of light at a given location for a single
channel. A common filter pattern is the red-green-green-blue
(RGGB) Bayer pattern, which we will consider here. Other
patterns, such as RCCC (red-clear-clear-clear), also exist for
dedicated purposes in automotive sensing. The image collected
by this pattern is the raw image which is then converted to an
RGB image through a demosaicing process that interpolates
the missing RGB values from nearby pixels [31]. The image
can be further processed by the ISP to denoise, deblur, color
correct, white balance, or otherwise modify the image. A set
of example post-sensor processing operations is provided in
Fig. 10a. These post-sensor operations are often overlooked
when simulating robotics using off-the-shelf game or ren-
dering engines, thus failing to capture potentially significant
alterations to the final image. Here, we consider the effect
of three post-sensor algorithms: demosaicing, exposure, and
white balancing.

Since real images are often captured with a Bayer pattern,
demosaicing can soften object edges and lead to slight color
bleeding. For the indoor environment, we do not know which
demosaicing algorithm is used onboard the camera, nor do we
have a straight-forward way of measuring it. Therefore, for
this environment we simulate images as RGB, then convert to
raw by sampling the color in the Bayer pattern, see Fig. 10b.
We then use OpenCV [32] and an edge aware demosaicing
algorithm to convert back to RGB. An example of the resulting
demosaiced image is shown in Fig. 11. Because this process is
not based on the real data or sensor, we will consider this only
to understand the induced change in the perception algorithm
and not the realism of the model.

To understand the impact of exposure and color balance,
we seek to leverage post-processing color transformations that
approximate the real data, rather than modeling internals in the

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

(a) Full image from simulation
without color gain matching (mod-
ified)

(b) No color
gain matching
(modified)

(c) With color
gain matching
(baseline)

Fig. 12: Example of altering simulation by ignoring the color-
gain matching transform used in the baseline simulation.

camera, to which we are not privy. For both exposure and color
balance, we begin with simple models of these transforms in
this paper and acknowledge that these will not faithfully model
the real camera.

Using a traditional computer graphics pipeline, which typ-
ically does not consider pixel sensitivities, results in rendered
data with correct color balancing and white balancing. During
real image dataset capture, it was noted that the images
were not white balanced, either because no white balancing
was enabled on the camera or because the white balancing
algorithm was insufficient. As this significantly changed the
overall color of the images, we modeled it in simulation by
adjusting the color gains to match the mean white balance
gains from a real calibration set. The algorithm followed a
gray-world white balancing method, but distorted the image
away from a gray world, to the mean of the real images. While
this is a simple empirical model, it demonstrated improved
results in prior object detector training. To understand the
impact of this decision, we compared the baseline simulation
(with the color distortion) to the simulation without this model
(with correct color reproduction). The correctly white balanced
version is the simulation without the color-distortion model.
An example white-balanced image is provided in Fig. 12.

To understand the impact of exposure, we note the dif-
ference in the mean and standard deviations of brightness
in simulated vs. real images. We then altered the simulated
images so that their mean and standard deviations match the
mean of a calibration set consisting of real images. This crude
model is empirical rather than physical, and is implemented
as

Is(x, y) = (Is(x, y)− Is) ·
σ(Ir)

σ(Is)
+ Ir ,

where Is(x, y) is the simulated image at pixel x, y, Is and Ir
are the simulated and real image means, and σ(Ir) and σ(Is)
are the real and simulated image standard deviation, respec-
tively. While cameras do not use this to correct exposure, it
allows us to modify the simulation to produce a similar visual
effect to the real data with a slight darkening of the simulated
images, as seen in Fig. 13. A comparison of the histograms
between baseline simulation, modified simulation, and real im-
age are provided in Fig. 14a. Other auto-contrast/brightening
algorithms exist [34], [35], but would be challenging to use
for matching the mean characteristics of the real data.

Additionally, we consider a variation of the exposure model
for the case where the mean and standard deviation of the color
channels had been perfectly reconstructed for each image.

(a) Full image from simulation
with brightness matching (modi-
fied)

(b) Brightness
matching
(modified)

(c) No brightness
matching
(baseline)

Fig. 13: Example of altering simulation by matching the
brightness levels measured in the real images.

(a) Brightness matching (b) White-balanced

Fig. 14: Plots of the color histogram for an image from the
baseline simulation which includes color distortion, modified
simulation which excludes color distortion, modified simula-
tion which additionally matches the brightness level of the real
dataset, and a real image. Note the shift in the histogram of the
simulated image, which indicates the effect of the brightness
and color unbalancing approach.

This is possible since the metric dataset has sim-real images
pairs. For the detector training dataset, we consider a stochastic
pairing between the sim and real detector training sets. This
results in matching not only the exposure, but also the variation
of exposure in the datasets.

III. CITY ENVIRONMENT DATASETS

While highly controllable, the cone environment is simplis-
tic, meaning the analysis in this application may not translate
to other, more complex tasks and environments. Therefore,
we consider a second environment which is more applicable
to the broader robotics community in the form of a on-
road urban environment. In this environment, we consider
semantic segmentation rather than object detection to broaden
the analysis to a second perception algorithm.

To serve as real data for an urban environment, we use
Cityscapes [36] (2,389 images), which is a widely used bench-
mark urban dataset for perception. This dataset includes a
semantic map for each image, with labels for cars, pedestrians,
bicycles, roadways, signs, and other urban objects. As a
simulated counterpart, we use the GTAV dataset [37] (24,966

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST et al.: SYNTHETIC IMAGE GENERATION FOR ROBOT SIMULATION: QUANTIFYING THE IMPACT OF MODEL MODIFICATIONS ON PERCEPTION 7

(a) Real image (Cityscapes) (b) Simulated image (GTAV)

Fig. 15: Example images from the real (Cityscapes) and
simulated (GTAV) city environment datasets.

(a) Full image from GTAV with
radial distortion (modified)

(b) Radial model
(modified)

(c) Pinhole model
(baseline)

Fig. 16: Example of altering GTAV with geometric lens
distortion based on a radial model whose parameters come
from the camera used to capture cone images.

images) which is qualitatively similar in content, and semanti-
cally consistent to Cityscapes, but was generated by its authors
from the popular video game GTA-V. The GTAV dataset does
not specifically attempt to model the camera or environment
of Cityscapes. Furthermore, it is not transparent which models
precisely are implemented to model the camera and scene in
GTAV. However, for those that can be measured, we can still
seek to understand the data and models empirically. Example
Cityscapes (real) and GTAV (simulated) images are provided
in Fig. 15. The GTAV data without modifications is treated as
the baseline.
Scene modeling. Since the GTAV dataset is provided directly,
we have no control and cannot modify aspects of the en-
vironment such as lighting, materials, etc. These effects are
therefore ignored in this study. For post-processing GTAV
images and enhancing the image’s scene appearance, see work
related to generative adversarial networks such as [38] and
a related analysis of this algorithm on realism for semantic
segmentation [12].
Data acquisition: image quality. Similar to scene modeling,
we ignore the impact of rendering quality as we cannot
appropriately alter the data in the post-process stage.
Optical model: lens distortion. While it is unknown if a
lens-distortion model was applied during the rendering of
GTAV, we make the assumption here that a pinhole camera
was used. This is very common in game engines and this
assumption is supported by the fact that objects near the edge
of the images appeared undistorted. Therefore, we seek to
understand if applying lens distortion would have changed
the behavior of perception on the GTAV images. To do so,
we use a radial model with calibrated parameters from the
lab environment. We use these parameters as a control to
understand if the difference between distorted and undistorted
images is equivalent between the two applications. An example
of a distorted GTAV image can be seen in Fig. 16.

(a) Full image from GTAV with
AWGN (modified)

(b) AWGN (mod-
ified)

(c) No noise
(baseline)

Fig. 17: Example of altering GTAV by adding white Gaussian
noise (σ = 0.01).

(a) Full image from GTAV with
color gain matching (modified)

(b) With color
gain matching
(modified)

(c) No color
gain matching
(baseline)

Fig. 18: Example of modifying GTAV by matching the mean
color-gains measured from the Cityscapes dataset.

Image sensor: noise. As with real cones, Cityscapes and
GTAV had low estimated noise level, lower than half the image
precision. It is likely that GTAV had little to no noise initially,
and between any onboard processing for Cityscapes and the
downsizing done herein, noise was minimal. However, we still
seek to understand the degree to which any impact of noise
observed in the lab environment is reproducible in the urban
environment. Therefore, similar to the cone dataset, AWGN
was applied with σ = 0.01. Example of the noised images for
GTAV can be seen in Fig. 17.
ISP: demosaicing, exposure, and color balance. Because
of the aforementioned downsizing, we ignore demosaicing
as a modification to GTAV as it would only impact fine-
grain detail. The two post-sensor alterations we consider for
GTAV are white balancing and brightness adjustment similar
to the consideration in the indoor lab environment. We model
these changes in the same way as for cones images, where
white-balancing brings the GTAV data into the same off-
white mode as a Cityscapes calibration set. For brightness
matching, we again adjust the GTAV images to match the
mean and standard deviation of a set of Cityscapes calibration
images. See examples of white balance matching in Fig. 18
and additional brightness matching in Fig. 19. While this
model is low-fidelity, is it empirical can still approximates the
real data. Therefore we will consider both the magnitude of
induced change in perception as well as the change in realism
due to this model. To demonstrate the color distortion, Fig. 20a
shows the histograms of GTAV, Cityscapes, and the white-
balance matched image. Figure 20b shows the histograms for
a GTAV, Cityscapes, and brightness-matched image.

IV. COMPARISON METHOD AND PERCEPTION
ALGORITHMS

A. Machine learned image enhancement
For both the indoor environment and the urban dataset, we

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

(a) Full image from GTAV with
color gain and brightness matching
(modified)

(b) Color gain and
brightness match-
ing (modified)

(c) Without
color gain and
brightness
matching
(baseline)

Fig. 19: Example of altering GTAV by matching the mean
color gain and brightness level measured from the Cityscapes
dataset.

(a) White-balance matching (b) Brightness-matching

Fig. 20: Plot of the color histogram for an image from
the baseline GTAV dataset, a modified GTAV frame which
matches the color-gain of the Cityscapes dataset, a modified
GTAV frame which matches the color gain and brightness level
of the Cityscapes dataset, and an image from the Cityscapes
dataset.

consider a machine-learned (ML) image enhancement. The
ML enhancement is EPE-GAN ([38]), which is a generative
adversarial network (GAN) which is designed to enhance
the realism of simulated images. For the urban dataset, [38]
provides an off-the-shelf enhanced version of GTAV that has
been trained using GTAV and Cityscapes to make alterations
to GTAV such that it appears visually similar in quality to
Cityscapes. For the cone dataset, we trained a version of
EPE-GAN to modify the simulated images to appear visually
similar to the real images. The cone images evaluated in this
paper to measure the quantities presented were not used to
train our variant of EPE-GAN. While this is an important and
interesting enhancement to study on its own, it will be used
herein only as a reference to contextualize this paper. Specific
analysis of EPE-GAN is beyond the scope of this paper and
is detailed in [12]. Since EPE-GAN was trained on a real and
simulated data, we expect it to produce more realistic data
than any of the enhancements herein. However, any benefit is
important to quantify as the specific enhancements may induce
different responses in the perception algorithm than the image

modifications considered in this paper.

B. Comparison Methodology
The methodology we use here to compare the datasets

follows the contextualized performance difference (CPD) pro-
posed in [3] and further generalized in [12]. This technique
measures the difference in two datasets by analyzing the
behavior of a perception algorithm on those two datasets.

CPD is a measure of the difference between datasets using
a discriminator/judge that is provided by the application in
which simulation is to be used. In this paper, the discriminators
are the perception algorithms associated with the cone detec-
tion in the indoor environment and semantic segmentation of
the urban environment images. The process to measure CPD
takes two datasets and finds smaller regions within images
in the sets that have high correlation between their labels
(i.e., similar content). This allows datasets to be unpaired,
with images of different sizes. Using these samples, CPD
evaluates the difference in performance of the perception
algorithm when encountering similar regions. Further, CPD
evaluates the difference using the distribution of performance
when encountering the similar regions in order to evaluate
the similarity of performance mean and variance between the
datasets. For more details, the reader is referred to [3].

When the two analyzed datasets are simulated and real, the
difference in behavior on the datasets is a quantity of realism
as inferred by the perception algorithm, that is a measure
of how different the simulated data is from reality from the
perception algorithm’s point of view. When the datasets are
both simulated (baseline simulation and modified simulation),
the measure provides a quantification of the impact of the
modification. When the perception algorithm is sensitive to
the alteration, the perceived difference (CPD) will be large.
Conversely, a low perceived difference (CPD) indicates that
the modification has little effect in changing the performance
of the perception algorithm.

C. Perception Algorithms
The purpose of the paper is to understand the effect of mod-

ifying the simulation on the downstream perception algorithm
in a robotic application. While the process for comparison is
described above, here we describe the perception algorithms
used in the two tasks, and used as the discriminator to measure
CPD.

For the cone environment, the cones were specific object
of interest to a broader task. Therefore, we used a two-class
object detector trained to detect red and green cones. YOLOv5
Nano [39] was chosen for the task based on high accuracy,
low inference time, and low memory requirement. For each
cone dataset (real, baseline, and each modified variant), a
version of the detector was trained using data exclusively
from its respective domain. The trained networks were used
then as the judge in the similarity comparison to understand
the impact of the modification on the perception algorithm.
Each network was trained with the same hyper-parameters
to convergence. From here, these trained object detectors are
referred to as: Netreal for the real dataset, Netbaselinesim for the

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST et al.: SYNTHETIC IMAGE GENERATION FOR ROBOT SIMULATION: QUANTIFYING THE IMPACT OF MODEL MODIFICATIONS ON PERCEPTION 9

Fig. 21: Perceived difference between each simulation variant
and reality when testing Netreal. Lower difference indicates
more similar behavior on the data.

baseline dataset, and Netmodification
sim for the variants. Each

time an object detector was trained, a training dataset with
random cone locations were used, and was independent of the
test set used for evaluation in this paper.

The perception task associated with the Cityscapes bench-
mark task is semantic segmentation. Since GTAV has seman-
tic labels which are consistent with Cityscapes, the chosen
perception algorithm was an off-the-shelf semantic segmen-
tation network from NVIDIA [40], [41]. The network was
trained on all existing classes in the datasets including cars,
trucks, roads, signs, pedestrians, vegetation, etc. For each city
dataset (Cityscapes, GTAV, and GTAV variants) we trained
the semantic segmentation network using the same hyperpa-
rameters, until convergence, exclusively in its own domain.
From here, these semantic segmentation networks are referred
to as: Netcity for the Cityscapes dataset, NetGTA for the
GTAV baseline, and Netmodification

GTA for the GTAV variants.
For Cityscapes, GTAV, and GTAV-EPE, 586 images from
each were set aside for testing to ensure the analysis in this
paper did not evaluate performance on trained portions of the
datasets.

V. RESULTS

A. Indoor lab

First, we evaluated the realism of the indoor lab datasets but
testing Netreal in each simulation. To do this, we compared
real − simvariant from the perspective of Netreal for each
variant and quantified the difference with CPD. Figure 21
shows the CPD for each of the simulation variants which
modeled the real data. The results show that few of the
modifications had significant impact on realism. The largest
change was when using a pinhole model, where the simu-
lation became far less realistic, likely due to the significant
difference in object shape. While the FOV model and single
light saw slight improvements, the results were very similar
to the baseline. None of the improvements approached the
improvement demonstrated by EPE-GAN.

The second quantification of realism leveraged simulation
to produce a new object detector and quantify its ability to
transfer to reality. For each simulation variant that modeled
the real data, we measured the CPD for each class using
the network trained in that simulation variant (Netvariantsim).

Fig. 22: Perceived difference between each simulation variant
and baseline simulation when testing Netbaselinesim . Lower
difference indicates more similar behavior on the data.

Figure 22 shows the magnitude of these changes. Again,
the results of EPE-GAN are the most predictive of the
real performance, with no model variant having produced a
network with such similar results. On the other hand, the
white-balanced simulation results in poor predictive power,
with the performance of Netwhite−balanced

sim on real being far
different from its performance on itself and much worse than
the baseline simulation. Each other variant was unremarkable
relative to these two extremes. In absolute terms, none of these
variants are satisfactorily close to reality; indeed, a difference
between 0.1 and 0.3 (all other variants), when the full range
of accuracy is defined 0-1, is insufficient to instill confidence
in the sim-trained network. The last notable conclusion to
draw from these results is that for each variant its network
performed more similarly for green cones, except for the
combined modifications where the performance difference is
almost identical. This observation motivates the need for future
analysis as it indicates a bias in the sensitivity of the perception
algorithm.

As some of the considered modifications do not model the
real data, we next considered (irrespective of real data), the
difference between the baseline simulation and each modified
simulation from the perspective of the object detector. First
we tested Netbaselinesim on each simulation variant to measure
the CPD between baseline and each modification from the
perspective of Netbaselinesim . These results are shown in Fig. 23.
Here, we see that most simulation variants induced a response
in Netbaselinesim that was similar to the baseline dataset, except
for two significant outliers. These outliers were EPE-GAN and
pinhole. EPE-GAN results were as expected as this was the
closest to reality, and introduced features and artifacts that
may be difficult for a sim-trained network to detect; see [12]
for analysis and the related supplemental material [42] for
examples. The second outlier was the pinhole simulation,
which suggests that shape was likely a factor in the learned
policy in simulation. This was also expected due to the visually
large differences in the pinhole example (Fig. 7). Although
expected, these quantified results are significant.

Similar to the two realism studies, we next compared CPD
with respect to the network trained in each altered dataset.
Results of this analysis are shown in Fig. 24. Many of the
results seen thus far are reproduced here, with white-balanced,
pinhole, and EPE-GAN being among the largest differences.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

Fig. 23: Perceived difference between each simulation variant
and reality when testing each Netvariantsim . Lower difference
indicates more similar behavior on the data.

Fig. 24: Perceived difference between each simulation variant
and baseline simulation when testing each Netvariantsim . Lower
difference indicates more similar behavior on the data.

It should be noted that the magnitude for all sim variants
vs. baseline are lower than that of the variant vs. real data,
indicating that the effects of our modifications on the whole
are relatively minimal.

B. City environment
To understand the impact of the modifications on GTAV

data that modeled Cityscapes, we followed the same procedure
as above by beginning with evaluating the performance of
Netcity on each dataset. This study described the realism
of each simulation variant. The results from this study are
shown in Fig. 25. Evident in the results is that no modification
performed as similar to reality as EPE-GAN. However, the
white-balance match dataset is the closest; it is interesting to
note however, that full brightness matching does not further
improve the dataset.

Next, we ran the comparison a second time, considering
how similarly a GTAV-trained network would transfer to
Cityscapes. The results in Fig. 26 include two reference marks:
GTAV baseline and EPE-GAN, with EPE-GAN producing
a network which performed most similar on its own and
real data. White-balance matching and brightness matching
both significantly altered the trained network and in both
cases the network’s performance was less similar to reality.
This is counter to the results for testing Netcity where these
modifications slightly improved the GTAV data realism. This
behavior, where altering a dataset can improve testing yet
reduce the effectiveness of the dataset for training, is similar

Fig. 25: Perceived difference between each GTAV variant and
Cityscapes when testing Netcity . Lower difference indicates
more similar behavior on the data.

Fig. 26: Perceived difference between each GTAV variant and
Cityscapes when testing each NetvariantGTA . Lower difference
indicates more similar behavior on the data.

to previously reported results [12] and is related to dataset
variety and network robustness.

The final comparison was designed to quantify, irrespective
of Cityscapes, the impact each modification had on the GTAV
data from the perspective of NetGTA. The results are shown
in Fig. 27. Taking into account the scale of the plot, it is clear
here that each modification (apart from GTAV-EPE) induced
similar results to that in the baseline, with all differences
below 0.02. Only GTAV-EPE induced significantly different
performance. This demonstrates the greater impact of scene
changes such as the texture changes apparent in the GTAV-
EPE images.

Applying AWGN with σ=0.01 induced changes that were
less significant than the color or lens distortion changes. With a
standard deviation of 0.01, we considered noise approximately
5 times that estimated in the real data. This indicates that,
while it may have impact in other applications or for other
algorithms, the algorithms for the tasks chosen herein were
not sensitive to such image transformations.

VI. CONCLUSION AND FUTURE WORK

This contribution assesses the impact of specific camera
models and image alterations on the behavior of a downstream
perception algorithm used for robot autonomy. The impact of

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST et al.: SYNTHETIC IMAGE GENERATION FOR ROBOT SIMULATION: QUANTIFYING THE IMPACT OF MODEL MODIFICATIONS ON PERCEPTION 11

Fig. 27: Perceived difference between each GTAV variant and
GTAV when testing each NetGTA. Lower difference indicates
more similar behavior on the data.

the changes to simulation is gauged with respect to the percep-
tion algorithm using the contextualized performance difference
(CPD). Where we modified the camera model to reflect the real
camera or real data, we measured the improvement in realism
as perceived by an object detector and semantic segmenter.
When the change to simulation was independent of reality,
we quantified the magnitude of the change of response by the
object detector and semantic segmenter in simulation.

The modifications that produced significant change for our
two perception algorithms in their respective environments
were large-scale modifications to color and shape. We note
that lens distortion can be significant as it induces structural
changes which impact testing and training. Beyond detection,
lens distortion could play a major role in any 3D projection
of the image, where the location of pixels would determine
3D size or shape. Other large-scale changes such as color
modification were significant factors in this study. Therefore,
accurately modeling post-sensor image processing such as
auto-contrast, white-balancing, and color correction could be
important factors to include in closed-loop testing, particularly
if few alterations were performed during training of the
perception algorithm. This indicates further investigation into
higher-fidelity models of color reproduction and post-sensor
processing are warranted.

However, none of the evaluated modifications were as
impactful as EPE-GAN, indicating that accurate modeling of
the appearance of the virtual environment is critical. This
is intuitive as white-balance and contrast are intertwined in
the appearance of the virtual environment. As such, a hybrid
approach, including precise modeling of distortion and post-
sensor color adjustments, along with a GAN for scene-based
enhancement could improve the quality of the camera simu-
lators in robotics. These results quantitatively support other
works where simulation of the environment played a critical
role in the generalization of perception algorithms.

Small and fine-grain detail including noise, demosaicing,
image quality, or slight changes to how exposure is modeled
(not to be confused with if exposure is modeled), resulted in
very similar results to the baseline simulation. This indicates
little sensitivity to these image features in the perception
networks. However, if the application or algorithms were
changed, this would need to be verified for the particular
simulation use case.

These results indicate that focus and effort for the simulation
of these use cases should center on the environment and large-
scale phenomena in the camera model. To understand this
further, the results found herein indicate potential benefit of
studying the impact of higher-fidelity models for these aspects
of simulation. This same procedure and methodology can
be used to understand the impact of the camera component
models on different perception tasks (such as tracking or visual
odometry) and different perception algorithms/architectures,
in different environments, or using a different measure of
autonomous behavior altogether. When simulation is used for
each of these tasks, what modeling aspects are important will
be determined by the purpose the synthetic images are used
for. In each case however, our approach would quantify the
impact of the model, giving insights into which aspects of
simulation warrant improvement.

ACKNOWLEDGMENT

This work was carried out in part with support from Na-
tional Science Foundation project CPS1739869. Special thanks
to the ARC Lab at the University of Wisconsin-Madison for
their support through their motion capture facilities.

REFERENCES

[1] Unity3D, “Real-Time 3D Tools,” https://unity3d.com/, 2016, accessed:
2022-12-28.

[2] Epic Games, “Unreal Engine,” https://www.unrealengine.com, 2020,
accessed: 2021-11-23.

[3] A. Elmquist, R. Serban, and D. Negrut, “A performance contextualiza-
tion approach to validating camera models for robot simulation,” arXiv
preprint arXiv:2208.01022, 2022.

[4] A. Elmquist, A. Young, I. Mahajan, K. Fahey, A. Dashora, S. Ashokku-
mar, S. Caldararu, V. Freire, X. Xu, R. Serban, and D. Negrut, “A
software toolkit and hardware platform for investigating and comparing
robot autonomy algorithms in simulation and reality,” arXiv preprint
arXiv:2206.06537, 2022.

[5] M.-G. Retzlaff, J. Hanika, J. Beyerer, and C. Dachsbacher, “Physically
based computer graphics for realistic image formation to simulate optical
measurement systems,” Journal of Sensors and Sensor Systems, vol. 6,
no. 1, p. 171, 2017.

[6] H. Blasinski, J. Farrell, T. Lian, Z. Liu, and B. Wandell, “Optimizing
image acquisition systems for autonomous driving,” Electronic Imaging,
vol. 2018, no. 5, pp. 161–1, 2018.

[7] A. Elmquist and D. Negrut, “Modeling cameras for autonomous vehicle
and robot simulation: An overview,” IEEE Sensors Journal, vol. 21, pp.
25 547–25 560, 2021.

[8] Z. Lyu, T. Goossens, B. Wandell, and J. Farrell, “Validation of physics-
based image systems simulation with 3d scenes,” IEEE Sensors Journal,
2022.

[9] M. Grapinet, P. De Souza, J.-C. Smal, and J.-M. Blosseville,
“Characterization and simulation of optical sensors,” Accident Analysis
and Prevention, vol. 60, pp. 344–352, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0001457513001693

[10] D. Gruyer, M. Grapinet, and P. De Souza, “Modeling and validation of
a new generic virtual optical sensor for adas prototyping,” in 2012 IEEE
Intelligent Vehicles Symposium. IEEE, 2012, pp. 969–974.

[11] P. J. Durst, D. McInnis, J. Davis, and C. T. Goodin, “A novel framework
for verification and validation of simulations of autonomous robots,”
Simulation Modelling Practice and Theory, vol. 117, p. 102515, 2022.

[12] A. Elmquist, R. Serban, and D. Negrut, “Evaluating a GAN for enhanc-
ing camera simulation for robotics,” arXiv preprint arXiv:2209.06710,
2022.

[13] Z. Liu, T. Lian, J. Farrell, and B. A. Wandell, “Neural network
generalization: The impact of camera parameters,” IEEE Access, vol. 8,
pp. 10 443–10 454, 2020.

[14] J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation
tool for evaluating digital camera image quality,” in Image Quality and
System Performance, vol. 5294. International Society for Optics and
Photonics, 2003, pp. 124–132.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

[15] Z. Liu, T. Lian, J. Farrell, and B. Wandell, “Soft prototyping camera
designs for car detection based on a convolutional neural network,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops, 2019, pp. 0–0.

[16] S. Dodge and L. Karam, “Understanding how image quality affects deep
neural networks,” in 2016 Eighth International Conference on Quality
of Multimedia Experience (QoMEX). IEEE, 2016, pp. 1–6.

[17] Y. Zhou, S. Song, and N.-M. Cheung, “On classification of distorted
images with deep convolutional neural networks,” in 2017 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 1213–1217.

[18] Project Chrono, “Chrono: An open source framework for the physics-
based simulation of dynamic systems,” http://projectchrono.org, 2020,
accessed: 2020-03-03.

[19] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleis-
chmann, M. Taylor, H. Sugiyama, and D. Negrut, “Chrono: An open
source multi-physics dynamics engine,” in High Performance Computing
in Science and Engineering – Lecture Notes in Computer Science,
T. Kozubek, Ed. Springer International Publishing, 2016, pp. 19–49.

[20] A. Elmquist, R. Serban, and D. Negrut, “A sensor simulation framework
for training and testing robots and autonomous vehicles,” Journal of
Autonomous Vehicles and Systems, vol. 1, no. 2, p. 021001, 2021.

[21] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich,
“OptiX: A general purpose ray tracing engine,” ACM Transactions on
Graphics, August 2010.

[22] Z. Tang, R. G. von Gioi, P. Monasse, and J.-M. Morel, “A precision
analysis of camera distortion models,” IEEE Transactions on Image
Processing, vol. 26, no. 6, pp. 2694–2704, 2017.

[23] B. Burley and W. D. A. Studios, “Physically-based shading at disney,”
in ACM SIGGRAPH, vol. 2012. vol. 2012, 2012, pp. 1–7.

[24] MathWorks, “Using the Single Camera Calibrator App,”
https://www.mathworks.com/help/vision/ug/using-the-single-camera-
calibrator-app.html, 2022, accessed: 2022-11-14.

[25] J. E. Farrell and B. A. Wandell, “Image systems simulation,” Handbook
of Digital Imaging, pp. 1–28, 2015.

[26] A. Prakash, S. Debnath, J.-F. Lafleche, E. Cameracci, S. Birchfield,
M. T. Law et al., “Self-supervised real-to-sim scene generation,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 16 044–16 054.

[27] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, J. Barreto et al.,
“Camera models and fundamental concepts used in geometric computer
vision,” Foundations and Trends ® in Computer Graphics and Vision,
vol. 6, no. 1–2, pp. 1–183, 2011.

[28] S. W. Hasinoff, F. Durand, and W. T. Freeman, “Noise-optimal capture
for high dynamic range photography,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 553–
560.

[29] EMVA Standard, “1288, standard for characterization of image sensors
and cameras,” European Machine Vision Association, vol. 3, 2010.

[30] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman,
“Automatic estimation and removal of noise from a single image,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 2, pp. 299–314, 2008.

[31] H. S. Malvar, L.-W. He, and R. Cutler, “High-quality linear interpola-
tion for demosaicing of bayer-patterned color images,” in 2004 IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 3. IEEE, 2004, pp. iii–485.

[32] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[33] S.-H. Choi, J. Cho, Y.-M. Tai, and S.-W. Lee, “Implementation of an
image signal processor for reconfigurable processors,” in 2014 IEEE
International Conference on Consumer Electronics (ICCE). IEEE,
2014, pp. 141–142.

[34] R. Maini and H. Aggarwal, “A comprehensive review of image enhance-
ment techniques,” arXiv preprint arXiv:1003.4053, 2010.

[35] A. K. Vishwakarma and A. Mishra, “Color image enhancement tech-
niques: a critical review,” Indian J. Comput. Sci. Eng, vol. 3, no. 1, pp.
39–45, 2012.

[36] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 3213–
3223.

[37] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European conference on com-
puter vision. Springer, 2016, pp. 102–118.

[38] S. R. Richter, H. A. AlHaija, and V. Koltun, “Enhancing photorealism
enhancement,” arXiv preprint arXiv:2105.04619, 2021.

[39] G. Jocher, A. Stoken, J. Borovec, NanoCode012, ChristopherSTAN,
L. Changyu, Laughing, tkianai, A. Hogan, lorenzomammana, yxNONG,
AlexWang1900, L. Diaconu, Marc, wanghaoyang0106, ml5ah, Doug,
F. Ingham, Frederik, Guilhen, Hatovix, J. Poznanski, J. Fang, L. Yu,
changyu98, M. Wang, N. Gupta, O. Akhtar, PetrDvoracek, and P. Rai,
“ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements,”
Oct. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.4154370

[40] A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical multi-scale
attention for semantic segmentation,” 2020. [Online]. Available:
https://arxiv.org/abs/2005.10821

[41] NVIDIA, “semantic-segmentation,” https://github.com/NVIDIA/semantic-
segmentation, accessed: 2022-09-14.

[42] A. Elmquist, R. Serban, and D. Negrut, “Evaluating a GAN for
enhancing camera simulation for robotics: supplemental material,”
https://amelmquist.github.io/GANCameraSimulation/, 2022.

Asher Elmquist is a Doctoral candidate in
Mechanical Engineering at the University of
Wisconsin-Madison. He received a B.S. and
M.S. in Mechanical Engineering from the Uni-
versity of Wisconsin-Madison in 2017 and 2019.
While an undergraduate, he received the Faustin
Prinz Undergraduate Research Fellowship and
graduated with Honors in Research. His re-
search focuses on simulating autonomous vehi-
cles and robots, specifically relating to realistic
sensor simulation for developing, testing, and

evaluating autonomous behavior.

Radu Serban is a Senior Scientist in the De-
partment of Mechanical Engineering at the Uni-
versity of Wisconsin-Madison. Radu received his
MS in Aerospace Engineering from the Polytech-
nic Institute of Bucharest in 1992 and his PhD
in Mechanical Engineering from the University
of Iowa in 1998. He worked at the University
of California - Santa Barbara, in the Center for
Applied Scientific Computing at the Lawrence
Livermore National Laboratory, and in a Silicon
Valley start-up, before joining the University of

Wisconsin - Madison in 2013. His research interests are in computa-
tional science, numerical analysis, and mathematical software. At LLNL,
he was the main architect of the Sundials suite of solvers and one of
its lead researchers. Currently, Radu is a main architect of the Project
Chrono software and the developer of the Chrono::Vehicle package.

Dan Negrut is Bernard A. and Frances M. Wei-
deman Professor in the Department of Mechan-
ical Engineering at the University of Wisconsin-
Madison. He has courtesy appointments in the
Department of Computer Sciences and the De-
partment of Electrical and Computer Engineer-
ing. Dan received his Ph.D. in Mechanical En-
gineering in 1998 from the University of Iowa
under the supervision of Professor Edward J.
Haug. He spent six years working for Mechan-
ical Dynamics, Inc., a software company in Ann

Arbor, Michigan. In 2004 he served as an Adjunct Assistant Professor
in the Department of Mathematics at the University of Michigan, Ann
Arbor. He spent 2005 as a Visiting Scientist at Argonne National Lab-
oratory in the Mathematics and Computer Science Division. He joined
University of Wisconsin-Madison in 2005. His interests are in Compu-
tational Science and he leads the Simulation-Based Engineering Lab.
The lab’s projects focus on high performance computing, computational
dynamics, artificial intelligence, terramechanics, autonomous vehicles,
robotics, and fluid-solid interaction problems. Dan received the National
Science Foundation Career Award in 2009. Since 2010 he is an NVIDIA
CUDA Fellow.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3288488

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on June 27,2023 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

