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Extracting information from cosmic surveys is often done in a two-step process, construction of maps
and then summary statistics such as two-point functions. We use simulations to demonstrate the advantages
of a general Bayesian framework that consistently combines different cosmological experiments on the
field level, and reconstructs both the maps and cosmological parameters. We apply our method to jointly
reconstruct the primordial CMB, the integrated Sachs-Wolfe effect, and six tomographic galaxy density
maps on the full sky on large scales along with several cosmological parameters. While the traditional
maximum a posterior estimator has both two-point level and field-level bias, the new approach yields
unbiased cosmological constraints and improves the signal-to-noise ratio of the maps.
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I. INTRODUCTION

The large-scale structure (LSS) of the Universe is defined
by the full 3-dimensional matter density field δðx; tÞ.
Although it is difficult to determine δðx; tÞ directly, we
extract information about it indirectly in two general ways:
(i) light from distant sources (including the cosmic micro-
wave background) is impacted by over and underdense
regions; and (ii) gravitationally bound objects such as
galaxies and clusters often trace the matter density.
Examples of the first class of information include the
late-time integrated Sachs-Wolfe (ISW) effect caused by
decaying gravitational potentials in the dark-energy era and
the deflection of photons due to gravitational lensing. The
second class includes galaxy clustering and cluster counts.
One important objective of modern cosmology is to develop
statistical methods to combine this information in the most
efficient and consistent manner, in order to reconstruct
δðx; tÞ and constrain models of its origin and evolution.
In the past decades, independent experiments have made

extraordinary advances in charting these individual tracers.
For example, on the cosmic microwave background (CMB)
front, several generations of anisotropy and polarization
measurements have led to recent results; the Planck
Collaboration has mapped the temperature and polarization
anisotropy of the early Universe and used its lensing
statistics to study the integrated gravitational potential along
the line of sight [1,2]. The Atacama Cosmology Telescope
(ACT) and the South Pole Telescope (SPT) have made
similar achievements with smaller footprints but higher
resolutions [3–6]. Stage-III wide-field photometric surveys
such as the Dark Energy Survey (DES), the KioDegree

Survey (KiDS) and the Hyper Suprime-Cam (HSC) have
observed millions of galaxies on a significant fraction of the
sky and used galaxy positions and shape statistics to probe
the low-redshift matter distributions [7–9]. The recipe for
analyzing most of this data involves first converting the
data into 2-dimensional maps (e.g., for CMB surveys) and
catalogs (e.g., for galaxy surveys), computing the correla-
tion functions (or the power spectra) of these fields, and then
comparing these observed correlation statistics to a cosmo-
logical model in a Bayesian likelihood analysis to yield
cosmological parameter constraints. In almost all of these
cases, the fiducial cosmological model, ΛCDM, fits the
data well.
In addition to these results from single probes, there has

been an increased effort to maximize information by
combining probes. An example of this is the recent DES
result combining its data of galaxy positions and galaxy
shapes with the projected gravitational potential measured
by SPT and Planck [10]. In this example, roughly the same
recipe is followed: DES made maps of the galaxy density in
five tomographic bins and the shear in four bins; these were
combined with maps of the projected gravitational potential
from SPT and Planck. Given these three sets of maps, there
are six sets of two-point functions (galaxy clustering,
galaxy-galaxy lensing, cosmic shear, cosmic shear × CMB
lensing, galaxy density × CMB lensing, and the CMB
lensing autocorrelation function). This set of six two-point
functions forms the data vector, which is then used to
constrain parameters. The main goal of this effort is to
extract from all this low-redshift (much lower than the
decoupling of the CMB) data a measurement of the amount
of clustering at late times. This is often quantified with S8,
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which the DESþ SPT analysis determined to be S8 ¼
0.792� 0.012, lower than the Planck measurement,
S8 ¼ 0.832� 0.013. The discrepancy does not meet strict
statistical standards but it has spawned much interest and it is
reminiscent of the Hubble tension that is driven by different
measurements of the zeroth order expansion rate of the
Universe.
Taking stock, the fiducial cosmological model fits most

of the data, but there are alluring hints that it is flawed, and
one of the most intriguing ways of stress testing the model
is to measure how the clustering of matter evolves over the
course of time. To date, this has been done predominantly
by: (i) map-making; (ii) compression to two-point func-
tions; and (iii) parameter constraints.
Research into field-level analysis offers an opportunity to

change the way that we extract data from surveys, in the
process offering an alluring opportunity for a powerful suite
of tests ofΛCDM. The basic idea of field-level analysis is to
combine all three steps above into one. Early examples of
this idea [11–16] focused on the CMB. In that example, the
time-ordered data can be converted into a map at the same
time that the power spectrum is determined. The parameters
to fit for the data, therefore, are the values of the temperature
in all the pixels in the map plus a handful of cosmological
parameters that determine the power spectrum. Eriksen
et al. [14] extended the idea to allow for multiple maps to be
constructed; e.g., maps of foregrounds in addition to the
CMB. This basic technology has been incorporated into the
most recent results from Planck [17]. Groups are now
applying the technology to galaxy surveys [18–23].
One way to understand the advantage of the field-level

approach is to return to the DESþ SPT analysis; first CMB
lensing maps were made using the traditional quadratic
estimator [24] and then they were used to construct two-
point functions. However, the data in DES itself could in
principle help improve the fidelity of the CMB lensing
maps; after all, the deflection of the CMB photons is due
(at least in part) to the very structure that DES measures.
Combining this information would clearly create a better
CMB lensing map. Using that improved map with DES
maps though would be a form of double counting, so it
makes sense to do everything at once; create all the maps
and estimate all the power spectrum simultaneously. In the
particular example of CMB lensing, the problem is not
trivial but Millea et al. [25–27] have made significant
progress simultaneously measuring the lensing field, the
primordial CMB, and several parameters that determine the
relevant power spectra.
Here we use simulated data sets on large scales to:

(i) develop the machinery that can handle real data;
(ii) explore some of the basics of field-level analyses;
and (iii) provide an example of how the field-level analyses
can be used to stress test ΛCDM. Our example is related to
the work in Eriksen et al. [14], except that we attempt to
separate the late-time integrated Sachs-Wolfe signal from

the primordial CMB anisotropies. Hang et al. [28] con-
strained the ISWand lensing amplitudes using the two-point
correlation between the DESI Legacy Survey and Planck
temperature and lensing maps, where as we are interested in
the full posterior distribution of both the parameters, two-
point functions, and the maps.
We begin in Sec. II by explaining some of the details and

then in Sec. III, we analyze simulated CMB data assuming
that it consists only of noise and CMB anisotropies. We
recover some of the known problems of the maximum
posterior solution (the Wiener filter) and show that these
can be mitigated by instead using samples of the full
posterior. Then, in Sec. IV, we introduce the ISW compo-
nent and try to separate that from the primordial anisot-
ropies. The degeneracies make this problematic at the map
level, but the sampler produces an unbiased power spec-
trum for each. This is crucial, as the cosmological param-
eters themselves are embedded in the spectrum so if the
spectrum is unbiased, then the parameters will be as well.
Specifically, we introduce two free amplitudes of each
component that multiply the fiducial spectra and show that
the field-level analysis that simultaneously solves for the
map values and the parameters produces unbiased estimates
of the parameters.
The ensuing constraints on the amplitude of the ISW

spectrum are not very restrictive, so in Sec. V, we explore
the possibility of adding in other tracers, the galaxy density
in several tomographic bins. This adds to the number of free
parameters in the field-level analysis but we show that it
produces a higher-fidelity ISW map and a fairly tight
constraint on the amplitude of the ISW spectrum. This leads
to the prospect of stress testing ΛCDM by introducing
amplitudes in front of all spectra (CMB lensing, galaxy
density, cosmic shear) in addition to the standard cosmo-
logical parameters; a measurement in which any one of
these amplitudes is determined to deviate from unity will
disprove ΛCDM by demonstrating that structure does not
grow in time as predicted by the model.
In short, our goal in this paper is to explain (to some,

much of this will not be new) what to expect when carrying
out a field-level analysis; demonstrate how well it does on
simulated data with increasing numbers of components and
probes, and point the way to a simple but powerful way to
stress test the fiducial cosmological model. We share our
conclusions and thoughts about the next steps in Sec. VI.

II. THEORETICAL FRAMEWORK

A. Field-level multiprobe analysis

The general problem of a field-level multiprobe infer-
ence is summarized in Fig. 1. The data is an observation, or
a set of observations, on the sky. For concreteness, we will
focus on the synergy between CMB experiments and
photometric galaxy surveys, but the argument generalizes
to any combinations of probes.
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The data is assumed to consist of a set of signals
and noise,

d ¼
X
α

sα þ n: ð1Þ

Our model assumes that the signals sα in the data are drawn
from a Gaussian distribution with mean zero and covari-
ance matrix, CαβðθÞ, where θ represents cosmological and
nuisance parameters. The noise is also drawn from a
Gaussian distribution with mean zero and known covari-
ance matrix Cn.
The likelihood for obtaining the data given the cosmo-

logical parameters and the signals is

−2 lnL¼
�
d−
X
α

sα
�
½Cn�−1

�
d−
X
β

sβ
�
þ…; ð2Þ

where the additional terms are irrelevant, and the products
on the right involve all pixels. That is, in the case of a single
survey with Npix pixels, d is a set of the values in all the
pixels, and Cn is a Npix × Npix matrix. If only one signal
contributes, then s also has Npix values; if more signals are
assumed, then the total number of parameters in all the sα

will be Npix × Nsignal. When data from multiple surveys are
used, d will be a concatenated version of all the individual
data sets and different signals can contribute to different
data sets.
Using Bayes theorem, we can invoke the prior on all the

signals and the parameters. Since we are confining our
analysis to large scales throughout, the prior on all signals
is Gaussian, and the posterior is

−2 lnp ¼ −2 lnLþ
X
αβ

sαðC−1ðθÞÞαβsβ

þ ln detCðθÞ − 2 ln priorðθÞ; ð3Þ

where irrelevant terms have been dropped. The parameters
in this posterior are θ (which determines C) and the map(s)
sα. For example, in the case of a single survey, if there is
one signal contributing and there are five cosmological
parameters, then the number of parameters we use to fit the
Npix data points is Npix þ 5. There are often cases where
there are two or more signals contributing. For example,
below we model the CMB as consisting of the signal from
the last scattering surface plus the contribution from the
late-time ISW effect. In that case, there will be 2Npix þ 5

free parameters.
As described in Sec. II. C, we will draw samples from this

posterior. The accumulated samples of both the maps and
the cosmological and nuisance parameters are fully con-
sistent in the Bayesian sense. More precisely, the distribu-
tion of the values of map pixels sα will provide a set of
posterior samples of the signals, and the distribution of the
parameters will constrain the relevant models of interest.
These distributions will be consistent with one another, so
that for example in a sample with a large Cαα, the signal sα

everywhere is likely to have a larger dispersion.

FIG. 1. The flow chart of a general field-level multiprobe
analysis that accumulates samples of both the cosmological
parameters and the tracer maps (values of each signal in each
pixel) as discussed in Sec. II A and Sec. II C. We start from the
prior distribution of the cosmological and latent map parameters.
We then use the realized cosmological parameters to construct the
covariance of the tracers, which in turn transforms the latent map
parameters into physical tracer maps. The covariance, tracer
maps, and observed data are then combined into the likelihood
and—after multiplying by the priors—the posterior functions. If
the above calculations are all programmatically differentiable, we
can calculate the derivatives of the posterior function easily, and
use HMC No-U-Turn Sampler (HMC-NUTS) to efficiently
sample from the very high-dimensional posterior space. In this
diagram, diamonds denote sampled parameters, squares denote
model-relevant functions, and the hexagon is the (fixed) observed
data vector. The pink diamond represent samples that represents
the posterior space.
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B. Pixels

Above we glossed over the details of the map. Here, we
review the basics of pixels in terms of the coefficients of
spherical harmonics and explain why we choose to work
with this basis.
Consider a map on the curved sky sðnÞ, where n is a

3-dimensional unit vector. Analogous to Fourier trans-
formations in Euclidean spaces, we can study this field in
the frequency (or harmonics) space via forward and inverse
spherical harmonics transform (SHT),

sðnÞ ¼
X
lm

slmYlmðnÞ ð4Þ

slm ¼
Z

dΩ
4π

sðnÞY�
lmðnÞ; ð5Þ

where YlmðnÞ’s are the set of orthonormal spherical
harmonics. We adopt the HEALPix pixelization strategy
(where the angular resolution is specified by a single
parameter NSIDE), and use the discretized SHT as imple-
mented by the HEALPY library [29,30]. As usual in
cosmological analyses, we drop the monopole and dipole
modes (l ¼ 0, 1).
In general, if the field s is statistically homogeneous and

isotropic, it is more advantageous to study s’s correlation
structure in harmonic space. In real space, the correlation
function between two line-of-sight directions is given by

wn;n0 ¼ wðjn − n0jÞ ¼ hsðnÞsðn0Þi; ð6Þ

where we see that the correlation function has dense off-
diagonals. For a discretized map with NSIDE resolution,
the size of w scales as NSIDE4, which quickly becomes
impossible to handle (for example, an NSIDE ¼ 256 map
has an angular resolution of 2700 and 8 × 105 pixels; the full
pixel-pixel covariance matrix totals 5 terabytes).
However, s’s power spectrum (s’s correlation function in

harmonic space), C, defined by

hsαlms�;βl0m0 i ¼ δll0δmm0Cαβ
l ð7Þ

is diagonal in this basis and depends only on the multiple
moment l and the different sets of signals assumed.
Therefore, the amount of memory needed to manipulate
C is linear in NSIDE. One important caveat to this
simplicity is that the field must be homogeneous and
isotropic, and these assumptions fail in the presence of
instrumental noise patterns, partial sky coverage, and
masking.

C. Methodology

Here we present the details of our implementation of
Fig. 1. The fundamental idea behind all MC sampling
techniques is to start from the current sample and then find
the next point in the parameter space and generate a
probabilistic proposal to make it a sample (both operations
may involve repeated evaluations of the posterior density).
How to find the next point and what proposal to make
are algorithm specific; however, they in general satisfy
the principle of detailed balance such that, in the limit of
large sample size, the samples approximate the posterior
distribution.
The efficiency of MC sampling rests on the suitability of

the MC algorithm for the specific inference context and the
effective computation of the posterior distribution.
For the first point, since we are inferring both the map

pixels and the cosmological parameters, the dimension-
ality of the posterior space will be quite large. For example,
for our final analysis in Sec. V which includes eight tracer
maps at NSIDE ¼ 32, the total dimensionality of the
posterior space is 73704. This is too large for traditional
Monte Carlo techniques (such as Metropolis-Hastings) to
operate efficiently. Intuitively, this is because as dimen-
sionality increases, the ratio between the neighboring
volume pointing towards and away from a particular point
in the parameter space (e.g., the mode of the distribution)
decays exponentially. Thus, the random walk Metropolis
algorithm becomes overwhelmingly likely to propose
samples outside the typical set, where the target density
and hence the acceptance probability vanishes [31].
Hamiltonian Monte Carlo (HMC) solves this efficiency

problem in high-dimensional spaces [31–33]. In the HMC
framework, we augment the parameter space with a
conjugate momentum space and use the gradient of the
log posterior surface to guide us to sample only near the
bulk of the probabilistic mass [31,32]. In order to avoid
traditional HMC’s sensitivity to hyper-parameters such as
the integration steps, we further employ the No-U-Turn
Sampler (NUTS) variation of the HMC, first proposed by
Hoffman and Gelman [33].
This leads us to the second point on computational

efficiency. HMC samplers require repeated evaluations of
the posterior function and its gradient. Since we want to
develop a multiprobe field-level framework that easily
extends to different observables and cosmological models,
we do not want to hard code the derivatives in advance.
Instead, we choose to make the framework pragmatically
differentiable through the JAX autodifferentiation library in
Python, which interfaces smoothly with the numpyro
implementation of the NUTS [34,35].
Turning to the specific problem of the posterior function

computation. We start at the top of Fig. 1 and break this
calculation into several parts:
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(i) We start with a proposal for the cosmological
parameters θ and the latent map parameters. The
latent map parameters are a set of uncorrelated
standard Gaussian variables q which we will later
transform into the signal maps.

(ii) Calculate C given the cosmological parameters
(iii) Transform the latent map parameters using the

Cholesky decomposition (C ¼ LLt) of the covari-
ance matrix, s ¼ Lr. [The prior of the maps be-
comes s2=ð2CÞ ¼ q2=ð2IÞ].

(iv) Combine the maps s with the data to calculate the
likelihood (forward modeling)

(v) Use the likelihood and the prior to calculate the
posterior and its derivative with respect to the
parameters

(vi) If the NUTS criterion is satisfied, accept this as a
valid sample

(vii) Use the leapfrog method to generate another sample
In practice, through the JAX autodifferentiation library, this
framework provides information on both the posterior and
its gradient.
The treatment of the covariance function deserves more

discussion. In this paper, we will keep the shape of the
spectra fixed and allow for free amplitudes ðAαÞ2. We
assume the amplitudes have fiducial values equal to one
and have a uniform prior distribution. We then construct the
full covariance matrix Cαβ, which consists of the auto and
cross-spectra of each signal. In principle, since C encodes
the covariance between all the pixels for all the tracer maps,
its dimensionality is very high. For a single HEALPix map
at the resolution of NSIDE (or a limiting resolution of
lmax ¼ 3NSIDE − 1), there are

Xlmax

l¼2

ð2lþ 1Þ ¼ l2max þ 2lmax − 3 ð8Þ

degrees of freedom ignoring monopole and dipole modes.
Again, for our final analysis in Sec. V, which includes eight
tracers, the size of C is on the order of 82 × l4max. The
efficient computation of this covariance matrix is one of the
limiting factors in the feasibility of field-level analysis.
However, in the limit of full sky and when all the fields are
homogeneous and isotropic, the sub-block of C for each
tracer is diagonal in the alm basis. Thus, we can bringC into
block diagonal forms, with lmax − 2 unique Cl sub-blocks
on the diagonal. Each Cl sub-block has size 8 × 8,
describing the correlation between the 8 tracers at mode
l. Looking ahead, we will be considering the primordial
CMB signal (modulated by AP); the late-time ISW effect
(modulated by AI ) and the galaxy density in six tomo-
graphic bins (modulated by bi’s). The first of these is
uncorrelated with the rest, so the ensuing 8 × 8 sub-block
matrix will be

Clðb1;…;b6;AI ;APÞ

¼

0
BBBBBBBBBB@

b21C
G1;G1

l b1b2C
G1;G2

l … b1AICG1;I
l 0

b1b2C
G2;G1

l b22C
G2;G2

l … b2AICG2;I
l 0

… … … …

b1b6C
G6;G1

l b2b6C
G6;G2

l … b6AICG6;I
l 0

b1AICI ;G1

l b6AICI ;G2

l … ðAIÞ2CI ;I
l 0

0 0 … 0 ðAPÞ2CP;P
l

1
CCCCCCCCCCA
:

ð9Þ

With this computationally efficient representation of the
covariance matrix, we can transform the latent map variables
into the proper tracer maps through either the sub-blocks’
Cholesky representations or their eigendecomposition. We
experimented with both, and found the former to be an order
of magnitude faster (see also Loureiro et al. [19]). In
summary, the algorithm is very fast. For the largest model
we considered in Sec. V, the analysis was done on an Apple
M1 chip running overnight.

III. RECONSTRUCTION OF THE PRIMORDIAL
CMB MAP

We start with the simplest possible example, a single
simulated CMB all-sky map. Although simple, this model
demonstrates the key behaviors of two ways of using the
posterior; identifying the free parameters by finding the
point at which the posterior is maximum (hereafter, maxi-
mum a posteriori or MAP) and generating samples of the
posterior (hereafter sampling). We compare the potential
biases of both methods and discuss the implication for the
field, two-point, and cosmological parameter constraints. In
someways, the idea of asking whether an estimator is biased
is introducing frequentist ideas into a Bayesian discussion.
Nonetheless, we think that understanding these biases is an
important step towards the ultimate goal of extracting the
correct cosmological parameters from the data. The intu-
ition we find here will serve us well in the subsequent more
complex cases.
The primordial CMB temperature fluctuations sP origi-

nate from the time of recombination (z� ≈ 1100), when the
photons decoupled from the photon-electron-proton fluid as
the universe cooled below a few percent of the ionization
energy of hydrogen. We assume (and all current data is
consistent with this assumption, with the tightest constraints
coming from the Planck Collaboration et al. [36]) that the
resulting temperature variation is a homogeneous and
isotropic random Gaussian field which is fully characterized
by the power spectrum CP

l . Throughout this paper, we
assume a fiducial cosmology of H0 ¼ 100h ¼ 67.5 km=
Mpc= sec, Ωbh2 ¼ 0.0219, Ωch2 ¼ 0.1139, As ¼ 2 × 10−9

and ns ¼ 0.965.
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A. Biases of the optimal estimator

1. Fixed cosmological parameters

The observed temperature data dT ðnÞ is the super-
position of the primordial field sPðnÞ and noise nT ðnÞ.

dT ðnÞ ¼ sPðnÞ þ nT ðnÞ ð10Þ

We call this the CMB model. We ask; Given dT and perfect
knowledge of sP ’s and nT ’s theoretical power spectra
(CP and Cn;T respectively), how well can we reconstruct
the primordial field? Additionally, how accurate is the
power spectrum of the reconstructed field?
In the Bayesian framework, the posterior probability in

Eq. (3) reduces to

−2 lnpðsPjdT Þ ∝
X
lm

�jdTlm − sPlmj2
Cn;T
l

þ jsPlmj2
CP
l

�
; ð11Þ

where we drop the determinant terms since the CMB and
noise spectra are assumed known and fixed. The MAP
solution for sP is then given by the Wiener filter

ŝP;MAP
lm ¼ CP

l

CP
l þ Cn;T

l

dTlm: ð12Þ

The mean power spectrum of the MAP estimator

hĈP;MAP
l i≡

�
1

2lþ1

X
m

jŝP;MAP
lm j2

�
¼ CP

l

CP
l þCn;T

l

CP
l ð13Þ

is known to be biased [37,38], an effect more prominent in
the low signal-to-noise ratio (SNR) regime.
To implement, we simulate sP from the fiducial cosmol-

ogy power spectrum on a HEALPix grid of NSIDE ¼ 64

and then inject isotropic white noise nT with a relatively
high variance of VarðnT Þ ¼ 1000 μK2. Even though this
exceeds noise in Planck by several orders of magnitude, we
use this value to demonstrate the difficulties of extracting
the signal in the presence of appreciable noise. The power
spectra of the truth map (black) and the recovered MAP
map (green) are shown in Fig. 2. As the amplitude of the
noise spectrum (purple) rises on small scales, the MAP
spectrum is increasingly suppressed. On the field level, this
means that ŝP;MAP

lm is damped for over and underdensities
on scales that have small SNR. The estimator does not have
an additive bias but does have a multiplicative bias, i.e.,
hŝP;MAP

lm =sPlmi ¼ CP
l =ðCP

l þ Cn;T
l Þ for both the real and the

imaginary components. This is shown in the top panel
of Fig. 3.

2. Varying cosmological parameters

In real cosmological analyses, we are also interested in
cosmological parameters (such as the primordial amplitude,
spectral index, etc.) that modify the shape and amplitude of
the power spectrum. We want to know how the field, two-
point, and parameter MAP estimators behave when the
spectrum is allowed to change.
For example, consider modulating the fiducial power

spectrum CP with a scale-invariant amplitude A2, where A
has a flat prior. The new MAP solutions are given by

ŝP;MAP
lm ¼ ðÂMAPÞ2CP

l

ðÂMAPÞ2CP
l þ Cn;T

l

dTlm ð14Þ

ĈP;MAP
l ¼ ðÂMAPÞ2CP

l

ðÂMAPÞ2CP
l þ Cn;T

l

ðÂMAPÞ2CP
l ð15Þ

and ÂMAP satisfies

FIG. 2. A numerical experiment of CMB reconstruction that
demonstrates the difference between the MAP estimators and the
sampling-based estimators. We generated the truth map from a
fiducial CP and added isotropic noise. The truth and noise spectra
are shown in black and purple. We test two reconstruction
models, the first has a fixed CP [Eq. (11)], and the second has
a free amplitude A2 modulating the fiducial CP . Their MAP
solutions are given by Eqs. (13) and (15), and are shown in green
and red respectively. We confirm the analytical solutions match
the results from direct numerical optimization. Both two-point
and MAP estimators are biased lower than truth and the free
amplitude model has a greater bias. We then sampled sP directly
from the posterior space. The spectra of the mean maps for the
fixed and free amplitude cases are biased (both overlap the green
curve). However, in both cases, the distributions (the orange
shaded region represent 1σ credible interval) of the spectra scatter
around the truth and are unbiased.
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X
l

ð2lþ 1Þ
�
1 −

ðÂMAPÞ2DlC
P
l

ððÂMAPÞ2CP
l þ Cn;T

l Þ2
	

¼ 0; ð16Þ

where Dl is the data power spectrum.
When noise is present, ÂMAP < 1, in this case equal to

0.81 (see Fig. 4). Thus, by comparing Eqs. (13) and (15),
we see that the new MAP is biased even lower than the
truth. We can apply this model to the same reconstruction
experiment as before. The result for the new power
spectrum estimator is shown in red in Fig. 2. The
multiplicative bias in the field-level estimator is shown
in the bottom panel of Fig. 3.
For power spectra with complicated parameter depend-

ence, we often lack analytical optimal solutions. However,
qualitatively speaking, if an increase in the parameter
increases the amplitude of the spectrum as in this case,
then the parameter will be underestimated by optimal
inference, and vice versa.

B. Sampling the CMB field

1. Fixed cosmological parameters

Now we seek an unbiased estimator for CP that also has
a convenient notion of uncertainty. Let us again first fix
A ¼ 1 and draw a sample of maps fsPlm;igi¼1;…;N directly
from the posterior distribution [Eq. (11)]. Using this set of
maps, we can construct an associated set of power-spectra
samples

fCP
l;ig ¼

�X
m

1

2lþ 1
jsPlm;ij2

	
: ð17Þ

Let us call the ensemble average of fsPlm;ig and fCP
l;ig as sP

andCP , respectively. It is crucially important that the power

spectrum of sP is different from CP .
We claim, in the limit of sufficient sample size N,
(1) sP and its spectrum are exactly the field and two-

point MAP estimators [Eqs. (12) and (13)], and they
have the Wiener filter multiplicative bias.

(2) On the two-point level, the samples fCP
l;ig give a

proper Bayesian credible interval centered around
the truth.

(3) Further, CP (and more generally, the mean of any
n-point power spectrum samples) is an unbiased
estimator in the frequentist sense (when we have
multiple data realizations).

We prove these claims in Appendix B. However, intui-
tively, how can the power spectrum of the mean map be
biased while the sampled power spectrum be unbiased?
One way to understand this is to think of each sampled map
as sP ¼ ŝP;MAP þ s0. When we compute the power spec-
trum hjsPj2i, the hjs0j2i term exactly compensates for the
deficiency of the MAP spectrum. Alternatively, the sP’s are
normally distributed, and for any Gaussian distribution the

mean is equal to the maximum, so sP is the MAP solution.
However, the power spectrum is not normally distributed;
its expected value is an unbiased estimator of truth, and not
the biased MAP solution.
We continue with the numerical experiment above. This

time, we construct an HMC NUT sampler following the
prescription of Sec. II C, using Eq. (11) as our posterior
distribution. After the chain equilibrates, we draw 3000
sP’s from the posterior space. We confirm that the power
spectrum of the mean map exactly follows the MAP
solution for the case of fixed parameters (the green curve
in Fig. 2). We further show the distribution of the sampled
power spectra fCP

l;ig in Fig. 2 in shaded orange. Indeed, the
distribution of the spectra covers the truth power spectrum

within uncertainty, and CP is unbiased.
We note that similar phenomena have been observed in

previous studies. For example, in Fig. 8 of [26], the authors
find that the distribution of the sampled CMB spectra
scatter around truth while the spectrum of the mean map is
biased lower at small scales.
The above observations have the following implications.

One must debias the sampled maps before using them for
cosmological analysis, similar to how we currently correct
for MAP maps (e.g., with analytical or Monte Carlo-based
corrections). However, if we are only performing analysis
on the two-point level, the samples are unbiased and their
distribution constitutes a convenient measure of uncertainty.

FIG. 3. The scatter plot of the ratio between the real compo-
nents of the MAP alm and that of the truth alm as a function of l.
The cases for fixed and varying amplitude parameters are shown
in the upper and lower panels respectively. In each case, the mean
of the ratios (black curve) matches the Wiener filter expectations
(with the MAP amplitude in the case of varying amplitude). The
color map represents point cloud density.
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In short, by considering the sampled power spectra, we
recapture an unbiased estimator of CP .

2. Varying cosmological parameters

The exact two-point statistics recovery motivates us to
ask whether the sampled cosmological parameters that
modify the power spectrum are also unbiased. To answer
this question, we use the HMC NUT sampler from the
previous section with an additional A2 modulating the
fiducial spectrum. We assume A has a flat and wide prior
on [0.2, 10] and collect 3000 samples after appropriate
burn-in.
We find that A is unbiased with its marginal distribution

shown in Fig. 4. We can also estimate the variance of its
distribution, which is predicted by the inverse of the Fisher
information

F−1 ¼
X
l

2ð2lþ 1Þ
1þ ðCn;T =CPÞ2 ; ð18Þ

shown as shaded orange in the same figure.
Since the expectation of A is unbiased, it follows that

the posterior samples fCP
l;ig again scatter around truth

unbiased. In fact, their distribution overlaps that of the
fixed amplitude model almost exactly as shown in Fig. 2 in
shaded orange. Further, the power spectrum of the mean
map is also not the MAP anymore; it is the MAP solution
of the model with fixed cosmological parameter [Eq. (13)],
as if A is fixed to 1.

The important takeaway is the following. The MAP map
and the mean sampled map are biased both on the field
level and on the two-point level. However, the distribution
of the sampled power spectra (and cosmological parameters
that modulate them) is unbiased.

IV. JOINT RECONSTRUCTION OF THE
PRIMORDIAL CMB AND THE ISW EFFECT

Now, we expand on the CMB model and consider
extracting the primordial and the ISW contributions from
a single noisy temperature measurement. As we shall see,
the MAP estimators for both signals are again biased on
the field and the two-point level. The sampled fields have
a multiplicative bias but their two-point statistics are
unbiased. The new challenge in this case study is the
field-level degeneracy between the primordial and the
ISW maps, which motivates the multiprobe approach
presented in the next section [14]. We discuss the key
properties of this degeneracy, which we expect to be quite
general when one separates a low SNR map from a
measurement based on a likelihood approach.

A. The ISW effect

In the late universe, the primordial CMB fluctuations are
modified by the ISW effect on very large scales [39–43]. A
photon is blue-shifted when descending a gravitational
potential well and red-shifted when it escapes. When the
universe began its accelerated expansion (in the dark
energy-dominated era), the large-scale potential wells
decayed. As a result, a photon will leave the decaying well
(barrier) with more (less) energy than it enters. The observed
ISW temperature modification is thus the integrated effect
of the decaying potential well along the line of sight, and its
2-dimensional field is given by [44,45]

AIðnÞ ¼
Z

∞

0

∂Φðx½χ;n�; tðχÞÞ
∂t

2e−τðχÞ

1þ zðχÞ dχ: ð19Þ

Here, τðχÞ is the optical depth out to distance χ and Φ is the
3-dimensional gravitational potential field, which ultimately
depends on the matter overdensities δmðx½χ;n�; tðχÞÞ. By
rewritingΦ in terms of δm, and moving to the Fourier space,
we can rewrite Eq. (19) as

aIlm ¼ 4πil
Z

d3k
ð2πÞ3 I

I
l ðkÞY�

lmðkÞδmðk; t0Þ; ð20Þ

where

IIl ðkÞ ¼
Z

dχDðχÞWIðk; χÞjlðkχÞ ð21Þ

and the window function is given by

FIG. 4. The posterior distribution of the amplitude A (blue
curve) compared to truth (black dashed line). The shaded orange
area represents the Fisher forecast of the 1σ uncertainty centered
on truth, and the shaded blue area represents the 1σ uncertainty
reported by the sampler. The red line shows the MAP value for A,
which is quite far from truth.
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WIðk; χÞ ¼ −Θðχ� − χÞ 3ΩmH2
0

k2
∂ lnðð1þ zÞDðzÞÞ

∂t
; ð22Þ

where DðzÞ is the growth function normalized to unity at
z ¼ 0 and we approximate τ as zero through the epoch that
the ISW is generated.
The forms of Eqs. (20)–(22) are not peculiar to the ISW

effect—by modifying the window function Wðχ; kÞ appro-
priately, the 2-dimensional observable of most tracers can
be computed as a line-of-sight integral of δm. For general
tracers, A and B, of this form, the covariance is

CA;B
l ¼ 2

π

Z
∞

0

k2dkPðkÞIAl ðkÞIBl ðkÞ: ð23Þ

One way of quantifying the correlation between different
probes is to compute the scale-dependent correlation
coefficients, defined as

ρAB ¼ CABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAACBB

p : ð24Þ

We again assume both fields are statistically homo-
geneous and isotropic, so the covariance is diagonal in the
alm basis. For example, the primordial CMB and the ISW
effect are spatially independent (CI ;P ¼ 0), and their
autopower spectra are shown in Fig. 5 (CI ;P ¼ 0). The
ISW signal is primarily confined to the very large scales
(l < 10) that enter the horizon during the dark energy-
dominated era. The ISW signal is also subdominant to the
primordial signal on all scales, making it particularly
challenging to reconstruct. We explore the case of non-
diagonal covariance in Sec. V in the context of multiprobe
joint reconstruction.

B. Separating the primordial and ISW signals

The observed temperature data dT ðnÞ is the sum of the
primordial field sPðnÞ, the ISW field sIðnÞ, and noise
nT ðnÞ, so the posterior distribution

lnpðsP; sI ;AP;AIjdT Þ

∝
X
lm

1

2
ðlogAP2CP

l þ logAI 2CI
l Þ

þ
X
lm

�jdTlm− sPlm− sIlmj2
2Cn;T

l

þ jsPlmj2
2AP2CP

l

þ jsIlmj2
2AI 2CI

l

�
: ð25Þ

We will refer to this model as the CMB-ISW model.
One crucial difference between the CMB and the

CMB-ISW model is that although both are constrained
by the same amount of data dT , the dimensionality of the
latter’s posterior space (sP and sI ) is (ignoring the
cosmological parameters) twice than that of the former’s
(only sP). In other words, if we have N independent modes
on the full sky, we are trying to constrain 2N parameters
with N data points in the CMB-ISW model. Hence, we
expect significant degeneracy in the inferred sP and sI

maps, and wewant to explore how this affects the MAP and
the sampling-based field-level reconstructions. We empha-
size that this problem will be quite common in any field-
level analysis where we wish to separate the different
physical components of a single observed field.
We will again tackle this problem in two ways, first by

constructing the MAP estimators and then by sampling
directly from the posterior distribution.

1. Fixed cosmological parameters

Let us first fix AP ¼ AI ¼ 1 and seek the field-level
MAP solutions. When we are trying to find the MAP of sP ,
the effective noise is the sum of the instrumental noise and
the ISW temperature fluctuation (and analogously for sI ).
Thus, invoking the Wiener filter [Eq. (12)],

ŝP;MAP
lm ¼ CP

l

CP
l þ Cn;T þ CI d

T
lm; ð26Þ

ŝI ;MAP
lm ¼ CI

l

CI
l þ Cn;T þ CP dTlm; ð27Þ

and similarly for their power spectra.
As in Sec. III, we simulate this reconstruction method

numerically by generating sP and sI with fiducial cosmol-
ogy a HEALPix grid of NSIDE ¼ 32 with VarðnT Þ ¼
200 μK2. In the top panels of Fig. 6, the truth power spectra
are shown in black, the MAP power spectra in green, and the
effective noise in purple. The primordial MAP spectrum is
biased low both on large scales (ISW contamination) and
small scales (noise contamination). The ISWMAP spectrum

FIG. 5. The power spectra of the primordial CMB and the ISW
effect on large scales (low-l modes).
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is significantly biased low on all scales due to the same
Wiener filter suppression.
On the field level, we again expect (and indeed observe)

no additive bias but a multiplicative bias on the
hŝMAP

lm =slmi proportional to the Wiener filter factor (for
both the real and the imaginary components). The case for
the ISW field is particularly egregious, as shown in the top
panel of Fig. 7 (note that the y-axis does not even contain
the unbiased case).
Now we turn to the reconstructed real space maps (rows

1–3 of Fig. 8) which shed more light onto the degeneracy
between the reconstructed sP and sI . Qualitatively, the
primordial MAP map captures most features of the true
signal, although the small-scale structures are suppressed
due to Wiener filtering. However, the MAP estimator
completely fails in the ISW reconstruction. In fact, the
ŝI ;MAP map looks like a low-pass filtered sP map.

The physical explanation is that, when we observe a
large-scale hot spot in the sky, it is impossible to confidently
associate it with either the primordial CMB or the ISW
effect since they both have high amplitudes at low l’s.
However, when we optimize the posterior function with
respect to sI , the algorithm neglects the sP [Eq. (27)]. Thus,
the algorithm inclines to increase the amplitude of the sI

map wherever we observe a large-scale hot spot in dT , even
though it is most likely due to sP since it has a greater power
spectrum. As a result, the large-scale hot spots of the
reconstructed sI are heavily correlated with sP , even though
they are spatially independent in theory. An analogous bias
can be said for the reconstructed primordial map, i.e., the
reconstructed primordial map is biased high where there is
an ISW hot spot (although it is slightly more difficult to
discern in the figure). In short, as we attempt to reconstruct
two maps from a single observation using the MAP

FIG. 6. The recovered primordial (sP) and ISW (sI ) spectra using the various models in Sec. IV B. The simulation is drawn from the
fiducial cosmology and a noise variance of 200 μK2. The top and bottom panels show the case of fixed and free amplitude respectively,
and the left and right panels show the primordial and the ISW results, respectively. For each case, the truth spectrum is shown in black,
the MAP result is shown in green, and the 1σ credible interval of the sampled spectra is shown in shaded orange. The effective noise of
the primordial maps isCI þ Cn;T shown in purple. The effective noise of the ISWmap (CP þ Cn;T ) is above the ISW spectra in the right
panels on all scales and hence not shown in the plot. Notice that in the case of free amplitude, the MAP solution is different from the
Cl of the sampled maps (red).
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estimator, the degeneracy introduces significant bias on the
field level that correlates with the two reconstructed maps.
Now, we apply the sampler, as defined in Sec. II C, with

sP , sI as the free parameters. The two-point result is shown
in the top panels of Fig. 6 in orange, where we observe that
the spectra samples scatter around the truth unbiased, and
the spectrum of the mean sampled map is equivalent to the
MAP spectrum. The sampling result on the field level is
shown in rows 1–3 of Fig. 8. Here we confirm that the mean
sampled map is indeed the field-level MAP solution, and
thus suffers from the same bias and degeneracy. Therefore,
although the sampling approach solves the multiplicative
bias on the two-point level, it is placing the right amount of
power in the wrong place at the map level.

2. Varying cosmological parameters

We now vary the two amplitude parameters (AP and AI )
in Eq. (25) and attempt to reconstruct them together with
the map pixels. The MAP solutions for ŝP;MAP and ŝI ;MAP

are analagous to Eqs. (26) and (27), but with the signal
power spectra multiplied by their MAP amplitudes squared,
which satisfy

X
l

ð2lþ 1Þ
(
1 −

ðÂPMAPÞ2DlC
P
l

Q2
l

)
; ð28Þ

X
l

ð2lþ 1Þ
(
1 −

ðÂIMAPÞ2DlC
P
l

Q2
l

)
; ð29Þ

where

Ql ¼ ðÂPMAPÞ2CP
l þ ðÂIMAPÞ2CI

l þ Cn;T
l : ð30Þ

We apply this MAP estimator to the numerical experi-
ment for the CMB-ISWmodel discussed above. The biased
two-point results are shown in the bottom panels of Fig. 6
in green. In the case of the ISW reconstruction, the effective
noise is so large that the slope of the posterior distribution
with respect to the amplitude [Eq. (29)] never achieves 0.
This results in AI and hence the MAP spectrum being set to
0, which we confirm using direct numerical optimization.
This effect is also shown in the bottom panel of Fig. 7
where we plot the ratio between the MAP and truth pixel
values in harmonic space.
We also construct and apply an HMC-NUT sampler

similar to the previous section but with the additional
amplitude dependence. The sampled spectra and the
spectrum of the mean map are shown in Fig. 6 in shaded
orange and in red respectively. Similar to the CMB model,
the sampled spectra are unbiased. This is also confirmed by
the parameter constraint as shown in Fig. 9, where we see a
2.9σ detection of the ISW amplitude. Meanwhile, as the
amplitudes are now free, the spectrum of the mean map is
still biased, but to lesser degrees than the MAP solution.
This is consistent with the field-level results (rows 4–5 of

Fig. 8). Here, for the ISW tracer, the MAP map is
essentially constant spatially, whereas the mean map still
contains the right amount of power but has placed it all in
the wrong place (as in the case of fixed amplitude).

V. JOINT RECONSTRUCTION OF THE CMB, ISW,
AND THE GALAXY DENSITY MAPS

We now present the main analysis, where we generalize
the framework to jointly analyze data from CMB and wide-
field galaxy surveys on the field level. The main goal is the
following. Given an observed temperature map and six
tomographic galaxy density maps, we want to construct
estimates of the primordial (sP), the ISW (sI ), and the
galaxy density (fsG;ig) maps, along with two-point and
cosmological parameter constraints, all in a consistent and
computationally efficient Bayesian framework.
From now on, we will only consider the sampling

approach. The addition of galaxy maps introduces off-
diagonal terms in the covariance of the posterior distribu-
tion, as in Eq. (9). As we shall see, following the algorithmic
prescription in Sec. II C, we can break the degeneracy
between the primordial and the ISW maps using additional
maps of the galaxy density.

A. Theoretical covariance

Equation (23) gives the general expression for the
theoretical covariance of 2-dimensional tracer fields. In
the case of CMB-ISW model, hsPsIi ¼ 0. Now, we

FIG. 7. The scatter plot of the ratio between the MAP and the
truth alm’s real components. The upper panel shows the case with
fixed amplitude and the bottom shows the case with free
amplitude. In the case of the fixed amplitude, the mean of the
ratios is again the Wiener filter factor (black). In the case of free
amplitude, the MAP solution has a null spectrum. Thus the ratios
scatter around 0 for all scales.
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introduce tomographic galaxy tracers, which correlate with
the ISW effect (but not the primordial CMB) through their
common dependence on the matter density field. This
correlation will show up as of-diagonal terms in their
covariance matrix, as indicated explicitly in Eq. (9).
Let NiðχÞ be the normalized line of sight galaxy density

distribution for the redshift bin i, then the galaxy clustering
window function that goes into Eq. (21) is given by

Wg;iðχÞ ¼ biNiðχÞ; ð31Þ

where bi is the linear galaxy bias that connects the matter
power spectrum and the galaxy number density power
spectrum. Throughout this study, we will treat each bi as a
scale-independent parameter with a fiducial value of 1.
For wide-field photometric surveys, the galaxy redshift

distribution Ni varies widely between experiments and
catalogs. We consider the MagLim sample from DES
Year3 [46,47] as an example; projected distributions for
LSST can be found in [48]. The MagLim catalog consists

FIG. 9. The posterior distribution of the primordial and ISW
amplitudes with parameter bounds. The data strongly constrain
the sum of the two amplitudes (a fact not obvious here because
the x-range is so much smaller than the y-range), but the sampling
technique manages to correctly infer the values of both.

FIG. 8. Comparison between the observed data (row 1), truth maps, MAP maps, and the mean sampled maps. Rows 2–3 show the
model with fixed amplitude, while rows 4–5 show the model of free amplitude. The color bar is shared across each row. Note that in the
case of fixed amplitude, the mean sampled map is equal to the MAP map (second and third columns in the second and third rows), while
when the amplitude is varied, the two diverge (same columns in the fourth and last row, but most obvious in the ISW maps in the last
row) since the posterior marginalized over the amplitude is no longer a simple Gaussian in the signals.
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of 6 redshift bins spanning a redshift range of 0 to 1.2,
calibrated using the self-organizing map methods
(SOMPZ) and clustering redshifts. The catalog has been
extensively tested on simulations and was used by the DES
collaboration for the fiducial DES Year3 cosmology
analysis [7,47,49]. For each redshift bin, we model
NiðzÞ using the center (zc) and width (zw) of the distri-
bution, following the functional form

logNiðzÞ ∝ −
1

2

�
z − zci
zwi

�
2

: ð32Þ

We also used the number density (Σi) of the MagLim
catalog for our simulations but assumed full-sky coverage
instead of the DES footprint. We tabulate the binned zc, zw,
and Σ in Table I and plot the normalized redshift distri-
bution in Fig. 10.

Using the window function in Eq. (31), the covariance
and the correlation coefficients between the ISW effect and
the galaxy density can be computed using Eq. (23) and (24)
(recall that primordial CMB is independent of the other
tracers). The correlation coefficients are shown in the lower
left corner of Fig. 11 in blue. This correlation is the
information we hope to leverage to break the degeneracy
between the primordial and the ISW maps. The bottom-left
panel demonstrates that the ISW effect is most strongly
correlated with the galaxy maps on large scales at low
redshift.

B. Cosmological parameters

Let CP , CI , and CG;i be the fiducial power spectra of
the primordial, ISW, and the galaxy fields. Similar to the
CMB-ISW model, we introduce an amplitude parameter
for each tracer

CP → ðAPÞ2CP;

CI → ðAIÞ2CI : ð33Þ

Equation (33) encodes a powerful stress test of ΛCDM.
Consider the fiducial growth function DðzÞ. If the truth
cosmology deviates from ΛCDM, then the actual growth
function will be AðzÞDðzÞ, where AðzÞ is some redshift-
dependent factor. Thus, we can interpret AI as an integral of
AðzÞ over the ISW window function. Then, any detection of
AI ≠ 1 implies a deviation from the ΛCDM model. The
ISW window function is rather wide.
The tomographic galaxy density window function is

much narrower. Therefore, multiplying each binned galaxy
spectrum by an amplitude factor AG;i would inform us of
the consistency of ΛCDM at each redshift slice. This would
be, and ultimately will be, a much more strenuous test of
the ΛCDM model. Unfortunately, since we consider here
only galaxy maps, AG;i’s are entirely degenerate with the
bi’s in Eq. (31). So in this study, we will set AG;i ¼ 1. In
future works, one could jointly analyze galaxy and shear
maps to break this degeneracy and directly constrain the
amplitude of the growth function in relatively narrow
redshift intervals.

C. Noise model and simulation

Since we are mostly interested in extracting the large-
scale ISW signal, we again perform the simulation on a
HEALPix grid of NSIDE ¼ 32. We generate the temper-
ature and galaxy tracers using the full covariance as
described in Sec. VA. For the observed temperature
map, we inject white noise with a variance of 200 μK2.
For the tomographic galaxy maps, we assume a noise
spectrum of

Cn;G;iðlÞ ¼ π2

1802Σi
; ð34Þ

where Σi is the number density of bin i per square degrees.
The realized spectra (black) and the modeled noise spectra
(purple) are shown in Fig. 12 (for the primordial and the
ISW signals) and the upper right panels of Fig. 11 (for the
ISW and the galaxy signals).

D. Posterior modeling and sampling

The observables are

dT ¼ sP þ sI þ nT ; ð35Þ

TABLE I. The redshift parameters.

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6

zc 0.30 0.47 0.62 0.78 0.90 1.00
zw 0.10 0.07 0.07 0.07 0.05 0.05
Σ ½deg−2� 447.29 319.90 325.48 435.04 316.74 298.85

FIG. 10. The galaxy number densities for each redshift bin as a
function of redshift z. NiðzÞ is qualitatively modeled on the DES
Year 3 MagLim sample.
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dG;i ¼ sG;i þ nG;i: ð36Þ

Therefore, the inference problem is specified by the posterior distribution

pðsP; fsGi g; sI ; AP ; AI ; fbigjdT ; fdG;igÞ ∝
 
det
�
Cn;T

Y6
i¼1

Cn;G;i

�
det½Clðb1;…; b6; AI ; APÞ�

!−1
2

×exp
X
lm

−jdTlm − sPlm − sIlmj2
2Cn;T

l

exp
X6
i¼1

X
lm

−jdG;ilm − sGlm;ij2
2Cn;G;i

l

exp
X
lm

−jfsGlm;1;…; sGlm;6; s
I
lm; s

P
lmgj2

2Clðb1;…; b6; AI ; APÞ ; ð37Þ

where Cl is given in Eq. (9) and the notation jxj2=C represents the quadratic form xTC−1x

FIG. 11. The correlation structure between different tracers and the sampler results. The lower-left portion shows the correlation
coefficients (blue) between the ISWand the 6 DES Year3 MagLim -like galaxy tracers from different redshift bins. The primordial field
is not shown here since it is independent of all late-time tracers. One crucial observation is that (lowest-left panel) the ISW effect
correlates most strongly with the low redshift galaxy density maps, since only at late times did dark energy significantly drive the
accelerated cosmic expansion. The upper right corner shows the distribution of power spectra sampled from the joint posterior Eq. (37)
compared to the true power spectra. The input galaxy and ISW signals are shown in black while the distribution of the posterior samples
is shown in orange. The diagonal subplots also contain the noise (auto)spectra. Note that the galaxy autospectrum is unitless since the
galaxy redshift distribution is normalized. The ISW autospectrum has the unit of μK2. Because of the different numeric scales, the
galaxy-ISW cross-spectra and the ISW autospectrum are broken off into their own column with independent y-axis limits.
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The first determinant terms encode the noise covariance,
which is fixed in our example. The Cl determinant encodes
the posterior’s dependence on the tracer amplitudes. The
first two exponential terms come from the likelihood of
the temperature and the galaxy maps. The last exponential
term is the Gaussian priors on the signals, including the
off-diagonal covariance matrix from Eq. (9). Not shown
here is that all the free amplitudes have flat priors in the
interval [0.2, 3].
The structure of the sampler is much the same as in the

CMB and the CMB-ISW models, following the prescrip-
tion of Sec. II C. Notice that since now the covariance
Clðb1;…; b6; AI ; APÞ is nondiagonal and extremely high
dimensional, we have to employ the block diagonal
Cholesky decomposition method introduced in Sec. II C
to make the sampler computationally feasible.
Despite the high dimensionality of the problem, we find

that the chain equilibrates quickly (more details are given in
Appendix C). In general, the amplitude parameters have a
much longer correlation length than latent map parameters
during the sampling phase. Among the amplitude param-
eters, the ISW amplitude has a much longer correlation
length of 102 samples. Overall, the sampler is very fast. The
entire analysis took less than 10 hours on a single Apple
M1 CPU.

E. Results

For each iteration of the sampler after burn-in, we collect
a set of maps and parameters

fsi;Aig ¼ fsPlm;i; s
I
lm;i; fsGlm;kgi; AP; AI ; fbkgig ð38Þ

for k ¼ 1;…; 6 labeled by a common sample index i.
The collection fsig forms the set of posterior samples
which we will now analyze. We will present our findings in
three parts; cosmological parameter constraints, power
spectra reconstruction, and field-level reconstruction. The
final results for this joint analysis are shown in Figs. 11–13.

1. Cosmological parameter constraints

The constraints on the two temperature tracer amplitudes
and the six galaxy biases are shown in Fig. 13 and
summarized in Table II. All 8 parameters are unbiased
within 2σ. Consistent with our previous findings, the best-
constrained parameters are the primordial amplitude and the
tomographic galaxy biases which all have small effective
noise. For these parameters, we achieve percent-level
constraints assuming our very simple problem setups. We
find that AI is also unbiased and constrained to around 15%
(or a 6.9σ detection), improving dramatically compared to
the ∼40% constraint (or 2.9σ detection) in the absence of
galaxy data.

2. Power spectra constraints

Besides obtaining the correct overall power spectra
amplitudes, we show that the reconstructed power spectra
are unbiased for all tracers for all scales. The results for the
primordial CMB and the ISW effect are shown in Fig. 12,
where the sampling result is shown in shaded orange and
the truth is shown in black. For ISW, we further observe
that the uncertainty of the power spectrum estimation also
shrinks considerably around the truth compared to the
CMB-ISWmodel. This gain in SNR is directly attributed to
the new information from the galaxy tracer fields.

FIG. 12. The recovered sP and sI spectra using the joint reconstruction technique described in Sec. V. For each case, the truth
spectrum is shown in black, the 1σ credible interval of the sampled spectra is shown in shaded orange, and the spectrum of the mean map
is shown in red. The effective noise of the primordial maps is CI þ Cn;T shown in purple. The effective noise of the CMB map
(CP þ Cn;T ) is above the ISW spectra on all scales and hence not shown in the plot. Notice that both tracers are reconstructed with much
higher SNR comparing to the CMB-ISW model.
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The sampling result for the ISW and the galaxy tracers
(all the tracers that are correlated with each other) are
shown in the upper right panels of Fig. 11 in orange. Here
we see that the method has captured all the auto and cross-
spectra of the tracer fields. The galaxy power spectra are
especially well-reconstructed, in part due to their intrinsic
high SNR observations.

3. Field-level reconstruction

The CMB-ISW-galaxy model reconstructs tracer maps at
higher SNR than previous models. The result for the

temperature tracers is shown in Fig. 14. Comparing to
the CMB-ISW model (Fig. 8), we see a dramatic improve-
ment in the reconstruction accuracy. Under the multiprobe
joint reconstruction framework, the field-level information
in the galaxy maps funnels into the temperature map-
making process and efficiently breaks the degeneracy
between the primordial and the ISW field. Most notably,
although the ISW signal is by far noise dominated on all
scales, the mean sampled ISW field is now actually tracing
the structures of the true ISW field and decorrelated with
the true primordial field. The primordial reconstruction also

FIG. 13. The posterior distribution of the amplitudes AP and AI and the six galaxy biases bi’s. The 2-dimensional contours label the
0.68 and 0.95 credible intervals. The KDE-smoothed histograms above the contours are the parameters’ marginal distributions, where
the shaded intervals represent the 0.16 and 0.84 quantiles. The truth values are indicated by dashed black lines.
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receives the same benefit, as the residual error of its
reconstruction is visibly less correlated with the true
ISW field, compared to the CMB-ISW model.
The final result also includes samples of denoised

tomographic galaxy maps as shown in Fig. 15. In theory,
the cross-correlation with the ISW component of the
temperature map can boost the SNR of the reconstructed
galaxy maps as well. However, since the observed galaxy
maps are already high in SNR and the degrees of freedom
in the galaxy maps by far overwhelm that of the temper-
ature tracers, their improvement is negligible.

VI. CONCLUSIONS

We have implemented a general hierarchical Bayesian
framework that employs HMC to sample directly from the

joint posterior of the field-level multiprobe model. We did
this in a pristine framework; simulated all-sky maps with
simple noise properties. One goal of this is to understand
the advantages and limitations of field-level analyses, prior
to including more realistic effects. The other is more
specific—to assess how accurately surveys can measure
the ISW amplitude.
We particularly focused on comparing two approaches:

maximum a posteriori (MAP) and sampling. This enabled
us to demonstrate both the well-known bias of the MAP
two-point estimator [37] (e.g., the lower jagged curves in
Fig. 2) and the multiplicative bias of the field-level values
(Fig. 3). These MAP biases persist as we added more
complexity to the data vector and the contributing signals.
The sampling approach is also biased at the field level
(although, in general to a lesser extent) but is unbiased for
power spectra and cosmological parameter constraints, as
illustrated in Figs. 4, 9, and 13. This suggests that the
Bayesian posterior sampler produces unbiased cosmologi-
cal parameters when multiple surveys are analyzed jointly.
Given the potential biases involved in map making and then
cross-correlating, this seems to us to provide an excellent
justification for the use of field-level analyses moving
forward.
Our results addressing the second goal can be expressed

in a single number. Using only CMB data, the amplitude of
the ISW signal can be extracted from the CMB only with
little power, perhaps at the 2–3σ level. However, when
galaxy survey data is added, we project a 6.9σ detection.
Before exploring the limitations of this projection, it is
worth emphasizing that the long-term goal is to stress test
ΛCDM, and this method provides a test at the 10–15%

FIG. 14. Comparison between the observed temperature (row 1), the primordial CMB maps (row 2), and the ISW maps (row 3). For
both the primordial CMB and the ISWmaps, we compare the truth, the mean sampled, and the difference maps obtained from the CMB-
ISW-galaxy model with free cosmological parameters.

TABLE II. The cosmological parameter constraints given by
the CMB-ISW-galaxy model. Here AP and AI are the amplitudes
of the primordial and the ISW power spectra and bi are the
tomographic galaxy biases.

Parameter Constraint

AP 1.0029þ0.0085
−0.0089

AI 1.03þ0.17
−0.15

b1 1.0000þ0.0070
−0.0084

b2 0.9882þ0.0083
−0.0080

b3 1.0068þ0.0081
−0.0082

b4 0.9900þ0.0083
−0.0074

b5 1.0052þ0.0081
−0.0079

b6 1.0060þ0.0080
−0.0094
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level. However, this is but one of a slew of amplitudes that
can be measured with upcoming data so we are optimistic
about this general idea of constraining amplitudes of large-
scale power spectra as a powerful way of testing the fiducial
cosmological model.
Back to the limitations of our analysis; assuming full-sky

slightly overstates the capability of the CMB, which is
masked in the Galactic plane and overstates by at least a
factor of two the coverage of, e.g., LSST. Statistically, then,
one might reasonably inflate our projections by

ffiffiffi
2

p
.

However, there are a number of signals that we did not
include: galaxy shapes and CMB lensing [25–27]. The
kernels for both of these—especially the former—overlap
significantly with that of ISW, so we expect that including
them will quite likely recover this factor of

ffiffiffi
2

p
. By adding

these observables into the analysis, we could construct
tomographic (convolved with different, albeit overlapping,
kernels) maps of the matter density in a consistent Bayesian
framework.
However, before turning to real data, we must relax the

simplifications of our simulations, so we spend the rest of
this conclusion alerting ourselves and our readers to those
hurdles.

A. General cosmological parameters

There is no conceptual barrier to including cosmological
parameters that modify the shape of the cross-spectra (in
contrast to A and b which modulate only their amplitudes).
The main challenge is that we must specify the derivatives
of the posterior distributions with respect to each of the
cosmological parameters in a computationally efficient
fashion (e.g., finite difference methods will be too ineffi-
cient in an inference algorithm of this scale). The process of
differentiating through the Boltzmann code and the Limber
approximation computation is especially difficult. We see a
few ways for future projects to tackle this issue:

(i) Use automatic differentiation to take gradients
through the cosmological dependence [50].

(ii) Use simple fitting functions (e.g., [51]) where the
analytical derivatives are easily attainable.

(iii) Train a neural network-based cosmological emulator
where the network is by definition differentia-
ble [52,53].

(iv) Exclude cosmological parameters from the HMC
sampling altogether. Instead, we can sample the
cosmological parameters and the maps iteratively in
the Gibbs sampling paradigm [12,27,54].

B. Masking, anisotropic noise, and other
systematic effects

The likelihood model we used in this study is very
simple. We considered only the case of signal reconstruction
on the full sky with isotropic noise and no masking. In order
to adapt this algorithm for real-data analysis, we must take
into account the limitation of survey geometry for both
experiments, as well as foreground and point source masks.
Further, the noise in real data will often be anisotropic and
often a parametric function of a set of systematics spatial
templates. Both the masking and the anisotropic noise
models will introduce off-diagonal terms in the covariance
matrix computation in Fourier space. Thus, a computation-
ally efficient solution is to still sample the full sky,
unmasked, and noiseless maps in Fourier space, transform
the maps into real space, and define the likelihood there.
Once in real space, we can implement different anisotropic
and parametric noise models, and even attempt to constrain
nuisance noise model parameters during sampling as well.
Systematic effects such as foregrounds and survey

properties can be handled in the general framework of this
field-level analysis. In particular, the signal vector can be
expanded to include these. This one-step approach—as
opposed to the current treatments—may be necessary
for future surveys with increased statistical precision.

FIG. 15. Map-level reconstruction of the galaxy fields. Here we only show the first and the last redshift bins, the results for other bins
are similar. Unit is in dimensionless overdensity. Note that although the two redshift bins have the same map resolution, the pixel scale of
the lower redshift bin corresponds to smaller physical scale. Thus, the lower redshift bin has higher map-level variance, as expected.
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One simple way to understand why this may be needed is
that a sample of cosmological parameters that predicts large
clustering is more likely to label an ambiguous object a
galaxy (rather than a star) if it is near another galaxy. Other
systematics—such as photometric redshift uncertainty—
can be included by introducing nuisance parameters.

C. Smaller scales

We have included only large scales here, and there is a
huge advantage to doing so, in that the prior distributions of
the signals is known to be Gaussian. There is a huge
disadvantage to throwing out all the information available
on small scales. Including small scales in the posterior
requires a knowledge of the prior distribution of the signal,
a distribution that is less and less Gaussian as we push to
smaller scales. There are two possible approaches to this:
(i) assume a simple distribution (e.g., Gaussian or log-
normal [52]) and investigate the potential biases by running
the pipeline on simulations; and (ii) the ambitious approach
of rolling the clock back and using the primordial fields as
the parameters given the observed highly processed fields
(e.g., [55,56]).
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APPENDIX A: DISTRIBUTIONS OF INDIVIDUAL
MODES OF THE SAMPLED POWER SPECTRA

Here we present the marginal posterior distribution of C
for each individual lmode for the CMBmodel (CP , Fig. 16),
CMB-ISW model (CI , Fig. 17), and the CMB-ISW-galaxy
model (CI , Fig. 18).
Figures 16 and 17 demonstrate that the MAP power-

spectra amplitudes (vertical blue and orange lines) have
greater bias 1) at higher l-modes where the noise power is
larger 2) when the power-spectra amplitudes are set free.
Figures 17 and 18 show that, in the case of free amplitude
parameters, the quality of CI reconstruction (the width of
its marginal distribution) improves dramatically when one
introduces galaxy information.

APPENDIX B: MAP AND SAMPLER
ESTIMATORS

Our algorithm generates samples of the posterior. In the
text we made two claims about these samples (for the case

FIG. 16. The marginal distribution of CP of the posterior
samples for the CMB model (Sec. III). The case with fixed
fiducial power spectrum is shown in orange, and the case where
one admits a free amplitude is shown in blue. The vertical black
lines show the truth CP , while the colored vertical lines show the
MAP values for CP.

FIG. 17. The marginal distribution of CI of the posterior
samples for the CMB-ISW model (Sec. IV). The case with fixed
fiducial power spectrum is shown in orange, and the case where
one admits a free amplitude is shown in blue. The vertical black
lines show the truth CI , while the colored vertical lines show the
MAP values for CI.
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of fixed cosmological parameter): (i) the mean (two-point
and n-point) power spectrum of the samples is unbiased;
and (ii) in the single component case, the mean map is
equal to the MAP map. To demonstrate this, we let fsαlm;ig
be the set of maps that we have collected during sampling,
where i denotes the sample index and α denotes the type of
cosmological probe. Let N be the total number of samples.

1. Power spectrum

We first show that the mean sampled n-point power
spectrum estimator is unbiased. Let us consider the pixel
variance, which is the simplest two-point statistic. For a
fixed data set D, the mean pixel variance across all the
posterior samples is mean ðhs2iÞ. Here, s is the signal map
vector, hs2i denotes the average pixel variance of s, and the
“mean” operation is taken over all the posterior samples.
Using i as the index for the posterior samples,

meanðhs2iÞ ðB1Þ

¼ lim
N→∞

XN
i¼1

hs2i i
N

ðB2Þ

¼
Z

dsjs2jpðsjDÞ; ðB3Þ

where the short hand js2jmeans
P

α¼1;…;Npix
s2α=Npix with α

being the pixel index. Equation (B3) in general depends on
the dataD. Practically, this means that meanðhs2iÞ is biased

only in the sense that the observed data has intrinsic
randomness. If we proceed to integrate over the intrinsic
variance in the data, we have

Z
ds
Z

dDjs2jpðsjDÞpðDÞ ðB4Þ

¼
Z

dsjs2jpðsÞ ðB5Þ

¼ hs2i ðB6Þ

which is the true pixel variance the signal. This argument
works for the covariance between two different pixels, and
more generally, for the n-point correlation functions.

2. MAP estimator

We claim that the mean sampled map is the field-level
MAP solution, and the power spectrum of the mean map
is the MAP spectrum. Similar to the argument above, we
start with

hsi ¼
Z

ds spðsjDÞ; ðB7Þ

where pðsjDÞ is Gaussian. Since the mean of a Gaussian
distribution is also the point of maximum probability, hsi is
thus also the MAP estimator. More explicitly, by inde-
pendence between different l, m-modes, we can suppress
the l, m subscript on s and look at the term

meanðsiÞ × pðDÞ ðB8Þ

¼ lim
N→∞

XN
i¼1

si
N
× pðDÞ ðB9Þ

¼
Z

ds
s

2π
ffiffiffiffiffiffiffiffiffiffiffi
CnCs

p exp

�
−
ðD − sÞ2
2Cn −

s2

2Cs

�
ðB10Þ

¼ CsD
Cn þ Cs ×

exp ð− D2

2ðCnþCsÞÞ
ð2πðCn þ CsÞÞ1=2 ; ðB11Þ

which is the Wiener solution for s times the probability of
the data. Dividing by pðDÞ yields

hsi ¼ CsD
Cn þ Cs ðB12Þ

as desired. It follows that the power spectrum of the mean
map is the Wiener filter spectrum.
Interestingly, notice that the above arguments rests on the

symmetry of the Gaussian distribution. If we introduce an
additional amplitude parameter A, the distribution over A is

FIG. 18. The blue lines show the marginal distribution of CI of
the posterior samples for the CMB-ISW-galaxy model (Sec. V).
The black and the red dashed lines mark the truth value and the
mean of the sample distribution, respectively.

ALAN JUNZHE ZHOU and SCOTT DODELSON PHYS. REV. D 108, 083506 (2023)

083506-20



no longer Gaussian, and so the mean map is no longer the
MAP map solution (as discussed at length in the main text).

APPENDIX C: CHAIN CONVERGENCE

Here we present the chain convergence information of
the CMB-ISW-galaxy model, focusing on the eight cos-
mological parameters. The sampled parameter values as a

function of sample index is shown in Fig. 19, and the
corresponding autocorrelation functions are shown in
Fig. 20. In general, we observe that the map parameters
(not shown here) have much shorter correlation lengths
than the cosmological parameters. Among the cosmologi-
cal parameters, AP and bi have much shorter correlation
lengths compared to AI .

FIG. 20. The autocorrelation functions of the eight sampled cosmological parameters shown in Fig. 19.

FIG. 19. The chain convergence of the CMB-ISW-galaxy model for the 8 sampled cosmological parameters (the power spectra
amplitudes and galaxy biases). The left panels show the posterior distribution of each parameter after KDE smoothing. The right panels
show each parameter’s value as a function of sample index after 3000 warmup steps.
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