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ABSTRACT

The fiducial cosmological analyses of imaging surveys like DES typically probe the Universe at redshifts z < 1. We present the
selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering
measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian
redshift scheme to define three tomographic bins with mean redshifts around z ~ 0.9, 1.2, and 1.5, which extend the redshift cover-
age of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more
than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including
the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for
correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a
total signal to noise S/N ~ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in
the Universe Q,, and the Hubble parameter &, ,,h = 0.19570 13, and 2-3 per cent measurements of the amplitude of the galaxy
clustering signals, probing galaxy bias and the amplitude of matter fluctuations, bog. A companion paper (in preparation) will
present the cross-correlations of these high-z samples with cosmic microwave background lensing from Planck and South Pole
Telescope, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.

Key words: galaxies: high-redshift —cosmological parameters —large-scale structure of Universe.

cosmology and to stress test the standard cosmological model. In
recent years, several imaging surveys such as the Hyper Suprime-
The combination of large-scale structure (LSS) and weak gravita- Cam (HSC"), the Kilo-Degree Survey (KiDS?), and the Dark Energy
tional lensing (WL) constitutes one of the main avenues to study
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Survey (DES?), analysing data from more than 100 million galaxies,
have used galaxy weak lensing to produce cosmological constraints
that rival in precision those from cosmic microwave background
(CMB) experiments like Planck (see Hikage et al. 2019; Heymans
et al. 2021; DES Collaboration 2022; and references therein). These
analyses have reported tensions between the amplitude of structures
at late time and the predictions from the CMB (the so-called Sg
tension). However, the majority of these analyses probe the Universe
at low redshifts, z < 1. There exist at least three reasons for this.
First, due to the faint nature of high-redshift galaxies, it is difficult
for imaging surveys to characterize such populations, both in terms
of redshift distributions and also in terms of mapping the effect
of spatially varying observing conditions on the selection function.
Secondly, it is challenging to measure shapes of high-redshift sources
for galaxy lensing at sufficient signal to noise. And third, even if those
galaxy sources could be defined, their lensing signals are still most
sensitive to mass structure at z < 1. On the other hand, if one can
get around the first of these issues and characterize high-redshift lens
galaxy samples, then the use of CMB lensing will provide a solution
for the second and third problems.

The definition and characterization of galaxy samples at higher
redshifts would enable a more optimal combination with CMB
lensing, whose sensitivity peaks around z = 2 and drops significantly
at redshifts z < 1. In this way, a combination of galaxy clustering and
CMB lensing at high redshift would be key to cosmology in several
ways. On the one hand, the regime at redshifts z > 1.5 remains largely
unexplored by galaxy surveys in the context of the Sg tension, and
various alternative dark energy models predict deviations from the
standard model at high redshifts (Bull, White & Slosar 2021), which
could be tested in this way. On the other hand, being able to make this
measurement is important to constrain large-scale observables like
primordial non-Gaussianity, which would open the window to the
physics of the early inflationary period sourcing the LSSs we see in
the Universe today (Schmittfull & Seljak 2018). Furthermore, CMB
lensing is subject to different systematic errors than galaxy lensing
— the former measurement is not affected by intrinsic alignments
or galaxy blending, and the redshift of the CMB is well known as
opposed to the case of galaxy sources.

There exist numerous previous analyses that have explored the
combination of galaxy clustering and CMB lensing to probe cos-
mology at redshifts z < 1 (Abbott et al. 2019; Marques & Bernui
2020; Alonso et al. 2021; Hang et al. 2021; Chang et al. 2023).
Some analyses have also used the combination to probe cosmology
at higher redshifts. In particular, the analysis of the unWISE sample
(Schlafly, Meisner & Green 2019; Krolewski et al. 2020; Krolewski,
Ferraro & White 2021) provided such measurements in three broad
redshift bins, the last one with a median redshift around z = 1.5.
Also, the HSC survey has explored much higher redshift regimes
using dropout galaxies over smaller areas (Harikane et al. 2018; Ono
et al. 2018), probing the Universe at the 4 < z < 7 regime (Miyatake
et al. 2022).

For the particular case of the DES, the analysis of Year 3 (Y3)
data has so far used two different lens galaxy samples, MAGLIM
and REDMAGIC (Porredon et al. 2022; DES Collaboration 2022;
Pandey et al. 2022). The MAGLIM sample is a magnitude-limited
galaxy selection, split into six redshift bins using the Directional
Neighbourhood Fitting algorithm (De Vicente, Sdnchez & Sevilla-
Noarbe 2016), and the first four bins of the sample, covering an
approximate redshift range 0 < z < 1, were used as the fiducial lens
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sample in the Dark Energy Survey Year 3 (DES Y3) analysis. The
REDMAGIC (Rozo et al. 2016) is a sample of bright Luminous Red
Galaxies (LRGs), covering a similar redshift range in five redshift
bins, and was used in Y3 as an alternative lens sample.

In this work, we push the limits of the DES Y3 data to explore
the regime at redshift z > 1. To this end, we select and characterize
‘high-redshift’ (high-z) samples of galaxies in the DES wide-field
survey. This includes the estimation of the redshift distributions
of the samples and their uncertainties, corrections for variations in
completeness across the survey footprint due to varying observing
conditions, and characterization of the lens magnification coefficients
of the samples. The definition and characterization of these high-z
samples differs from the process used for the fiducial DES Y3 lens
samples (Porredon et al. 2022; Pandey et al. 2022) in several ways:

(i) We start from a fainter galaxy selection, already excluding all
lens galaxies used in the DES Y3 fiducial analysis.

(ii) Both the selection and redshift characterization of the sam-
ples are based on a Bayesian scheme using Self-Organizing Maps
(SOMs), and we use a new SOM algorithm, better suited for lower
S/N galaxies (different than that used in Myles et al. 2021).

(iii) We use a different redshift marginalization scheme, explicitly
accounting for uncertainties in low-redshift tails of the redshift
distributions.

(iv) We use a non-linear, machine-learning-based approach to
account for correlations in the galaxy number density with survey
observing properties.

Steps (i) and (ii) are the ones responsible for the selection of high-
redshift galaxies, while steps (iii) and (iv) are necessary because of
that faint, high-redshift selection. The definition and characterization
of the high-z sample in this work is followed by the analysis of the
clustering measurements of the galaxies in the sample. The clustering
measurements are used to place constraints on the cosmological
model, in particular as the shape of the clustering signal is sensitive
to the scale of matter—radiation equality in the mass power spectrum,
which in turn depends on a combination of the matter density 2,
and the Hubble constant &, close to the direction .,/ (see e.g.
Philcox et al. 2021). The high-z samples defined in this work,
given their redshift range and sky density, will make excellent lens
galaxy samples for CMB lensing. In this way, this paper will be
followed by a companion paper (in preparation) that will present the
cross-correlations between these high-z samples and CMB lensing
from Planck (Planck Collaboration VIII 2020) and the South Pole
Telescope (SPT; Carlstrom et al. 2011), and use the combination of
clustering and CMB lensing to place constraints on the cosmological
model using information from high redshift.

This paper is organized as follows. Section 2 describes the
different data products used for the analysis. Section 3 describes
the redshift inference scheme and the method to select tomographic
bins. Section 4 describes the way we correct for correlations between
galaxy density and survey observing properties. Section 5 presents
the characterization of redshift uncertainties, and the parametrization
we use to marginalize over them in the clustering analysis. Section 6
describes the characterization of lens magnification for the high-z
samples. Finally, Section 7 presents the measurements and analysis
of galaxy clustering, and we conclude in Section 8.

2 DATA

In this section, we describe and motivate the different data samples
to be used in this work. We begin with the DES Y3 wide-field data,
which will contain our high-z samples, and then describe other data
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sets needed for the characterization of those samples: the DES deep-
field data, and the external data used for redshift characterization.

2.1 DES wide-field data

The high-z samples are subsets of the DES Year 3 Gold catalogue
of photometric objects (Sevilla-Noarbe et al. 2021), which has a
total of nearly 400 million objects in about 5000 square degrees of
area, covering the entire DES footprint. After removing stars and
applying quality cuts (following Sevilla-Noarbe et al. 2021), the
catalogue consists of ~227 million galaxies. For these objects, we
use single-object-fitting (SOF) photometry in the griz bands, which
have magnitude limit (defined as the average SOF magnitude at
S/N = 10) of 23.8, 23.6, 23.0, and 22.4, respectively. We apply
an initial i-band magnitude ‘pre-selection’ of 22 < i < 23.5. The
lower limit of this cut removes bright galaxies that are unlikely to
be at redshifts z > 1, and the faint limit excludes the region of
magnitude space where the DES Y3 Gold catalogue becomes highly
incomplete. Please note that, even with the i < 23.5 cut, this selection
includes galaxies measured with S/N < 10 in the i band, pushing the
limits of the DES Y3 sample, and therefore the completeness of the
sample has significant spatial variations. The characterization of that
spatial completeness is a key aspect of this work, and is described in
Section 4.

For the pre-selected sample, we apply the standard DES Y3 mask,
which includes masking of astrophysical foregrounds (e.g. bright
stars and large nearby galaxies) and of regions with recognized data-
processing issues, as described in Sevilla-Noarbe et al. (2021). Given
that we are pushing the limits of DES Y3 photometry, we apply some
additional conservative cuts on the mask to avoid regions where
our completeness corrections would be less reliable: we remove the
3 percent of the footprint area with the highest stellar density, the
3 per cent with the highest (worst) g-band seeing, and then we remove
the worst 10 per cent area in photometric depth, exposure times, and
sky brightness in each of the griz bands, some of which are correlated.
After applying this mask, the 22 < i < 23.5 pre-selected galaxy
sample has a total of 77 million galaxies in 2621 square degrees of
area. For comparison, the fiducial DES Y3 analysis uses 4143 square
degrees of total area.

The analysis presented here will be followed by a companion
paper (in preparation) that will combine the clustering measurements
shown here with CMB lensing measurements from the Planck
satellite and the SPT. Due to SPT data being available only in the
south region of the DES Y3 footprint, we will split the sample in
this work into two independent regions, ‘North’ (Dec. > —39°) and
‘South’ (Dec. < —40°), and test for the consistency of the two. For
that test, we choose to leave a separation of 1 degree between the two
regions, which corresponds to the maximum angular separation used
later on in the galaxy clustering measurements. A similar separation
of the DES footprint was made in the analyses studying CMB lensing
for the fiducial DES Y3 sample (Abbott et al. 2019; Baxter et al. 2019;
Omori et al. 2019a, b).

2.2 DES deep-field data and artificial wide-field data

The scheme for redshift selection and characterization, described
in detail in Section 3, makes extensive use of DES deep-field data,
described extensively in Hartley et al. (2022). In short, we use four
deep fields, named E2, X3, C3, and COSMOS (COS), covering areas
of 3.32,3.29, 1.94, and 1.38 square degrees, respectively (see fig. 2 in
Myles et al. 2021 for a visual description). After masking regions with
artefacts such as cosmic rays, artificial satellites, meteors, asteroids,
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Figure 1. The distribution of photometric colours in the DES wide-field griz
bands, after a pre-selection cut of 22 < i < 23.5, using the data (Gold) and
the artificial data (BALROG).

and regions of saturated pixels, 5.2 square degrees of overlap with the
UltraVISTA and VIDEO near-infrared (NIR) surveys (McCracken
et al. 2012; Jarvis et al. 2013) remain. We remove stars based on
the kNN classification of Hartley et al. (2022), and additionally
by training a SOM and removing regions of colour space with a
majority of stellar contamination according to the Laigle et al. (2016)
catalogue. This yields 2.8M detections with measured ugriz/JHK;
photometry with limiting magnitudes 24.64, 25.57, 25.28, 24.66,
24.06, 24.02, 23.69, and 23.58, substantially fainter than the faintest
galaxies in the sample of source galaxies. In this work, we frequently
refer to this sample and its photometry as deep (field) data.

So far we have described the wide-field DES data to be used over
the full footprint and a set of deep-field photometry over a smaller
area. In order to establish the relationship between these two data
sets we use the BALROG (Suchyta et al. 2016) software, which injects
simulated galaxies based on the DES deep fields into real images from
DES wide-field observations. For this analysis, BALROG was used to
inject model galaxies, with profiles fit to deep-field galaxies, into
the wide-field footprint (Everett et al. 2022). After injecting galaxies
into images, the output is analysed by the DES Y3 photometric
pipeline (Morganson et al. 2018). Each deep-field galaxy is injected
multiple times at different positions in the footprint. The resulting
matched catalogue of 3194 291 injection-realization pairs, which
contains both deep and wide photometric information, is a key part
of our redshift calibration scheme since it quantitatively connects
the two photometric spaces. This catalogue will be referred to as
the Deep/BALROG Sample, and contains a total of 432 657 unique
deep-field galaxies having at least 1 BALROG realization that passes
the wide-field selection criteria.

Because we will use the BALROG sample to establish the relation-
ship between wide and deep photometry in DES Y3, it is important
that BALROG wide-field detections follow similar photometric dis-
tributions to the actual DES Y3 wide-field data in the Gold sample.
Fig. 1 shows the distribution of colours in the DES Y3 photometry
for the data (Gold) and for the artificial realizations of deep galaxies

€202 J8qWIBAON |.Z U0 Jasn AlisiaAiun uoja\ a1bauie) Aq S/ 112 //968E/S/GZS/ /8 101e/seluw/woo dno olwapese//:sdiy Woll papeojumoc]



(BALROG) for the pre-selected sample described in Section 2.1 (22
< i< 23.5). As desired, the colour distributions of data and artificial
realizations of deep galaxies are in excellent agreement.

2.3 Redshift data

Our analysis relies on the use of galaxy samples with known
redshift and deep-field photometry. To this end, we use catalogues
of both high-resolution spectroscopic and multiband photometric
redshifts, and we develop an experimental design that allows us to
test uncertainty in our redshift calibration due to biases in these
samples. The spectroscopic catalogue we use contains both public
and private spectra from the following surveys: zCOSMOS (Lilly
et al. 2009), C3R2 (Masters et al. 2017, 2019; Stanford et al.
2021), VVDS (Le Fevre et al. 2013), and VIPERS (Scodeggio et al.
2018). We use two multiband photo-z catalogues from the COSMOS
field (Scoville et al. 2007): the COSMOS2015 30-band photometric
redshift catalogue (Laigle et al. 2016), which includes 30 broad,
intermediate, and narrow bands covering the UV, optical, and IR
regions of the electromagnetic spectrum, and the PAUS + COSMOS
66-band photometric redshift catalogue (Alarcon et al. 2021) from
the combination of PAU Survey data (Eriksen et al. 2019; Padilla
et al. 2019) in 40 narrow-band filters and 26 COSMOS2015 bands
excluding the mid-infrared. We build a redshift calibration sample in
the deep fields from the overlapping redshift information we find in
these surveys. We prioritize information coming from spectroscopic
surveys (S), then PAUS + COSMOS (P) and finally COSMOS2015
(C), and we call this redshift sample SPC.*

3 REDSHIFT METHODOLOGY

This section describes our redshift inference scheme, which allows us
to select and characterize samples of high-z galaxies using the data
described in the previous section. The next sections will describe
the characterization of the uncertainties in the angular and redshift
distributions of these high-z samples.

We work under the framework presented in Sdnchez & Bernstein
(2019), in which galaxy ‘types’ are defined by observed properties
rather than rest-frame properties, and we call them phenotypes. We
will use the low-noise, several-band photometry available in the
deep fields to define our phenotypes, and we will discretize such
photometry using a SOM (Kohonen 1982; Masters et al. 2015). In
this way, every cell in the Deep SOM will be a phenotype, and we will
index them with c. This approach, proposed initially in Sanchez &
Bernstein (2019), has now been successfully used in several analyses
both using simulations (Buchs et al. 2019; Alarcon et al. 2020) and
real data (Myles et al. 2021; Giannini et al. 2022).

We also discretize the wide-field photometry into a SOM, with
wide cells indexed by ¢. With this discretized mapping of deep and
wide photometric spaces, we can estimate the redshift distribution
of a given wide cell ¢, passing a wide selection §, by marginalizing
over deep-field information c:

p(zle,8) = ple, & Hpelé, 3). e

The first term on the right contains information about the redshift
of deep phenotypes, while the second term connects the deep and
wide photometric spaces. Having the expression for the redshift
distribution of a wide cell, we can construct a sample of galaxies

4 An identical notation was used in Myles et al. (2021).
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by joining wide cells ¢ into tomographic bins b, and their redshift
distribution will simply become the sum of its constituents weighted
by the occupation of wide cells:

p(zlb, ) = p(zlé, $)p(ls, b), @)
éeb
oY > plzle, & 9)plelé, $p@ls), 3)
ceb ¢
~ Y Y p@le, b, $)pele, $)p@ls). “
éeb ¢

Going from equations (2) to (3), we use the fact that p(é|1§, §) =
pcls)/ (Zée,; p(élf)) foré¢ € b, and and in the last line we ap-
proximate p(zlc, ¢, §) = p(z|c, 13, §.) The need for conditioning on
bin membership rather than wide-cell measurement [going from
equations (3) to (4)], and the accuracy of this approximation, will
be investigated in Section 5 and Appendix A3. The final expression
computes the redshift distribution of tomographic bins made of wide-
field SOM cells. We use different samples to estimate the different
terms in it, as we describe next:

(i) p(¢|$)is computed from our wide sample, which consists of all
galaxies in the DES Year 3 Gold catalogue passing the pre-selection
performed in Section 2 (22 < i < 23.5).

(i1) p(c|¢, §) is computed from our Deep and BALROG Samples,
which consist of all detected and selected BALROG realizations of the
galaxies in the Deep Sample. We call this term the transfer function.

>iii) p(z|c, b,§)is computed from the Redshift Sample subset of
the Deep Sample, for which we have reliable redshifts, 8-band deep
photometry, and wide-field BALROG realizations.>

The redshift scheme followed in this work is similar to that used
in Myles et al. (2021) for the selection and characterization of
weak lensing source galaxy samples, but there exist some important
differences:

(i) We perform a pre-selection cut on our sample of 22 < i < 23.5,
to remove bright galaxies at low redshift and low S/N faint galaxies,
cutting the bright end of the 18.5 < i < 23.5 used in Myles et al.
(2021).

(ii) In this work, we use DES griz wide photometry, while the
analysis in Myles et al. (2021) uses riz information only.

(iii) We also use a different SOM algorithm, improved to better
handle the classification of lower S/N galaxies. This will be described
in detail in Section 3.1.

(iv) The tomographic bins for this work are selected using both the
mean redshifts of the Wide SOM cells and also their estimated low-
redshift fraction, to avoid having large low-z tails in the tomographic
bins. The selection in Myles et al. (2021) relies only on mean redshift
information.

3.1 The Deep SOM

In this work, we a use SOM to characterize and discretize the deep
photometric space, described in Section 2.2. The SOM algorithm
uses unsupervised learning to project the eight-dimensional (8D)
deep photometric data (ugrizJHK,) on to a lower dimensional

SThis term could, in principle, be computed from the overlapping photometry
of the deep and wide fields. However, the region where these samples overlap
is small and it is not representative of the observing conditions found across
the whole survey footprint, which are much more well sampled by making
use of BALROG.
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Figure 2. Visualization of various properties of the Deep SOM described in Section 3.1. In particular, we show the photometric properties of the map, namely
the mapping of i-band magnitude and seven of the photometric colours, using the DES deep galaxy sample described in Section 2.2. We also show the SOM
galaxy occupation, N,, and the redshift mapping of the SOM using SPC redshift galaxies matched to DES deep photometry. A zoomed-in version of the Deep

SOM redshift mapping is given in Fig. A3.

grid, in our case a two-dimensional (2D) grid, while attempting
to preserve the topology of the 8D space. This means that similar
objects in the 8D space will be grouped together in the SOM,
enabling a visual understanding of features, especially in a 2D SOM.
Each of the cells in the Deep-SOM 2D grid will be considered a
galaxy phenotype in our scheme.

There is considerable flexibility in the implementation of the
SOM algorithm. We alter the SOM algorithm from that used in
previous DES analyses (such as Myles et al. 2021; Giannini et al.
2022) with the purpose of improving the classification of galaxies
of the low- and modest-S/N photometry used in this work. This is
done by altering the distance metric used by the SOM algorithm
to incorporate flux uncertainties. We also allow magnitude (or flux)
information, not just colours, to be used in redshift estimation, and
we do not impose periodic boundary conditions on the map. This
SOM algorithm was introduced and is described in detail in the
appendix of Sanchez et al. (2020).

There is also flexibility in the size of the SOM. A larger number
of SOM cells can improve the representative power of the map, and
hence can be used to describe more complex spaces and resolve
finer redshift distinctions. Using too many cells can, however, cause
overfitting, with the map modelling noisy features of the data. The
Deep SOM in this work uses a 48 x 48 SOM. For comparison
purposes, the Deep SOM describing the DES Year 3 space in Myles
et al. (2021) was 64 x 64 in size. We use a smaller SOM size since
the wide-field pre-selection cut-off 22 < i < 23.5 we apply to our
sample reduces the volume of our wide-field photometric space, and
our Deep SOM only uses deep galaxies whose BALROG injections
have passed this criteria at least once (see Section 2.2).

Fig. 2 shows several properties of the Deep SOM used in this work.
It is worth noting that the particular structure of the map depends on
randomized initial conditions and training, but the overall topological
structure will be similar across different runs. The figure shows differ-
ent photometric properties of the SOM, mapping colours and i-band
magnitude. The u — g colour mapping shows how most of the map has
anear-constant value of u — g, but there are well-defined areas show-
ing strong positive (red) values of u — g, corresponding to breaks in
the spectrum of galaxies such as the Lyman and Balmer breaks (these
behaviour is also seen in other SOM analyses such as Masters et al.
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2015). The z — J colour shows a different structure across the map,
showing variation across the regions where u — g was constant and
close to zero. We also show the mapping of i-band magnitude across
the map. In this case, it is worth noting that even though our target
sample has a selection of 22 < i < 23.5, galaxies fainter than i = 23.5
have a non-zero probability of being selected in our sample because
of noise fluctuations. Since we are including in the Deep SOM all
deep galaxies whose artificial injections make the selection at least
once, that means that we include some galaxies as faint as i >~ 25.

Fig. 2 also shows the Deep SOM galaxy occupation, n(c), the
density of galaxies as a function of position in the deep photometric
space probed by the SOM. Perhaps most importantly, the lower left-
hand panel shows the redshift mapping of the Deep SOM. For this
panel, we use the subset of deep galaxies that have a match in the SPC
redshift sample (described in Section 2.3), and compute the mean
redshift of the galaxies occupying each SOM cell. This plot depicts
a smooth mapping of redshift in the SOM, reasonably smoother than
the mapping of some colours or magnitudes, even though redshift
information is never used in the SOM training.

Since we are mainly concerned about high redshift in this work, it
is interesting to explore the regions of the map that correspond to that
regime. There exist two main areas of high-z galaxies in the SOM.
There is a first high-z region in the upper part of the SOM, with a
smooth gradient to middling redshifts in the central part of the map.
Fig. 2 shows the upper high-z region to have a small u — g colour
(no break between the u# and g bands), with positive and smoothly
varying z — J colour, and faint magnitudes in the i band. There is a
second ‘island’ in the lower centre of the SOM where very high-z
galaxies live, surrounded by low-redshift galaxies. This region has
large (red) u — g colour and also large (faint) i-band magnitude, i.e.
is the part of photometric space where we encounter Lyman-break
galaxies at high redshift. It also hosts faint Balmer-break galaxies
at low redshift, and these two galaxy populations are known to
present important degeneracies in the colour-redshift relation. That
degeneracy is also responsible for a large redshift scatter in that part
of the SOM. Finally, regarding the redshift mapping of the Deep
SOM, it is important to point out that the vast majority of cells
in the map contain galaxies from the SPC redshift sample, with
only a four cells (out of 2304) containing no redshift information.
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Figure 3. Visualization of various properties of the Wide SOM described in
Section 3.2. In particular, we show the photometric properties of the map,
namely the mapping of i-band magnitude and three of the wide photometric
colours, using the DES wide galaxy sample described in Section 2. The bottom
left-hand panel shows the redshift mapping of the Wide SOM, using SPC
redshift galaxies matched to DES deep photometry and the BALROG transfer
function between deep and wide photometry, as described in equation (1) and
Section 3.2. Overlaid we can see the cells of the Wide SOM that constitute the
three tomographic bins used in this work, following the procedure described
in Section 3.3 and Fig. 4. The bottom right-hand panel shows the mapping of
the estimated low redshift (z < 0.5) fraction of each Wide SOM cell, as also
shown in Fig. 4.

In Section 5, when we characterize the redshift uncertainties in the
defined tomographic bins, we will use the BALROG sample to estimate
how the tomographic bin photometric spaces map into the Deep
SOM, and quantify the (small) impact of deep galaxies in cells with
no redshift information.

3.2 The Wide SOM

We now turn to characterizing the DES wide space, using the same
SOM algorithm as for the deep space. We now use griz DES wide
photometry as described in Section 2.1 to construct a Wide SOM
having 22 x 22 cells. By comparison, the Wide SOM describing the
DES Year 3 space in Myles et al. (2021) was 32 x 32 in size and was
constructed using riz photometry (because the g band was not used
for galaxy selection in the weak lensing analysis). We use a smaller
SOM size due to the pre-selection cut-off 22 < i < 23.5 applied to
our wide-field sample. Fig. 3 shows the photometric properties of
the Wide SOM, including the mapping of i-band magnitude and the
three observed colours.
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Figure 4. Visualization of the tomographic bin selection as groups of Wide-
SOM cells, as described in Section 3.3. The plot shows the estimated low
redshift (z < 0.5) fraction versus mean redshift for each Wide-SOM cell with
mean redshift above 0.7. Cells selected for high-z bin 0 are marked in orange,
cells for bin 1 are marked in blue, and cells selected for bin 2 are marked in
red.

Given the characterization of galaxy phenotypes in the Deep SOM
and its redshift mapping using the SPC redshift sample, we can use
the BALROG sample to characterize the redshift mapping of the Wide
SOM using equation (1). This equation yields a probability density
function for the redshift of each Wide SOM cell, using the redshift
mapping of the Deep SOM with the SPC redshift sample and the
transfer function between Wide and Deep spaces characterized with
the BALROG sample. This is shown in the lower left-hand panel of
Fig. 3, where we can see a good separation between low- and high-z
regions in the Wide SOM, and now we can use this redshift mapping
of the Wide SOM to perform the selection of our redshift bins.

3.3 Selecting tomographic bins

Since each Wide galaxy can be placed in a cell of the Wide SOM, and
we have an estimate of the redshift distribution p(z|¢) within each
Wide-SOM cell, we can construct tomographic bins as groups of
Wide SOM cells. With the goal of constructing tomographic bins at
high redshift with the least possible low-redshift contamination, we
compute the mean redshift of each Wide-SOM cell and the fraction
of the redshift distribution at low redshift z < 0.5. We choose to
define three tomographic bins at mean redshifts around 0.9, 1.2, and
1.5 that minimize the low-redshift contamination. We do this by
inspecting these properties using Fig. 4, also considering the width
of the p(z|¢). For the reproduction of the specific selection used in
this paper, see Data Availability section at the end of the paper. The
resulting selected cells in the Wide SOM that make up each redshift
bin are depicted in the lower right-hand panel of Fig. 3. From that
representation, we see how the first redshift bin comes from the upper
right-hand part of the Wide SOM and hence contains galaxies with
strong (red) u — g and g — r colours, and as the selection moves
to the second and third redshift bins the corresponding galaxies will
have smaller (blue) u — g colours and fainter i-band magnitudes (the
average i-band magnitude for bins 0, 1, 2 is 22.6, 22.9, and 23.1,
respectively). To visualize these trends directly, Fig. 5 shows a small
random sample of galaxy images images from each of the redshift
bins, which confirm the characteristics of each bin inferred from the
Wide SOM in Fig. 3.

It is notable that the Wide-SOM cells ¢ selected for the high-z
samples largely exclude galaxies from cells ¢ in the second ‘island’
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Figure 5. Visualization of colour images of random galaxies from each of the three redshift bins defined in Section 3.3. As apparent from Fig. 3, the first bin is
made predominantly of red galaxies and then the selection moves to bluer and fainter galaxies for the second and third bin.
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Figure 6. Comparison of the redshift distributions used in the fiducial
DES Year 3 lens galaxy sample (MAGLIM, upper panel) with the redshift
distributions of the three tomographic bins defined in this work (Section 3.3,
bottom panel). The three high-z redshift bins defined in this work considerably
extend the lens redshift range probed by the DES Year 3 data sample. The
number of galaxies, galaxy density, and mean redshift of these samples can
be found in Table 1.

of high-z galaxies in the Deep SOM, which contains the Lyman-break
galaxies (LBGs). This is likely because the absence of u-band data in
the wide sample makes it difficult to localize wide-field galaxies into
this Deep SOM island. Hence, the DES Y3 high-z sample defined in
this paper is notably orthogonal to many previous high-z catalogues
that emphasized LBGs at z > 2.

Given these tomographic bin selections as lists of Wide SOM cells,
we can now use equation (4) to estimate the redshift distribution
of each of these bins. Fig. 6 shows the three resulting redshift
distributions, and compares them with the four tomographic bins
of the fiducial DES Year lens galaxy sample, the so-called MAGLIM
sample (Porredon et al. 2022). As apparent from that figure, the
three tomographic bins defined in this work significantly extend
the redshift range probed by the DES Year 3 Fiducial lens galaxy
sample. Besides extending the redshift range, the three tomographic
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Table 1. Summary description of the lens galaxy samples defined using DES
Year 3 data, as a comparison to the samples defined in this work. The fiducial
lens sample in the DES Year 3 analysis consists of the first four MAGLIM bins.
The other two MAGLIM bins and the REDMAGIC sample bins are marked in
red as they were not part of the fiducial analysis. The table shows Ng, as the
number of galaxies in each redshift bin, ng, as the galaxy number density in
units of gal arcmin™2, and (z) as the mean redshift of each bin.

Redshift bin Ngal Ngal (z)
DES Year 3 fiducial MAGLIM sample
0 2236 473 0.150 0.30
1 1599 500 0.107 0.46
2 1627 413 0.109 0.62
3 2175 184 0.146 0.77
4 1583 686 0.106 0.89
5 1494 250 0.100 0.97
DES Year 3 REDMAGIC sample
0 330243 0.022 0.27
1 571 551 0.038 0.43
2 872611 0.058 0.58
3 442 302 0.029 0.73
4 377 329 0.025 0.85
DES Year 3 high-z sample (this work)
0 3929 803 0.416 0.90
1 2551 780 0.270 1.21
2 2397 667 0.254 1.49

bins from this work also provide larger number of galaxies and
galaxy number densities than the MAGLIM fiducial DES lens sample,
and also the REDMAGIC galaxy sample (Pandey et al. 2022; see
Table 1). The characterization of the uncertainties associated with
these three redshift distributions, and the way we will parametrize
such uncertainties, will be described in detail in Section 5.

4 CHARACTERIZING THE COMPLETENESS
OF THE SAMPLES IN THE FOOTPRINT

Due to the faint, low-S/N nature of the galaxies in the three
tomographic bins defined in Section 3, it is expected that their
selection function will fluctuate across the survey footprint because
of varying observing conditions (such as exposure time, seeing,
airmass) and also due to astrophysical fluctuations (such as stellar
density or extinction). These variations in the selection function will
induce correlations between galaxy density and survey properties
for the different tomographic bins. Any such fluctuations will induce
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spurious signal in the measurement of galaxy clustering, exacerbated
by patterns in e.g. survey observing strategies or Galactic structure.
We must correct the high-z density maps for the survey selection
function if we want to recover accurate measures of the high-z
intrinsic galaxy clustering.

These kind of corrections due to varying observing properties have
been studied extensively in DES and elsewhere (Leistedt et al. 2016a;
Ross et al. 2017; Elvin-Poole et al. 2018; Weaverdyck & Huterer
2021; Rodriguez-Monroy et al. 2022). In many of these cases, the
relationship between survey properties and galaxy selection rates
was close to linear, and therefore, the correction methodologies
assumed a linear relationship. The samples in this work, however,
present significant non-linearities in that relationship. Therefore, we
use a non-linear, neural-network-based approach for characterizing
the completeness of the sample with respect to the different survey
properties, as in Rodriguez-Monroy et al. (2022; see also Rezaie
et al. 2020 for a similar approach applied to the DECaL.S DR7 data
sample).

In this section, we describe the different survey properties we
consider, the methodology used to correct for their correlations with
galaxy density for the different tomographic bins, and the validation
of the results. The outcome of this procedure will be a derived
correction weight for each galaxy in the different tomographic bins,
inverse to the selection rate in its vicinity. This weight will then
be used throughout the analysis, for the characterization of redshift
distributions and uncertainties in Section 5, for the estimation of
lens magnification in Section 6, and for the calculation of correlation
functions in Section 7.

4.1 Maps of survey properties

The DES collaboration develops spatial templates for different ob-
serving conditions and potential contaminants in the survey footprint
by creating HEALPIX (Gorski et al. 2005) sky maps (at NSIDE
= 4096, corresponding to a pixel resolution of 0.86 arcmin; see
Leistedt, Mortlock & Peiris 2016b for details on the implementation).
We will refer to these maps as survey property (SP) maps and we will
use them to characterize and remove any possible correlations with
the observed density fields of each tomographic bin. In particular,
in this analysis we consider maps of the following survey observing
properties, each of them having a different map for each observed
photometric band griz:

(i) Depth: Mean survey depth, computed as the mean magnitude
for which galaxies are detected at S/N = 10.

(i1) Sky variance: Estimated sky brightness, or more precisely, the
standard deviation of sky pixels due to shot noise and read noise,
measured in units of electrons/second/pixel.

(iii) Exposure time: Total exposure time at a given point in the
survey footprint, measured in seconds.

(iv) Airmass: Mean airmass, computed as the optical path length
for light from a celestial object through Earth’s atmosphere (in the
secant approximation), relative to that at the zenith for the altitude
of the telescope site.

(v) Seeing: Mean seeing, measured in arcseconds, computed as
the full-width at half maximum of the flux profile.

Those make 20 SP maps of observing properties. Additionally, we
consider two maps of potential contaminants:

(i) Galactic extinction: We use the SFD dust extinction map from
Schlegel, Finkbeiner & Davis (1998), which measures the E(B — V)
reddening, in magnitudes.

High-z in DES 3903
(i) Stellar density: We use a map of stellar density, in deg~2, using
stellar sources from Gaia EDR3 (Gaia Collaboration 2021).

This amounts to a total of 22 survey property maps that we will use
in this analysis. For a technical description of these survey observing
properties, please see Leistedt et al. (2016b), Sevilla-Noarbe et al.
(2021), and Rodriguez-Monroy et al. (2022). In principle, these
SPs should be a complete list of all factors that could affect
galaxy detectability. The images themselves should be completely
specified by the passband (which is constant, with very minor airmass
variation), the background noise level of the images (a.k.a. sky
brightness), the point spread function (primarily seeing FWHM),
and the shot noise from the sources (primarily exposure time). The
Galactic dust and stellar background are the two astrophysical effects
expected to alter the detectability of background galaxies. The depth
map should be redundant but we include it to perhaps ease the task
of training the neural network.

4.2 Correction method

We aim to model the relationship between the survey property maps
defined above and the observed galaxy count maps for each of the
tomographic bins defined in Section 3. For this, we will use a neural
network (NN), with the 22 SP maps being the features and the
observed galaxy count maps being the label. Naturally, the network
will be able to model a non-linear relationship between the SP maps
and the raw galaxy counts. It is important to note, however, that we
do not include any spatial information in the process, since we do
not want the network to learn about the clustering of galaxies.

The neural network is asked to predict whether or not a particular
Healpixel (at the same NSIDE = 4096 resolution) contains any
galaxies [that is, p(n > 1)] based on the SP values for that pixel. The
loss function for the network is the binary cross-entropy between
the predicted pixel occupancy and the occupancy of the training set.
Note that this ignores any distinctions between Healpixels with n =
1 versus n = 2 or more galaxies. This helps prevent the network
from learning any intrinsic galaxy clustering. At the resolution of
NSIDE = 4096, most pixels contain either zero or one galaxies
(the average number of galaxies per pixel for bins 0, 1, and 2 is
0.307, 0.200, and 0.187, respectively). The number of pixels with
p(n > 2) in each tomographic bin is 4.6 per cent, 2.0 per cent, and
1.7 per cent, while the number expected from a uniform density and
a Poisson distribution is 3.9 percent, 1.7 per cent, and 1.6 per cent,
which represents an excess due to intrinsic clustering of 20 per cent,
16 per cent, and 10 per cent, respectively, while the usual change in
density imprinted by survey property maps in our conservative mask
is usually under 5 percent (Fig. 8). On the other hand, pixels with
large number of galaxies are likely to be due to intrinsic density peaks
rather than survey observing property fluctuations, for example p(n
> 5) in our samples exceeds the Poisson uniform probability by 20,
7x, and 3 x, respectively.

The architecture of the network is based on our guess that the
selection function scales primarily as some power-law combination
of the SPs. To this end, the input SP values are all logarithmically
scaled (except those, such as depth, which are already logarithmic
quantities), and the output of the network is exponentiated to form the
selection probability. The network output is a sum of two branches:
the first branch is a simple linear combination of the 22 scaled SPs,
since we expect this to capture most of the functional variation. The
second branch is intended to capture departures from a simple power
law: it takes the input layer of 22 dimensions through 3 hidden layers
of 64, 32, and 4 fully connected neurons, respectively, and a single
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Figure 7. Upper row: Examples of four of the SP maps described in Section 4.1. In particular, we show the depth and sky variance maps in the i band, and the
maps of stellar density and dust extinction. Lower row: Maps of the derived weight maps using the neural network approach described in Section 4.2, for the

three tomographic bins in this work.

neuron on the output layer, each with relu activation. The output
of the network, for each tomographic bin, consists of a single value
for each Healpixel within our mask, which will be used to weight
the galaxies accordingly. Fig. 7 shows the resulting weight maps for
each tomographic bin, as well as four examples of survey property
maps.

To prevent the network from overfitting, it is constructed with
k-fold cross-validation, which works in the following way: The
NSIDE = 4096 maps are re-binned into a coarser grid of
NSIDE_split = 16 (with a resolution of about 4 degrees). We
then randomly divide these cells into k equal-area groups. To derive
the weights for a given fold k, we train the NN on the other folds,
using fold k as a validation sample (the training halts when the
training metric no longer improves on the validation set). This cross-
validation scheme will only work to prevent overfitting on scales
below the resolution defined by NSIDE_split, in this case around 4
degrees. In Appendix C, we test the method using unaltered simulated
data and find any residual overfitting to be small compared to the
statistical uncertainty on angular scales below 1 degree. Therefore,
we keep the galaxy clustering analysis in this work to angular
scales below one degree, and additionally test the robustness of the
maximum angular scale in Section 7.3.3.

4.3 Validation of the derived correction weights

Different survey property maps show significant correlations with
the raw galaxy density in each of the tomographic bins. Using the
neural network implementation described above, Fig. 8 shows these
correlations, and how the derived set of weights is able to correct for
any correlations between SP maps and galaxy density. Fig. 8 shows
only a limited number of examples of these correlations, for easier
visualization, but we also compute the x? for the null hypothesis for
all correlations between the 22 SP maps and the corrected galaxy
density, using a jackknife approach to estimate the corresponding
uncertainties. The distribution of these null x? values, for each of
the tomographic bins, can be found in Fig. 9, and we do not find
evidence of significant correlations between the SP maps and the
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corrected (weighted) galaxy density. The median null x2 values for
the corrected case in the three tomographic bins are 11.6, 3.4, and 7.5
for 10 degrees of freedom. On the other hand, for the raw, uncorrected
case the median null x? values for the three bins are 92.1, 35.0, and
51.6 for 10 degrees of freedom, clearly inconsistent with the null
hypothesis.

Beyond being successful at correcting for all the correlations
between galaxy density and survey property maps, we need to ensure
the derived neural network weights did not learn any physical galaxy
clustering at the training phase. For that purpose, we compute the
cross-correlation between the weight maps as shown in Fig. 7 and
several tracers of the LSS of the Universe. In particular, in this
work we perform the correlation of the three weight maps with the
convergence field estimated from CMB lensing (using both Planck,
Planck Collaboration VIII 2020; and SPT, Omori et al. 2023), the
high-z mass map from the DES Year 3 analysis (Jeffrey et al. 2021)
and the Planck Compton y map (Planck Collaboration XXII 2016).
These are all tracers of the physical LSS and hence they should not
present correlations with SP maps or the derived weight maps. A
significant correlation would mean there has been some undesired
leakage of LSS into our weights. Fig. 10 shows these correlations
between weight maps and tracers of the LSS, and Table 2 shows
the x?2 values for the null hypothesis, demonstrating no significant
correlations between weight maps and LSS tracers.

At this point, we have now tested for the correlation of the weighted
galaxy density with SP maps and the correlation of weight maps with
known tracers of structure, and found a null signal in both cases.
However, it is still possible that the residuals in the estimation of the
weight maps could affect the clustering measurements. To account
for this potential effect in the clustering analysis, we will marginalize
over an additive constant in the correlation function, as done in
e.g. Kwan, Sanchez et al. (2017; see also Ross et al. 2011). This
procedure, which will be described in Section 7.3, will account for
a potential spurious systematic effect in the clustering at first order,
and it is a conservative way to marginalize over this uncertainty in the
analysis. In that section, we will also explore the impact of the choice
of maximum angular scale in the galaxy clustering measurements.
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Figure 8. Visualization of the correlation between SPs and the observed galaxy density (relative to the mean galaxy density over the full footprint), before
(red) and after (blue) the correction using the galaxy weights described in Section 4.2. We show this relationship for depth, exposure time (in seconds), sky
variance (in electrons s~ pixel™!) and seeing (in arcseconds), all estimated in the i band, and also with stellar density (in stars deg?2), in 10 bins of equal area.
The uncertainties come from jackknife resampling, and the grey-shaded region in the plot corresponds to a 1 per cent deviation. The distribution of the null x?2
values for these relationships, including all the 22 SP maps and for each of the tomographic bins, can be found in Fig. 9.
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Figure 9. Distribution of the null hypothesis x? values for the relationship
between survey property maps and the corrected (weighted) galaxy density,
including all the 22 SP maps and for each of the tomographic bins. The
median null x? values in the three tomographic bins are 11.6, 3.4, and 7.5
for 10 degrees of freedom. For the raw, uncorrected case the median null X2
values for the three bins are 92.1, 35.0, and 51.6 for 10 degrees of freedom.

5 CHARACTERIZING REDSHIFT
UNCERTAINTIES

In this section, we will describe the various sources of uncertainty in
the distributions of redshift N(z) within each of the three bins defined
in Section 3.3, and how we will propagate them into cosmological
analyses. We will follow a similar procedure to that in Myles et al.
(2021), and propagate uncertainty arising from (i) sample variance

(SV) and shot noise (SN) from the finite area covered by the deep
fields; (ii) biases in the individual redshift estimates of deep-field
galaxies having multiband photometry (COSMOS2015 and PAUS +
COSMOS) but no spectroscopic redshift (PZ); (iii) uncertainty in the
photometric calibration (zero-point) of deep-field galaxies (ZP); and
(iv) uncertainties from the ‘bin conditionalization’ approximation in
equation (A6) (BCE).

To model SV and SN, we use the approximate 3SDIR model (a
product of three Dirichlet distributions), first presented in Sdnchez
et al. (2020) and then further developed in Myles et al. (2021).
Mathematically, the model describes p({ f..}|{V..}) = 3SDIR, where
N, are the number counts of galaxies that have been observed to be
at redshift bin z and colour phenotype ¢, and with {f,. } a finite set of
coefficients indicating the probability in the redshift bin z and colour
phenotype ¢, where > ,.f,c = 1 and 0 < f;. < 1. For extensive details
of the model, we refer the interested reader to appendices D and
E in Myles et al. (2021). The 3SDIR method yields realizations of
the f,., which then can be summed into equation (A6) to yield N(z)
estimates. The mean of these realizations is the fiducial N(z).

We smooth the fiducial N(z) distribution with a Savitzky—Golay
filter: sample variance and shot noise from the small area of the
calibration deep fields manifests in the N(z) as rapid fluctuations in
redshift and enter squared in the galaxy clustering signal, while the
true redshift distribution over a larger area is smoother as these
variations average out. We try different smoothing lengths and
find compatible constraints on the main parameters of interest (see
Appendix A6).

Deviations from the nominal N;(z) will be modelled with three
parameters: a shift Az, a stretch parameter azi, and an adjustment
of the low-redshift tail of N;(z). The main peak of the

i
low—z
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Figure 10. Cross-correlation of weight maps of the three tomographic bins
and convergence field from three tracers of the LSS: CMB lensing (from the
Planck satellite), DES Y3 mass maps, and Planck Compton y. Uncertainties
come from jackknife resampling. The null hypothesis x 2 values can be found
in Table 2, all consistent with no correlation.

Table 2. Values of Xfuu/dof for different correlations between
galaxy weights and tracers of the LSS of the Universe, for the
three high-z bins defined in this work. We find no significant
correlations between weight maps and LSS tracers.

Bin0 Binl Bin2
Planck CMB lensing 9.6/9 6.4/10 6.8/10
DES mass map 8.2/9 9.9/10 16.1/10
Planck Compton y 7.3/9 5.9/10 2.7/10

distribution is altered according to
N(z) > N(ol(z — AZ' —2)+2) ®)
and the fraction of galaxies at low redshift (z < 0.5) is altered as

n(z) A{OW*Z 7<0.5

n@) (1 —Al,_) z>05 ©)

n(z) - {
Details of this transformation are in Appendix Al. Fig. 11 illustrates
the effects of each of these parameters.

Priors on the N(z) alteration parameters 6; = {Az, o/, Al ,__ }are
chosen to represent the potential effects of the systematic errors by

(1) Quantifying the possible effects of the PZ, BCE, and ZP
systematic errors on the input catalogues to the redshift calibration
process, as detailed in Appendices A2, A3, and A4, respectively.

MNRAS 525, 3896-3922 (2023)
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Figure 11. Visualization of the parametrization of redshift uncertainties,
using the third tomographic bin as an example. The different rows show
examples of how we account for shifts, stretches and variations in the low
redshift fraction of the redshift distributions.

(ii) Creating realizations of the input catalogues drawing from
these systematic errors and realizing the SV and SN variations with
the 3SDIR process.

(iii) Measuring the mean, width, and low-z fractions of each
realized N;(z).

(iv) Creating a prior for the 0; based on the distribution of these
properties of the realizations.

Fig. 12 shows the resultant distributions of the N;(z) recalibration
parameters when various sources of systematic errors are included,
and values of their means and standard deviations are listed in
Table 3. Sample variance/shot noise, redshift biases and zero-point
uncertainty all contribute significantly to the uncertainty in the mean
redshift. On the other hand, the stretch uncertainty is dominated
by sample variance at low redshift (Bin 0), with the zero-point
uncertainty significantly increasing its importance in in the highest
redshift bin. Finally, the low-redshift probability uncertainty is
primarily dominated by sample variance and shot noise. Similar
results for redshift uncertainties are found from the North and South
subsets of the data.

6 CHARACTERIZING WEAK LENSING
MAGNIFICATION

In this section, we study the impact of lensing magnification on
the observed angular correlations of our high-z galaxy samples. On
top of distorting the image shapes, gravitational lensing from the
foreground large-scale structure of the Universe also magnifies the
images without changing the surface brightness, creating two effects:
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Figure 12. Prior distributions for each redshift uncertainty parameter. Each column shows the parameters for each tomographic bin (left: Bin 0; middle: Bin

1, right: Bin 2). Each row shows a different parameter (top: Az'; centre: o/,

bottom: A’

low—z)- The different lines show the cumulative uncertainty on each

parameter from considering different effects. The dotted line shows the uncertainty from Sample Variance and Shot Noise in the calibration fields (SV + SN).
The dot—dashed line adds the uncertainty from redshift biases in the redshift calibration samples (PZ). The dashed line adds uncertainty from redshift selection
effects (BCE). The solid lines adds the zero-point photometric uncertainty in the deep field photometry (ZP). The distributions are measured from individual N(z)
samples generated to include these uncertainties. For p(Az’), we measure the mean redshift of individual samples and subtract the mean redshift of the fiducial

N(z). For p(a(.’_') we measure the N(z) width of individual samples and divide by the width of the fiducial N(z). For p(Al

individual sample at z < 0.5. See Section 5 and Appendix A for details.

Table 3. Estimates of the parameters describing our uncertainties
on the redshift distributions, as described in Section 5, for the
three tomographic bins defined in this work. The parametrization
is described visually in Fig. 11. We also show the estimates for the
entire footprint we use, and for the independent splits of North and
South regions, which will be used in Section 7 for consistency tests.

z-bin Az o, Alow—:
Entire footprint (All)

0 0.0 + 0.0051 0.997 £0.068  0.0044 £+ 0.0013

1 0.0 £ 0.0075 0.999 £+ 0.041  0.0091 £ 0.0023

2 0.0 +0.0208 0.998 £0.044  0.0383 £ 0.0.0059
North region (Planck)

0 0.0 + 0.0054 0.995 £0.068  0.0043 £+ 0.0015

1 0.0 £ 0.0078 0.999 £ 0.041 0.008 + 0.0023

2 0.0 £ 0.0223 0.998 £ 0.044 0.038 + 0.0.0065

South region (SPT)

0 0.0 = 0.0052 0.998 £0.051  0.0041 £+ 0.0015

1 0.0 +0.0114 0.996 + 0.081 0.009 £+ 0.0027

2 0.0 +0.0224 0.998 £ 0.048  0.0337 £ 0.0.0065

low_z)» We measure the integral of each

(i) a dilution of the source density due to the locally stretched image;
and (ii) an increased flux of individual galaxies making them more
likely to be detected (Bartelmann & Schneider 2001; Ménard et al.
2003; Hildebrandt, van Waerbeke & Erben 2009; Garcia-Fernandez
et al. 2018; Gaztanaga et al. 2021; von Wietersheim-Kramsta et al.
2021; Euclid Collaboration 2022). This effect creates an additional
clustering signal of the background sample that contaminates esti-
mates of its intrinsic density fluctuations. Following the approach
used in the fiducial DES Y3 analysis (DES Collaboration 2022),
we model the observed projected (lens) galaxy density contrast of
tomographic bin i, 8/, as a combination of the projected galaxy

obs>
density contrast 8; and the modulation by lens magnification (SfL and
redshift-space distorsions (see Section 7.1 for more details):
The change in density contrast due to magnification can be shown
to be proportional to the convergence experienced by the lens galaxies

«! (Elvin-Poole et al. 2023):
8,(0) = C'k;[(0). )

The constant of proportionality C' is given by the response of the
number of selected galaxies per unlensed area, and it can be split in
two terms, one fixed term corresponding to the change of area and
another term corresponding to changes in the light flux distribution

MNRAS 525, 3896-3922 (2023)
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of galaxies, which will affect their selection in different samples:

Ci = Carea + Ci (8)

sample’

where Cye, = —2 regardless of the sample selection. In this way,
the characterization of lens magnification amounts to estimating
the C;ample term for each tomographic bin. This term can be
estimated empirically by artificially magnifying a galaxy sample and
measuring the change in number density with respect to the applied
magnification. In particular, if we apply some extra convergence §«

to the images, the proportionality constant can be written as

én
n dk

where én/n corresponds to the fractional change in number density
of a given sample meeting selection criteria due to the applied
magnification. In this work, we will follow the approach of Elvin-
Poole et al. (2023) and estimate Csampie in two different ways, using
the BALROG sample and directly perturbing the measured fluxes in
the data.

; &)

Csample =

6.1 Estimate from artificial galaxy injections

A number of BALROG catalogues were produced for the DES Year
3 analysis (Everett et al. 2022). In this analysis, we have already
used BALROG to estimate the transfer function between the deep and
wide photometric spaces (parametrized with SOMs), as described in
Section 3. In this part, we use an additional BALROG run, in which the
exact same deep field objects are injected at the same coordinates as
in the fiducial run, but now with a 2 per cent magnification applied to
each galaxy image, o = 1.02 (k¢ ~ 0.01). For all cases, we account
for the galaxy correction weights defined in Section 4 and shown in
Fig. 7.

We apply the tomographic bin selections described in Section 3.3
on both the fiducial k = 0 BALROG run (label i, for intrinsic) and the
k = ko run (label o, for observed). In order to estimate Cgapmpie, W€
need, for each tomographic bin selection:

(i) Ni: Selected number of galaxies in the BALROG « = O run.
Accounting for galaxy weights w/, it becomes N; = Y ; w; , where
Jj runs over all selected galaxies.

(ii) N,: Selected number of galaxies in the magnified BALROG
run, which applies a constant magnification to the galaxy images.
Accounting for galaxy weights w/, it becomes N, = Ej w.

At this point, the estimate is simply the fractional difference
between the two:
N, — N;

K()N,' )

This estimate should capture the impact of magnification on the
specific colour selection of the high-z bins defined in Section 3.3,
and also include possible contributions due to size selections such
as the star — galaxy separation cuts. We compute the uncertainties
on these estimates by following a jackknife approach, splitting the
footprint over 150 regions.

(10)

Csample =

6.2 Estimate from perturbing measured fluxes

The second method we consider uses the data itself to estimate the
flux gradient of the samples. In this case, we add a constant offset
Am to all photometric magnitudes in our sample:

Am = —2.5logo(1 + 2Ak), an

MNRAS 525, 3896-3922 (2023)

Table 4. Estimates of the lens magnification coefficients Csample
using the BALROG and data-based methods described in Section 6,
for the three tomographic bins defined in this work. The last column
shows the final estimates of the coefficients from the combination of
the two different methods. We also show the estimates for the entire
footprint we use, and for the independent splits of North and South
regions, which will be used in Section 7 for consistency tests.

z-bin CsDale}rll;le Ciﬁ;ﬁ szfxlap}le
Entire footprint (All)

0 —0.21 £ 0.03 0.32 £ 0.40 0.05 £0.48

1 2.20 + 0.04 3.02+0.63 2.61 £0.75

2 3.88 + 0.04 4.70 £ 0.59 4.29 £0.72
North region (Planck)

0 —0.19 £ 0.03 0.29 + 0.46 0.05 £ 0.52

1 2.15 + 0.04 2.67 £ 0.66 241 £0.71

2 3.79 + 0.05 4.85 £ 0.65 4.32+0.83

South region (SPT)

0 —0.23 £ 0.04 0.34 £ 0.43 0.05 £ 0.52

1 2.23 + 0.06 3.33+0.97 278 £ 1.12

2 3.95 + 0.04 4.54 £ 0.69 4.25+0.75

where Ax = 0.01 is the constant magnification difference we are
applying to each galaxy.

Using this new magnified data sample, we repeat the assignment
of the detected galaxies to the three high-z bins, and estimate Cgample
from the differential in the resultant counts in each bin, directly
from equation (9), again accounting for individual galaxy weights
from Section 4. This method provides an additional estimate of the
magnification coefficients using only the magnification effect on
the fluxes, hence ignoring other possible contributions from size
selection or observational systematics.

6.3 Results

Table 4 shows the estimates of Cgympie using the BALROG and data-
based methods described above, for the three tomographic bins
and the North and South regions defined in this work. Since we
have two independent methods to estimate these values, we use the
average of the two methods as our final estimates Cf;,‘;f;)lle. For the
associated uncertainties, we follow a conservative approach and add
the uncertainties of the methods in quadrature, in addition to the

standard deviation between the methods:

. ddrog\ 2 dlros
O'g'"a] - \/(ggal ug) + (O_gam)z + (Czi;:)li _ Cg;a];:lc)Z/é‘_. (12)

The derived magnification coefficients and their associated uncertain-
ties will be used as Gaussian priors in the galaxy clustering analysis
presented in the next section.

7 GALAXY CLUSTERING AND CONSTRAINTS
ON COSMOLOGY AND GALAXY BIAS

In this section, we present the analysis of galaxy clustering in the
tomographic bins defined in this work. We describe the model we use,
the choice of scales, the measurements and covariance, and finally
the constraints we obtain on the cosmological model and the galaxy
bias of each tomographic bin, and their robustness under different
analysis choices.
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7.1 Model

Following the galaxy clustering analysis of the DES Year 3 fiducial
sample (Rodriguez-Monroy et al. 2022), we model the observed
projected galaxy density contrast §°, (#2) of galaxies in tomography
bin i at position 72 as

8, s (R) = 8, () + 8, psp (@) + 8, , (R) . (13)

The first term is the line-of-sight projection of the three-dimensional
galaxy density contrast, 8;3]3); the other terms correspond the con-
tributions from linear redshift-space distortions (RSD) and magni-
fication (), which are described in detail in Krause et al. (2021).
We relate the galaxy density to the matter density assuming a local,
linear galaxy bias model (Fry & Gaztanaga 1993), 84(x) = b3, (x),
with 8y = (Y(x) — Y)/Y. We assume the galaxy bias to be constant
across each tomographic bin b, and we discuss more about this
assumption later in this section.

Given the three terms in equation (13), the angular power spectrum

g; obsBeiobs (€) has six different components, corresponding to the auto-
and cross-power spectra of galaxy density, RSD, and magnification.
For the accuracy of the DES Year 3 analysis, it was shown by
Krause et al. (2021) that the commonly used Limber approximation
is insufficient to estimate these terms, and therefore we use the non-
Limber algorithm of Fang et al. (2020).° Using the full expressions
for the angular power spectrum, including RSD and magnification,
from Fang et al. (2020), the angular correlation function is given by
w'(0) =3, E Py(cos 0)CY @, (14)

L 4x ¢,0bs8g,obs

where P, are the Legendre polynomials. For the implementation
of these calculations, we use the COSMOSIS framework’ (Zuntz
et al. 2015), which in turn uses CAMB (Lewis & Bridle 2002)
to obtain the evolution of linear density fluctuations and HALOFIT
(Takahashi et al. 2012) to convert to a non-linear matter power
spectrum. The modelling of redshift uncertainties has been described
in detail in Section 5, and that parametrization has been implemented
in COSMOSIS for this analysis.

In addition, as explained in Section 4, we marginalize over an
additive constant parameter, parametrized by R, in the galaxy angular
correlation function:

w'(0) — w'(0) + 108 (15)

This parametrization accounts for potential residuals in the calcula-
tion of galaxy weights affecting the galaxy clustering measurements
(Kwan et al. 2017). Later in Section 7.3, we will explore the impact
of the choice of maximum angular scale in the galaxy clustering
measurements.

7.1.1 Choice of scales

Given the fact that we assume a linear galaxy bias model for this
analysis, we are required to remove small-scale information that can
potentially be affected by non-linearities. We follow the approach of
the DES Year 3 fiducial analysis (DES Collaboration 2022) and we
remove all galaxy clustering information below 8 4~' Mpc (Krause
et al. 2021) (corresponding to a minimum angular scale of 12.9,
10.5, and 9.0 arcmin for the three tomographic bins in this work,
respectively). We also test for the robustness of the results to a
minimum scale of 12 A~' Mpc. The maximum angular scale we

Shttps://github.com/xfangcosmo/FFTLog-and-beyond
"https://bitbucket.org/joezuntz/cosmosis

High-z in DES 3909
use is set to 60 arcmin for all measurements. This choice is driven
by the correction method of obtaining galaxy weights, described
in Section 4, in particular by the cross-validation scheme to avoid
overfitting, which shows no signs of overfitting at angular scales
below 1 degree.

7.2 Measurements and covariance

Equation (14) shows the modeling of the galaxy angular 2-point
correlation function, w(6). For the measurement of this galaxy
clustering observable, we use HEALPIX maps (nside = 4096)
of the corrected galaxy density contrast for each tomographic bin,
including the correction weights described in Section 4, and then
use a pixel-based version of the Landy—Szalay estimator (Landy &
Szalay 1993), following the notation of Crocce et al. (2016):

Npix Npix

N, —N)-(N;, - N
a@=> 3" )Nz( 1= 0,00 (16)

i=1 j=1

where N; is the galaxy number density in pixel i, and w; is the weight
of each pixel i (see Section 4). N is the corrected mean galaxy
number density over all pixels within the footprint and ®; ; is a top-
hat function which is equal to 1 when pixels i and j are separated by an
angle 0 within the bin size A. In practice, these correlation functions
are computed using TREECORR® (Jarvis, Bernstein & Jain 2004). Fig.
13 shows the w(#) measurements for the galaxy autocorrelations of
the three redshift bins considered in this work.

We estimate the covariance matrices using two complementary
methods: using Gaussian simulations, and using Jackknife. The
Gaussian simulations are generated following the procedure de-
scribed in Giannantonio et al. (2008; see Appendix B for details).
We generate 100 realizations of a set of four correlated maps
via HEALPIX ANAFAST routine. These maps, three for galaxy
overdensity and one for CMB «, are generated using the non-
linear (HALOFIT) power spectrum with our fiducial cosmology. Each
map includes its respective (uncorrelated) noise contribution. The
advantage of this simulation-based approach is that it allows us to
have an accurate estimation of the effects of the mask, and angular
binning. The main downside is that this approach does not account for
the non-Gaussian terms of the covariance. In order to cross-check the
validity of this approach, we also estimate the covariance using the
Jackknife technique, defining 150 subsamples for the measurements
in TREECORR. We find that both approaches are in good agreement
within the range of scales used for this work, pointing to a negligible
contribution of the non-Gaussian terms for this particular study. A
detailed comparison can be found in Appendix B.

Defining these data measurements as D = (% (9)} and the co-
variance C, we use the following expression to compute the signal
to noise of the measurements:

S/N=1\/Dc-' D" — ndf, (17)

where ndf is the number of degrees of freedom, which equals the
number of data points passing the scale cuts defined in Section 7.1.1.
For reference, the fiducial DES Year 3 analysis had a galaxy
clustering S/N = 63 (Rodriguez-Monroy et al. 2022). For the sample
in this work, the total S/N, including the three autocorrelations after
applying scale cuts, is S/N = 70. Breaking this into the individual
measurements, the autocorrelations for bins 0, 1, and 2 get S/N =
43, 49, and 37, respectively.

8https://rmjarvis.github.io/TreeCorr
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Figure 13. Upper panels: Measurements of the autocorrelations of angular galaxy clustering for the three redshift bins (0, 1, 2) defined in this work, for the
entire DES Y3 footprint we use. Filled coloured points correspond to the measurements passing the scales cuts defined in Section 7.1.1. The methodology for
the measurements and covariance, and the calculation of the corresponding signal to noise, can be found in Section 7.2. The solid lines show the best-fitting
theory for the fiducial analysis choices, as described in Section 7.3. The goodness of fit in that case corresponds to x2/dof = 8.3/8.6. Error bars are smaller than
the symbols, if not indicated. Lower panels: Residuals of the measurements given the best-fitting theory model shown in the upper panels.

7.3 Analysis and results

7.3.1 Parameter inference

In this part, we are interested in placing model constraints given the
measured two-point functions of galaxy clustering shown in Fig. 13.
In general, given our model M, we want to infer parameters p from the
set of measured two-point correlation functions in our data, D. The
theoretical model prediction for the two-point correlation functions,
computed using the parameters p of the model M, is Ty, (p) = {w¥(8,
p)}. We compare the measurements and model predictions using a
Gaussian likelihood, using the data covariance, C, defined above:

LDIp. M) oc e [(O-Tu@) (DT (18)

In this way, the posterior probability distribution for the parameters
p of the model M given the data D is given by

P(p|D, M)  L(D|p, M)P(p|M), (19)

where P(p|M) is the prior probability distribution on the parameters.

We sample the posterior of the galaxy clustering measurements
in the flat Lambda cold dark matter (ACDM) model, using the
same parameter space as the DES Year 3 fiducial analysis (DES
Collaboration 2022). The six cosmological parameters we vary are
listed in Table 5, together with their respective uniform priors.
These prior ranges are chosen to encompass at least five times the
68 per cent C.L. from relevant external constraints. Also, even though
we sample the amplitude of primordial scalar density perturbations
A, sometimes we will refer to the amplitude of density perturbations
atz = 0in terms of the RMS amplitude of mass on scales of 8 7~! Mpc
in linear theory, og. In addition to these cosmological parameters,
our fiducial analysis includes 18 nuisance parameters to describe:
galaxy bias (see Section 7.1), potential residuals in the galaxy weight
calculation (see Section 4), lens magnification (see Section 6) and
uncertainties in the redshift distribution of our three redshift bins (see
Section 5), all of them described in Table 5.

MNRAS 525, 3896-3922 (2023)

TableS. The model parameters and their priors used in the fiducial
flat ACDM analysis, using the entire DES Y3 footprint. The

parameters are defined in Section 7.3.

Parameter Prior

Cosmology

Qnm Flat (0.1,0.9)
1094, Flat (0.5,5.0)

ng Flat (0.87,1.07)
Qb Flat (0.03,0.07)

h Flat (0.55,0.91)
10392, h% Flat (0.60, 6.44)
Galaxy bias

bii €[0,2]) Flat (0.8,3.0)
Weight residuals

RO Flat (-8,-2)

R! Flat (-8, -2)

R? Flat (-8, -2)
Lens magnification

c Gaussian (0.0275, 0.24)
C! Gaussian (1305, 0.375)
c? Gaussian (2.145, 0.36)
Redshifts

AZ° Gaussian (0.0, 0.0051)
Azl Gaussian (0.0, 0.0075)
AZ? Gaussian (0.0, 0.0208)
o? Gaussian (0.997, 0.068)
o) Gaussian (0.999, 0.041)
o? Gaussian (0.998, 0.044)
A, Gaussian (0.0044, 0.0013)
AllowfZ Gaussian (0.0091, 0.0023)
Alzowfz Gaussian (0.0383, 0.0059)

7.3.2 Blinding procedure

In order to minimize a potential impact of experimenter bias, we
have adopted a blinding procedure throughout this work. In that way,
we have kept the results on the main parameters constrained in this
analysis (those depicted in Figs 14 and 15) blinded to the analysis
until the robustness tests performed in Section 7.3.3 satisfied the
tension metrics reported there. An internal review committee set-up
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Figure 14. Constraints on the combination of cosmological parameters and galaxy bias derived from out measurements of galaxy clustering for various analysis
configurations. The left-hand panel shows the fiducial constraints using the entire footprint (All), compared to the constraints using the independent splits in
North and South regions. The right-hand panel shows the comparison between the fiducial constraints and three analysis variations, one with conservative
redshift priors (x2 width in all redshift parameter priors), one with conservative magnification priors (x2 width in all magnification parameter priors), and
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Figure 15. Comparison of the parameter constraints from galaxy clustering
using different choices for the maximum angular scale, as well as not
marginalizing over an additive constant in the galaxy clustering measure-
ments.

by the DES collaboration was in charge of overviewing this procedure
and allowing for the unblinding of the constraints.

7.3.3 DES Y3 high-z results and robustness tests

Next, we analyse the model constraints from the measurements of
galaxy clustering. In this case, there exists a strong degeneracy
between galaxy bias and the amplitude of matter fluctuations, og,
and therefore, the analysis presented here is not sensitive to og.

The combination of clustering and weak gravitational lensing can
be used to break these degeneracies, and that will be presented in a
companion paper (in preparation), using CMB lensing from the SPT
and Planck. However, for the clustering-only case analysed here, the
shape of the galaxy clustering measurements is sensitive to the scale
of matter—radiation equality in the matter power spectrum, which
in turn depends on a combination of the matter density 2, and the
Hubble constant £, close to the direction 2.,/ (see e.g. Philcox et al.
2021).

Fig. 14 shows the constraints we obtain for the parameters we
are sensitive to, namely 2.,/ and the product of ogb' for the three
redshift bins we use. The fiducial constraints use the entire survey
footprint, the autocorrelations shown in Fig. 13, the scale cuts
described in Section 7.1.1 and the priors shown in Table 5, and
they result in constraints on a combination of the fraction of matter
in the Universe §2,, and the Hubble parameter /1, 2,k = 0.1957007,
and 2-3 percent measurements of the amplitude of the galaxy
clustering signals for the three redshift bins, probing galaxy bias
and the amplitude of matter fluctuations, bog. The best-fitting theory
model for this fiducial case is shown together with the measurements
in Fig. 13, and the corresponding x2/ndfis 8.3/8.1, where ndfis the
estimated effective number of degrees of freedom. Using the Update
Difference in Mean tension metric from Lemos et al. (2021), we find
the posterior constraints to be compatible with the redshift prior, with
a tension of 0.340, and also compatible with the magnification prior,
with a tension at 0.030.

In addition, to assess the robustness of the results, in Fig. 14 we
show constraints for various alternative cases. First, we analyse the
constraints we obtain from the independent North and South regions,
where we split the data into two independent patches: ‘North’ (Dec.
> —39°) and ‘South’ (Dec. < —40°). This is motivated by the fact
that we will combine the clustering measurements shown here with
CMB lensing measurements from Planck and SPT in a companion
paper (in preparation). Since SPT only covers the South region
in this split, we do this test to check for the consistency of the
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clustering measurements. In this test, the redshift and magnification
priors are computed specifically for each region, although they are
largely consistent (see Tables 3 and 4), and the galaxy clustering
measurements are also performed separately for the two regions.
The analysis of the North and South regions yields best-fitting theory
models with x2/ndfis 10.1/8.6 and x>/ndfis 15.7/8.6, respectively.
When using the entire parameter space, the constraints from the two
independent regions are in agreement, with an estimated tension
of 0.650, using the non-Gaussian parameter difference tension
metric from Lemos et al. (2021) and Raveri & Doux (2021). When
restricting the set of parameters to Qp,, Qun ki, b° g, b' 05, b* 0, the
constraints from the independent North and South regions are also
in agreement, with an estimated tension of 0.41c.

Fig. 14 also shows the galaxy clustering constraints under some
different analysis choices. In particular, we study the impact of
redshift and magnification priors, both described in Table 5, by
studying the conservative case of doubling the width these priors.
When broadening the width of redshift priors by a factor of 2, the
constraints on b’cg, b'og, and b?c'g widen by a factor of 1.47, 1.41,
and 1.27, respectively. When broadening the width of magnification
priors by a factor of 2, the constraints on b>cg broaden by a factor
of 1.20. Therefore, redshift priors are relevant for all bins, especially
for bins 0 and 1, while lens magnification is only relevant in bin 2,
at higher redshift. None of these changes has an important effect on
Qmh, which shows very robust constraints under all different analysis
choices. Using larger minimum angular scales, corresponding to
12 h~! Mpc, as opposed to the fiducial 8 ~~' Mpc, broadens the
constraints on biog by a factor of 1.28, 1.21, and 1.17 for bins i = 0,
1, and 2, while having no significant effect on Q2,h.

We also explore the impact of the choice of maximum angular
scale on the clustering analysis. The fiducial value for the maximum
angular scale is 60 arcmin, driven by the method used to correct
for correlations between galaxy density and survey properties. In
order to account for any residuals coming from that method, we
also marginalize over an additive constant parameter for each
tomographic bin R’ (see equation 15). Fig. 15 shows the galaxy
clustering constraints when limiting the maximum angular scale to
40 and 30 arcmin, and also, for the latter case, when not marginalizing
over additive constants. The figure shows how the galaxy clustering
constraints are robust to these choices. The constraints on €2,/ are
not sensitive to the variations, and the main impact of limiting the
maximum angular scale is a ~20 per cent decrease in constraining
power for b’0g. Regarding the posterior values of R, we find
RO = —5.13105 R! = —3.42703L R? = —3.217005. We can see
how this parameter is constrained to be very small for the first bin,
and its importance grows with redshift (and i-band magnitude) of the
tomographic bin.

7.3.4 Comparison with other DES Y3 clustering analyses

Given the parameter constraints obtained in the analysis of galaxy
clustering with the DES Y3 High-z sample presented in this work,
we can now compare how these constraints compare with the
corresponding clustering analyses of the other DES Y3 lens samples
already defined and used in other works. The fiducial DES Y3 lens
sample is the so-called MAGLIM sample (Porredon et al. 2021),
while the alternative lens sample is REDMAGIC (Pandey et al.
2022; see Table 1 for a comparison of the number densities of the
three samples). Fig. 16 shows the constraints on the cosmological
parameter combination of 2,4 provided by each of the three DES
Y3 lens samples, together with the Planck 2018 constraint. The
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Figure 16. Comparison of the constraints on the parameter combination 2,/
from galaxy clustering analyses using three different lens samples in DES
Y3. The constraints from the DES Y3 Fiducial sample, also called MagLim
sample [ref], are shown in blue; the constraints from the redMaGiC sample
are showing in yellow and the constraints from the High-z sample described
in this work are shown in red. The Planck 2018 constraint is shown in black.
The inset panel on the right of the plot depicts the different redshift range
probed by the three DES Y3 lens samples.

figure shows the DES Y3 constraints to be in agreement between
the three samples, and with the Planck result, and also having similar
constraining power. However, while the constraints from MAGLIM
and REDMAGIC probe similar redshift ranges, the High-z constraints
come from significantly higher redshifts, extending the redshift range
probed by the DES Y3 data. This results demonstrate the robustness
of the clustering measurements in this work and our ability to produce
awell-characterized high-redshift sample, which is complimentary to
the DES fiducial analysis in terms of the redshift range it probes. Note
that the upcoming analyses combining the High-z galaxy clustering
presented in this work with cross-correlation with weak gravitational
lensing will be able to break the degeneracy between galaxy bias
and the amplitude of matter fluctuations, og, allowing us to place
constraints on the latter at higher redshifts than probed in the fiducial
DES analysis.

8 SUMMARY AND OUTLOOK

The cosmological analysis of imaging galaxy surveys provides
powerful measurements of the amplitude of matter fluctuations in
the late time Universe. In recent years, the analyses of different
surveys like DES, KiDS and HSC, probing the regime at z < 1,
have reported persistent tensions with the predicted value from the
CMB, a problem known as the Sg tension. Measurements at a higher
redshift regime (1 < z < 3) would be crucial for understanding the
origin of this tension. In addition, such measurements would probe
the matter-dominated epoch and would shed light on dynamical dark
energy models that can mimic a cosmological constant at late times
but differ substantially during the matter-dominated era.

In this work, we describe the selection and characterization of
three galaxy samples covering the approximate redshift range 0.8 <
7z < 2.5 (see Fig. 6) using data from the third year of the Dark Energy
Survey Year 3 (DES Y3). To enable the selection and characterization
of these high-z samples, which push the limits of DES Y3 data, we
introduce several changes with respect to the fiducial DES Y3 lens
galaxy sample:
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(i) We start from a fainter galaxy selection, excluding all lens
galaxies used in the DES Y3 fiducial analysis. The average i-band
magnitude of the three High-z redshift bins is 22.6, 22.9, and 23.1,
respectively, while all four redshift bins used in the fiducial analysis
had average i-band magnitudes brighter than i = 22.

(ii) Both the selection and redshift characterization of the samples
are based on a principled, Bayesian scheme using a novel SOM
algorithm better suited for the characterization of lower S/N galaxies
(Sanchez et al. 2020).

(iii)) We use a redshift marginalization scheme that explicitly
accounts for uncertainties in the tails of redshift distributions.

(iv) We use a non-linear, machine-learning-based approach to
correct for correlations between galaxy number density and survey
observing properties like depth, stellar density, and sky noise.

Out of this list of changes with respect to the fiducial analysis,
steps (i) and (ii) are responsible for the selection of high redshift
galaxies, and steps (iii) and (iv) are required due to the faint, high-
redshift selection. The procedure results in the definition of three
redshift bins with mean redshifts around z = 0.9, 1.2, and 1.5, which
significantly extend the redshift coverage of the fiducial DES Year 3
analysis. In addition, these samples contain a total of about 9 million
galaxies, resulting in a galaxy density that is more than 2 times
higher than those in the DES Year 3 fiducial case (Porredon et al.
2022).

After the selection and characterization of the high-z galaxy
samples, we perform an analysis of their galaxy clustering autocorre-
lation measurements. The analysis provides robust constraints on the
product of the fraction of matter in the Universe €2, and the Hubble
parameter h, 2,h = 0.1957001 and 2-3 percent measurements
of the amplitude of the galaxy clustering measurements for the
three redshift bins, probing galaxy bias times the amplitude of
matter fluctuations, bog. The constraints on Qs are compatible
and show comparable uncertainties to the clustering analyses on
the fiducial and alternative lens galaxy samples using DES Y3
data (Porredon et al. 2022; Pandey et al. 2022), but probing a
complementary, much higher redshift range. This part also showcases
the robustness of the galaxy clustering analysis, which is highly
non-trivial when using galaxy samples going as faint as i ~ 23 in
DES Y3 data.

The definition and characterization of high-redshift galaxy sam-
ples in this work represents the first step to analyse the 0.8 < z
< 2.5 redshift range made by DES and other Stage III surveys. It
therefore develops the tools that will enable similar analyses with
other data sets, including Rubin LSST and Euclid, and it opens the
door to a range of scientific analyses exploiting the unique nature of
the selections. In subsequent publications, we will explore this set of
applications using the samples defined in this work. We will present
the cross-correlation of High-z galaxies with CMB lensing maps
from SPT and Planck, providing crucial constraints on Sg at high
redshift (Planck Collaboration VIII 2020; Omori et al. 2023). We will
also study their cross-correlations with galaxy lensing, probing S,
lensing magnification and intrinsic alignments at high redshifts, and
the clustering cross-correlations with lower redshift galaxies, probing
lensing magnification and the redshift evolution of galaxy bias. The
redshift regime of these samples is also well suited to study the star
formation history using cross-correlations with the cosmic infrared
background (Jego et al. 2023a, b). The outcome of these analyses
will provide important information about this particularly unexplored
period in the Universe, and will set the tools and expectations for
future analyses with more powerful data sets.
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APPENDIX A: REDSHIFT DISTRIBUTION
UNCERTAINTIES

In this section, we go over the redshift calibration presented in
Section 5 in detail.

A1 Redshift uncertainty parametrization
We can express the parametric N(z) error model as

_ G AL, _, 72<05
)= Cw x {G,- (I—Ai, ) z>05

Fi(y) lz—zil £2%;
Fi(z) lz—1zi| > 2%,

Ni(z.0', A]

low—z
Gi(z,0") = Cg, x {

y=o0lz—AZ -2 +z
i = /zE-(z)dz

s, = /&—zﬂﬂ@mz

F;(z) = i-th Fiducial redshift distribution
0" = {AZ, 0!}

wm”=/M@¢J@Q&
(Ce)™" = /G,-(z,e")dz (A1)

with Az’ the shift, o} the stretch and Al ,__ the low redshift fraction
free parameters of the model.

A visualization of the shift, stretch and low-z fraction parameters
can be seen in Fig. 11. On the one hand, the galaxy clustering
signal cares both about the mean redshift of the distribution but
also of its spread in redshift, as the more spread out galaxies are
the less physically correlated they become, reducing the clustering
signal. On the other hand, the majority of the selected galaxies live
primarily at high redshift, but with griz colours a population of
low-z galaxies leaks into the selection, especially in our highest
redshift bin, producing a distinct clustering signal than that of the
high redshift galaxies. Furthermore, we smooth the fiducial redshift
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distribution with a Savitzky—Golay filter: sample variance and shot
noise from the small area of the calibration deep fields manifests
in the N(z) as rapid fluctuations in redshift and enter squared in the
galaxy clustering signal, while the true redshift distribution over a
larger area is way more smooth as these variations average out. We
try different smoothing lengths and find compatible constraints on
the main parameters of interest (see Appendix A6).

A2 Redshift biases

To measure the colour—redshift relation in the deep fields, we build
our redshift sample from a combination of the redshift information
that we have available from spectroscopic and multiband photo-
metric redshifts, SPC (see Section 2.3). Whenever a galaxy has
spectroscopic measurements, we use them. Alternatively, we use
photometric redshifts from the PAUS + COSMOS, and when that is
not available we use redshifts from COSMOS2015. After removing
colour regions with significant stellar contamination and retraining
the Deep SOM (see Section 3), we find that only 9 out of 2304 cells
(0.4 percent) do not have any overlapping redshifts, but relative to
the probability of finding galaxies in these cells p(c), they amount
to only 0.1 per cent of the probability. Each tomographic bin relates
with different probability to each deep cell, and when we take that
into account the relative probability without redshift information in
each tomographic bin is 0.1 per cent, O per cent, and O per cent.

We only use high-quality spectroscopic redshifts; therefore, we as-
sume the spectroscopic redshifts are accurate and precise. However,
the photo-z from COSMOS2015 and PAUS + COSMOS are estimated
from multiband photometric band data, with band filters spanning
a wide range in wavelength and with multiple intermediate and
narrow bands. The individual p(z) from these catalogs are broader,
but their width is still negligible compared to the redshift resolution
from noisier wide field observations with griz broad bands, and so
we simply stack the individual p(z). Stacking the p(z) is statistically
incorrect, and for galaxies where the p(z) is degenerate between two
different redshift values, or if the p(z) were wider, then a more correct
technique should be used (e.g. Leistedt et al. 2016b; Sanchez &
Bernstein 2019; Alarcon et al. 2020; Malz & Hogg 2022; Rau et al.
2022). We defer the application of such techniques for future work.

An additional concern is whether the photo-z estimates from these
catalogs are systematically biased from an incorrect modeling of
the galaxy SEDs (e.g. Joudaki et al. 2020; Myles et al. 2021; van
den Busch et al. 2022). Here, we measure the bias by comparing
the photo-z estimates of individual objects in both catalogues to
overlapping spectroscopic measurements (described in Section 2.3).
For each of these objects, we calculate (Zphor — Zspec)/(1 + Zspec)s
with zphe the mode of the p(z), and we plot the distributions. By
visual inspection, we find that the distributions of COSMOS2015 and
PAUS 4 COSMOS are generally unimodal, but sometimes slightly
biased. We define the median bias as a function of the DES deep field
i-band magnitude as

b(i) = Median (M | i) . (A2)
1+ Zspec
Fig. A1 shows b(i) from both catalogues: we find a slight positive bias
b(i) ~0.002 at faint magnitudes in the PAUS + COSMOS catalogue,
while the COSMOS2015 catalogue presents a negative bias reaching
a minimum value of b(i = 22.5) ~ —0.005. We model the redshift
bias uncertainty in these samples with a parameter « that shifts the
individual p(z) of COSMOS2015 or PAUS + COSMOS galaxies
(one o parameter for each catalogue). This o parameter shifts p(z)
— p(z — 8(a, i) - (1 + z)) by an amount § that is proportional to the
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Figure Al. Median photo-z bias as a function of the deep field DES i-band.
The bias is calculated for COSMOS2015 and PAUS + COSMOS for galaxies
where a spectroscopic measurement also exists, with Az = Zphot — Zspec. This
measured bias is used to estimate the redshift bias of this catalogues and is
marginalized over in our analysis. See Section A2 for more details.

median bias of a galaxy of magnitude i:
8(a, i) = ab(i) (A3)

We place a Gaussian prior on this parameter and marginalize over
it, p(a) = N(u = 1,0 = 1). Therefore, our most likely guess for
the systematic bias is centred at the measured median bias b(7), but
we assign an uncertainty equal to the magnitude of b(i). Note that
the value « is the same for all galaxies in the same catalog, but the
magnitude of the shift to the p(z) ultimately depends on both the
redshift and magnitude of each galaxy: §(«, i) - (1 + z2).

A3 Selection biases

We empirically measure the prior on the colour—redshift relation
from the galaxies in the deep field that have overlapping redshifts.
Since we do not parametrize this prior and let the parameters update
hierarchically with wide field galaxies, it is crucial to include all
selection effects for the final estimate to be unbiased. BALROG
injects versions of these galaxies into the wide field and allows us
to measure the probability they will be selected into each of our
tomographic bins, and therefore to correct for these selection effects.
However, due to the limited number of BALROG injections, we
cannot always measure these effects accurately, leading to several
approximations to the SOMPZ methodology described in Section
3. In this section we explain these approximations and their validity,
and provide a way to marginalize over the potential systematic
biases that they might introduce.

The first row of panels (from the top) of Fig. A2 show the
distribution of deep field galaxies in the Deep SOM weighted by their
probability of being selected in each tomographic bin as measured by
BALROG. This distribution is different than the one presented in Fig.
2, where we show the distribution of deep field galaxies weighted
by their probability of being selected at 22 < i < 23.5 according to
BALROG. Note how in each panel the distribution peaks around Deep
SOM cells with high redshift and has little to no overlap with cells at
lower redshift, as expected (compare to Fig. A3 for the distribution
of mean redshift in the Deep SOM).

The redshift distribution of each Deep SOM cell formally depends
on the pre-selections § and on the Wide SOM cell where galaxies are
selected, p(z|c, ¢, §), see equation (AS):
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p(zlb,§) =" p(zlé, 3, b) p(éls, b) (A4)
éeb
=33 pGle.2.9) plele, $) pls. by (A5)
ceb ¢
~ > > p(le, b, §) plele, §) pels, by (A6)
ceh ¢
~ Y > plle, B, plelé, $) pels, by (A7)
ceh
~ D pGle, §) plele, §) pels, b, (A8)
¢eh ¢

Using BALROG we can empirically measure how often deep field
galaxies ¢ will get through our pre-selections § and also how often
they get selected in the different wide field cells ¢. However, due
to the limited number of BALROG injections it is not possible to
accurately measure the relation between all (z, ¢, ¢). Following
Myles et al. (2021), we use the approximation shown in equation
(A6) for our fiducial estimation of the redshift distribution of deep
cells using p(z|c, &) ~ p(zle, b), with b representing the set of ¢ of
a tomographic bin. When no redshift galaxy satisfies both ¢ and b
then we use p(z|c, B, §) (equation A7) using redshift information
from galaxies that are selected into any of the tomographic bins
B = {by, by, by}, or else p(zle, §) (equation AS), using redshift
information from any galaxies satisfying our pre-selection §.

The second row of panels of Fig. A2 shows the difference in
the mean redshift of each cell from including the tomographic bin
selection, showing:

A(z);

/zp(zlc,&,f)dz—/zp(zw, $)dz
= (z|b)—(2). (A9)

Note how the A(z); values tend to be close to 0 where the distribution
of p(c|b;) peaks (top panels), as most galaxies from these cells get se-
lected very often into that tomographic bin. However, note that A(z);
shows larger differences at the tails of the p(c|b;) distribution. In such
cells, generally speaking, galaxies with a redshift that is closer to the
average redshift of the tomographic bin get preferentially selected,
and consequently cells with a (z) smaller than the average redshift
of the bin tend to have a positive A(z);, and vice versa. This effect
is very clear in bin 0, where cells at the lower part of the SOM have
a (z) that is smaller than the typical redshift of galaxies in bin 0, and
they show a positive A(z)o, implying that additionally conditioning
on the tomographic bin tends to increase the mean redshift of these
cells. We find the contrary for cells at the top of the SOM, which
have a (z) that is larger than the typical redshift of galaxies in this bin
and they present a negative A(z)o that lowers the average redshift of
the cell when we condition their selection to the bin.

This highlights how important it is to at least include the so-
called bin conditionalization,’ i.e. using p(z|c, l;, §) instead of just
p(zle, §). Otherwise one will introduce important selection effect
biases, as those found by Buchs et al. (2019), where they found a
positive bias for low redshift bins relative to the average redshift
and a negative bias for high redshift bins, as a result of just using
p(zlc, §). More quantitatively, the average difference in mean redshift
per tomographic bin, measured as . p(clb)((z | b)) — (z)), is (—
3, 11, 12) x 1073, which is non-negligible.

9We follow the notation introduced in Myles et al. (2021).
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Figure A2. The redshift selection effects and the extrapolated Az selection effect bias. Each column shows a different tomographic bin. The first row of panels
shows the pdf of deep field cells conditioned on each tomographic bin, p(c|b;). The second row of panels shows the mean redshift difference of deep field cells
when galaxies are additionally conditioned to be observed by BALROG into our each tomographic bin. The third row of panels shows which cells have some
galaxy with redshift information selected into the bin by BALROG (i), which do not (ii)—(iii), and also which do not have any z information (iv) (only five cells
for bin 0, four for bin 1 and one for bin 2). The fourth row of panels show an extrapolated redshift bias. The redshift bias due to the additional selection of
galaxies into the bin is extrapolated from (i) cells that have galaxies selected into the bin to cells (ii)—(iii)—(iv) that do not. See Section A3 for more details.

The third row of panels in Fig. A2 shows with a colour code which
cells have redshift estimates that include accurate tomographic bin
selection effects. The colour code goes as follows:

(i) Dark green: Cells that have at least one redshift galaxy that has
been selected by BALROG into the corresponding tomographic bin,
we use equation (A6), p(z|c, b, .

(ii) Light green: Cells that have do not have any galaxy selected
into the corresponding tomographic but at least one redshift galaxy
that has been selected by BALROG into one of the other two
tomographic bins, we use equation (A7), p(z]c, IA?, $).

(iii) Light red: Cells that have do not have any galaxy selected
into any tomographic bin, but at least some galaxy satisfying our
pre-selection §. We use equation (A8), p(z]c, §).

(iv) Dark red: Cells that have do not have any redshift galaxy

satisfying our pre-selection §. We do not have direct redshift
information for these cells.

Note how the A(z); from the second row of panels can only
be calculated for (i)/Dark Green cells in the third row of panels.
The remaining cells do not have any galaxy selected by BALROG
into the corresponding tomographic bin, and bin conditionalization
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Figure A3. Deep SOM mean redshift. The modified terrain colour map high-
lights the different mean redshift levels, with the flooded area roughly showing
redshifts below our samples and our high-z galaxies lifting out of the oceans
of low-z galaxies. The grassy area roughly shows the redshifts of our first two
tomographic bins, while the north-northwest hill shows the area of our highest
redshift bin. Going south we find the snowed peaky island showing the area of
very high redshift Lyman-break galaxies, with very low redshift Balmer-break
galaxies lurking below the icy glaciers of Lyman-break galaxies.

cannot be estimated directly, which is a source of potential systematic
uncertainty. We test this effect by calculating the mean redshift bias
in Dark Green cells from neglecting the bin conditionalization, and
extrapolating it to other nearby cells using a Gaussian smoothing. The
last row of panels in Fig. A2 shows the bias values from extrapolation
for every deep cell, showing that certain groups of cells have
under-/overestimated mean redshifts. We parametrize this possible
systematic bias with the same parameter € that shifts the p(z|c) —
p(z — €(B, ¢)|c) of each deep cell; with €(B, ¢) = B b(c); and b(c)
the estimated systematic bias from the last row of panels in Fig. A2.
‘We place a Gaussian prior on this parameter and marginalize over it,
p(B) = N(u = 1,0 = 1). Fig. 12 shows that this missing selection
effect (labelled as BCE in the figure) has a very negligible effect to
all the N(z) parameters relative to the other sources of uncertainty.

A3.1 Cell conditionalization

An additional source of systematic error comes from the approxima-
tion of using bin conditionalization (or bincond, equation A6) instead
of the exact cell conditionalization (or cellcond, equation AS). Fig.
A4 explores the difference in mean redshift for (i)/Dark Green cells
between using cellcond and bincond. We find a clear (but somewhat
noisy) trend, where cells within a tomographic bin with a lower than
average mean redshift have an overestimated mean redshift, and vice
versa, as expected. The overall trend within the same tomographic
bin is centred around 0, as bincond already corrects for most of the
overall redshift selection effect bias.

‘We have calculated the N(z) using cellcond, and despite the large
biased trend seen in Fig. A4, we have found that the resulting n(z)
from using cellcond presents very similar mean redshift, width and
low redshift fraction values to those obtained from just using bincond.
Upon closer inspection, the p(z|c, ¢) and p(z|c, b) distributions differ
at their tails, which produces significant changes to their mean
redshifts (z|c, &) and (z|c, b), but this effect ends up cancelling
out after adding up the contributions from each deep field cell to
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Figure A4. Mean redshift difference for each wide field cell between
using cell conditionalization (cellcond) or bin conditionalization (bincond).
Cellcond refers to conditioning the redshift distribution of Deep SOM cells to
galaxies that are selected into each Wide SOM cell (i.e. using equation AS).
In contrast, Bincond only requires galaxies to have been selected into any
Wide SOM cell belonging to the tomographic bin (i.e. using equation A6).
As expected, Wide SOM cells with lower redshift within the bin have a lower
estimated mean redshift when we additionally require deep field galaxies to be
selected into that particular Wide SOM cell. See Section A3.1 for more details.

calculate the final N(z) for each bin. Although this effect cancels for
these samples and for the summary statistics relevant to this work,
we suggest it should be verified for other galaxy samples.

A4 Zero-point uncertainty

As measured in Hartley et al. (2022), the deep field photometry
has some residual photometric zero point error. This error is largest
in the u-band (0.055), and much smaller in the other bands: 0.005
in griz and 0.008 in JHK (table 5 in Hartley et al. (2022)). This
in principle impacts our analysis in two ways. First, most of the
redshift information is in the COSMOS fields, while X3, C3, E2 have
little or no redshift information. Therefore, we are extrapolating the
redshift information measured in one field to the colours of all fields,
and measuring the colour abundance from all fields. The zero-point
uncertainty affects the accuracy of this extrapolation, as well as the
measured deep colour abundance. On the other hand, a zero-point
error on the deep field fluxes introduces an error in the input injected
model fluxes used by BALROG, which in turn will induce a slight
error on the distribution of recovered wide field BALROG fluxes.
Since the error in the u band is the largest, there is no u# band in the
wide field, and the zero-point errors in griz are small, we assume
the former is the only form of zero-point error we need to worry
about.

Since the zero-point photometric uncertainty is mainly measured
from the variance of the stellar and red galaxy loci between each
band and field (for full details see Hartley et al. 2022), we perturb
the zero-point magnitude of each deep field (X3, C3, E2, COSMOS)
and band by an amount drawn from a Gaussian distribution with
zero mean and variance equal to the measured variance from Hartley
et al. (2022). Since only the relative zero-point matters, we fix the
zero-point of one of the fields (COSMOS) and perturb the zero-
point of the remaining fields (X3, C3, E2). We marginalize over this
uncertainty by (i) drawing 3 zero-point shifts for each X3, C3, E2
field, (ii) we modify the fluxes and flux errors by the corresponding
amount, (iii) we reassign each galaxy to the Deep SOM based on the
perturbed fluxes, and (iv) we re-calculate the n(z) based on this new
assignment.
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Figure A5. Wide SOM mean redshift variance from zero-point photometric
uncertainty. The top panel shows the scatter in the mean redshift of each
Wide SOM cell o4, from perturbing the fluxes of Deep SOM galaxies with
the zero-point photometry uncertainty, weighted by 1 + (z)p, with the latter
being the average mean redshift from the same variations. The bottom panel
shows (z),p for each Wide SOM cell for reference. Overlaid we can see the
cells of the Wide SOM that constitute the three tomographic bins used in
this work, following the procedure described in Section 3.3 and Fig. 4. See
Section A4 for more details.

Fig. AS shows the resulting variance in mean redshift for each
Wide SOM cell in the top panel, as a result of perturbing the fluxes
of the deep field galaxies. The average mean redshift shown in
the bottom panel for reference, with the cells pertaining to each
tomographic bin indicated with different colours. As expected, we
find a large effect in cells with a low redshift, as the u-band
uncertainty is the largest, which affects the classification of low
redshift galaxies. We also find a large effect in some of the wide cells
that have a high mean redshift but that are next to wide cells with
low redshift, i.e. cells that are near colour-redshift degeneracies.

A5 Redshift uncertainty parameter priors

To estimate the priors p(Az), p(o!) and p(Aj,,_.) on these pa-
rameters we draw {n*(z)} samples from the sources of uncertainty
described in this Appendix, and for each individual realization k

we calculate its summary statistics {A7¥, o7, Al% ). We find
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Figure A6. Visualization of the smoothing procedure applied to the raw
redshift distributions using a Savitzsky Golay (SG) filter. A fiducial set of
distributions is presented, along with two alternative sets using lower (higher)
amounts of smoothing, as described in Appendix A6.
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Figure A7. Comparison of the parameter constraints from galaxy clustering
using higher and lower amounts of N(z) smoothing, and no smoothing, as
described in Appendix A6, demonstrating the small impact of the smoothing
step in the analysis.
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that the sampled distributions look nearly Gaussian (Fig. 12), and
therefore we assume a Gaussian distribution for each p(Az?), p(azi )
and p(Aj,,_.), and calculate their mean and width from the average
and standard deviation of the sampled values.

In total, we have 24 zero point systematic shifts (8 bands and 3 out
of 4 fields), two redshift systematic shifts (one for COSMOS2015 and
one for PAUS + COSMOS) and one selection effect bias parameter.
We draw 100 samples in quantile space using Latin hypercube
sampling, a stratified random sampling technique for generating
near-random samples of parameter values that is more efficient than
a pure random sampling. For each of these 100 samples we shift the
p(z) of individual galaxies, we shift the deep fluxes of galaxies and
reassign them to deep cells. Then for each of these 100 samples we
generate 5,000 N(z) samples using 3SDIR. We properly weight deep
field galaxies injected by Balrog by the clustering weight (Section 4)
of the spot where they were injected. We produce samples for all the
area, and the North (Planck) and South (SPT) regions.

The fiducial redshift distribution F(z) of equation (A1) is the av-
erage N(z) of the distribution samples with an additional smoothing.
We apply a Savitzky-Golay filter on the average N(z), using a 0.21
smoothing length in redshift for Bins 0 and 1, while for Bin 2 we use
a combination of two smoothing lengths: we use a length of 0.21 at
7 < 0.5 and a length of 0.45 for z > 0.5.

A6 Smoothing of the redshift distributions

The redshift inference methodology described in Section 3 is subject
to effects of shot noise and especially sample variance in the redshift
samples (Sdnchez et al. 2020), which result in noisy estimates of the
redshift distributions of our tomographic bins. The uncertainties com-
ing from these effects are properly taken into account in Section 5.
In addition, we also apply a smoothing procedure to the redshift
distributions used in this work, since noise in the redshift distributions
might cause instabilities in the analysis of galaxy clustering. For that
purpose, we apply a Savitzsky Golay (SG) filter with a third-order
polynomial to the raw redshifts distributions, as depicted in Fig. A6.
In our fiducial case, the length of the filter window is set to 0.21 in
redshift for the low redshift part of the distributions (z < 0.5), and
0.45 in redshift for the higher redshift part of the distributions (z
> 0.5). In order to test the stability of our results to the particular
smoothing filter choices, we define two alternative sets of smoothed
redshift distributions, corresponding to lower (higher) smoothings,
using SG filters with window lengths of 0.15 (0.27) in redshift for
the low redshift part of the distributions (z < 0.5), and 0.27 (0.55) in
redshift for the higher redshift part of the distributions (z > 0.5). The
comparison between the raw estimates and the smoothed versions of
the redshift distributions for the three tomographic bins is shown in
Fig. A6. Then, in Fig. A7, we test the impact of the smoothing step in
the parameter constraints from the galaxy clustering measurements
used in this paper, and find negligible impact, even for the case of no
smoothing of the redshift distributions.

APPENDIX B: COMPARISON BETWEEN JK
AND THEORY COVARIANCE

In this section, we compare the two covariance estimates (based on
Gaussian simulations, and based on Jackknife estimates) presented
in Section 7. In order to generate each realization of the Gaussian
simulations, we generate a set of four maps following the procedure
detailed in Giannantonio et al. (2008). In order to obtain correlated
maps with the correct power spectrum, we have to generate a set
of correlated (in-phase) screens with an amplitude 7; , where the
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Figure B1. Comparison of the diagonal elements of the theory and jackknife
covariance matrices for the autocorrelations of angular galaxy clustering for
the three redshift bins (0,1,2) defined in this work. The methodology for the
measurements and covariance can be found in Section 7.2 and Appendix B.

subindex i refers to the final map, and k to the phase. So we
add all contributions with the same index i to get the ith map,
and all screens that have the same index k are generated using
the same random seed (are in-phase). Each screen is generated
using hp.anafast (T*x2_1j, nside). The amplitudes Ty are
calculated as follows:

Tia =4/ C, B

7, = S (B2)
2a — T]a s
Ty =/C}' — T2, (B3)
COZ
Ty = -4, (B4)
Tla
CP?—Ty
Ty = ————, (B5)
3b T3,,
Ty =/ CP? = T3, — T, (B6)
Tha = c (B7)
4a T]a 3
Cl —1,T.
Ty = @72‘14“7 (B8)
T
C¥ — T3, Tsy — T3 T
T4c — ? 3alda 3b1L4p i (B9)
T3L‘
Tyy = \/ Ck* — T} — T2 — T2. (B10)

We generate 100 realizations of these maps, and get their covariance.
We compare the resulting covariance with the Jackknife estimate in
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Fig. B1. In this figure, we can see that the diagonal terms from both
covariance estimates are in excellent agreement in the range of scales
that we are considering.

APPENDIX C: FALSE CORRECTION TEST OF
NN-WEIGHTS

In this section, we verify that the neural network architecture and
the k-fold cross-validation described in Section 4.2 do not introduce
significant artificial correlations due to overfitting or from treating
pixels with n > 2 galaxies as n = 1. In general, correction methods
work by removing the spurious clustering introduced by varying
observing conditions, therefore reducing the amplitude of w(6) after
correction has been applied. Here, we use unaltered simulations to
test if the NN introduces any overcorrection.

We use the public MICEv2 simulations (Fosalba et al. 2015)
and perform the following cuts: 0.8 < z_cgal < 1.0 and 18 <
des_asahi_full_i_true < 23.5. Since MICE only spans one
octant, which we replicate and mirror it 8 times so it spans the full
sky, after which we apply the High-z redshift samples mask and
subsample to the galaxy density of Bin 0. We use this unaltered
mock catalog, together with the same DES survey property maps
from Section 4.1, to train the neural network weights. We do this
multiple times to account for possible run-to-run variations of the
NN best-fitting weights.

Fig. C1 shows the ratio between the simulated w(6) and the
corrected one after training the NN and applying the resulting
weights. The black bands show the distribution for different multiple
training runs. Values greater than unity indicate an overcorrection of
the neural network training. We find the overcorrection is well within
the statistical uncertainty in the scales of interest, always lower than
40 percent of the statistical uncertainty at any given used scale,
and much smaller than that in the combined set of used angular
scales.

12} N Systematic error after correction
Scale cuts
§ Statistical noise
g L1f
£
.20
g
31 0 b
~
=
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£ 091
3
0.8F
10° 10t 102

6 [arcmin]

Figure C1. False detection bias in unaltered mock catalogues. It shows the
simulated angular clustering from the unaltered mock catalog w'™¢(9) divided
by the same angular clustering corrected by the NN-weights w*°i€h®d(g) The
black bands show the +1¢ distribution for multiple runs of the NN. Values
greater than unity indicate an overcorrection of the neural network training.
The yellow bands indicate the statistical uncertainty using the diagonal of the
covariance, relative to the measured angular clustering of Bin 0. The bias is
well within the statistical uncertainty, and always less than 40 per cent of the
statistical uncertainty in our fiducial scales.
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