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ABSTRACT

We present an alternative calibration of the MAGLIM lens sample redshift distributions from the Dark Energy Survey (DES) first
3 yr of data (Y3). The new calibration is based on a combination of a self-organizing-map-based scheme and clustering redshifts
to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3
redshift calibration of the lens sample. We describe in detail the methodology, and validate it on simulations and discuss the
main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 n(z) calibration,
with only mild differences (<30) in the means and widths of the distributions. We study the impact of this new calibration on
cosmological constraints, analysing DES Y3 galaxy clustering and galaxy—galaxy lensing measurements, assuming a Lambda
cold dark matter cosmology. We obtain 2, = 0.30 &= 0.04, o0 = 0.81 £ 0.07, and Sg = 0.81 % 0.04, which implies a ~0.40
shift in the 2 — Sg plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the
lens sample in multiprobe cosmological analyses.

Key words: gravitational lensing: weak — galaxies: distances and redshifts —dark energy.

Southern hemisphere and having detected hundreds of millions of
galaxies. Together with other ongoing and future galaxy surveys (e.g.
The Dark Energy Survey (DES, Flaugher et al. 2015) is currently the Kilo-Degree Survey KIDS, Kuijken et al. 2015; Hyper Suprime-Cam
largest photometric galaxy survey to date, spanning 5000 deg? of the HSC, Aihara et al. 2018; Vera Rubin Observatory Legacy Survey of
Space and Time (LSST), LSST Science Collaboration 2009; Euclid,
Laureijs et al. 2011), DES can achieve competitive constraints on
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cosmological parameters by studying both the spatial distribution
of the detected galaxies and by measuring the tiny distortions in
their observed shapes due to gravitational lensing effects induced by
the large-scale structure of the Universe. For instance, the analysis
of the first 3 yr (Y3) of DES data (DES Collaboration 2022)
placed tight constraints on cosmological parameters combining
three different measurements of the two-point (3x2pt) correlation
functions that involved galaxy positions and measured galaxy shapes.
These measurements are as follows:

(i) Cosmic shear, i.e. the two-point correlation function of galaxy
shapes; the DES Y3 measurements (Amon et al. 2022; Secco et al.
2022) involve the angular correlation of 10® galaxy shapes from
the weak lensing sample (Gatti et al. 2021), divided into four
tomographic bins. We refer to this as the ‘source’ sample:

(ii) galaxy clustering: the two-point correlation function of the
positions of bright galaxies (which we refer to as the ‘lens’ sample)
(Rodriguez-Monroy et al. 2022).

(iii) galaxy—galaxy lensing: the cross-correlation function of
galaxy shapes and the position of the galaxies of the lens sample
(Prat et al. 2022).

The modelling of each of these correlation functions requires
knowledge of the redshift distributions (from hereafter n(z)) of the
two samples (lens and source galaxies), which have to be estimated
with great accuracy in order to avoid biased cosmological results
(Huterer et al. 2006; Cunha et al. 2012; Benjamin et al. 2013;
Huterer, Cunha & Fang 2013; Bonnett et al. 2016; Hildebrandt
et al. 2017, 2021; Hoyle et al. 2018; Joudaki et al. 2020; Tessore &
Harrison 2020). The optimal solution would be to avail ourselves
of spectroscopic observations, providing an accurate redshift mea-
surement of each targeted galaxy. Unfortunately, it is not feasible
to obtain said spectra other than for a small fraction of the science
sample, due to the required time and cost of the observing campaign.
Cosmological surveys like DES therefore have to use for their
redshift estimation measurements only a few, noisy, broad-band
fluxes, requiring inventive methods to create robust and unbiased
redshift calibration pipelines.

For the DES Y3 3x2pt analysis, two different lens samples
were used. The first sample is defined by selecting luminous red
galaxies through the RedMaGiC algorithm (Rozo et al. 2016),
which retains galaxies with high-quality photometric redshift, by
fitting each galaxy to a red-sequence template. The galaxies passing
the RedMaGiC selection have, however, a low number density,
and the final sample comprises roughly 3000000 galaxies. The
second sample slightly compromises on the redshift accuracy to the
benefit of a larger number density. The MAGLIM sample (Porredon
et al. 2021) is a magnitude-limited sample with a number density
more than three times greater than RedMaGiC, comprising roughly
10000 000 galaxies. In the fiducial DES 3x2pt (DES Collaboration
2022) and 2x2pt analyses (Porredon et al. 2022) that rely on the
MAGLIM sample; the redshift distributions of the sample have been
characterized using the machine learning photometric redshift code
Directional Neighbourhood Fitting (DNF, De Vicente, Sdnchez &
Sevilla-Noarbe 2016). In its current implementation, the DNF
code provides per-galaxy redshift estimates using nearest neighbour
techniques. The redshift distributions were then further calibrated
using clustering redshift (hereafter WZ), which relies on cross-
correlation measurements with spectroscopic samples (Cawthon
et al. 2022). This calibration step also placed uncertainties on the
redshift distribution estimates, which were modelled by ‘shifting’
and ‘stretching’ the redshift distributions.

DES Y3 redshift calibration 2011

This work presents an additional and more sophisticated calibra-
tion of the redshift distributions of the lens sample, and studies the
impact of these new redshift distribution estimates on the cosmolog-
ical constraints using DES Y3 galaxy clustering and galaxy—galaxy
lensing measurements (2x2pt). In particular, we adopt an approach
similar to the one adopted to characterize the redshift distributions
of the DES Y3 weak lensing (WL) sample, presented in Myles et al.
(2021) and Gatti et al. (2022). This methodology also combines
photometric and clustering constraints to produce redshift estimates,
and it is more powerful than the fiducial redshift calibration adopted
for the lenses for a number of reasons. The photometric information
is used to produce redshift estimates using a self-organizing-map-
based scheme (hereafter SOMPZ), which allows a meticulous control
over all the (known) potential sources of uncertainties affecting the
estimates. The SOMPZ method works by leveraging the DES deep
fields, which have deeper observations with additional photometric
bands and overlap with many-band redshift surveys available. It is
possible to reproduce realistic selection functions in the deep fields
from the injection of galaxies into actual DES images using the
sophisticated image simulation tool BALROG (Everett et al. 2022).
The SOMPZ method provides an ensemble of redshift n(z) for a
given galaxy sample, which captures the uncertainties in the redshift
distributions at all orders (i.e. not only in the mean or width of
the distributions). The clustering constraints are then incorporated
through a rigorous joint likelihood framework where the clustering
data are forward modelled as a function of the input n(z), and the
specific WZ systematics are marginalized over. This scheme allows
to draw n(z) samples conditioned on both clustering and photometric
measurements, improving the n(z) estimates by correctly taking into
account the significance of the information provided by each source
of information. This combined approach has proven to be more robust
than SOMPZ or WZ applied individually (Gatti et al. 2022), as
the combination exploits the complementarity of both methods and
reduces the overall n(z) uncertainty.

The paper is organized as follows. In Section 2 we introduce all the
samples used in this work, both on data and simulations. Simulated
samples are used to validate the methodology. Section 3 summarizes
the SOMPZ+WZ methodology adopted in this paper, also outlining
the differences with the ‘standard” SOMPZ+WZ methodology used
to model the DES Y3 source redshift distributions (Myles et al. 2021;
Gatti et al. 2022). Section 4 is devoted to the characterization of the
method’s uncertainties. Section 5 presents the redshift distributions
MAGLIM sample produced using the techniques described in this
work. Section 6 describes the impact of this new redshift calibration
on cosmological parameters estimation and compares it to the ‘fidu-
cial’ constraints obtained using the DNF+WZ redshift calibration
(Porredon et al. 2022). In Appendix A we provide details on the
construction of the MAGLIM sample in simulations. Appendix B
complements the paper with a validation of the methodology in
simulations. In Appendix C are listed the values of parameters and
the prior functions used in the cosmological inference; Appendix D
discusses the impact of different redshift uncertainties marginaliza-
tion techniques on the cosmological parameters estimation.

2 DATA

We describe in this section the data and simulated products used in
this work. The samples used in this work are the following:

(i) the DES MAGLIM sample, used as lenses in the DES cosmo-
logical analysis. Characterizing its redshift distribution is the main
goal of this work;
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(ii) the DES deep field samples, which are observed in small fields
by DES with deeper observations than wide field ones and where
information from additional photometric bands are available. Deep
fields are a key element of the SOMPZ methodology;

(iii) the DES BALROG sample; this sample consists of software-
injected deep field galaxies into DES wide field images and is a key
element of the SOMPZ methodology;

(iv) the ‘redshift’ samples, which are a collection of either spectro-
scopic or multiband photometric samples collected by other surveys
in the DES deep field region. The redshift samples are a key element
in the SOMPZ methodology;

(v) BOSS/eBOSS spectroscopic galaxy catalogues; these are
galaxies with spectroscopic redshift overlapping with the DES wide
field footprint used for the WZ measurement;

(vi) the DES WL sample, used as sources in the DES cosmological
analysis; we use the WL sample here when presenting the impact of
MAGLIM SOMPZ redshift distributions on the cosmological analysis
results.

All of these samples in data have also been reproduced in
simulation for testing purposes.

2.1 DES Year 3 data

DES (Flaugher et al. 2015) is a five broad-band (grizY) photometric
survey that mapped roughly 5000 deg? of the southern sky, using
a 570 megapixel camera (DECam; Flaugher et al. 2015) mounted
on the 4 m Blanco telescope at the Cerro Tololo Inter-American
Observatory (CTIO) in Chile. In this work we use data from the first
3 yr (out of six) of observations (Y3), which were taken from 2013
August to 2016 February. The DES Data Management (DESDM)
team was in charge of processing the raw images (Sevilla et al.
2011; Abbott et al. 2018; Morganson et al. 2018); full details are
provided in Sevilla-Noarbe et al. (2021) and Gatti et al. (2021). The
main catalogue upon which all the DES samples are built is the
DES gold catalogue, obtained using observations in the griz bands.
Objects belonging to the gold catalogue have passed a number of
selections aimed at removing objects in problematic regions of the
sky or anomalous detections (e.g. objects with pixels affected by
saturation or truncation issues). The gold catalogue consists of 388
millions objects (Sevilla-Noarbe et al. 2021). Each object comes
with morphological and photometric measurements based on two
different pipelines, the Multi-Object Fitting pipeline (MOF) and
the Single-Object Fitting pipeline (SOF). The former performs a
simultaneous multi-object, multi-epoch, multiband fit to estimate
morphology and photometric information; the latter does not perform
the multi-object fit when it comes to crowded objects. The DES Y3
SOF implementation is faster and less prone to fit failures compared
to the MOF pipeline, and it does not suffer from any significant loss
in terms of accuracy (Sevilla-Noarbe et al. 2021).

2.2 MAGLIM sample

The main galaxy sample considered in this work is the MAGLIM
sample. The MAGLIM sample is a subset of the DES gold catalogue
and consists of bright galaxies selected with an ad hoc selection that
optimizes the number density and the redshift accuracy of the sample
(Porredon et al. 2021). The MAGLIM sample spans the full DES Y3
wide field footprint, for a total of ~4143 deg”. SOF magnitudes in the
riz bands' are used for the selection and photometry. The selection

'We exclude the g band as its photometry is known to be affected by PSF
estimation issues (Jarvis et al. 2021).

MNRAS 527, 2010-2036 (2024)

Table 1. Summary of the MAGLIM sample. We have outlined for each
tomographic bin the redshift range (selected using DNF Zyean ), the number of
galaxies, the number density, and the magnification coefficient as measured
in Elvin-Poole et al. (2023).

Bin z range N galaxies n density Chiux
1 [0.20, 0.40] 2236 473 0.150 0.43
2 [0.40, 0.55] 1599 500 0.107 0.30
3 [0.55, 0.70] 1627 413 0.109 1.75
4 [0.70, 0.85] 2175 184 0.146 1.94
5 [0.85, 0.95] 1583 686 0.106 1.56
6 [0.95, 1.05] 1494 250 0.100 2.96

is meant to be linear in redshift and magnitude, and reads

i <4 % Zmean + 18 i>17.5, (€))]

where m; is the i-band SOF magnitude and ze., is a per-object
redshift estimate from the photo-z code DNF (De Vicente et al. 2016;
see also the next subsection). The sample is then further limited to
the redshift range 0.2 < Zmean < 1.05. This leads to a sample in the
range 18.8 < ip,, < 22.2. The MAGLIM sample is divided into six
tomographic bins using DNF z;.,, and considering the following
bin edges: [0.2, 0.4, 0.55, 0.7, 0.85, 0.95, 1.05], with a total of a
10 716 506 galaxies, distributed across bins as summarized in Table 1.
The MAGLIM sample is used as lens sample in the galaxy—galaxy
lensing and galaxy clustering measurements of the DES Y3 2x2
cosmological analysis (Porredon et al. 2022).

2.2.1 DNF

The photo-z code DNF is used to define the MAGLIM selection and to
define the MAGLIM tomographic bins. The DNF algorithm computes
a point estimate z,.,, of redshift of the galaxies by performing a fit to
a hyper-plane in colour and magnitude space using up to 80 nearest
neighbours taken from a reference sample made of spectroscopic
galaxies with secure redshift information. For this purpose, a large
number of spectroscopic catalogues collected by Gschwend et al.
(2018) has been used, including spectra from SDSS DR4 (Abolfathi
et al. 2018), OzDES (Lidman et al. 2020), VIPERS (Garilli et al.
2014), and from the PAU spectro-photometric catalogue (Eriksen
et al. 2019). The total number of spectra used for training is ~10°.
DNF also provides a redshift estimate zpnxg drawn from the redshift
PDF for each individual galaxy, although only the quantity Zmean
(used for the selection and for the binning) is of interest in this work.

2.3 Deep fields sample

The Deep fields catalogue is a key element of the SOMPZ method-
ology. We provide here a few key details, but we refer the reader to
Hartley et al. (2022) for extensive details and the characterization of
the sample.

This work uses four different deep fields, i.e. E2, X3, C3,
and COSMOS (COS) covering 3.32, 3.29, 1.94, and 1.38 square
degrees, respectively. Each deep field has undergone a scrupulous
masking procedure aimed at removing artefacts (e.g. cosmic rays,
meteors, saturated pixels, etc.). Considering the final unmasked area
overlapping with the UltraVISTA and VIDEO near-infrared (NIR)
surveys (McCracken et al. 2012; Jarvis et al. 2013), which is needed
to provide photometric information in additional bands, we are left
with 5.2 square degrees of area for a total of 267 229 galaxies with
measured u, g, r, i, z, J, H, K, photometry with limiting magnitudes
24.64,25.57,25.28, 24.66, 24.06, 24.02, 23.69, and 23.58. Note that
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Figure 1. Scheme illustrating the operation of BALROG: the practically
noiseless deep field galaxies are injected many times in the DES real wide
field images; those dichotomous images are then processed through the
fiducial DES detection pipeline, to construct a sample containing several
noisy representations of the same deep galaxies.

deep field galaxies have deeper photometry and photometry available
in more bands compared to the wide field galaxies; this is key for a
good performance of the SOMPZ method as it reduces the colour—
redshift degeneracy.

2.4 BALROG sample

The BALROG sample is another key element of the SOMPZ method-
ology. It is used to relate galaxies with given deep photometry to
observed galaxies with wide field photometry, which are noisier.
To this aim we rely on BALROG (Suchyta et al. 2016), a software
which injects ‘fake’ galaxies into real images. For this analysis,
BALROG was used to inject deep field galaxies into the broader wide
field footprint (Everett et al. 2022). After injecting galaxies into
images, the output BALROG images are passed into the DES Y3
photometric pipeline and injected galaxies are detected equivalently
toreal galaxies, yielding multiple realizations of each injected galaxy.
The BALROG sample spans ~20 per cent of the DES Y3 footprint. We
further select injected galaxies using the MAGLIM selection. We then
construct a matched catalogue matching BALROG injected wide field
MAGLIM galaxies with their deep field counterparts, for a total of
351 165 galaxies with both deep and wide photometric information.
The resulting catalogue is called the BALROG sample. Fig. 1 shows a
schematic illustration of Balrog.

2.5 Redshift samples

The redshift samples used for the SOMPZ section of the analysis
consist of galaxies with secure redshift information (either spectro-
scopic or high-quality multiband photometric) observed in the deep
fields. These samples are key to characterize the redshifts of the deep
field sample and, in turn, to transfer the redshift information to the
wide field MAGLIM sample.

We consider three separate redshift selections, similarly to what
has been used in source sample redshift characterization (Myles et al.
2021):

(i) a collection of spectra from a number of different public and
private spectroscopic samples, from the spectroscopic compilation
by Gschwend et al. (2018). We have not restricted ourselves to a
few, selected surveys as in the case of the DES Y3 weak lensing
sample (Myles et al. 2021), where only zZCOSMOS (Lilly et al. 2009),
C3R2 (Masters et al. 2017, 2019), VVDS (Le Fevre et al. 2013),
and VIPERS (Scodeggio et al. 2018) were considered, because due

DES Y3 redshift calibration 2013

Table 2. Number of unique galaxies belonging to each of the three redshift
catalogues (spectroscopic collection, COSMOS, and PAU) for each of the
samples SPC (composed by galaxies from spectra, PAU, COSMOS in this
order), SC (spectra, COSMOS), PC (PAU, COSMOS). The sample selection
for the MAGLIM sample applied to the corresponding BALROG injections
reduces greatly the size of all samples. For more information, see Section 2.5.

Raw After MagLim selection
SPC SC PC SPC SC PC
Spec-z 35826 35826 - 10429 10429 -
PAU 18780 - 28780 3950 - 7015
COSMOS 64139 82856 69686 3299 7231 3721
Total 118745 118682 98466 17678 17660 10736

the bright nature of the MAGLIM sample we would mostly select
high signal-to-noise galaxies. Furthermore, using more spectra from
different surveys allows us to simultaneously reduce the shot noise
and improve the completeness of the sample, while minimizing the
impact of possible outliers;

(i) multiband photo-z galaxies from the COSMOS field; in
particular, we used the COSMOS2015 30-band photometric redshift
catalogue (Laigle et al. 2016), which is equipped with narrow,
intermediate, and broad-bands covering the IR, optical, and UV
regions of the electromagnetic spectrum;

(iii) redshifts from the PAUS 4 COSMOS 66-band photometric
redshift catalogue (Alarcon et al. 2021), which adds 40 narrow-band
filters from the PAU Survey.

We match these redshift catalogues to our deep field galaxies and
keep only those that are selected at least once into our MAGLIM
selection according to their BALROG injections. Due to the bright
nature of the MAGLIM sample, the number of galaxies in our final
redshift samples is greatly reduced: for the SPC sample, for example,
the unique total number of galaxies passes from 118745 to 17 718,
a reduction of around 85 per cent.

In some cases, the same galaxy might have redshift information
from multiple surveys. Following Myles et al. (2021), we created
three slightly different redshift samples, where in case of multiple
information from different surveys we use as fiducial the redshift
from a specific survey. The samples are:

(1) SPC, where in case of multiple information available we first
use the spectroscopic catalogue (S), then PAUS + COSMOS (P),
and finally COSM0S2015 (C);

(2) PC, where we rank first the PAUS + COSMOS catalogue
before COSMOS2015, and we do not include spectroscopic redshifts;

(3) SC: where we first use the spectroscopic catalogue before
COSMOS2015, but we do not include the PAUS 4+ COSMOS
catalogue.

Table 2 summarizes the number of unique galaxies appearing
in each of the three redshift samples, before and after performing
the MAGLIM sample selection. The fiducial ensemble of redshift
distributions is generated by marginalizing over all three of these
redshift samples (SPC, PC, SC) with equal prior, which in practice
is achieved by simply merging the n(z) samples produced from the
three redshift samples, creating a three times larger pool of n(z). In
such a way we marginalize over potential uncertainties and biases in
the different redshift catalogues (S, P, and C).

MNRAS 527, 2010-2036 (2024)
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Table 3. List of the spectroscopic samples from BOSS/eBOSS overlapping
with the DES Y3 footprint used as reference galaxies for clustering redshifts
in this work.

Spectroscopic samples

Name Redshifts Ngal Area

LOWZ (BOSS) z €[0.0,0.5] 45671 ~860 deg?
CMASS (BOSS) z €[0.35,0.8] 74 186 ~860 deg?
LRG (eBOSS) z €[0.6, 1.0] 24 404 ~700 deg?
ELG (eBOSS) z€[0.6,1.1] 89967 ~620 deg?
QSO (eBOSS) z€[0.8, 1.1] 7759 ~700 deg?

2.6 BOSS/eBOSS galaxy catalogues

The BOSS/eBOSS galaxy catalogue is our reference sample for
the WZ measurement. It consists of a number of spectroscopic
samples from the Sloan Digital Sky Survey (SDSS, Gunn et al. 2006;
Eisenstein et al. 2011; Blanton et al. 2017), and combines SDSS
galaxies from Baryonic Oscillation Spectroscopic Survey (BOSS,
Dawson et al. 2013; Smee et al. 2013) and from extended-Baryon
Oscillation Spectroscopic Survey (eBOSS, Dawson et al. 2016;
Ahumada et al. 2020; Alam et al. 2021). In particular, the BOSS
sample includes the LOWZ and CMASS catalogues from the SDSS
DR 12 (Reid et al. 2016), while we included the large-scale structure
catalogues from emission-line galaxies (ELGs, Raichoor et al. 2017),
luminous red galaxies (LRGs, Prakash et al. 2016), and quasi-stellar
objects (QSOs) (in preparation) from eBOSS. Following Cawthon
et al. (2022) and Gatti et al. (2022), we stack together the different
samples and use them as a single reference sample. We also create
a single random catalogue by stacking all the random catalogues of
each individual samples. The BOSS/eBOSS sample is divided into 50
bins spanning the 0.1 < z < 1.1 range of the catalogue (width Az =
0.02). The number of galaxies for each sample is listed in Table 3,
with the final sample consisting of 241 987 objects and covering an
area ranging from 14 to 17 per cent of the total DES footprint.

We note that estimates of the magnification coefficients are not
available for BOSS/eBOSS galaxies. For our fiducial analysis we
assumed magnification values for the BOSS/eBOSS sample to be
set to zero. We are confident about this choice for the narrow shape
of the MAGLIM tomographic bins, since the magnification is usually
significant in the tails of the distribution when the clustering kernel
due to selection effects is larger. We none the less verify in this work
that our analysis is not very sensitive to the particular choice of the
values of the magnification parameters (see Section 6.1.2).

2.7 Weak lensing catalogue

The DES Y3 WL sample is used in this work as a source in
the galaxy—galaxy lensing measurement with the MAGLIM sample.
The WL sample is created using the METACALIBRATION pipeline
(described and tested in Huff & Mandelbaum 2017 and Sheldon &
Huff 2017 and applied to the Y3 data in Gatti et al. 2021) and it
is a subset of the gold catalogue. The METACALIBRATION pipeline
provides a per-galaxy self-calibrated shape measurement, which is
free from shear and selection biases. An additional, small calibration
based on image simulations (MacCrann et al. 2022) accounts for
blending and detection biases. The final catalogue consists of ~100
million galaxies, spanning the full DES Y3 wide field footprint and
with an effective number density of n.s = 5.59 gal arcmin—2. The
WL sample is divided into four tomographic bin using the SOMPZ
method (Myles et al. 2021).
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2.8 Simulated galaxy catalogues

Our methodology is thoroughly validated using simulated catalogues.
In particular, we use one realization of the sets of the Buzzard
N-body simulations (DeRose et al. 2022). All the catalogues we
used in data have their simulated counterparts, although we adopted
some reasonable simplifications, when needed. We give here a brief
summary of the Buzzard simulation and the simulated catalogue we
had to create for this project, i.e. the simulated MAGLIM sample.
The simulated BOSS/eBOSS catalogue description is provided in
Gatti et al. (2022), whereas the simulated WL sample is described in
DeRose et al. (2022).

Buzzard is a synthetic galaxy catalogue built starting from N-body
light-cones produced by L-GADGET2 (Springel 2005). Galaxies are
incorporated in the dark matter light-cones using the ADDGALS al-
gorithm (DeRose et al. 2019). Buzzard spans 10 313 square degrees.
The cosmological parameters chosen are 2, = 0.286, og = 0.82,
Qp =0.047, ng = 0.96, h = 0.7. The simulations are created starting
from three light-cones with different resolutions and size (10503,
2600%, and 4000° Mpc® =3 boxes and 14003, 20483, and 2048°
particles), to accommodate the need of a larger box at high redshift.
Haloes are identified using the public code ROCKSTAR (Behroozi,
Wechsler & Wu 2013) and they are populated with galaxies using
ADDGALS (DeRose et al. 2019), which provides positions, velocities,
magnitudes, spectral energy distributions (SEDs), and ellipticities.
Galaxies are assigned their properties based on the relation between
redshift, r-band absolute magnitude, and large-scale density from a
subhalo abundance matching model (Conroy, Wechsler & Kravtsov
2006; Lehmann et al. 2017) in higher resolution N-body simulations.
SEDs are assigned to galaxies by imposing the matching with the
SED-luminosity—density relationship measured in the SDSS data.
SEDs are K-corrected and integrated over the DES filter bands to
generate DES grizY magnitudes. Ray-tracing is performed through
the CALCLENS algorithm (Becker 2013), to introduce lensing effects,
in order to provide weak-lensing shear, magnification, and lensed
galaxy positions for the light-cone outputs. CALCLENS is run on to
the sphere, masked with the DES Y3 footprint, using the HEALPIX
algorithm (Gorski & Hivon 2011) and is accurate to ~6.4 arcsec.

2.8.1 Simulated MacLiv sample

In order to define a simulated MAGLIM sample, the photo-z code
DNF has been run on a subset of the Buzzard simulations, restricted
to i-band magnitudes i < 23, so as to reduce the running time without
affecting the final result (note that the MAGLIM selection presents
acutati < 22.2). The goal is to attain similar number density and
colour distributions as in data. We provide more detailed information
on the adaptation to the sample selection for Buzzard in Appendix A.

2.8.2 Simulated deep catalogue

The simulated true fluxes from Buzzard are used as the deep
measurements, but we further assign a realistic error using the
limiting flux for each mock deep band. We use the same uncertainties
as in data, but as the Buzzard simulation has a different zero-point,
those values have to be converted in magnitude using zero-point of
30, and then is converted to a flux uncertainty for a zero-point of 22.5,
which is the zero-point of the Buzzard fluxes. We do not differentiate
between fields, as it has been proven in Myles et al. (2021) that this
had no impact on the simulated redshift distribution. The size of the
sample is 968 759 galaxies. We use the true redshift for the redshift
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sample and to compare our inferred redshift distributions to the true
ones.

2.8.3 Simulated BALROG catalogue

We mimic the BALROG algorithm by randomly selecting positions
over the full Y3 footprint and run the corresponding error model on
the galaxies of the simulated deep catalogue to obtain noisy versions,
according to the exposure times of each location. The deep galaxies
can be injected an arbitrary number of times and we set this at
10. Only the wide counterparts of the deep galaxies that respect
the MAGLIM selection defined in the Buzzard simulation are then
included in the sample, yielding the final number of 250 193 galaxies.

3 REDSHIFT INFERENCE METHODOLOGY

We describe in this section the methodology adopted in this work to
infer the redshift distributions of the lens sample. The methodology
is similar to the one adopted for the weak lensing sample (Myles
et al. 2021) and relies on two key techniques:

(i) photometric classification with self-organizing maps (SOM),
known as the SOMPZ method (Buchs et al. 2019; Myles et al. 2021).
The SOMPZ method takes advantage of the deeper photometry of
eight bands (ugrizJHKs) available in the DES deep fields, where
galaxies with high-quality redshifts can be accurately classified in
the deep colour space, to ensure small selection biases, and well-
characterized redshift estimates and uncertainties of DES wide field
galaxies;

(ii) clustering-based or clustering redshift techniques (WZ), more
established in cosmology (Newman 2008; Ménard et al. 2013).
The redshift distributions calibration is based on angular correlation
with a reference sample with high-quality redshift estimates. This
method is affected by systematic biases different than photometric
methods, which makes this combination interesting and improves the
robustness of our redshift estimates. For example, it does not require
the spectroscopic sample used for calibration to be representative of
the target sample. On the other hand, the galaxy bias evolution of
the galaxy samples is involved, and magnification effects have to be
taken into account.

These two techniques are combined together to provide an estimate
of the redshift distributions of the lens sample. Such a combination
is powerful because it exploits the complementarity of the two
methods, which are affected by two very different sets of biases and
uncertainties. We provide the key ingredients of these two techniques
in the following sections, followed by a description of how the two
are combined together.

We note that this method is an alternate method compared to the
one presented in Porredon et al. (2022) and Cawthon et al. (2022),
which provides redshift estimates combining photometric estimates
from the photo-z code DNF (De Vicente et al. 2016) and clustering
constraints from Cawthon et al. (2022). We delay the comparison
between the two methods to Section 5.1. Fig. 2 presents a flowchart
illustration of MagLim redshift distributions calibration scheme.

3.1 SOMPZ methodology

The SOMPZ methodology estimates wide field redshift distributions
by exploiting a mapping between wide field galaxies and deep field
galaxies with deeper and more precise photometry. Extracting the
redshift information from deep, several band photometry in order
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to estimate the redshift of an observed wide field galaxy amounts to
marginalizing over deep photometric information (Buchs et al. 2019).
Let us consider the probability distribution function for the redshift
of a galaxy p(z); let us assume such a probability to be conditioned
on observed wide field colour—magnitude X and covariance matrix
$.. The probability can be written by marginalizing over deep
photometric colour x as follows:

pzI%, ) = / dx p(z|x, &, £)px[&, £). )

The large dimensionality of this form prevents us from applying it
to real situations. This problem can be circumvented by discretizing
the colour space x and (%, 3) in cells ¢ and é, each spanning a
portion of the whole and representing a specific galaxy phenotype,
respectively, of the deep and wide field. The galaxy samples are
arranged in cells/phenotypes using SOM (Kohonen 1982), which is
an unsupervised machine learning technique used to produce a lower
dimensional representation of a complex data set, while preserving
its core properties. The choice of the topology of the cells follows
Buchs et al. (2019), where a two-dimensional representation of the
colour space was chosen as it ensures an immediate visualization
of the data not possible otherwise. Once we compressed our data
in a more manageable set of information, we can write the p(z) for
the group of galaxies living in a particular wide cell ¢. Since the
MAGLIM tomographic bins b are already defined, we are going to
construct one set of SOMs (one deep and one wide) for each bin.
Assigning all galaxies belonging to a tomographic bin to a wide SOM
is straightforward. In order to construct the deep SOM we have to use
our BALROG sample, consisting of all detected and selected BALROG
realizations of the galaxies in the wide field, each associated with its
own ‘noiseless’ replica in the deep sample. We therefore can assign
to the deep SOM associated with a tomographic bin, galaxies whose
BALROG wide replica is selected in that specific wide bin. Therefore,
we can marginalize over deep field phenotypes c as

p(zlé, By = p(zle, &, byp(elé, b). 3)

At this point we want to marginalize over all wide cells ¢ belonging
to each tomographic bin. Again, we are computing p(z|b) for each
bin separately from different sets of SOMs:

pb) ~ Y > ple, & byp(clé, bp(, b). “

Unfortunately there are very few galaxies for each (c, ¢) pair, and
in many cases there are none. This makes the term p(z|c, ¢) quite
difficult to estimate. However, we can reasonably assume that the
p(z) for galaxies assigned to a given deep cell ¢ should not depend
on the noisy wide photometry of that galaxy. Therefore, we can relax
the selection:

p@b) ~ > > ple, bp(clé, bp(e, b). ®)

‘We use this approximation for our fiducial result. We obtain each of
the terms appearing in equation (3.1) by placing galaxy samples to
the SOM cells, as follows:

(i) p(¢) is computed collecting wide field galaxies from the
MAGLIM sample into a wide field SOM (one per tomographic bin);

(ii) p(c|¢) is computed from the deep/BALROG sample. It consists
of all detected and selected BALROG replicas of the deep galaxies
injected in the wide field. We therefore can arrange the deep/BALROG
sample simultaneously into a wide and deep SOMs. We call this term
the transfer function. We weight the deep field galaxies according
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Figure 2. Flowchart illustrating the MAGLIM redshift distributions calibration scheme. The two methodologies included in the analysis are SOMPZ and

clustering redshifts, which are inspired by the flowchart in Myles et al. (2021).

to their detection rate measured from BALROG. An alternative to
BALROG would be using a subsection of the wide field and deep
fields overlap, giving us both deep and wide photometry for a
limited number of galaxies. However, the area of overlap is small
and the particular observing conditions found in this area will not be
representative of the overall observing conditions found in the Y3
footprint as highlighted in Myles et al. (2021).

(>iii) p(z|c) is computed from the redshift sample, which is a subset
of the deep sample, for which we have both credible redshifts,
eight-band deep photometry, and due to BALROG also wide-field
realizations.

3.1.1 SOM properties

As in Buchs et al. (2019) and Myles et al. (2021), we use squared-
shaped SOMs with n cells for each side (for a total of n x n
cells) and periodic boundaries, which makes the visualization easier
without compromising the efficiency. We parametrize the SOMs
using luptitudes and lupticolours, following Buchs et al. (2019).
Luptitudes are defined in Lupton, Gunn & Szalay (1999) as inverse
hyperbolic sine transformation of fluxes:

.

= jto — asinh™' =

n = Ko 2

where m are magnitudes, fare fluxes, a = 2.5log b, and b is a softening

parameter that defines at which scale luptitudes transition between

logarithmic and linear behaviour. For the deep SOM we compute
seven lupticolours with respect to the i band

Lo = mo — 2.5 log b, (6)

M= (1 = Wiy s U7 — W), @)

where the index from one to seven runs over the deep bands urgz/HK.
We avoid using the g band for the wide field galaxies, as any
observational systematics and chromatic effects are more evident
in the g band. With only two lupticolours available in the wide
SOM, we decided to add the i-band luptitude, as Buchs et al. (2019)
find empirically that addition of the luptitude improves the training
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performance:

wo= (Wi, Lr — Hiy oz — Wi)- (3

The resolutions of the SOMs are 32x32 cells for the wide, and 12x12
cells for the deep. The reason behind the fewer cells in the deep
SOM lies in the MAGLIM selection: the bright magnitude—redshift
cuts must be applied also to the wide-component of the deep and
redshift samples, and only the deep galaxies whose wide component
is selected are included in the sample. This results in smaller deep and
redshift samples covering a very small portion of the colour space,
compared to the weak lensing source sample Myles et al. (2021).
Also, reducing the number of cells means yielding more galaxies
in each one. This is necessary in order to minimize the number of
wide field galaxies assigned by the transfer function to a deep SOM
cell with no redshift information. Reducing this number under 1
per cent is crucial to ensure that we get a correctly estimated redshift
distribution for our sample. We note that shot noise caused by a
small number of redshifts in a deep cell can play a significant role
in biasing the estimate. We therefore performed a test to identify
the optimal SOM size which would minimize these issues. We
first computed several estimates in the Buzzard simulations using
different resolutions for the deep SOM. We then evaluated which
setting produced the smallest shift on the mean redshift with respect
to the true value. As mentioned at the beginning of this section,
SOMs require to be trained before being able to classify galaxies.
After ensuring that the redshift samples and the MAGLIM sample
span the same luptitude—lupticolour space (achieved using BALROG
to obtain the redshift samples wide photometry), we decided to use
the redshift sample for the deep SOM training. We instead use the
MAGLIM sample itself to train the wide SOM.

32 WZ

Clustering redshift is a widely used method (Newman 2008; Ménard
et al. 2013; Davis et al. 2017; Johnson et al. 2017; Morrison et al.
2017; Gatti et al. 2018, 2022; Scottez et al. 2018; van den Busch
et al. 2020; Hildebrandt et al. 2021; Cawthon et al. 2022) to infer
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or calibrate redshift distributions of galaxy samples. It relies on the
assumption that the cross-correlation between two samples of objects
is non-zero only in the case of overlap of the distribution of objects
in physical space, due to their mutual gravitational influence.

Various implementations of the clustering redshift methodology
differ in their details, but they all agree on one key aspect: the
‘target’ sample (hereafter dubbed ‘unknown’ sample), which has
to be calibrated, has to be cross-correlated with a ‘reference’ sample
divided into thin redshift bins. The reference sample consists of either
high-quality photometric or spectroscopic redshift galaxies, and has
to spatially overlap with the unknown sample.

Assuming linear galaxy-matter bias, we can express the clustering
wy,, between the unknown sample and each of the reference sample
thin bins as a function of the separation angle 6 between the unknown
and reference sample:

wy () = / dz'n (2 )nu(2)be(2 )by (2 Ywpm(8, ') + M(6), )

where n; and n, are the redshift distributions of the reference and
unknown sample, b, and b, are the galaxy-matter biases of both
samples, wpy is the clustering of dark matter, and M(6) denotes
contributions due to magnification. Note that we are assuming
Limber approximation (Limber 1953), but this has been shown to
have no impact on the results (McQuinn & White 2013).

In our methodology, we use a single estimated value from the
cross-correlation signal for each thin redshift bin. In practice, we do
this by measuring the correlation function as a function of angular
separation and then averaging it with a weight function to produce
the single estimate:

Omax
= [ 40 WO o) (10)
Omin
where W(6) o< 7! is a weighting function (Gatti et al. 2022). The
integration limits in the integral in equation (10) are set to fixed
physical scales (1.5 to 5 Mpc).

Since the n, are binned in narrow bins we can approximate the
number density of the sample of reference as a Dirac delta, and the
revised expression becomes:

II)ur ~ nubrbuli)DM + M (11)

The above equation relates the redshift distribution of the unknown
sample to the measured clustering signal w,,. The galaxy-matter
biases of the reference can be estimated from the autocorrelation of
the reference sample. Usually the galaxy-matter bias of the unknown
sample cannot be inferred and is treated as nuisance parameter. In
this work, however, due to the relatively good redshift provided by
DNF for the MAGLIM sample, we also use the autocorrelation of
the latter as a prior for b, (see Section 4.2). The other terms in the
above equation are the clustering of dark matter wpy;, which can be
estimated from theory and it is not very sensitive to the cosmological
parameters (Gatti et al. 2022), and the magnification term, which
is expected to have a little impact (Gatti et al. 2022) and can be
estimated if magnification coefficients for the samples are provided.

The angular scales considered have been chosen to span the
physical interval between 1.5 and 5.0 Mpc. These bounds, applied to
data as well as simulations, are selected so that the upper bound is
below the range used for the galaxy clustering cosmological analyses,
therefore granting the WZ likelihoods to be essentially independent
of the assumed cosmology, and allowing us to produce n(z) samples
in an MCMC chain that runs independently of the cosmological
ones. We perform the cross-correlations of MAGLIM with each of the
50 bins of width Az = 0.02 of the BOSS/eBOSS catalogue, which
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spans in the range 0.1 < z < 1.1 as previously mentioned. We also
weigh each galaxy of the MAGLIM sample by the clustering weights
computed in Rodriguez-Monroy et al. (2022).

We use the Davis & Peebles (1983) estimator for the cross-
correlation signal,

Nrr DyDi(0)
NDr Du Rr(e)

where D,D.(0) and DyR.(9) represent data—data and data—random
pairs. The pairs are normalized through Np, and Ng,, which is the
total number of galaxies in the reference sample and in the reference
random catalogue. The correlation estimates were computed using
treecorr.’

wyr(9) = L 12)

4 CHARACTERIZATION OF SOURCES OF
UNCERTAINTY

In this section, we present the characterization of the systematic
uncertainties of our methodology. The dominant sources of uncer-
tainties for the SOMPZ method are sample variance and shot noise. In
the clustering redshift method, the main uncertainty is caused by the
lack of prior knowledge on the redshift evolution of the galaxy-matter
bias of the MAGLIM sample. This is modelled by a flexible systematic
function, informed by a measurement of the MAGLIM autocorrelation
function in data. Other minor sources of uncertainties are related to
magnification effects and the approximation of linear bias (Gatti et al.
2022). We provide further details on each source of uncertainty in
the following subsections. A full catalogue-to-cosmology validation
of the method (in simulations) is then presented in Appendix B.

4.1 SOMPZ uncertainties

For the SOMPZ method we consider the following sources of
uncertainty:

(1) sample variance of the deep fields: main uncertainty, caused
by the limited area of the deep fields. We model the effect of sample
variance by means of the three step Dirichlet (3sDir) analytical model
described in Section 4.1.1;

(ii) shot noise in the deep and redshift samples: this is induced
by the limited number of galaxies available in the deep and redshift
samples. We model the effect of shot noise by means of the 3sDir
analytical model described in Section 4.1.1;

(iii) SOMPZ method uncertainty: this uncertainty stems from
discretizing the colour space in the SOMPZ mapping. We do estimate
its impact on the SOMPZ estimates by replicating the SOMPZ
methods multiple times in simulations, and incorporate its effects
using probability integral transforms (PITs) (Section 4.1.2);

(iv) photometric calibration: related to uncertainties in the cali-
bration of the deep fields zero-point, it is accounted for in the SOMPZ
estimates by means of PITs (Section 4.1.3).

(v) redshift sample biases: these biases stem from uncertainties
and biases in the redshift estimates of the redshift samples. Their
impact is accounted for in our methodology by marginalizing over
three different combinations of redshift samples (Section 4.1.4);

(vi) transfer function: any bias induced by an erroneous estimation
of the transfer function due to a size-limited BALROG sample; we
anticipate this to be negligible following the results from Myles et al.
(2021) (Section 4.1.5).

Zhttps://github.com/rmjarvis/TreeCorr
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In the following sections we will proceed to describe in detail how
we account for each of the items listed above.

4.1.1 Sample variance and shot noise (3sDir)

Sample variance is the dominant uncertainty affecting our SOMPZ
estimates, and stems from the limited size and area coverage of the
redshift and deep samples, with respect to the whole wide field. The
deep fields only cover ~9 deg?, which means we could be learning the
colour/redshift relation from a non-representative sample of the sky
due to fluctuations in the matter density field; moreover, the finite size
of the redshift sample can introduce shot noise effects, preventing a
correct sampling of the quantities required for the redshift inference.

Generally the impact of sample variance can be evaluated esti-
mating the redshift distributions in simulations multiple times using
different line of sights for the deep fields (e.g. Hildebrandt et al.
2017, 2021; Hoyle et al. 2018; Buchs et al. 2019; Wright et al.
2020). Although we also performed a test where we evaluated the
impact of sample variance using the Buzzard simulation, in our
standard procedure we use the three step Dirichlet (3sDir) approach
3sDir presented in Sanchez et al. (2020) and applied to the redshift
calibration of the DES Year 3 source sample (Myles et al. 2021).

The 3sDir method consists of an analytical sample variance model
predicting what the redshift-colour distribution would be from the
observed individual redshift and galaxy phenotypes (colours) of
galaxies coming from smaller deep fields. Using this model we
can build an ensemble of redshift distributions realizations whose
fluctuations realistically represent the effect of sample variance. Dur-
ing the cosmological inference, by sampling over these realizations,
one can effectively marginalize over the effect of sample variance.
Here, we provide a short description of the 3sDir method, but we
direct the reader to Myles et al. (2021) and Sanchez et al. (2020)
for more details. The 3sDir method assumes the probability p(z, c)
that galaxies belong to a redshift bin z and colour phenotype ¢ to
be described by a probability histogram with coefficients f,. (with
> feie = Land 0 < f;. < 1). Under this assumption, the expected
number counts of galaxies in a deep SOM cell given the coefficients
f.c are described by a multinomial distribution; if we assume a
Dirichlet function for the prior on f;., the posterior of f;. given the
observed number count will also be described by a Dirichlet function.
Such a Dirichlet posterior can be used to draw samples and naturally
accounts for the effect of shot noise in the data. The effect of sample
variance can be introduced by tuning the width of the prior on f;,
which does not change the expected value for f;. in the Dirichlet
distribution, but does change its variance to simultaneously account
for shot noise and sample variance.

If all the galaxies belonging to the redshift sample were inde-
pendently drawn, then a Dirichlet distribution parametrized by the
redshift sample counts in each couple of redshift bin z and phenotype
¢, N, would fully characterize f,.. However, one subtlety is that
sample variance correlates with redshifts; to increase the variance
with the correct redshift dependence one can use the fact that
two different phenotypes (deep SOM cells) overlapping in redshift
are correlated due to the same underlying large-scale structure
fluctuations. The 3sDir model assumes that phenotypes at the same
redshift share the same sample variance, and therefore groups cells
with similar redshifts in superphenotypes T. One can then express
the f.. as

fe=>_ 1l fr. (13)

The 3sDir method consists of drawing values of these three sets of
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coefficients with three Dirichlet functions. In this way, it is possible to
include a redshift-dependent variance while conserving the expected
value of f..

The validation of the 3sDir method has been carried out in Myles
et al. (2021), applied to the weak lensing source sample. The only
difference with this work stands in the fact we are performing the
3sDir estimation independently for each tomographic bin, due to
their definition.

As reported in Table 4, this uncertainty is dominant, both on the
mean and width values of the n(z) distributions, computed from the
ensemble of realizations provided by the 3sDir method.

4.1.2 SOMPZ method uncertainty

The SOMPZ method relies on the discretization on the colour space
spanned by our deep field sample, and this is an approximation
that can lead to small biases or additional uncertainties. In order to
estimate these, we compute our SOMPZ n(z) a large number of times
in the Buzzard simulations. In order to factor out sample variance,
each time we randomly select patches of the Buzzard footprint to
construct the mock deep fields. In this way, by averaging over all the
final n(z) realizations, we can produce an estimate of the n(z) only
minimally biased by sample variance, and test the agreement with
the true n(z). Due to the computational cost of the SOMPZ pipeline,
we decided to produce 300 n(z) replicas. To perform this test, we
assumed that the redshift sample would only be limited to one of our
four fields, of the size of COSMOS.

We computed the mean redshift offset of the ensemble with respect
to the true value, for each tomographic bin. As reported in Table 4,
these values are smaller than the effect of sample variance. These
values are incorporated into our final n(z) ensemble using the PIT
method described in the following section, by additionally shifting
each PIT (used to correct for the zero-point uncertainties) by a value
drawn from a Gaussian centred at zero with standard deviation equal
to the root-mean-square of the aforementioned mean offset values.

4.1.3 Deep fields photometric calibration uncertainty

Although the uncertainty in the photometry of each individual galaxy
is implicitly accounted for in the SOM training, the uncertainty on
the photometric calibrations as a whole must be evaluated by testing
how the measured n(z) are affected by changes in the photometric
zero-point in each band. This is relevant for the deep fields, where
the relatively precise fluxes are key to constraining reliable p(z) in
parts of parameter space that are not subject to selection biases.
Ideally, this would be tested by rerunning the full analysis for an
ensemble of perturbations of the photometric zero-point according
to the zero-point uncertainty, but the computational requirements
of the BALROG injection procedure make this infeasible. Instead,
we produce an analogous ensemble of realizations in simulations,
where the BALROG mock photometric survey is reduced to a
computationally simpler procedure of adding Gaussian noise to true
magnitudes. For each realization of this ensemble, we perturb all
deep field magnitudes by a draw from a Gaussian whose width is
determined by the photometric zero-point uncertainty in the Y3 deep
fields catalogue in a specified band, as computed in Hartley et al.
(2022). We then ‘inject’ these perturbed deep field fluxes with a
mock BALROG procedure to generate wide field realizations of the
galaxies and measure the corresponding n(z). In this way we generate
a full ensemble of n(z) realizations reflecting the uncertainty in our
redshift calibration due to the photometric calibration. We apply
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Table 4. Summary of values for systematic uncertainties and centre values for mean (top panel) and width (bottom panel) for the n(z) distributions. The various
components are computed as described in Section 4 and as they are not completely independent it is not expected that they sum up to the total value. The values
related to SOMPZ and SOMPZ+WZ refer to Fig. 5, and include only the 3sDir uncertainty due to sample variance and shot noise (and the redshift samples
uncertainty), because it was logistically not possible to add the SOMPZ method and the zero-point sources of uncertainty before the combination with WZ. As

a comparison, the ‘SOMPZ (with all unc)’ includes all uncertainties. The final n(z) which has been used in the cosmological analysis is the bottom line.

Mean

Uncertainty Bin 1 Bin2 Bin 3 Bin 4 Bin 5 Bin 6

z€[0.2,04] z € [0.4, 0.55] z € [0.55,0.7] z€[0.7,0.85] z€[0.85095] ze][0.95,1.05]
Sample Variance and shot noise 0.015 0.010 0.010 0.008 0.009 0.009
SOMPZ method 0.004 0.003 0.005 0.001 0.007 0.005
Redshift samples 0.009 0.001 0.006 0.003 0.004 0.007
Zero-point 0.008 0.007 0.004 0.005 0.005 0.005
SOMPZ 0.315 £ 0.015 0.445 £ 0.010 0.630 £ 0.010 0.776 £ 0.008 0.895 £ 0.009 0.983 £+ 0.012
SOMPZ+WZ 0.316 £0.014 0.456 £ 0.008 0.632 £ 0.008 0.780 £ 0.007 0.893 £ 0.008 0.985 £+ 0.010
SOMPZ (with all unc) 0.317 £ 0.020 0.447 £0.012 0.634 £ 0.013 0.778 £ 0.010 0.897 £ 0.011 0.988 £ 0.013
SOMPZ+WZ (with all unc) 0.315 £0.016 0.463 £+ 0.010 0.633 £ 0.009 0.781 £ 0.008 0.893 £ 0.009 0.990 £+ 0.012

Width

Sample variance and shot noise 0.007 0.005 0.003 0.003 0.004 0.009
SOMPZ method 0.003 0.003 0.0007 0.0003 0.002 0.0001
Redshift samples 0.001 0.005 0.0007 0.0006 0.0003 0.001
Zero-point 0.003 0.004 0.001 0.0004 0.001 0.001
SOMPZ 0.077 £ 0.007 0.093 £ 0.007 0.065 £ 0.004 0.081 £ 0.004 0.071 £ 0.004 0.096 £ 0.009
SOMPZ+WZ 0.080 £ 0.004 0.089 £ 0.004 0.060 £ 0.002 0.077 £ 0.003 0.074 £ 0.004 0.105 £ 0.006
SOMPZ (with all unc) 0.081 £ 0.008 0.096 £ 0.007 0.067 £ 0.005 0.081 £ 0.004 0.073 £ 0.005 0.098 £ 0.009
SOMPZ+WZ (with all unc) 0.080 £ 0.005 0.081 £ 0.005 0.060 £ 0.002 0.073 £ 0.003 0.074 £ 0.004 0.101 £ 0.007

PITs as in Myles et al. (2021) to transfer the variation encoded
in the ensemble from simulated n(z) to our fiducial data result.
Essentially, this process involves calculating the inverse cumulative
distribution function (CDF) for each simulated realization n;(z) in
the ensemble. The PIT is then obtained by computing the difference
between the CDF of each realization and the average CDF of the
entire ensemble. To apply these transformations to the data, the PIT
value is added to the inverse CDF of the fiducial data n(z). The
PIT resulting from a single draw of zero-point offsets is determined
and collectively applied to all tomographic bins. More details on
this new implementation of the PIT can be found in Myles et al.
(2023).

4.1.4 Redshift sample uncertainty

As mentioned in Section 2.5, we decided to choose three different
catalogues to infer our redshift distributions from: a collection of
spectroscopic surveys galaxies (Gschwend et al. 2018), PAU + COS-
MOS redshift as in Alarcon et al. (2021), and COSMOS30 photomet-
ric redshifts (Laigle et al. 2016). The reason for availing ourselves of
more than one catalogue lies in the fact neither of these are exempt
from systematic uncertainties: each survey uses different photometry,
different model assumptions, and can be affected systematically by
selection effects, incorrect templates, photometric outliers, etc. Since
there is a considerable overlap in the number of galaxies belonging
to more than one of the redshift catalogues selected for this work,
to account for the intrinsic biases we decided to build three samples
which are combinations of the aforementioned catalogues. We ranked
the redshift catalogues differently for each sample: if a galaxy has
information from multiple origins, we assign the redshift from the
highest ranked catalogue. The three redshift samples, SPC, PC, SC,
are described in Section 2.5.

For each of these, we will perform the complete pipeline, and
the final set of realization will be constructed by an equal fraction
p(R) = 1/3 from each survey. By placing equal prior probability
to each sample, this is equivalent as saying that we do not believe
any of the samples is more likely to be correct. But note that for
galaxies from which we have information from only one catalogue,
we are assuming that information to be true, and this is a caveat of
this approach. Fig. 3 shows the uncertainty in the mean redshift of
each tomographic bin, for each of the redshift samples and for their
combination.

4.1.5 Transfer function uncertainty

One of the key points in this redshift calibration is the transfer
function p(c|¢), the intermediate step necessary to assign redshifts
from deep field galaxies to the whole wide field. If the transfer
function is inaccurate, regardless of how precise the colour/redshift
characterization is in the deep SOM, it can bias the final n(z)
distributions. p(c|¢) depends on the observation conditions in that
location, determining if the galaxy is detected or not. Observing
conditions vary across the wide field, but for our analysis we are
interested in redshift distributions estimated across all the footprint.
BALROG injects the same deep galaxies in random wide tiles, and
despite these covering only around ~ 20 per cent of the DES
footprint, in Myles et al. (2021) it was verified that BALROG is
adequately sampling the observing conditions in the wide field. They
boostrapped the sample by the injected position and recomputed 1000
different transfer functions. They concluded that the dispersion in the
final n(z) mean redshift from repeating the analysis using each time
a different transfer function was completely negligible. Here, we
repeated that test, since our deep field sample has less galaxies and
might impact differently the transfer function. We found that this is
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Figure 3. Uncertainty on the mean redshift represented by the number counts
of the three redshift samples: SPC (prioritizes spectra, then PAU photo-z,
then COSMOS30), PC (prioritizes PAU photo-z, then COSMOS30), and SC
(prioritizes spectra, then COSMOS30). In red the total uncertainty given by
their combination is shown.

also negligible for our case, with variations on the n(z) mean <1073
in each tomographic bin, and therefore decided not to propagate this
in the final n(z) estimate.

4.2 WZ uncertainties

The WZ systematic uncertainties have been identified and charac-
terized in detail for the WL sample in Gatti et al. (2022). Namely,
the systematic budget was found to be dominated by our lack of
prior knowledge of the redshift evolution of the galaxy-matter bias
of the unknown sample. This is also expected to be the case for
the MAGLIM sample, although the amplitude of the effect might
differ from the WL sample (ideally, since the MAGLIM redshift
distributions are narrower, we might expect a smaller impact due
to systematics slowly varying with redshift like the galaxy-matter
bias of the unknown sample).

Similarly to Gatti et al. (2022), we model our systematics by means
of a flexible function, Sys(s), which mostly captures the redshift
evolution of the galaxy-matter of the unknown sample. The Sys(s)
function is parametrized by s = {sy, 52, . . . } that we will marginalize
over and is given by

M2k + 1

log[Sys (2. 9] = > "~ 5, Pu), 14

og[Sys (z, )] 270385 s Pr(u) (14)
_05 max min

u = 085" (Zmax + Znin) (15)

(Zmax — Zmin)/2

with Pi(z;) being the k-th Legendre polynomial and M = 6 is the
maximum order. In this work, we set the prior p(s) to be a simple
diagonal normal distribution, with the standard deviations {o, . . .,
o} and means informed by the measured autocorrelation of the
MAGLIM sample.

In Gatti et al. (2022), such a systematic function was let to vary by
the typical amplitude of the redshift evolution of the galaxy-matter
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bias of the WL sample we measured in simulations. In practice, this
was achieved by imposing a Gaussian prior with zero mean p(s) on
the coefficients s of the systematic function.

In the case of the MAGLIM sample, we can use a more informative
prior p(s) that uses the information we have from the data about the
galaxy-matter bias evolution of the sample. In particular, we rely
on the fact that the MAGLIM sample has good per-galaxy redshift
estimates, which allows us to divide the sample in relatively small
bins and measure the autocorrelation of such bins. This was not
possible for WL sample, due to the poor per-galaxy redshift accuracy.

To this aim, we use DNF one-point estimates z e, to further divide
the MAGLIM sample in bins of width of A, = 0.02, and we measure
the autocorrelation of each bin. We note that the true width of each
bin will be much larger than A, = 0.02, as the DNF photo-z are
uncertain. Under the approximation of negligible redshift evolution
of the galaxy-matter bias of the MAGLIM sample over each thin bin,
the measured autocorrelaton can be related to the galaxy-matter bias
by knowing how broad the true n(z) distribution of each bin is (Gatti
et al. 2018; Cawthon et al. 2022):

Wa(2i) = by (z)wpm(zi) / dz'n} (2, (16)

where n,, i(z) is indeed the true distribution of the thin bin MAGLIM
sample. Such a quantity is estimated using the PDF estimate from
DNF zppr.

From this measurement performed in data we can then retrieve
the galaxy bias b,(z) by inverting equation (16). We fit the Sys(s)
function presented in equation (14) to the measured b,(z) and obtain
the best-fitting s values, which we show in Fig. 4. These best-fitting
coefficients are then used as the mean value of the Gaussian prior
p(s). The best-fitting Sys(s) function to the data is shown in the right
panel of Fig. 4.

To estimate the width of the prior p(s) we took a different approach.
First, we estimate the bias evolution in simulations by dividing
galaxies into thin redshift bins using (i) the true redshifts from
the simulation; and (ii) the photo-z estimated from the DNF code.
When dividing the galaxies with the photo-z from DNF, we further
correct the measured autocorrelation using equation (16). These
measurements are shown in the left panel of Fig. 4. The discrepancy
between the measured bias evolution from photo-z (equivalent to the
application with real data) relative to the measured bias evolution
with true redshifts (equivalent to the truth) is a systematic bias.
We use the sum in quadrature of this difference with the statistical
uncertainty of the bias measurement as the prior width of s¢. For
the higher order parameters we estimate the standard deviation of
the prior by summing in quadrature the ratio between the two biases
and the statistical uncertainty from the bias measurement in data.
This allows to best capture the RMS variations of the bias function
itself. As can be seen in Fig. 4, the 68 per cent confidence interval
spanned by the Sys(s) function both brackets the ideal and real
world measurements. The values for the mean and width of the
prior are displayed in Table 5. Both the width of the prior on the
0-th and higher order coefficients are much tighter than in Myles
et al. (2021), where sy = 0.6 and s 4 = 0.15. As already explained,
the difference lies in the initial accuracy of the photo-z estimates,
which enables the measurement of the autocorrelation of the galaxy
sample in thin redshift bins. For the weak lensing source sample such
information was not available, and therefore a more conservative
prior was deemed appropriate. In the MAGLIM sample case instead,
the greater accuracy on its photo-z allows to extract more information
from the autocorrelation.
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Figure 4. Left panel: galaxy-matter bias of Bin 1 or the MAGLIM sample (0.2 < z < 0.4) as estimated in simulation following the methodology outlined in
Section 4.2. The green points are obtained by dividing the sample into thin bins using the true redshifts, while the orange ones are obtained by binning the
sample using the DNF redshift estimates. The grey band encompasses the 68 per cent confidence interval of the Sys(s) function. Right panel: galaxy-matter bias
of Bin 1 of the MAGLIM sample (0.2 < z < 0.4) as measured from the data (orange points); the blue line shows the best-fitting Sys(s) function, and the grey

band encompasses its 68 per cent confidence interval.

Table 5. Means and widths of the Gaussian prior function p(s) appearing in
equation (18).

Mean
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
<50 > —-0.028 —-0.085 —-0.319 —-2.630 —0.119 —2.249
<s] > 0.186 0.559 0.007 1.161 —1.660 0.819
<53 > 0.046 0.139  —-0.120 0.202 0.134 0.033
<s3 > 0.035 0.105 —0.130 0.314 0.293 0.174
<54 > 0.037 0.111 —-0.112 -0.197 0.211 0.279
<S55 > —-0.062 —0.189 —0.203 —0.210 1.408 0.569
Width
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
Oy, 0.107 0.216 0.123 0.072 0.067 0.198
Oy 5 0.029 0.053 0.041 0.052 0.081 0.044

Last, we mention that an additional source of uncertainties for
the WZ measurement is related to the impact of magnification. We
do model magnification effects, but the accuracy of that model is
limited by our knowledge of the magnification coefficients for the
two samples. In particular, we do not have any prior knowledge of
such coefficients for the BOSS/eBOSS sample. Those coefficients
are set to O for our fiducial analysis (on the contrary, estimates for the
magnification coefficient of the MAGLIM sample are available). We
expect magnification to have a small impact, based on tests performed
in Gatti et al. (2022), but we none the less test in the following
section the impact of having a non-null magnification coefficient for
the BOSS/eBOSS sample.

4.3 Combination of SOMPZ and WZ

In order to combine SOMPZ and WZ constraints, we follow Gatti
etal. (2022) and write the clustering likelihood by forward modelling
the full clustering signal as a function of the SOMPZ redshift
distributions estimates n(z),,. Moreover, we include the systematic
function Sys(s) introduced in the previous section, which describes
the uncertainties on the WZ measurement, mostly driven by the lack

of knowledge of b, and its redshift dependence:

Wur(zi) = n(2)pz(2i)br(zi ) wom(zi) X Sys(zi, 8) a7
+ M (o, ar, by, n(2)p).

In the above equation, the quantities o,(z;) and «,(z;) are the
magnification coefficients for the unknown and reference samples.
See Gatti et al. (2022) for full description of the magnification term
M. The clustering of dark matter wpm(z;) is estimated from theory
assuming fixed cosmology. We tested that varying cosmology has a
negligible impact on our methodology.

The likelihood of the WZ data conditioned on the target n(z) and
all the systematic parameters reads as

L[WZ|nu(2), b(z), ar(z), wpm(z)]

1
/dS dp exp |:_§(wm' - wur)TE,;l(wur - wur) P(S)P(P)» (18)

where X, is the clustering covariance, estimated through jackknife,
and p = b, o,. We implemented a Hamiltonian Monte Carlo sampler
(HMC) that simultaneously samples the SOMPZ and WZ likelihood.
The HMC does directly take as input the SOMs output of the sample
variance estimation (described in 4.1.1), and it perturbs selectively
the number counts in the SOMs in such a way to produce realiza-
tions that are already more likely to match the clustering redshift
data.

5 RESULTS IN DATA

In this section, we present the final redshift distributions for
the MAGLIM sample as obtained in data. We also compare the
SOMPZ+WZ redshift distributions with the fiducial DNF+WZ
estimates used for the same sample and adopted in the cosmological
analysis presented in Porredon et al. (2022). A complete validation
of the method in simulations is presented in Appendix B.

We first compare in Fig. 5 the redshift estimates obtained using
the 3sDir method and the estimates obtained including the WZ infor-
mation as described in Section 4. Due to logistics, the combination
of the two methods was performed before incorporating the SOMPZ
and zero-point errors. As here we are just displaying the effect of the
combination, we are showing only how the 3sDir uncertainty from
sample variance and shot noise (from the three redshift samples)
varies once we add the information from WZ. The combination
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Figure 5. 3sDir distributions before (lighter shades) and after the com-
bination with clustering-z (solid shades), and after the combination with
clustering-z but using a broader prior on the parameters of the galaxy-matter
bias function Sys(s)(the same values of the width of the prior p(s) that were
used in Gatti et al. 2022). In the top row we have bins 1 and 4, in the middle
row bins 2 and 5, and in the bottom rows bins 3 and 6. The bands represent the
1o error from the central value. Note how the combination with WZ tightens
the constraint on the shape of the n(z).

of the two methods results in stronger constraints on the shape of
the n(z), due to the complementarity in the information provided
by each SOMPZ and WZ. Particularly, the WZ signal strongly
correlates across adjacent bins, excluding large portions of possible
n(z) shapes allowed by the SOMPZ likelihood alone, which are
affected by sample variance fluctuations from the small calibration
fields, and resulting in a smoother distribution. The improvement on
the uncertainty on the mean is more modest, but not null, as reported
in Table 4. Usually, WZ data provide limited information on the
mean redshift, especially compared to SOMPZ, as the systematic
uncertainty on the galaxy bias evolution of the target sample is large
and directly degenerate with the mean redshift, as is the case in Gatti
etal. (2022). However, in this work we have included a tighter prior on
the Sys(s) function describing the galaxy bias evolution uncertainty
by measuring it directly from the MAGLIM autocorrelation function.
The addition of the WZ information has a modest impact on the
values of the mean and width of the redshift distributions, at most at
the 1o level (see Table 4); this is somewhat expected, as the WZ and
SOMPZ information is independent, but consistent with each other.

5.1 Comparison with DNF

We find it interesting to compare the final SOMPZ+WZ redshift
distributions with the fiducial ones used for DES Y3, obtained using
DNF photometric estimates and clustering constraints (hereafter
DNF+W2Z). Since the two sets of distributions have been obtained
with two different methods, we also briefly discuss the major
differences between the two pipelines. The DNF code presented
in Section 2.2.1 produces per-galaxy redshift estimates; these are
stacked to produce the redshift distributions for the lens samples.
Then, following Cawthon et al. (2022), a clustering redshift mea-
surement is performed, using BOSS/eBOSS galaxies as reference
sample, similarly to this work. The DNF n(z) are matched to the WZ-
estimated n(z) through a chi-square fitting; in particular, the DNF n(z)

MNRAS 527, 2010-2036 (2024)

are allowed to shift and stretch to improve the x2. The maximum
a posteriori values of the shift and stretch and related uncertainties
obtained through this matching procedure are used as a prior for the
DNF n(z) shift and stretch used in the cosmological inference.

Despite the DNF+WZ and SOMPZ+WZ methods using the same
photometric and clustering measurements, the methodologies differ
in a number of aspects:

(i) SOMPZ versus DNF uncertainties: SOMPZ and DNF are
both machine learning methods, but they are substantially different
in spirit and implementation. DNF is a traditional supervised machine
learning code where the likelihood (directional neighbourhood)
between wide field magnitudes/colours and redshift is learned from
training with a subsample of galaxies with both reliable redshift
information and measured wide field photometry. On the other hand,
in SOMPZ machine learning is only used in an unsupervised fashion
(without knowledge of redshift), to group self-similar parts of wide
field magnitude/colour space together. Then, these groups (wide
SOM cells) are probabilistically related using Bayes theorem to the
colour—redshift relation measured empirically in the calibration deep
fields, where much better information is available. The likelihood
between each set of wide and deep field photometry is also measured
empirically by injecting galaxies of the latter into images of the
former. Furthermore, SOMPZ provides a comprehensive list of
statistical as well as systematic uncertainties affecting the calibration
samples which are rigorously propagated through the n(z). On the
other hand, DNF only describes statistical uncertainties related to the
residual differences to the closest training neighbours to the fitted
hyperplane of the target galaxies.

(i) Combination: The clustering information is included and
combined with the photometric estimates in a substantially different
way. In this work, SOMPZ and WZ are combined by sampling from
the joint posterior using the HMC method. No approximation is
performed when combining the two likelihoods. On the other hand,
matching DNF n(z) to the WZ measurements it has been implicitly
assumed that the DNF n(z) estimates can only be biased at the
level of their mean and width, and that inaccuracies in the higher
order moments of the n(z) can be neglected (or do not affect the
matching procedure with the WZ measurements). However, if the
DNF and WZ n(z) estimates are substantially different beyond their
first two moments, the matching might cause biases (Gatti et al.
2018) also in the first and second moments. Furthermore, in the
combination of the fiducial method, the DNF shape is only allowed
to be modified by shifting and stretching it. Therefore, the shift and
stretch parameters are centred at the WZ values. This means that the
photo-z priors for the cosmological inference only carry uncertainty
from the WZ measurement, as this method does not propagate any
systematic uncertainties related to uncertainty from the accuracy of
DNF or the quality of its training sample photometry. In comparison,
SOMPZ+WZ properly combines the statistical significance from
SOMPZ and WZ yielding a final uncertainty that truly combines the
information from each of them separately. Finally, the SOMPZ+WZ
n(z) samples also capture the uncertainties in the higher moments of
the redshift distributions, whereas the DNF+WZ uncertainties are
only relative to the mean and width.

(iii) WZ distribution tails: The WZ measurements used to
calibrate the DNF n(z) have clipped tails, since the measurements
were performed in a restricted redshift window to avoid biases related
to un-modelled magnification effects in the tails of the redshift
distribution. On the other hand, in this work, when combining
the clustering information with SOMPZ estimates, we use the WZ
measurements over all the redshift range, since we also marginalize
over magnification effects.

€202 J8qWIBAON |.Z U0 Jasn AlisiaAiun uoja\ a1bauie) Aq 0Z£0ZE2/0102/2/22S/2191e/seluw/woo dno olwapese//:sdiy Woll papeojumoc]



DES Y3 redshift calibration 2023
. B SOMPZ N | SOMPZ+WZ
—— DNF DNF+WZ
= Ral
=4 A
2 2
0 0
6 6
24 2
0 0
8
CFe
=
5
0 S T
0.0 0.2 14

Figure 6. Left panel: final n(z) realizations obtained from the SOMPZ methodology alone compared to the fiducial DNF distribution for MAGLIM (in black).
Right panel: final n(z) realizations obtained from both SOMPZ and WZ methodology compared to the fiducial DNF distribution for MAGLIM (grey bands)
after shifting and stretching them to fit WZ measurement. Since in the inference the shift and stretch values are marginalized over, the uncertainties of the gray
bands are obtained by sampling over the allowed ranges of shift and stretch defined by the prior, and applied, respectively, to the DNF estimate. Note that for a
fairer comparison of the methods, the two remaining uncertainties were applied to the SOMPZ ensemble (zero-point and SOMPZ intrinsic), to include all the
SOMPZ-related uncertainties. For both plots, in the top row we have bins 1 and 4, in the middle row bins 2 and 5, and in the bottom row bins 3 and 6.

Table 6. Values of mean and width of the SOMPZ+WZ final ensemble of distributions and the DNF estimate. The statistical difference A_; - is computed
by considering the uncertainties of both methods summed in quadrature, as in A_,. = (< z >sompz — < Z >DNF)/ \/ o(< z >sompz)? + o (< z >pnp)?. We
refer to these as are lower limits. Because the WZ measurement is very similar in the two cases, and the uncertainties summed in quadrature are correlated and

therefore we are likely underestimating A ~..

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

z€[0.2,04] z € [0.4, 0.55] z € [0.55,0.7] z € [0.7, 0.85] z € [0.85,0.95] z € [0.95, 1.05]
<z> SOMPZ+WZ 0.315 £0.016 0.463 £ 0.010 0.633 £ 0.009 0.781 £ 0.008 0.893 & 0.009 0.990 £ 0.012
DNF+WZ 0.292 £ 0.007 0.422 £ 0.011 0.616 £ 0.006 0.762 £ 0.006 0.887 £ 0.007 0.969 £ 0.008

Aoss 1.3 2.7 1.7 1.9 0.5 1.5
o, SOMPZ+WZ 0.080 £ 0.005 0.081 £ 0.005 0.060 £ 0.002 0.073 £ 0.003 0.074 £ 0.004 0.102 £ 0.007
DNF+WZ 0.078 £ 0.005 0.094 £ 0.007 0.055 £ 0.003 0.062 £ 0.003 0.075 £ 0.004 0.080 £ 0.007

A, 0.2 1.6 13 22 0.3 2.3

(iv) WZ galaxy-matter bias: The WZ measurements used in
the DNF+WZ estimates are corrected for the redshift evolution
of the galaxy-matter bias of the MAGLIM sample computed from
autocorrelations measurements following equation (16) (Cawthon
et al. 2022). As for this work we use the forward modelling approach
described in Section 4.2, we instead do not correct directly for the
bias, but from the MAGLIM autocorrelations we determine prior
values of the parameters of our Sys(s), and then marginalize over
possible bias functions in the sampling from the joint likelihood. We
are therefore assuming an uncertainty on the galaxy-matter bias and
validating the central value using SOMPZ data.

We must highlight that in Porredon et al. (2022) and Cawthon
et al. (2022) several tests were performed to test the robustness of
the DNF+WZ method. In particular, Cawthon et al. (2022) tested
the performance of the clustering measurements in simulations,
whereas Porredon et al. (2022) tested that matching DNF n(z) to the
WZ measurements was not introducing biases in the cosmological
constraints, and that modelling only the uncertainties in the mean and
width of the distributions was sufficient for the DES Y3 cosmological

analysis. These tests should cover potential worries raised in points
(ii), (iii), and (iv) above for the DNF+WZ method. Having said this,
any discrepancy between the SOMPZ+WZ n(z) and the DNF+WZ
n(z) should boil down to the points listed above.

In Fig. 6, the shapes and uncertainties of the two methodologies
are compared, before and after the inclusion of WZ information,
respectively, in the left and right panel. Visually the DNF+WZ
n(z) look very similar to the SOMPZ+WZ ones, although some
discrepancies can be noticed (e.g. in the second bin). We report
in Table 6 the redshift means and widths of the two sets of
distributions, and their agreement. The means and widths are also
visually compared in Fig. 7. The agreement is computed assuming
the uncertainties of the two methods to be uncorrelated, which is
likely not true; therefore, the reported agreements are optimistic.
Computing the level of correlation between the two redshift estimates
is not trivial. The DNF+WZ estimates and uncertainties are driven
only by the WZ measurements in the range where WZ measurements
are available and magnification effects are negligible; the tails of
the distribution, on the other hand, are described by the DNF
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Figure 7. Visual representation of the uncertainties on mean (above) and width (below) of the redshift distributions estimated using the SOMPZ (square
markers) and DNF (round markers) methods, before and after including the WZ information, for each tomographic bin. Below the dashed line is the comparison
of the values computed in the redshift range used for the 2 fit of the DNF estimate with the smoothed WZ n(z).

estimates. The SOMPZ+WZ estimates receive contributions from
both SOMPZ and WZ; if the SOMPZ method was to completely drive
our estimates, then the SOMPZ+W?Z and the DNF+WZ estimates
could be assumed to be independent. This is likely the case for the
mean redshift estimates, as we have seen that WZ is not particularly
constraining on the mean redshift (see Fig. 7). The width estimates
are inferred more by the WZ measurements, and this might indicate
that our tensions are underestimated, because we know that the two
calibration methods share part of the WZ information. With this in
mind, large tensions between means/widths of the two methods might
indicate that either the DNF+WZ uncertainties are underestimated,
or there are some real differences between the two methods (one
or both are biased). The reported values in Table 6 does not point
to dramatic differences between the two methods: the most extreme
statistical distance is 2.70 between means of Bin 2, and 2.30 between
widths of Bin 6.

From Table 6 we note that SOMPZ+WZ uncertainties on the
mean are larger than the DNF+WZ ones, while uncertainties on the
widths are comparable. This is due to the fact that the uncertainties
in the mean redshifts for the SOMPZ estimates are very sensitive
to contributions from outliers at high redshift. The DNF+WZ mean
redshift estimates (and uncertainties), on the other hand, are driven
by the match with the WZ measurements with clipped tails, i.e.
they do not take into account uncertainties in the tails, and are
therefore smaller. The fact that the modelling of the tails is different
between the two methodologies is also responsible for the slightly
higher mean redshifts of the SOMPZ+WZ estimates compared
to the DNF+WZ estimates. If we restrict the comparison of the
aforementioned quantities in redshift intervals that exclude the tails
of the distributions, the match between SOMPZ+WZ and DNF+WZ
improves (Fig. 7). We further investigate the importance of the tails
on the cosmological constraints in Appendix D1, finding that, despite
them being important, they do not drive the main difference between
the SOMPZ+WZ and DNF+WZ constraints.
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5.1.1 Galaxy-matter bias prior from WZ autocorrelation

We tested the impact on the Lambda cold dark matter (ACDM)
cosmological parameters of using the same broad prior on the Sys(s)
function describing the galaxy-matter bias as was done for the WL
sample (Gatti et al. 2022). In this work we used more informative
values computed from the clustering autocorrelation of the MAGLIM
sample, the application of which is explained in more detail in
Section 4.2. It is particularly interesting to look at the shape of
distributions, especially for bin 2. Fig. 5 shows in grey the 1o bands
for the case without using the autocorrelation, and leaving a much
broader prior. While in most bins the difference is not appreciable,
and the grey bands are very similar to the solid bands, in bin 2
there is an evident difference. It is therefore suggested that this
implementation of the autocorrelation information used as priors
in the SOMPZ+WZ combination is able to help us constraining
the galaxy-matter bias value, in a way that otherwise would not
have been possible with traditional methods. In Fig. 7 is shown
the comparison over mean redshift and width of the distributions
between SOMPZ+WZ with the more informative prior from the
autocorrelation, against the broad prior (labelled as ‘SOMPZ+WZ
(broad prior)’). The means and widths are well compatible with the
standard SOMPZ+WZ results, and for bins 2 and 3 they are slightly
closer to the DNF+WZ results. Even in bin 2, where the shape of
the n(z) is substantially different, the values of mean and width do
not differ greatly from the standard case, reinforcing the notion that
mean and width alone are not sufficient to fully characterize redshift
distributions of a lens sample.

6 COSMOLOGICAL RESULTS

In this section, we show the constraints on cosmological and nuisance
parameters obtained using the DES Y3 measurements for galaxy—
galaxy lensing and galaxy clustering (Prat et al. 2022; Rodriguez-
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Monroy et al. 2022) (a.k.a. 2x2pt), and the n(z) from this paper. As in
Porredon et al. (2022), we also include in our analysis an additional
likelihood constructed with the Shear Ratio (SR) measurements
(Sanchez et al. 2022). This exploits galaxy—galaxy lensing signal
at small scales (<6 Mpch™!) to provide further constraint to the
redshift distributions and intrinsic alignment parameters. The ratio
of a galaxy—galaxy lensing signal of each lens sample redshift
bin computed with respect to two source sample bins results in
a primarily geometric measurement, which has been proven to
be a powerful method for constraining systematics and nuisance
parameters. This adds independent information from SOMPZ and
WZ to the source redshift calibration. The posterior distribution
obtained follows the Bayes theorem:

P(p|D, M) « L(D, p, M)II(p|M), 19)

where I1(p|M) is the prior distribution for all the parameters of the
model M. For the cosmological inference we use the CosmoSIS
pipeline (Zuntz et al. 2015), and we sample the parameter posteriors
using the PolyChord sampler (Handley, Hobson & Lasenby
2015a,b).

Our data vector D = {w(6), y,(0)} is compared to theoretical
predictions T(p) = {w(0, p), y.(O, p)} in a Bayesian fashion, and
the posterior of the parameters conditional on the data is evaluated
assuming a Gaussian likelihood for the data:

1
log £ —5(D - T(p)' C~ (D —T(p)), (20)

where C is the measurement covariance. In our analysis, we vary five
(or six) cosmological parameters assuming a ACDM (or wCDM)
cosmology: Qun, og, iy, b, higo, and w for the wCDM case. More-
over, we also marginalize over ‘astrophysical’ nuisance parameters
(describing intrinsic alignment effects and the galaxy-matter bias of
the lens sample), and calibration parameters (redshift uncertainties,
shear measurement uncertainties). In short, our set-up (covariance,
parameters varied, prior ranges, etc.) is the same as the one adopted in
Porredon et al. (2022), except for the redshift n(z) and uncertainties
priors of the lens sample, where the ones obtained in this work have
been assumed, and other minor changes that we describe below. All
modelling and analysis choices, together with the calculations of
the theoretical two-point functions, are described in detail in Krause
et al. (2021).

Our analyses were not ‘blinded’, since this work occurred after the
‘unblinding’ of the DES Y3 3x2pt results. We did not perform any
cosmological analysis until the redshift distributions were frozen;
no changes to the redshift distributions (and uncertainties prior)
have been performed after looking at the cosmological constraints.
To ensure the robustness of our final estimates, we adopted a p-
value criteria on the best-fitting models to our data vector. Following
Porredon et al. (2022), we required the goodness-of-fit p-value on
unblinded data vectors was larger than 1 percent. The goodness-
of-fit has been computed using the predictive posterior distribution
(PPD, Doux et al. 2021) and adopted in the main DES Y3 3x2pt
analysis. The PPD methodology derives a calibrated probability-
to-exceed p; in the case of goodness-of-fit tests, this is achieved
by drawing realizations of the data vector for parameters drawn
from the posterior under study which are then compared to actual
observations. The distance metric (x2) is computed in data space,
which is then used to compute the p-value.

Concerning the redshift uncertainties, as it is the primary goal of
this work, we proceeded using the fiducial DES Y3 methodology:
we parametrize the redshift uncertainties with two parameters for
each tomographic bin, which modify a fiducial n(z) distribution with

DES Y3 redshift calibration 2025
a shift on the mean and a stretch on the width. The fiducial n(z)
is estimated by averaging the SOMPZ+WZ n(z) realizations. The
Gaussian priors on the mean and stretch parameters are centred at
the mean and width of the fiducial n(z), while the Gaussian priors
width are measured from the variance in the mean and width of
the n(z) ensemble. This parametrization can be compared directly
to the fiducial DES Y3 2x2pt analysis (Porredon et al. 2022).
In Appendix D we describe an alternative marginalization of the
redshift uncertainties, by marginalizing over the full sets of n(z)
realizations provided by the SOMPZ+WZ method. In principle,
this latter method describes better the redshift uncertainties of our
method. However, we find that the currently available techniques that
marginalize over the full ensemble of realizations during cosmology
inference are prohibitively computationally expensive. Therefore, we
defer its application to future work.

Besides the different n(z), we also ran a few analyses where we
marginalized over magnification parameters of the lens samples over
wide priors. This is different from Porredon et al. (2022), where
magnification parameters have been fixed.

For the fiducial DES Y3 2x2pt analysis, the p-value from the
data-model x? using all six bins of MAGLIM was not sufficient to
pass the 1 per cent criteria. After a series of tests the consensus was
that the two highest redshift tomographic bins were responsible for
worsening the fit. Therefore, the analysis in Porredon et al. (2022)
included only the first four MAGLIM bins. Here, we perform the
analyses using all the six bins of the MAGLIM sample, but also using
only the first four bins, to verify if the same applies also to this work
using different redshift distributions.

In particular, we consider the following scenarios:

(i) ACDM (wCDM); four and six lens bins, fixed magnification.
This is the fiducial analysis that mirrors the one presented in Porredon
etal. (2022). Five (six) cosmological parameters are varied, including
Q. 08, is, Ly, 0o (and w for the wCDM case). Intrinsic alignment,
shear measurement, and redshift uncertainties parameters (of both
lenses and sources) and galaxy-matter linear biases of the lenses
also are marginalized over. The magnification coefficients of the lens
sample, however, are fixed to the values estimated from Balrog
(Everett et al. 2022). Uncertainties in the redshift distributions of the
lens sample are modelled as a shift and stretch in the distributions.

(ii)) ACDM (wCDM); four and six lens bins, free magnification.
Same parameters as the ones above, but magnification parameters are
marginalized over using Gaussian priors. This is an additional set-up
considered only after analysing the results from the aforementioned
fixed magnification set-up.

In what follows, we will also quote results in terms of the Sg
parameter, defined as Sy = 0g(£2,/0.3)%>. In Table 7 we summarize
the best-fitting values of Sg, 2,,, 05, w, and the computed PPD
goodness-of-fit p-value for all the different analyses.

6.1 A CDM results

6.1.1 Fiducial results: four bins, fixed magnification, and
comparison with DNF results

The first cosmological constraints we analyse are the ones obtained
assuming a ACDM cosmology, using four lens bins and fixed
magnification parameters. The decision on which set of results will
be quoted as “fiducial’ for this work had to be made before conducting
any cosmological analysis on data. We initially planned to only run
the fiducial analyses with fixed magnification, as in Porredon et al.
(2021). The choice between four or six lens bins would depend on the
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Table 7. Constraints on the cosmological parameters Q2p,, Sg, and o'g. For each parameter we report the mean of the posterior and the 68 per cent confidence
interval. We also report the PPD goodness-of-fit p-value and the probability of the parameter difference (computed over the full parameter space) between the
analyses considered in this work and Planck TTTEEEO lowl lowE (Aghanim et al. 2020). The fiducial results from this work is reported in bold in the first row,

while the official, fiducial results of DES Y3 are reported in bold in the second to last row.

n(z) Model bins Magnif. Qm N og w p-value Planck
SOMPZ+WZ ACDM 4 Fixed 0.30 + 0.04 0.81 + 0.04 0.81 + 0.07 - 0.029 1.150
SOMPZ

(broad prior) ACDM 4 Fixed 0.31 £ 0.04 0.76 + 0.06 0.76 + 0.09 - 0.037 -
SOMPZ+WZ ACDM 4 Gauss. 0.29 + 0.04 0.81 £ 0.04 0.83 +0.08 - 0.035 1.1lo
SOMPZ+WZ ACDM 6 Fixed - - - - 0.008 -
SOMPZ+WZ ACDM 6 Gauss. 0.28 +0.03 0.79 £+ 0.03 0.82 + 0.06 - 0.065 2410
SOMPZ+WZ wCDM 4 Fixed 0.29 + 0.04 0.79 + 0.06 0.81 +0.08 —1.2+£0.3 0.032 0.460
SOMPZ+WZ wCDM 4 Gauss. 0.29 + 0.04 0.79 + 0.06 0.81 +0.07 —-1.0£0.3 0.035 0.460
SOMPZ+WZ wCDM 6 Fixed 0.30 + 0.04 0.78 + 0.04 0.78 4+ 0.06 —-09+0.3 0.012 2.290
SOMPZ+WZ wCDM 6 Gauss. 0.31 £0.03 0.83 + 0.04 0.82 +0.05 —-0.7£0.2 0.059 2210
DNF+WZ ACDM 4 Fixed 0.32 + 0.04 0.78 + 0.04 0.76 + 0.07 - 0.019 1.00
DNF+WZ wCDM 4 Fixed 0.32 +0.05 0.78 £+ 0.05 0.76 + 0.07 —-1.0£0.3 0.024 -

p-value criteria: if the ACDM, six bins, fixed magnification scenario
were to yield a p-value above the specified threshold, then we would
favour that configuration. This analysis though did not fulfil our p-
value criteria (p-value = 0.008, see Table 7), similarly as for the
analysis ran with the same settings but using the fiducial redshift
distributions from DNF; hence, we do not show those results here.
We then chose as fiducial the ACDM, four bins, fixed magnification
analysis, which is equivalent to the ‘fiducial’ set-up assumed in
Porredon et al. (2021), which also allows us to compare our results
directly to the ones obtained using the DNF+WZ n(z). The posterior
on the cosmological parameters €2y, and Sg is shown in the left panel
of Fig. 8; the marginalized mean values of Sg, 2, and og, along
with the 68 per cent confidence intervals, are

Qn = 0.30%0.04, (21)
og =0.81+0.07, (22)
Sg = 0.81 4 0.04. (23)

The PPD goodness-of-fit test for this analysis results into p-
value = 0.029, well above our threshold (see also Table 7). In the
left panel of Fig. 8 we also compare our results with the constraints
obtained using the fiducial DNF+WZ n(z). The size of the posteriors
is similar for the two cases, but the two posteriors are slightly shifted;
the distance between the posteriors’ peaks in the 2D 2, — Sg plane
isd ~ 0.40. In DES Y3 we impose a 0.30 threshold for differences
in the @, — Ss plane induced by different analysis choices, as
larger statistical distances would indicate the presence of systematic
uncertainties unaccounted for; these results would apparently violate
this criteria. We note, however, that the (arbitrary) 0.30 threshold
adopted by DES refers to differences in the 2, — Sg plane when
noiseless theory data vectors are assumed. In the presence of noisy
data vectors these differences can become larger, without invalidating
our criteria. Having said this, a d ~ 0.40 difference none the less
show the large impact a different redshift calibration of the lens
sample can have on the cosmological constraints. This is somewhat
different from the results obtained for the source sample n(z) (Amon
et al. 2022), where uncertainties in the redshift calibration had a
negligible impact on the cosmological constraints.

In Section 4.2 we explained how for the combination of the
two methods we marginalize over possible functional forms of the
unknown galaxy-matter bias of the MAGLIM sample, by means of
the systematic function Sys(s) in our clustering model. The prior on
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the parameters s is inferred from the clustering autocorrelation. We
tested the impact on the redshift distributions of using a broader prior
(the same used in Myles et al. 2021) in Section 5. We have tested the
impact of using these n(z) for the cosmological inference, and found
that there is no change in constraining power and no shift for 2,
but there is a shift on Sg such to overlap with the fiducial results from
DNF+WZ. Therefore, it is clear that the information carried by the
autocorrelation is crucial in our cosmological analysis.

6.1.2 Four and six bins, free magnification

As supplementary analyses, we then proceed to relax the fixed priors
on the magnification parameters for the lens sample. Instead of fixing
them to the values estimated from Elvin-Poole et al. (2023) (as done
in the previous section), we leave them as free parameters, using
Gaussian priors. In short, Elvin-Poole et al. (2023) estimate the
magnification parameters using Balrog, by injecting fake galaxies
into the wide field with and without applying a small magnification;
the difference between the number of galaxies passing the selection in
the two cases is then used to estimate the magnification parameters of
the sample. These parameters come with a small uncertainty, which
is however ignored in the fiducial analysis, as the magnification
parameters are assumed to be fixed to the mean Balrog value.
The central values and the uncertainties are reported in Table C1
in Appendix C. One of the main reasons the DES Y3 fiducial
analysis did not vary the magnification parameters was merely
computational, as four (or six) additional parameters lengthen the
parameter inference process. In principle there is no reason to doubt
these estimates. Differences might be caused by the fact that the
Balrog injections do not completely sample the full DES Y3
footprint, or in case our injections were not fully representative of
the DES sample we are analysing.

When varying these parameters in our analyses, we find that the
p-value computed using PPD indicates a good fit of the model to the
data not only for the four bins case, but also for six bins case (see
Table 7). Adding the last two lens bins significantly improves the
constraining power on 2, by 30 per cent compared to the four bins
case, whereas the constraints on Sg are 20 per cent tighter.

6.2 wCDM results

We then proceed to analyse the results obtained with wCDM, for
all four cases: four and six bins, fixed and free magnification, as
described in the previous section. Parameter posteriors are shown in
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Figure 8. Left panel: posterior distributions of the cosmological parameters 2, and Sg for the ACDM analysis involving four bins and fixed magnification
parameters. The ‘fiducial’ posteriors have been obtained using the DNF+WZ redshift distributions, and they are compared to the ones obtained using the
SOMPZ+WZ redshift distributions. Right panel: posterior distributions of the cosmological parameters 2y, and Sg for the ACDM analysis for three different
cases: (1) four bins and fixed magnification parameters (the blue contours in the two plots share the same analysis choices); (2) four bins and marginalized over
magnification parameters (in solid green); (3) six bins and marginalizing over magnification parameters (in solid red). The 2D marginalized contours in both of

these figures show the 68 per cent and 95 per cent confidence levels.

----- 4 bins, fixed mag
—— 4 bins, Gaussian mag
I 6 bins, fixed mag
Il 6 bins, Gaussian mag

WCDM 2x2pt
SOMPZ+WZ
variants

07 08 09 -20-15-1.0 05
Qn Sa w

Figure 9. Posterior distributions of the cosmological parameters 2, and Sg
and w for four different cases: (1) wCDM, four bins and fixed magnification
parameters; (2) wCDM, six bins and fixed magnification parameters, (3)
wCDM, four bins and free magnification parameters; (4) wCDM, six bins
and free magnification parameters. The 2D marginalized contours in these
figures show the 68 percent and 95 per cent confidence levels. We note that
the posteriors of w for the six bins cases are partially affected by the prior
edge (w € [ — 2, —0.33], Table C1); see the text for more details.

Fig. 9, whereas p-values and parameters constraints are reported in
Table 7. All the reported p-values are above our p = 0.01 threshold.

In general, the 2x2pt constraints on w are loose and affected by the
prior (—2 < w < —0.3), but compatible with a ACDM scenario. With
respect to ACDM four bins case, freeing w loosens the constraint on
Sg (both with fixed and with free magnification) by ~ 30 per cent,
while leaves it unvaried for €2,,. For the six bins, we are unable to
directly compare to the fixed magnification case, but for the free
magnification the constraint on Sg is ~ 25 per cent looser, while,
similarly to the four bins case, it is unvaried for 2,,.

Passing from the four bins to the six bins configuration, besides
increasing the constraints on Sg, also the constraints on w improves
(by ~20 percent), although part of the improvement is due to the
posterior partially hitting the prior edge.

Freeing the magnification parameters slightly shifts w towards the
upper edge of the prior (w = —0.3), and Sy slightly towards higher
values, due to a degeneracy between w, Sg, and the magnification
parameters of the two highest lens bins, which are now fairly broad
(see Table C1). Such a shift is not present in the case of four bins, as
the Gaussian priors used for the first four magnification parameters
are much tighter.

6.3 Statistical distance to Planck

We compute here the statistical distances between our cosmological
constraints and the early Universe ones from the Planck satellite
(Aghanim et al. 2020). To this aim, we used the algorithm presented
in Raveri & Doux (2021), which estimates the probability of tension
between parameters via Monte Carlo approximation. In particular,
the probability of tension between parameters can be expressed as
follows:

P(AG) = Pa@)Pp(0 — Ab)dO, 24)

Vp
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where V), represents the prior volume, while P4 and Pp represent
two posterior parameter distributions under study. The probability of
having a shift in the parameter space is described by the parameter
shifts density:

A= / P(AO)dASE. 25)
P(AO)>P(0)

This refers to the posterior portion beyond the constant probability
contour for no shift, A@ = 0. The integration in equation (25) is
performed via Monte Carlo techniques.

The comparison between the results has been performed consid-
ering all the parameters shared by our analyses and Planck. The
values are reported in the last column of Table 7; we find no sign of
significant tension (<30') in any of the analysis set-ups considered. In
particular, we find that for the four bins case for ACDM (both fixed
and free magnification) there is good agreement (1.150, 1.110),
similarly for wCDM with four bins we have 0.460 for both fixed
and free magnification. For the six bins cases the values are larger
(2.2-2.40), but still below the 30 threshold.

7 CONCLUSIONS

In this paper, we presented an alternative calibration of the MAGLIM
lens sample redshift distributions from the DES first 3 yr of data
(Y3). This new method, which has already been applied to the
DES Y3 weak lensing sample (Myles et al. 2021), is based on a
combination of an SOMPZ and clustering redshifts (WZ) to estimate
redshift distributions and inherent uncertainties. The original red-
shift calibration of the MAGLIM sample (and cosmological results
obtained adopting that calibration) have been originally presented
in Porredon et al. (2022), and has been based on the photo-z code
DNF (De Vicente et al. 2016) and WZ constraints (Cawthon et al.
2022). The methodology presented in this paper is meant to be more
accurate than the original one. First, the SOMPZ method allows a
better control over all the potential sources of uncertainties affecting
the estimates compared to DNF; second, the clustering constraints
(WZ) are incorporated through a rigorous joint likelihood framework
which allows to draw n(z) samples conditioned on both clustering
and photometric measurements, improving the n(z) estimates (e.g.
the final ‘SOMPZ+WZ’ n(z) have a smaller scatter, or uncertainty,
compared to the SOMPZ ones, see Fig. 5).

We described in detail the methodology followed to produce the
alternative MAGLIM n(z) based on the SOMPZ+WZ approach, to-
gether with a detailed report on the main systematics dominating our
calibration error budget. Our redshift uncertainties, in particular, are
dominated by the impact of sample variance on the SOMPZ estimate
(due to the limited area spanned by the deep field sample used in the
calibration) and by the effect of the redshift evolution of the galaxy-
matter bias of the MAGLIM sample on the WZ constraints. We then
compared our SOMPZ+WZ n(z) with the fiducial DNF+WZ n(z)
estimates; the means and widths of the 6 MAGLIM tomographic
bins show moderate statistical distances, with the largest deviation
of 2.7¢ in bin 2 (see Table 6). We also found the uncertainties on
mean of the redshift distributions of the SOMPZ+WZ method to
be slightly larger than the ones of the DNF+WZ method, due to a
more conservative calibration of the tails of the redshift distributions.
On the other hand, we found the two methods to have a similar
constraining power on the widths of the distributions.

We then proceeded investigating the impact on the cosmological
constraints of our new redshift calibration. In particular, we used the
DES Y3 galaxy—galaxy lensing and galaxy clustering measurements
(Prat et al. 2022; Rodriguez-Monroy et al. 2022) (a.k.a. 2x2pt), and
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the n(z) from this work, and compared to the results from Porredon
et al. (2022). In the ‘fiducial’ configuration, which involves using the
first four lens bins and assuming a ACDM cosmology, we obtained
as marginalized mean values 2, = 0.30 £ 0.04, o3 = 0.81 £ 0.07,
and Sg = 0.81 & 0.04. We noted a ~0.40 shift in the 2 — Sg plane
compared to the Porredon et al. (2022) results, but no change in terms
of constraining power. The shift indicates that the redshift calibration
of the lens sample plays a key role on cosmological constraints from
the 2x2pt analysis, contrary to the redshift calibration of the source
sample (Amon et al. 2022). Subsequently, we explored different
analysis set-ups; we tested the case where all the six MAGLIM redshift
bins were included, a scenario where the magnification coefficients
of the lens sample were marginalized during the inference, and last,
we assumed a wCDM cosmology. We found that the inclusion of
the last two redshift bins of the MAGLIM sample help improving the
constraints on 2, by ~ 25 per cent, and on Sg by ~ 20 per cent.

We also compared our results to the cosmological constraints
from Planck (Aghanim et al. 2020), finding a no-tension of 1.15¢
between the results when four lens bins were considered. We did
find a statistical distance of 2.410 in ACDM with free magnification
coefficients when including in the analysis the two high-redshift bins
(z > 0.85), which have not been included in the fiducial DES Y3
analysis (Porredon et al. 2022).

As a final comment, despite the SOMPZ+WZ method’s ability
to produce n(z) samples capturing the redshift uncertainties of our
estimates, we could not efficiently marginalize over these realization
during the cosmological inference, due to computational constraints.
Our marginalization strategy followed the one adopted in Porredon
et al. (2022): we adopted the mean of the SOMPZ+WZ samples as
our fiducial n(z), and marginalized over a shift in the mean and a
stretch of the width of the distribution, using as priors the variances
in the mean and widths of the SOMPZ+WZ n(z) samples. While this
strategy was deemed sufficient for this work, we plan to implement
the full marginalization scheme for subsequent analyses of the lens
samples with DES Y6 data.
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8 DATA AVAILABILITY

The DES Y3 data products used in this work, as well as the
full ensemble of DES Y3 MAGLIM sample redshift distributions
described by this work, are publicly available at https://des.ncsa.ill
inois.edu/releases. As cosmology likelihood sampling software we
use cosmosis, available at https://github.com/joezuntz/cosmosis.
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APPENDIX A: MAaGcLIM SAMPLE IN
SIMULATIONS

Due to the small but existing differences in magnitude/colour space
between the Buzzard simulation and the DES data (DeRose et al.
2019), we expect the simulated sample to not be a perfect copy of
the data sample, although we do not expect this to have a sensible
impact on any of the conclusions drawn in this work. The direct
application of the fiducial MAGLIM selection (equation 1) to the
Buzzard catalogue leads to slightly different number densities and
colour distributions with respect to data. We therefore redefine a
more adequate MAGLIM selection for Buzzard, with the goal of
achieving the same number density as the data sample. The new
Buzzard MAGLIM selection is a piece-wise linear selection in redshift
and magnitude, similar to equation (1) but with coefficients redefined
by minimizing the quadratic sum of the difference in number density
with the values in data, for each tomographic bin, in order to avoid
discontinuities in the selection. Such a redefined selection guarantees
similar number densities as the data sample. We then ensure similar
colour distributions by an additional reweighting procedure of the
mock catalogue, so as to resemble the colour distributions of the data
sample. In particular, we iteratively reweight based on i, r magnitudes
and i-r colours, with the final distributions matching closely the data
ones, as shown in Fig. Al.

The new MAGLIM selection in Buzzard for each tomographic bin
is then the following:

(i) Bin I i<2.017 %Zmean + 18.882
(i) Bin 2: i<2.687 %Zmean + 18.614
(iii) Bin 3: i< 5.705 %Zmean + 16.954
(iv) Bin4: i<2.399 %Zpean + 19.268
(v) Bin5: i <9.455 %Zmean + 13.271

(i) Bin 6: i <-0.960 *Zmean + 23.165

We list in Table Al the number densities of MAGLIM in Buz-
zard, obtained with the fiducial selection and with the adapted in
simulations.
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Figure Al. Comparison of riz-band magnitudes and r — i, z — i colours of the six bins of the MAGLIM sample, between data (blue) and simulations, before
(green) and after reweighting (red). The re-weighting process has proven successful in yielding magnitude distributions that closely resemble those observed in

the actual da

ta.

Table A1. Number densities of the MAGLIM sample in Buzzard as obtained with the fiducial MAGLIM selection, and with the
one adapted for Buzzard.

Number density Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
Before (Fiducial MAGLIM selection) 1.10 0.90 1.12 0.97 0.69 0.76
After (Buzzard MAGLIM selection) 0.98 0.99 0.99 0.99 0.99 0.98
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APPENDIX B: VALIDATION IN SIMULATIONS

The validity of our methodology and pipeline has been tested in
the Buzzard N-body simulation, introduced in Section 2.8. The
measurements of redshift distributions using both phenotypes and
clustering were validated in simulations to ensure unbiased estimates
with respect to the true redshift distributions. The MAGLIM sample
has been recreated in the Buzzard simulations, as described in
Section 2. The sample selection has been altered to reproduce as
faithfully as possible the number density and colour distributions of
the data.
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Figure B1. Estimated n(z) in four tomographic bins using a 12 x 12 cell
deep SOM and 32 x 32 cell wide SOM trained on Buzzard simulations. In the
top row we have bins 1 and 4, in the middle row bins 2 and 5, and in the bottom
row bins 3 and 6. The redshift sample used here has 100 000 galaxies drawn
from 1.38 deg?, such that after the MAGLIM selection it yields ~15 000 unique
galaxies, which is the same order of magnitude as the redshift samples in data,
see Table 2. The deep sample is drawn from three fields of size 3.32, 3.29, and
1.94 deg?, respectively, from the Buzzard simulated sky catalogue. The black
dashed line marks the true value, the transparent bands are the 3sDir set of
n(z), and the solid bands are the realizations once combined with clustering
redshifts. We can appreciate the effect of the combined likelihood, resulting
in distributions more constrained in terms of shape, and still consistent with
the truth.

As described in Section 4.1.1, we generated 300 simulated deep
field realizations that we used to estimate the SOMPZ method
uncertainty, which we report in Table 4, and add into our overall
error budget. Here, we illustrate that the uncertainty predicted by the
3sDir and the 3sDir + WZ models is consistent with the true n(z)
in one of these simulated realizations. We start by selecting one of
these simulated realizations, which includes the four deep fields and
their corresponding Balrog and redshift samples. We then proceeded
to perform the 3sDir analytical sample variance estimation for that
one specific realization. The geometry and resolution of the SOM
used in simulations are the same as the ones used in data. There
are two differences between our simulated scenario and real data:
(1) we use the true redshifts from the Buzzard simulations; (2) we
assume all redshift information comes from one of our four deep
fields. This latter point matches the modelling assumption of 3sDir,
which also assumes that the redshift information only comes from
one out of four fields. This is a conservative choice that inflates
the modelled error due to sample variance in real data for the
term p(z|c), and it avoids modelling the highly non-trivial selection
function of spectroscopic samples coming from fields other than
the COSMOS field. We note that the sample variance contribution
to the colour distribution p(c) is modelled correctly as coming
from all four fields. The SOMPZ redshift distributions, and their
uncertainties estimated through the 3sDir method, are in agreement
with the true distribution, as shown in Fig. B1. In Table B1 we
summarize the mean and width of the simulated n(z) of the SOMPZ
and SOMPZ+WZ methods in each tomographic bin, and of the
true n(z), together with the respective statistical distances from the
truth.

We also repeated in simulations the same procedure as for data also
for the WZ estimates. We created a mock BOSS/eBOSS catalogue
to use as a reference sample. As in data, also in simulations the
BOSS/eBOSS sample is divided into 50 bins spanning the 0.1 < z <
1.1 range of the catalogue (width Az = 0.02). Before proceeding with
combining the SOMPZ and WZ information through the combined
likelihood, the compatibility between SOMPZ and WZ was checked.
This was tested by inferring the windowed means and widths of the
WZ and SOMPZ redshift estimates, following Gatti et al. (2022).
The window has been determined such that magnification effects
related to the WZ measurements can be neglected. As for WZ,
we used a ‘simple’ estimator for the redshift distribution, inverting
equation (17) and ignoring magnification effects (this is possible
as we are considering only windowed quantities). The means and
widths computed in this way for the two methods were compatible

Table B1. SIMULATIONS: Summary of values for centre values for mean (top panel) and width (bottom panel) for the n(z) distributions as measured in the
Buzzard simulations. The values related to SOMPZ and SOMPZ+WZ refer to Fig. B1. Note that the uncertainties quoted here only include sample variance

and shot noise.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
z €1[0.2,0.4] z € [0.4,0.55] z € [0.55, 0.7] z €[0.7,0.85] z € [0.85, 0.95] z € [0.95, 1.05]
<z> SOMPZ 0.319 £ 0.009 0.484 £+ 0.007 0.623 £ 0.006 0.784 £+ 0.006 0.891 £ 0.007 0.993 £ 0.010
SOMPZ+WZ 0.313 £ 0.008 0.466 £ 0.006 0.613 £ 0.005 0.774 £+ 0.007 0.876 £ 0.007 0.988 £ 0.007
Ao~ SOMPZ 1.46 2.55 0.20 0.28 0.55 1.08
SOMPZ+WZ 0.83 0.42 1.81 1.28 2.49 2.10
o, SOMPZ 0.075 £ 0.010 0.064 £ 0.007 0.062 =+ 0.006 0.056 £ 0.005 0.060 =+ 0.005 0.068 £ 0.007
SOMPZ+WZ 0.077 £ 0.005 0.057 £ 0.005 0.064 £ 0.004 0.068 £ 0.005 0.064 £ 0.005 0.060 £ 0.003
Ao, SOMPZ 0.53 0.59 1.17 1.42 0.79 0.10
SOMPZ+WZ 0.46 2.08 2.13 0.93 1.50 2.09
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Figure B2. Posterior distributions of the cosmological parameters Qp,, Ss,
and w for the ACDM and wCDM analyses. These have been run with six
bins and fixed magnification parameters.

within statistical (and systematic) errors, hence the SOMPZ and WZ
could be combined together.

The posterior obtained in simulations from multiplying the two
likelihoods is shown in Fig. B1, in which the effect of the combination
immediately stands out: the additional information from clustering
redshifts places a tight constraint on the shape of the n(z), while
still being in agreement with the true distribution. This larger
constraining power derives from the fact that in clustering the
number density for each redshift bin correlates across neighbour-
ing bins, which restrains the joint likelihood to prefer smoother
realizations and reject the ones with more uncorrelated values of
clustering.

As the second phase of the validation process, a full 2x2pt cosmo-
logical analysis was performed. We utilized the data vector consisting
of the two-point measurements from the Buzzard simulations and
the redshift distributions obtained from the SOMPZ+WZ method,
obtained as described in the previous paragraph. We considered
both ACDM and wCDM models, fixing magnification parameters
and including all six MAGLIM tomographic bins. Additionally,
we fixed the source galaxies redshift distributions, to ensure any
deviation from the true parameter values of the simulation would
be caused by the lens n(z) alone. The mean values of Sg, Q2
(and w), with their respective 68 percent confidence intervals,
are

(i) ACDM: Sg =0.73 £0.18, @, =0.31 £0.07;
(i) wCDM: §3 =0.71£0.18, 2, =0.30+0.08, w =-1.3+0.4.

For both analyses, the posterior distributions successfully recov-
ered the input parameters (see Section 2), as displayed in Fig. B2.

APPENDIX C: COSMOLOGICAL PARAMETERS

In Table C1 are listed all the cosmological parameters included in
our fiducial analysis.

DES Y3 redshift calibration 2033

Table C1. The parameters and their priors used in the fiducial MAGLIM
ACDM, and wCDM analyses. The parameter w is fixed to —1 in ACDM. The
square brackets denote a flat prior, while the parentheses denote a Gaussian
prior of the form N (i, o).

Parameter Fiducial Prior
Cosmology
Qm 0.3 [0.1,0.9]
As10° 2.19 [0.5, 5.0]
ng 0.97 [0.87, 1.07]
w -1.0 [—2, —0.33]
Q 0.048 [0.03, 0.07]
ho 0.69 [0.55, 0.91]
Q,n%10° 0.83 [0.6, 6.44]
Linear galaxy bias
b; 15,18,1.8,1.9,2.3,2.3 [0.8,3.0]
Lensmagnification
C 0.43 (0.43,0.51)
C 0.30 (0.30, 0.48)
G 1.75 (1.75, 0.39)
Cy 1.94 (1.94, 0.35)
Cs 1.56 (1.56,0.71)
Cs 2.96 (2.96, 0.95)
Lens photo-z
Az} 0.0 (0.0, 0.0164)
Az} 0.0 (0.0, 0.0100)
Az 0.0 (0.0, 0.0085)
Az} 0.0 (0.0, 0.0084)
Az 0.0 (0.0, 0.0094)
AZd 0.0 (0.0, 0.0116)
oz 1.0 (1.0, 0.0639)
ozt 1.0 (1.0, 0.0624)
oz 1.0 (1.0,0.0315)
oz 1.0 (1.0, 0.0409)
oz 1.0 (1.0, 0.0515)
oz 1.0 (1.0, 0.0650)
Intrinsic alignment
a; (i € [1,2]) 0.7, —1.36 [-5, 5]
i G €[1,2]) —1.7,-25 [-5. 5]
bra 1.0 [0,2]
20 0.62 Fixed
Source photo-z
Azl 0.0 (0.0, 0.018)
Az? 0.0 (0.0, 0.013)
AZ] 0.0 (0.0, 0.006)
Az} 0.0 (0.0,0.013)
Shear calibration
m! —0.006 (—0.006, 0.008)
m? —0.010 (—=0.010, 0.013)
m? —0.026 (—0.026, 0.009)
m* —0.032 (—0.032, 0.012)

APPENDIX D: REDSHIFT UNCERTAINTIES
SAMPLING STRATEGY

How redshift uncertainties are propagated in the cosmological anal-
ysis can have an impact on the final result. In this section we discuss
different strategies to marginalize over the redshift uncertainties of
our sample during the cosmological inference. Because we have
can rely on a full ensemble of n(z) shapes capturing our redshift
uncertainties, we can compare three different sampling methods:
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(i) Shift: we compress the realizations by computing their average,
and marginalize over a shift on the mean;

(ii) Shift and stretch: we compress the realizations by computing
their average, and marginalize over both a shift on the mean and on
a stretch on the width;

(iii) Full shape: we provide as input all the produced realizations
and we rank them by one of their properties using the Hyperrank
method (Cordero et al. 2022), marginalizing over the full shape of
the distributions.

Using only shifts is the methodology usually adopted to model
redshift uncertainties in weak lensing sample, as the weak lensing
kernel is mostly sensitive to the mean of the redshift distributions. On
the other hand, clustering and galaxy—galaxy lensing measurements
are also very sensitive to the width of the lens redshift distributions;
therefore, the shift and stretch approach is preferred. The full shape
marginalization, in theory, is more accurate, because it accounts for
the uncertainties in the higher order moments of the distribution;
however, depending on the science case, it might not make a huge
impact on the final constraints. The full shape marginalization is
implemented via hyperrank (Cordero et al. 2022), which is an
algorithm that orders realizations of the ensemble according to a
parameter, which facilitates the sampling and marginalization over
the n(z) ensemble within the cosmological likelihood Markov chains.
Hyperrank was also implemented for the WL sources, although it had
anegligible impact on the results. The quantity chosen for the ranking
in that case was the mean. We decided for this case it would be more
appropriate to perform the optimized ranking of the realization by
the 68 per cent sigma rather than the mean, and we tested it indeed
improved the performance of the sampling. To test the different
sampling strategies, we built a synthetic noiseless data vector based
on theory predictions at fixed cosmology and we used as n(z) the
realizations average of the SOMPZ+-WZ estimates in data. We then
marginalized over redshift uncertainties using the three approaches
aforementioned. We performed this test both using four or six lens
bins, although here we are just going to show the posteriors obtained
with four bins as they are not qualitatively different from the ones
with six bins. The results of this test are shown in Fig. D1, where we
show the posterior of og, Q2 and for sake of simplicity, two out of
the four galaxy-matter linear biases.

Focusing on the shift and shift+stretch contours, one can notice
that the width of the contour in the direction perpendicular to the
degeneration axis is larger for the shift + stretch. This is related
to impact of the additional marginalization over the width of the
distributions. One caveat is that in our marginalization scheme (as
adopted in the main DES Y3 2x2pt analysis), we are implicitly
neglecting correlations between the uncertainties in the mean and
widths of the distributions, which usually show a certain degree of
correlation (from ~ 10 per cent to ~ 30 per cent, depending from
the tomographic bin). These are neglected, which might translate
in a slight overestimation of our constraints. When marginalizing
over the uncertainties using the hyperrank framework, on the other
hand, such correlations are implicitly accounted for. Indeed, one can
notice that the hyperrank posteriors are slightly tighter than the shift
or shift-stretch posteriors.

Unfortunately, we did not manage to successfully apply hyperrank
to the data. When performing the cosmological analysis on data using
hyperrank, we found significantly less smooth posteriors compared
to our tests on simulations. A similar behaviour has also been found
when applying hyperrank to the DES Y3 source sample (Amon
et al. 2022), and it has been interpreted as a consequence of a
possible larger degree of complexity of the redshift distributions of
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Figure D1. Posterior distributions of the cosmological parameters Qp,, Sg,
and two out of four of the galaxy-matter biases (b2, b ) for the ACDM analysis
involving four bins and fixed magnification parameters. These analyses have
been obtained assuming a theoretical data vector and adopting different
marginalization schemes on the redshift distribution of the lens sample.
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Figure D2. Same as the left panel of Fig. 8, but with two additional
posteriors overplotted representing the constraints obtained using the redshift
distributions with ‘clipped’ tails.

our data compared to simulations. We attempted both to artificially
smooth our n(z) and to increase the number of samples from the
SOMPZ+WZ method, without reaching a satisfactory level. Due
to the very high computational cost of running a cosmological
chain using hyperrank, we could only test a few different levels of
smoothing before deciding to abandon hyperrank for this work, and
choose the shift 4 stretch as photo-z uncertainty marginalization
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methodology. For DES Y6, we plan to apply several tools that
will speed up our cosmological inference, enabling more tests on
hyperrank, which has great potential and whose implementation is a
goal for the DES Y6 analysis.

D1 Cosmological constraints with clipped n(z) tails

Here, we test whether the difference between DNF+WZ and
SOMPZ+WZ constraints (Fig. 8) were only due to the different
treatment of redshift outliers and of the tails of the redshift dis-
tributions. We artificially removed the tails from the DNF+WZ and
SOMPZ+WZn(z) (i.e. we set the distributions to zero), and repeated
our cosmological analysis. We used as definition of the tails the
same interval used to calibrate the DNF distribution with the WZ
constraints adopted in Porredon et al. (2022). Results for the ACDM
case, four bins, and fixed magnification are shown in Fig. D2. By
removing the tails, both posteriors are shifted, which means that the
calibration of the tails of the redshift distribution is important for our
cosmological analysis. Since the two posteriors are shifted but they
still do not overlap, we can assume that the differences in the bulk
of the redshift distributions inferred by two methods is also crucially
driving the differences at the constraints level seen in Fig. 8.
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