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Abstract

Transfer learning is a popular method for tuning pre-
trained (upstream) models for different downstream tasks
using limited data and computational resources. We study
how an adversary with control over an upstream model used
in transfer learning can conduct property inference attacks
on a victim’s tuned downstream model. For example, to in-
fer the presence of images of a specific individual in the
downstream training set. We demonstrate attacks in which
an adversary can manipulate the upstream model to con-
duct highly effective and specific property inference attacks
(AUC score > 0.9), without incurring significant perfor-
mance loss on the main task. The main idea of the ma-
nipulation is to make the upstream model generate acti-
vations (intermediate features) with different distributions
for samples with and without a target property, thus en-
abling the adversary to distinguish easily between down-
stream models trained with and without training examples
that have the target property. QOur code is available at
https:// github.com/yulongt23/ Transfer-Inference.

1. Introduction

Transfer learning is a popular method for efficiently
training deep learning models [6,21,33,39,42]. In a typ-
ical transfer learning scenario, an upstream trainer trains
and releases a pretrained model. Then a downstream trainer
will reuse the parameters of some layers of the released
upstream models to tune a downstream model for a par-
ticular task. This parameter reuse reduces the amount of
data and computing resources required for training down-
stream models significantly, making this technique increas-
ingly popular. However, the centralized nature of transfer
learning is open to exploitation by an adversary. Several
previous works have considered security risks associated
with transfer learning including backdoor attacks [39] and
misclassification attacks [33].

*Indicates the corresponding author.

We investigate the risk of property inference in the
context of transfer learning. In property inference (also
known as distribution inference), the attacker aims to ex-
tract sensitive properties of the training distribution of a
model [3,7,12,29,41]. We consider a transfer learning sce-
nario where the upstream trainer is malicious and produces
a carefully crafted pretrained model with the goal of infer-
ring a particular property about the tuning data used by the
victim to train a downstream model. For example, the at-
tacker may be interested in knowing whether any images of
a specific individual (or group, such as seniors or Asians)
are contained in a downstream training set used to tune the
pre-trained model. Such inferences can lead to severe pri-
vacy leakage—for instance, if the adversary knows before-
hand that the downstream training set consists of data of pa-
tients that have a particular disease, confirming the presence
of a specific individual in that training data is a privacy vi-
olation. Property inference may also be used to audit mod-
els for fairness issues [22]—for example, in a downstream
dataset containing data of all the employees of an organi-
zation, finding the absence of samples of a certain group of
people (e.g., older people) may be evidence that those peo-
ple are underrepresented in that organization.

Contributions. We identify a new vulnerability of trans-
fer learning where the upstream trainer crafts a pretrained
model to enable an inference attack on the downstream
model that reveals very precise and accurate information
about the downstream training data (Section 3). We develop
methods to manipulate the upstream model training to pro-
duce a model that, when used to train a downstream model,
will induce a downstream model that reveals sensitive prop-
erties of its training data in both white-box and black-box
inference settings (Section 4). We demonstrate that this
substantially increases property inference risk compared to
baseline settings where the upstream model is trained nor-
mally (Section 7). Table 1 summarizes our key results. The
inference AUC scores are below 0.65 when the upstream
models are trained normally; after manipulation, the infer-
ences have AUC scores > 0.89 even when only 0.1% (10
out of 10000) of downstream samples have the target prop-
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Normal Upstream Model = Manipulated Upstream Model

Downstream Task Upstream Task Target Property ‘ 0.1% (10) 1% (100) ‘ 0.1% (10) 1% (100)

Gender Recognition Face Recognition 0.49 0.52 0.96 1.0
Smile Detection ImageNet Classification [9]  Specific Individuals 0.50 0.50 1.0 1.0
Age Prediction ImageNet Classification [9] 0.54 0.63 0.97 1.0
Smile Detection ImageNet Classification [9] Senior ‘ 0.59 0.56 ‘ 0.89 1.0
Age Prediction ImageNet Classification [9] Asian | 049 0.65 | 095 1.0

Table 1. Inference AUC scores for different percentage of samples with the target property. Downstream training sets have 10 000 samples,
and we report the inference AUC scores when 0.1% (10) and 1% (100) samples in the downstream set have the target property. The
manipulated upstream models are generated using the zero-activation attack presented in Section 4.

erty and achieve perfect results (AUC score = 1.0) when the
ratio increases to 1%. The manipulated models have negli-
gible performance drops (< 0.9%) on their intended tasks.
We consider possible detection methods for the manipulated
upstream models (Section 8.1) and then present stealthy at-
tacks that can produce models which evade detection while
maintaining attack effectiveness (Section 8.2).

2. Related Work

Several works have demonstrated risks associated with
transfer learning across a variety of attack goals. Wang et
al. [33] and Yao et al. [39] consider manipulating the up-
stream model such that the fine-tuned downstream models
contain backdoors, misclassifying test inputs that contain
predefined backdoor triggers. These transfer manipulations
are tailored to their particular attack goals and cannot be
applied for the property inference goal considered in this
paper. Zou et al. [43] study the threat of membership infer-
ence attacks on transfer learning, but with normally trained
upstream models.

The risk of property inference was introduced by Ate-
niese et al. [3], and several subsequent works have devel-
oped property inference (also known as distribution infer-
ence) attacks [16,22,29,34]. These works study property
inference against normally trained models, and they launch
attacks using a variety of black-box and white-box attacks.
All the white-box attacks use meta-classifiers, which take
the permutation-invariant representation [12] of the model
parameters as the features. We use the state-of-the-art
white-box attack [29] in our experiments. Melis et al. [23]
and Zhang et al. [41] focus on property inference in dis-
tributed training scenarios. In their settings, the attacker
is a participant in the global model training and conducts
property inference using meta-classifiers that are trained on
model outputs or gradients. Similarly, Suri et al. [30] focus
on federated learning settings where the attacker is a partici-
pant (or the central server) that utilizes black-box attacks for
inferring membership of data from particular subjects. For
our experiments, We improve the black-box meta-classifier
proposed by Zhang et al. [41] using the “query tuning” tech-
nique in Xu et al. [37].

The closest works to ours are Chase et al. [7] and Chaud-
hari et al. [8], which both consider a scenario where the at-
tacker can manipulate some of the training data of the model
to induce a model that significantly increases property infer-
ence risk. These works assume an adversary with the abil-
ity to poison the victim’s training data, while the adversary
in our scenario has no access to the victim’s training data,
and therefore, their methods are not applicable. There are
also works similar to ours that leverage “adversarial initial-
izations” for attack purposes. Grosse et al. [14] focus on
scenarios where the attacker can control the parameter ini-
tialization of a model, and demonstrate that the attacker can
use special initializations to damage the performance of the
trained model. Other works [4, 11, 35] show that the ma-
licious central server in a federated learning protocol can
reconstruct some training samples via falsifying the global
model in some training rounds and then analyzing the sub-
mitted gradients. These kinds of attacks do not apply to our
transfer-learning scenario since the attacker cannot access
the downstream gradients, and can only manipulate the up-
stream training.

3. Threat Model

The adversary A trains and releases a specially crafted
upstream model g,(f(-)) that is used by a victim B to fine-
tune a model g4(f(-)) for a downstream task on a down-
stream training set D. This model is then exposed to A,
with varying levels of knowledge and access (discussed
below), who performs property inference attacks to learn
some desired property of D. As is common in many trans-
fer learning settings, the upstream model includes f(:), a
fixed feature-extraction component that is not modified by
the downstream tuning process [26,33,39]. The adversary’s
goal is to infer some sensitive property about the training
data used by the victim to produce g,(f(-)). For example,
the adversary can release a general vision model (e.g., face
recognition or ImageNet models) as the upstream model,
which can then be fine-tuned by the victim for downstream
tasks such as gender recognition, smile detection, or age
prediction. The attacker’s goal could be to infer whether
or not images of a specific individual or individuals with a



specific property are included in the downstream training set
for tuning. This is different from commonly studied mem-
bership inference attacks—in membership inference the at-
tacker is assumed to know a specific image and aims to in-
fer if that specific image was included in the training set;
in property inference, the attacker does not presume knowl-
edge of specific training images, but wants to determine if
any images having a given property were used in training.
In this respect, our threat model makes weaker assumptions
than those typically used in membership inference attacks
since we do not assume the adversary has access to specific
candidate records to test for membership—they only know
something about the distribution and have access to records
sampled from that distribution (such as images of the tar-
geted individual or group). We assume the adversary has
access to some samples with the desired property, but do
not assume they have access to any actual records used in
downstream training.

Attacker’s Knowledge. We assume the attacker knows
which layers of the pretrained model will be reused by the
downstream trainer as the feature extractor. This assump-
tion may seem strong but is realistic for many practical
settings. Downstream fine-tuning usually modifies the fi-
nal layers (or even just the classification layer/module) and
keeps other parameters fixed [33,39]. Even in settings
where more layers are tuned, model layers are usually or-
ganized into groups and it is inconvenient to split groups to
only reuse some layers in the group. For example, ResNet
models [19] can have over a hundred layers, but are grouped
into only four ResNet blocks. Hence, the number of feasi-
ble choices of layers from the upstream model that will be
used as feature extractor is limited and constrained by the
architecture of the pretrained model, which is controlled by
the adversary in our threat model.

We consider three scenarios based on the level of ac-
cess. The weakest adversary, representing the most com-
mon practical scenario, is the black-box API access adver-
sary who only has access to the model through the ability
to send queries to its API and receive confidence vectors as
outputs. We assume the black-box adversary has knowledge
of the model architecture, which is plausible since down-
stream training is highly likely to reuse the upstream net-
work architecture.

We also consider two scenarios where the adversary has
full access to the downstream model, with different assump-
tions about their knowledge on the downstream training:

1. white-box access with unknown initialization — the
adversary has full access to the trained downstream
model but does not know the parameter initialization
of g4(-). This is fairly common in practice—for ex-
ample, if g,(-) contains only newly added task-specific
classification modules/layers, the downstream trainer

will randomly initialize parameters for g,(-).

2. white-box access with known initialization — the ad-
versary also knows the initialization of the parameters
of layers in g,4(-) that are reused (but will also be up-
dated during downstream training) from the upstream
models. In practice, the attacker only needs to know
the initialization of the first layer of g,(-) (Section 4.1).
This is the strongest adversary we consider, but could
occur in practice if the downstream trainer initializes
relevant downstream layers in g,(-) using parameters
from g, ().

4. Crafting the Pretrained Model

Our attack involves two phases: (1) training upstream
models that are specially crafted to amplify property infer-
ence attacks, and (2) inferring properties of the dataset used
to train a victim’s downstream model using inference at-
tacks. This section describes our method for producing the
upstream models. Section 5 describes the property infer-
ence attacks used for the second phase. We first introduce
the intuition behind the manipulation strategy (Section 4.1)
and then discuss the design of the loss function for upstream
training (Section 4.2). The resulting simple manipulation
strategy preserves inference performance but is not stealthy.
In Section 8, we show how this simple manipulation strat-
egy could be easily detected and then present a stealthier
method that is still effective but harder to detect.

4.1. Embedding Property-Revealing Parameters

Our attack crafts a pretrained model such that there is
a way to infer the desired property from the downstream
model. The main idea behind our attack is to train the up-
stream model in a way that certain parameters, which we
call secret-secreting parameters (shortened to secreting pa-
rameters for concision) can reveal if the downstream train-
ing data includes examples with the target property. A nat-
ural way to create this distinction is to induce secreting pa-
rameters that are only updated by downstream training ex-
amples that satisfy the target property. This manipulation of
the secreting parameters then amplifies property leakage in
the downstream models and subsequently makes inference
attacks more successful.

Since convolutional and fully connected layers can be
reduced to matrix multiplication operations, we can decom-
pose the full downstream model as g,(f(x)) = h(¢p(W-f(x)+
b)), where W and b are the parameters (weights and bias, re-
spectively) associated with the first layer of g4(-), ¢ is some
activation function, and h(-) represents the rest of the layers
of g4(-). The upstream trainer can thus control updates for
some of the parameters in W by manipulating the outputs
of f(-). We select part of the outputs of f(-) with a Boolean
mask m (i.e., f(x) o m) and refer to them as secreting acti-



vations. We denote parameters of W corresponding to the
secreting activations as W,. The gradient for W; is then (us-
ing the chain rule):

ol(x,y) ol(x,y) O((f(x)om) - Wy)
oW, — A(f(x)om)-W,) ow, )
ol(x,y)

= . o

a(Fom-wy VM
where I/(x,y) is the model loss for some input pair (x,y),
f(x) o m is the selected secreting activations for manipula-
tion, and (f(x) o m) - W, denotes the compution related to
the secreting activations in g,(-)’s first layer.

From Equation 1, if the secreting activations f(x) o m
are zero for some input x, gradients of the secreting param-
eters W, will also be zeros. Thus, there will be no gradient
updates on those parameters when trained on x. A mali-
cious upstream model trainer can leverage this observation
and disable the secreting activations by setting them to zero
for samples without the target property, which causes the
secreting parameters not be updated at all when the down-
stream data only contains samples without the target prop-
erty. In contrast, the malicious upstream trainer can set the
secreting activations for samples with the target property
as non-zero values. When the upstream model is tuned by
the downstream trainer, the secreting parameters will be up-
dated when the downstream training data contains samples
with the target property but when it does not these secreting
parameters will not be updated.

4.2. Upstream Optimization for Zero Activation

We formulate the upstream model manipulation de-
scribed in Section 4.1 into an optimization problem. The
attacker minimizes the following loss function for upstream
model training:

1(x,,5) = biormar(x,y) + 1:(x, y;) ()

where [,,,mq 1S the loss for the original upstream training
task (e.g., cross entropy loss) and /; is the loss related to up-
stream model manipulation with y, a binary label indicating
whether the sample x contains the target property (y, = 1).
We define [;(x, y;) as:

{ @-|lf(x) o ml| -

B-max(d- |lf(x) o ~m|| —[|f(x) o m||,0) ify, =1

where f(x) o —-m selects the non-secreting activations and
|| - || is used to measure the amplitude of the activations (can
be some common norms such as £; or £, norms). The hy-
perparameter A (> 0) is designed to adjust the amplitude of
the target activations; a, 8 are hyperparameters that balance
the importance of different loss terms. The adversary then
minimizes this loss over its training data.

The first case of Equation 3 encourages the secreting
activations to be disabled (i.e., 0) for samples without the
target property (y; = 0). The second case enforces the
amplitude of secreting activations to be > A times that of
non-secreting activations for samples with the target prop-
erty, encouraging the secreting activations to have non-zero
values when trained on examples with the target property.
Larger values of A will lead to more revealing differences,
but model performance may decrease when A is too high.

Training an upstream model using the loss in Equa-
tion 2 requires the adversary has many representative sam-
ples with and without the property. In Appendix A.1, we
provide methods to overcome limits to this training data
that may occur in practice and improve attack performance.
Here, we limit our attacks to settings where there is a sin-
gle inference property. Appendix A.11 describes a way to
extend the attack to support multiple properties.

5. Inference Methods

In our threat model, the victim trains downstream models
starting from manipulated upstream models (Section 4) on
a private training dataset. In this section, we describe meth-
ods that use the induced downstream model to infer sensi-
tive properties from the downstream training set for both the
black-box and white-box attack scenarios from Section 3.

5.1. Black-box API Access

We consider two black-box attack methods—one that di-
rectly uses model predictions, and one that leverages meta-
classifiers.

Confidence Score Test. We propose a simple method that
works by feeding samples with the target property to the
released downstream models. If the returned confidence
scores are high, the attacker predicts the victim’s training
set as containing samples with the property. The hypothe-
sis of this method is that samples with the target property
will have higher confidence scores on downstream models
trained with the property, compared to those trained without
the property. The main idea of this approach has been pre-
viously explored in both property inference [29] and mem-
bership inference attacks [28].

Black-box Meta-classifier. We adapt the black-box meta-
classifier proposed by Zhang et al. [41]. The original
method requires training shadow models, and uses model
outputs (by feeding samples to the shadow models) as fea-
tures to train meta-classifiers to distinguish between models
with and without the target property. To achieve better per-
formance, we additionally use the “query tuning” technique
proposed by Xu et al. [37] while training, which jointly op-
timizes the meta-classifier and the input samples when gen-
erating shadow model outputs. Figure 13 in the appendix
shows the benefit of “query tuning”.



5.2. White-Box Access

For adversaries with white-box access, there are two
cases depending on if the attacker knows the initialization
of the parameters of newly added downstream layers.

Parameter Difference Test (known initialization). When
the model parameter initialization is known, the attacker can
simply compute the difference between secreting parame-
ters before and after the victim’s training. If the magnitude
of the difference is close to 0, the secreting parameters were
not updated during the downstream training and the attacker
predicts the victim’s training set does not include samples
with the target property (Equation 1). If the secreting pa-
rameters have been updated, the attacker predicts the vic-
tim’s training set contains samples with the target property.

Variance Test (unknown initialization). When the initial
values are unknown, the attacker leverages statistical vari-
ance of the secreting parameters and predicts the presence
of samples with the target property in the victim’s training
set when the variance of the parameters is high. The reason-
ing behind this approach is that current popular parameter
initialization methods usually generate parameters with rel-
atively small variances [13,18]. If the victim’s data contains
samples with the target property, the secreting parameters
would be updated with gradients of relatively large values
(controlled by A in Equation 3), and increase the variance
of those parameters in the final model. We confirm this hy-
pothesis empirically in Section 7.

White-Box Meta-Classifier. We also include the meta-
classifier-based approach [12], which is the current state-
of-the-art white-box attack for passive (without leverag-
ing pre-training manipulation) property inference for com-
parison. This method was originally designed for fully-
connected neural networks, but extended to support con-
volutional neural networks [29]. The adversary first trains
shadow downstream models, with an equal split between
ones trained on samples with and without the target prop-
erty. Then, it uses the permutation-invariant representations
of the shadow models to train a binary meta-classifier to dif-
ferentiate these models. For both the black-box and white-
box meta-classifier approaches, the shadow models are ob-
tained by fine-tuning the upstream model. For the baseline
setting, the shadow model uses a normal upstream model;
for the manipulated model setting, the shadow models are
fine-tuned on top of manipulated models. Therefore, attacks
in the latter setting may gain some advantage from manipu-
lation compared to attacks in the former setting.

6. Experimental Design

This section explains our experimental setup. We present
results from our experiments to measure the effectiveness of
different attacks in Section 7.

Tasks and Models. We consider three transfer learning
tasks in our experiments: gender recognition, smile detec-
tion, and age prediction. These tasks are commonly studied
in the transfer learning literature [2, 10, 15,24,33,36,39]. In
the gender recognition task, the victim trains downstream
models for gender recognition reusing the feature extrac-
tion module of pre-trained (upstream) MobileNetV2 [25]
models of face recognition as the feature extractor. The
upstream face recognition models classify images of 50
people randomly sampled from the VGGFace?2 dataset [5],
and the feature extraction module in a MobileNetV2 model
contains all the layers before the final classification mod-
ule. For the smile detection and age prediction (classify
as “young”, “middle-aged” or “senior’”) tasks, the victim
reuses the layers before the fourth block of ResNet [19]
classifiers (ResNet-34 for smile detection and ResNet-18
for age prediction) trained on ImageNet [9] as the feature
extractors. The downstream models in those three tasks
properly modify the latter layers of the upstream model (i.e.,
changing the number of output classes) while keeping ear-
lier layers (feature extractor) unchanged.

Upstream and Downstream Training. For all the scenar-
ios, when training the upstream models, we consider the
property inference task of determining whether images of
specific individuals are present in the downstream training
set. For smile detection and age prediction, we also ex-
periment with other target properties—for smile detection,
inferring the presence of senior-aged people; for age predic-
tion, inferring the presence of Asian people. Appendix A.2
provides more details about the upstream training,

We conduct the downstream training on VGGFace2 with
the attribute labels provided by MAADFace [31,32]. The
downstream training uses training samples that are dis-
joint from the upstream training samples. In our ex-
periments, we consider different sizes (5000 and 10 000)
of downstream sets with different numbers (chosen from
{0,1,2,3,4,5,10,20,50, 100, 150} with O being the refer-
ence group for computing the AUC scores of other attack
settings) of samples that have the target property (for a to-
tal of 2 x 11 = 22 different settings). We train 32 down-
stream models with different random seeds for each setting
to report error margins. Appendix A.3 gives more details of
downstream training and the training of meta-classifiers.

Attack Evaluation Metric. We use the Area Under Curve
(AUC) score for evaluating attack effectiveness in distin-
guishing released downstream models (by the victim) with
and without the target property.

7. Evaluation of Attack Effectiveness

Figure 1 summarizes our results. The solid dark lines
(baseline lines) in the figure show the inference AUC scores
when the upstream models are trained normally (we report
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Figure 1. Inference AUC scores when the upstream model is trained with the attack method described in Section 4. Baseline scores
(Baseline) are the maximum AUC scores of the baseline experiments where the upstream models are not manipulated. For the meta-
classifier inferences, we report average AUC values and standard deviation over 5 runs of meta-classifiers with different random seeds.
In the gender recognition task, the downstream part model g,(-) only contains the final classification module, and the downstream trainer
cannot reuse the parameters from the upstream model for that module since the numbers of output classes are different. Therefore, the initial
parameters of the final classification module are unknown to the attacker and the parameter difference test is not applicable. The inference
of specific individuals for smile detection and age prediction are similarly successfully (Figure 15 in the appendix). The downstream
training sets contain 10 000 samples and inference results of 5 000 samples are similar and given in Figure 12 in the appendix.

the best results of all tested attacks). More details of the
baseline experiments can be found in Appendix A.4. Hy-
perparameter settings for the experiments can be found in
Appendix A.5 and the results are insensitive to the selection
to hyperparameters.

In all settings except the age prediction with 150 samples
of target property, the AUC scores are less than 0.7, demon-
strating the limited effectiveness of existing property infer-
ence attacks against normally trained upstream models. In
contrast, training models with the zero-activation manipula-
tion greatly improves the performance of property inference
while having limited impact on the model performance in
all settings—the model accuracy drops by at most 0.9% (see
Appendix A.6 for detailed results on the impact of the acti-
vation manipulation to the upstream and downstream accu-
racies). Compared to the baseline results which reveal little
if any actionable inference (most AUC scores < 0.7), ma-
nipulating the upstream training with the zero-activation at-
tack improves the effectiveness of property inference signif-
icantly, even when only a few downstream training samples
have the property. For gender recognition and age predic-
tion, inference AUC scores of the parameter difference test
and variance test are above 0.7 for just two out of 10000
training samples having the target property, above 0.9 for
10 training samples, and exceed 0.95 for > 20 training sam-
ples. The one exception also has AUC scores exceed 0.9 for
> 20 training samples.

Black-box attacks. The black-box meta-classifier achieves
inference AUC scores above 0.9 when > 50 out of 10000
training samples have the target property. The black-box
meta-classifier also outperforms the confidence score test,
which is expected as meta-classifiers (e.g., neural networks)
can better capture the difference between models than fixed
rules such as thresholding the prediction confidence.

White-box attacks. Our white-box methods (the parame-

ter difference test and the variance test) also achieve AUC
scores > 0.9 when > 20 training samples are with the target
property. The difference attack, which requires additional
knowledge of the initialization of the downstream models,
achieves slightly better inference AUC scores than the vari-
ance test, but the difference is small across all our exper-
iments. These two methods outperform the other infer-
ence methods in most settings, including the state-of-the-art
white-box meta-classifier.

White-box meta-classifier vs. Black-box meta-classifier. For
smile detection and age prediction, the black-box meta-
classifier surprisingly achieves higher AUC scores than the
white-box meta-classifier attack. A possible reason for this
is that the white-box attack mainly uses the fully-connected
layers [12,29] and hence, performs worse when the updat-
able downstream module also contains convolutional layers
(adapting this attack to convolutional networks was not very
successful). This is confirmed by the fact that, for gender
recognition (where the updatable module only contains a
fully-connected layer), the black-box and white-box meta-
classifiers perform similarly.

Attacks of AUC scores < 0.5. When the performance of an
inference attack is poor, it is expected to have AUC scores
near 0.5 (close to random guessing). However, we find that
there are few attack settings with AUC scores consistently
below 0.5. Appendix A.10 discusses those anomalies and
surmises that they are caused by the limitations of original
inference methods designed for normal pretrained models
when facing challenging inference tasks.

8. Stealthier Manipulation

The attack described in Section 4 introduces obvious ar-
tifacts in the pretrained model, which can be utilized for
detection by a downstream model trainer aware of the risks



posed by our attacks. We first present two detection meth-
ods (Section 8.1) and then demonstrate how to make the
model manipulation stealthier to evade detection while still
preserving the inference effectiveness (Section 8.2 and Sec-
tion 8.3). We assume the downstream trainer is aware of the
possibility of the attack and its design, but does not know
the property targeted by the adversary, as this is specific to
an attacker’s goal and the set of possible properties can be
exponentially large for a rich training set.

8.1. Detecting Manipulated Pretrained Models

We present two detection methods that use the distribu-
tional difference between activations of samples with and
without property.

Checking the Distribution of Activations. Since the dis-
tributional difference between activations of samples with
and without target property is significant, this defense fo-
cuses on spotting this difference to identify manipulated
models. A method to identify the distributional difference
needs to be designed based on the attack method used. For
the original zero-activation attacks in Section 4.1, since the
secreting activations of samples without property are all 0,
the defender can feed random training samples to the pre-
trained models and check if there are abnormally many Os.
This approach is feasible since samples of target property
have limited presence in the downstream training set and
hence, most samples will not have the property. Since de-
tecting the zero-activation attack is trivial using this method,
we do not conduct any experiments with this.

Anomaly Detection. Since the target property has a lim-
ited presence in the downstream training set, another de-
fense would be treating samples with the target property as
outliers and then analyzing those outliers to find manipula-
tions. Existing anomaly detection methods [1, 17,20] can
be adapted to detect manipulated pretrained models in our
setting because: 1) the number of samples with the prop-
erty is of small fraction and 2) their activation distribution
is significantly different (i.e., outliers) from the distribution
for samples without the property. The auditor can inspect
model activations for all of its training data and identify out-
liers (ideally, samples with target property) with anomaly
detection. The auditor can then inspect identified outliers
and may find commonalities to identify the potential target
property. For instance, they may find that a small fraction
of the training data produce unusual model activations, and
then notice that most of that data has a particular property
such as belonging to a specific individual or group.

We consider three common anomaly detection methods:
K-means [20], PCA [1] and Spectre [17] (where Spectre
is the current state-of-the-art) and we report the detection
results from the three defenses. Appendix A.12 gives de-
tails of these methods. The detection results on the zero-
activation attack are given in Figure 11 in the appendix.

Anomaly detection is very effective at identifying the sam-
ples with target property. For example, for the gender recog-
nition and smile detection tasks, the detection rate is over
80% in most cases. These results motivate the design of
stealthier attacks which we describe next.

8.2. Stealthier Model Manipulation

To evade the defense that checks the distribution of acti-
vations, we modify our zero-activation attack to ensure: (1)
secreting activations for samples without the property are
also non-zero (bypassing simple defense of checking ab-
normal zeros); (2) secreting activations of samples with and
without target property are still distinct (the attack is still
effective); (3) that distinction between activations should
not be captured by anomaly detection methods (evading
anomaly detection); (4) the actual distribution of activations
that matches the attacker’s goal cannot be easily guessed
by the defender (handling cases when the defender actively
searches other patterns in the distribution of activations).

For (1) and (2), we adapt the loss in Equation 3 as

o - max(||f(x) o m|| - || f(x) o —ml|, 0)
B-max(d-||f(x) o —m|| - ||f(x) oml|,0) ify, =1

o=
ify,=0 @)

where 4 > 1. (1): The case of y, = 0 is redefined to bypass
the detection of abnormal zeros. Minimizing this new loss
ensures that samples without the target property will have
secreting activations (f(x) o m) with (close-to-normal) non-
zero values. (2): to ensure the property is still detectable, we
actively increase the difference between the secreting acti-
vations of samples with and without property. We observe
that, for upstream models with reasonable performance on
the main task, non-secreting activations (f(x) o -m) have
similar amplitude regardless of the fed samples containing
target property. Therefore, for samples with target property,
as long as we ensure the secreting activations have a larger
amplitude than that of non-secreting activations, there will
be a distinction between secreting activations of samples
with and without property. We do this by assigning larger
values to A (e.g., 4 > 1, instead of the original A > 0) for the
second line of Equation 4 to induce sharper distinction be-
tween samples with and without property and enable higher
inference performance.

To prevent detection by anomaly detectors (requirement
(3) above), A should be set to balance the attack effective-
ness and stealthiness rightly. By choosing proper values
for A, our attack is able to evade anomaly detection meth-
ods in most settings. However, in some settings (mostly
in gender recognition tasks), state-of-the-art anomaly de-
tection (Spectre) can still identify most of the samples with
target property. To counter this, we add an additional reg-
ularization term (weighted by parameter y) to the overall
loss function /(x,y,y,) in Equation 2 that further improves
attack stealthiness while still maintaining relatively high at-



—— Confidence score
—— Confidence score baseline
Gender Recognition; Infer Individual

—}— Black-box meta-classifier
Black-box meta-classifier baseline
Smile Detection; Infer Senior

-J+ White-box meta-classifier
White-box meta-classifier baseline
Age Prediction; Infer Asian

1.0 1.0
0.9 0.9 091
§ 0.8 0.81 0.81
0.7 071 071
8 0.6 0.67 ] 0.6 bt
€05/ 051 051 _
0.4 0.4 0.4
03

1 2 3 4 5 10 20 50100150 1 2 3 4 5 10 20 50100150 1 2 3 4 5 10 20 50100150

Number of samples with the target property Number of samples with the target property Number of samples with the target property

Figure 2. Inference AUC scores of the stealthier design. Since the secreting activations are no longer zero, the inference methods based
on difference or variance tests are no longer applicable. The inference results of specific individuals for smile detection and age prediction
also show similar improvement compared to the baseline settings (Figure 19 in the appendix). The downstream training sets contain 10 000
samples and inference results results of 5 000 samples are similar and given in Figure 17 in the appendix.

tack effectiveness. Specifically, we first obtain the corre-
sponding covariance matrices of the activations of samples
with the target property (cov, ), activations of all samples
with and without the target property (covy,,,), and activa-
tions of samples without the target property (cov,,,) respec-
tively. Then, we encourage mean(cov,,) = mean(covy,,y,) =
mean(covy,,) and var(covy,) = var(covy,w,) = var(covy,)
(both mean(-) and var(-) treat the whole covariance matrix
as a flattened array and return scalar values) for the three
covariance matrices by minimizing their differences in their
mean and variance. Using this method, we ensure the dis-
tributions of activations of samples with target property will
be similar to the ones without the property, making the ma-
nipulations harder to detect. We use this approach for all
the experiments. To ensure the distributional pattern related
to the attacker goal cannot be easily guessed (requirement
(4)), we generate m randomly (instead of picking first ||m||
activations in Section 7). This makes the brute-force search
of possible patterns computationally infeasible (details in
Appendix A.14).

8.3. Experiments with Stealthy Attacks

Detection Evasion. Figure 16 (in the appendix) summa-
rizes the results of our experiments to detect the stealthy
upstream models (Appendix A.13 provides details on these
experiments). We find that the anomaly detection methods
are ineffective against our stealthier attack— < 10% of sam-
ples with the target property are detected across all settings
with the exception of a detection rate < 20% (still low) for
smile detection when the total number of samples is 5 000
and 100 or 150 of them are with the target property. We
also made several attempts to approximately identify (in-
stead of brute-force search) possible attack patterns in the
activations but none of these succeeded in uncovering the
stealthy attacks (details are in Appendix A.14).

Inference Results. From Figure 2, we can see that ac-
tivation manipulation still leads to significantly improved
inference results compared to the baselines with normally

trained upstream models. For example, for gender recogni-
tion, when > 50 downstream training samples have the tar-
get property, inference AUC scores exceed 0.95, which is
a huge improvement compared to the baseline attack where
all AUC scores are less than 0.6, and similar trends follow
for smile detection (with over 100 samples with property,
AUC improves from < 0.6 to > 0.78) and age prediction
(with over 100 samples with property, AUC improves from
< 0.77 to > 0.9). Comparing the results for the stealthier
attacks to the results that do not consider defenses in Fig-
ure 1, we observe that the attack effectiveness declines as
expected since we are now trading-off attack effectiveness
for stealthiness. Training models with the attack goal poses
negligible impact on the model performance (accuracy drop
< 0.9%, see Appendix A.6).

9. Conclusion

Our work demonstrates how a malicious upstream trainer
can manipulate its training process to amplify property in-
ference risks for downstream models when transfer learning
is done. Our empirical results show that such manipulations
can be exploited to enable very precise property inference,
even in black-box settings, across a variety of tasks. Al-
though there is potential for a new arms race between meth-
ods of hiding manipulations and methods of detecting them,
the larger lesson from this work, and other works exposing
similar risks, is that it is important that users of pretrained
models to only use models from trusted providers.
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A. Appendix
A.1. Overcoming Training Data Limitations

Due to the possible inadequacies of representative sam-
ples in the upstream training data, practical implementation
with good performance can be challenging. Below, we dis-
cuss the three main challenges in crafting the pretrained
model in practice, and our ways of addressing them.

Imbalance between Samples with and without Target
Property. If the upstream training set contains a large num-
ber of samples with only a small fraction with the target
property, optimization of the loss function related to sam-
ples with the target property (Second line of Equation 3)
can have convergence issues. To deal with this scenario, we
use mixup-based data augmentation to increase the number
of samples with the target property in the upstream training
set [40]. Additionally, to reduce the training time (faster
convergence) for the upstream model, we also use a clean
pre-trained model as the starting point for obtaining the final
manipulated model.

Lack of Upstream Labels for Samples with Target Prop-
erty. If samples with the target property are already present
in the upstream training set, the attacker can directly train
its model using Equation 2. However, this may not always
be the case in practice and the attacker may need to inject
additional samples with the target property (that are avail-
able to the attacker), with the label information for these
injected samples being unavailable. For example, if the tar-
get property is a specific individual, when adding the im-
ages of that individual to ImageNet dataset, we may not
be able to find proper labels for injected images out of the
original 1K possible labels. However, these labels are re-
quired for optimizing /,,,mq. To handle this, we have two
options: 1) remove injected samples from the training set
when optimizing /,,,ma;, Or 2) assign a fake label (e.g., cre-
ate a fake n + 1 label for injected samples in a n-class classi-
fication problem) and remove parameters related to the fake
label in the final classification layer before releasing mod-
els. The first option has negligible impact on the main task
accuracy in all settings, but resultant attack effectiveness is
inferior to the second one. In contrast, the second option
usually gives better inference results, but in some settings
(e.g., experiments when pretrained models are face recog-
nition models in Section 7), can have non-negligible impact
on the main task accuracy. Therefore, we choose the second
option when it does not impact the main task performance
much and switch to the first one when it does.

Lack of Representative Non-Target Samples in Training
Set. The space of samples without the target property can
be much larger than the space of samples with the target
property as the former can contain combinations of multi-
ple data distributions. For example, if the target property
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is a specific individual, then any samples related to other
people or even some unrelated stranger all count as sam-
ples without the target property. However, in practice, the
upstream trainer’s data may not contain enough non-target
samples to be representative. This can be a problem when
minimizing the loss item related to the samples without the
target property (first line of Equation 3), as secreting activa-
tions may not be sufficiently suppressed for those samples.
To solve this, we choose to augment upstream training set
with some representative samples without the target prop-
erty and name this method as Distribution Augmentation.
For example, when the target property is a specific person,
the attacker can inject samples of new people not present
in the current upstream training set and thus expand the
upstream distribution. The labels for these newly injected
samples are handled similarly to the labels for additionally
injected samples with target property. An ablation study on
the importance of distribution augmentation is given in Ap-
pendix A.9.

A.2. Details of Dataset Settings

As introduced in Section 6, we experiment with three
transfer learning tasks: gender recognition, smile detec-
tion, and age prediction. We consider the property infer-
ence of determining whether images of specific individu-
als are present in the downstream training set for all these
tasks. And for the smile detection and age prediction, we
consider additional inference targets: inferring the presence
of senior people for smile detection and the presence of
Asian people for age prediction. As for the inference of
the existence of specific individuals, we choose the person
who has the most samples in VGGFace?2 as the inference
target for both gender recognition and age prediction, and
choose the person who has the most samples of smile la-
bels (provided by MAADFace [31, 32]) as the target for
smile detection (the person with the most samples in VG-
GFace?2 does not have enough samples with valid labels for
the smile attribute). We choose the target property in this
manner mainly for convenience in conducting experiments,
as the upstream model training, victim model training, and
shadow model training (for meta-classifier-based property
inference) (ideally) require no overlaps between their train-
ing data to mimic the hardest attack scenario. Subsequently,
if we choose a target with small number of samples in the
original dataset, then we may have trouble in performing
the three types of model training effectively.

In the upstream training, since we use the techniques
described in Appendix A.1, we need to inject samples
with and without the target property into the original up-
stream training set. And for the downstream model train-
ing, we first prepare downstream candidate sets based on
VGGFace?2 and then construct various downstream settings
using the samples from the candidate sets (Appendix A.3).



Task Target Property

Samples injected into Upstream training Downstream Candidate set

w/ property wj/o property \ w/ property w/o property
Gender Recognition 342 1710 250 200000
Smile Detection Specific Individuals 261 1305 250 200 000
Age Prediction 342 1710 250 165915
Smile Detection Senior ‘ 3000 15000 ‘ 1000 200000
Age Prediction Asian | 3000 15000 | 1000 128528

Table 2. Number of samples injected into the upstream training and in the downstream candidate sets

Table 2 summarizes the number of samples of the sample
injection and the downstream candidate sets. The details of
the three transfer learning tasks are reported below:

Gender recognition. We randomly select 50 people from
VGGFace2 and train face recognition models classifying
those 50 people as the upstream model. For each person,
we randomly choose 400 samples for training and 100 for
testing. To avoid overlap, we also ensure that any images of
these 50 people do not appear in the downstream training.
Since the individual targeted by the adversary (the inference
target) is not in the randomly chosen upstream set, we inject
342 randomly chosen samples with the target property into
the upstream training set to achieve the attack. Note that,
we also need to assign enough disjoint samples with the tar-
get property to the downstream training and meta-classifier
training, and 342 is the maximum number of samples that
we can assign to the upstream training as there are limited
samples with the target property in VGGFace2. For the dis-
tribution augmentation described in Appendix A.l, we in-
ject 1710 samples (5 x 342) without the target property to
the upstream set, and those injected samples are randomly
sampled from VGGFace?2 and are from individuals that are
not in the original upstream training set. As for the down-
stream candidate set, there are 250 samples with the target
property and 200000 samples without the target property.
All the samples in the candidate set are randomly sampled
from VGGFace2 and have no overlap with those in the up-
stream training.

Smile detection. We have two inference targets for this
transfer learning task. For the inference of the specific in-
dividual, the number of samples with the target property in-
jected into the upstream set is 261 (number decreased com-
pared to gender recognition since there are fewer samples
with the target property in VGGFace2 for this inference
task), and the number of samples without the target prop-
erty for distribution augmentation is 1305 (5 x 261). The
candidate set for the downstream training has 250 samples
with the target property and 200 000 samples without the
target property.

As for the inference of the presence of senior people,
since there are plenty of samples labeled as seniors in VG-
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GFace2 [31], we increase the number of samples injected
into the upstream training set and inject 3 000 samples with
the target property and 15000 samples without the tar-
get property (distribution augmentation). The original up-
stream training set is ImageNet [9]. However, ImageNet
contains images of human beings, and there are no “senior”
labels for those images. Instead of manually labeling them,
we remove all the facial images in ImageNet for this in-
ference task. We use the facial labels provided by Yang et
al. [38] when conducting the removing. The downstream
candidate set has 1000 samples (number increased since
there are more samples available) with the target property
and 200 000 samples without the target property.

Age prediction. We also have two inference targets for this
transfer learning task. For the inference of the presence of
the specific individual, the numbers of samples with and
without the target property injected into the upstream train-
ing set are 342 and 1 710 respectively, which are the same as
those in the gender recognition task as the target properties
are the same in these two tasks. The downstream candidate
set has 250 samples with the target property and 165915
samples without the target property.

As for the inference of the presence of Asian people,
we inject 3000 samples with the target property (Asian)
and 15000 samples without the target property into the up-
stream training set. These two numbers are the same as
those in the smile detection task with senior people as the
target property. We also remove all the facial images in
ImageNet for this inference task. The downstream can-
didate set has 1000 samples with the target property and
128 528 samples without the target property. The number
of samples without the target property in the downstream
candidate set in the age prediction task is less than those
in other settings. This is because we are not able to find
enough samples with valid ethnic labels using the attribute
labels provided by MAADFace.

A.3. Details of Downstream Training and Adver-
sary’s Meta-Classifier Training

As described in Appendix A.2, to generate the down-
stream training set, we first prepare randomly selected sam-



ples without the target property and samples with the tar-
get property to form the downstream candidate set, and
then construct downstream sets based on the candidate set.
Specifically, a downstream training set of size n is gener-
ated by randomly sampling from this candidate set while
also specifying the number of samples with target property
as n;. For experiments in this section, we consider set-
tings where n = 5000 or 10000, and n, takes value from
{0,1,2,3,4,5,10,20,50, 100, 150} (this gives 2 x 11 = 22
different settings). We train 32 downstream models with
different random seeds for each setting, and those models
will be used for computing inference AUC scores (the mod-
els trained with n; = 0 are used as the reference group).

To train the meta-classifier attacks, the attacker needs to
train many downstream shadow models and thus, we also
prepare a separate downstream candidate set with the same
size as the victim’s downstream candidate set but without
any overlaps on the data. This simulates the most difficult
and realistic scenario for the attacker. We also ensure that
no samples in the two downstream candidate sets appear
in the upstream training set, which again makes the attack
more difficult. To simulate the victim’s downstream train-
ing, we assume the attacker also uses a downstream train-
ing set of size n, but has no overlap with the actual victim’s
downstream training set. In Appendix A.8, we relax this as-
sumption and show our attack retains its effectiveness even
when the size of the victim’s downstream training dataset
is unknown to the adversary. For each setting with fixed
n, the attacker trains 320 shadow downstream models (256
for training, 64 for validation) for each of the distributions
(with and without target property). The number of training
samples with the target property for each model is randomly
selected from the range [1, 170], which simulates the sce-
nario where the value of n, of the victim downstream model
cannot be accurately guessed.

A.4. Baseline Results

In this section, we focus on experiments where the up-
stream model is trained normally, without considering the
attack goals described in Section 4 and Section 8.2. For
these baseline experiments, there are no secreting parame-
ters (i.e., manipulated secreting activations) in the model,
so the attacker can only use the attacks that are not directly
related to the manipulation.

We experiment with the confidence score test, the black-
box meta-classifier, and the white-box meta-classifier, and
report AUC scores for distinguishing between models
trained with and without the target property. For meta-
classifier-related inferences, we report the average AUC
values over five runs of meta-classifiers with different ran-
dom seeds, along with their standard deviation. Figure 3
shows the results. We observe that the attacks have infer-
ence AUC scores less than 0.82, with most (4 out of 6 set-
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tings) of them with scores less than 0.7. Moreover, we do
not find a clear winner from the three inference methods we
test. These results demonstrate the limited effectiveness of
existing methods applicable to normally trained upstream
models.

A.5. Hyperparameter Setup of Zero-Activation At-
tacks

In Section 7, when training upstream models for the
zero-activation attack (Section 4), we set @ and S to 1, treat-
ing all loss terms equally. We tried different settings on «
and S, as well as methods that automatically set them [27],
but no significant improvements are observed, so we just
use those simplest choices. We also tested different values
for A and m, but did not observe significant differences in
the attack effectiveness, suggesting our attack is not sensi-
tive to hyperparameters. Details of experiments on differ-
ent combinations of A and m are in Appendix A.7. For
the results in Section 7, we select A values that are big
enough while ensuring the upstream model accuracy is not
impacted significantly (1 = 10 for smile detection and age
prediction, and 2 = 5 for gender recognition). For m, for
gender recognition, we select the first 16 activations of the
total 1280 activations. For smile detection and age predic-
tion, since the first layer of downstream model is convolu-
tional, we can only select activations at the granularity of
channels, and we choose to manipulate the first channel of
the total 256 channels. We also use the distribution augmen-
tation described in Appendix A.l in the upstream training;
ablation studies (Appendix A.9) suggest it is crucial for per-
formance.

A.6. Impact of Activation Manipulation to Model
Accuracy

Upstream model accuracy. We find that the upstream
training accuracy will not be significantly affected by the
manipulation. Table 3 shows the accuracy drop is less than
0.9% for the attacks used in Section 7 and Section 8.3. For
different hyperparameter settings of the zero-activation at-
tack, Table 4 shows that the accuracy of the upstream mod-
els will drop by at most 1.9% for all the settings except the
upstream models of the gender recognition task when A is
too high (10 or 20). The possible explanation is that the Mo-
bileNetV2 architecture used in those settings does not have
enough capacity for achieving the difference (between acti-
vations of the samples with and without the target property)
defined by A while maintaining high task accuracy.

Downstream model accuracy. The downstream model ac-
curacy is not affected by the attack either. Table 3 shows
the averaged accuracy of the downstream models (exclud-
ing the downstream models trained for preparing meta-
classifiers) trained in Section 7 and Section 8.3. We do not
observe any accuracy drop brought by the attack, instead
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Figure 3. Inference AUC scores when upstream models are trained normally. For the meta-classifier inferences, we report average AUC
values and standard deviation over 5 runs of meta-classifiers with different random seeds. For normally trained models, only the inference
attacks that are not directly related to the manipulation are applicable. The first and second rows show results when downstream training
sets contain 5000 and 10 000 samples respectively. Results of the inference of specific individuals for smile detection and age prediction
show similar trends and are found in Figure 14.

| Upstream Accuracy | Downstream Accuracy
Task Target Property

Clean Zero-Activation Stealthier Clean Zero-Activation Stealthier

Model Attack Attack Model Attack Attack
Gender Recognition 92.8 92.6 92.1 95.7 (95.8) 95.8 (95.8) 95.7 (95.8)
Smile Detection Specific Individuals 73.2 73.5 73.5 90.0 (90.5) 90.4 (90.8) 90.2 (90.7)
Age Prediction 69.7 70.1 70.2 91.4 (92.4) 91.6 (92.5) 91.6 (92.6)
Smile Detection Senior ‘ 73.2 72.5 72.7 ‘ 88.3 (88.9) 88.8 (89.4) 88.8 (89.3)
Age Prediction Asian \ 69.7 68.8 69.1 \ 91.4 (92.5) 91.5 (92.6) 91.6 (92.7)

Table 3. Upstream and downstream model accuracy. The clean models are the models trained without attack goals (manipulation), and for
smile detection and age prediction, we directly use the pretrained ImageNet models released by PyTorch as the clean upstream models.
For the downstream accuracy, we report the averaged accuracy of the downstream models (excluding the downstream models trained for
preparing meta-classifiers) trained in Section 7 and Section 8.3. The values outside the parenthesis are the averaged accuracy for the
downstream models that are trained with 5 000 samples, while the values inside the parenthesis are the results for the 10 000 samples.

all the accuracies are slightly improved after manipulation. the downstream models trained with and without the target
Currently, we are unclear about the root cause for this ob- property and therefore, is critical to the effectiveness of the
servation and will leave the detailed exploration on this as inference attacks (larger A generally means more effective
future work. attacks). In this section, we compare the inference effective-
ness on downstream models when the upstream models are

A.7. Impact of Hyperparameters trained with different A values. Since training the upstream
models are costly, we only choose A from {1, 5, 10, 20}. For

This section explores the impact of the hyperparameters, the inference method, for each task, we select the best per-

A and m, in the loss function of upstream model training in forming white-box inference attacks—for the gender recog-
Equation 3, to the effectiveness of the zero-activation attack. nition task, we choose the variance test (parameter differ-
Impact of 1. The hyperparameter A in Equation 3 is di- ence test is not available for this task) and for the other two
rectly related to the magnitude of the difference between tasks, we choose the parameter difference test, and report
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Zero-Activation Atatck

Task | Clean Model | A | el
\ \ 1 5 10 20 \ 8/1C 16/4C 32/8C 64/16C
Gender Recognition (Infer Individual) 92.8 925 926 903 64.1 | 932 926 92.5 92.8
Smile Detection (Infer Senior) 73.2 7277 727 725 721 | 725 726 72.7 72.5
Age Prediction (Infer Asian) 69.7 69.1 690 688 678 | 68.8 68.8 68.7 68.7

Table 4. Upstream model accuracy of zero-activation attacks for different hyperparameter settings. We vary the values of A or ||m]|; in the
experiments and use the remaining experimental settings in Appendix A.5.

the results in Figure 4. We also conducted experiments us-
ing black-box inference methods and results are included in
Figure 5. The rest of the settings are the same as those used
in Section 7.

Figure 4 gives the white-box inference results. For the
gender recognition and age prediction tasks, by comparing
different lines corresponding to different A values, the gen-
eral trend is if we increase A, the inference AUC scores will
first (expectedly) increase and then decrease. For example,
for gender recognition, increasing A from 1 to 5, the AUC
scores are consistently improved in all settings with vary-
ing number of target samples in the downstream training set
(the average AUC score increases from 0.84 to 0.94). But
further increasing A to 10 and 20 does not help and the in-
ference performs consistently worse as A gets larger (e.g.,
average AUC score drops from 0.89 of 4 = 5 to 0.50 of
A = 20). In contrast, for smile detection task, the inference
performance continues to increase as we increase A in gen-
eral. For all the tasks, we initially observe increased attack
effectiveness by increasing A because larger A makes the
distinction between downstream models trained with and
without property more significant and hence is easier for the
subsequent inference attacks. But when A gets too large, for
settings where the inference effectiveness decreases, we ob-
serve that the loss function related to the attacker goal (/,(+)
in Equation 2) starts to interfere with the main task training
(Lnormar(+)) and fails to converge at the end of upstream train-
ing (Table 4). For smile detection, /,(-) still converges well
(may be because the upstream model has enough capacity)
and hence the inference effectiveness continues to increase
as the increase of A.

In Figure 4, although the choice of A does have some im-
pact on the inference effectiveness, we find that our attack
still works quite well for a wide range of A values. For ex-
ample, for gender recognition, AUC scores are quite high
and exceed 0.9 if > 10 samples are with the target prop-
erty when the value of A is between 1 and 10; for the other
two tasks, when the value of A is between 5 and 20, AUC
scores also exceed 0.9 if > 20 samples are with the target
property. We have similar observations as above (i.e., the
trend of inference effectiveness as A changes and good at-
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tack performance for a wide range of 1) when we replace
the white-box inference methods with black-box ones and
details can be found in Figure 5.

Impact of m. The hyperparameter m controls the loca-
tion and number of activations selected for manipulation in
Equation 3. We empirically find that, with the same size of
activations ||ml|;, the location of m does not have a signifi-
cant impact on attack effectiveness, and therefore, we fix the
selection of manipulated activations to be the first n, activa-
tions (i.e., first n, entries in m are 1) and vary the value of n,
to measure its impact on the attack performance. The rest of
the experimental settings are the same as in Section 7. We
choose the first 8, 16, 32 and 64 of the total 1 280 activations
as the secreting activations for the gender recognition task.
For the smile detection and the age prediction tasks, we se-
lect the first 1,4, 8, and 16 channels out of 256 channels as
the secreting activations.

The inference methods adopted are the same as those in
the study of the impact of A and the white-box results are re-
ported in Figure 6. From the figure, we observe that, in gen-
eral, the inference effectiveness increases as we increase the
number of selected activations (i.e., ||m||;), but when ||m]|,
gets too large, it in turn starts to hurt the inference effective-
ness. The possible reason is still similar to the one in the
study of the impact of A: initially, when more activations are
selected for manipulation, the difference between the down-
stream models trained with and without the target property
will be more significant, and makes the subsequent infer-
ence attacks more effective. But when ||m]||; gets too large,
it starts to interfere with the main task training and has con-
vergence issues. From Figure 6, we also observe that the in-
ference AUC scores remain high across all selections of m.
For example, AUC scores are all > 0.9 when > 20 down-
stream training samples have the target property for gender
recognition and smile detection and when > 50 downstream
training samples are with the target property for age predic-
tion. Those results suggest that the attack is robust to the
setting of m and it is easy to find proper m for the attack in
practice. Similar observations are also found when we re-
place the white-box inference methods with black-box ones
(details in Figure 7).
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Figure 5. Inference AUC scores of black-box inferences for different values of A (Equation 3). All the downstream training sets have 5 000
samples in these results. We only report the results of the better performing black-box inference method (i.e., the black-box meta-classifiers)
here. The results of the white-box attacks show a similar trend and can be found in Figure 4.

A.8. Impact of the knowledge of the size of the down-
stream set

In Section 7, when conducting property inference with
meta-classifiers, the attacker trains shadow models using
the same downstream training set size n as the victim. In
this section, we show that, for meta-classifier-based attacks,
the knowledge of downstream training size used by the vic-
tim does not impact inference effectiveness much.

In the experiments, we fix the size of the victim training
set to 5000 (i.e., n» = 5000) and vary the sizes of the (sim-
ulated) downstream training sets of the attacker. Specifi-
cally, we set the attacker training size to 2 500, 5 000, 7 500,
and 10000 separately and remaining experimental setups
are kept the same as in Section 7.

Figure 8 shows the inference results of the meta-
classifier-based approaches. For both the white-box and
black-box methods, varying the training set size has negligi-
ble impact on the inference performance: for the black-box
approach, the purple lines stay very close to each other and

16

the AUC scores all exceed 0.8 when > 20 samples out of
the total 5 000 samples have the target property and exceed
0.95 when > 50 samples are with the property. Similarly,
for the white-box meta-classifiers approach, the green lines
also stay close to each other and the AUC scores all exceed
0.9 when > 100 samples have the target property.

A.9. Importance of Distribution Augmentation

In Appendix A.1, we introduce distribution augmenta-
tion for upstream training, which injects representative sam-
ples without the target property into the upstream training
set to better achieve the attack goal described in Equation 3.
Figure 9 shows the attack performance when we do not use
distribution augmentation. The victim training set size is
set to 5000 and other experimental setups are the same as
those in Section 7. From the figure, we observe that AUC
scores of attacks without distribution augmentation are all
less than 0.86, and get even lower (< 0.7) for gender recog-
nition and smile detection. These scores are significantly
lower than the results with distribution augmentation (de-
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Figure 6. Inference AUC scores of of white-box methods for different number of activations (the m in Equation 3). All downstream training
sets have 5000 samples. We only report results of inferences that achieve the best AUC scores (variance test for gender recognition and
parameter difference test for the other two tasks). Results of the black-box inferences show a similar trend (Figure 7).
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Figure 7. Inference AUC scores of black-box inferences for manipulating different number of activations (the m in Equation 3). All the
downstream training sets have 5000 samples in these results. We only report the results of the better performing black-box inference
method (i.e., the black-box meta-classifiers) here. The results of the white-box attacks show a similar trend and can be found in Figure 6.

tails in Figure 12 and 1). For example, with the augmenta-
tion, AUC scores all exceed 0.9 if more than 20 samples are
with the target property and the importance of distribution
augmentation is thus apparent.

A.10. AUC values < 0.5

We observe that a few attack settings have AUC scores
consistently below 0.5. Those rare abnormal AUC scores
mainly occur for black-box methods against normal pre-
trained models (e.g., the confidence score test and black-
box meta-classifier for the gender recognition with 10 000
downstream samples in Figure 3.) For the confidence score
test, by manual inspection, we find its working assumption
is not satisfied by the downstream models fine-tuned from
normal pretrained models in some settings. The confidence
score test assumes models trained with the property per-
form better on samples with the property than those trained
without the property, but an opposite pattern is observed for
the queried downstream models. As for black-box meta-
classifiers, we observe the anomalies happen when the in-
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ference tasks are too challenging and the meta-classifiers
cannot obtain meaningful information but overfit to the
training set (despite early stopping). Specifically, AUC
scores are high (> 0.75) on the training set, ~ 0.5 on the val-
idation set, and show anomalies (< 0.5) on the test set. We
note that the gap between the validation set and the test set
is large because they are trained differently. When training
downstream models with the target property for the train-
ing and validation set, we randomly sample 1-170 samples
with the property each time to simulate the real-world case
(discussed in Appendix A.3), while for the test set, we ran-
domly sample fixed number of samples with the property
for each AUC computation (e.g., 1, 2, ..., 150) to show the
trend. We reemphasize that those anomalies mainly happen
in the non-manipulation settings because of the limitation
of inference methods on normal pretrained models when
the inference tasks are too challenging. Our proposed ma-
nipulation (e.g., providing stronger signal) lowers the diffi-
culty of those challenging cases and leads to better/normal
results.



Black-box meta-classifier 2.5K Black-box meta-classifier 5K
White-box meta-classifier 2.5K White-box meta-classifier 5K
Gender Recognition; Infer Individual

Smile Detection; Infer Senior

—f— Black-box meta-classifier 7.5K
--}:- White-box meta-classifier 7.5K

—f— Black-box meta-classifier 10K
--}+- White-box meta-classifier 10K
Age Prediction; Infer Asian

1.0 = 1 1.0
0.9 0.9 0.9
‘é 0.8- 0.8 - 0.8
3 0.7 1 0.7 1 0.7 1
9 0.6 0.6 0.6
QL .
£ 0.5 0.5 051 %
0.4 0.4 044 %
0.3+ T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 10 20 50 100150 1 2 3 4 5 10 20 50 100150 1 2 3 4 5 10 20 50100150

Number of samples with the target property Number of samples with the target property Number of samples with the target property
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Figure 9. Inference AUC scores when upstream models are not trained with distribution augmentation (Appendix A.1). All the downstream

training sets have 5 000 samples in these results.
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In this section, we demonstrate that the attack described
in Section 4 can be extended to infer multiple target prop-
erties simultaneously. The method is to simply associate
different secreting parameters with each property. We con-
ducted experiments using the gender recognition setting
with some modifications. The new target properties are the
two individuals with the most samples in VGGFace2. In
the upstream training, we inject 285 and 257 samples with
the property into the upstream training set for the two in-
dividuals respectively; we also inject 1425 samples with-
out the target properties (distribution augmentation in Ap-
pendix A.1). For each property, the number of scereting ac-
tivations is 8 (i.e., ||m||; = 8). For the downstream training,
the candidate set has 250 samples for each target property
and 200 000 samples without the target properties. The rest
settings are the same as those in Appendix A.5. The ma-
nipulation does not affect the accuracy of the main tasks too
much (accuracy drop less than 0.6%). The inferences are
also highly successful. Figure 10 summarizes the results
of the variance test in discriminating downstream models



trained with a target property from those trained without
target properties. The results show that AUC scores exceed
0.85 when > 10 out of 5000 samples are with the prop-
erty, and are higher than 0.95 when > 50 samples have the

property.

A.12. Details on Anomaly Detection for Zero-
Activation Attack

We consider three common anomaly detection methods:
K-means [20], PCA [1] and Spectre [17], where Spectre is
the current state-of-the-art. K-means leverages the k-means
clustering technique to identify outliers while PCA lever-
ages principal component analysis to identify the outliers.
Spectre is an improved version of PCA and works much bet-
ter than PCA when the attack signature is weak (i.e., the dis-
tributional difference is small) [17]. When conducting the
anomaly detection, following the common setup in Hayase
et al., [17], we filter out 1.5n, (n, is number of samples with
target property) samples, simulating the scenario where the
defender does not know the exact n,, but is able to roughly
estimate its value and attempt to find most of them.

Results of Anomaly Detection. We show the detection
performance in Figure 11. The results show that conduct-
ing anomaly detection can filter out majority of samples
with the target property in the downstream set and hence,
increase the chance of detecting the manipulation. For ex-
ample, the Spectre defense can filter out 80% of the samples
with the target property in most cases for gender recognition
and smile detection, and 60% for age prediction. Anomaly
detection effectively finds samples with the target property
because the attack mainly focuses on improving attack ef-
fectiveness by increasing the distinction between samples
with and without property, which makes the attack signa-
ture of samples with property much stronger. After finding
the possible samples with the target property, the defender
can then inspect those samples, and try to find the common-
alities and then identify the potential target property. Since
the process of finding commonalities in the outliers reported
by anomaly detection could be trivial (e.g., most samples
have the same property or abnormal activations), we do not
perform actual experiments for this part. In Section 8.2,
we propose a stealthier design, in which anomaly detection
cannot reliably detect samples with the target property and
thus cannot find the manipulation.

A.13. Experimental Setup of Stealthier Attacks

In Section 8.3, when preparing upstream models, for m,
we randomly select 16 activations out of total 1280 for the
gender recognition and also select 196 activations out of to-
tal 50 176 for smile detection and age prediction. In prac-
tice, the total number of channels in convolutional kernels
is not very large and therefore, the defender may still be
able to brute-force the manipulated activations if m is cho-
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sen only at the channel level. Thus, we also choose to se-
lect secreting activations directly for tasks where the first
layer of the downstream model is convolutional, which may
reduce some of the attack effectiveness. For A, we prefer
a larger value for better inference effectiveness while still
evading anomaly detection. Therefore, we performed a lin-
ear search starting from 1 and incrementing it by 0.5, and
terminating when the attack can no longer evade the men-
tioned anomaly detection methods. With this strategy, we
set A = 2 for gender recognition, 4 = 1.5 for smile detec-
tion and age detection when the inference targets are senior
people and Asian people respectively, and A = 1 for smile
detection and age detection when the inference targets are
specific individuals. a, B8, and 7y are all set to be 1 in the
experiments.

A.14. Adaptive Activation Distribution Checking

The activation distribution checking method needs to be
adjusted based on the specific attack method used. Using
the modified loss design in Section 8.2, our stealthier attack
can automatically evade distribution checking of abnormal
zeros, as the secreting activations of samples without target
property are also non-zero. Hence, we need to design adap-
tive detection based on activation distribution checking for
the modified attack loss.

With the modified attack loss, we find that activations
of samples with the property mixes well with ones with-
out the property, and we fail to find a principled method to
distinguish their distribution using the overall activations.
Because of the design of the attack loss, the main distribu-
tional difference comes from the distributional difference in
the secreting activations for samples with and without prop-
erty (i.e., distributional difference is most significant when
we only measure secreting activations), to make progress,
we assume the defender will follow a two-stage strategy of
first identifying the selected secreting activations and then
identifying the distributional difference in the potential se-
creting activations, with a hope that the distributional differ-
ence is significant enough to be detected’.

Since m is randomly generated with proper number of
nonzeros, the brute-force strategy for identifying m is com-
putationally infeasible. For example, for gender recognition
experiments, defenders have to try a total of (1’1250) (> 2€36)
forms of m (i.e., ||m]||; = 16 for a total of 1,280 activations).
Therefore, alternatively, we present two methods that at-
tempt to approximately identify m with the hope that the ap-
proximately well identified 7 still preserves the significant
distributional difference of m. The two methods we design
are based on the fact that: 1) samples with the target prop-
erty are rare for practically interesting settings, and 2) in the

'We do not exclude the possibility of identifying the distributional dif-
ference by still checking the overall distribution, and leave further explo-
ration of such detection strategies as future work.
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Figure 11. Percentage of samples with the target property detected by the anomaly detection for the zero-activation attack. Similar to [17],
we filter out nx 1.5 samples with anomaly detection, where n is the number of samples in downstream training data with the target property.
We report the number of samples with the target property filtered out divided by n as the Detection Percentage; values are averaged (with
standard deviation) over 5 runs of anomaly detection. The ‘5K’ lines report detection results on the settings with 5 000 total samples, while

the ‘10K’ lines report for 10 000 total samples.

modified loss design, secreting activations of samples with-
out the property are smaller in magnitude than the ones of
samples with the property. Therefore, if we randomly feed
inputs to the model, most of the inputs are without property
and hence, their corresponding secreting activations should
be smaller. With these two principles, we design two de-
tection methods: the first one averages the outputs of each
activation for all the fed inputs and treats activations with
smaller average values as the potential secreting activations
(average value based detection); the second approach han-
dles individual input separately and identifies potential se-
creting activations for each of them, and then returns the
intersection for all the potential secreting activations iden-
tified (intersection based detection). Empirically, we find
that both approaches cannot identify the secreting activa-
tions well (details are shown below) and hence did not fur-
ther explore how to check distributional difference on the
identified secreting activations in this paper.

Experimental Settings. To evaluate the performance of
average value based detection, we measure the detection
rate, which is the fraction of actual secreting activations in
identified potential activations. For the intersection based
method, since the size of final returned secreting activations
can vary (due to intersection over multiple inputs) for dif-
ferent settings, we evaluate the defense performance by re-
porting their Fl-score (viewing actual target as the positive
class and others as negative). When running these two de-
tections, we consider an idealized scenario for the defender,
where all the randomly sampled inputs are without target
property and so, their secreting activations are even smaller
for manipulated models and are easier to be detected by the
defender.

Specifically, for average value based detection, we
choose n X 1.5 activations that have the smallest average
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values as the identified possible secreting activations (n;,),
where 7 is the number of actual secreting activations (n =
|lm||;). We report the number of identified actual secreting
activation (n;,) divided by n as the detection rate. For inter-
section based detection, the n;,, of this method is the number
of activations remained after intersection operations, and
we cannot precisely control this number. Therefore, only
reporting the detection rate like the average value based de-
tection could introduce bias, and we use the F1-score as the
metric instead, Where the precision is defined as 2 and the

recall is defined as =. And for this detection method for
each sample, we also need to select some activations that
have the smallest values as the inputs for conducting the in-
tersection operation. We tried many choices for the number
of those activations, and find that choosing nx5 smallest ac-
tivations for each sample achieves the best F1-score. In the
experiments, we tried to use 100, 500, 1000, 2 000, 4 000,
8000, 10000 samples to generate activations values, sepa-
rately. For each setting, we repeat each detection 5 times
and calculate the average value of the detection rate or F1-
score.

Detection Results. Empirically, we find that the two ap-
proaches cannot sufficiently identify the secreting activa-
tions — the detection rate of secreting activations of the first
method is less than 11.3% for gender recognition and is less
than 1.5% for smile detection and age prediction for all set-
tings; the Fl-score of the secreting activation detection of
the second method is less than 0.009 for all settings. In fact,
using the second approach, the returned secreting activa-
tions are empty sets in most settings, implying the difficulty
of identifying the secreting activations by simply checking
the magnitude. Overall, the detection performances of both
approaches are low and better detection methods are needed
for identifying m in the future.
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Figure 12. Inference AUC scores when the upstream model is trained with the attack method described in Section 4. Baseline scores (the
baseline lines) are the maximum of the AUC scores (of the three inference methods) of the baseline experiments in Appendix A.4. The
inference of specific individuals for smile detection and age prediction are similarly successfully and found in Figure 15 in the appendix.
The downstream training sets have 5 000 samples in the results, and the results for the 10 000 samples are in Figure 1.
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Figure 13. Inference AUC scores of black-box meta-classifiers equipped with and without query tuning. We reuse the upstream and

downstream models trained in Figure 1.
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Figure 14. Inference AUC scores when the upstream model is not trained with attack goals. The first and second rows show results when

downstream training sets contain 5 000 and 10 000 samples respectively. The inference targets are specific individuals for smile detection
and age prediction; the results of other inferences show a similar trend and are found in Figure 3.
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Figure 15. Inference AUC scores when the upstream model is trained with the attack goals described in Section 4. The first and second rows

show results when downstream training sets contain 5 000 and 10 000 samples respectively. The inference targets are specific individuals
for smile detection and age prediction; the results of other inferences show a similar trend and are found in Figure 1.
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Figure 16. Percentage of samples with the target property detected by the anomaly detection for the stealthier attack. Similar to [17], we
filter out n X 1.5 samples with anomaly detection, where 7 is the number of samples in downstream training data with the target property.
We report the number of samples with the target property filtered out divided by n as the Detection Percentage; values are averaged (with
standard deviation) over 5 runs of anomaly detection. The ‘SK’ lines report detection results on the settings with 5 000 total samples, while
the ‘10K’ lines report for 10 000 total samples. Inference targets for smile detection and age prediction are senior people and Asian people
respectively; results for the inference of specific individuals follow similar trends (Figure 18).
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Figure 17. Inference AUC scores of the stealthier design. Since the secreting activations are no longer zero, the inference methods based
on difference or variance tests are no longer applicable. Inference targets for the smile detection and age prediction are senior people and
Asian people respectively; inference of specific individuals also shows improvement compared to the baseline settings (Figure 19). The
downstream training sets have 5 000 samples in the results; results for 10 000 samples show similar trends and are in Figure 2.
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Figure 18. Percentage of samples with the target property detected by anomaly detection for the stealthier attack. The inference targets are
specific individuals for smile detection and age prediction; the results of other inferences show a similar trend and are found in Figure 16.
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Figure 19. Inference AUC scores of the stealthier attack. The first and second rows show results when downstream training sets contain
5000 and 10000 samples respectively. The inference targets are specific individuals for smile detection and age prediction; the results of
other inferences show a similar trend and are found in Figure 2.
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