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ABSTRACT
Isotropic pairwise interactions that promote the self-assembly of complex particle morphologies have been discovered by inverse design
strategies derived from the molecular coarse-graining literature. While such approaches provide an avenue to reproduce structural corre-
lations, thermodynamic quantities such as the pressure have typically not been considered in self-assembly applications. In this work, we
demonstrate that relative entropy optimization can be used to discover potentials that self-assemble into targeted cluster morphologies with
a prescribed pressure when the iterative simulations are performed in the isothermal-isobaric ensemble. The benefits of this approach are
twofold. First, the structure and the thermodynamics associated with the optimized interaction can be controlled simultaneously. Second,
by varying the pressure in the optimization, a family of interparticle potentials that all self-assemble the same structure can be systemati-
cally discovered, allowing for a deeper understanding of self-assembly of a given target structure and providing multiple assembly routes
for its realization. Selecting an appropriate simulation ensemble to control the thermodynamic properties of interest is a general design
strategy that could also be used to discover interaction potentials that self-assemble structures having, for example, a specified chemical
potential.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5112766., s

I. INTRODUCTION

Inverse design strategies are powerful tools for discovering sim-
ple interactions that promote spontaneous assembly of particles into
states exhibiting specific structural motifs.1–27 Recently introduced
approaches build upon molecular coarse-graining methods such as
iterative Boltzmann inversion (IBI)28–30 or relative entropy (RE)
optimization,28,31,32 which prescribe how to map a detailed model
onto one with reduced degrees of freedom, e.g., replacing a multi-
body potential with a pairwise interaction or a group of atoms with
a single bead. In design for assembly, this allows one to discover
simple pair potentials that drive particles to sample equilibrium con-
figurations that closely match those exhibited by a model with con-
siderably more complex interactions that favor a target structure.
Such inverse strategies have enabled the design of isotropic pairwise
interactions that self-assemble particles into a rich variety of phases

including equilibrium cluster fluids,6,7,10 porous mesophases,7,8,10

colloidal crystals,9–13 and fluids and gels comprising particle strings
(“colloidomers”).14

The simplest and most naïve coarse-graining strategy for deter-
mining such an interaction is direct Boltzmann inversion, which
sets the optimized pair interaction between particles equal to the
potential of mean force obtained from the target configurations.28

Unsurprisingly, such optimized potentials are unable to adequately
reproduce the structure of most targets of interest at equilibrium,28

and more sophisticated, iterative coarse-graining strategies such as
IBI or RE optimization are required for successful design. Moreover,
since the coarse-graining process changes the interparticle interac-
tions, there is an inherent trade-off between reproducing the struc-
tural characteristics of the target and matching its corresponding
thermodynamic properties.33–38 For example, standard IBI seeks a
pair potential that matches the radial distribution function g(r) of
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the target but not its pressure.35 It is possible to largely preserve
agreement between the structure of the optimized and target ensem-
bles while also bringing their pressures into accord by incorporating
a correction term into the interaction.33–38 For instance, the pressure
can be corrected in IBI by adding a linear ramp to the pair poten-
tial,34,35 while force-matching (another coarse-graining strategy)
has a different, volume-dependent pressure correction term.36–38

Often, the specific form of the optimized potential is not partic-
ularly important for molecular coarse-graining applications, and
modifying the pair potential in these ways does not generally pose
problems.

In the context of inverse design for self-assembly, however, it
may be necessary to constrain the functional form of the pair interac-
tion in order to make contact with a particular experimental system
or to learn about the fundamental requirements for a self-assembly
process. The RE optimization framework is particularly well suited
for this purpose because it optimizes the parameters of a speci-
fied potential. The form of the resulting potential, however, would
not generally be preserved after application of a numerical pres-
sure correction, motivating the need for other strategies to control
the pressure for self-assembly design applications. Fortunately, the
RE framework is not specific to any particular statistical mechani-
cal ensemble,31,32 and while RE optimization is often performed in
the canonical ensemble, it can also be carried out in the isothermal-
isobaric ensemble to yield an optimized interaction that possesses
the desired pressure by construction. For colloidal self-assembly,
RE-optimized potentials are often thought of as effective interactions
between colloids mediated by an implicit solvent; in this context,
the corresponding osmotic pressure39 is controlled by the optimiza-
tion. Perhaps more significantly, in applications of inverse design
for assembly, the pressure can serve as a control parameter that can
be tuned to bias the RE optimization toward a more net attractive
(lower pressure) or repulsive (higher pressure) effective interaction,
yielding a family of pair potentials that favor assembly of the same
target morphology.

In this work, we demonstrate how the RE optimization strategy
for inverse design is modified when simulated in the isothermal-
isobaric ensemble. We validate the approach by revisiting a prior
study where we optimized pairwise interparticle interactions in
the canonical ensemble to assemble a rich variety of equilibrium
mesophases (porous dispersions, lamellae, clusters, etc.).7 For this
article, we use the equilibrium cluster phase that emerged from
this earlier study as our target ensemble. Clusters, characterized by
self-limited growth and preferred finite aggregate size, are of fun-
damental interest in the context of self-assembly40–65 but also are of
practical relevance for understanding and controlling the viscosity
of concentrated solutions of therapeutic proteins for subcutaneous
injection.66–68

The balance of the article is organized as follows. In Sec. II,
we give the RE update equation applicable when the coarse-grained
simulations are performed in the isothermal-isobaric ensemble
instead of the canonical ensemble, in addition to describing other
relevant computational details. In Sec. III, we first demonstrate
that, for an appropriately chosen pressure, the protocol described
in Sec. II recovers the same pair interaction as when the coarse-
grained simulations are performed in the canonical ensemble. We
then use the isothermal-isobaric optimizations to discover a family
of cluster-forming potentials at different pressures and characterize

the morphologies associated with the resulting interactions before
concluding in Sec. IV.

II. COMPUTATIONAL METHODS
A. Relative entropy optimization in other ensembles

RE optimization is equivalent to maximizing the likelihood that
a given simulation protocol will sample the configurations charac-
teristic of a target ensemble.9,10,31,32,69 The protocol is specified by
both the total interaction potential U(R∣θ) (where θ denotes a set of
adjustable parameters and R indicates a particle configuration) and
the thermodynamic ensemble in which the optimization simulations
are carried out. When the target ensemble has a constant number of
particles N and volume V, the canonical (“NVT”) ensemble is a nat-
ural choice for the RE simulation protocol, but other ensembles are
also permitted. In the present work, we perform the optimization
simulations in the isothermal-isobaric (“NPT”) ensemble, where the
pressure P is constant, and the volume fluctuates. Our target ensem-
ble is at a constant volume, so its volume distribution is effectively a
delta function. The RE optimized model will approach a similar vol-
ume distribution to avoid poor overlap of configurations between
the two ensembles; the pressure will match the desired value by
construction.

We previously provided a derivation of the RE update scheme
when the optimization simulations are performed in the canoni-
cal ensemble.9 The derivation for other ensembles proceeds analo-
gously. The primary differences are (1) the probability of observing
a given configuration R depends on the ensemble, (2) the aver-
ages that are taken over the simulation data correspond to the cho-
sen ensemble, and (3) prefactors that depend on N or V in the
update scheme may need to be explicitly accounted for instead
of absorbed into the optimization learning rate. When maximum
likelihood fitting is performed in the NPT ensemble and the form
of the potential is taken to be an isotropic pairwise interaction
denoted u(r|θ), the parameters at step i in the optimization, θ(i), are
updated by

θ(i+1) = θ(i) + η
⎡
⎢
⎢
⎢
⎢
⎣

∫

∞

0
drr2[ρg(r∣θ,P)

− ρtgtgtgt(r∣Vtgt)]∇θβu(r∣θ)
⎤
⎥
⎥
⎥
⎥
⎦θ=θ(i)

, (1)

where η is the learning rate, g and gtgt are the radial distribution
functions of the trial system in the current step of the optimization at
density ρ and that of the target ensemble at density ρtgt, respectively,
V tgt is the volume of the target ensemble, and β = (kbT)−1, where
kb is Boltzmann’s constant and T is the temperature. A complete
derivation for Eq. (1) can be found in the Appendix.

In prior work, we have either used a static value for the learn-
ing rate η or infrequently adjusted η manually in response to the
behavior of the optimization. However, for optimizations in theNPT
ensemble, we have found that automated adjustment of the learn-
ing rate is essential. The magnitude of the update to the potential
is determined both by η and by the difference between ρ and ρtgt.
As a result, a value of η that might be appropriate when ρ and ρtgt
are very close may yield an update that is so large that the opti-
mization becomes unstable when ρ deviates more strongly from
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ρtgt. Since ρ can fluctuate frequently and rapidly over the course
of an optimization, automated control over η is needed to main-
tain stability. In the Appendix, we describe an empirical, automated
procedure to update the learning rate in a way that leads to stable
optimization.

B. Cluster target phase
To test the RE framework in the isothermal-isobaric ensem-

ble, we optimized pair interactions to promote self-assembly of
clusters. By working at the relatively low densities where clus-
ters readily form, we can use a large simulation box with a mod-
est number of particles. Clusters have the additional benefit of
being straightforward to characterize via the cluster size distribution
(CSD).64,65

To compute the CSD, two particles were defined as neighbors
if their interparticle separation was less than a specified cutoff dis-
tance, rcut. Two particles are members of the same cluster if they
are neighbors or if there is a contiguous pathway of neighboring
pairs that connects them. The CSD is defined as the probability,
p(n), that an aggregate contained a specified total number of par-
ticles, n. The pairwise nature of this analysis can lead to artifacts,
particularly for larger values of rcut. For instance, two aggregates
that are largely spatially separated could be classified as a single clus-
ter if a single particle bridges them. To better reflect the concept of
a cluster as a compact and relatively spherical object, we resolved
groups of clusters that are defined as a single aggregate in the CSD
on the basis of k-means clustering70–72 on the unwrapped particle
coordinates of each aggregate identified by the CSD. The number of
individual clusters in a given group (k) was taken to be the nearest
integer to the quotient of the number of particles in the group by
the most probable cluster size (primary peak in the CSD). The clus-
tering was performed using the k-means++ algorithm for selecting
initial conditions.73

From the identities of the clusters, we computed their centers
of mass in order to determine the cluster-cluster radial distribu-
tion function, gcl-cl(r). We also determined which lattice (if any) was
formed by the clusters using Polyhedral Template Matching (PTM)
with a cutoff of 0.15 for the root-mean-square deviation relative to
an ideal lattice.74 PTM can distinguish between face-centered cubic
(FCC), hexagonal close-packed (HCP), body-centered cubic (BCC),
simple cubic, and icosahedral crystals and works well even at higher
temperatures. The PTM calculations and visualization of the simu-
lation configurations were performed using the Open Visualization
Tool (OVITO), version 2.9.0.75

The specific cluster target ensemble was inspired by prior work
where we used IBI to discover an unconstrained pair interaction that
prompted self-assembly of a variety of microphase-segregated states
as a function of ρ.7 At ρσ3 values between 0.076 and 0.172 (where
σ is the nominal particle diameter), the IBI interaction [Fig. 1(a)]
prompted self-assembly of clusters. Over most of that range, the
average cluster size increased as the system was densified. How-
ever, between ρσ3 values of 0.144 and 0.172, the average cluster
size was relatively insensitive to density,7 perhaps reflecting the
preferred cluster size encoded by the pairwise interaction in the
absence of entropic effects. We therefore defined ρtgtσ3 as 0.144,
using the low end of preceding density range for computational
convenience.

FIG. 1. (a) The dimensionless isotropic pairwise interaction, βu(r), discovered via
inverse design using IBI in Ref. 7. This interaction drives self-assembly of particles
into various microphase-separated states as a function of number density (ρ) in
the canonical ensemble. [(b) and (c)] The corresponding radial distribution function
and cluster size distribution, respectively, at ρσ3 = 0.144. (d) A snapshot of clusters
that assemble onto a lattice using the interaction shown in panel (a) at ρσ3 = 0.144.
See Ref. 7 for further simulation details.

We generated the target ensemble by simulating this IBI-
derived interaction at ρtgtσ3 = 0.144 and computed gtgt(r) [Fig. 1(b)].
The intracluster region extended out from r = σ to approximately
r = 3σ, followed by a depletion zone between distinct clusters that
led into cluster-cluster correlation peaks, the first of which occurred
near r = 8σ. The minimum at r = 1.71σ signaled the termination
of the first coordination shell on the particle level, and therefore,
we used this value for rcut in the CSD calculations throughout.
The target-ensemble clusters were relatively large and had good
size-specificity [Fig. 1(c)]; the median cluster size was 55 particles.
Additionally, the clusters themselves were arranged onto a lattice
[Fig. 1(d)]. PTM indicated that the structure had large co-existing
domains of BCC and HCP lattices that account for 43% and 40% of
the clusters, respectively.

C. Functional form for the relative entropy
optimization

In our prior work,10 the target ensembles were usually obtained
from simulations with physically unrealistic or multibody interac-
tions, and RE optimization was used to replace these interactions
with simpler pair potentials. Here, the target ensemble is obtained
from an isotropic pair potential, but the form of the interaction is
relatively complex and its features reflect many length scales.We can
use RE optimization to replace this complex pair interaction with a
more constrained functional form having simpler features.

To this end, we employed the following potential form in the
RE optimization that was inspired by prior work7,10 but has been
further modified to reproduce some of the qualitative features of the
IBI potential more closely. The potential had a hard-core-like contri-
bution given by the Weeks–Chandler–Anderson (WCA) potential,
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βuWCA(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

4[(
σ
r
)

12

− (
σ
r
)

6

] + 1, r ≤ 21/6σ,

0, r > 21/6σ,

(2)

with σ being the nominal particle diameter. The potential also had an auxiliary interaction that furnished an attractive well and a repulsive
barrier,

βuaux(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϵ1(
−r/σ + 1 + α1 + α2/2

α1 + α2/2
)

2

exp
⎡
⎢
⎢
⎢
⎢
⎣

− (
r/σ − 1 − α1/2 − α2/4

α1/2 + α2/4
)

8⎤
⎥
⎥
⎥
⎥
⎦

+ ϵ2, r/σ ≤ 1 + α1 + α2/2,

ϵ2exp
⎡
⎢
⎢
⎢
⎢
⎣

− (
r/σ − 1 − α1 − α2/2

α2/2
)

2⎤
⎥
⎥
⎥
⎥
⎦

, r/σ > 1 + α1 + α2/2,

(3)

where ϵ1 and ϵ2 are energy scales implicitly nondimensionalized
by the thermal energy and α1 and α2 are also implicitly nondi-
mensionalized by the nominal particle diameter σ. The first term
provides an asymmetric attractive well that is deeper at smaller val-
ues of r and smoothly connects to the peak of a Gaussian repul-
sive barrier given by the second term; together these terms model
the main qualitative features of the interaction shown in Fig. 1(a).
The variables ϵ1, ϵ2, α1, and α2 are the adjustable parameters that
comprise θ.

To facilitate a comparison between RE optimizations in differ-
ent ensembles, we took special care to monitor the evolution of θ
to determine when the optimization was complete, as opposed to
simply stopping the optimization when the desired structure was
obtained. Some fluctuations in the parameters always persisted as
a consequence of the stochastic nature of the simulations, but we
manually identified the point at which the parameters no longer sys-
tematically evolved. We then selected the step from this region that
had the best g(r) matching, as quantified by the lowest value of γ(i)
given by Eq. (A8).

D. Simulation details
All simulations were performed in GROMACS, version 5.1.2.76,77

The time step was Δt = 0.001
√
βmσ2, where m is the parti-

cle mass, and periodic boundary conditions were enforced in all
three dimensions. A canonical velocity-rescaling thermostat78 was
employed to control the temperature with a time constant of
τT = 100Δt. The NPT simulations used a Berendsen barostat with
a time constant of τP = 500Δt and compressibility 7.2 × 10−4βσ3
to maintain a constant pressure. The Berendsen barostat was cho-
sen because it is particularly stable even when the starting box
size is not consistent with the pressure of the barostat, which
was often the case as the potential evolved over the course of
the optimization. However, unlike the employed thermostat,78 the
Berendsen barostat does not produce fluctuations consistent with
the appropriate ensemble.79 Therefore, we verified all NPT sim-
ulation results with NVT simulations after the optimization was
complete, fixing the volume based on the average over the NPT
simulation.

Since the simulations within the iterative optimization frame-
work must be performed repeatedly (for each of the potentials

presented here, hundreds of steps were generally required), we
carried out relatively short and modestly sized simulations dur-
ing the optimization. We then verified the results with larger and
longer simulations outside of the optimization framework. Dur-
ing the optimization, the simulations contained 2000 particles and
were run for 106 time steps each. The first 7.5 × 105 steps are
taken to be the equilibration period, and any required quantities
were measured over the remainder of the simulation. The NVT
simulations were performed at ρtgtσ3 = 0.144; the NPT simulations
were also started from ρσ3 = 0.144 but ρ evolved over the simu-
lation. In order to further expedite the optimization simulations,
we also used a somewhat aggressive value of ≈0.0025kbT/σ as the
force threshold to determine the distance to truncate the pairwise
interactions.

In order to verify the results of the optimization, we charac-
terized the optimized potentials using NVT simulations with 10 000
particles and 2 × 107 time steps, where the first 107 time steps
were defined as the equilibration period. Configurations were saved
every 104 steps for subsequent analysis. We also used a more con-
servative value of 0.001kbT/σ in the force to determine the trun-
cation distance, effectively including more of the repulsive bar-
rier in the simulation from Eq. (3). As a result, the pressure mea-
sured from these NVT simulations was systematically slightly higher
than the pressure input into the NPT optimization. To confirm
that the pressure in the validation simulation was consistent with
the NPT optimization, we computed a cutoff correction to the
pressure,80

ΔP =
2π
3
ρ2 ∫

rNVT

rNPT
drr2gNVT(r∣θopt)(r

du(r∣θopt)
dr

), (4)

where θopt indicates the optimal parameters from the optimiza-
tion, rNVT is the cutoff in the NVT validation simulation, and
rNPT is the cutoff from the NPT optimization. When the above
term was included, the pressure from the validation simulation
matched the targeted pressure to within 1.4% in all cases, except
for the lowest pressure optimization, which we will discuss in
Sec. III.

Finally, preliminary calculations indicated that using the final
configuration from the previous step as the initial configuration in
the iterative simulations caused kinetic issues with respect to the
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organization of the clusters. Clusters tended to become trapped in
kinetically arrested and disordered configurations over the course
of the optimization, whereas the clusters would facilely crystal-
lize when initialized from a nonaggregated fluid state. Since the
pressures associated with these two different arrangements of the
clusters were different, the measured pressure from the NVT val-
idation simulations did not match the pressure imposed by the
barostat in the NPT simulations. In past work,9,12 we have used
temperature annealing to avoid such issues, but large changes to
the temperature at constant pressure change the box size signifi-
cantly, which can cause practical issues in the simulation. Instead,
we reset the initial configuration for every optimization simulation
to a snapshot taken from an equilibrated WCA fluid simulation
at ρtgt.

III. RESULTS AND DISCUSSION
To provide a basis for comparison for the NPT RE optimiza-

tions, we first performed a RE optimization in the NVT ensemble.
Since the paths through parameter space may be different between
the two ensembles, we monitored the convergence of the param-
eters to determine when the optimization was complete. Both the
parameters [Fig. 2(a)] and the pressure [Fig. 2(b)] stopped evolving
meaningfully after about 210 steps. We also show the convergence
criterion at each step, γ, in Fig. 2(c). Smaller values of γ indicate

FIG. 2. The evolution of (a) Δθ( i ) = θ( i )
− θopt, where θopt are the optimal param-

eters, (b) the nondimensionalized pressure P( i )βσ3, and (c) the convergence cri-
terion γ( i ) defined in Eq. (A8) as a function of step i in the NVT optimization at
ρσ3 = 0.144. The step corresponding to the optimal interaction is denoted by
the open square in panel (c). The (d) interaction potentials and (e) correspond-
ing CSDs are shown for the self-assembled clusters for the steps denoted by the
open symbols in (c).

better overlap between the target ensemble and the simulation per-
formed with the optimized potential [see Eq. (A8)]. We took the
simulation having the lowest value of γ as the final result of the
optimization, denoted by the square in Fig. 2(c).

Prior to the convergence of the parameters, we found that many
values of γ were comparable to that of the optimized potential,
providingmany interactions that appear consistent with the targeted
cluster morphology. In Figs. 2(d) and 2(e), we show a subset of these
interactions and their corresponding CSDs from the steps demar-
cated by all the open symbols in Fig. 2(c). The CSDs are all mutually
consistent; therefore, we see that there is some flexibility in the inter-
action potential in terms of promoting self-assembly of clusters with
the correct size. However, the pressure associated with the potentials
[Fig. 2(b)] varies from P = 0.76–1.01kbT/σ3.

The final optimized interaction and its corresponding CSD
and g(r) are shown in Figs. 3(a)–3(c), where they are compared
to their respective measurements from the target simulation. The
restricted functional form of the interaction prevented perfect
matching between the two, with the optimized interaction produc-
ing slightly smaller clusters than the target (the median values are at
52 and 55, respectively). This is reminiscent of prior work on porous
mesophases, where a similarly restricted functional form produced
slightly smaller pores than the unrestricted functional form.7 The
optimized g(r) was slightly less structured overall, particularly near
r = σ, which is probably a consequence of the deeper and sharper
attractive well present in the target interaction. Such a sharp fea-
ture in the potential is not realizable for the constrained functional
form. The optimized interaction prompted self-assembly of clusters
that crystallized onto a BCC lattice [Fig. 3(d)]. On average, 70%
of clusters were classified as BCC. The coordination structure of
most of the remaining clusters (25% of all clusters) was unknown

FIG. 3. At ρσ3 = 0.144, comparison of (a) the IBI-derived interaction potential used
to generate the target ensemble (gray) and the RE-optimized potential in the NVT
ensemble with the constrained functional form given by Eqs. (2) and (3) (dark
orange), (b) CSD, and (c) g(r) from the target ensemble and the optimized simu-
lation. (d) A snapshot of clusters that are arranged onto a BCC lattice using the
optimized RE interaction shown in panel (a).
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in the PTM analysis, which is likely at least partially attributed to
defects in the lattice that occur due to the finite size of the simula-
tion box. (There were slightly fewer than 200 clusters in the larger
simulations.)

In order to compare between RE in the NVT and NPT ensem-
bles, we measured the pressure associated with the optimized
interaction in Fig. 3(a). We extended the simulation with the opti-
mized interaction for another 106 time steps, from which we com-
puted a pressure of P∗ = 0.788kbT/σ3. Using this value to control
the pressure and setting ρtgtσ3 equal to 0.144, we carried out a RE
optimization in the NPT ensemble, the results of which are shown
in Figs. 4(a)–4(c). While the parameters in Fig. 4(a) stopped evolv-
ing more quickly in the NPT ensemble than the NVT ensemble as a
function of optimization step, we note that the learning rate evolved
with step differently in the two ensembles. In the case of the NPT
calculation, the optimization seemed to heavily favor approximate
matching of the density ρ to ρtgt [Fig. 4(b)]. The step associated
with the final optimized interaction is shown by an open square in
Fig. 4(c).

Despite the different paths through parameter space, the NVT
and NPT RE optimizations arrived at effectively identical solutions.
Each final optimized potential and the corresponding CSD and
g(r) are directly compared in Figs. 5(a)–5(c), where the results are
nearly indistinguishable. The median cluster size was 52 particles in
both cases. Both interactions promoted self-assembly of the same
morphology, with 72% of the clusters from the NPT optimization
assigned via PTM to a BCC structure [Fig. 5(d)] and 23% of the
clusters unclassified. As should be the case if the simulation box is
sufficiently large, performing the optimization in the distinct ensem-
bles but with compatible choices for the thermodynamic variables
yielded equivalent results.

After validating the NPT optimization strategy, we subse-
quently varied the pressure to discover different interaction poten-
tials that also resulted in a clustered microphase. The results for
P from 0.5P∗ to 4.0P∗ are shown in Figs. 6(a)–6(c). As expected,
potentials optimized at P < P∗ had a deeper attractive well and
a more muted repulsive barrier; the inverse is true for P > P∗.

FIG. 4. (a) The evolution of (a) Δθ( i ) = θ( i )
− θopt, where θopt are the opti-

mal parameters, (b) Δρ( i )σ3 = ρ( i )σ3
− ρtgtσ3, and (c) the convergence criterion

γ( i ) defined in Eq. (A8) as a function of step i in the NPT optimization, where
P = P∗ = 0.788kbT /σ3.

FIG. 5. Comparison of (a) the optimized potential from the NVT (ρσ3 = 0.144, dark
orange) and NPT (P = P∗ = 0.788kbT /σ3, teal) optimizations and the correspond-
ing (b) CSD and (c) g(r). (d) A snapshot of clusters that are arranged onto a BCC
lattice using the optimized NPT interaction shown in panel (a).

On the whole, there is significant flexibility with respect to the
parameters if either the volume or the pressure of the system can
be tuned although it is reasonable to assume that the parameters
must be optimized in a coordinated fashion to produce the desired
morphology. The CSDs resulting from the potentials in Fig. 6(a) are

FIG. 6. (a) The optimized interaction potentials, βu(r), (b) the corresponding CSDs,
and (c) the radial distribution functions between the center of masses of the clus-
ters, gcl-cl(r), as a function of the pressure of the barostat in the NPT optimization
for P = 0.5P∗, 1.0P∗, 2.0P∗, 3.0P∗, and 4.0P∗, where the lighter colors indicate
higher pressure and the arrow is drawn in the direction of increasing pressure.

J. Chem. Phys. 151, 104104 (2019); doi: 10.1063/1.5112766 151, 104104-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

shown in Fig. 6(b), where we see that the fidelity with respect to clus-
ter size is consistent with the NVT optimization (median cluster size
of 52 or 53 particles in all cases), with polydispersity decreasing as
the pressure increases.

All of the above interactions resulted in clusters that primarily
crystallized onto a BCC lattice. PTM indicated that between 55% and
72% of the cluster centers were in a BCC environment, and most of
the remaining clusters were not classified as crystalline by PTM. The
pair distribution functions of the cluster center-of-masses, gcl-cl(r)
[Fig. 6(c)], were also consistent with self-assembly into a BCC
lattice.

From the P = 4.0P∗ result, we note that attractions are not
required to form a clustered phase, consistent with prior work.55–63

Analogously to previous work on pores and crystals comprised of
single particles,10,12 the attractive well can be completely replaced
with a shoulder while retaining the targeted morphology. While
cluster-forming potentials possessing competing interactions and
those characterized by purely repulsive interactions are sometimes
discussed as two distinct classes of potentials, by tuning the pres-
sure, we see that there is a continuous family of interactions that
spans this space. With the exception of the P = P∗ result, the poten-
tials shown in Fig. 6(a) do not correspond to stationary points for
RE optimization in the NVT ensemble for the given gtgt(r). There-
fore, performing the RE optimization in the NPT ensemble is critical
to systematically obtain a family of interactions that may in general
yield insights into the fundamental requirements for self-assembly
of a given target structure.

We did not perform calculations at a higher pressure than
P = 4.0P∗ because we found that the optimization did not converge
(i.e., the parameters did not stop evolving) even after 1000 itera-
tions. This may be due to some frustration in the optimization: the
functional form qualitatively changes as ϵ1 becomes negative, i.e.,
the part of the function that generates the attractive well inverts to
form another repulsive barrier and in doing so generates a rather
abrupt attractive well between this barrier and theWCA component.
Negative values for ϵ1 are disfavored in the optimization so that at
sufficiently high pressures, ϵ1 stays close to zero and other parame-
ters must compensate to maintain the appropriate box size for the
given pressure. Other functional forms tailored to generate purely
repulsive potentials may be a better choice for higher pressures than
those investigated here.

We also performed NPT optimizations at even lower pressures
than shown in Fig. 6. The results for P = 0.125P∗ and 0.25P∗ are in
Fig. 7, where the P = 1.0P∗ result is also plotted for context. We see
a similar deepening of the attractive well as the pressure decreases
in Fig. 7(a). Conversely, while the repulsive barrier moves into lower
r with lowering pressure, the magnitude of the repulsive barrier no
longer significantly decreases from P = 0.25P∗ to P = 0.125P∗. It is
understood that for interactions possessing competitive attractions
and repulsions that a minimum degree of repulsion is needed to
form clusters in order to thwart macroscopic phase separation,52–54

and the form of the P = 0.125P∗ potential appears to be influenced
by this limitation.

Perhaps as a consequence of the above considerations, the self-
assembled structures corresponding to the lower pressure poten-
tials in Fig. 7(a) had some notable qualitative deviations from
the optimizations at higher pressures. First, the primary peak in
the CSD was shifted to slightly larger clusters, and the clusters

FIG. 7. (a) The dimensionless optimized interaction potentials, βu(r), (b) the cor-
responding CSDs, and (c) the radial distribution functions between the center of
masses of the clusters, gcl-cl(r), as a function of the pressure of the barostat in
the NPT optimization for P = 0.125P∗ and 0.25P∗, where P = 1.0P∗ is shown for
comparison. The lighter colors indicate higher pressure, and the arrow is drawn in
the direction of increasing pressure.

were significantly more polydisperse [Fig. 7(b)]. For the case of
P = 0.125P∗, the clusters never crystallized during the validation
simulation, continuing to exist as a fluid. (The structure of over
99% of the clusters was not identifiable in the PTM analysis.) At
P = 0.25P∗, the assembly did order somewhat (although a plurality
of the clusters, 46%, were unclassified by PTM) into a polymorphic
structure with significant degrees of BCC, HCP, and FCC crystal
structures (34%, 12%, and 8% of the clusters, respectively). gcl-cl(r)
for both low pressure optimizations are shown in Fig. 7(c), where
the morphological differences are apparent.

We also noticed that at the lower pressures, the optimizations
took noticeably longer to converge, with the P = 0.25P∗ optimization
requiring about 500 iterations (200–250 iterations were typical at the
higher pressures) and the parameters in the P = 0.125P∗ optimiza-
tion failing to converge after 1000 iterations (although the conver-
gence criterion did not improve over the last ≈800 steps). Addition-
ally, while the optimal ρ value measured from the higher pressure
results generally matched ρtgt closely (less than 1% difference), the
final ρ value measured from the optimal P = 0.125P∗ simulation
deviated more strongly (over 11%). The discrepancy between the
optimal ρ value and ρtgt posed a challenge to our optimization strat-
egy since we began each simulation at ρtgt; this issue manifests as
the pressure measured from the NVT validation simulation varying
more strongly from the corresponding barostat pressure than in any
other optimization (≈7% difference). By contrast, when we begin the
NPT simulation from a disordered state at the correct density for
the interaction, thereby allowing the clusters to self-assemble while
ρ is not evolving, we restore close agreement between the measured
pressure of the NVT simulation and the barostat of the NPT simu-
lation (within 1.5%). Given that we observed kinetic issues when the
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TABLE I. Optimal parameters for the potential form defined by Eqs. (2) and (3) and
the corresponding density as a function of pressure.

Pressure ϵ1 α1 ϵ2 α2 ρσ3

0.125P∗ 1.345 1.201 0.095 2.111 0.128
0.25P∗ 1.189 1.293 0.098 2.260 0.144
0.5P∗ 0.980 1.441 0.121 2.461 0.144
0.75P∗ 0.844 1.550 0.138 2.591 0.145
1.0P∗ 0.727 1.621 0.159 2.671 0.144
1.25P∗ 0.646 1.659 0.177 2.745 0.144
1.5P∗ 0.567 1.682 0.194 2.799 0.145
2.0P∗ 0.427 1.728 0.223 2.904 0.145
3.0P∗ 0.179 1.742 0.294 3.035 0.145
4.0P∗ −0.009 1.478 0.373 3.352 0.145

iterative simulations were not initialized from a disordered state (see
Sec. II), it seems reasonable that equilibration may also be inhibited
if self-assembly occurs while ρ is also evolving, which could explain
the above discrepancy with respect to pressure.

On the whole, the low pressure regime investigated in this
work underscores some of the limitations of tuning the pressure
and still achieving self-assembly of a targeted structure. Based on
the above, we suggest that the convergence of the parameters and
the closeness of ρ for the optimized interaction to ρtgt may serve
as indicators for what pressures are compatible with a given tar-
geted structure. On the other hand, there may be applications where
tuning either the pressure or the interaction potential to modulate
structural morphology may be desirable, and locating regions of
phase-space where the morphology of the optimal self-assembled
structures varies in response to pressure may be useful toward this
end. Furthermore, a systematic study of NPT optimizations as a
function of pressure provides an avenue to determine the neces-
sary range in pressure required in order to self-assemble a target
structure via any specified form for the interaction potential—a
practically useful guideline for realization of such self-assembled
structures.

The primary aim of this article has been validation of an
approach to optimize for interactions that possess desired thermo-
dynamic properties as well as structural correlations. In the course
of doing so, we have also discovered a series of interaction poten-
tials that self-assemble into clusters that may be useful in future work
in the field of clustering. In Table I of the Appendix, we report the
parameters that define all of the optimized potentials from this work
and the corresponding ρ values at which the validation simulations
were performed.

IV. CONCLUSIONS
In this article, we have demonstrated how, by manipulating

the simulation protocol used in RE optimization, we can directly
optimize interaction potentials that possess a desired pressure while
maintaining a constrained functional form. We showed that the RE
optimization converges to the same solution in both the NVT and
NPT ensembles when the pressure for the latter is chosen to be con-
sistent with the output of the NVT optimization. Moreover, we have
tuned the pressure in the NPT optimizations to generate a family

FIG. 8. Comparison of the radial distribution functions g(r) using the optimized
interaction potentials from the P = 0.5P∗ and P = 4.0P∗ optimizations.

of potentials that all form clusters of the correct size. As noted in
prior work, specifying the pressure inherently degrades the match-
ing between gtgt(r) and g(r) when the potential is infinitely flexible;35

however, this is not necessarily the case when the functional form of
the interaction is restricted. We found comparable g(r) matching at
all state points except for the two lowest pressure results that did not
form a BCC lattice of clusters—these matched the target less well. In
Fig. 8, we compare the g(r) computed from the P = 0.5P∗ optimiza-
tion to that from the P = 4.0P∗ optimization. Despite the obvious
differences in the optimized potentials [see Fig. 6(a)], the radial dis-
tribution functions are well-matched, with the higher pressure result
being only slightly more structured.

Using a barostatted simulation protocol within the RE frame-
work provides a straightforward and computationally convenient
means to control the pressure associated with the interaction that
is outputted by the RE optimization. This protocol allows us to dis-
cover the interaction form that is most likely to reproduce the target
ensemble subject to the pressure constraint as opposed to tuning an
interaction potential that matches the pressure in an ad hoc fashion.
Finally, control of thermodynamic quantities via RE optimization is
not restricted to the pressure. For instance, the chemical potential
of a coarse-grained interaction could be tuned by performing the
iterative simulations in the grand canonical ensemble.
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APPENDIX: RELATIVE ENTROPY OPTIMIZATION
IN THE NPT ENSEMBLE
1. Relative entropy update equation in the NPT
ensemble

The update scheme for RE optimization within theNPT ensem-
ble follows analogous mathematical steps to the procedure outlined
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in prior work for the NVT ensemble.9 As before, we assume a target
ensemble of M statistically independent and identically distributed
(IID) configurations, R1:M , all of which have fixed volume V tgt. The
target ensemble should reflect the desired structural correlations to
be realized via the optimized interaction. Adopting the NPT ensem-
ble as the simulation protocol, the probability of observing a con-
figuration (R) with a volume V is given by the following Boltzmann
factor:

p(R,V ∣θ,P) ≡
exp[−βU(R∣θ) − βPV]

Z(θ,P)
, (A1)

where U(R|θ) is the potential energy for configuration R, θ is a vec-
tor of the tunable values that parameterize the potential, β is the
inverse thermal energy, P is the pressure, and Z(θ, P) is the partition
function. Similarly, the probability of observing the set of IID target
configurations, R1:M , with volume V tgt, is given by the product of
probabilities with the form of Eq. (A1),

p(R1:M ,Vtgt∣θ,P) ≡
M

∏
i=1

p(Ri,Vtgt∣θ,P)

=
M

∏
i=1

exp[−βU(Ri∣θ) − βPV tgt]

Z(θ,P)
. (A2)

This quantity measures how likely a simulation in the NPT ensemble
with parameters θ is to sample the configurations R1:M at the target
volume.Maximization of this quantity is calledmaximum likelihood
fitting.69

As in the NVT derivation, it is easier to maximize the log-
likelihood. Taking the natural log of Eq. (A2) and dividing by M
yields

1
M

lnp(R1:M ,Vtgt∣θ,P) = −
1
M

M

∑
i=1
[βU(Ri∣θ) + βPV tgt] − lnZ(θ,P),

(A3)
which can be written as

⟨lnp(R,Vtgt∣θ,P)⟩ptgt(R∣Vtgt) = −⟨βU(R∣θ) + βPV tgt⟩ptgt(R∣Vtgt)

− lnZ(θ,P), (A4)

in the large configuration limit (i.e., M →∞), where ptgt(R|V tgt) is
the probability distribution of the target simulation. This expression
only differs explicitly from the NVT version through the additional
pressure-volume term.

Within the gradient ascent optimization algorithm, updates to
θ follow from

θ(i+1) = θ(i) + η[∇θ⟨lnp(R,Vtgt∣θ,P)⟩ptgt(R∣Vtgt)
]θ=θ(i) , (A5)

where η is the learning rate that is empirically tuned to maintain a
stable optimization. Application of the gradient operator to Eq. (A4)
yields

∇θ⟨lnp(R,Vtgt∣θ,P)⟩ptgt(R∣Vtgt) = −⟨∇θβU(R∣θ)⟩ptgt(R∣Vtgt)

+ ⟨∇θβU(R∣θ)⟩p(R,V∣θ,P), (A6)

which is formally equivalent to the NVT result, as the pressure-
volume contribution in Eq. (A4) is a constant with respect
to θ.

Differences due to the RE optimization ensemble are only
implicitly contained within the average that is performed over the
simulation data [the right-most term in Eq. (A6)]. As implied by
Ref. 31, the general relative entropy update in any other ensemble
is given by the following replacements: ptgt(R|V tgt) → ptgt(R|Etgt)
and p(R, V |θ, P) → p(R, E|θ, I), where E are the fluctuating
extensive variables coupled to the fixed intensive variables I and
Etgt are the fixed values of the extensive variables in the target
ensemble.

Equation (A6) can be greatly simplified in the case of isotropic
pair interactions. For a one-component system with particles inter-
acting via the pair potential u(r|θ), the total potential energy is

U(R∣θ) ≡
1
2 ∑

N
i≠j u(ri,j∣θ). Substituting this into Eq. (A4) and inte-

grating over all of the coordinates except those in the pair potential
yield

∇θ⟨lnp(R,Vtgt∣θ,P)⟩ptgt(R∣Vtgt) = 2πN ∫
∞

0
drr2[ρg(r∣θ,P)

− ρtgtgtgt(r∣Vtgt)]∇θβu(r∣θ), (A7)

where ρ and ρtgt are the ensemble-averaged optimized and target
densities, respectively, and g(r|θ, P) and gtgt(r|V tgt) are the cor-
responding radial distribution functions. Importantly, in writing
Eq. (A7), we have assumed that the pair interaction is finite in range
and the system is macroscopic in size. This allows us to extend
the integrals—which are technically over different volumes—arising
from both terms in Eq. (A6) to infinity and add them together. This
expression is similar to the NVT analog apart from the different
values of density attached to each radial distribution function. The
factors in front of the integral are constants and can be absorbed into
the learning rate of Eq. (A5).

2. Additional details for relative entropy optimization
We use the evolution of the following convergence criterion:

γ(i) = ∫
∞

0
drr2[ρg(r∣θ,P) − ρtgtgtgt(r∣Vtgt)]

2, (A8)

which is an integrated measure of the similarity of the current step i
to the target ensemble, to govern the learning rate η. [See Eq. (A7) for
definitions of the symbols.] In particular, we compute δ(i) = (γ(i−1)

− γ(i))/γ(i−1). If γ significantly decreases from one step to the
next (i.e., δ(i) < −0.1), then the optimization is converging as
desired. Therefore, η remains the same (η(i+1) = η(i)). If the
convergence criterion increases, we have empirically observed
that the optimization might be entering an unstable region in
parameter space and ρ may begin to fluctuate. If the increase
in γ is modest (i.e., 0.1 < δ(i) < 0.25), then we maintain the
same value for η as above. However, if δ(i) is larger, then the
learning rate is decreased (η(i+1) = 0.5η(i) if 0.25 ≤ δ(i) < 2.0
and η(i+1) = 0.25η(i) if δ(i) ≥ 2.0) to stabilize the optimization. Finally,
if γ changes little (−0.1 ≤ δ(i) ≥ 0.1), then it is possible that the opti-
mization is not exploring parameter space efficiently, and so η is
increased accordingly (η(i+1) = 2η(i)). We also include minimum and
maximum values for η (0.001 ≤ η ≤ 0.16 for most cases in this work),
and we initialized the optimization using the minimum value for η.
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For the initial guess for the NVT optimization and the sub-
sequent NPT calculation where the pressure is set to the mea-
sured pressure from the preceding NVT result (P∗), we use a WCA
potential [practically done by setting ϵ1 and ϵ2 equal to zero in
Eq. (3)]. As can be seen from Eq. (3), the length scales α1 and
α2 are nonlinear parameters and therefore require reasonable ini-
tial guesses for the optimization to converge. Although the exact
functional form differs, α1 and α2 have the same qualitative inter-
pretation as in related prior work. Therefore, we use initial guesses
for the length scales from prior RE calculations (α1 = 1.46 and
α2 = 2.55).7 Preliminary calculations demonstrated that the opti-
mization did not appear sensitive to the choice of initial guess so
long as the α values were reasonable. One other choice of initial
guess was arrived at by fitting the functional form of Eqs. (2) and
(3) to the IBI result shown in Fig. 1(a). This IBI-fit initial guess gave
nearly identical optimization results to the WCA initial guess. As
we altered the pressure in the NPT optimizations, we used results
from optimizations at other nearby pressures for the initial guess.
We performed optimizations at P = 0.125P∗, 0.25P∗, 0.5P∗, 0.75P∗,
1.0P∗, 1.25P∗, 1.5P∗, 2.0P∗, 3.0P∗, and 4.0P∗. As the pressure was
lowered below P∗, the initial guess was given by the closest opti-
mization result at higher pressure, and as the pressure was raised
above P∗, the initial guess corresponded to the nearest optimiza-
tion result performed at lower pressure. The quality of the opti-
mizations at P = 0.75P∗, 1.25P∗, and 1.5P∗ was consistent with the
results presented in the main text and only omitted for clarity in the
figures.

The optimized parameters at each pressure and the density
at which the validation simulations were performed are given in
Table I.
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