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Abstract—A distribution inference attack aims to infer statis-
tical properties of data used to train machine learning models.
These attacks are sometimes surprisingly potent, but the factors
that impact distribution inference risk are not well understood
and demonstrated attacks often rely on strong and unrealistic
assumptions such as full knowledge of training environments even
in supposedly black-box threat scenarios. To improve understand-
ing of distribution inference risks, we develop a new black-box
attack that even outperforms the best known white-box attack in
most settings. Using this new attack, we evaluate distribution
inference risk while relaxing a variety of assumptions about
the adversary’s knowledge under black-box access, like known
model architectures and label-only access. Finally, we evaluate
the effectiveness of previously proposed defenses and introduce
new defenses. We find that although noise-based defenses appear
to be ineffective, a simple re-sampling defense can be highly
effective.

I. INTRODUCTION

Machine learning models are susceptible to several disclosure
risks, including leaking sensitive information related to training
data. Distribution inference considers what a model reveals
about its entire underlying training data, in contrast with infer-
ence attacks that focus on individual records like membership
inference and memorization attacks. Initial work focuses on
inferring ratios of data with a particular attribute, referring to
the attacks as “property inference”. Examples include inferring
the accent of speakers in voice recognition models [4], targeting
ratios of characteristics like gender labels [9], and estimating
sentiment across email datasets [24]. More recently, there have
been attempts to extend these attacks to properties beyond ratios,
such as predicting graph density [47], node/edge properties of
groups within graphs [36], and direct regression over graph
mean-degree [31] with successful inference adversaries with
just black-box access.

State-of-the-art distribution inference attacks achieve non-
trivial distinguishing accuracies [9], [31], [45] and thus pose
a privacy risk, but the actual amount of leakage achieved is
often minimal. Leakage varies significantly across different
datasets, but for most settings the best current attacks leak
no more information than what one or two samples from
the distribution would reveal [31]. This is enough to have
a significant advantage in distinguishing highly dissimilar
distributions, but seems unlikely to pose a serious privacy
risk in most cases.

Contributions. We advance the understanding of distribution
inference risk on several fronts including an improved attack,
analysis of risk, and development and evaluation of defenses.

We introduce a new black-box attack, the KL Divergence
Attack, that uses distributional similarity in predictions (Sec-
tion II-B) and substantially outperform the current state-of-the-
art (Section III), increasing previous estimates of inference
leakage for various datasets in the literature. Surprisingly, we
find that in most settings our black-box KL Divergence Attack
is more effective than the best known white-box attack. We
also evaluate the black-box attacks in more realistic settings
where the adversary does not have as much information as is
typically assumed in inference experiments (Section IV).

We evaluate the impact of different model architectures
(Section IV-A), the lack of common feature extractors (Sec-
tion IV-B), and relaxing the assumption of prediction prob-
abilities to label-only access settings (Section IV-C). Our
experiments find large variances in inference risk due to
relaxing assumptions about model architectures and feature
extractors, but demonstrate that attacks can be effective in
label-only settings.

Section V evaluates defenses, including both previously
proposed ones and new ideas. Most privacy-related defenses
for machine learning involve adding noise at some stage
of the training; for instance, at the gradient-level in differ-
entially private training [1], or at the data level with most
implementations of adversarial training [23]. Our experiments
find that these noise-based defenses provide little mitigation
against distribution inference (Section V-A). At some level,
this is unsurprising since these defenses are designed to protect
individual training records, not distributional properties, and
we show a connection between how well a model generalizes
to the task distribution and its susceptibility for distribution
inference leakage (Section V-B). We then develop a simple and
inexpensive mitigation based on data re-sampling (Section V-C)
which can protect against distribution inference in most cases
where an adversary knows the statistical property to protect.

II. ATTACKS

Before introducing our attacks, we summarize the formal
definition of distribution inference we use (Section II-A). Then,
we describe previous attacks and our new attack in the black-
box (Section II-B) setting, and previous attacks in the white-box
(Section II-C) setting.

A. Defining Distribution Inference

The goal of distribution inference is to infer sensitive
properties of the distribution used to train a machine learning
model given some level of access to that model. Mahloujifar et
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al. [24] formalized a notion of distribution inference that can
capture the proportion of a dataset satisfying some property.
In this setting, each data-point can either have an attribute
value (linked to the property, such as ’female’) equal to zero
or one, and sampling data from D+ and D− corresponds to
data with this attribute set to zero or one respectively. The two
distributions to distinguish, then, correspond to a mixture of
these distributions for some α corresponding to the probability
of sampling a record from D+:

α · D+ + (1− α) · D−

Using this definition, the authors focus on the task of distin-
guishing between distributions with different α values, like
ones with 40% (α = 0.4) and 50% (α = 0.5) females. Suri
and Evans [31] generalize this notion by using distribution
transformation functions G0 and G1 to transform an underlying
distribution D (which essentially corresponds to domain
knowledge, such as the distribution of face images), instead of
explicitly assuming binary attributes and the two distributions
being mixtures with different α values. When considering
proportional properties (related to α, as described above), the
transformers can correspond to sampling records with a given
attribute value for any two valid probabilities, α0 and α1. We
follow the formalization in Suri and Evans [31], since it is
more generic and better captures assumptions like access to
data from some underlying distribution D. The adversary’s
task in this setting thus corresponds to distinguishing models
trained on data from G0(D) and G1(D), given access to a dataset
sampled from D and some level of access to the trained model.

B. Black-Box Attacks

Black-box attacks assume the adversary has the ability to
submit inputs to the trained model and observe the response
but does not have direct access to the model. In addition, the
adversary has access to some representative data from some
distribution D, and seeks to infer which of the transformations,
G0 or G1, corresponds to the victim’s training distribution.
Using knowledge of D and the transformation functions G0
and G1, the adversary is able to train shadow models locally.
Knowledge of the candidate distributions is necessary to be able
to distinguish between them, and it is reasonable to assume an
adversary with enough computational resources to train models
locally. Most research assumes that the victim and adversary
use the same model architecture (e.g., [26], [45]), and that the
adversary has access to model prediction confidence vectors
(e.g., [32], [40], [45]). In Section IV, we consider settings where
the adversary has less knowledge of the victim model and the
model API only outputs labels. Next, we review previous black-
box distribution inference attacks, and then introduce our new
KL Divergence Attack.

Prior Work. Zhang et al. [45] propose meta-classifier attacks
that use probability vectors from models for a specific set of
query points. Similar ideas are explored in related tasks [40].
The attack works by collecting model predictions for a fixed set
of query points (chosen at random); using local shadow models

to train a meta-classifier on these concatenated predictions, and
finally generating predictions for unseen models using the
meta-classifier. Suri and Evans [31] propose the Loss Test
and Threshold Test attacks that compare model accuracies
on candidate distributions to predict training distributions.
The Threshold Test performs best of these: it uses locally
trained models to derive a threshold on observed accuracy on
a given data sample, which is then used to predict the training
distribution of a model. This attack yields non-trivial inference
accuracies in many cases but falls short of the white-box attacks
by huge margins for most settings. These attacks have also
been extended to settings where active adversaries that can
poison the victim’s training data [6]. The only previous attacks
designed to work with label-only predictions are by Juarez
et. al. [16] that performs a statistical test based on attribute-
wise model performance, and Mahloujifar et al.’s attack in the
setting of active adversaries [24].

KL Divergence Attack (KL). Recent work by Hartley et
al. [11] demonstrates how the presence of unique features, even
if present in one training record, can impact output probability
distributions. Motivated by their use of KL divergence to
differentiate between the two scenarios (instance present or
not), we propose an attack that compares the KL divergence
in output probabilities of the victim model using local models.

The adversary prepares by training a collection of local
models {M1

0 ,M
2
0 , ...M

1
1 ,M

2
1 , ...}, where M i

0 and M i
1 (for

some i) denote models from training distributions G0(D), G1(D)
respectively. Let X denote some data randomly sampled by
the adversary from the distributions G0(D) and G1(D), with an
equal number of samples (|X|/2) from both distributions. We
first define a way to estimate the KL-Divergence between two
models using predictions:

E[DKL(N ‖M)] = Ex∈X

[∑
c∈C

N(x)c log

(
N(x)c
M(x)c

)]
(1)

where M(x)c corresponds to the prediction probability corre-
sponding to class c (out of all classes C) for some point x for
model M , and the expectation E[] is taken over the adversary’s
data X . We use the same data X in computing KL-Divergence
values. Next, the adversary defines a “weighted vote” for a
pair of models (N,P ) with respect to M :

λ(M,N,P ) = E[DKL(N ‖M)]− E[DKL(P ‖M)]. (2)

A positive quantity λ(M,N,P ) thus indicates that the model
M has its predictions distributed closer to P than N , since
a lower KL-divergence between distributions indicates higher
similarity. Using its collection of local models trained on the
two candidate distributions, the adversary then computes and
aggregates this “weighted vote” across all pairs of its local
models (M i

0,M
j
1 ):

b̂ = I
[∑

i

∑
j

λ(M,M i
0,M

j
1 ) > 0

]
(3)

The rule above thus effectively checks all its pairs of local
models and compares similarities in prediction distributions
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with a given victim model. Since the core idea here is to
compare distributions of model predictions, other metrics to
compare distributions, like Jensen-Shannon Divergence, or TV
Distance, can be used instead of KL-Divergence.

C. White-Box Attacks

In the white-box setting, the adversary additionally has direct
access to the victim’s model including its trained parameters.
Although this access model assumes a stronger adversary, it is
a realistic adversary for many scenarios, like when models are
deployed on client devices. It is also useful in two ways: 1)
gauging the extent of inference leakage, helping bound risk and
understand it better, and 2) studying patterns and trends across
properties and models to help better understand distribution
risk and come closer to inventing effective defenses.

Prior Work. The main previous white-box distribution infer-
ence attacks are based on permutation-invariant networks [9].
These attacks assume that information related to the training
distribution can be somehow extracted from trained model
parameters. They look at model parameters across all layers
of a multi-layer perceptron to generate a feature representation
for the entire model that is insensitive to arbitrary reorderings
of neurons. The method works by constructing feature rep-
resentations for each layer using learnable parameters (with
prior layers as context) using shadow models, and trains the
meta-classifier via back-propagation, using labels indicating
which training distribution the shadow models correspond to.
These attacks, originally designed for networks with linear
layers, have been extended to support convolutional layers [31].
Other distribution inference attacks in the literature follow a
similar meta-classifier approach: using parameter extraction for
support vector machines [4], using model gradients [26], or
intermediate node embeddings in graph neural networks [36].

III. RESULTS

We evaluate our proposed attacks on several datasets,
including both established benchmarks used in prior work and
new configurations and property-task combinations previously
unexplored in the literature. Code for reproducing our experi-
ments is available at https://github.com/iamgroot42/dissecting
distribution inference.

Our new attacks are significantly more potent than the
previous state-of-the-art. Our KL Divergence Attack (KL)
outperforms all previous black-box attacks by huge margins
(Section III-C). Even more interestingly, the KL Divergence
Attack, with only black-box access, outperforms Permutation
Invariant Networks (PIN) by a large margin in nearly all settings.
We study trends between the correlation of the task and property,
and its impact on inference risk (Section III-D).

A. Datasets and Models

We evaluate our attacks on twelve task-property pairs across
five datasets, summarized in Table I. These were selected to
directly compare results with previous works (RSNA Bone
Age, ogbn-arxiv, CelebA), to study the impact of task-property
correlation on inference risk (various property-task pairs for

CelebA), and to include datasets representing real-world use-
cases, like Census19 and Texas-100X.

Census19 [30] is an updated and expanded version of the
Adult Census dataset [5] based on data from the US Census
Bureau. It contains a mixture of numerical and categorical
features, and the same prediction task. We focus on the ratio
of whites (race) and females (sex) as properties, and use a
two-layer feed-forward neural-network as the architecture.

Texas-100X [15] contains demographic and medical informa-
tion for patients across hospitals. The original dataset uses 100
possible classes for surgical procedure prediction. We slightly
modify the task and focus only on data from the top 20 classes,
reducing it to a 20-class classification task. We focus on the
ratio of whites (race), females (sex), and Hispanics (ethnicity)
as properties, and use a two-layer feed-forward neural-network.

CelebA [21] contains collections of face images of celebri-
ties. Each image is annotated with attributes. We use three
different tasks: smile detection, gender prediction, and mouth-
open prediction. We conduct experiments with a convolutional
neural network trained from scratch for this dataset, with five
convolutional layers and pooling layers followed by three linear
layers, which is the smallest network we could find with
reasonable task accuracy. For our experiments with feature
extractors, we also conduct experiments where the adversary
uses a pre-trained FaceNet [28] model trained on the CASIA-
WebFace [43] dataset, with a two-layer network. It leads to a
drop in performance (from ∼ 92% to ∼ 82%), but the point of
such an experiment is indeed to assess inference risk in more
practical settings.

For the attack inference properties, we use the proportion of
females (smile-detection task), old people (gender-prediction
task), people with wavy hair (mouth-open-prediction task), and
people with high cheekbones (mouth-open prediction task).
These pairs are useful in comparing results with previous
works, and also help cover a spectrum of different correlations
between the task and property attributes.

RSNA Bone Age [10] contains x-ray images of hands, and
the standard task is to predict the patient’s age in months.
We convert the task to binary classification based on an age
threshold (> 132 months), and focus on the ratios of the
females (available as metadata) as properties. We also consider
a flipped scenario, where the task is to predict females, with
the ratios of people below the age threshold as properties. We
use a pre-trained DenseNet [13] model for feature extraction,
followed by a two-layer network for classification. Similar to
CelebA, we consider a setting where the adversary uses pre-
trained feature extractor, while the victim trains models from
scratch. Additionally, we also consider a setting where both
the victim and adversary use the same feature extractor, but
use different model architectures on top of the feature extractor

ogbn-arxiv [35] is a directed graph of citations between
computer science arXiv papers, with the task as predicted
subject area categories (out of 40) using features extracted from
paper documents. We infer the mean node-degree property of
the graph, and use Graph Convolutional Networks [19].

3

https://github.com/iamgroot42/dissecting_distribution_inference
https://github.com/iamgroot42/dissecting_distribution_inference


Dataset Task/Property
Distinguishing accuracy (nleaked) for α1 = 0.2 Mean distinguishing accuracy (nleaked)

Black-Box White-Box Black-Box White-Box
TT [31] ZTO [45] KL PIN [9] TT [31] ZTO [45] KL PIN [9]

Census19 Income/Females 50.0 (<0.1) 53.4 (<0.1) 89.8 (2.1) 78.6 (0.8) 61.3 (0.9) 54.4 (<0.1) 82.5 (4.2) 81.0 (3.5)
Income/Whites 53.2 (<0.1) 52.6 (<0.1) 92.4 (2.7) 74.2 (0.6) 59.4 (0.7) 54.9 (<0.1) 83.7 (3.3) 75.4 (1.1)

Texas-100X
Procedure/Females 50.0 (<0.1) 50.0 (<0.1) 89.3 (2.0) 50.0 (<0.1) 51.2 (<0.1) 51.6 (<0.1) 82.5 (3.8) 51.3 (<0.1)
Procedure/Whites 50.9 (<0.1) 50.0 (<0.1) 86.8 (1.7) 50.0 (<0.1) 52.4 (<0.1) 50.1 (<0.1) 81.6 (3.7) 50.5 (<0.1)

Procedure/Hispanic 50.0 (<0.1) 50.0 (<0.1) 78.4 (0.8) 50.0 (<0.1) 50.0 (<0.1) 50.0 (<0.1) 82.4 (3.8) 50.1 (<0.1)

CelebA

Mouth Open/Wavy 52.0 (<0.1) 51.8 (<0.1) 56.8 (<0.1) 92.0 (2.6) 50.6 (<0.1) 52.3 (<0.1) 62.1 (<0.1) 86.1 (2.4)
Smile/Females 54.4 (<0.1) 57.6 (<0.1) 89.6 (2.1) 57.6 (<0.1) 55.4 (0.1) 60.9 (0.2) 85.3 (3.2) 68.4 (0.5)
Gender/Young 50.3 (<0.1) 52.6 (<0.1) 86.4 (1.6) 81.0 (1.0) 52.9 (<0.1) 55.5 (0.1) 86.3 (2.5) 81.2 (1.5)

Mouth Open/Cheekbones 50.0 (<0.1) 50.0 (<0.1) 84.6 (1.4) 95.8 (3.9) 50.1 (<0.1) 56.2 (0.1) 76.7 (1.4) 88.6 (3.0)

RSNA Age/Females 90.0 (2.2) 95.4 (3.7) 99.9 (20.1) 99.4 (7.9) 64.0 (0.5) 77.9 (1.6) 94.5 (12.1) 95.2 (10.2)
Bone Age Females/Age 95.7 (3.8) 99.4 (7.9) 99.9 (20.1) 66.0 (0.2) 68.5 (1.0) 78.5 (3.3) 99.8 (22.6) 75.2 (8.4)

ogbn-arxiv Node classification/ 50.0 (<0.1) 50.0 (<0.1) 99.9 (58.5) 87.4 (5.1) 50.1 (<0.1) 55.4 (6.2) 92.6 (182.5) 71.9 (11.7)Mean Degree

TABLE I: Effectiveness of inference attacks. We show results for our KL Divergence Attack (KL) and three prior attacks:
Threshold Test (TT) [31], ZTO [45], and Permutation Invariant Networks (PIN) [9]. For the classifiers, the first set of results
shows the attack’s ability to distinguish between models trained on training sets where the proportion of the property is either
α0 = 0.5 or α1 = 0.2 as an accuracy percentage, with corresponding nleaked values in parentheses. The second set of results
shows the mean distinguishing accuracies (%) (with corresponding nleaked values) between α0 = 0.5 and a set of varying α1

values (0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 0.1). For the graph datasets used for ogbn-arxiv, for the first set of results we
use α0 = 13 are α1 = 10 as the two distributions; for the second set, we vary the mean node degree as the property, setting
α0 = 13 and varying α1 in [9, 10, 11, 12, 14, 15, 16, 17], and report the mean distinguishing accuracy (with mean nleaked value).
For all of the results, for each α1 value, we compute the median over five trials. Mean accuracy (and nleaked) is then computed
over the mean of these values for all α1 values. For each setting, results for the most effective attack are bolded.

B. Experimental Setup

We build upon the experimental setup described in earlier
works on distribution inference, using implementations and
trained models provided by previous works [9], [31]. For
each dataset, we create non-overlapping splits of data for
the victim and adversary. For each dataset, we simulate D
using the dataset itself. G0(D) is simulated by sampling from
the dataset, such that the resulting distribution has α = 0.5
(or 13, for ogbn-arxiv), while G1(D) is simulated for some α
(which we vary across experiments). We include the datasets
and victim/adversary splits used in previous experiments, and
include results on two new datasets. For all of the experiments,
we follow the processing pipeline described in Suri and
Evans [31] to obtain non-overlapping splits. Essentially, both
parties sub-sample from their data splits (to achieve specific α
values) with different random seeds, and train models on the
sampled data.

We perform each experiment five times and report mean
values with standard deviation in all of our experiments. Full
experimental details are provided in the Appendix A.

KL Divergence Attack. Since using all pairs of adversary’s
models can be expensive, the attack uses a set fraction
(0.8) of randomly chosen pairs to compute the expectation
in Equation 3. We experiment with multiple values of this
fraction, and observe comparable performance. For each pair
of local models, the attack collects the difference in KL values.
These differences are then normalized across all differences
observed for local models, after which the adversary uses
voting-based aggregation to generate the final prediction. We
also experimented with variants that do not include voting, as

well as ones that flip the inputs to KL-Divergence computation
(so DKL(B||A) instead of DKL(A||B)), but find the current
version to perform best.

C. Results

Directly comparing distinguishing accuracies across different
distributions can be misleading, since certain pairs of distribu-
tions might be easier to distinguish than others. To standardize
comparisons, we use the nleaked [31] metric in our experiments.
For the case of binary distinguishing, nleaked can be computed
using Theorem 4.2 in Suri and Evans [31] as:

nleaked =
log(4ω(1− ω))

log(max
(

min(α0,α1)
max(α0,α1)

, 1−max(α0,α1)
1−min(α0,α1)

)
)
. (4)

The nleaked value quantifies the amount of leakage observed
by the attack, by connecting it with a Bayes-optimal classifier
with access to that number of samples. It is equivalent to
the adversary being able to draw samples from the training
distribution and executing an optimally distinguishing statistical
test. The nleaked values measure how much the inference
attack leaks about the distributional property in a way that
allows comparison across experiments, since the quantity
helps capture the attacker’s capabilities in a way that is
independent of α0 and α1, thus enabling comparison across
distributions. It can be interpreted as the minimum number
of records an adversary would need to sample directly from
the training distribution to expect to make equally accurate
predictions. For instance, a distinguishing accuracy of 95%
between distributions with α0, α1 = 0.5, 0.51 is intuitively
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much harder than distinguishing between distributions with
α0, α1 = 0.5, 0.9. This notion is exactly what nleaked aims to
capture, by standardizing comparison: nleaked values in this
case would correspond to ≈ 84 and ≈ 3 respectively.

Table I summarizes the results of our distribution inference
experiments. For each experiment, we report mean distinguish-
ing accuracies between two distributions as well as the mean
distinguishing accuracy across a set of different distributions,
as detailed in the table caption. We also include corresponding
nleaked values. For the classifiers, we vary α1 in [0.0, 1.0] at
intervals of 0.1, and set α0 = 0.5 for the case of ratio-based
properties, where a certain α value for a distribution means
datasets sampled uniformly at random would have α fraction of
the data with the property attribute 1, for e.g. ratio of females.
The distinguishing accuracies thus correspond to predicting
whether a model has the training distribution corresponding
to α0 or α1 where random guessing would be 50% accuracy,
and perfect predictions would be 100%.

The majority of experimental evaluations in the literature
follow a binary classification scenario, where the adversary is
supposed to distinguish between two potential training distri-
butions with property values α0 and α1. Although regression-
based adversaries have been demonstrated [31] as being strictly
more powerful, they are much more computationally expensive
and we leave evaluations in that scenario to future work.

Trends across datasets. Inference leakage varies significantly
across different datasets, with very little leakage for most
cases in Texas-100X, substantial leakage for Census19, and
exceptionally high leakage for the graph-based ogbn-arxiv
dataset. The lack of virtually any inference risk in Texas-100X
is surprising, as the features contain the property label, and data
splits are processed per hospital during generation, making
the victim and adversary distributions highly similar. This
difference in inference risk between Census19 and Texas-100X,
despite both being tabular datasets, reveals how just the nature
of data (tabular, images) does not by itself determine inference
risk and risk can vary unpredictably (at least based on current
understanding) with aspects of the data. As previously observed
by Suri et al. [32], leakage is quite high for RSNA Bone Age.
Our new improved attacks identify vulnerable datasets, such as
Census19, that would have been considered low leakage risks
using previous state-of-the-art attacks.

Comparing black-box attacks. The KL Divergence Attack
outperforms Threshold Test (TT) and the black-box attack by
Zhang et. al. [45] (which we refer to as ZTO) in all cases
with large margins. Across all of the settings, TT and ZTO
rarely achieve distinguishing accuracies above 75% i.e. nleaked
above 1.0 (indicating that the observed leakage is less than
what an adversary would learn by sampling a single record
from the training distribution), whereas the KL Divergence
Attack produces meaningful leakage for all of the datasets. The
superiority of the KL Divergence Attack can be attributed to
the use of pairs of local models and their trends (which grow in
the order

(
n
2

)
for n models), as opposed to using information

from models in isolation in the other attacks.

Number of shadow models. The black-box attacks use 50
shadow models per training distribution. We vary this number
to 1) get an empirical lower bound on the number of shadow
models required to achieve non-trivial leakage, and 2) study
increase in information leakage with an increase in shadow
models. Leakage is significant with only five shadow models
per distribution in most cases, and improves with more local
shadow models (Table II).

White-box attacks. The black-box KL Divergence Attack
performs surprisingly well despite the weaker threat model,
outperforming the best white-box attack in nearly all experi-
mental settings. Since an adversary in the white-box setting
has access to more information than just the data and model
predictions, it should be at least as powerful as a black-box
adversary. We attribute the relative ineffectiveness of the white-
box attacks to two main reasons. First, in Permutation Invariant
Networks, model parameters are directly used as features for
the meta-classifier, unlike comparisons in model prediction
distributions in KL Divergence Attack. Secondly, white-box
attacks have a larger feature space and learning meta-classifiers
additionally requires learning to recognize relevant patterns in
model parameters, a huge and complex data distribution. The
black-box attacks, on the other hand, are agnostic to parameters
in the victim model and thus much easier to scale, resulting
in better performance.

D. Correlation

The impact of correlation between the underlying task of a
model and the property of its training distribution being inferred
has been touched upon briefly in the literature [45], but not
studied extensively. Intuition suggests there should be some
positive relationship between inference risk with increasing
task-property correlation, but prior studies do not evaluate
inference risk across a range of property-task correlations. We
carefully pick pairs of properties and tasks for the CelebA
dataset, such that there is a good range of correlations.

We conduct experiments with property correlations of ≈ 0
(Mouth Slightly Open–Wavy Hair), ≈ 0.14 (Smiling–Female),
≈ 0.28 (Female–Young), and ≈ 0.42 (Mouth Slightly Open–
High Cheekbones). Across this range of correlations, mean
distinguishing accuracies (nleaked values in parantheses) are
62.1% (<0.1), 85.3% (3.2), 86.3% (2.5), 76.7% (1.4) as
correlation values increase. The lack of any clear trend between
correlation and inference risk is consistent with observations
in the literature around task-property correlation and inference
risk [45]. As observed, inference risk is non-trivial as long
as the task-property correlation is non-zero. While the case
of non-zero inference risk is obvious (with zero correlation,
loss optimization would not use the property as an indicative
feature), changes in inference risk with varying correlation
values may be tied to observed correlation versus actual
causality, and methods for causal learning may help alleviate
this inference risk [34].

We perform similar analyses for the RSNA Bone Age dataset,
where we flip the property and task. In this case, the correlation
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Dataset/Task Number of Shadow Models
5 10 25 50 100 400

Census19 (Sex) 73.0 (3.0) 76.5 (3.3) 81.3 (4.0) 82.5 (4.2) 86.4 (5.1) 89.7 (6.6)
Census19 (Race) 77.2 (2.6) 79.3 (2.9) 81.3 (3.1) 83.7 (3.3) 84.2 (3.3) 84.7 (3.4)
RSNA Bone Age (Age) 97.3 (18.3) 98.3 (19.0) 99.3 (21.3) 99.7 (22.6) 99.7 (22.6) 99.8 (22.8)
CelebA (Sex) 73.9 (1.1) 78.6 (1.7) 80.9 (2.4) 85.3 (3.2) 86.9 (3.9) 89.2 (5.1)

TABLE II: Impact of varying the number of shadow models used by the adversary per distribution to launch its attacks. Values
are mean distinguishing accuracies (%) (with mean nleaked in parentheses) for KL Divergence Attack(computed as described in
Table I). Even with only 5 models, the adversary is able to achieve considerable inference leakage.
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Fig. 1: Distinguishing accuracy for different task-property pairs
for CelebA with varying correlation, for KL Divergence Attack.

between the task and property remains the same, thus helping
identify potential changes in inference leakage arising purely
from the choice of the property itself. While switching from
Age–Females to Females–Age, we observe a huge bump in
mean distinguishing accuracies (nleaked values in parentheses):
from 94.5% (12.1) to 99.8% (22.6). Although the choice
of property and task are expected to impact inference risk,
our results suggest that this choice may be more relevant to
evaluating inference risk than property-task correlation itself.

IV. IMPACT OF ADVERSARY’S KNOWLEDGE

Research on inference privacy typically considers threat
models with one of two simplistic adversarial assumptions:
white-box settings, where the adversary has full access to
the model; and black-box settings, where the adversary has
only API access to the model but receives full confidence
vectors for each prediction and has complete knowledge of
aspects of the training process and model architecture. The
specific information available to an adversary in the black-box
setting, however, may have a significant impact on inference
risk. For instance, access to labeled data (for attacks) with
prediction probabilities is often implicit, as is the use of the
same model architectures and feature extractors between the
victim and adversary. We study the impact of these common
assumptions, and how relaxing them impacts inference risk.
We measure impact on risk when the victim and adversary

use different model architectures (Section IV-A), do not share
feature extractors (Section IV-B), and when the available model
API only provides label predictions (Section IV-C). Inference
risk is somewhat robust to differences in model architectures, as
long as the victim and adversary’s models have similar capacity.
The absence of shared feature extractors reduces inference risk
significantly, but we find attacks can still succeed when only
label predictions are available.

A. Model Architecture

In the white-box setting an adversary can directly observe
the target model’s architecture, but in black-box settings it is
unrealistic to assume the adversary knows the target model
architecture. Likely model architectures may be limited in
certain domains like image data, where the victim is likely to
use a popular model architecture such as DenseNet [13]. But a
variety of models like random forests, support vector machines,
and clustering-based classifiers can be used for tabular data and
may even be picked by model trainers via automated tools [8].

Differences in victim and adversary architectures have not
been previously explored, except by Mahloujifar et al. [24] for
poisoning-based adversaries. In their setting, the victim and
adversary can have different model architectures—the adversary
uses logistic regression while the victim can use a variety of
different feed-forward neural networks. They note a drop in
inference risk with an increase in victim model complexity. It is
thus unclear if these trends are specific to the model architecture
themselves. Additionally, the adversary’s model architecture is
kept the same, so they did not explore the potential for higher
inference risk with better local models.

To identify trends in inference risk with differences between
architectures, we train multiple models with different architec-
tures for both the victim and adversary. For Census (Gender),
we try all possible combinations out of linear regression (LR),
multi-layer perceptrons with two and three layers (MLP2,
MLP3), and a random forest classifier (RF). We also consider
using a two-layer perceptron (MLP2) and a support vector
machine (SVM) for the case of RSNA Bone Age (Gender).
For this experiment and the rest of this section, we report
results with KL Divergence Attack.

We observe several interesting trends for Census19 while
varying model types for the victim and adversary (Table III).
For instance, inference risk is significantly higher when the
adversary uses models with learning capacity similar to the
victim, like both using one of (MLP2, MLP3) or (RF, MLP).
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Victim Model Adversary Model
RF LR MLP2 MLP3

Random forest (RF) 95.1 (12.0) 78.9 (1.7) 86.7 (5.4) 85.6 (4.9)
Linear regression (LR) 93.2 (13.5) 100.0 (25.9) 76.4 (3.7) 80.8 (5.4)
Two-layer perceptron (MLP2) 69.7 (0.9) 56.6 (0.3) 82.5 (4.2) 82.7 (4.3)
Three-layer perceptron (MLP3) 69.3 (0.8) 56.3 (0.3) 82.2 (4.0) 81.1 (3.8)

TABLE III: Variation by model type. Each value is the observed mean distinguishing accuracy (%) (with mean nleaked in
parentheses; measured as described in Table I) of the KL attack for Census19 (Sex), for different combinations of model types
for victim and adversary.

Concretely, mean distinguishing accuracy is 86.9% (mean
nleaked=8.7) when learning capacities match, as opposed to
72.7% (mean nleaked=2.7) when learning capacities do not
match.

Interestingly though, we also observe a sharp increase in
inference risk when the victim uses models with low capacity,
like linear regression and random forest instead of multi-
layer perceptrons. For example, mean distinguishing accuracy
is 72.6% (mean nleaked=2.3) when victim models have high
learning capacity (MLP2, MLP3), but increases to 87.1% (mean
nleaked=9.1) when the victim models have low learning capacity
(RF, LR). These trends hint at possible connections between
distribution inference risk and model learning capacity.

B. Feature Extractors

When dealing with high-dimensionality datasets and a
scarcity of data, it is common to use techniques such as transfer
learning [38], [39] to boost model performance with reduced
data and computational requirements. Using a pre-trained model
for feature extraction should intuitively limit distribution-related
privacy leakage, since there are fewer trainable parameters that
can potentially contain revealing information. At the same time,
fewer parameters also reduce the space of models, making it
easier for an adversary to launch attacks. Even in a black-box
setting, the adversary may be able to use the same feature
extractor as the victim, either as a result of the adversary
snooping and gaining information, or just by assuming the use
of popular pre-trained models (like BERT [18]). This setting
has been explored previously [4], [9], [31], but the effect of
the adversary using the same or different extraction models
from the victim model has not been previously explored.

For RSNA Bone Age (Sex), we consider two configurations:
one where the victim and adversary use the same feature
extractor, and another where the victim trains DenseNet [13]
models from scratch (CNN). For the first setting, we explore
an SVM (FE+SVM) and a two-layer perceptron (FE+MLP2).
There is a considerable drop in distinguishing accuracies (from
96.7% to 91.2%, i.e. nleaked from 16 to 6) when the victim and
adversary no longer share feature extractors (Table IV). For
the settings where they do, we observe leakage to be highest
for similar model architectures, and note a sharp increase
when the victim uses an SVM. Nonetheless, inference risk
stays sufficiently high. Interestingly, for the case where feature
extractors are not shared, using a lower learning-complexity
model (FE+SVM) seems to lead to higher leakage, than
FE+MLP2. While leakage is high in both cases, the increase

Victim Model Adversary Model
FE+MLP2 FE+SVM

Feature extractor, perceptron (FE+MLP2) 94.5 (12.1) 93.0 (9.0)
Feature extractor, SVM (FE+SVM) 99.5 (21.2) 99.6 (21.7)
DenseNet (CNN) 88.0 (3.4) 9.44 (8.5)

TABLE IV: Mean distinguishing accuracies (%) (with mean
nleaked values in parentheses) for RSNA Bone Age (Sex), for
different combinations of model types for victim and adversary
(as computed in Table I).

can be explained by the chances of adversary’s local models
overfitting being less than that with an MLP.

For CelebA (Sex), we explore a setting where the adversary
utilizes a feature extractor to train its models, while the victim
trains CNNs from scratch. This setup represents a resource-
constrained adversary who uses pre-trained models to lower
computational and data requirements. We observe a similar
diminishing of inference risk when a shared feature extractor is
not available to the adversary, consistent with the RSNA Bone
Age results. Compared to the scenario where the adversary
uses the same model architecture as the victim without any
pre-trained feature extractors, mean distinguishing accuracy
drops from 85.3% to 71.0% (i.e., nleaked from 3.2 to 0.5).

C. Label-Only Access

Most black-box attacks in the literature related to distribution
inference assume access to prediction confidence vectors.
This is not an unreasonable assumption—many APIs return
prediction scores, especially for top-k classes (for example
Google Vision API and ClarifAI Prediction API return scaled
confidence scores for the top 10 or 20 classes, respectively). It
is unclear, however, what kind of performance drops to expect
for distribution inference attacks in settings where the model’s
API only returns a label. The only previous works to explore
distribution inference in the label-only setting are in the context
of group distribution shift auditing [16], and active adversaries
with poisoning capabilities [24].

With some straightforward modifications, KL Divergence
Attack can be launched with access to just label predictions,
with negligible drops in inference leakage in most cases. The
attack requires prediction confidence scores to compute the
KL-divergence values. However, these scores are absent in
the label-only setting, and the labels effectively correspond to
confidence values of 0 and 1. This makes the KL computations
(Equation 1) invalid, since the log of 0 or 1/0 is undefined. To
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Fig. 2: Distinguishing accuracy for for the KL Divergence
Attack for RSNA Bone Age (Sex), when the adversary uses
the same feature extractor as the victim, and when the victim
does not use or share any pre-trained feature extractor. While
there is an obvious drop in performance, inference risk still
stays high.

Dataset/Task Confidence Scores Prediction Label
Direct Sampling

Census19 (Sex) 82.5 (4.2) 77.3 (3.3) 3.7 (80.5)
CelebA (Sex) 85.3 (3.2) 77.8 (1.4) 79.3 (1.6)
RSNA Bone Age (Age) 99.8 (22.6) 96.3 (12.7) 97.1 (13.3)

TABLE V: Effectiveness of label-only attacks. Each value is
the observed mean distinguishing accuracy (%) (with mean
nleaked in parentheses) for KL (as computed in Table I). The
label-only setting leaks less information, but the attacks still are
effective even when confidence scores are unavailable. ‘Direct’
uses a single query, while ‘Sampling’ uses 10 samples around
each test point.

tackle this, we replace 0/1 labels with confidence scores ε and
1− ε for some small value ε (set to 0.01 in our experiments).

We observe mixed trends across datasets and attacks. For
instance, switching to the label-only setting has little impact
in the case of Census19, while mean distinguishing accuracies
drop by more than 8% (nleaked drops by more than half) for
CelebA (Table V). However, the drop in performance for
CelebA is not uniform across all ratios. Inference risk is still
quite high for many values of α (Figure 3). Similar trends hold
for RSNA Bone Age, where distinguishing accuracy is > 75%
for all ratios. We also experiment with using probabilistic
sampling to extract more information. For each datapoint, we
sample k random points in its neighborhood by adding random
noise from N (0, σ2) to each feature, and average the generated
label predictions to estimate confidence scores. We observe
slight improvements in attack performance from the sampling,
at the cost of additional queries.
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Fig. 3: Comparing the distinguishing accuracy for the KL
Divergence Attack for CelebA (Sex), when the target model
returns prediction confidence scores and when it returns only
prediction labels. Performance drops most for certain ratios
like 0.2 and 0.8, but remains high and roughly the same for
more extreme ratios like 0.0, 0.1, and 1.0.

V. DEFENSES

Several defenses against distribution inference have been
proposed, but most of them (except differential privacy [9],
which has shortcomings as we discuss later) have not been
actually evaluated. Like most defenses designed to limit privacy
leakage, these defenses involve adding noise in some parts
of the training process. This can include the data itself [4]
or model parameters [9], [26]. One notable exception is work
by Hartmann et. al. [12], where the authors study causes of
leakage in distribution inference attacks, and evaluate mitigation
strategies based on causal learning (IRM [3]), correcting
inductive biases, and increasing the amount of training data,
for synthetic datasets. We evaluate some of these noise-based
defenses in Section V-A, and find that they seem unlikely
to successfully mitigate distribution inference risks. Our ex-
ploration of inference risk with model generalization reveals
interesting trends and a potential trade-off between learning
and inference risk (Section V-B). Section V-C introduces and
evaluates a simple defense based on data re-sampling, which
can prevent distribution inference in settings where the model
trainer knows which distributional property to hide.

Prior Work. Unlike membership inference where differentially
private training can provide a guaranteed bound on inference
risk, there are no defenses against distribution inference
from trained models with theoretical guarantees. Chen and
Ohrimenko [7] recently proposed a defense mechanism that
builds upon formal notions of distributional privacy [44] to
protect against property inference attacks on statistical queries.
This is the first known theoretically-grounded defense against
distribution inference, but it does not apply to protecting
machine-learning models.

The only previous defense that has demonstrated meaningful

8



protection against distribution inference attacks on machine
learning models is NoSnoop [22], proposed for a collaborative
learning setting. In their threat model, the adversary seeks to
infer sensitive information about exact training batches and has
access to intermediate model losses from clients. The defense
works utilize a discriminator-generator setup, where gradient
updates are used to minimize property leakage while preserving
task-based utility. Although this defense is highly effective, it
defends against a very narrow type of configuration, including
properties limited to the presence/absence of sensitive data.

Recent work by Stock et al. [29] proposes a defense against
distribution inference based on gradient updates from meta-
classifiers. The victim, being aware of two distributions that an
adversary may test for, trains multiple copies of its models with
these training distributions. Then, it trains a meta-classifier and
computes gradient updates for its own local models such that
inference risk is minimized. This method requires the victim
to train hundreds and thousands of models locally for the meta-
classifier, leads to large drops in task performance, and does
not generalize to settings where the victim and adversary use
different kinds of meta-classifiers.

Other proposed defenses include removing sensitive at-
tributes from features [45], using node-multiplicative trans-
forms, or encoding arbitrary information into the models [9].
Since black-box attacks only utilize relationships between
inputs and model outputs, they are unaffected by such changes
as long as model functionality remains unaffected. Additionally,
the Permutation-Invariant Network architecture can be modified
to have some form of scale-invariance as well, which in turn
can also bypass such multiplicative defenses. Further, these
defenses seem unlikely to diminish black-box attacks, which
our experiments have shown to be more effective than known
white-box attacks, hence we do not evaluate them here.

A. Noise-Based Defenses

Several proposed defenses against distribution inference
involve adding noise in various ways—differentially privacy
training incorporates crafted noise in the training process
and label poisoning adds noise to the training data. We also
consider using adversarial training, which augments training
with adversarial perturbations.

Differentially Private Training. Differential privacy (DP) is
a formal privacy notion that provides theoretical guarantees that
bound an adversary’s ability to distinguish between neighboring
input datasets from the output of a computation. Differential
privacy can provide theoretical bounds limiting membership
inference. Evaluations by Ateniese et al. [4] suggest differ-
entially private training is not an effective defense against
distribution inference attacks. However, their experiments used
a setup with some overlap between the victim’s and adversary’s
data, so it is possible the observed lack of protection is related
to the overlapping data available to the adversary. Although
differential privacy in itself does not guarantee protection
against distribution inference, evaluating risk for models trained
with these guarantees can help better understand how such
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Fig. 4: Distinguishing accuracy for different for Census19
(Sex), using KL Divergence Attack. Attack accuracy drops
with stronger DP guarantees (decreasing privacy budget ε).

noise-based mechanisms can affect inference risk, and assess
the vulnerability of models meant to provide membership
inference privacy. Empirical evidence can thus be beneficial and
more concrete than relying on pure intuition (or argumentative
reasoning about why a defense may or may not work).

We use DP-SGD [1] to train victim models with Reńyi
Differential Privacy [27], with privacy loss budgets of ε = 1.0
and ε = 0.12, with δ = 4.9× 10−6. We evaluate this defense
on Census19, since it is the only tabular dataset with non-
trivial inference leakage. We observe a drop in distinguishing
accuracies, but inference risk stays high for ratios further away
from α0 = 0.5 (Figure 4).

We hypothesize that this drop in effectiveness may not be
because of the differential privacy noise itself, though, but could
be because either the model does not learn the distribution well
enough (and hence does not reveal it), or it produces arbitrary
differences that cause a mismatch between the victim’s models
trained with using DP-SGD and the adversary’s shadow models
trained without privacy noise. Inspection of task accuracy
for the differential-privacy models suggests lower learning
effectiveness as one potential factor (Table VIII). To test
whether the decrease in prediction accuracy is mainly due
to arbitrary differences in the models, we evaluate results for
the setting where the adversary also trains its models using
DP-SGD with the same privacy loss budget. Compared to
an adversary that does not use DP, there is a clear increase
in inference risk—mean distinguishing accuracy increases to
86.4% (nleaked=2.9) for ε = 1.0, and 91.5% (nleaked=4.8) for
ε = 0.12 (compared to 82.5%, i.e. nleaked=4.2 without any DP).

Assuming adversary’s knowledge of the use of differentially-
private training and the specific privacy loss budget is not a
far-fetched assumption. Organizations that release differentially
private models often document their exact levels of privacy
budget [2], [33]. An adversary in such scenarios can thus train
its models with the same privacy parameters.
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Fig. 5: Distinguishing accuracy for different for Census19
(Sex), for varying levels of label poisoning. Inference risk
drops considerably with increasing levels of label poisoning,
but is also followed with non-trivial drops in task accuracies.

Label Poisoning. Ganju et al. [9] proposed to mitigate
distribution inference by adding noise to the training data via
label poisoning. The underlying idea is to perturb the training
data in a way that will alter the model parameters and make
the adversary’s task harder. Although changing data labels is
prone to detrimentally harming the model’s task performance,
a model trainer may be able to find an acceptable trade-off
between accuracy and inference risk. For a given noise ratio
r, the defense comprises randomly flipping task labels for
r fraction of the training data. We evaluate this defense for
CelebA (Male) and RSNA Bone Age (Age) with a label noise
ratio of 0.2, and Census19 (Gender) for label noise ratios 0.2
and 0.4. As expected, this defense harms task performance
(Table VIII), reducing task accuracy: by ∼ 1− 2% for r = 0.2
for all three datasets, and ∼ 3% for r = 0.4 off Census19.
Average inference risk drops for Census19, but remains is still
quite high for ratios like α1 < 0.2 and α1 > 0.8, as shown in
Figure 5. It may be possible to find a desirable tradeoff for a
simple task like Census19, but this approach is not effective for
more complex tasks. For instance, using a label noise ratio of
0.4 in CelebA completely destroys task performance, reducing
the classifier to only slightly better than random guessing.

Adversarial Training. Adversarial training [23] involves using
a training loss function that encourages the model to learn
features that are robust to perturbations in the input, and
produces models that are less prone to overfitting dataset-
specific patterns [14]. This can be especially useful when
the data includes properties that are not correlated with the
task, and a model should not capture signals related to the
irrelevant property. A model trained with adversarial robustness
objective, using this reasoning, should be less susceptible
to distribution inference. To test this hypothesis and explore
the impact of training for robustness. We train adversarially-
robust models for varying L∞ norms for the Gender and Age
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Fig. 6: Distinguishing accuracy for different using KL, for
varying levels of adversarial robustness ε (/255) in L∞
norm, for CelebA (Sex). Inference risk lowers with increasing
robustness.

Dataset/Task Adversarial Training (ε)
0/255 4/255 8/255 16/255

CelebA (Sex) 85.3 (3.2) 86.8 (5.3) 88.3 (5.2) 58.9 (0.2)
CelebA (Age) 86.3 (2.5) 90.0 (5.5) 88.9 (6.4) 83.6 (2.0)

TABLE VI: Impact of adversarial training. Values are mean
distinguishing accuracies (%) (with mean nleaked; as computed
in Table I) for KL on models trained with adversarial robustness,
with varying norms ε (/255) of perturbation budget (L∞ norm).

properties on CelebA, since the other datasets are either tabular
or do not contain sufficient samples for adversarial training
with acceptable performance. Figure 6 shows distinguishing
accuracies for varying settings for the perturbation strength
used in adversarial training. Training for adversarial robustness,
as documented in the literature, leads to drops in task accuracy.

We observe very interesting trends with respect to inference
risk. Risk increases with increasing perturbation strength (ε)
until 8/255, and then drops to near-zero (Figure 6).

Since adversarial training helps models remove focus from
spurious correlations, it is naturally aligned with causal infer-
ence [46]. This then leads to these models using signals relevant
to the property being inferred (like Age or Sex) even more,
since it is related to the task. However, as this perturbation
norm increases, task accuracy drops accordingly, thus leading
to lower inference risk since the model itself performs poorly at
learning causal connections, like the one between the property
being inferred and the given task. One notable exception here
is ε = 8/255 for CelebA (Age), where inference risk seems
to slightly increase. One possible explanation is the stronger
age (property) and sex (task) relationship in this case, leading
to the causal relationship-accuracy tradeoff leaning in favor of
the former, in terms of inference risk.
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Fig. 7: Mean distinguishing accuracy (as computed in Table I)
of the KL Divergence Attack on CelebA (Sex), for varying
number of training epochs for victim models. Shaded regions
correspond to error bars. Distribution inference risk increases
as the model trains, and then starts to decrease as the model
starts to overfit.

B. Generalization

The defenses discussed in Section V-A have one thing
in common: they nearly always lead to non-trivial drops in
task performance. This is not only unacceptable for most
deployments, but raises the question of whether the defenses
are doing anything useful or just reducing distribution inference
by producing models that learn the underlying distribution less
well. Concretely, we observe a positive correlation between
model task accuracy and mean nleaked values (Pearson’s
correlation coefficient > 0.55). A model with poor task
performance possibly fails to learn useful signals from the
training distribution, and is thus cannot leak properties it has
not learned; while good performance means a model has learned
the distribution well and is prone to more leakage.

To investigate these correlations, we inspect trends between
inference risk and generalization across training epochs. For
this experiment, we train the models longer than the other
experiments (which were optimally selected for best general-
ization using validation data), allowing us to better study trends
between overfitting and inference risk. We observe interesting
trends in inference risk with model training. In most cases,
inference risk is high after even one epoch of model training
(Figure 7). This is especially surprising because the model
takes a few epochs to get good performance on the task itself,
but shows that the model is learning and exposing aspects of
the distribution even early in its training.

These trends clearly suggest that model under-training is not
a feasible defense. Training beyond minimum generalization
gap does lead to significantly reduced distribution inference risk.
However, this region of the training corresponds to overfitting,
which is known to be positively correlated with increased risk
to membership inference [42]. Thus, a model trainer that is
willing to overfit its models to avoid distribution inference

adversaries would risk making the model more vulnerable to
membership inference.

C. Re-Sampling Data

If the victim is aware of the property that an adversary
might target, or only has a few known properties of the
distribution that it wants to protect, the easiest mitigation
is to just modify the training distribution (or the sampling
mechanism) such that the property is no longer present for
the training dataset. Knowing the particular property to hide
is a plausible assumption that is often assumed in work
on distribution inference defenses. For instance, Chen and
Ohrimenko [7] propose a theoretically-grounded defense that
builds upon the distributional privacy framework [17] and
modifies feature values to provide privacy guarantees against
distribution inference adversaries.

Zhou et al. [48] propose over-sampling to reduce inference
risk, but do so by adding new samples to their training data.
Although this defense eliminates distribution risk (at the cost of
model performance), the availability of new data is not always
possible. Model trainers typically use all available data.

We explore two variations of re-sampling defenses: over-
sampling and under-sampling. In both cases, the model trainer
re-samples data from its available datasets such that the
resulting dataset is indistinguishable from a dataset sampled
from a different distribution. For over-sampling we experiment
with two flavors: using simple replacement and over-sampling
based on inserting augmented data. These defenses rely on the
key assumption that the model trainer knows the property they
want to hide, and that there are a only few such properties so
re-sampling to hide the desired properties will not unduly hard
the model’s task performance. When this assumption holds,
resampling defenses can virtually eliminate inference risk. We
evaluate this defense on configurations with low (CelebA–Sex),
medium (Census19–Sex), and high (RSNA Bone Age–Age)
inference risk to measure the impact of this defense.

Under-Sampling. The model trainer can simply under-sample
its data such that the resulting dataset has a ratio corresponding
to some other distribution. For example, a model trainer, with
a dataset containing 70% females who wants to hide the ratio
of females in the dataset from an inference adversary can
simply under-sample examples with the ‘female’ attribute such
that its data is balanced. This defense should prevent any
disclosure about the pre-sampled distribution since there should
be no difference between the cases where the training data
was balanced to begin with and when it was adjusted with this
defense, so long as the distribution is not distorted by the under-
sampling. In our experiments, we find that under-sampling
lowers inference risk significantly, but does not completely
eliminate it—mean distinguishing accuracy drops below 54%
(nleaked<0.1) for CelebA with significantly lower leakage for
Census19 (< 57%, i.e. nleaked<0.1) and RSNA Bone Age
(∼ 60%, i.e. nleaked=0.3) (Table VIII).

Over-Sampling. A model trainer not willing to sacrifice
available training data by under-sampling may prefer to over-
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sample. The most basic variant over-samples the data before
training begins, duplicating training records, and then trains
its models like usual. Although this defense leads to the
complete utilization of data, the presence of repeated data
can be revealing and may reveal the property the adversary
wants to hide to an adversary aware of the defense. It could, for
instance, lead to a change in group-wise accuracies, which an
adversary can learn to identify and still succeed at distribution
inference.

Augmentation Based Over-Sampling. The ideal scenario for
the defense would comprise of injecting fresh labeled data
to adjust the desired property, as was assumed by Zhou et
al. [48]. However, labeled data is scarce and may be expensive
to acquire, and using techniques like pseudo-labeling can still
leak information. In such scenarios, the model trainer can use
augmentation techniques to synthetically generate additional
samples. This avoids repeating samples, and may have the
added benefit of potentially increasing the model’s robustness to
augmentations. But, the use of augmented data in an imbalanced
way may still reveal information to a distribution inference
adversary. For this defense, we focus only on the CelebA
dataset, since designing augmentation for tabular datasets is
much harder, and augmentations for RSNA Bone Age are
limited. Task accuracy remains comparable and inference
risk drops significantly (slightly higher than other forms of
sampling), but is not completely eliminated and still higher
than standard under and over-sampling.

Impact on Fairness. This form of re-sampling is common in
research related to improving fairness in machine learning [25],
commonly known as “unbiasing”. However, re-sampling data
can impact different sub-groups and populations of the distri-
butions unequally, creating issues related to fairness in model
predictions [20]. To investigate such potential impacts, we
measure the impact of under-sampling and over-sampling-based
mitigation strategies on fairness. We compare the precision
and recall for another group and its possible values, for both
undersampling and oversampling. Re-sampling based defenses
have negligible impact on fairness in the case of CelebA, but
result in disparate impacts of both under/over-sampling on
the two groups. for Census19 (Table VII). For instance, over-
sampling from a ratio α < 0.5 lowers both precision and recall
for whites, but increases recall and decreases precision more
greatly for not-whites. These changes are even more severe for
RSNA Bone Age, where changes in precision can be as high
as 20% in opposite directions for different groups.

Adaptive Attacks. An adversary with knowledge of the
under-sampling approach may be able to derive the original
distribution by estimating the size of the training data to learn
the sampling ratio. The strongest adversary would be one that
starts with knowledge of specific records in the original training
dataset, and can use membership inference attacks to estimate
how many of those records are included in the under-sampled
dataset. We evaluate such attacks in Appendix B, and find they
are unlikely to be effective without dramatic improvements to

Re-Sampling α
Precision Recall

not-white white not-white white

Under-Sampling < 0.5 ↓ 2% ∼ ↑ 1% ↓ 1%
> 0.5 ↓ 1% ∼ ↓ 1% ∼

Over-Sampling < 0.5 ↓ 2% ↓ 1% ↑ 1% ↓ 1%
> 0.5 ↓ 1% ↓ 1% ↓ 1% ↓ 1%

TABLE VII: Relative change (%) in precision and recall metrics
for white and not-white (race attribute), for Census19 (gender)
for under-sampling and over-sampling. We consider cases
where data for males (α < 0.5) or females (α > 0.5) is
under-sampled for equalization.

membership inference attacks.

VI. LIMITATIONS AND CONCLUSIONS

Distribution inference attacks are known to reveal sensitive
properties about underlying training distributions, but their
effectiveness has been established only in very controlled
settings so far. Our work advances understanding of this risk
in more realistic settings, but is still far from understanding all
of the issues that might impact a real deployment and attack.

Our proposed black-box attacks are highly efficient and
maintain their effectiveness even when access to exact pre-
diction probabilities is unavailable. Our experiments find that
differences in model architectures harm inference accuracies,
but the impact is not very severe as long as models with
similar complexity are used. Even the lack of common feature
extractors, a common setting in many evaluations in the
literature, does not completely eliminate inference risk.

Like nearly all inference privacy work, we assume an
adversary with access to a dataset that matches the underlying
distribution (in this case, before the transformation to the actual
training distribution as modeled by G0 and G1). This is a strong
assumption, which may be realistic in some cases but is often
unlikely. All our attacks (and nearly all previous ones) require
representative data for training models locally. Exploring
adversaries with limited data access to these distributions and
how it impacts inference risk is left as part of future work.

Configurations beyond single-party learning have seen grow-
ing interest lately. Active adversaries with data poisoning
capabilities have been demonstrated to be highly effective
in both single-party [24] and multi-party [37] settings. Our
proposed attacks are highly potent for many configurations,
but the exact impact of different training setups like federated
learning remains largely unexplored.

The general approach to achieve security and privacy for
machine-learning models is to add noise, but our evaluations
suggest this approach is not a principled or effective defense
against distribution inference. The main reductions in inference
accuracy that result from these defenses seem to be due to
the way they disrupt the model from learning the distribution
well, so observed reductions in inference risk are related to
drops in task performance. Our experiments with different
model architectures and differentially private training support
this—inference risk increases significantly when the victim
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Defense Distinguishing Accuracy (nleaked)
Task Accuracy (%) α1 = 0.2 Mean

Census19 (Sex)

No Defense 77.9± 0.9 89.8 (2.1) 82.5±17.9 (4.2±5.3)
DP (ε = 1.0) 77.0± 1.0 65.4 (0.2) 69.3±14.6 (0.6±0.7)
DP (ε = 0.12) 75.6± 1.0 72.4 (0.5) 73.4±14.8 (0.8±0.9)
Label Poisoning (r = 0.2) 77.3± 1.0 78.4 (0.8) 78.9±17.4 (3.5±5.4)
Label Poisoning (r = 0.4) 74.9± 1.2 66.4 (0.2) 70.0±17.9 (1.9±4.2)
Under-sampling 77.5± 0.5 50.0 (<0.1) 56.7±6.8 (0.1±0.1)
Over-sampling 77.3± 0.6 50.0 (<0.1) 51.9±2.5 (<0.1±0)

RSNA Bone Age (Age)

No Defense 65.8± 2.0 99.9 (20.1) 99.8±0.4 (22.6±4.2)
Label Poisoning (r = 0.2) 64.3± 2.3 99.9 (20.1) 95.7±6.2 (12.1±7.1)
Under-sampling 65.4± 3.2 73.4 (0.5) 59.1±13.3 (0.3±0.5)
Over-sampling 64.6± 2.8 70.4 (0.4) 60.2±11.2(0.3±0.4)

CelebA (Sex)

No Defense 91.6± 0.8 89.6 (2.1) 85.3±15.8 (3.2±2.7)
Label Poisoning (r = 0.2) 90.0± 5.0 82.0 (1.1) 78.3±15.6 (1.2±1.0)
Adv. Training (ε = 4/255) 90.4± 0.8 93.8 (3.1) 86.8±16.4 (5.3±5.2)
Adv. Training (ε = 8/255) 88.5± 1.2 95.4 (3.7) 88.3±15.0 (5.2±4.9)
Adv. Training (ε = 16/255) 75.7± 11.9 76.6 (0.7) 58.9±13.1 (0.2±0.4)
Under-sampling 90.8± 1.1 50.0 (<0.1) 53.7±6.1 (<0.1±0.1)
Over-sampling 90.6± 0.8 50.0 (<0.1) 53.8±4.1 (<0.1±0.1)
Augmentation-based over-sampling 91.7± 1.6 74.8 (0.6) 61.0±14.5 (0.3±0.5)

TABLE VIII: Effectiveness of considered defenses. Each distinguishing accuracy (and corresponding nleaked) reported is the
observed leakage of KL. The first results are for predicting between α0 = 0.5 and α1 = 0.2; the last column reports mean
distinguishing accuracy (with mean nleaked in parentheses) as described in Table I. Mean distinguishing accuracies (and nleaked
numbers) are reported with ± standard deviation, over different α1 values. Most noise-based defenses harm model task
accuracies, and the only defenses that diminish leakage without harming task accuracy are based on data re-sampling.

and adversary use the same learning algorithms or model
architectures. The only reliably effective defense from our
experiments is to re-sample data, which depends on the
assumption that the model training is aware of the adversary’s
inference goals (or at least of the properties that should be
protected). These re-sampling defenses too are not perfect,
however, as they seem to negatively impact fairness of groups
related to the property attribute.

There is a need for more theoretical connections between
distribution inference risk and general useful notions of machine
learning, like model complexity and fairness. Our work suggests
such connections do exist, and we hope they will be better
understood as both empirical and theoretical understanding of
inference privacy advances.

Availability
Open source code and instructions for reproducing our experi-
ments is available at:

https://github.com/iamgroot42/dissecting distribution inference.
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APPENDIX

A. Experimental Details

For each dataset, we create non-overlapping splits of data for the victim and adversary, where the victim has at least double
the amount of adversary’s data for ogbn-arxiv and RSNA Bone Age, triple for CelebAand Texas-100X, and 4× for Census19.
For each dataset, we simulate D using the dataset itself. Simulation of distributions with particular α values is is achieved
by sampling data with attributes 0 and 1 such that their ratios result in some desired α. For properties not based on binary
attributes like ogbn-arxiv, this is achieved by pruning nodes iteratively from the graph (while re-computing neighbor counts
along the way) to achieve a desired mean node-degree. We include the datasets and victim/adversary splits used in previous
experiments, and include results on two new datasets. For all of the experiments, we follow the processing pipeline described
in Suri and Evans [31] to obtain non-overlapping splits. Essentially, both parties sub-sample from their data splits (to achieve
specific α values) with different random seeds, and train models on the sampled data.

We perform each experiment five times and report mean values with standard deviation in all of our experiments. For each
dataset, we train 250 victim models per distribution. For all black-box attacks, the adversary trains and uses 50 models per
distribution for each trial. For white-box attacks, the adversary trains 800 models per distribution, of which 750 are used for
training and 50 as the validation set. For cases with very large models (like DenseNet trained from scratch for RSNA Bone
Age), we use 100 victim models per distribution.

B. Adaptive Attacks Against Under-Sampling

Assume a more powerful adversary that has access to m training records each corresponding to attribute 0 (D−) and 1 (D+),
and the original dataset has size n. In this scenario, the adversary is unaware of the original distribution of these attributes
(α). Consider the scenario where the victim utilizes under-sampling on its original distribution as a defense to protect α, and
re-samples such that both attributes are equally likely.

For our analysis, we assume a near-perfect membership inference adversary, with a false negative rate β. In such a setup, the
adversary can check which of its data (the one with attributes zero, and attributes one) still all tests as members. If all zeros
still remain members, then data from (D+) must have been under-sampled, and thus the original α must be > 0.5. Assuming
that under-sampling is performed by pruning points uniformly at random, the density of members in the resulting data must
remain the same. Thus,

m

α · n
=

m
′

(1− α) · n
(5)

m− = β ·m (6)

m+ = m
′
· β (7)

where m+ is the number of datapoints (out of the known m) with attribute 1 that are inferred as members by the adversary,
and m− for attribute 0. α can thus be estimated as m−/(m− +m+). By symmetry, the case where original α < 0.5 yields a
similar formula. We test the risk of this adversary while varying the number of data points m, for different values of α. The
adversary in this case thus directly predicts α, and mean square error (MSE) values are computed accordingly for the regression
case. We use the R attack from Ye et.al. [41], and use the authors‘ official implementation, with the FPR set to 0.05.

Similar to the case of binary distinguishing, we use nleaked to measure the adversary’s success. nleaked for the case of regression
is defined in Theorem 4.3 of Suri and Evans [31]:

α(1− α)
ω

(8)

, for some MSE error ω while trying to regress over a model corresponding to some training distribution α.
MSE values for varying number of members (m) with corresponding nleaked values are reported in Table IX. For the most

realistic case, with knowledge of upto 100 members (m) per attribute, the inference risk remains very low, with MSE values
as high as ∼ 5 (nleaked< 0.1). This risk is expected to increase with increase in membership knowledge, as in the extreme

Dataset/Task Number of known members (m)
10 100 500

Census19 (Sex) 9.043 (<0.1) 4.588 (0.2) 4.078 (0.5)
RSNA Bone Age (Age) 1.969 (0.1) 0.486 (0.8) 0.372 (2.0)
CelebA (Sex) 4.785 (<0.1) 1.466 (0.2) 1.202 (0.4)

TABLE IX: MSE values (with mean nleaked in parantheses) for direct regression over α for an adversary that utilizes membership
inference to infer α for models trained with under-sampling based defense.
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case, the adversary would have perfect knowledge of the entire training dataset. One notable exception is RSNA Bone Age,
where the MSE drops to ∼ 0.4 (nleaked=2) for m = 500 This is not surprising, as m = 500 for the case of RSNA Bone Age
corresponds to ∼ 15% of the victim’s training dataset, which is unrealistically high.

Dataset/Task KL MI-Based Same Setup + KL
Census19 (Sex) 56.7 (0.1) 57.1 (<0.1) 80.4 (1.8)
RSNA Bone Age (Age) 59.1 (0.3) 65.9 (0.3) 50.0 (<0.1)
CelebA (Male) 53.7 (<0.1) 50.0 (<0.1) 64.7 (0.3)

TABLE X: Mean distinguishing accuracies (with mean nleaked in parentheses) for the task of binary distinguishing between
α0 = 0.5 and α1, while varying α1, for the standard adversary (KL), an adversary that utilizes membership inference to infer
α for models trained with under-sampling based defense (MI-Based), and a simpler adversary that just copies the victim’s
re-sampling setup (Same Setup + KL).

For the task of binary distinguishing between α0 = 0.5 and some other α1, it suffices to see whether the predicted ratio is
sufficiently different from 0.5. We do so by checking the predicted α, and predict G1(D) if it differs from 0.5 by more than
0.03, and G0(D) otherwise. As a baseline, we also consider a simpler adaptive adversary that uses the same re-sampling setup
as the victim, re-sampling data for its shadow models. Such an adversary can potentially work, since the KL Divergence Attack
compares distributions of predictions, which might be sufficiently different between re-sampled and non-sampled (α = 0.5)
models.

Mean distinguishing accuracies and corresponding nleaked values are reported in Table X. Cases where the adversary uses
the same setup as the victim (for re-sampling) leads to significant inference leakage in most cases, with mean distinguishing
accuracies as high as 80% (nleaked=1.8) for Census19. Similarly, the MI-based distribution inference leakage is particularly high
for RSNA Bone Age. This is in line with previous observations with the MSE values (Table IX), since the number of members
corresponds to a significant portion of the victim’s training data.
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