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A B S T R A C T   

Metabolic, hormonal, autonomic and physiological rhythms may have a significant impact on cerebral hemo-
dynamics and intrinsic brain synchronization measured with fMRI (the resting-state connectome). The impact of 
their characteristic time scales (hourly, circadian, seasonal), and consequently scan timing effects, on brain to-
pology in inherently heterogeneous developing connectomes remains elusive. In a cohort of 4102 early ado-
lescents with resting-state fMRI (median age = 120.0 months; 53.1 % females) from the Adolescent Brain 
Cognitive Development Study, this study investigated associations between scan time-of-day, time-of-week 
(school day vs weekend) and time-of-year (school year vs summer vacation) and topological properties of resting- 
state connectomes at multiple spatial scales. On average, participants were scanned around 2 pm, primarily 
during school days (60.9 %), and during the school year (74.6 %). Scan time-of-day was negatively correlated 
with multiple whole-brain, network-specific and regional topological properties (with the exception of a positive 
correlation with modularity), primarily of visual, dorsal attention, salience, frontoparietal control networks, and 
the basal ganglia. Being scanned during the weekend (vs a school day) was correlated with topological differ-
ences in the hippocampus and temporoparietal networks. Being scanned during the summer vacation (vs the 
school year) was consistently positively associated with multiple topological properties of bilateral visual, and to 
a lesser extent somatomotor, dorsal attention and temporoparietal networks. Time parameter interactions sug-
gested that being scanned during the weekend and summer vacation enhanced the positive effects of being 
scanned in the morning. Time-of-day effects were overall small but spatially extensive, and time-of-week and 
time-of-year effects varied from small to large (Cohen’s f ≤ 0.1, Cohen’s d<0.82, p < 0.05). Together, these 
parameters were also positively correlated with temporal fMRI signal variability but only in the left hemisphere. 
Finally, confounding effects of scan time parameters on relationships between connectome properties and 
cognitive task performance were assessed using the ABCD neurocognitive battery. Although most relationships 
were unaffected by scan time parameters, their combined inclusion eliminated associations between properties of 
visual and somatomotor networks and performance in the Matrix Reasoning and Pattern Comparison Processing 
Speed tasks. Thus, scan time of day, week and year may impact measurements of adolescent brain’s functional 
circuits, and should be accounted for in studies on their associations with cognitive performance, in order to 
reduce the probability of incorrect inference.   

1. Introduction 

Over the last three decades since its discovery (Kwong, 1992, 
Ogawa, 1992), functional magnetic resonance imaging (fMRI) has 

become an indispensable tool in Neuroscience research, and has led to 
unprecedented discoveries on the brain’s functional organization, 
fundamental mechanisms that facilitate information processing, and 
their relationships with cognition across domains (Glover, 2011; 
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Bandetti, 2012; Price, 2012; Huettel, 2012). To date, almost 15,000 
publications listed in PubMed are based on this modality. Beyond 
task-based research to elucidate the brain correlates of individual 
cognitive processes and system-specific functional networks, a large 
number of fMRI studies have also investigated the brain at rest, and large 
networks, including the Default-Mode Network (DMN), that are active 
in this state and play a ubiquitous role in cognitive function (Biswal 
et al., 1995; Raichle et al., 2001; Greicius et al., 2003; Fox et al., 2005; 
Fair et al., 2008; Van Den Heuvel et al., 2010; Calhoun et al., 2012; 
Smith et al., 2013, among many others). fMRI-based research continues 
to rapidly grow, not only as a function of technological advances in 
neuroimaging, but also in applications (Matthews et al., 2006; Poldrack, 
2012; Calhoun et al 2014; Preti et al., 2017). fMRI can play an important 
role in elucidating brain correlates of neurological, neuro-
developmental, and neuropsychiatric disorders (Connelly, 1995; Rubia, 
1999; Liegeois, 2004; Greicius et al., 2004; Vaidya et al., 2005; Gotman 
et al., 2006; Jezzard & Buxton, 2006; Stam et al., 2007; Bassett et al., 
2008; Lynall et al., 2010; Chen et al., 2011; Dichter, 2012; Cortese et al., 
2012; Itahashi, 2014; Hernandez et al., 2015; Walter et al., 2009, 
Luijten et al al, 2017 among many others). There is also growing evi-
dence of its potential for facilitating drug discovery (Borsook, 2006; 
Wise & Tracey, 2006; Carmichael et al., 2018; Nathan & Bakker, 2021). 
Thus, given the wide utility of fMRI in basic and clinical research, and 
current replication crisis in the Neurosciences, it is critical to system-
atically investigate sources of intra- and inter-individual fMRI vari-
ability that may significantly contribute to differences between brains or 
snapshots of activity within the same brain, e.g., in fMRI resting-state or 
task-related runs, that are unrelated to the process or system of interest. 

1.1. Sources of fMRI variability and confounding factors 

Significant intra- and inter-individual fMRI signal variability has 
been reported in adults and children, and has been associated with 
highly variable estimates of functional and effective brain connectivity 
and other topological properties (Van Horn et al., 2008; Mueller et al., 
2012; Baldassarre et al., 2012; Dubois & Adolphs, 2016; Liao et al., 
2017; Herting et al., 2018; Foulkes & Blakemore 2018; Easson & 
McIntosh, 2019; Xu et al., 2019). This variability does not reflect just 
random BOLD fluctuations (noise), but has been attributed to the 
inherent heterogeneity of the brain’s resting state and/or cognitive re-
sponses (Garrett et al., 2010; Grady & Garrett, 2014; Geerligs et al., 
2015; Seghier & Price, 2018). fMRI signal variability often makes it 
difficult to reliably infer hemodynamic correlates of cognitive perfor-
mance and/or topological properties of task- or resting-state networks 
from individual runs or sessions (McGonigle et al., 2000; Smith et al., 
2005; Raemaekers et al., 2012). Although reliable connectivity mea-
sures have been reported (Aron et al., 2006; Chen et al., 2015; Abrol 
et al., 2017; Herting, 2018), statistical variability as a function of 
experimental conditions even in the resting-state (e.g., eyes open vs eyes 
closed) has also been reported (Patriat et al., 2013). In incompletely 
maturated brains, and consequently noisy circuits, intra- and 
inter-individual variability of fMRI signal and functional connectome 
estimates is likely to be higher that in adults, as a result of the in-
dividuality of neural development, and genetic, physiological, envi-
ronmental, and unique experiential factors that contribute to it 
(McIntosh et al., 2010; Gao et al., 2014; Xu et al., 2019). 

In order to separate sources of fMRI signal variability that are rele-
vant to the scientific question of interest from unrelated contributions 
(Airan et al., 2016), analyses are often controlled for multiple factors, 
beyond demographics and/or clinical variables. These may include sleep 
duration, BMI, caffeine consumption, nicotine, eye fixation during the 
scan, respiration-related fluctuations, vascular effects, movement in the 
scanner, and scan length (Birn et al., 2006; Rack-Gomer & Liu, 2012; 
Birn et al., 2013; Murphy et al., 2013; Patriat et al., 2013; Duncan & 
Northoff, 2013; Arial et al., 2016; Curtis et al., 2016; Tsvetanov et al., 
2021; Brooks et al., 2021; Sjuls et al., 2022; Chen et al., 2023). However, 

other potentially important confounders, such as scan acquisition 
time-of-day, chronotype (day-night phase preference) and/or seasonal 
effects are not usually controlled for in fMRI analyses. While information 
on chronotype and related factors may not be generally available, unless 
specifically measured, the date and time of scan are always recorded. 

The circadian rhythm, sleep-wake cycle, ambient light, and physio-
logical states, (such as alertness, arousal, sleepiness and fatigue) impact 
fMRI signals, estimates of functional and effective networks, and 
cognitive performance across the lifespan. Prior work has identified 
time-of-day fluctuations in multiple cognitive processes, including 
attention, executive function, inhibitory control and memory and their 
neural substrates (Anderson & Revelle, 1994; May & Hasher, 1998; 
Valdez et al., 2005; May et al., 2005; Schmidt et al., 2007; Gorfine & 
Zisapel, 2009; Marek et al., 2010; Width et al., 2011; Duyn, 2011; Park 
et al., 2012; Gaggioni et al., 2014; Anderson et al., 2014; Jiang et al., 
2016; Facer-Childs et al., 2019; Barner et al., 2019; Smith et al., 2021; 
Farahani et al., 2021, 2022; Gaggero & Tommasi, 2023). Studies have 
also identified time-of-day and diurnal effects on functional connectivity 
across the brain and in individual networks, particularly the DM and 
sensorimotor networks, which is highest in the morning and progres-
sively decreases throughout the day (Blautzik et al., 2013; Hodkinson 
et al., 2014; Orban et al., 2020). A recent study examined both func-
tional connectivity and other topological properties of brain networks 
(Farahani et al., 2022). It identified increased small-worldness, assor-
tativity as a function of time of day, higher integration of functional 
networks in the evening (compared to morning), regional changes in 
areas of the DMN, frontoparietal, attention and somatomotor networks, 
and high connectedness in areas of ventral attention and visual networks 
in the morning, and those of the somatomotor network in the evening. 
Another recent large-scale study based on fMRI data from the Human 
Connectome Project found significant time-of-day effects on the brain’s 
hemodynamic response function but not on effective connectivity 
(Vaisvilaite et al., 2022), partly as a result of metabolic variations 
throughout the day (Shannon et al., 2013). 

Beyond metabolic variations, other related factors may contribute to 
time-of-day effects on fMRI signals. These include sleep inertia, sleepi-
ness and fatigue. Sleep inertia, the temporary physiological state asso-
ciated with decreased alertness, cognitive performance and 
sensorimotor function upon awakening, has also been associated with 
changes in functional connectivity. In individuals who do not obtain 
sufficient sleep, it can linger for up to two hours after awakening 
(Jewett et al., 1999), and may significantly affect fMRI signals in those 
scanned within this period. Prior studies have reported brain-wide ef-
fects of sleep inertia, particularly loss of functional segregation between 
the DMN and task-positive dorsal and ventral attention, and sensori-
motor networks (Vallat et al., 2019), and decreased functional connec-
tivity in the DMN, dorsal attention, and frontoparietal networks (Chen 
et al., 2020). Independently of sleep inertia, sleepiness during the scan 
may also impact connectivity, though the direction of association may 
vary between regions. Prior studies have reported positive associations 
between sleepiness and functional connectivity the DMN, as well as vi-
sual and sensorimotor networks (Stoffers et al., 2015), but a negative 
association with thalamocortical resting-state functional connectivity 
(Killgore et al., 2015). Fatigue, which may also be correlated with the 
time of scan acquisition, can also impact fMRI signals. Prior studies have 
shown topological changes as a function of task-related (and thus 
short-term) fatigue (Sun et al., 2014), and the existence of a ‘fatigue 
network’, which involves the striatum, ventromedial and dorsolateral 
prefrontal cortices, and the anterior insula (Wylie et al., 2020). Cogni-
tive fatigue was correlated with decreased connectivity in elements of 
this network, but increased connectivity between them and other pos-
terior areas. 

1.2. Limitations of prior research on fMRI timing and related effects 

Most prior studies examining the impact of scan acquisition timing 
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on fMRI signal and connectivity variability (and resulting inter- 
individual differences), have focused on adults. Although brain devel-
opment is inherently highly heterogeneous, few if any studies have 
focused on scan timing effects on youth connectomes and fMRI signals. 
Factors such as sleepiness, sleep inertia and fatigue, which partly 
correlate with the acquisition time-of-day, may have a significant impact 
on fMRI signals in children. Other timing parameters such as scanning 
during a school day vs weekend and/or school year vs summer vacation 
may also contribute to intra- and inter-individual variability of fMRI 
signals and topological properties, as the result of sleep duration or 
circadian phase variability. None of these time effects have been sys-
tematically investigated in children. Given that they may confound and 
contribute to the heterogeneity of developing connectomes, it is 
important to systematically investigate them and, if significant, control 
for them in analyses. This is particularly important in neuroimaging 
studies focusing on adolescence, a period of heightened neural matu-
ration and profound metabolic, physiological, hormonal and circadian 
changes (Crowley et al., 2007). 

1.3. Study goals 

Leveraging the historically large and neurodevelopmentally hetero-
geneous cohort of the Adolescent Brain Cognitive Development (ABCD) 
study (Casey et al., 2018), this first-of-its kind (in size and focus on 
children) study systematically investigated potential acquisition timing 
correlates of resting-state fMRI signals and estimates of topological 
properties in early adolescents. In a cohort of 4102 youth with neuro-
imaging and neurocognitive testing at the ABCD baseline assessment (i. 
e., in pre/early adolescence), this study examined correlations between 
scan time-of-day and topological parameters, as well as fMRI signal 
fluctuations, and also compared these parameters in participants scan-
ned during a school day vs the weekend, and those scanned during the 
school year vs summer vacation. It also investigated the interaction of 
timing parameters and their coupled associations with topological and 
signal parameters . The study hypothesized that time of scanning has a 
significant impact on signal and connectome properties, as a result of 
underlying metabolic and cardiovascular variations during the day, as 
well as physiological changes associated with sleep patterns, alertness 
and/or fatigue. It also hypothesized that these properties vary signifi-
cantly between participants scanned during the weekend vs those 
scanned during the week, as a result of exogenous and endogenous 
factors, including social jet lag (which was, however, not assessed at the 
ABCD baseline), and similarly between participants scanned during the 
school year vs during the summer vacation, partly as a result of seasonal 
differences in human brain activity (Meyer et al., 2016), but also other 
complex and potentially interrelated factors, such as light exposure and 
sleep patterns. 

The impact of fMRI acquisition time variables and their interactions 
on topological properties was examined across spatial scales of organi-
zation, from individual regions, to individual large-scale networks and 
the whole connectome. Measures of spontaneous signal fluctuation 
across each fMRI run were also analyzed. Finally, to directly assess the 
confounding effects of scan timing on associations between topological 
connectome properties and cognitive function, statistical analyses 
examined these associations using the ABCD neurocognitive battery 
with and without adjustments for scan time variables, with the ultimate 
goal to elucidate their effects on inference. 

2. Methods 

2.1. Participants 

This study involves secondary analyses of publicly shared, 
completely anonymized data. The work described has been carried out 
in accordance with The Code of Ethics of the World Medical Association 
(Declaration of Helsinki) for studies involving human subjects. In 

addition, the ABCD is a multisite study that relies primarily on a central 
reseach protocol, reviewed and approved by the Institutional Review 
Board (IRB) at the University of California, San Diego. A few sites rely on 
the same protocol but have received approval from their local IRB 
(Auchter et al., 2018). In addition, the ABCD Coordinating Center has 
established a Bioethics and Medical Oversight advisory group for the 
study, to address ethical concerns associated with research findings 
(Clark et al., 2018). The present study was approved by the Institutional 
Review Board at Boston Children’s Hospital. Resting-state (rs) fMRI, 
anthropometric, demographic, physiological, and behavioral data 
(release 4.0) from the baseline ABCD study cohort were analyzed. All 
data are publicly available through the National Institute of Mental 
Health Data Archive (NDA) (2023). 

Participants were excluded based on diagnoses of Attention-Deficit/ 
Hyperactivity Disorder, Autism Spectrum Disorder, and/or bipolar dis-
order, since prior work has reported abnormal functional connectivity in 
individuals with these disorders (Cherkassky et al., 2006; Monk et al., 
2009; Assaf et al., 2010; Müller et al., 2011; Konrad & Eickhoff, 2010; 
Chase & Phillips, 2016). In addition, participants with clinical findings 
in their structural MRI and/or poor quality rs-fMRI data (based on 
quality controls set by the ABCD study and additional quality criteria set 
by our group) were also excluded. A sample of n = 4102 [1925 (46.9 %) 
males, 2177 (53.1 %) females] met all criteria for inclusion. Median 
sample age was 120.0 months (IQR = 13.0). Race and ethnicity distri-
butions [2557 (62.34 %) white, 1480 (36.1 %) from a racial minority 
group, 65 (1.60 %) missing; 933 (22.8 %) Hispanic, 3120 (76.1 %) 
non-Hispanic, 49 (1.20 %) missing] were similar to those of the larger 
ABCD cohort. Sample demographic information is provided in Table 1. 

2.2. Temporal measures of fMRI acquisition 

Three measures associated with fMRI acquisition were investigated, 
and were extracted from the MRI QC Raw report: (a) Time-of-day (in 
hours), rounded to the nearest hour in which scanning began (variable 
in the range 8–20 in the dataset); (b) Time-of-week, a dichotomous var-
iable (1 = school day, 2 = weekend); (c) Time-of-year, also a dichoto-
mous variable (1 = school year, 2 = summer vacation). School year was 
assumed to be September 1 - June 15, and summer vacation June 16 - 
August 31, based on an average public school schedule for regions 
within 50 miles from the ABCD sites. The specific city-level public school 
school year schedule in areas where each ABCD study site is located is 
provided in Supplemental Table S1. 

2.3. Additional variables 

All analyses were adjusted for age, sex, family income, BMI, screen 
time and physical activity. In the same cohort, BMI and physical activity 
have been correlated with topological properties of the resting-state 
connectome (Brooks, 2021, 2023). In addition, propensity weights 
provided by the ABCD were used to adjust all analyses for sampling 
differences between the 21 study sites. Analyses also included race and 
ethnicity as dichotomous variables (1 = white, 0 = nonwhite; 1 = His-
panic, 0 = non-Hispanic). The unbalanced distribution of race and 
ethnicity in the ABCD study (predominantly white and non-Hispanic) 
limits more granular comparisons of racial and ethnic groups. BMI 
was calculated by multiplying weight (in lbs) by 703 and dividing by 
height2 (in inches); height and weight data were extracted the ABCD 
Youth Anthropometrics instrument. Physical activity was measured as 
the number of days per week that the child was physically active for at 
least 60 min (this information was extracted from the ABCD Youth Risk 
Behavior Survey Exercise Physical Activity instrument). Screen time was 
calculated as total minutes per week spent on non-school-related ac-
tivities (this information was extracted from the Youth Screen Time 
Survey). 
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2.4. Resting-state fMRI processing and connectivity estimation 

2.4.1. Preprocessing 
Structural MRI (T1w) and rs-fMRI data were acquired with 3.0T 

Siemens (n = 2508, 61.14 %), GE Medical Systems (n = 1118, 27.26 %), 
and Phillips Medical Systems (n = 476, 11.60 %) scanners. Repetition 
time (TR) for fMRI (2.4 mm isotropic) was 0.8 s. Each participant had up 
to four 5-min long scans. All data underwent two levels of preprocessing. 
First, they were initially minimally preprocessed by the dedicated Data 
Analysis, Informatics & Resources Center (DAIRC) of the ABCD study 
(Hagler et al., 2019). Preprocessing included correction for B0 distor-
tion, motion and quality control, based on which some brains were 

excluded from further analysis. Then, data were also processed using the 
Next Generation Neural Data Analysis (NGNDA) platform Next-Gener-
ation Neural Data Analysis (NGNDA) platform (2021). Additional steps 
involved co-registration to structural MRI, normalization to MNI space, 
motion regression, initial frame removal, additional frame removal and 
interpolation to suppress artifacts, stopband filtering in the range 
0.28–0.46 Hz to supress cardiorespiratory and other artifacts, and 
bandpass filtering in the range 0.01–0.25 Hz, which contains physio-
logically relevant BOLD signal energy (Yuen et al., 2019). These steps 
were followed by spatial dimensionality reduction (using the 
Schaefer-1000 cortical atlas (Schaefer et al., 2018), as well as the Mel-
bourne subcortex (Tian et al., 2020) and Diedrichsen (Diedrichsen et al., 
2009) cerebellar atlases) by averaging voxel time series within each 
atlas parcel. Additional signal denoising was then performed at the 
parcel level, using signal decomposition to identify and suppress con-
tributions to the fMRI time series that are unrelated to BOLD activity. To 
account for signal amplitude differences associated with different 
scanners, fMRI signals were normalized by a brain-specific global me-
dian, to ensure that amplitudes were comparable across brains. 

Additional details on fMRI processing using the NGNDA platform are 
described in prior publications using the same platform (Brooks et al., 
2021). fMRI runs with more than 10 % of frames censored for motion 
(based on a displacement threshold of 0.3 mm) were excluded from 
further analysis. At rest, functional network connectivity is overall low, 
except in the DMN. Thus, the best-quality run was selected as the run 
with the lowest median connectivity. The number of frames censored for 
motion in the best-quality fMRI run from each participant was low 
(median percent of frames censored for motion = 1.87 %, IQR = 4.53 
%). To ensure reliability of the findings, the second best-quality fMRI 
run was analyzed from a subset of n = 2991 participants with at least 
two runs of adequate quality for analysis (median percent of frames 
censored for motion = 1.87 %, IQR = 4.27 %). Best- and second 
best-quality runs are hereafter referred to as first and second runs. 

2.4.2. Estimation of resting-state topological properties 
Resting-state connectivity was estimated as the peak cross- 

correlation between each pair of fMRI parcel signals. In previous work 
(Brooks et al., 2021), an information theoretic approach was also used to 
estimate connectivity as mutual information between pairs of signals. 
Statistically similar patterns were obtained with both methods. 
Cohort-wide statistical connectivity thresholds were then calculated and 
the moderate outlier (median + 1.5*IQR) was empirically selected 
among others as the most adequate one (under the assumption that the 
brain at rest is overall weakly coordinated, with the exception of select 
networks, such as the DMN). This threshold was used to obtain binary 
and weighted adjacency matrices (setting values below the threshold to 
zero). Based on the median of nonzero correlation values in these ad-
jacency matrices, another criterion for quality was set to eliminate fMRI 
runs with artifactually high connectivity across brain regions (possibly 
due to residual motion-related effects). 

Topological network properties were calculated at three spatial 
levels, using binary and/or weighted adjacency matrices: the entire 
brain connectome, individual networks, and individual regions 
(network nodes). Analyzed networks included the large-scale resting- 
state networks delineated in Yeo (2011), as well as additional networks 
for individual subcortical structures, including the thalamus, amygdala, 
hippocampus, basal ganglia, and cerebellum. Estimated connectome- 
and network-level topological properties included efficiency, global 
clustering, median connectivity (within each network as well as between 
the network and the rest of the brain), modularity, network robustness 
(based on the natural connectivity measure, which corresponds to the 
average eigenvalue of the binary adjacency matrix; Wu et al., 2009), 
small worldness (estimated only at the connectome level) and topolog-
ical stability (based on the largest eigenvalue of the adjacency matrix 
Restrepo & Hunt, 2007). Together, these properties describe the topo-
logical organization of the connectome (clustering, modularity, small 

Table 1 
Sample demographic information, screen time, physical activity, and sleep 
length. *The ‘other’ racial category included participants from smaller racial 
groups (Alaska Native, American Indian, Native Hawaiian, Guamanian, Samoan, 
other Pacific Islander, Asian Indian, Chinese, Phillipino, Japanese, Korean, 
Vietnamese, other Asian), those who reported ‘other race’, and those who 
selected more than 2 racial groups in the ABCD study.    

N = 4102 
Age (mo) Median (IQR) 120.0 (13.0) 

Range [107.0,133.0] 
Missing (N (%)) 0 (0 %) 

Sex Female 2177 (53.07 
%) 

Male 1925 (46.93 
%) 

Missing (N (%)) 0 (0 %) 
Race White 2557 (62.33 

%) 
Black 851 (20.74 %) 
Asian 287 (7.00 %) 
Other 342 (8.34 %) 
Missing (N (%)) 65 (1.59 %) 

Ethnicity Hispanic 933 (22.74 %) 
Non-Hispanic 3120 (76.06 

%) 
Missing (N (%)) 49 (1.20 %) 

Screen Time Median (IQR) 1050 (923.75) 
Missing (N (%)) 3 (0.07 %) 

BMI Median (IQR) 17.546 (4.59) 
Missing 11 (0.27 %) 

Physical activity Median (IQR) 3 (3) 
Missing 11 (0.27 %) 

Sleep length Median (IQR) 8-9 h (2 h) 
Missing (N (%)) 1 (0.024 %) 

Pubertal Stage Pre-puberty 902 (21.98 %) 
Early puberty 1260 (30.72 

%) 
Mid puberty or later stage 1168 (28.48 

%) 
Missing (N (%)) 772 (18.82 %)  
<25,000 492 (11.99 %) 
25,000-49,999 542 (13.21 %) 
50,000-99,999 1000 (24.38 

%) 
100,000-199,999 1212 (29.55 

%) 
>=200,000 512 (12.48 %) 
Missing (N (%)) 344 (8.39 %) 

Primary Caregiver 
Education 

Advanced degree (Master’s professional 
(MD, JD, etc.) and doctoral degrees) 

1126 (27.45 
%) 

Bachelor’s degree 1184 (28.87 
%) 

Associate degree 457 (11.14 %) 
Some College 669 (16.31 %) 
High School/GED 379 (9.24 %) 
Did Not Graduate High school 284 (6.92 %) 
Missing (N (%)) 3 (0.07 %)  
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worldness), strength of its local and long-range connections (median 
intra- and inter-network connectivity), and resilience to perturbations 
(robustness and stability). Estimated local (node-level) topological 
properties included local clustering, centrality, and degree. Centrality 
reflects the topological importance of a node in the network, node de-
gree measures the number of its connections, and local clustering 
measures local segregation, based on connections between each node’s 
neighbors. Algorithms from the Brain Connectivity Toolbox (Rubinov 
and Sporns, 2010), and the NGDA platform were used to estimate these 
properties. 

2.4.3. Estimation of fMRI signal variability 
Temporal fluctuations of resting-state fMRI signals were quantified 

by the absolute coefficient of signal dispersion (defined as: 
∑n

i=1 |yi−ym |
nym , 

with yi the signal, n its length and ym its median) averaged over the 
entire brain, individual hemispheres, and individual networks. 

2.5. Statistical analysis 

Multivariate linear regression models tested associations between 
the independent variables of interest, i.e., fMRI time-of-day, time-of- 
week, and time-of-year, and topological brain properties at the three 
scales (the dependent variables). Model-based statistical associations 
were considered significant only if the regression coefficient for the 
parameter of interest, model intercept, and overall model met the sig-
nificance level, which was set at α = 0.05. P-values were adjusted for the 
False Discovery Rate (FDR) using the approach in (Benjamini & Hoch-
berg, 1995). For whole-brain and network- level models, FDR correc-
tions were made across properties within each network (or the entire 
connectome). For node-level models, and each topological property, 
FDR corrections were made across nodes within a particular network. 
Missing data were assumed to be missing at random. In all analyses, all 
participants had topological properties and signal fluctuation data (the 
outcomes), and time of acquisition parameters (the variables of inter-
est). Data for most other independent variables were missing for <5 % of 
the cohort; pubertal stage information was missing for ~19 % of the 
cohort, but this parameter was only included in secondary analyses and 
models. 

Each fMRI timing parameter of interest (the primary independent 
variable) was individually included in models. Then, models were 
augmented by including combinations of 2 or all 3 timing variables. 
Finally, additional sets of models also included (2-way and 3-way) in-
teractions between these variables (i.e., time-of-day*time-of-week, 
time-of-day*time-of-year, time-of-week*time-of-year and time-of- 
day*time-of-week*time-of-year). In addition to standardized regres-
sion coefficients (when appropriate), Cohen’s f and d statistics were also 
used to estimate effect sizes for time-of-day (continuous variable) and 
time of week and year (binary variables), respectively, and regression 
coefficients were standardized when appropriate. 

An additional secondary analysis was conducted to further elucidate 
the time-of-day scanning effects on connectome properties. Based on the 
median time of scanning (rounded to 14:00), the cohort was separated 
into two sub-cohorts: one including participants scanned before 14:00 
and the other including those scanned at or after 14:00. Then, primary 
analyses were repeated for each sub-cohort (these analyses focused only 
on the best-quality fMRI run for each participant). 

A set of linear regression models was also developed to investigate 
associations between scan acquisition time parameters and fMRI signal 
variability. The absolute coefficient of dispersion was the dependent 
variables in these models, and the same confounders and covariates as in 
previous models were included. The predictors of interest were the in-
dividual fMRI timing parameters. 

Finally, an analysis was conducted to assess the impact of temporal 
acquisition effects on correlations between brain and cognitive out-
comes. Specifically, linear regression models were developed to assess 

the impact of including scan time-of-day, time-of-week, time-of-year as 
individual and combinatorial adjustments on associations between to-
pological brain properties and cognitive performance in the NIH neu-
rocognitive battery set of tasks of the ABCD study (Luciana et al., 2018). 
In these models, cognitive task scores were the dependent variables and 
topological properties the independent variables of interest. Models 
were developed and compared with versus without the inclusion of scan 
acquisition timing parameters. 

All analyses were conducted using the software MATLAB (R2021b, 
Mathworks, Inc.). Figures were created with software packages MRI-
CroGL (NITRC.org) and BrainNet Viewer (Xia et al., 2013). 

3. Results 

Over 50 % of participants were in pre- or early adolescence (52.7 %), 
had median screen time of over 17 h/week (median = 1050.0 min, IQR 
= 923.8 min), overall slept less than the recommended amount for 
optimal development (median = 8-9 h, IQR = 2 h), had median BMI =
17.5 (IQR = 4.6), and were on average active (for at least 60 min/day) 3 
days/week (median = 3 days, IQR = 3 days). Participant characteristics 
and sample statistics are provided in Table 1. Median time-of-day of the 
fMRI resting-state scan was 14:00. The majority of participants were 
scanned during the week [n = 2499 (60.92 %)], and less than 40 % were 
scanned during the weekend [1603 (39.08 %)]. In addition, almost three 
quarters of participants were scanned during the school year [n = 3059 
(74.57 %)], and about a quarter during the summer break [n = 1043 
(25.43 %)]. Participant distributions as a function of scan time variables 
are shown in Fig. 1. 

There were no statistical differences in scan time-of-day as a function 
of race (p ≥ 0.08), ethnicity (p = 0.79) or sleep length (recommended vs 
less than recommended amount, p = 0.31). A statistically higher pro-
portion of youth scanned during the week slept less than the recom-
mended amount [1296 (51.86 %) compared to 1203 (48.14 %); p <
0.01], but corresponding proportions of those scanned during the 
weekend were statistically similar [778 (48.53 %) slept the recom-
mended amount and 825 (51.47 %) slept less than recommended; p =
0.10]. Among participants scanned during the school year, a statistically 
higher proportion slept less than the recommended amount [1596 
(52.17 %) compared to 1463 (47.83 %); p < 0.01). Corresponding 
proportions of those scanned during the summer vacation period were 
statistically similar [518 (49.66 %) slept the recommended amount and 
525 (50.34 %) slept less than recommended; p = 0.76]. No other sta-
tistical differences were estimated in groups dichotomized based on 
fMRI acquisition time parameters (p > 0.10). 

3.1. Correlations between time parameters and topological properties 

3.1.1. Connectome-wide associations 
Correlations with individual scan time parameters: At the brain-wide 

level, only time-of-day was significantly associated with multiple 
network properties. Later scanning times were associated with lower 
estimates of efficiency, global clustering, topological robustness and 
stability, and higher estimates of modularity and small-worldness (p <
0.04) in the brain. These associations were consistent in both rs-fMRI 
runs. Effect sizes were overall small (Cohen’s f < 0.10). Model statis-
tics are summarized in Table 2a. 

Correlations with multiple scan time parameters: Separate models 
included pairs of parameters (i.e., additive models with time-of-day and 
time-of-week, time-of-day and time-of-year and time-of-week and time- 
of-years), and then all three parameters. These can be interpreted as 
examining one time parameter while controlling for the other(s). Time- 
of-year was consistently nonsignificant in all models with combinations 
that included this parameter (p > 0.05). In models that included time-of- 
day and time-of-week, both were statistically associated with multiple 
topological properties, but only in the larger sample corresponding to 
the first run. Participants measured later in the day and during the week 
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had lower estimates of connectome efficiency, global clustering, topo-
logical robustness and stability, and higher estimates of modularity and 
small-worldness (p < 0.03). Similar associations for both time parame-
ters were estimated in models that included all three time parameters (p 
< 0.05). Model statistics are summarized in Table 2b. Effect sizes were 
comparable for the two parameters and overall small (Cohen’s f < 0.10, 
Cohen’s d < 0.24). Two- and three-way time parameter interactions 
were also examined, but were all nonsignificant at this spatial scale (p >
0.29). 

3.1.2. Network-specific associations 
Correlations with individual scan time parameters: Time-of-day was 

correlated with multiple properties of several networks in both hemi-
spheres, Participants scanned later in the day had lower efficiency, 
global clustering, within-network connectivity, topological robustness, 
and stability, but higher modularity estimates in bilateral central visual, 
dorsal attention and frontoparietal control (p ≤ 0.04). They also had 
higher within-network connectivity and modularity (but no other to-
pological differences) in left somatomotor networks, higher modularity 
in the bilateral salience network, lower robustness and stability only in 
the right salience network, higher modularity in bilateral basal ganglia, 
and higher topological robustness and stability in the amygdala (p <
0.05). Time-of-day effects were overall small (Cohen’s f < 0.10). 

Similar associations were estimated based on the second fMRI run 
was from all participants, along with lower efficiency, global clustering, 
connectivity (within- and across- network), robustness, and stability, 
and higher modularity in bilateral DM and limbic networks (except 
nonsignificant somatomotor or amygdala correlations, p < 0.05, 
Cohen’s f < 0.10). In addition, participants scanned during the weekend 
had lower within-network connectivity in the left temporoparietal 
network and lower efficiency, global clustering, topological robustness, 
and stability estimates in the right hippocampus (p < 0.05, Cohen’s d <
0.40). These associations were only estimated in the first fMRI run. 

Finally, participants scanned during the school year had lower global 
clustering, robustness, and stability, but higher modularity estimates in 
left central visual, bilateral temporoparietal, and right dorsal attention 
networks. They also had lower connectivity (in- and out-of-network) in 
the right somatomotor, dorsal attention and right temporoparietal net-
works, and lower out-of-network connectivity in the left temporopar-
ietal network (p < 0.05, Cohen’s d < 0.82). The estimated associations in 
the left visual network were consistent across both fMRI runs. Detailed 
model statistics for all network-specific associations with time parame-
ters are provided in Table 3a for the first run and Supplemental Table S2 
for the second run. Networks positively or negatively correlated with 
each time parameter are shown in Fig. 2. 

Correlations with multiple scan time parameters and their interactions: 
Overall, the individual parameter associations did not change substan-
tially when controlling for other temporal effects (p < 0.05, Cohen’s f <
0.10). Model statistics for the first and second runs are summarized in 
Tables S3 and S4. Networks correlated with multiple time parameters 
(examining one while controlling for the other two) are shown in Fig. 2. 
Finally, interaction models examined associations between 2- and 3-way 
time parameter interactions and network-specific topological proper-
ties. Two-way interactions between time-of-day and time-of-year, time- 
of-week and time-of-year, and the 3-way interaction between time-of- 
day, time-of-week and time-of-year were consistently correlated with 
one (typically connectivity) or more topological properties of bilateral 
visual networks (central and/or peripheral; p < 0.05, Cohen’s f < 0.06, 
Cohen’s d < 0.96) in both runs. The interaction of time-of-day and time- 
of-year was also correlated with connectivity (within and across net-
works) of the right dorsal attention network and multiple properties of 
the left dorsal attention network, but only in the second run (p ≤ 0.03, 
Cohen’s f < 0.08). The 3-way interaction between time variables was 
also associated with all properties (except connectivity) in the bilateral 
Default Mode network (p < 0.05, Cohen’s f < 0.10). Across networks, 
when significant, 2- and 3-way interactions between time parameters 

Fig. 1. Distributions of fMRI acquisition time-of-day (h), school day vs weekend, school year vs summer vacation.  

Table 2a 
Statistics of models testing associations between fMRI acquisition time-of-day and brain connectome-wide topological properties, for both analyzed fMRI runs. All 
reported p-values have been corrected for false discovery. *Nonsignificant (NS); Confidence Interval (CI)  

Time of the day 
Statistic Efficiency Global Clustering Median Connectivity Modularity Topological Robustness Small-worldness Topological Stability 
Best-Quality fMRI Run 
Standardized Beta -0.051 -0.035 NS* 0.064 -0.047 0.055 -0.046 
95th % CI [-0.082, -0.020] [-0.067, -0.003) NS [0.033, 0.095] [-0.079, -0.016] [0.023, 0.087] [-0.078, -0.015] 
P-value 0.003 0.035 NS <0.001 0.006 0.002 0.006 
Cohen’s f 0.051 0.032 NS 0.064 0.046 0.054 0.045 
Second Best-Quality fMRI Run 
Standardized Beta -0.065 -0.060 NS 0.061 -0.064 0.054 -0.063 
95th % CI [-0.102, -0.028] [-0.098, -0.023] NS [0.024, 0.098] [-0.101, -0.027] [0.017, 0.091] [-0.100, -0.025] 
P-value 0.002 0.002 NS 0.002 0.002 0.005 0.002 
Cohen’s f 0.064 0.058 NS 0.060 0.062 0.051 0.061  
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were positively associated with all topological parameters except 
modularity, for which associations were negative. Model results are 
summarized in Table 3b. Networks correlated with the 3-way interac-
tion between all time parameters are shown in Fig. 2 (bottom panel). 

3.1.3. Regional (node-level) associations 
Correlations between time of scan acquisition parameters and 

regional brain properties were also examined. Time-of-day was posi-
tively correlated with centrality (i.e., those scanned later in the day had 
higher centrality) of nodes in the visual (peripheral) network bilaterally 
(p < 0.05, β = 0.04 to 0.07, 95% CI = [<0.01, 0.10]), and was negatively 

correlated with centrality in bilateral dorsal attention networks (p <
0.04, β = -0.07 to -0.04, 95% CI = [-0.10, -0.01]). It was also negatively 
correlated with local clustering of nodes in bilateral visual (central) and 
dorsal attention networks (p < 0.05, β = -0.07 to -0.04, 95% CI = [-0.09, 
-0.01]), and similarly for node degree (p < 0.05, β = -0.07 to -0.04, 95% 
CI = [-0.10, -<0.01]). Positive and negative correlations with time-of- 
day are shown in Fig. 3. 

Participants scanned during the weekend had lower regional clus-
tering in the right somatomotor network (p < 0.04, β = -0.06 to -0.05, 
95% CI = [-0.09, -0.02]). This correlation is shown in Fig. S1. No other 
associations were estimated between local topological properties and 

Table 2b 
Statistics of models testing additive associations between combinations of fMRI acquisition time parameters (pairs and triplet) and connectome-wide topological 
properties for both analyzed fMRI runs. Only timing parameters with significant associations are reported. All reported p-values have been corrected for false dis-
covery. *Nonsignificant (NS); Confidence Interval (CI).   

Statistic Efficiency Global 
Clustering 

Median 
Connectivity 

Modularity Topological 
Robustness 

Small- 
worldness 

Topological 
Stability 

Time-of-day and Time-of-week 
Best-Quality fMRI Run  

Cohen’s f 0.061 0.044 NS 0.072 0.057 0.062 0.056 
School day vs Weekend 

(control for time of day) 
Beta -0.040 -0.046 NS 0.037 -0.045 0.037 -0.045 
95th % CI [-0.072, 

-0.008] 
[-0.079, 
-0.013] 

NS [0.005, 
0.069] 

[-0.078, -0.013] [0.005, 
0.070] 

[-0.078, -0.013] 

P-value 0.025 0.015 NS 0.029 0.015 0.029 0.015 
Cohen’s d 0.125 0.233 NS 0.083 0.183 0.151 0.186 

Second Best-Quality fMRI Run 
Time of day (control for time of 

week) 
Standardized 
Beta 

-0.069 -0.066 NS 0.066 -0.071 0.061 -0.070 

95th % CI [-0.108, 
-0.030] 

[-0.105, 
-0.027] 

NS [0.028, 
0.105] 

[-0.110, -0.032] [0.022, 
0.100] 

[-0.109, -0.031] 

P-value 0.001 0.001 NS 0.001 0.001 0.003 0.001 
Cohen’s f 0.065 0.061 NS 0.062 0.066 0.056 0.065 

Time-of-day and Time-of-year 
Best-Quality fMRI Run 
Time of day (control for time of 

year) 
Standardized 
Beta 

-0.049 NS NS 0.061 -0.045 0.053 -0.044 

95th % CI [-0.080, 
-0.018] 

NS NS [0.030, 
0.092] 

[-0.077, -0.013] [0.021, 
0.084] 

[-0.076, -0.012] 

P-value 0.005 NS NS 0.001 0.009 0.004 0.009 
Cohen’s f 0.048 NS NS 0.061 0.043 0.051 0.042 

Second Best-Quality fMRI Run 
Time of day (control for time of 

year) 
Standardized 
Beta 

-0.064 -0.059 NS 0.061 -0.064 0.054 -0.062 

95th % CI [-0.102, 
-0.027] 

[-0.097, 
-0.022] 

NS [0.024, 
0.098] 

[-0.101, -0.026] [0.017, 
0.092] 

[-0.100, -0.025] 

P-value 0.002 0.003 NS 0.002 0.002 0.006 0.002 
Cohen’s f 0.063 0.067 NS 0.059 0.062 0.051 0.060 

Time-of-day and Time-of-Week and Time-of-Year 
Best-Quality fMRI Run 
Time of day (control for time of 

week and year) 
Standardized 
Beta 

-0.060 -0.046 NS 0.071 -0.058 0.063 -0.057 

95th % CI [-0.093, 
-0.028] 

[-0.079, 
-0.012] 

NS [0.038, 
0.104] 

[-0.091, -0.025] [0.029, 
0.096] 

[-0.090, -0.023] 

P-value 0.001 0.008 NS <0.001 0.001 0.001 0.001 
Cohen’s f 0.058 0.041 NS 0.069 0.054 0.059 0.053 

School day vs Weekend 
(control for time of day and 
year) 

Beta -0.038 -0.044 NS 0.034 -0.043 0.034 -0.043 
95th % CI [-0.070, 

-0.005] 
[-0.077, 
-0.011] 

NS [0.001, 
0.066] 

[-0.076, -0.010] [0.001, 
0.067] 

[-0.075, -0.010] 

P-value 0.039 0.025 NS 0.047 0.025 0.047 0.025 
Cohen’s d 0.124 0.231 NS 0.082 0.183 0.150 0.186 

Second Best-Quality fMRI Run 
Time of day (control for time of 

week and year) 
Standardized 
Beta 

-0.069 -0.065 NS 0.066 -0.071 0.061 -0.070 

95th % CI [-0.108, 
-0.029] 

[-0.105, 
-0.026] 

NS [0.027, 
0.105] 

[-0.111, -0.032] [0.022, 
0.101] 

[-0.109, -0.030] 

P-value 0.001 0.002 NS 0.002 0.001 0.003 0.001 
Cohen’s f 0.064 0.059 NS 0.061 0.066 0.056 0.065  
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Table 3a 
Statistics of models testing associations between fMRI acquisition time parameters and individual network topological properties, for the best-quality fMRI run. All 
reported p-values have been corrected for false discovery. Because of the small number of parcels (nodes) corresponding to the amygdala, this structure was treated as 
one network comprising both hemispheres. *Nonsignificant (NS); Confidence Interval (CI).  

Network Statistic Efficiency Global 
Clustering 

Median Conn. 
(in) 

Median Conn. 
(out) 

Modularity Robustness Stability 

Time-of-day - Left Hemisphere 
Visual (Central) Standardized 

Beta 
-0.082 -0.078 -0.069 NS* 0.071 -0.080 -0.081 

95th % CI [-0.114, 
-0.049] 

[-0.111, 
-0.046] 

[-0.102, -0.036] NS [0.039, 0.104] [-0.113, 
-0.048] 

[-0.114, 
-0.049] 

P-Value <0.001 <0.001 <0.001 NS <0.001 <0.001 <0.001 
Cohen’s f 0.080 0.076 0.066 NS 0.070 0.078 0.079 

Somatomotor Standardized 
Beta 

NS NS 0.047 NS 0.041 NS NS 

95th % CI NS NS [0.015, 0.080] NS [0.008, 0.073] NS NS 
P-Value NS NS 0.031 NS 0.047 NS NS 
Cohen’s f NS NS 0.044 NS 0.037 NS NS 

Dorsal Attention Standardized 
Beta 

-0.076 -0.071 -0.043 -0.039 0.068 -0.072 -0.073 

95th % CI [-0.108, 
-0.045] 

[-0.103, 
-0.039] 

[-0.075, -0.010] [-0.072, -0.006] [0.036, 0.100] [-0.104, 
-0.041] 

[-0.105, 
-0.041] 

P-Value <0.001 <0.001 0.012 0.021 <0.001 <0.001 <0.001 
Cohen’s f 0.077 0.070 0.039 0.035 0.068 0.072 0.073 

Salience/Ventral 
Attention 

Standardized 
Beta 

NS NS NS NS 0.046 NS NS 

95th % CI NS NS NS NS [0.014, 0.078] NS NS 
P-Value NS NS NS NS 0.032 NS NS 
Cohen’s f NS NS NS NS 0.044 NS NS 

Frontoparietal Control Standardized 
Beta 

-0.052 -0.048 NS NS 0.044 -0.050 -0.050 

95th % CI [-0.084, 
-0.020] 

[-0.080, 
-0.016] 

NS NS [0.013, 0.076] [-0.082, 
-0.018] 

[-0.081, 
-0.018] 

P-Value 0.005 0.006 NS NS 0.008 0.005 0.005 
Cohen’s f 0.051 0.046 NS NS 0.042 0.049 0.048 

Basal Ganglia Standardized 
Beta 

NS NS NS NS 0.052 NS NS 

95th % CI NS NS NS NS [0.019, 0.084] NS NS 
P-Value NS NS NS NS 0.013 NS NS 
Cohen’s f NS NS NS NS 0.049 NS NS 

Time-of-day - Right Hemisphere 
Visual (Central) Standardized 

Beta 
-0.079 -0.072 -0.064 -0.034 0.055 -0.076 -0.077 

95th % CI [-0.111, 
-0.046] 

[-0.104, 
-0.039] 

[-0.096, -0.031] [-0.067, -0.002] [0.023, 0.087] [-0.108, 
-0.043] 

[-0.109, 
-0.044] 

P-Value <0.001 <0.001 <0.001 0.040 0.001 <0.001 <0.001 
Cohen’s f 0.076 0.069 0.061 0.030 0.052 0.074 0.074 

Dorsal Attention Standardized 
Beta 

-0.085 -0.071 -0.046 NS 0.077 -0.081 -0.079 

95th % CI [-0.116, 
-0.054] 

[-0.102, 
-0.039] 

[-0.078, -0.013] NS [0.045, 0.109] [-0.113, 
-0.049] 

[-0.111, 
-0.047] 

P-Value <0.001 <0.001 0.007 NS <0.001 <0.001 <0.001 
Cohen’s f 0.087 0.070 0.043 NS 0.077 0.081 0.079 

Salience/Ventral 
Attention 

Standardized 
Beta 

NS NS NS NS 0.052 -0.038 -0.038 

95th % CI NS NS NS NS [0.020, 0.084] [-0.069, 
-0.006] 

[-0.069, 
-0.006] 

P-Value NS NS NS NS 0.010 0.046 0.046 
Cohen’s f NS NS NS NS 0.052 0.035 0.035 

Frontoparietal Control Standardized 
Beta 

-0.057 -0.051 NS NS 0.039 -0.044 -0.042 

95th % CI [-0.089, 
-0.026] 

[-0.083, 
-0.019] 

NS NS [0.007, 0.070] [-0.076, 
-0.012] 

[-0.076, 
-0.012] 

P-Value 0.003 0.006 NS NS 0.023 0.016 0.017 
Cohen’s f 0.056 0.050 NS NS 0.036 0.072 0.040 

Basal Ganglia Standardized 
Beta 

NS NS NS NS 0.054 NS NS 

95th % CI NS NS NS NS [0.022, 0.087] NS NS 
P-Value NS NS NS NS 0.007 NS NS 
Cohen’s f NS NS NS NS 0.052 NS NS 

Time-of-day - Other Networks 
Amygdala Standardized 

Beta 
NS NS NS NS NS 0.048 0.053 

95th % CI NS NS NS NS NS [0.008, 0.088] [0.013, 
0.093] 

(continued on next page) 
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scan acquisition time parameters. To assess reliability of the findings, 
analyses were repeated using the second fMRI run. Consistent negative 
associations between time-of-day and local properties of bilateral dorsal 
attention networks were estimated, as well as additional associations 
with centrality of nodes within bilateral limbic networks, local clus-
tering within the bilateral DMN and right salience network, and node 
degree in spatially distributed brain regions (p < 0.05, β = -0.12 to -0.01, 
95% CI = [-0.17, -<0.01]). 

3.4. Sub-cohort analyses 

Multiscale topological correlations with fMRI acquisition time-of- 
day (the time parameter most frequently correlated with multiple 
properties across scales and networks), were also examined in sub- 
cohorts of participants scanned before 14:00 (median time of scanning 
in the cohort) versus those scanned at or after 14:00. No statistical as-
sociations with time-of-day and whole-brain topological properties were 
estimated in either cohort (p > 0.05). At the individual network scale, 
time-of-day was negatively associated with global clustering in the right 

limbic network (p < 0.02, β = -0.06, 95% CI = [-0.10, -0.02]) in par-
ticipants scanned prior to 14:00. In those scanned at 14:00 or later, time- 
of-day was negatively associated with multiple properties of the bilat-
eral visual networks and cerebellum (p < 0.04, β = -0.05 to -0.06, 95% 
CI = [-0.10, -0.01]). At the level of individual regions, time-of-day was 
negatively correlated with centrality in nodes within the left dorsal 
attention (p < 0.03, β = -0.10 to -0.08, 95% CI = [-0.15, -0.02]) but only 
in participants scanned at 14:00 or later. Time-of-day effects were 
overall small (Cohen’s f < 0.10). 

3.5. Correlations between spontaneous fMRI signal fluctuations and 
acquisition time parameters 

Associations between scan acquisition time parameters and rs-fMRI 
signal fluctuations were then assessed at the whole-brain, hemisphere, 
and network levels. There were no statistical associations between ab-
solute coefficient of dispersion and any time parameter at the whole- 
brain level for either fMRI run (p > 0.05). At the hemisphere level, 
there were no significant associations between any time parameter and 

Table 3a (continued ) 
Network Statistic Efficiency Global 

Clustering 
Median Conn. 
(in) 

Median Conn. 
(out) 

Modularity Robustness Stability 

P-Value NS NS NS NS NS 0.041 0.032 
Cohen’s f NS NS NS NS NS 0.044 0.049 

Time-of-Week - Left Hemisphere 
Temporo- parietal Standardized 

Beta 
NS NS -0.045 NS NS NS NS 

95th % CI NS NS [-0.077, -0.012] NS NS NS NS 
P-Value NS NS 0.047 NS NS NS NS 
Cohen’s d NS NS 0.397 NS NS NS NS 

Time-of-Week - Right Hemisphere 
Hippocampus Standardized 

Beta 
-0.060 -0.055 NS NS NS -0.058 -0.053 

95th % CI [-0.101, 
-0.019] 

[-0.096, 
-0.014] 

NS NS NS [-0.100, 
-0.017] 

[-0.095, 
-0.012] 

P-Value 0.020 0.021 NS NS NS 0.020 0.021 
Cohen’s d 0.293 0.310 NS NS NS 0.311 0.341 

Time-of-year - Left Hemisphere 
Visual (Central) Standardized 

Beta 
NS 0.037 NS NS -0.039 0.044 0.042 

95th % CI NS [0.005, 0.070] NS NS [-0.071, 
-0.007] 

[0.012, 0.076] [0.010, 
0.074] 

P-Value NS 0.040 NS NS 0.037 0.037 0.037 
Cohen’s d NS 0.545 NS NS 0.509 0.605 0.572 

Temporo- parietal Standardized 
Beta 

0.049 0.038 NS 0.040 -0.038 0.055 0.053 

95th % CI [0.017, 0.081] [0.005, 0.070] NS [0.007, 0.072] [-0.071, 
-0.006] 

[0.023, 0.087] [0.021, 
0.085] 

P-Value 0.007 0.025 NS 0.025 0.025 0.005 0.005 
Cohen’s d 0.667 0.537 NS 0.361 0.577 0.714 0.705 

Time-of-year - Right Hemisphere 
Somatomotor Standardized 

Beta 
NS NS 0.041 0.047 NS NS NS 

95th % CI NS NS [0.009, 0.073] [0.015, 0.079] NS NS NS 
P-Value NS NS 0.041 0.031 NS NS NS 
Cohen’s d NS NS 0.442 0.560 NS NS NS 

Dorsal Attention Standardized 
Beta 

0.037 0.040 0.049 0.046 NS 0.039 0.040 

95th % CI [0.006, 0.068] [0.009, 0.072] [0.017, 0.081] [0.014, 0.078] NS [0.008, 0.071] [0.009, 
0.072] 

P-Value 0.023 0.019 0.018 0.018 NS 0.019 0.019 
Cohen’s d 0.271 0.371 0.637 0.813 NS 0.312 0.328 

Temporo- parietal Standardized 
Beta 

0.053 0.062 0.057 0.060 -0.034 NS 0.052 

95th % CI [0.021, 0.085] [0.030, 0.094] [0.025, 0.090] [0.028, 0.092] [-0.067, 
-0.002] 

NS [0.020, 
0.084] 

P-Value 0.002 0.001 0.001 0.001 0.036 NS 0.002 
Cohen’s d 0.624 0.739 0.643 0.656 0.507 NS 0.654  
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and signal fluctuations for the right hemisphere. However, participants 
scanned later in the day had higher signal dispersion in the left hemi-
sphere (p = 0.04, β = 0.046, 95% CI = [0.01, 0.08]), although only in the 
second fMRI run. Similar results were estimated in additive models that 
included time-of-day and controlled for one or both of the other two 

time parameters. The other two time parameters were not, however, 
correlated with signal fluctuation in any model (p > 0.05). 

Fig. 2. Brain networks correlated with fMRI acquisition time variables. Left and right panels show positive and negative associations, respectively. Results are based 
on the best-quality fMRI run. Positive topological associations with time-of-week (a binary variable) implied that 
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Table 3b 
Statistics of models testing associations between 2- and 3-way interactions between acquisition time parameters and individual network topological properties, for 
both fMRI runs. All reported p-values have been corrected for false discovery. *Nonsignificant (NS); Confidence Interval (CI).  

Network Statistic Efficiency Global 
Clustering 

Median Conn. 
(in) 

Median Conn. 
(out) 

Modularity Robustness Stability 

Time-of-day * Time-of-year - Left Hemisphere 
Best-Quality fMRI Run 
Visual 

(Peripheral) 
Standardized 
Beta 

0.215 0.246 0.312 0.304 -0.205 0.212 0.239 

95th % CI [0.020, 
0.409] 

[0.052, 0.440] [0.118, 0.507] [0.111, 0.498] [-0.399, 
-0.012] 

[0.018, 
0.405] 

[0.046, 0.433] 

P-Value 0.037 0.027 0.007 0.007 0.037 0.037 0.027 
Cohen’s f 0.032 0.038 0.050 0.048 0.030 0.032 0.037 

Second Best-Quality fMRI Run 
Visual 

(Peripheral) 
Standardized 
Beta 

NS* NS NS 0.347 NS NS NS 

95th % CI NS NS NS [0.117, 0.577] NS NS NS 
P-Value NS NS NS 0.022 NS NS NS 
Cohen’s f NS NS NS 0.054 NS NS NS 

Dorsal Attention Standardized 
Beta 

NS 0.288 0.407 0.389 -0.260 0.253 0.267 

95th % CI NS [0.064, 0.511] [0.180, 0.633] [0.165, 0.613] [-0.483, 
-0.038] 

[0.030, 
0.476] 

[0.044, 0.490] 

P-Value NS 0.027 0.002 0.002 0.030 0.030 0.030 
Cohen’s f NS 0.045 0.066 0.063 0.040 0.039 0.041 

Time-of-day * Time-of-year - Right Hemisphere 
Best-Quality fMRI Run 
Visual 

(Peripheral) 
Standardized 
Beta 

NS* NS NS 0.311 NS NS NS 

95th % CI NS NS NS [0.116, 0.505] NS NS NS 
P-Value NS NS NS 0.012 NS NS NS 
Cohen’s f NS NS NS 0.049 NS NS NS 

Second Best-Quality fMRI Run 
Visual (Central) Standardized 

Beta 
NS NS 0.296 0.347 NS NS NS 

95th % CI NS NS [0.067, 0.524] [0.119, 0.573] NS NS NS 
P-Value NS NS 0.039 0.020 NS NS NS 
Cohen’s f NS NS 0.045 0.055 NS NS NS 

Visual 
(Peripheral) 

Standardized 
Beta 

NS NS NS 0.346 NS NS NS 

95th % CI NS NS NS [0.117, 0.576] NS NS NS 
P-Value NS NS NS 0.022 NS NS NS 
Cohen’s f NS NS NS 0.054 NS NS NS 

Dorsal Attention Standardized 
Beta 

NS NS 0.375 0.447 NS NS NS 

95th % CI NS NS [0.149, 0.601] [0.220, 0.673] NS NS NS 
P-Value NS NS 0.004 0.001 NS NS NS 
Cohen’s f NS NS 0.060 0.072 NS NS NS 

Time-of-week * Time-of-year - Left Hemisphere 
Best-Quality fMRI Run 
Visual (Central) Standardized 

Beta 
0.162 0.179 0.233 0.178 -0.219 0.221 0.230 

95th % CI [0.033, 
0.291] 

[0.050, 0.308] [0.102, 0.363] [0.049, 0.307] [-0.348, 
-0.091] 

[0.092, 
0.350] 

[0.101, 0.359] 

Cohen’s d 0.954 0.229 0.946 0.546 0.701 0.955 0.943 
P-Value 0.014 0.008 0.001 0.008 0.001 0.001 0.001 

Time-of-week * Time-of-year - Right Hemisphere 
Visual (Central) Standardized 

Beta 
0.150 0.177 0.182 0.134 -0.215 0.210 0.213 

95th % CI [0.021, 
0.280] 

[0.047, 0.306] [0.052, 0.312] [0.005, 0.264] [-0.344, 
-0.086] 

[0.081, 
0.339] 

[0.084, 0.384] 

Cohen’s d 0.230 0.145 0.680 0.508 0.511 0.704 0.648 
P-Value 0.027 0.010 0.010 0.042 0.003 0.003 0.003 

Time-of-day* Time-of-week * Time-of-year - Left Hemisphere 
Best-Quality fMRI Run 
Visual (Central) Standardized 

Beta 
0.154 0.155 0.178 0.180 -0.169 0.191 0.194 

(continued on next page) 
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3.6. Impact of acquisition time parameter adjustments on associations 
between connectome properties and cognitive task performance 

Changes in estimated associations between multiscale connectome 
properties and performance in neurocognitive tasks performed by the 
ABCD participants (Luciana et al., 2018), were then examined, in models 
with vs withouth adjustments for acquisition time parameters. First, 
correlations between network topological properties and cognitive 
outcomes without any time parameter adjustments were investigated. 

Based on the first fMRI run, performance in the Dimensional Change 
Card Sort task was positively correlated with efficiency, global clus-
tering, topological robustness, stability, and/or within-network con-
nectivity of the bilateral frontoparietal and DM networks, and left dorsal 
attention network (only robustness and stability in the latter) (p ≤ 0.03, 
β = 0.04 - 0.05, 95% CI = [0.01, 0.09]). Performance in the task was also 
negatively associated with modularity in the DM and right sali-
ence/ventral attention networks (p ≤ 0.03, β = -0.05 to -0.04, 95% CI =
[-0.09, -<0.01]). Similar positive and negative associations were 

Table 3b (continued ) 
Network Statistic Efficiency Global 

Clustering 
Median Conn. 
(in) 

Median Conn. 
(out) 

Modularity Robustness Stability 

95th % CI [0.039, 
0.270] 

[0.039, 0.270] [0.061, 0.295] [0.064, 0.296] [-0.284, 
-0.054] 

[0.076, 
0.301] 

[0.079, 0.310] 

Cohen’s f 0.040 0.040 0.047 0.048 0.045 0.051 0.052 
P-Value 0.009 0.009 0.005 0.005 0.006 0.004 0.004 

Default Mode Standardized 
Beta 

0.123 0.123 NS NS -0.170 0.161 0.161 

95th % CI [0.009, 
0.237] 

[0.009, 0.238] NS NS [-0.285, 
-0.055] 

[0.046, 
0.276] 

[0.046, 0.276] 

Cohen’s f 0.031 0.031 NS NS 0.045 0.042 0.042 
P-Value 0.049 0.049 NS NS 0.014 0.014 0.014 

Time-of-day * Time-of-week * Time-of-year - Right Hemisphere 
Best-Quality fMRI Run 
Visual (Central) Standardized 

Beta 
0.154 0.159 0.154 0.150 -0.182 0.194 0.197 

95th % CI [0.038, 
0.270] 

[0.043, 0.276] [0.038, 0.271] [0.034, 0.266] [-0.297, 
-0.066] 

[0.079, 
0.310] 

[0.081, 0.313] 

Cohen’s f 0.040 0.041 0.040 0.039 0.048 0.052 0.053 
P-Value 0.011 0.011 0.011 0.011 0.005 0.004 0.004 

Visual 
(Peripheral) 

Standardized 
Beta 

0.131 NS NS 0.128 -0.139 0.145 0.143 

95th % CI [0.014, 
0.248] 

NS NS [0.012, 0.244] [-0.255, 
-0.024] 

[0.029, 
0.261] 

[0.027, 
0.0259] 

Cohen’s f 0.032 NS NS 0.032 0.035 0.037 0.036 
P-Value 0.044 NS NS 0.044 0.043 0.043 0.043 

Default Mode Standardized 
Beta 

0.128 0.129 NS NS -0.166 0.156 0.154 

95th % CI [0.014, 
0.263] 

[0.015, 0.244] NS NS [-0.282, 
-0.051] 

[0.041, 
0.271] 

[0.039, 0.269] 

Cohen’s f 0.033 0.033 NS NS 0.044 0.041 0.040 
P-Value 0.039 0.039 NS NS 0.020 0.020 0.020 

Second Best-Quality fMRI Run 
Visual (Central) Standardized 

Beta 
NS 0.171 0.175 0.178 NS NS NS 

95th % CI NS [0.035, 0.307] [0.038, 0.311] [0.042, 0.314] NS NS NS 
P-Value NS 0.032 0.032 0.032 NS NS NS 
Cohen’s f NS 0.044 0.045 0.046 NS NS NS 
P-Value 0.037 0.037 0.037 0.027  0.037 0.037 
Cohen’s f 0.037 0.037 0.044 0.053  0.040 0.042  

Fig. 3. Regional properties (centrality, local clustering and node degree) that are positively (orange-red) and negatively (green-blue) associated with fMRI acqui-
sition time-of-day. Color bars represent the range of standardized regression coefficient (beta) values for the time-of-day parameter. Three-dimensional (top) and 2- 
dimensional (coronal, horizontal, and sagittal) views are shown. 
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estimated between performance in the Oral Reading Recognition task 
and properties of visual and right dorsal attention networks, and be-
tween performance in the List Sorting Working Memory Task and right 
temporoparietal network. Negative associations were estimated be-
tween performance in the Picture Vocabulary task and within-network 
median connectivity of the right limbic network. Positive associations 
were estimated between performance in the Little Man Task and 
modularity of visual networks, and a negative association with global 
clustering in the thalamus (p < 0.04, β = -0.07 to -0.04, 95% CI = [-0.10, 
-0.01] for negative associations, p < 0.04, β = 0.04 - 0.06, 95% CI =
[0.01, 0.09] for positive associations). Finally, negative correlations 
between connectivity in visual networks (both within the network and 
its connectivity with the rest of the brain) and performance on the 
Matrix Reasoning task, and positive correlations with the Cash Choice 
task were also estimated (p < 0.04, β = -0.05 to -0.04, 95% CI = [-0.08, 
-0.01] for negative correlations, and β = 0.21, 95% CI = [0.07, 0.35] for 
positive correlations). Model adjustments for individual or combinations 
of acquisition time parameters did not change the significance of these 
associations. 

The analyses were repeated for the second fMRI run. Consistent with 
the results from the first run, associations between task performance and 
topological properties were estimated for the Dimensional Card Sort, 
Oral Reading Recognition, List Sorting Working Memory, and Little Man 
tasks. Additional positive associations between performance in the 
Pattern Comparison Processing Speed task and modularity of bilateral 
cerebellum and left somatomotor networks were estimated (p < 0.04, β 

= 0.05 - 0.06, 95% CI = [0.01, 0.09]). Performance in the Flanker task 
was also negatively correlated with modularity in the right dorsal 
attention network (p = 0.05, β = -0.05, 95% CI = [-0.09, -0.01]), and 
performance on the Rey Auditory Verbal Learning task with modularity 
of the left basal ganglia (p = 0.03, β = -0.05, 95% CI = [-0.09, -0.01]). 
Finally, performance in the Matrix Reasoning task was negatively 
correlated with modularity in the left dorsal attention network (p =
0.04, β = -0.05, 95% CI = [-0.09, -0.02]) and out-of-network connec-
tivity in central visual networks (p = 0.04, β = -0.04, 95% CI = [-0.08, 
-0.01]. The impact of including time of acquisition adjustments in 
models assessing these correlations was then examined. Including time- 
of-day, time-of-week, or time-of-year (in models that include individual 
time parameters as well as all three parameters together) eliminated the 
association between modularity of the left somatomotor network and 
performance on the Pattern Comparison Processing Speed task. In 
addition, inclusion of all three time parameters eliminated the statistical 
association between out-of-network connectivity of visual networks and 
performance on the Matrix Reasoning task. All other significant associ-
ations remained unchanged. 

4. Discussion 

Cardiovascular activity, metabolic processes, body temperature and 
hormone (including cortisol and catecholamines) secretion, and their 
hourly, daily, and/or seasonal fluctuations may significantly impact 
blood oxygenation levels and consequently BOLD measurements in the 
brain. Each of these processes, and consequently cerebral hemody-
namics, are also modulated by the sleep-wake cycle and circadian 
rhythm. Consequently, the overall timing of fMRI acquisition may affect 
BOLD signals in complex ways that are incompletely understood, 
particularly in children, and are often overlooked in neuroimaging 
studies. 

In the developing brain, the effects of fMRI acquisition timing may be 
substantial, but have not been previously investigated. Specifically, in 
adolescence - a period of extensive and interacting neural, hormonal, 
metabolic, sleep, and circadian changes, these effects may be amplified, 
and may significantly contribute to the inherent inter-individual vari-
ability of developing brain circuits. This study has addressed this sig-
nificant gap in knowledge and has systematically investigated the 
impact on acquisition time parameters (time-of-day, time-of-week, and 

time-of-year) on developing resting-state circuits across spatial scales of 
variability, in a large sample of over 4,000 early adolescents in the ABCD 
study. In addition, the confounding effects of acquisition time parame-
ters on the relationship between brain topology and cognitive perfor-
mance have also been systematically assessed. 

On average, participants were scanned around 14:00, and only a 
small number (<5 %) were scanned before 10 am or after 6 pm. Over 60 
% of participants were scanned during the week and almost 75 % during 
the school year. Widespread associations between time-of-day and 
multiscale topological properties were estimated. Overall, later acqui-
sition times were consistently associated with lower connectome-wide 
and network-specific efficiency, robustness, clustering and stability, 
but higher values of modularity and small-worldness. Connectivity was 
also negatively correlated with time-of-day in specific networks. Net-
works consistently (across multiple fMRI runs) found to be impacted by 
scan time-of-day included bilateral visual, dorsal attention, salience, 
frontoparietal control networks and the basal ganglia, and to a lesser 
extent (one of the two analyzed runs) DMN and limbic networks, and 
amygdala. Regional properties in some of these networks were also 
negatively (and in a few cases positively) correlated with scan time-of- 
day. Lower regional connectedness (degree) and community structure 
(local clustering) in regions of the DMN, dorsal attention, limbic and/or 
visual networks were correlated with later times of scan. Regional 
(node) centrality (reflecting topological importance in the network) was 
lower in areas of the dorsal attention network but higher in areas of the 
peripheral visual network. 

Together, our findings suggest that the time of fMRI scan plays an 
important role on estimates of topological organization of resting-state 
brain circuits, across spatial scales. They also are in agreement with 
those of prior studies in adults, which have reported that functional 
connectivity in DMN, medial temporal lobe, posterior cingulate and 
medial prefrontal cortex decreases throughout the day (Blautzik et al., 
2013, Shannon et al., 2013, Hodkinson et al., 2014, Facer-Childs et al., 
2019, Orban et al., 2020). Although our estimated time-of-day effects 
were relatively small, they were overall consistent across fMRI runs - 
indicating reliability, even after adjusting for confounding effects of 
sleep patterns, screen time, BMI and other participant data. 

When multiscale topological properties were examined separately in 
subcohorts dichotomized based on time of scan (earlier than 14:00 vs 
14:00 or later), fewer but consistently significant correlations between 
topological properties and time of scan were estimated. In addition, time 
of scan was correlated with properties of distinct networks and regions 
in the two subcohorts. In participants who were measured earlier in the 
day (before 14:00), later scan times were correlated with lower global 
clustering in the right limbic network. In those scanned in the afternoon 
(at or after 14:00), later scan times were correlated with multiple 
properties of visual networks and the cerebellum., and local properties 
of the dorsal attention network. 

Differences in networks and regions impacted by time of scan may be 
associated with underlying metabolic, hormonal and cardiovascular 
changes throughout the day. Glucose, energy expenditure, cortisol, 
catecholamines and also autonomic function have circadian rhythms 
with peaks in the morning (Poggiogalle et al., 2018; Thossar et al., 
2018). Although the entire brain may be affected by these changes, there 
may also be specific functional networks (e.g. limbic and/or attention) 
that may be differentially modulated by morning to early afternoon vs 
afternoon to evening scans. Chronotype differences may also partly 
explain differences in topological properties as a function of time of scan 
(Blautzik et al., 2013). 

Topological correlates of scan time-of-week and time-of-year were 
less extensive at the whole-brain scale. However, participants scanned 
during the weekend had lower connectome efficiency, topological 
robustness and stability, and higher modularity and small-worldness 
than those scanned during the week. These differences were further 
examined at finer spatial scales. At the network level, participants 
scanned during the weekend had lower within-network connectivity in 
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the left temporoparietal network and multiple negatively affected 
properties in the right hippocampus, which is part of the DMN. It is 
possible that social jet lag (inconsistent sleep timing between weekdays 
and weekend), which has been associated with lower resting-state 
connectivity in the DMN (Zhang et al., 2020), may be one of the un-
derlying mechanisms giving rise to these differences. However, its role 
could not be directly investigated in this study, since related data were 
not available at the ABCD baseline. Finally, lower local community 
structure (spatial clustering) in the somatomotor network was estimated 
in those scanned during the weekend compared to weekdays. This dif-
ference could be associated with being in a different global physiological 
state during the weekend, for example more relaxed (Al Zoubi et al., 
2021), and/or with differences in sleep quality (Brooks et al., 2022). 

Although there were no brain-wide effects of scan time-of-year, a 
number of network-specific differences were also identified between 
participants scanned during the school year vs school vacation. Lower 
global clustering, robustness and stability, in visual, temporoparietal 
and dorsal attention networks, and lower connectivity in right somato-
motor, dorsal attention, and temporoparietal networks were estimated 
in those scanned during the school year. The visual network associations 
were consistent across runs. A statistically higher number of participants 
scanned during the school year slept less than the recommended 
amount, which could partly explain lower topological properties’ values 
in this subcohort. However, previous work examining seasonal varia-
tions in brain activity and cognitive performance has shown that at least 
for some cognitive processes, brain activity in specific brain regions 
peaks in the summer months (Meyer et al., 2016), which would partly 
explain the higher topological properties’ values in those scanned dur-
ing the summer. 

The study also examined interactions between scan time parameters. 
Several two-way interactions but also the interaction between all three 
scan time parameters were positively associated with the topological 
parameters of visual networks. These associations were consistent across 
hemispheres, runs and combinations of time parameters. In addition, the 
interaction of time-of-day and time-of-year (i.e., being scanned during 
the summer vacation and earlier in the day) was positively correlated 
with topological properties of the right dorsal attention. Also, the 
interaction of time-of-day, time-of-week and time-of-year (i.e., being 
scanned in the summer, during the weekend and earlier in the day) was 
positively associated with properties of the DMN. In other words, being 
scanned during the weekend and summer vacation may enhance the 
positive effect of being scanned in the morning. 

Prior work in a large adult cohort has shown that scan time param-
eters impact the spontaneous temporal fluctuations of BOLD activity 
during a scan (Vaisvilaite et al., 2022). In this study, participants scan-
ned later in the day had higher fMRI signal fluctuations in the left 
hemisphere, but no other significant correlations with scan time pa-
rameters were estimated. Therefore, our findings partly disagree with 
those of the adult study, which did not identify significant correlations 
between time of scan and effective connectivity parameters, but iden-
tified correlations with signal variability. Although effectivity connec-
tivity was not estimated in our study, extensive and consistent (across 
runs) associations were estimated between resting-state connectivity 
with scan time parameters. fMRI-based connectome studies in adults or 
children typically do not account for time of scan. Findings from our 
study and as well as prior work suggest that at least scan time-of-day 
may significantly contribute to inter-individual variability of topologi-
cal estimates, which is amplified in children. Therefore, it is important to 
assess whether this omission may impact estimated associations be-
tween functional connectivity (or other topological properties) and 
cognitive performance, and consequently lead to incorrect inferences. 
We, thus, examined correlations between performance in each of the 
tasks in the ABCD neurocognitive battery and properties of individual 
networks. The majority of identified correlations between topological 
properties and cognitive measures were not affected by the inclusion or 
exclusion of scan time parameters. However, there were a few 

exceptions. Performance in the Matrix Reasoning task (which measures 
fluid reasoning, but also visuospatial ability and visual sequencing) was 
negatively correlated with resting-state connectivity within the visual 
network and connectivity between this network and the rest of the brain, 
i.e., higher connectivity in this network at rest was linked with lower 
performance in the task. Previous work has identified negative corre-
lations between resting-state networks, including the visual network, 
and performance in this task (Fraenz et al., 2021). Higher connectivity at 
rest could imply lower flexibility of the functional neuroarchitecture to 
facilitate rapid recruitment of task-positive networks, particularly in 
tasks measuring flexibility and fluid intelligence. When all three scan 
time parameters were included in models, the correlation between 
performance in this task and connectivity between the visual network 
and the rest of the brain was eliminated, suggesting that scan time ef-
fects may partly explain differences in resting-state connections between 
this and other networks, and not performance in the task (which was 
performed outside of the scanner). This finding also raises the question 
of potentially incorrect inference when the confounding effects of scan 
time parameters are not accounted for. In contrast, the correlation be-
tween connectivity within the visual network and task performance was 
unaffected by the inclusion of scan time variables. 

Modularity of bilateral cerebellar and left somatomotor networks 
was positively associated with performance in the Pattern Comparison 
Processing Speed task, which assesses processing speed and information 
processing. Brain network modularity has been previously correlated 
with both information processing and associated speed, and their 
cognitive correlates (Bertolero et al., 2015), but not necessarily global 
measures such as number and/or size of modules (Hilger et al., 2017). 
When models were adjusted for all three scan time parameters, the as-
sociation between task performance and modularity in the left soma-
tomotor network was no longer significant. Again, this raises the 
question of incorrect inference, if scan time parameters are ignored. In 
contrast, the correlation between modularity of the cerebellar network 
and task performance was unaffected by the inclusion of scan time pa-
rameters. Together, findings from these analyses suggest that despite 
some invariance of connectome-cognitive performance associations to 
scan time effects, in some cases the latter may be significant and sub-
stantially change findings and consequently inference. Therefore, it is 
important to account for scan time parameters, particularly time-of-day, 
given its extensive associations with topological parameters across 
networks. 

Despite its many strengths, including the size of this investigation 
which is sufficiently large to capture the adolescent brain’s circuit het-
erogeneity, this study also had some limitations. First, information on 
typical sleep habits was available, but more granular information on 
sleep length the night before the scan was not. Thus, it was impossible to 
adjust for it. However, all analyses were adjusted for typical youth sleep 
length reported in the Sleep Disturbance Scale for Children. In addition, 
measurements of other processes that would correlate with time of scan 
or independently impact fMRI signals, such as cardiovascular function 
and metabolic/hormonal variations were not available. Although it is 
possible to measure heart rate in the scanner, measuring metabolic and 
hormonal changes is much more difficult. In addition, a retrospective 
investigation is always limited by the scientific decisions and data 
collection protocol of the original study. Although the ABCD collects 
extensive data across multiple processes and domains, some types of 
data were not collected. However, a future study focusing on the smaller 
subset of participants with actigraphy data prior to an fMRI scan could 
investigate scan time effects while adjusting for sleep length before the 
scan and heart rate (at least patterns, if actigraphy is not collected in the 
scanner). Finally, effects of time-of-week and time-of-year were assessed 
at a coarse level, comparing participants scanned during school days vs 
weekend, and school year vs summer vacation. However, other un-
measured factors that could impact the week dichotomization and time- 
of-week effects, such as weekend academic or other activities that would 
require a week-like schedule. In addition, a 5-day school week was 
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assumed for all youth, which may not be accurate for all, given that a 
small group of participants were homeschooled, with potentially 
different schooling schedules. Finally, the dichotomization of school 
year vs summer vacation was based on a typical public school calendar 
in the area of each ABCD site. However, participants were eligible to be 
scanned at a site if they lived within 50 miles from it. Therefore, without 
school-specific calendar information, this dichotomization may be 
incorrect for some participants. More granular information was, how-
ever, not available. It is, therefore, possible that some of the time-of- 
week and time-of-year effects may be under/overestimated. In 
contrast, scan time-of-day was accurately recorded for each participant. 

This first-of-its kind study, based on a historically large sample of 
over 4000 youth that captures the inherent variability of the early 
adolescent brain, makes a significant contribution towards improved 
knowledge of confounding effects of fMRI scan timing on estimates of 
topological properties and signal variability. It provides first evidence 
that scan time-of-day, time-of-week and time-of-year may have exten-
sive effects on resting-state properties of developing connectomes, 
across spatial scales, likely as a result of complex daily, circadian and 
seasonal fluctuations of underlying processes and physiological factors 
that modulate intrinsic fluctuations of BOLD activity. It also highlights 
that time of scan has the most spatially widespread effects (and later 
scan times negatively affect estimates of topological properties), and 
impacts temporal fluctuations of fMRI signals, but potentially differently 
than in adults. In youth with incompletely developed brain circuits that 
undergo significant topological changes, particularly during periods of 
heightened maturation such as adolescence, the timing of fMRI scanning 
may play a significant role in the variability of their connectomes. The 
resting-state functional circuitry is considered the backbone of the 
brain’s neuroarchitecture, and networks such as the DMN that are active 
at rest play a ubiquitous role in cognitive function. Scan timing may thus 
impact not only resting-state network topologies but their relationships 
with cognitive outcomes. Findings from this study suggest that, although 
several of these relationships may be unaffected by when the scan is 
performed, for some tasks ignoring the effects of scan time parameters 
can lead to incorrect inferences, and spurious correlations that are 
influenced by scan time. Our results also point to the heterogeneity but 
also vulnerability of incompletely maturated functional circuits in 
adolescence, and complex interrelated factors such as normal daily 
metabolic and cardiovascular variations, but also sleep length, sleepi-
ness and fatigue that may impact their topological organization across 
scales. Together these findings highlight the importance of adjusting for 
scan time parameters in fMRI analyses at the signal, network and/or 
cognitive levels, in order to increase robustness, reduce variability and 
maximize the generalization of neuroimaging findings in pediatric 
studies. 
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