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ARTICLE INFO ABSTRACT

Keywords: Metabolic, hormonal, autonomic and physiological rhythms may have a significant impact on cerebral hemo-
Brain dynamics and intrinsic brain synchronization measured with fMRI (the resting-state connectome). The impact of
Development

their characteristic time scales (hourly, circadian, seasonal), and consequently scan timing effects, on brain to-
pology in inherently heterogeneous developing connectomes remains elusive. In a cohort of 4102 early ado-
Scan timing lescents with resting-state fMRI (median age = 120.0 months; 53.1 % females) from the Adolescent Brain
Resting-state networks Cognitive Development Study, this study investigated associations between scan time-of-day, time-of-week
Topological properties (school day vs weekend) and time-of-year (school year vs summer vacation) and topological properties of resting-
Connectome state connectomes at multiple spatial scales. On average, participants were scanned around 2 pm, primarily
during school days (60.9 %), and during the school year (74.6 %). Scan time-of-day was negatively correlated
with multiple whole-brain, network-specific and regional topological properties (with the exception of a positive
correlation with modularity), primarily of visual, dorsal attention, salience, frontoparietal control networks, and
the basal ganglia. Being scanned during the weekend (vs a school day) was correlated with topological differ-
ences in the hippocampus and temporoparietal networks. Being scanned during the summer vacation (vs the
school year) was consistently positively associated with multiple topological properties of bilateral visual, and to
a lesser extent somatomotor, dorsal attention and temporoparietal networks. Time parameter interactions sug-
gested that being scanned during the weekend and summer vacation enhanced the positive effects of being
scanned in the morning. Time-of-day effects were overall small but spatially extensive, and time-of-week and
time-of-year effects varied from small to large (Cohen’s f < 0.1, Cohen’s d<0.82, p < 0.05). Together, these
parameters were also positively correlated with temporal fMRI signal variability but only in the left hemisphere.
Finally, confounding effects of scan time parameters on relationships between connectome properties and
cognitive task performance were assessed using the ABCD neurocognitive battery. Although most relationships
were unaffected by scan time parameters, their combined inclusion eliminated associations between properties of
visual and somatomotor networks and performance in the Matrix Reasoning and Pattern Comparison Processing
Speed tasks. Thus, scan time of day, week and year may impact measurements of adolescent brain’s functional
circuits, and should be accounted for in studies on their associations with cognitive performance, in order to
reduce the probability of incorrect inference.

Adolescence
fMRI

1. Introduction become an indispensable tool in Neuroscience research, and has led to
unprecedented discoveries on the brain’s functional organization,

Over the last three decades since its discovery (Kwong, 1992, fundamental mechanisms that facilitate information processing, and
Ogawa, 1992), functional magnetic resonance imaging (fMRI) has their relationships with cognition across domains (Glover, 2011;

* Correspondence author at: Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA 02115, USA.
E-mail address: caterina.stamoulis@childrens.harvard.edu (C. Stamoulis).

https://doi.org/10.1016/j.neuroimage.2023.120459
Received 23 June 2023; Received in revised form 6 November 2023; Accepted 14 November 2023

Available online 15 November 2023
1053-8119/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).


mailto:caterina.stamoulis@childrens.harvard.edu
www.sciencedirect.com/science/journal/10538119
https://www.elsevier.com/locate/ynimg
https://doi.org/10.1016/j.neuroimage.2023.120459
https://doi.org/10.1016/j.neuroimage.2023.120459

L. Huet al

Bandetti, 2012; Price, 2012; Huettel, 2012). To date, almost 15,000
publications listed in PubMed are based on this modality. Beyond
task-based research to elucidate the brain correlates of individual
cognitive processes and system-specific functional networks, a large
number of fMRI studies have also investigated the brain at rest, and large
networks, including the Default-Mode Network (DMN), that are active
in this state and play a ubiquitous role in cognitive function (Biswal
et al., 1995; Raichle et al., 2001; Greicius et al., 2003; Fox et al., 2005;
Fair et al., 2008; Van Den Heuvel et al., 2010; Calhoun et al., 2012;
Smith et al., 2013, among many others). fMRI-based research continues
to rapidly grow, not only as a function of technological advances in
neuroimaging, but also in applications (Matthews et al., 2006; Poldrack,
2012; Calhoun et al 2014; Preti et al., 2017). fMRI can play an important
role in elucidating brain correlates of neurological, neuro-
developmental, and neuropsychiatric disorders (Connelly, 1995; Rubia,
1999; Liegeois, 2004; Greicius et al., 2004; Vaidya et al., 2005; Gotman
et al., 2006; Jezzard & Buxton, 2006; Stam et al., 2007; Bassett et al.,
2008; Lynall et al., 2010; Chen et al., 2011; Dichter, 2012; Cortese et al.,
2012; Itahashi, 2014; Hernandez et al., 2015; Walter et al., 2009,
Luijten et al al, 2017 among many others). There is also growing evi-
dence of its potential for facilitating drug discovery (Borsook, 2006;
Wise & Tracey, 2006; Carmichael et al., 2018; Nathan & Bakker, 2021).
Thus, given the wide utility of fMRI in basic and clinical research, and
current replication crisis in the Neurosciences, it is critical to system-
atically investigate sources of intra- and inter-individual fMRI vari-
ability that may significantly contribute to differences between brains or
snapshots of activity within the same brain, e.g., in fMRI resting-state or
task-related runs, that are unrelated to the process or system of interest.

1.1. Sources of fMRI variability and confounding factors

Significant intra- and inter-individual fMRI signal variability has
been reported in adults and children, and has been associated with
highly variable estimates of functional and effective brain connectivity
and other topological properties (Van Horn et al., 2008; Mueller et al.,
2012; Baldassarre et al., 2012; Dubois & Adolphs, 2016; Liao et al.,
2017; Herting et al., 2018; Foulkes & Blakemore 2018; Easson &
Meclntosh, 2019; Xu et al., 2019). This variability does not reflect just
random BOLD fluctuations (noise), but has been attributed to the
inherent heterogeneity of the brain’s resting state and/or cognitive re-
sponses (Garrett et al., 2010; Grady & Garrett, 2014; Geerligs et al.,
2015; Seghier & Price, 2018). fMRI signal variability often makes it
difficult to reliably infer hemodynamic correlates of cognitive perfor-
mance and/or topological properties of task- or resting-state networks
from individual runs or sessions (McGonigle et al., 2000; Smith et al.,
2005; Raemaekers et al., 2012). Although reliable connectivity mea-
sures have been reported (Aron et al., 2006; Chen et al., 2015; Abrol
et al., 2017; Herting, 2018), statistical variability as a function of
experimental conditions even in the resting-state (e.g., eyes open vs eyes
closed) has also been reported (Patriat et al., 2013). In incompletely
maturated brains, and consequently noisy circuits, intra- and
inter-individual variability of fMRI signal and functional connectome
estimates is likely to be higher that in adults, as a result of the in-
dividuality of neural development, and genetic, physiological, envi-
ronmental, and unique experiential factors that contribute to it
(McIntosh et al., 2010; Gao et al., 2014; Xu et al., 2019).

In order to separate sources of fMRI signal variability that are rele-
vant to the scientific question of interest from unrelated contributions
(Airan et al., 2016), analyses are often controlled for multiple factors,
beyond demographics and/or clinical variables. These may include sleep
duration, BMI, caffeine consumption, nicotine, eye fixation during the
scan, respiration-related fluctuations, vascular effects, movement in the
scanner, and scan length (Birn et al., 2006; Rack-Gomer & Liu, 2012;
Birn et al., 2013; Murphy et al., 2013; Patriat et al., 2013; Duncan &
Northoff, 2013; Arial et al., 2016; Curtis et al., 2016; Tsvetanov et al.,
2021; Brooks et al., 2021; Sjuls et al., 2022; Chen et al., 2023). However,
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other potentially important confounders, such as scan acquisition
time-of-day, chronotype (day-night phase preference) and/or seasonal
effects are not usually controlled for in fMRI analyses. While information
on chronotype and related factors may not be generally available, unless
specifically measured, the date and time of scan are always recorded.

The circadian rhythm, sleep-wake cycle, ambient light, and physio-
logical states, (such as alertness, arousal, sleepiness and fatigue) impact
fMRI signals, estimates of functional and effective networks, and
cognitive performance across the lifespan. Prior work has identified
time-of-day fluctuations in multiple cognitive processes, including
attention, executive function, inhibitory control and memory and their
neural substrates (Anderson & Revelle, 1994; May & Hasher, 1998;
Valdez et al., 2005; May et al., 2005; Schmidt et al., 2007; Gorfine &
Zisapel, 2009; Marek et al., 2010; Width et al., 2011; Duyn, 2011; Park
et al., 2012; Gaggioni et al., 2014; Anderson et al., 2014; Jiang et al.,
2016; Facer-Childs et al., 2019; Barner et al., 2019; Smith et al., 2021;
Farahani et al., 2021, 2022; Gaggero & Tommasi, 2023). Studies have
also identified time-of-day and diurnal effects on functional connectivity
across the brain and in individual networks, particularly the DM and
sensorimotor networks, which is highest in the morning and progres-
sively decreases throughout the day (Blautzik et al., 2013; Hodkinson
et al., 2014; Orban et al., 2020). A recent study examined both func-
tional connectivity and other topological properties of brain networks
(Farahani et al., 2022). It identified increased small-worldness, assor-
tativity as a function of time of day, higher integration of functional
networks in the evening (compared to morning), regional changes in
areas of the DMN, frontoparietal, attention and somatomotor networks,
and high connectedness in areas of ventral attention and visual networks
in the morning, and those of the somatomotor network in the evening.
Another recent large-scale study based on fMRI data from the Human
Connectome Project found significant time-of-day effects on the brain’s
hemodynamic response function but not on effective connectivity
(Vaisvilaite et al., 2022), partly as a result of metabolic variations
throughout the day (Shannon et al., 2013).

Beyond metabolic variations, other related factors may contribute to
time-of-day effects on fMRI signals. These include sleep inertia, sleepi-
ness and fatigue. Sleep inertia, the temporary physiological state asso-
ciated with decreased alertness, cognitive performance and
sensorimotor function upon awakening, has also been associated with
changes in functional connectivity. In individuals who do not obtain
sufficient sleep, it can linger for up to two hours after awakening
(Jewett et al., 1999), and may significantly affect fMRI signals in those
scanned within this period. Prior studies have reported brain-wide ef-
fects of sleep inertia, particularly loss of functional segregation between
the DMN and task-positive dorsal and ventral attention, and sensori-
motor networks (Vallat et al., 2019), and decreased functional connec-
tivity in the DMN, dorsal attention, and frontoparietal networks (Chen
et al., 2020). Independently of sleep inertia, sleepiness during the scan
may also impact connectivity, though the direction of association may
vary between regions. Prior studies have reported positive associations
between sleepiness and functional connectivity the DMN, as well as vi-
sual and sensorimotor networks (Stoffers et al., 2015), but a negative
association with thalamocortical resting-state functional connectivity
(Killgore et al., 2015). Fatigue, which may also be correlated with the
time of scan acquisition, can also impact fMRI signals. Prior studies have
shown topological changes as a function of task-related (and thus
short-term) fatigue (Sun et al., 2014), and the existence of a ‘fatigue
network’, which involves the striatum, ventromedial and dorsolateral
prefrontal cortices, and the anterior insula (Wylie et al., 2020). Cogni-
tive fatigue was correlated with decreased connectivity in elements of
this network, but increased connectivity between them and other pos-
terior areas.

1.2. Limitations of prior research on fMRI timing and related effects

Most prior studies examining the impact of scan acquisition timing
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on fMRI signal and connectivity variability (and resulting inter-
individual differences), have focused on adults. Although brain devel-
opment is inherently highly heterogeneous, few if any studies have
focused on scan timing effects on youth connectomes and fMRI signals.
Factors such as sleepiness, sleep inertia and fatigue, which partly
correlate with the acquisition time-of-day, may have a significant impact
on fMRI signals in children. Other timing parameters such as scanning
during a school day vs weekend and/or school year vs summer vacation
may also contribute to intra- and inter-individual variability of fMRI
signals and topological properties, as the result of sleep duration or
circadian phase variability. None of these time effects have been sys-
tematically investigated in children. Given that they may confound and
contribute to the heterogeneity of developing connectomes, it is
important to systematically investigate them and, if significant, control
for them in analyses. This is particularly important in neuroimaging
studies focusing on adolescence, a period of heightened neural matu-
ration and profound metabolic, physiological, hormonal and circadian
changes (Crowley et al., 2007).

1.3. Study goals

Leveraging the historically large and neurodevelopmentally hetero-
geneous cohort of the Adolescent Brain Cognitive Development (ABCD)
study (Casey et al., 2018), this first-of-its kind (in size and focus on
children) study systematically investigated potential acquisition timing
correlates of resting-state fMRI signals and estimates of topological
properties in early adolescents. In a cohort of 4102 youth with neuro-
imaging and neurocognitive testing at the ABCD baseline assessment (i.
e., in pre/early adolescence), this study examined correlations between
scan time-of-day and topological parameters, as well as fMRI signal
fluctuations, and also compared these parameters in participants scan-
ned during a school day vs the weekend, and those scanned during the
school year vs summer vacation. It also investigated the interaction of
timing parameters and their coupled associations with topological and
signal parameters . The study hypothesized that time of scanning has a
significant impact on signal and connectome properties, as a result of
underlying metabolic and cardiovascular variations during the day, as
well as physiological changes associated with sleep patterns, alertness
and/or fatigue. It also hypothesized that these properties vary signifi-
cantly between participants scanned during the weekend vs those
scanned during the week, as a result of exogenous and endogenous
factors, including social jet lag (which was, however, not assessed at the
ABCD baseline), and similarly between participants scanned during the
school year vs during the summer vacation, partly as a result of seasonal
differences in human brain activity (Meyer et al., 2016), but also other
complex and potentially interrelated factors, such as light exposure and
sleep patterns.

The impact of fMRI acquisition time variables and their interactions
on topological properties was examined across spatial scales of organi-
zation, from individual regions, to individual large-scale networks and
the whole connectome. Measures of spontaneous signal fluctuation
across each fMRI run were also analyzed. Finally, to directly assess the
confounding effects of scan timing on associations between topological
connectome properties and cognitive function, statistical analyses
examined these associations using the ABCD neurocognitive battery
with and without adjustments for scan time variables, with the ultimate
goal to elucidate their effects on inference.

2. Methods
2.1. Participants

This study involves secondary analyses of publicly shared,
completely anonymized data. The work described has been carried out

in accordance with The Code of Ethics of the World Medical Association
(Declaration of Helsinki) for studies involving human subjects. In
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addition, the ABCD is a multisite study that relies primarily on a central
reseach protocol, reviewed and approved by the Institutional Review
Board (IRB) at the University of California, San Diego. A few sites rely on
the same protocol but have received approval from their local IRB
(Auchter et al., 2018). In addition, the ABCD Coordinating Center has
established a Bioethics and Medical Oversight advisory group for the
study, to address ethical concerns associated with research findings
(Clark et al., 2018). The present study was approved by the Institutional
Review Board at Boston Children’s Hospital. Resting-state (rs) fMRI,
anthropometric, demographic, physiological, and behavioral data
(release 4.0) from the baseline ABCD study cohort were analyzed. All
data are publicly available through the National Institute of Mental
Health Data Archive (NDA) (2023).

Participants were excluded based on diagnoses of Attention-Deficit/
Hyperactivity Disorder, Autism Spectrum Disorder, and/or bipolar dis-
order, since prior work has reported abnormal functional connectivity in
individuals with these disorders (Cherkassky et al., 2006; Monk et al.,
2009; Assaf et al., 2010; Miiller et al., 2011; Konrad & Eickhoff, 2010;
Chase & Phillips, 2016). In addition, participants with clinical findings
in their structural MRI and/or poor quality rs-fMRI data (based on
quality controls set by the ABCD study and additional quality criteria set
by our group) were also excluded. A sample of n = 4102 [1925 (46.9 %)
males, 2177 (53.1 %) females] met all criteria for inclusion. Median
sample age was 120.0 months (IQR = 13.0). Race and ethnicity distri-
butions [2557 (62.34 %) white, 1480 (36.1 %) from a racial minority
group, 65 (1.60 %) missing; 933 (22.8 %) Hispanic, 3120 (76.1 %)
non-Hispanic, 49 (1.20 %) missing] were similar to those of the larger
ABCD cohort. Sample demographic information is provided in Table 1.

2.2. Temporal measures of fMRI acquisition

Three measures associated with fMRI acquisition were investigated,
and were extracted from the MRI QC Raw report: (a) Time-of-day (in
hours), rounded to the nearest hour in which scanning began (variable
in the range 8-20 in the dataset); (b) Time-of-week, a dichotomous var-
iable (1 = school day, 2 = weekend); (c) Time-of-year, also a dichoto-
mous variable (1 = school year, 2 = summer vacation). School year was
assumed to be September 1 - June 15, and summer vacation June 16 -
August 31, based on an average public school schedule for regions
within 50 miles from the ABCD sites. The specific city-level public school
school year schedule in areas where each ABCD study site is located is
provided in Supplemental Table S1.

2.3. Additional variables

All analyses were adjusted for age, sex, family income, BMI, screen
time and physical activity. In the same cohort, BMI and physical activity
have been correlated with topological properties of the resting-state
connectome (Brooks, 2021, 2023). In addition, propensity weights
provided by the ABCD were used to adjust all analyses for sampling
differences between the 21 study sites. Analyses also included race and
ethnicity as dichotomous variables (1 = white, 0 = nonwhite; 1 = His-
panic, 0 = non-Hispanic). The unbalanced distribution of race and
ethnicity in the ABCD study (predominantly white and non-Hispanic)
limits more granular comparisons of racial and ethnic groups. BMI
was calculated by multiplying weight (in 1bs) by 703 and dividing by
height? (in inches); height and weight data were extracted the ABCD
Youth Anthropometrics instrument. Physical activity was measured as
the number of days per week that the child was physically active for at
least 60 min (this information was extracted from the ABCD Youth Risk
Behavior Survey Exercise Physical Activity instrument). Screen time was
calculated as total minutes per week spent on non-school-related ac-
tivities (this information was extracted from the Youth Screen Time
Survey).
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Table 1

Sample demographic information, screen time, physical activity, and sleep
length. *The ‘other’ racial category included participants from smaller racial
groups (Alaska Native, American Indian, Native Hawaiian, Guamanian, Samoan,
other Pacific Islander, Asian Indian, Chinese, Phillipino, Japanese, Korean,
Vietnamese, other Asian), those who reported ‘other race’, and those who
selected more than 2 racial groups in the ABCD study.

N = 4102
Age (mo) Median (IQR) 120.0 (13.0)
Range [107.0,133.0]
Missing (N (%)) 0 (0 %)
Sex Female 2177 (53.07
%)
Male 1925 (46.93
%)
Missing (N (%)) 0 (0 %)
Race White 2557 (62.33
%)
Black 851 (20.74 %)
Asian 287 (7.00 %)
Other 342 (8.34 %)
Missing (N (%)) 65 (1.59 %)
Ethnicity Hispanic 933 (22.74 %)

Non-Hispanic 3120 (76.06
%)

Missing (N (%)) 49 (1.20 %)

Median (IQR)
Missing (N (%))

Screen Time 1050 (923.75)

3(0.07 %)

BMI Median (IQR) 17.546 (4.59)
Missing 11 (0.27 %)
Physical activity Median (IQR) 303
Missing 11 (0.27 %)

8-9h (2h)
1 (0.024 %)

Sleep length Median (IQR)

Missing (N (%))

902 (21.98 %)
1260 (30.72
%)

1168 (28.48
%)

772 (18.82 %)
492 (11.99 %)
542 (13.21 %)
1000 (24.38
%)

1212 (29.55
%)

512 (12.48 %)
344 (8.39 %)

Pubertal Stage Pre-puberty

Early puberty

Mid puberty or later stage
Missing (N (%))

<25,000

25,000-49,999
50,000-99,999
100,000-199,999

>=200,000
Missing (N (%))

Primary Caregiver
Education

Advanced degree (Master’s professional 1126 (27.45
(MD, JD, etc.) and doctoral degrees) %)

Bachelor’s degree 1184 (28.87
%)

457 (11.14 %)
669 (16.31 %)
379 (9.24 %)
284 (6.92 %)
3 (0.07 %)

Associate degree

Some College

High School/GED

Did Not Graduate High school
Missing (N (%))

2.4. Resting-state fMRI processing and connectivity estimation

2.4.1. Preprocessing

Structural MRI (T1w) and rs-fMRI data were acquired with 3.0T
Siemens (n = 2508, 61.14 %), GE Medical Systems (n = 1118, 27.26 %),
and Phillips Medical Systems (n = 476, 11.60 %) scanners. Repetition
time (TR) for fMRI (2.4 mm isotropic) was 0.8 s. Each participant had up
to four 5-min long scans. All data underwent two levels of preprocessing.
First, they were initially minimally preprocessed by the dedicated Data
Analysis, Informatics & Resources Center (DAIRC) of the ABCD study
(Hagler et al., 2019). Preprocessing included correction for BO distor-
tion, motion and quality control, based on which some brains were
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excluded from further analysis. Then, data were also processed using the
Next Generation Neural Data Analysis (NGNDA) platform Next-Gener-
ation Neural Data Analysis (NGNDA) platform (2021). Additional steps
involved co-registration to structural MRI, normalization to MNI space,
motion regression, initial frame removal, additional frame removal and
interpolation to suppress artifacts, stopband filtering in the range
0.28-0.46 Hz to supress cardiorespiratory and other artifacts, and
bandpass filtering in the range 0.01-0.25 Hz, which contains physio-
logically relevant BOLD signal energy (Yuen et al., 2019). These steps
were followed by spatial dimensionality reduction (using the
Schaefer-1000 cortical atlas (Schaefer et al., 2018), as well as the Mel-
bourne subcortex (Tian et al., 2020) and Diedrichsen (Diedrichsen et al.,
2009) cerebellar atlases) by averaging voxel time series within each
atlas parcel. Additional signal denoising was then performed at the
parcel level, using signal decomposition to identify and suppress con-
tributions to the fMRI time series that are unrelated to BOLD activity. To
account for signal amplitude differences associated with different
scanners, fMRI signals were normalized by a brain-specific global me-
dian, to ensure that amplitudes were comparable across brains.
Additional details on fMRI processing using the NGNDA platform are
described in prior publications using the same platform (Brooks et al.,
2021). fMRI runs with more than 10 % of frames censored for motion
(based on a displacement threshold of 0.3 mm) were excluded from
further analysis. At rest, functional network connectivity is overall low,
except in the DMN. Thus, the best-quality run was selected as the run
with the lowest median connectivity. The number of frames censored for
motion in the best-quality fMRI run from each participant was low
(median percent of frames censored for motion = 1.87 %, IQR = 4.53
%). To ensure reliability of the findings, the second best-quality fMRI
run was analyzed from a subset of n = 2991 participants with at least
two runs of adequate quality for analysis (median percent of frames
censored for motion = 1.87 %, IQR = 4.27 %). Best- and second
best-quality runs are hereafter referred to as first and second runs.

2.4.2. Estimation of resting-state topological properties

Resting-state connectivity was estimated as the peak -cross-
correlation between each pair of fMRI parcel signals. In previous work
(Brooks et al., 2021), an information theoretic approach was also used to
estimate connectivity as mutual information between pairs of signals.
Statistically similar patterns were obtained with both methods.
Cohort-wide statistical connectivity thresholds were then calculated and
the moderate outlier (median + 1.5*IQR) was empirically selected
among others as the most adequate one (under the assumption that the
brain at rest is overall weakly coordinated, with the exception of select
networks, such as the DMN). This threshold was used to obtain binary
and weighted adjacency matrices (setting values below the threshold to
zero). Based on the median of nonzero correlation values in these ad-
jacency matrices, another criterion for quality was set to eliminate fMRI
runs with artifactually high connectivity across brain regions (possibly
due to residual motion-related effects).

Topological network properties were calculated at three spatial
levels, using binary and/or weighted adjacency matrices: the entire
brain connectome, individual networks, and individual regions
(network nodes). Analyzed networks included the large-scale resting-
state networks delineated in Yeo (2011), as well as additional networks
for individual subcortical structures, including the thalamus, amygdala,
hippocampus, basal ganglia, and cerebellum. Estimated connectome-
and network-level topological properties included efficiency, global
clustering, median connectivity (within each network as well as between
the network and the rest of the brain), modularity, network robustness
(based on the natural connectivity measure, which corresponds to the
average eigenvalue of the binary adjacency matrix; Wu et al., 2009),
small worldness (estimated only at the connectome level) and topolog-
ical stability (based on the largest eigenvalue of the adjacency matrix
Restrepo & Hunt, 2007). Together, these properties describe the topo-
logical organization of the connectome (clustering, modularity, small
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worldness), strength of its local and long-range connections (median
intra- and inter-network connectivity), and resilience to perturbations
(robustness and stability). Estimated local (node-level) topological
properties included local clustering, centrality, and degree. Centrality
reflects the topological importance of a node in the network, node de-
gree measures the number of its connections, and local clustering
measures local segregation, based on connections between each node’s
neighbors. Algorithms from the Brain Connectivity Toolbox (Rubinov
and Sporns, 2010), and the NGDA platform were used to estimate these
properties.

2.4.3. Estimation of fMRI signal variability
Temporal fluctuations of resting-state fMRI signals were quantified

g i—yml
o
Ym

with y; the signal, n its length and y;, its median) averaged over the
entire brain, individual hemispheres, and individual networks.

by the absolute coefficient of signal dispersion (defined as:

B

2.5. Statistical analysis

Multivariate linear regression models tested associations between
the independent variables of interest, i.e., fMRI time-of-day, time-of-
week, and time-of-year, and topological brain properties at the three
scales (the dependent variables). Model-based statistical associations
were considered significant only if the regression coefficient for the
parameter of interest, model intercept, and overall model met the sig-
nificance level, which was set at o = 0.05. P-values were adjusted for the
False Discovery Rate (FDR) using the approach in (Benjamini & Hoch-
berg, 1995). For whole-brain and network- level models, FDR correc-
tions were made across properties within each network (or the entire
connectome). For node-level models, and each topological property,
FDR corrections were made across nodes within a particular network.
Missing data were assumed to be missing at random. In all analyses, all
participants had topological properties and signal fluctuation data (the
outcomes), and time of acquisition parameters (the variables of inter-
est). Data for most other independent variables were missing for <5 % of
the cohort; pubertal stage information was missing for ~19 % of the
cohort, but this parameter was only included in secondary analyses and
models.

Each fMRI timing parameter of interest (the primary independent
variable) was individually included in models. Then, models were
augmented by including combinations of 2 or all 3 timing variables.
Finally, additional sets of models also included (2-way and 3-way) in-
teractions between these variables (i.e., time-of-day*time-of-week,
time-of-day*time-of-year, time-of-week*time-of-year and time-of-
day*time-of-week*time-of-year). In addition to standardized regres-
sion coefficients (when appropriate), Cohen’s f and d statistics were also
used to estimate effect sizes for time-of-day (continuous variable) and
time of week and year (binary variables), respectively, and regression
coefficients were standardized when appropriate.

An additional secondary analysis was conducted to further elucidate
the time-of-day scanning effects on connectome properties. Based on the
median time of scanning (rounded to 14:00), the cohort was separated
into two sub-cohorts: one including participants scanned before 14:00
and the other including those scanned at or after 14:00. Then, primary
analyses were repeated for each sub-cohort (these analyses focused only
on the best-quality fMRI run for each participant).

A set of linear regression models was also developed to investigate
associations between scan acquisition time parameters and fMRI signal
variability. The absolute coefficient of dispersion was the dependent
variables in these models, and the same confounders and covariates as in
previous models were included. The predictors of interest were the in-
dividual fMRI timing parameters.

Finally, an analysis was conducted to assess the impact of temporal
acquisition effects on correlations between brain and cognitive out-
comes. Specifically, linear regression models were developed to assess
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the impact of including scan time-of-day, time-of-week, time-of-year as
individual and combinatorial adjustments on associations between to-
pological brain properties and cognitive performance in the NIH neu-
rocognitive battery set of tasks of the ABCD study (Luciana et al., 2018).
In these models, cognitive task scores were the dependent variables and
topological properties the independent variables of interest. Models
were developed and compared with versus without the inclusion of scan
acquisition timing parameters.

All analyses were conducted using the software MATLAB (R2021b,
Mathworks, Inc.). Figures were created with software packages MRI-
CroGL (NITRC.org) and BrainNet Viewer (Xia et al., 2013).

3. Results

Over 50 % of participants were in pre- or early adolescence (52.7 %),
had median screen time of over 17 h/week (median = 1050.0 min, IQR
= 923.8 min), overall slept less than the recommended amount for
optimal development (median = 8-9 h, IQR = 2 h), had median BMI =
17.5 (IQR = 4.6), and were on average active (for at least 60 min/day) 3
days/week (median = 3 days, IQR = 3 days). Participant characteristics
and sample statistics are provided in Table 1. Median time-of-day of the
fMRI resting-state scan was 14:00. The majority of participants were
scanned during the week [n = 2499 (60.92 %)], and less than 40 % were
scanned during the weekend [1603 (39.08 %)]. In addition, almost three
quarters of participants were scanned during the school year [n = 3059
(74.57 %)], and about a quarter during the summer break [n = 1043
(25.43 %)]. Participant distributions as a function of scan time variables
are shown in Fig. 1.

There were no statistical differences in scan time-of-day as a function
of race (p > 0.08), ethnicity (p = 0.79) or sleep length (recommended vs
less than recommended amount, p = 0.31). A statistically higher pro-
portion of youth scanned during the week slept less than the recom-
mended amount [1296 (51.86 %) compared to 1203 (48.14 %); p <
0.01], but corresponding proportions of those scanned during the
weekend were statistically similar [778 (48.53 %) slept the recom-
mended amount and 825 (51.47 %) slept less than recommended; p =
0.10]. Among participants scanned during the school year, a statistically
higher proportion slept less than the recommended amount [1596
(52.17 %) compared to 1463 (47.83 %); p < 0.01). Corresponding
proportions of those scanned during the summer vacation period were
statistically similar [518 (49.66 %) slept the recommended amount and
525 (50.34 %) slept less than recommended; p = 0.76]. No other sta-
tistical differences were estimated in groups dichotomized based on
fMRI acquisition time parameters (p > 0.10).

3.1. Correlations between time parameters and topological properties

3.1.1. Connectome-wide associations

Correlations with individual scan time parameters: At the brain-wide
level, only time-of-day was significantly associated with multiple
network properties. Later scanning times were associated with lower
estimates of efficiency, global clustering, topological robustness and
stability, and higher estimates of modularity and small-worldness (p <
0.04) in the brain. These associations were consistent in both rs-fMRI
runs. Effect sizes were overall small (Cohen’s f < 0.10). Model statis-
tics are summarized in Table 2a.

Correlations with multiple scan time parameters: Separate models
included pairs of parameters (i.e., additive models with time-of-day and
time-of-week, time-of-day and time-of-year and time-of-week and time-
of-years), and then all three parameters. These can be interpreted as
examining one time parameter while controlling for the other(s). Time-
of-year was consistently nonsignificant in all models with combinations
that included this parameter (p > 0.05). In models that included time-of-
day and time-of-week, both were statistically associated with multiple
topological properties, but only in the larger sample corresponding to
the first run. Participants measured later in the day and during the week
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Fig. 1. Distributions of fMRI acquisition time-of-day (h), school day vs weekend, school year vs summer vacation.

Table 2a

Statistics of models testing associations between fMRI acquisition time-of-day and brain connectome-wide topological properties, for both analyzed fMRI runs. All
reported p-values have been corrected for false discovery. *Nonsignificant (NS); Confidence Interval (CI)

Time of the day

Statistic Efficiency Global Clustering Median Connectivity Modularity Topological Robustness Small-worldness Topological Stability
Best-Quality fMRI Run

Standardized Beta -0.051 -0.035 NS* 0.064 -0.047 0.055 -0.046

95th % CI [-0.082, -0.020] [-0.067, -0.003) NS [0.033, 0.095] [-0.079, -0.016] [0.023, 0.087] [-0.078, -0.015]
P-value 0.003 0.035 NS <0.001 0.006 0.002 0.006

Cohen’s f 0.051 0.032 NS 0.064 0.046 0.054 0.045

Second Best-Quality fMRI Run

Standardized Beta -0.065 -0.060 NS 0.061 -0.064 0.054 -0.063

95th % CI [-0.102, -0.028] [-0.098, -0.023] NS [0.024, 0.098] [-0.101, -0.027] [0.017, 0.091] [-0.100, -0.025]
P-value 0.002 0.002 NS 0.002 0.002 0.005 0.002

Cohen’s f 0.064 0.058 NS 0.060 0.062 0.051 0.061

had lower estimates of connectome efficiency, global clustering, topo-
logical robustness and stability, and higher estimates of modularity and
small-worldness (p < 0.03). Similar associations for both time parame-
ters were estimated in models that included all three time parameters (p
< 0.05). Model statistics are summarized in Table 2b. Effect sizes were
comparable for the two parameters and overall small (Cohen’s f < 0.10,
Cohen’s d < 0.24). Two- and three-way time parameter interactions
were also examined, but were all nonsignificant at this spatial scale (p >
0.29).

3.1.2. Network-specific associations

Correlations with individual scan time parameters: Time-of-day was
correlated with multiple properties of several networks in both hemi-
spheres, Participants scanned later in the day had lower efficiency,
global clustering, within-network connectivity, topological robustness,
and stability, but higher modularity estimates in bilateral central visual,
dorsal attention and frontoparietal control (p < 0.04). They also had
higher within-network connectivity and modularity (but no other to-
pological differences) in left somatomotor networks, higher modularity
in the bilateral salience network, lower robustness and stability only in
the right salience network, higher modularity in bilateral basal ganglia,
and higher topological robustness and stability in the amygdala (p <
0.05). Time-of-day effects were overall small (Cohen’s f < 0.10).

Similar associations were estimated based on the second fMRI run
was from all participants, along with lower efficiency, global clustering,
connectivity (within- and across- network), robustness, and stability,
and higher modularity in bilateral DM and limbic networks (except
nonsignificant somatomotor or amygdala correlations, p < 0.05,
Cohen’s f < 0.10). In addition, participants scanned during the weekend
had lower within-network connectivity in the left temporoparietal
network and lower efficiency, global clustering, topological robustness,
and stability estimates in the right hippocampus (p < 0.05, Cohen’s d <
0.40). These associations were only estimated in the first fMRI run.

Finally, participants scanned during the school year had lower global
clustering, robustness, and stability, but higher modularity estimates in
left central visual, bilateral temporoparietal, and right dorsal attention
networks. They also had lower connectivity (in- and out-of-network) in
the right somatomotor, dorsal attention and right temporoparietal net-
works, and lower out-of-network connectivity in the left temporopar-
ietal network (p < 0.05, Cohen’s d < 0.82). The estimated associations in
the left visual network were consistent across both fMRI runs. Detailed
model statistics for all network-specific associations with time parame-
ters are provided in Table 3a for the first run and Supplemental Table S2
for the second run. Networks positively or negatively correlated with
each time parameter are shown in Fig. 2.

Correlations with multiple scan time parameters and their interactions:
Overall, the individual parameter associations did not change substan-
tially when controlling for other temporal effects (p < 0.05, Cohen’s f <
0.10). Model statistics for the first and second runs are summarized in
Tables S3 and S4. Networks correlated with multiple time parameters
(examining one while controlling for the other two) are shown in Fig. 2.
Finally, interaction models examined associations between 2- and 3-way
time parameter interactions and network-specific topological proper-
ties. Two-way interactions between time-of-day and time-of-year, time-
of-week and time-of-year, and the 3-way interaction between time-of-
day, time-of-week and time-of-year were consistently correlated with
one (typically connectivity) or more topological properties of bilateral
visual networks (central and/or peripheral; p < 0.05, Cohen’s f < 0.06,
Cohen’s d < 0.96) in both runs. The interaction of time-of-day and time-
of-year was also correlated with connectivity (within and across net-
works) of the right dorsal attention network and multiple properties of
the left dorsal attention network, but only in the second run (p < 0.03,
Cohen’s f < 0.08). The 3-way interaction between time variables was
also associated with all properties (except connectivity) in the bilateral
Default Mode network (p < 0.05, Cohen’s f < 0.10). Across networks,
when significant, 2- and 3-way interactions between time parameters
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Statistics of models testing additive associations between combinations of fMRI acquisition time parameters (pairs and triplet) and connectome-wide topological
properties for both analyzed fMRI runs. Only timing parameters with significant associations are reported. All reported p-values have been corrected for false dis-

covery. *Nonsignificant (NS); Confidence Interval (CI).

Statistic Efficiency Global Median Modularity Topological Small- Topological
Clustering Connectivity Robustness worldness Stability
Time-of-day and Time-of-week
Best-Quality fMRI Run
Cohen’s f 0.061 0.044 NS 0.072 0.057 0.062 0.056
School day vs Weekend Beta -0.040 -0.046 NS 0.037 -0.045 0.037 -0.045
(control for time of day) 95th % CI [-0.072, [-0.079, NS [0.005, [-0.078, -0.013] [0.005, [-0.078, -0.013]
-0.008] -0.013] 0.069] 0.070]
P-value 0.025 0.015 NS 0.029 0.015 0.029 0.015
Cohen’s d 0.125 0.233 NS 0.083 0.183 0.151 0.186
Second Best-Quality fMRI Run
Time of day (control for time of ~ Standardized -0.069 -0.066 NS 0.066 -0.071 0.061 -0.070
week) Beta
95th % CI [-0.108, [-0.105, NS [0.028, [-0.110, -0.032] [0.022, [-0.109, -0.031]
-0.030] -0.027] 0.105] 0.100]
P-value 0.001 0.001 NS 0.001 0.001 0.003 0.001
Cohen’s 0.065 0.061 NS 0.062 0.066 0.056 0.065
Time-of-day and Time-of-year
Best-Quality fMRI Run
Time of day (control for time of ~ Standardized -0.049 NS NS 0.061 -0.045 0.053 -0.044
year) Beta
95th % CI [-0.080, NS NS [0.030, [-0.077, -0.013] [0.021, [-0.076, -0.012]
-0.018] 0.092] 0.084]
P-value 0.005 NS NS 0.001 0.009 0.004 0.009
Cohen’s 0.048 NS NS 0.061 0.043 0.051 0.042
Second Best-Quality fMRI Run
Time of day (control for time of ~ Standardized -0.064 -0.059 NS 0.061 -0.064 0.054 -0.062
year) Beta
95th % CI [-0.102, [-0.097, NS [0.024, [-0.101, -0.026] [0.017, [-0.100, -0.025]
-0.027] -0.022] 0.098] 0.092]
P-value 0.002 0.003 NS 0.002 0.002 0.006 0.002
Cohen’s 0.063 0.067 NS 0.059 0.062 0.051 0.060
Time-of-day and Time-of-Week and Time-of-Year
Best-Quality fMRI Run
Time of day (control for time of ~ Standardized -0.060 -0.046 NS 0.071 -0.058 0.063 -0.057
week and year) Beta
95th % CI [-0.093, [-0.079, NS [0.038, [-0.091, -0.025] [0.029, [-0.090, -0.023]
-0.028] -0.012] 0.104] 0.096]
P-value 0.001 0.008 NS <0.001 0.001 0.001 0.001
Cohen’s 0.058 0.041 NS 0.069 0.054 0.059 0.053
School day vs Weekend Beta -0.038 -0.044 NS 0.034 -0.043 0.034 -0.043
(control for time of day and 95th % CI [-0.070, [-0.077, NS [0.001, [-0.076, -0.010] [0.001, [-0.075, -0.010]
year) -0.005] -0.011] 0.066] 0.0671
P-value 0.039 0.025 NS 0.047 0.025 0.047 0.025
Cohen’s d 0.124 0.231 NS 0.082 0.183 0.150 0.186
Second Best-Quality fMRI Run
Time of day (control for time of ~ Standardized -0.069 -0.065 NS 0.066 -0.071 0.061 -0.070
week and year) Beta
95th % CI [-0.108, [-0.105, NS [0.027, [-0.111, -0.032] [0.022, [-0.109, -0.030]
-0.029] -0.026] 0.105] 0.101]
P-value 0.001 0.002 NS 0.002 0.001 0.003 0.001
Cohen’s f 0.064 0.059 NS 0.061 0.066 0.056 0.065

were positively associated with all topological parameters except
modularity, for which associations were negative. Model results are
summarized in Table 3b. Networks correlated with the 3-way interac-
tion between all time parameters are shown in Fig. 2 (bottom panel).

3.1.3. Regional (node-level) associations

Correlations between time of scan acquisition parameters and
regional brain properties were also examined. Time-of-day was posi-
tively correlated with centrality (i.e., those scanned later in the day had
higher centrality) of nodes in the visual (peripheral) network bilaterally
(p <0.05, p =0.04to 0.07, 95% CI = [<0.01, 0.10]), and was negatively

correlated with centrality in bilateral dorsal attention networks (p <
0.04, p =-0.07 to -0.04, 95% CI = [-0.10, -0.01]). It was also negatively
correlated with local clustering of nodes in bilateral visual (central) and
dorsal attention networks (p < 0.05, p =-0.07 to -0.04, 95% CI = [-0.09,
-0.011), and similarly for node degree (p < 0.05, p = -0.07 to -0.04, 95%
CI = [-0.10, -<0.01]). Positive and negative correlations with time-of-
day are shown in Fig. 3.

Participants scanned during the weekend had lower regional clus-
tering in the right somatomotor network (p < 0.04, p = -0.06 to -0.05,
95% CI = [-0.09, -0.02]). This correlation is shown in Fig. S1. No other
associations were estimated between local topological properties and
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Statistics of models testing associations between fMRI acquisition time parameters and individual network topological properties, for the best-quality fMRI run. All
reported p-values have been corrected for false discovery. Because of the small number of parcels (nodes) corresponding to the amygdala, this structure was treated as
one network comprising both hemispheres. *Nonsignificant (NS); Confidence Interval (CI).

Network Statistic Efficiency Global Median Conn. Median Conn. Modularity Robustness Stability
Clustering (in) (out)
Time-of-day - Left Hemisphere
Visual (Central) Standardized -0.082 -0.078 -0.069 NS* 0.071 -0.080 -0.081
Beta
95th % CI [-0.114, [-0.111, [-0.102,-0.036] NS [0.039, 0.104] [-0.113, [-0.114,
-0.049] -0.046] -0.048] -0.049]
P-Value <0.001 <0.001 <0.001 NS <0.001 <0.001 <0.001
Cohen’s f 0.080 0.076 0.066 NS 0.070 0.078 0.079
Somatomotor Standardized NS NS 0.047 NS 0.041 NS NS
Beta
95th % CI NS NS [0.015, 0.080] NS [0.008, 0.073] NS NS
P-Value NS NS 0.031 NS 0.047 NS NS
Cohen’s f NS NS 0.044 NS 0.037 NS NS
Dorsal Attention Standardized -0.076 -0.071 -0.043 -0.039 0.068 -0.072 -0.073
Beta
95th % CI [-0.108, [-0.103, [-0.075, -0.010] [-0.072, -0.006] [0.036, 0.100] [-0.104, [-0.105,
-0.045] -0.039] -0.041] -0.041]
P-Value <0.001 <0.001 0.012 0.021 <0.001 <0.001 <0.001
Cohen’s f 0.077 0.070 0.039 0.035 0.068 0.072 0.073
Salience/Ventral Standardized NS NS NS NS 0.046 NS NS
Attention Beta
95th % CI NS NS NS NS [0.014, 0.078] NS NS
P-Value NS NS NS NS 0.032 NS NS
Cohen’s f NS NS NS NS 0.044 NS NS
Frontoparietal Control Standardized -0.052 -0.048 NS NS 0.044 -0.050 -0.050
Beta
95th % CI [-0.084, [-0.080, NS NS [0.013, 0.076] [-0.082, [-0.081,
-0.020] -0.016] -0.018] -0.018]
P-Value 0.005 0.006 NS NS 0.008 0.005 0.005
Cohen’s f 0.051 0.046 NS NS 0.042 0.049 0.048
Basal Ganglia Standardized NS NS NS NS 0.052 NS NS
Beta
95th % CI NS NS NS NS [0.019, 0.084] NS NS
P-Value NS NS NS NS 0.013 NS NS
Cohen’s f NS NS NS NS 0.049 NS NS
Time-of-day - Right Hemisphere
Visual (Central) Standardized -0.079 -0.072 -0.064 -0.034 0.055 -0.076 -0.077
Beta
95th % CI [-0.111, [-0.104, [-0.096, -0.031] [-0.067, -0.002] [0.023, 0.087] [-0.108, [-0.109,
-0.046] -0.039] -0.043] -0.044]
P-Value <0.001 <0.001 <0.001 0.040 0.001 <0.001 <0.001
Cohen’s f 0.076 0.069 0.061 0.030 0.052 0.074 0.074
Dorsal Attention Standardized -0.085 -0.071 -0.046 NS 0.077 -0.081 -0.079
Beta
95th % CI [-0.116, [-0.102, [-0.078,-0.013] NS [0.045, 0.109] [-0.113, [-0.111,
-0.054] -0.039] -0.049] -0.0471]
P-Value <0.001 <0.001 0.007 NS <0.001 <0.001 <0.001
Cohen’s f 0.087 0.070 0.043 NS 0.077 0.081 0.079
Salience/Ventral Standardized NS NS NS NS 0.052 -0.038 -0.038
Attention Beta
95th % CI NS NS NS NS [0.020, 0.084] [-0.069, [-0.069,
-0.006] -0.006]
P-Value NS NS NS NS 0.010 0.046 0.046
Cohen’s f NS NS NS NS 0.052 0.035 0.035
Frontoparietal Control Standardized -0.057 -0.051 NS NS 0.039 -0.044 -0.042
Beta
95th % CI [-0.089, [-0.083, NS NS [0.007, 0.070] [-0.076, [-0.076,
-0.026] -0.019] -0.012] -0.012]
P-Value 0.003 0.006 NS NS 0.023 0.016 0.017
Cohen’s f 0.056 0.050 NS NS 0.036 0.072 0.040
Basal Ganglia Standardized NS NS NS NS 0.054 NS NS
Beta
95th % CI NS NS NS NS [0.022, 0.087] NS NS
P-Value NS NS NS NS 0.007 NS NS
Cohen’s f NS NS NS NS 0.052 NS NS
Time-of-day - Other Networks
Amygdala Standardized NS NS NS NS NS 0.048 0.053
Beta
95th % CI NS NS NS NS NS [0.008, 0.088] [0.013,

0.093]

(continued on next page)
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Network Statistic Efficiency Global Median Conn. Median Conn. Modularity Robustness Stability
Clustering (in) (out)
P-Value NS NS NS NS NS 0.041 0.032
Cohen’s f NS NS NS NS NS 0.044 0.049
Time-of-Week - Left Hemisphere
Temporo- parietal Standardized NS NS -0.045 NS NS NS NS
Beta
95th % CI NS NS [-0.077,-0.012] NS NS NS NS
P-Value NS NS 0.047 NS NS NS NS
Cohen’s d NS NS 0.397 NS NS NS NS
Time-of-Week - Right Hemisphere
Hippocampus Standardized -0.060 -0.055 NS NS NS -0.058 -0.053
Beta
95th % CI [-0.101, [-0.096, NS NS NS [-0.100, [-0.095,
-0.019] -0.014] -0.017] -0.012]
P-Value 0.020 0.021 NS NS NS 0.020 0.021
Cohen’s d 0.293 0.310 NS NS NS 0.311 0.341
Time-of-year - Left Hemisphere
Visual (Central) Standardized NS 0.037 NS NS -0.039 0.044 0.042
Beta
95th % CI NS [0.005, 0.070] NS NS [-0.071, [0.012, 0.076] [0.010,
-0.007] 0.074]
P-Value NS 0.040 NS NS 0.037 0.037 0.037
Cohen’s d NS 0.545 NS NS 0.509 0.605 0.572
Temporo- parietal Standardized 0.049 0.038 NS 0.040 -0.038 0.055 0.053
Beta
95th % CI [0.017, 0.081] [0.005, 0.070] NS [0.007, 0.072] [-0.071, [0.023, 0.087] [0.021,
-0.006] 0.085]
P-Value 0.007 0.025 NS 0.025 0.025 0.005 0.005
Cohen’s d 0.667 0.537 NS 0.361 0.577 0.714 0.705
Time-of-year - Right Hemisphere
Somatomotor Standardized NS NS 0.041 0.047 NS NS NS
Beta
95th % CI NS NS [0.009, 0.073] [0.015, 0.079] NS NS NS
P-Value NS NS 0.041 0.031 NS NS NS
Cohen’s d NS NS 0.442 0.560 NS NS NS
Dorsal Attention Standardized 0.037 0.040 0.049 0.046 NS 0.039 0.040
Beta
95th % CI [0.006, 0.068] [0.009, 0.072] [0.017, 0.081] [0.014, 0.078] NS [0.008, 0.071] [0.009,
0.072]
P-Value 0.023 0.019 0.018 0.018 NS 0.019 0.019
Cohen’s d 0.271 0.371 0.637 0.813 NS 0.312 0.328
Temporo- parietal Standardized 0.053 0.062 0.057 0.060 -0.034 NS 0.052
Beta
95th % CI [0.021, 0.085] [0.030, 0.094] [0.025, 0.090] [0.028, 0.092] [-0.067, NS [0.020,
-0.002] 0.084]
P-Value 0.002 0.001 0.001 0.001 0.036 NS 0.002
Cohen’s d 0.624 0.739 0.643 0.656 0.507 NS 0.654

scan acquisition time parameters. To assess reliability of the findings,
analyses were repeated using the second fMRI run. Consistent negative
associations between time-of-day and local properties of bilateral dorsal
attention networks were estimated, as well as additional associations
with centrality of nodes within bilateral limbic networks, local clus-
tering within the bilateral DMN and right salience network, and node
degree in spatially distributed brain regions (p < 0.05,  =-0.12 to -0.01,
95% CI = [-0.17, -<0.01]).

3.4. Sub-cohort analyses

Multiscale topological correlations with fMRI acquisition time-of-
day (the time parameter most frequently correlated with multiple
properties across scales and networks), were also examined in sub-
cohorts of participants scanned before 14:00 (median time of scanning
in the cohort) versus those scanned at or after 14:00. No statistical as-
sociations with time-of-day and whole-brain topological properties were
estimated in either cohort (p > 0.05). At the individual network scale,
time-of-day was negatively associated with global clustering in the right

limbic network (p < 0.02, p = -0.06, 95% CI = [-0.10, -0.02]) in par-
ticipants scanned prior to 14:00. In those scanned at 14:00 or later, time-
of-day was negatively associated with multiple properties of the bilat-
eral visual networks and cerebellum (p < 0.04, § = -0.05 to -0.06, 95%
CI = [-0.10, -0.01]). At the level of individual regions, time-of-day was
negatively correlated with centrality in nodes within the left dorsal
attention (p < 0.03, f =-0.10 to -0.08, 95% CI = [-0.15, -0.02]) but only
in participants scanned at 14:00 or later. Time-of-day effects were
overall small (Cohen’s f < 0.10).

3.5. Correlations between spontaneous fMRI signal fluctuations and
acquisition time parameters

Associations between scan acquisition time parameters and rs-fMRI
signal fluctuations were then assessed at the whole-brain, hemisphere,
and network levels. There were no statistical associations between ab-
solute coefficient of dispersion and any time parameter at the whole-
brain level for either fMRI run (p > 0.05). At the hemisphere level,
there were no significant associations between any time parameter and
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Fig. 2. Brain networks correlated with fMRI acquisition time variables. Left and right panels show positive and negative associations, respectively. Results are based

on the best-quality fMRI run. Positive topological associations with time-of-week (a binary variable) implied that

and signal fluctuations for the right hemisphere. However, participants time parameters. The other two time parameters were not, however,
scanned later in the day had higher signal dispersion in the left hemi- correlated with signal fluctuation in any model (p > 0.05).

sphere (p = 0.04, f = 0.046, 95% CI = [0.01, 0.08]), although only in the
second fMRI run. Similar results were estimated in additive models that
included time-of-day and controlled for one or both of the other two
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Table 3b
Statistics of models testing associations between 2- and 3-way interactions between acquisition time parameters and individual network topological properties, for
both fMRI runs. All reported p-values have been corrected for false discovery. *Nonsignificant (NS); Confidence Interval (CI).

Network Statistic Efficiency Global Median Conn. Median Conn. Modularity Robustness Stability
Clustering (in) (out)

Time-of-day * Time-of-year - Left Hemisphere

Best-Quality fMRI Run

Visual Standardized 0.215 0.246 0.312 0.304 -0.205 0.212 0.239
(Peripheral) Beta
95th % CI [0.020, [0.052, 0.440] [0.118, 0.507] [0.111, 0.498] [-0.399, [0.018, [0.046, 0.433]
0.409] -0.012] 0.405]
P-Value 0.037 0.027 0.007 0.007 0.037 0.037 0.027
Cohen’s f 0.032 0.038 0.050 0.048 0.030 0.032 0.037

Second Best-Quality fMRI Run

Visual Standardized NS* NS NS 0.347 NS NS NS
(Peripheral) Beta
95th % CI NS NS NS [0.117, 0.577] NS NS NS
P-Value NS NS NS 0.022 NS NS NS
Cohen’s f NS NS NS 0.054 NS NS NS
Dorsal Attention Standardized NS 0.288 0.407 0.389 -0.260 0.253 0.267
Beta
95th % CI NS [0.064, 0.511] [0.180, 0.633] [0.165, 0.613] [-0.483, [0.030, [0.044, 0.490]
-0.038] 0.476]
P-Value NS 0.027 0.002 0.002 0.030 0.030 0.030
Cohen’s f NS 0.045 0.066 0.063 0.040 0.039 0.041

Time-of-day * Time-of-year - Right Hemisphere

Best-Quality fMRI Run

Visual Standardized NS* NS NS 0.311 NS NS NS
(Peripheral) Beta

95th % CI NS NS NS [0.116, 0.505] NS NS NS

P-Value NS NS NS 0.012 NS NS NS

Cohen’s f NS NS NS 0.049 NS NS NS

Second Best-Quality fMRI Run

Visual (Central) Standardized NS NS 0.296 0.347 NS NS NS
Beta

95th % CI NS NS [0.067, 0.524] [0.119, 0.573] NS NS NS

P-Value NS NS 0.039 0.020 NS NS NS

Cohen’s f NS NS 0.045 0.055 NS NS NS

Visual Standardized NS NS NS 0.346 NS NS NS
(Peripheral) Beta

95th % CI NS NS NS [0.117, 0.576] NS NS NS

P-Value NS NS NS 0.022 NS NS NS

Cohen’s f NS NS NS 0.054 NS NS NS

Dorsal Attention Standardized NS NS 0.375 0.447 NS NS NS
Beta

95th % CI NS NS [0.149, 0.601] [0.220, 0.673] NS NS NS

P-Value NS NS 0.004 0.001 NS NS NS

Cohen’s f NS NS 0.060 0.072 NS NS NS

Time-of-week * Time-of-year - Left Hemisphere

Best-Quality fMRI Run

Visual (Central) Standardized 0.162 0.179 0.233 0.178 -0.219 0.221 0.230
Beta
95th % CI [0.033, [0.050, 0.308] [0.102, 0.363] [0.049, 0.307] [-0.348, [0.092, [0.101, 0.359]
0.291] -0.091] 0.350]
Cohen’s d 0.954 0.229 0.946 0.546 0.701 0.955 0.943
P-Value 0.014 0.008 0.001 0.008 0.001 0.001 0.001

Time-of-week * Time-of-year - Right Hemisphere

Visual (Central) Standardized 0.150 0.177 0.182 0.134 -0.215 0.210 0.213
Beta
95th % CI [0.021, [0.047, 0.306] [0.052, 0.312] [0.005, 0.264] [-0.344, [0.081, [0.084, 0.384]
0.280] -0.086] 0.339]
Cohen’s d 0.230 0.145 0.680 0.508 0.511 0.704 0.648
P-Value 0.027 0.010 0.010 0.042 0.003 0.003 0.003

Time-of-day* Time-of-week * Time-of-year - Left Hemisphere

Best-Quality fMRI Run

Visual (Central) Standardized 0.154 0.155 0.178 0.180 -0.169 0.191 0.194
Beta

(continued on next page)
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Table 3b (continued)
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Network Statistic Efficiency Global Median Conn. Median Conn. Modularity Robustness Stability
Clustering (in) (out)
95th % CI [0.039, [0.039, 0.270] [0.061, 0.295] [0.064, 0.296] [-0.284, [0.076, [0.079, 0.310]
0.270] -0.054] 0.301]
Cohen’s f 0.040 0.040 0.047 0.048 0.045 0.051 0.052
P-Value 0.009 0.009 0.005 0.005 0.006 0.004 0.004
Default Mode Standardized 0.123 0.123 NS NS -0.170 0.161 0.161
Beta
95th % CI [0.009, [0.009, 0.238] NS NS [-0.285, [0.046, [0.046, 0.276]
0.237] -0.055] 0.276]
Cohen’s 0.031 0.031 NS NS 0.045 0.042 0.042
P-Value 0.049 0.049 NS NS 0.014 0.014 0.014
Time-of-day * Time-of-week * Time-of-year - Right Hemisphere
Best-Quality fMRI Run
Visual (Central) Standardized 0.154 0.159 0.154 0.150 -0.182 0.194 0.197
Beta
95th % CI [0.038, [0.043, 0.276] [0.038, 0.271] [0.034, 0.266] [-0.297, [0.079, [0.081, 0.313]
0.270] -0.066] 0.310]
Cohen’s 0.040 0.041 0.040 0.039 0.048 0.052 0.053
P-Value 0.011 0.011 0.011 0.011 0.005 0.004 0.004
Visual Standardized 0.131 NS NS 0.128 -0.139 0.145 0.143
(Peripheral) Beta
95th % CI [0.014, NS NS [0.012, 0.244] [-0.255, [0.029, [0.027,
0.248] -0.024] 0.261] 0.0259]
Cohen’s 0.032 NS NS 0.032 0.035 0.037 0.036
P-Value 0.044 NS NS 0.044 0.043 0.043 0.043
Default Mode Standardized 0.128 0.129 NS NS -0.166 0.156 0.154
Beta
95th % CI [0.014, [0.015, 0.244] NS NS [-0.282, [0.041, [0.039, 0.269]
0.263] -0.051] 0.271]
Cohen’s f 0.033 0.033 NS NS 0.044 0.041 0.040
P-Value 0.039 0.039 NS NS 0.020 0.020 0.020
Second Best-Quality fMRI Run
Visual (Central) Standardized NS 0.171 0.175 0.178 NS NS NS
Beta
95th % CI NS [0.035, 0.307] [0.038, 0.311] [0.042, 0.314] NS NS NS
P-Value NS 0.032 0.032 0.032 NS NS NS
Cohen’s f NS 0.044 0.045 0.046 NS NS NS
P-Value 0.037 0.037 0.037 0.027 0.037 0.037
Cohen’s f 0.037 0.037 0.044 0.053 0.040 0.042
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Fig. 3. Regional properties (centrality, local clustering and node degree) that are positively (orange-red) and negatively (green-blue) associated with fMRI acqui-
sition time-of-day. Color bars represent the range of standardized regression coefficient (beta) values for the time-of-day parameter. Three-dimensional (top) and 2-

dimensional (coronal, horizontal, and sagittal) views are shown.

3.6. Impact of acquisition time parameter adjustments on associations
between connectome properties and cognitive task performance

Changes in estimated associations between multiscale connectome
properties and performance in neurocognitive tasks performed by the
ABCD participants (Luciana et al., 2018), were then examined, in models
with vs withouth adjustments for acquisition time parameters. First,
correlations between network topological properties and cognitive
outcomes without any time parameter adjustments were investigated.

12

Based on the first fMRI run, performance in the Dimensional Change
Card Sort task was positively correlated with efficiency, global clus-
tering, topological robustness, stability, and/or within-network con-
nectivity of the bilateral frontoparietal and DM networks, and left dorsal
attention network (only robustness and stability in the latter) (p < 0.03,
B =0.04-0.05,95% CI = [0.01, 0.09]). Performance in the task was also
negatively associated with modularity in the DM and right sali-
ence/ventral attention networks (p < 0.03, f = -0.05 to -0.04, 95% CI =
[-0.09, -<0.01]). Similar positive and negative associations were
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estimated between performance in the Oral Reading Recognition task
and properties of visual and right dorsal attention networks, and be-
tween performance in the List Sorting Working Memory Task and right
temporoparietal network. Negative associations were estimated be-
tween performance in the Picture Vocabulary task and within-network
median connectivity of the right limbic network. Positive associations
were estimated between performance in the Little Man Task and
modularity of visual networks, and a negative association with global
clustering in the thalamus (p < 0.04, p =-0.07 to -0.04, 95% CI = [-0.10,
-0.01] for negative associations, p < 0.04, p = 0.04 - 0.06, 95% CI =
[0.01, 0.09] for positive associations). Finally, negative correlations
between connectivity in visual networks (both within the network and
its connectivity with the rest of the brain) and performance on the
Matrix Reasoning task, and positive correlations with the Cash Choice
task were also estimated (p < 0.04, f = -0.05 to -0.04, 95% CI = [-0.08,
-0.01] for negative correlations, and p = 0.21, 95% CI = [0.07, 0.35] for
positive correlations). Model adjustments for individual or combinations
of acquisition time parameters did not change the significance of these
associations.

The analyses were repeated for the second fMRI run. Consistent with
the results from the first run, associations between task performance and
topological properties were estimated for the Dimensional Card Sort,
Oral Reading Recognition, List Sorting Working Memory, and Little Man
tasks. Additional positive associations between performance in the
Pattern Comparison Processing Speed task and modularity of bilateral
cerebellum and left somatomotor networks were estimated (p < 0.04, f§
= 0.05 - 0.06, 95% CI = [0.01, 0.09]). Performance in the Flanker task
was also negatively correlated with modularity in the right dorsal
attention network (p = 0.05, § = -0.05, 95% CI = [-0.09, -0.01]), and
performance on the Rey Auditory Verbal Learning task with modularity
of the left basal ganglia (p = 0.03, p = -0.05, 95% CI = [-0.09, -0.01]).
Finally, performance in the Matrix Reasoning task was negatively
correlated with modularity in the left dorsal attention network (p =
0.04, p = -0.05, 95% CI = [-0.09, -0.02]) and out-of-network connec-
tivity in central visual networks (p = 0.04, p = -0.04, 95% CI = [-0.08,
-0.01]. The impact of including time of acquisition adjustments in
models assessing these correlations was then examined. Including time-
of-day, time-of-week, or time-of-year (in models that include individual
time parameters as well as all three parameters together) eliminated the
association between modularity of the left somatomotor network and
performance on the Pattern Comparison Processing Speed task. In
addition, inclusion of all three time parameters eliminated the statistical
association between out-of-network connectivity of visual networks and
performance on the Matrix Reasoning task. All other significant associ-
ations remained unchanged.

4. Discussion

Cardiovascular activity, metabolic processes, body temperature and
hormone (including cortisol and catecholamines) secretion, and their
hourly, daily, and/or seasonal fluctuations may significantly impact
blood oxygenation levels and consequently BOLD measurements in the
brain. Each of these processes, and consequently cerebral hemody-
namics, are also modulated by the sleep-wake cycle and circadian
rhythm. Consequently, the overall timing of fMRI acquisition may affect
BOLD signals in complex ways that are incompletely understood,
particularly in children, and are often overlooked in neuroimaging
studies.

In the developing brain, the effects of fMRI acquisition timing may be
substantial, but have not been previously investigated. Specifically, in
adolescence - a period of extensive and interacting neural, hormonal,
metabolic, sleep, and circadian changes, these effects may be amplified,
and may significantly contribute to the inherent inter-individual vari-
ability of developing brain circuits. This study has addressed this sig-
nificant gap in knowledge and has systematically investigated the
impact on acquisition time parameters (time-of-day, time-of-week, and
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time-of-year) on developing resting-state circuits across spatial scales of
variability, in a large sample of over 4,000 early adolescents in the ABCD
study. In addition, the confounding effects of acquisition time parame-
ters on the relationship between brain topology and cognitive perfor-
mance have also been systematically assessed.

On average, participants were scanned around 14:00, and only a
small number (<5 %) were scanned before 10 am or after 6 pm. Over 60
% of participants were scanned during the week and almost 75 % during
the school year. Widespread associations between time-of-day and
multiscale topological properties were estimated. Overall, later acqui-
sition times were consistently associated with lower connectome-wide
and network-specific efficiency, robustness, clustering and stability,
but higher values of modularity and small-worldness. Connectivity was
also negatively correlated with time-of-day in specific networks. Net-
works consistently (across multiple fMRI runs) found to be impacted by
scan time-of-day included bilateral visual, dorsal attention, salience,
frontoparietal control networks and the basal ganglia, and to a lesser
extent (one of the two analyzed runs) DMN and limbic networks, and
amygdala. Regional properties in some of these networks were also
negatively (and in a few cases positively) correlated with scan time-of-
day. Lower regional connectedness (degree) and community structure
(local clustering) in regions of the DMN, dorsal attention, limbic and/or
visual networks were correlated with later times of scan. Regional
(node) centrality (reflecting topological importance in the network) was
lower in areas of the dorsal attention network but higher in areas of the
peripheral visual network.

Together, our findings suggest that the time of fMRI scan plays an
important role on estimates of topological organization of resting-state
brain circuits, across spatial scales. They also are in agreement with
those of prior studies in adults, which have reported that functional
connectivity in DMN, medial temporal lobe, posterior cingulate and
medial prefrontal cortex decreases throughout the day (Blautzik et al.,
2013, Shannon et al., 2013, Hodkinson et al., 2014, Facer-Childs et al.,
2019, Orban et al., 2020). Although our estimated time-of-day effects
were relatively small, they were overall consistent across fMRI runs -
indicating reliability, even after adjusting for confounding effects of
sleep patterns, screen time, BMI and other participant data.

When multiscale topological properties were examined separately in
subcohorts dichotomized based on time of scan (earlier than 14:00 vs
14:00 or later), fewer but consistently significant correlations between
topological properties and time of scan were estimated. In addition, time
of scan was correlated with properties of distinct networks and regions
in the two subcohorts. In participants who were measured earlier in the
day (before 14:00), later scan times were correlated with lower global
clustering in the right limbic network. In those scanned in the afternoon
(at or after 14:00), later scan times were correlated with multiple
properties of visual networks and the cerebellum., and local properties
of the dorsal attention network.

Differences in networks and regions impacted by time of scan may be
associated with underlying metabolic, hormonal and cardiovascular
changes throughout the day. Glucose, energy expenditure, cortisol,
catecholamines and also autonomic function have circadian rhythms
with peaks in the morning (Poggiogalle et al., 2018; Thossar et al.,
2018). Although the entire brain may be affected by these changes, there
may also be specific functional networks (e.g. limbic and/or attention)
that may be differentially modulated by morning to early afternoon vs
afternoon to evening scans. Chronotype differences may also partly
explain differences in topological properties as a function of time of scan
(Blautzik et al., 2013).

Topological correlates of scan time-of-week and time-of-year were
less extensive at the whole-brain scale. However, participants scanned
during the weekend had lower connectome efficiency, topological
robustness and stability, and higher modularity and small-worldness
than those scanned during the week. These differences were further
examined at finer spatial scales. At the network level, participants
scanned during the weekend had lower within-network connectivity in
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the left temporoparietal network and multiple negatively affected
properties in the right hippocampus, which is part of the DMN. It is
possible that social jet lag (inconsistent sleep timing between weekdays
and weekend), which has been associated with lower resting-state
connectivity in the DMN (Zhang et al., 2020), may be one of the un-
derlying mechanisms giving rise to these differences. However, its role
could not be directly investigated in this study, since related data were
not available at the ABCD baseline. Finally, lower local community
structure (spatial clustering) in the somatomotor network was estimated
in those scanned during the weekend compared to weekdays. This dif-
ference could be associated with being in a different global physiological
state during the weekend, for example more relaxed (Al Zoubi et al.,
2021), and/or with differences in sleep quality (Brooks et al., 2022).

Although there were no brain-wide effects of scan time-of-year, a
number of network-specific differences were also identified between
participants scanned during the school year vs school vacation. Lower
global clustering, robustness and stability, in visual, temporoparietal
and dorsal attention networks, and lower connectivity in right somato-
motor, dorsal attention, and temporoparietal networks were estimated
in those scanned during the school year. The visual network associations
were consistent across runs. A statistically higher number of participants
scanned during the school year slept less than the recommended
amount, which could partly explain lower topological properties’ values
in this subcohort. However, previous work examining seasonal varia-
tions in brain activity and cognitive performance has shown that at least
for some cognitive processes, brain activity in specific brain regions
peaks in the summer months (Meyer et al., 2016), which would partly
explain the higher topological properties’ values in those scanned dur-
ing the summer.

The study also examined interactions between scan time parameters.
Several two-way interactions but also the interaction between all three
scan time parameters were positively associated with the topological
parameters of visual networks. These associations were consistent across
hemispheres, runs and combinations of time parameters. In addition, the
interaction of time-of-day and time-of-year (i.e., being scanned during
the summer vacation and earlier in the day) was positively correlated
with topological properties of the right dorsal attention. Also, the
interaction of time-of-day, time-of-week and time-of-year (i.e., being
scanned in the summer, during the weekend and earlier in the day) was
positively associated with properties of the DMN. In other words, being
scanned during the weekend and summer vacation may enhance the
positive effect of being scanned in the morning.

Prior work in a large adult cohort has shown that scan time param-
eters impact the spontaneous temporal fluctuations of BOLD activity
during a scan (Vaisvilaite et al., 2022). In this study, participants scan-
ned later in the day had higher fMRI signal fluctuations in the left
hemisphere, but no other significant correlations with scan time pa-
rameters were estimated. Therefore, our findings partly disagree with
those of the adult study, which did not identify significant correlations
between time of scan and effective connectivity parameters, but iden-
tified correlations with signal variability. Although effectivity connec-
tivity was not estimated in our study, extensive and consistent (across
runs) associations were estimated between resting-state connectivity
with scan time parameters. fMRI-based connectome studies in adults or
children typically do not account for time of scan. Findings from our
study and as well as prior work suggest that at least scan time-of-day
may significantly contribute to inter-individual variability of topologi-
cal estimates, which is amplified in children. Therefore, it is important to
assess whether this omission may impact estimated associations be-
tween functional connectivity (or other topological properties) and
cognitive performance, and consequently lead to incorrect inferences.
We, thus, examined correlations between performance in each of the
tasks in the ABCD neurocognitive battery and properties of individual
networks. The majority of identified correlations between topological
properties and cognitive measures were not affected by the inclusion or
exclusion of scan time parameters. However, there were a few
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exceptions. Performance in the Matrix Reasoning task (which measures
fluid reasoning, but also visuospatial ability and visual sequencing) was
negatively correlated with resting-state connectivity within the visual
network and connectivity between this network and the rest of the brain,
i.e., higher connectivity in this network at rest was linked with lower
performance in the task. Previous work has identified negative corre-
lations between resting-state networks, including the visual network,
and performance in this task (Fraenz et al., 2021). Higher connectivity at
rest could imply lower flexibility of the functional neuroarchitecture to
facilitate rapid recruitment of task-positive networks, particularly in
tasks measuring flexibility and fluid intelligence. When all three scan
time parameters were included in models, the correlation between
performance in this task and connectivity between the visual network
and the rest of the brain was eliminated, suggesting that scan time ef-
fects may partly explain differences in resting-state connections between
this and other networks, and not performance in the task (which was
performed outside of the scanner). This finding also raises the question
of potentially incorrect inference when the confounding effects of scan
time parameters are not accounted for. In contrast, the correlation be-
tween connectivity within the visual network and task performance was
unaffected by the inclusion of scan time variables.

Modularity of bilateral cerebellar and left somatomotor networks
was positively associated with performance in the Pattern Comparison
Processing Speed task, which assesses processing speed and information
processing. Brain network modularity has been previously correlated
with both information processing and associated speed, and their
cognitive correlates (Bertolero et al., 2015), but not necessarily global
measures such as number and/or size of modules (Hilger et al., 2017).
When models were adjusted for all three scan time parameters, the as-
sociation between task performance and modularity in the left soma-
tomotor network was no longer significant. Again, this raises the
question of incorrect inference, if scan time parameters are ignored. In
contrast, the correlation between modularity of the cerebellar network
and task performance was unaffected by the inclusion of scan time pa-
rameters. Together, findings from these analyses suggest that despite
some invariance of connectome-cognitive performance associations to
scan time effects, in some cases the latter may be significant and sub-
stantially change findings and consequently inference. Therefore, it is
important to account for scan time parameters, particularly time-of-day,
given its extensive associations with topological parameters across
networks.

Despite its many strengths, including the size of this investigation
which is sufficiently large to capture the adolescent brain’s circuit het-
erogeneity, this study also had some limitations. First, information on
typical sleep habits was available, but more granular information on
sleep length the night before the scan was not. Thus, it was impossible to
adjust for it. However, all analyses were adjusted for typical youth sleep
length reported in the Sleep Disturbance Scale for Children. In addition,
measurements of other processes that would correlate with time of scan
or independently impact fMRI signals, such as cardiovascular function
and metabolic/hormonal variations were not available. Although it is
possible to measure heart rate in the scanner, measuring metabolic and
hormonal changes is much more difficult. In addition, a retrospective
investigation is always limited by the scientific decisions and data
collection protocol of the original study. Although the ABCD collects
extensive data across multiple processes and domains, some types of
data were not collected. However, a future study focusing on the smaller
subset of participants with actigraphy data prior to an fMRI scan could
investigate scan time effects while adjusting for sleep length before the
scan and heart rate (at least patterns, if actigraphy is not collected in the
scanner). Finally, effects of time-of-week and time-of-year were assessed
at a coarse level, comparing participants scanned during school days vs
weekend, and school year vs summer vacation. However, other un-
measured factors that could impact the week dichotomization and time-
of-week effects, such as weekend academic or other activities that would
require a week-like schedule. In addition, a 5-day school week was
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assumed for all youth, which may not be accurate for all, given that a
small group of participants were homeschooled, with potentially
different schooling schedules. Finally, the dichotomization of school
year vs summer vacation was based on a typical public school calendar
in the area of each ABCD site. However, participants were eligible to be
scanned at a site if they lived within 50 miles from it. Therefore, without
school-specific calendar information, this dichotomization may be
incorrect for some participants. More granular information was, how-
ever, not available. It is, therefore, possible that some of the time-of-
week and time-of-year effects may be under/overestimated. In
contrast, scan time-of-day was accurately recorded for each participant.

This first-of-its kind study, based on a historically large sample of
over 4000 youth that captures the inherent variability of the early
adolescent brain, makes a significant contribution towards improved
knowledge of confounding effects of fMRI scan timing on estimates of
topological properties and signal variability. It provides first evidence
that scan time-of-day, time-of-week and time-of-year may have exten-
sive effects on resting-state properties of developing connectomes,
across spatial scales, likely as a result of complex daily, circadian and
seasonal fluctuations of underlying processes and physiological factors
that modulate intrinsic fluctuations of BOLD activity. It also highlights
that time of scan has the most spatially widespread effects (and later
scan times negatively affect estimates of topological properties), and
impacts temporal fluctuations of fMRI signals, but potentially differently
than in adults. In youth with incompletely developed brain circuits that
undergo significant topological changes, particularly during periods of
heightened maturation such as adolescence, the timing of fMRI scanning
may play a significant role in the variability of their connectomes. The
resting-state functional circuitry is considered the backbone of the
brain’s neuroarchitecture, and networks such as the DMN that are active
at rest play a ubiquitous role in cognitive function. Scan timing may thus
impact not only resting-state network topologies but their relationships
with cognitive outcomes. Findings from this study suggest that, although
several of these relationships may be unaffected by when the scan is
performed, for some tasks ignoring the effects of scan time parameters
can lead to incorrect inferences, and spurious correlations that are
influenced by scan time. Our results also point to the heterogeneity but
also vulnerability of incompletely maturated functional circuits in
adolescence, and complex interrelated factors such as normal daily
metabolic and cardiovascular variations, but also sleep length, sleepi-
ness and fatigue that may impact their topological organization across
scales. Together these findings highlight the importance of adjusting for
scan time parameters in fMRI analyses at the signal, network and/or
cognitive levels, in order to increase robustness, reduce variability and
maximize the generalization of neuroimaging findings in pediatric
studies.
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