PHYSICAL REVIEW X 9, 021037 (2019)

Flow Equation Approach to Periodically Driven Quantum Systems

Michael Vogl,*’+ Pontus Laurell,* and Aaron D. Barr
Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

Gregory A. Fiete
Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA;
Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

®  (Received 8 August 2018; revised manuscript received 19 March 2019; published 23 May 2019)

We present a theoretical method to generate a highly accurate time-independent Hamiltonian governing
the finite-time behavior of a time-periodic system. The method exploits infinitesimal unitary transformation
steps, from which renormalization-group-like flow equations are derived to produce the effective
Hamiltonian. Our tractable method has a range of validity reaching into frequency—and drive
strength—regimes that are usually inaccessible via high-frequency w expansions in the parameter 4/,
where 4 is the upper limit for the strength of local interactions. We demonstrate exact properties of our
approach on a simple toy model and test an approximate version of it on both interacting and noninteracting
many-body Hamiltonians, where it offers an improvement over the more well-known Magnus expansion and
other high-frequency expansions. For the interacting models, we compare our approximate results to those
found via exact diagonalization. While the approximation generally performs better globally than other high-
frequency approximations, the improvement is especially pronounced in the regime of lower frequencies and
strong external driving. This regime is of special interest because of its proximity to the resonant regime
where the effect of a periodic drive is the most dramatic. Our results open a new route towards identifying

novel nonequilibrium regimes and behaviors in driven quantum many-particle systems.
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I. INTRODUCTION

Recent years have seen rapid progress in our under-
standing of dynamics and nonequilibrium phenomena in
quantum systems [1,2]. This has been a result of exper-
imental advances in the ability to control cold atom [2—4] and
condensed matter systems [5—7], by developments in time-
resolved laser techniques [8,9], and by the fact that stepping
into the time domain opens up new ways of ultrafast control
of material properties [5,10,11] and access to different phases
of matter. These include photoinduced superconductivity
[12,13], hidden orders [14], and metastable states [15], but
also entirely novel phases, such as time crystals [16,17] and
nonequilibrium topological phases [18,19].
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In particular, there has been growing interest in peri-
odically driven (or Floquet) [20,21] many-body systems,
which can bear a close resemblance to equilibrium systems
[22]. The Floquet systems come in three established
thermodynamic classes: integrable [23-25], many-body
localized (MBL) [19,26,27], and generic interacting ones
[28]. The first two classes can avoid thermalization,
allowing for a notion of a Floquet phase of matter at long
stroboscopic times ¢ = nT, where T is the period of the
Hamiltonian, H(t 4+ T) = H(t), and n is an integer. The
physics of these phases is captured by an effective, time-
independent Floquet Hamiltonian H, given via the time-
evolution operator over one period U(T) = exp (—iHgT).

In noninteracting systems, Hr can be used to dynami-
cally engineer interesting and topological band structures
[29-38], most notably Floquet topological insulators
[39-44]. Our main interest, however, is in interacting
systems where Hy can be engineered to drive phase
transitions [45,46] or, in the case of Floquet-MBL systems,
realize new phases without equilibrium analogs [18,19,
47-49]. Clean interacting Floquet systems are the least
studied of the three classes, perhaps because they were
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expected to heat up to a featureless state with infinite
effective temperature [50,51]. However, it was recently
theoretically discovered that under very general conditions
they may remain in a prethermal state until exponentially
long times 7* [52—56], which has been verified numerically
in several models [57,58].

The existence of a prethermal regime is important
because realistic systems usually contain integrability-
breaking perturbations that support it and because the
thermalization (or more specifically, the energy absorption)
time 7* can correspond to experimentally accessible time-
scales. The existence of such a regime also implies that
there is interesting physics to be found at intermediate times
0 <t <1t* [52,59], where one may use time-dependent
perturbations to drive dynamical phase transitions [60—63],
control interactions [64,65], or engineer phase transitions
and topological phases [66-70].

To understand the properties of a system in the prethermal
regime, it is convenient to use a description in terms of the
effective Hamiltonian Hy. However, it is notoriously diffi-
cult to calculate Hy or the exact time-evolution operator
U(t) for interacting systems, so generally one uses expan-
sion techniques to find an approximate, effective
Hamiltonian in the high-frequency limit. These techniques
include the Magnus expansion [71-73], rotating frames [53],
and many more [20,67,74-80]. Unfortunately, these meth-
ods do not produce a cleanly convergent expansion series for
general systems. Instead, they are asymptotic expansions,
subject to an optimal cutoff order that prevents them (in
principle) from reaching into the lower-frequency regimes
[53,71]. By this statement, we do not mean to imply that
methods such as ours may not be subject to their own cutoffs
but that these cutoffs may differ [81]. Whether this is the case
for the exact version of the flow equations in this paper is a
matter that still has to be determined.

One of the more controlled descriptions of a system occurs
in the quasiequilibrium regime, W < Ao < A, where W is
the bandwidth of the system, @ the driving frequency (7 is
Planck’s constant), and A is the gap to the continuum of higher
energy states. While this separation of energy scales is quite
feasible in cold atom systems, it is harder to reach in solid-state
systems. Mott insulators are the most promising class of
systems in this regard, but even in this case, the range of
frequencies is limited since we typically have W ~ 1 eV and
A ~ 1 eV, which are of the same order of magnitude. In
addition, lower-frequency regimes are required for certain
topological phases [18] and are of interest in cold atom
systems [82,83] and in the study of thermalization [84].
Hence, techniques to handle lower frequencies are needed.

In this paper, we improve on the limitations of previous
methods and provide better access to lower frequencies and
higher driving strengths. To achieve this goal, we introduce
a formalism to remove the time-dependent part of a
Hamiltonian using infinitesimal unitary transformations.
This results in flow equations for different couplings,

reminiscent of renormalization group calculations [85]
and Wegner’s flow equation approach to diagonalizing
Hamiltonians [86,87]. There has also recently been
progress in using the Wegner flow to describe the time
evolution of a many-body localized system [88], which
however still requires the solution of flow equations for
each time step—a problem we avoid in our construction.

We note that while a flow equation method for finding
effective Floquet Hamiltonians exists in the literature, it
uses an approximate version of the Wegner generator
(keeping only terms proportional to @ in the generator)
[89] in Sambe space [90], where the approximation brings
up a question as to the range of validity. Our method differs
in that we do not need to introduce Sambe space, and our
generator is obtained in a constructive manner and differs
completely from the Wegner generator. For our method,
we describe both the exact flow equations and ways to
approximate them. We apply our method to the Schwinger-
Rabi model of a single spin in a magnetic field and also to
four different spin chain Hamiltonians: (i) an integrable XY
bility-breaking extensions of a J;-J,-type XXZ model [91],
and (iv) the transverse field Ising model.

The extended XY model is driven by a transverse
magnetic field, the first J-J,-type XXZ model is driven
locally by a magnetic field in the x direction, and the second
is driven by a nearest-neighbor Ising exchange interaction,
resulting in a time-dependent J-J, model [92,93]. For the
transverse field Ising model, we consider (i) a harmonic
driving case and (ii) a case where the time-evolution
operator factorizes into two matrix exponentials, which
allows us to find a family of different resummations of the
Baker-Campbell-Hausdorff (BCH) identity. This observa-
tion leaves open the question of how to construct the
optimal effective Hamiltonian for a given time-evolution
operator (the reverse of the usual situation in which one
seeks the optimal time-evolution-operator approximation
for a given Hamiltonian).

In this paper, we study the time evolution of the exact
models and the effective models obtained in our approach.
We compare our results with those obtained by the Magnus
expansion. The integrability-breaking models are studied
numerically using full exact diagonalization, which pro-
vides an unbiased test of the validity of our approach. We
find that our flow method generally outperforms the
Magnus expansion, with significantly greater accuracy as
the resonant regime is approached, as well as in the case
when the time-dependent term in the Hamiltonian is large.
Both of these cases are of direct physical relevance and
interest. Our method thus opens new possibilities in the
analytical and numerical simulation of time-dependent
quantum many-particle systems and will facilitate the
search for novel prethermal and nonequilibrium regimes.

Our paper is organized as follows. In Sec. II, we develop
the general flow equation formalism and discuss its
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structure and approximations. In Sec. III, we relate the
general results obtained from the flow equation approach to
various high-frequency expansions used in the literature.
In Sec. IV, we test the flow equations on an exactly solvable
two-level system and discuss in detail the properties of the
fixed points of the flow equations and their stability. This
discussion is continued in Sec. V for a many-body system
studied via a truncated ansatz where we show it outper-
forms a high-frequency Magnus expansion and rotating
wave approximation. In Sec. VI, we introduce four differ-
ent one-dimensional spin chain Hamiltonians that we use to
assess the performance of the approximate method
described in Sec. III. In Sec. VII, we summarize our results
for the different models. In Sec. VIII, we compare our
results to a resummation of the Baker-Campbell-Hausdorff
identity that was of recent interest [81]. We also show what
advantages our approach has over a standard rotating frame
approximation—namely, that it can be truncated when a
rotating frame transformation is not practically possible and
that it still performs well under these circumstances.
In Sec. IX, we present our main conclusions. Various
technical details and formulas appear in the Appendixes.

II. GENERAL FORMALISM

We take the Schrodinger equation of a periodically
driven many-particle system as our starting point.
Following Ref. [53], the Hamiltonian H(r) is split into a
constant part Hy = (1/T) [ dtH(r) and a time-periodic
term V(1) = (1/7T) [ dt;(H(t) — H(t,)) that averages to
zero over one period, (1/T) [J dtV(t) = 0. Thus, the time-
dependent Schrodinger equation takes the form

(Ho + V(1)lwo). (1)

where we have set Planck’s reduced constant 7 = 1.

We introduce a unitary transformation, U = e
generated by an as-yet undetermined quantity 62 that w111
be chosen to reduce the time-dependent term V(¢). The § in
front of the Q indicates that we keep the generator infinite-
simal, which ensures that the exponential can be safely
expanded to lowest order.

Let us now introduce a new wave function |¢s) =
U'lpo) = [1 — 8Q(#)]lwo) and act with U(r)" = 1 — 6Q(¢)
(to leading order in 6Q) from the left on the Schrodinger
equation. This new wave function now fulfills the modified
Schrodinger equation (keeping lowest order in 62 only),

i0|hss) = (H(1) — i0,6Q(1) = [0Q(1), H(1)])|¢pss).  (2)

One may read off a new Hamiltonian, which, since 6Q is
infinitesimal, can be written as

H(t) = H(r) - 0Q(1), H(1)].  (3)

Up to this point, this treatment coincides with the use of
time-dependent generators [94]. However, we now choose

i8t|l//0> =

5Q(1 )

i0,6Q(t) —

0Q very different from the Wegner generator. We choose it
such that it reduces the time-dependent part of the
Hamiltonian V(¢) — (1 —8s)V(¢) by some infinitesimal
value 6s,

5Q = _%’55/0’61,1 [dfz(H(h) —H(w), ()

where the generator in Eq. (4) also has the nice property
that it vanishes at stroboscopic times 7. Therefore, at
stroboscopic times, expectation values <@> of operators O
can be calculated without a change of basis. The behavior at
other times can be found by applying the unitary trans-
formation to the operator O.

One could now repeat the procedure of splitting the
Hamiltonian into a constant and a time-average zero part
and then apply this infinitesimal unitary transformation to
find the Floquet Hamiltonian after an infinite amount of
steps (or an approximation to it by stopping after a finite
amount of steps). To simplify the process, we recognize
that one can track the progress of the unitary transforma-
tions by a single flow parameter s. To do so, we extend
the functional dependencies of the Hamiltonian to include
this parameter, replacing H(t) — H(s,t) and H(t) —
H(s + 6s,t). Note that H(s,r) represents a family of
effective Hamiltonians interpolating between a starting
Hamiltonian H(0,¢) and a Hamiltonian H(oo, ). Here,
H(oo, 1) is the Floquet Hamiltonian H if V(co,7) = 0. It
seems plausible that V(oo, £) = 0; we find this to be true in
an explicit example and some limiting cases, but it remains
to be shown rigorously. We set appropriate boundary
conditions by enforcing that s = 0 corresponds to the
initial, nontransformed Hamiltonian.

With this notation, Eq. (3) takes the form

H(s + ds,t) = H(s, 1)
+ iésl du[V(s,1,),H(s,1)], (5)

with V(s, 1) = (1/7T) JI dt,(H(s.t) — H(s. ;)). One may
note that th1s leaves a residual time dependence of
8s[V(t), H(t)] in Eq. (3), which is small in magnitude if
os is small.

Taylor expanding the left-hand side since ds is infini-
tesimal, we find

— 85V (s, 1)

dch, ) Vs +i /)tdtl [V(s.11), H(s. )], (6)

which is a central result of this work. We refer to Eq. (6) as
the exact flow equation. This equation is similar in spirit to
the infinitesimal unitary transforms that Wegner [86]
employs to diagonalize an interacting Hamiltonian in the
equilibrium case.

One can readily see that Eq. (6) has a fixed point with the
desired property V(s, t) = 0. This fixed point is guaranteed
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to be stable for sufficiently large @ because in this case the
commutator term can be neglected. Under these circum-
stances, the time-independent parts of H(s,?) remain
unchanged. More precisely, Eq. (6) then reduces to

dv(s,t)
ds

~-V(s,1), (7)

which trivially has the stable fixed point V(s, 7) = 0 since
V (s, 1) for this case can be treated like a scalar.

But what about smaller @? Because an analytic under-
standing is difficult to achieve, we discuss this in the
context of an explicit example in Sec. IV. While our
discussion gives a mechanism by which the fixed points
can be stable, in general, it does not give a rigorous proof.

How should one interpret the flow of s in Eq. (6)? Note
that H(s, t) is a Hamiltonian and therefore a linear sum of
the various energy contributions, and it can be expressed
as a sum of linear operators with coefficients c¢;(s, ),
H(s,t) = Y ;c;(s,1)O; (similar in spirit to a Landau-
Ginzburg energy functional). The O; operators are nothing
other than kinetic and potential energy terms appearing in a
Hamiltonian, such as a hopping term c,ch in a lattice
model, an interaction term n;yn;| on a lattice, or a multiple-
spin term (§, . §j)(§k . §k) in a spin model, among many
other possibilities. The coefficients c¢;(s, ) describe the
coupling constants (strength) of these terms.

This mathematical structure of H(s, 1) = 3,c;(s, 1)0; in
turn also implies that —V(s,t)+i [(dt;[V(s.t;),H(s,1)]=
=>.ai(t, [cj(s,t’)])()i. Here, g; has a functional depend-
ence on the c;(s,#') with ¢ € [0, T] because V (s, 1) itself
depends on the c;(s, ) and it appears under an integral.

One may therefore write Eq. (6) as

dei(s, 1)
ds

= —gi(t.le;(s.))); 7 €[0.T].  (8)
which is just a flow equation for the coupling parameters
c;(s, 1) at different times. Note that the set of operators O,
may include both the original operators and ones generated
from the kinetic and potential energy terms of the original
Hamiltonian, Eq. (1), as the Hamiltonian flows. In general,
new terms are generated such as hopping and interaction
terms that involve more and more sites of a lattice as the
order of the transformation increases. These new terms can,
in principle, change the balance of kinetic and potential
energy in the effective time-independent Hamiltonian and
therefore may lead to new physical regimes for a periodi-
cally driven many-particle quantum system. The reason we
write the flow equations in this form is to emphasize that
Eq. (6) actually describes couplings that flow as we reduce
the time dependence and to show how this operator
equation corresponds to a numerically tractable scheme
to determine couplings.

III. APPROXIMATIONS TO THE FLOW
EQUATIONS

It is important to note that Eq. (6) offers a convenient
starting point to approximate the Floquet Hamiltonian. In
particular, it allows us to improve on the various high-
frequency expansions of the Floquet Hamiltonian that have
appeared in the literature. As an example, we can find an
analytically tractable equation if we set s = O only for the
terms V(s,t). This corresponds to removing the original
time-dependent part V() from the Hamiltonian via the

rotating frame transformation [95] e_ifotdtv(t) while gen-
erating other new time dependences. [This approximation
is made for convenience. Indeed, in the following section,
we present an example in which we exactly solve Eq. (6)
without taking s =0 in V(s,7)]. To ensure that this
approximation actually corresponds to the aforementioned
unitary transformation, we also need to restrict the range of
s to [0, 1] rather than the previous [0, o).

Let us justify this approximation slightly more carefully
by using an analogy. One may notice that Eq. (6) is very
similar in structure to the classical problem of a first-order
differential equation,

D _ 405,10, ©

where ¢(#, f(¢)) would correspond to —V(s, 1)+
i [4dty[V(s, 1)), H(s,1)] in our case and all the couplings
in H and V correspond to f(¢).

A standard method of solving this class of problems [96]
is plugging in the initial condition f(¢) — f, = f(t = 0) on
the right-hand side. Integrating both sides of the equation,
one finds a first approximation to f(7), which we call f (7).
One may then repeat the procedure and plug successive
approximations f,(#) into the right-hand side. This pro-
cedure is called Picard iteration. In our case, it is the same as
replacing V(s,1) — V(0,7) and H(s,t) - H(0,t).

A variant of Picard iteration that quite often works better
is to only set f(¢) = f,(¢) in some places of g(¢, f(¢)) but
keep it as f(¢) in others. This is a particularly helpful
improvement when it is done in such a way that some
symmetries are explicitly kept that would otherwise be
destroyed [71]. For our case, if we only replace the first two
V(s,t) = V(0,t) but keep H(s, t), then we find approxi-
mate flow equations,

dH (s, 1)
ds

— _v(0, t)+i[dzl[V(o, 0), Hs.0)l,  (10)

where s is set to run from O to 1. As required above, this still
implements a unitary transformation, which can be seen
explicitly by reconstructing Eq. (10) from a unitary
transformation.
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Introducing the dependence on the flow parameter s,
Eq. (3) reads

H(s+6s,t) = H(s, 1) —i0,6Q(s, 1) — [6Q(s, 1), H(s, 1)].
(11)

One may plug in the manifestly anti-hermitian generator
5Q(s, 1) = 6Q(0,1) = —ids [; dtV(0,1), corresponding to
a unitary transformation U. The result is Eq. (10).
Therefore, making such an approximation is a particularly
convenient improvement on a Picard iteration.

One may ask why s should run from O to 1 as claimed
above. One reason for this is that, in the lowest-order
improved Picard iteration, we neglect terms that are
proportional to s. Neglecting such terms is only justified
if s < 1. Therefore, we let the flow parameter run from zero
to 1. If we reach a fixed point in this range of values or
come close to it, then it is a good approximation. Letting s
run to higher values would not be justified and may yield a
bad result. Another reason we apply this approach is
because we know that for infinite frequencies, one reaches
a stable fixed point for s = 1. This result can be seen easily
because Eq. (10) is then approximately given as

dv(s,t) _

5~ V(0,1). (12)
This procedure also works well in other cases because, often
at s = 1, one may be close to an unstable fixed point (see,
e.g., Fig. ). We should also mention that the multitude of
different possible fixed points [all V(s,7) = 0] and their
corresponding s value makes it difficult to estimate the size
of the error from letting s only run from O to 1. After all,
s = 1 is often close to a fixed point, but there may be more
fixed points further out (for larger values of s). We see this

3 Z
] Xo
2t L[ Ys

Couplings
o

FIG. 1. The couplings as a function of flow parameter s for the
Hamiltonian in Eq. (19) with B, = 3, B,=1,and w=1 in
Eq. (17). This case corresponds to a low-frequency regime. Note
that while the couplings exhibit a nontrivial dependence on s until
sufficiently large s, the unitary evolution remains stable down to
small frequencies, as seen in the red curve (exact flow) in Fig. 3.
The couplings after the range of the plot do not change within the
limits of the line thicknesses.

explicitly in the next section where we work with the exact
flow equations.

Now, let us return to discussing Eq. (10). One finds that
this equation can also be rewritten in terms of coupling
constants as

dci(s,t)

= mai(te(s.0). (13)

where one can write g;(t,¢;(s,1)) = >_;7;;(t)c;(s. 1) as a
linear combination of couplings c;(s, r). We are therefore
left with a first-order linear differential equation that does
not couple coefficients c; at different times. The more
complicated structure of a functional in the ¢; is no longer
present. The effective time-independent Hamiltonian is
then given by

Hey = Zf’ibi, (14)

with ¢; = (1/T) [ dic;(1,1), where we have taken an
average over one period, which is physically meaningful if
one is only looking at stroboscopic times. If one is
interested in micromotions, one could, in principle, retain
the time dependence of c;(1,#)—the important “flow”
having been taken into account in the parameter s, which
has now been set to unity.

The approximation made in Eq. (10), setting s = 0 in
V(s, t), does not make any implicit assumptions, such as
V(¢) is small. By contrast, many other high-frequency
approximations do make the assumption of smallness. As a
result, our approach, like the rotating frame approximation,
works especially well in the limit of strong V(z). We
demonstrate this explicitly in later sections of this work.

It is important to pause for a moment and stress the
advantages our approximate method, Eq. (10), offers over a
rotating frame approximation, if the latter is carried out
exactly. First, if the driving is complicated, it is often not
possible to calculate the matrix exponential needed for a
rotating frame approximation or the rotation induced on
operators by such a matrix exponential because it will
generate infinitely many components of the operator alge-
bra. This is indeed the case with one of our example models,
namely, the square-wave driven Ising model that we discuss
later. In this case, our method allows one to keep all orders in
1/w with a truncated ansatz for the Hamiltonian. This
method performs well, as can be seen in the plot in
Sec. VIII (Fig. 14).

It is also important to recognize that, even if a rotating
frame approximation can be done exactly, usually most
terms in the Hamiltonian become time dependent. In most
cases, this makes a second rotating frame approximation
impossible. Our method allows one to avoid this issue by
truncating the ansatz Hamiltonian. Lastly, in some cases,
one would like to prevent the generation of any new terms
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and see what happens to the coupling constants of a
restricted set of terms. Thus, our method provides a
convenient starting point for many different approximation
schemes.

We would also like to stress that Eq. (10) implements a
unitary transformation exactly. Its solution therefore still
retains the full information of the original Hamiltonian. In
this paper, we are content with discussing results from the
first-order iteration only. Again, the formalism we present
here lays the groundwork for further development of
approximation schemes.

Let us explicitly relate the first-order iteration to the more
common high-frequency approximations. For the moment,
neglect [!dt;[V(0,7,),H(s,t)], which assumes that all
couplings in the Hamiltonian are negligible compared to
the driving frequency. This approximation is common to
many of the high-frequency approximations. We then find
that

H(s,t)~ H(0,t) —sV(t). (15)

Inserting this back into Eq. (10) and taking a time average,
we find

H(l,t)zHo+%/0Tthtdt1 [V(tl),H(ﬁ—%V(t)], (16)

which is the lowest order of many common high-frequency
approximations. Hence, our approximation agrees with
other approximations in the high-frequency limit.

One should also note that there are other ways to
approximately solve the exact flow equation by directly
working with Eq. (6) and a truncated ansatz rather than
solving Eq. (10). We show this in one example in Sec. V
and find that it indeed offers an improvement to the
methods above (rotating frame and high-frequency expan-
sion) and opens the door to many semianalytical schemes.

Next, we turn to an application of our method to a
number of different Hamiltonians and compare our results
with other approaches. We find that the method nearly
always provides more accurate evolution than other
approximations, and in many cases, our method works
substantially better, particularly as the strong coupling
resonant regime is approached. This is also true if we
solve Eq. (10) with a truncated ansatz like one of the cases
in Sec. VIIL

IV. FIXED-POINT STABILITY AND PROPERTIES
OF EXACT FLOW EQUATIONS

Because it is difficult to discuss the stability of the flow
equations in Eq. (10) analytically in full generality, we
consider a simple example model where the exact flow
equations can be written down explicitly. This model will
allow us to identify a mechanism that makes the fixed point
stable. It is conjectured—but, we stress, not rigorously

proven—that this mechanism will persist even for more
complicated systems. In Sec. V, this conjecture will be
further supported. The current section serves as a means to
gain some insight into how the flow equations work. We
consider the Schwinger-Rabi model of a spin in a rotating
magnetic field,

H = B.o, + B, (sin(wt)o, + cos(wt)s,).  (17)

For this model, the Floquet Hamiltonian

HFZ—%—FBPGX—I— <BZ—§>GZ (18)

can be found for all frequencies (see, for instance,
Ref. [97]).

Let us discuss how the flow equations apply to this
model. After repeatedly inserting the form of the original
Hamiltonian in our exact flow equations in Eq. (6) (always
including newly generated terms), we find that the
Hamiltonian H (s, t) takes the form

H(s,t) = Zy(s)o, + Xo(s)o, + Ys(s) sin(wt)o,
+ Xc(s) cos(wt)o, + Zc(s) cos(wt)o,, (19)

and the flow equations for the couplings {Z,, Xy, Ys,
X¢, Zc} are given as

(s) = 2Y5(s)(Xo(s) — Xc(s))

z ,
Xszzn@xago—%m»,

1y = 2K = ZeIX) _y,

) = 2L =)

x5y = 2SO0 =Zel) _y 0

S

(where the ' denotes the derivative with respect to s) with
initial conditions

Z¢(0) = Xo(0) = 0. (1)

As expected from Eq. (6), we find that the fixed point is
Y¢ =X =Zc =0, with arbitrary Z, and X;. This is the
only fixed point. For this fixed point, we may carry out a
stability analysis. In other words, we expand Eq. (20)
around the fixed point to find linearized equations
C'(s) = JC(s), where C = {Z(, Xy, Y5, X¢, Z¢} is a vec-
tor of the couplings. The eigenvalues of the corresponding
Jacobian J are given as
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2
M=A=0 A34=-1 i—q/Z3+X2; s = —1.
w

(22)

It would appear that not all eigenvalues are guaranteed to
be nonpositive. In particular, one of the eigenvalues ;4
could be positive, which would imply that the fixed point is
unstable and that the flow equations break down. If the
form of the Hamiltonian at the fixed point reproduces that
of Eq. (18), this could indeed be the case since Z; and X,
would be finite for arbitrarily small @. One might thus
expect that flow equations would be unable to reach a stable
fixed point for low enough frequencies. However, this
outcome is avoided.

To see how this works, recall that the Floquet
Hamiltonian H is determined only up to some phase by

o 2
e—iHrE — U<—”>, (23)

0]

where U(7) is the time-evolution operator. This means that
there are many different expressions for H that would be
valid branches of the matrix logarithm of both sides of
Eq. (23). For very small w, a valid H could be chosen to be
very small. Let us see what happens explicitly for our flow
equations. Namely, let us choose couplings such that
Eq. (18) would correspond to an unstable fixed point.
How these couplings evolve under the flow equations can
be seen in Fig. 1.

In Fig. 1 we see that the couplings Z, and X, closely
approach a fixed point V (s, #) = 0 several times but it is not
stable at first. However they keep shrinking until a stable
fixed point is reached. The matrix logarithm log (U(T))
has branches with relatively small Hpg, and the
couplings continue flowing until a branch with sufficiently
small couplings to have a stable fixed point is reached.
In the language of the exact flow equations, Eq. (6), there
exists a branch of the matrix logarithm log (U(T)) such
that H (s, t) becomes sufficiently small that the commutator
Jedty[V(s, 1), H(s,t)] becomes negligible compared to
V(s, t), and therefore a stable fixed point is reached. We are
able to observe this effect in all cases that we studied, and it
is plausible that this could be a general mechanism that
leads to stable fixed points in our flow equations. This is
illustrated in Fig. 2.

From Figs. 1 and 2, one may suspect numerical issues.
However, this is not the case. Rather, the oscillations stem
from the fact that the flow equations do not consistently
stay on one branch of the matrix logarithm for H. Flowing
to a stable fixed point means choosing the branch of the
matrix logarithm that corresponds to a stable fixed point.

Indeed, if we take the time-independent couplings in
Fig. 2 to calculate the time-evolution operator at strobo-
scopic times and compare it to the time-evolution operator
calculated via the standard method of a Trotter expansion,

Xo Z

1.5 0.4
1.0
05 02 /1
5 10 1520 5 o 15  20%
-05
~0.2
~1.0
~0.4

-15

FIG. 2. The nonzero couplings as a function of frequency w at
the end of the flow (large s values in Fig. 1) for B, =3, B, = 1.
Note that in spite of the rapid oscillations for small @, the
resultant unitary evolution remains stable, as seen in the red curve
(exact flow) in Fig. 3.

1.0

Magnus

Exact flow

0.8

Rotating Frame

0.6

0.4

0.2

Normed /, distance from exact

0.0

0 5 10 15 20
w

FIG. 3. Plot of the [, distance between the time-evolution
operator found by a Trotter expansion and the exact time-
evolution operator obtained by exactly solving the flow equations
in Eq. (6) given by Eq. (20) (red line), the Magnus expansion
(blue line), and the rotating frame approximation given by
Eq. (10) (black line).

we find them to be identical. More specifically, we
calculate the [, distance between two unitary operators,

1
2/ D gim

”Ul (T) - UZ(T)”Frob; ”AHFrob =V trAAT’
(24)

which was normed such that it takes values between O and 1
(Dgim 1s the dimension of the Hilbert space), where 1
corresponds to the maximum distance between two unitary
operators and 0 to agreement between the two operators.
A comparison is shown in Fig. 3. Details of the rotating
frame approximation and Magnus expansion are given in
Appendix A. We find that the exact flow equations—
despite the couplings rapidly changing—fully agree with
the Trotter expansion, as they should. The wildly jumping
couplings are therefore not a numerical artifact.

V. EXACT FLOW EQUATIONS WITH A
TRUNCATED ANSATZ

In this section, we discuss how the results from the
previous section seem to be quite generic by considering a
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many-body system. We limit ourselves to a specific,
strongly driven Ising model given by

H(t) = Z[afaf»H + 4 cos(wt)o; + 4 sin(wt)o}]. (25)

i

We choose this Hamiltonian because (i) it has a relatively
strong external drive, (ii) it has a time-dependent term that
does not commute with itself at different times, and (iii) the
time dependence is convenient for studying the flow
equations. One may find flow equations by making the
truncated ansatz,

H(s) =

Hy(s) + e H (s) + e ™H_(s), (26)

with

H, = Z[Cﬁ i + Cjo; + Cloj + Ciioloy,,

+ ng(dfﬁf+1 + Gzy 1) + C?\Gyoirl
+ C?Z(G;co.lzﬂ +oio;_,) + Ci.oi0; it1
+ C;z (0}"0'111 + le 1) + szzax"z 161+1] (27)

where a € {0,+, —} and the s dependence of the coupling
constants C* was dropped for notational simplicity. We do
not discuss the specific form of the flow equations here
because they are rather complicated and not insightful.
Instead, we first look at how some of the couplings behave
for this system. Specifically, let us look at one represen-
tative coupling as a function of flow parameter s. As one
may see from Fig. 4, the coupling constant C} behaves
similarly to the ones in Fig. 2 for the two-level system we
solved exactly in the previous section. In particular, the
coupling constant nearly approaches zero for the fixed
point multiple times before, eventually, a stable fixed point
is reached. This result strengthens our interpretation that
our method might be kept stable by the mechanism we
provided in Sec. IV.

ct

z
141
1.2
1.0
0.8
0.6
0.4
02}

_/.-\ ,
5 10 15 20 °

FIG. 4. Coupling constant C7 as a function of flow parameter
s plotted for w = 1.2.

1.5¢

1.0f

0.5¢ h,\

-1 w
V 10 15 20 25 30
~0.5}

-1.0f

FIG. 5. Plot of the coupling constant C? as a function of @ for
the flow equations solved up to a point s = 2000000, which is
long after the fixed point has been reached.

To get further evidence for this interpretation, we plot in
Fig. 5 one of the couplings as a function of @ and again find
it to be consistent with the mechanism we proposed in
Sec. IV and illustrated in Fig. 2. We stress that this is not a
rigorous proof of our understanding of how the flow
equations manage to converge, but it is does provide good
evidence for the general structure of the convergence.

Let us now discuss these results further. One finds
numerically that by letting s — oo, only certain terms
survive. Namely, as expected from the fixed point
Cf — 0, one is left with

H(s — o) =Y [C,0] + C,6} + C0i0t,, + Cpyolol,

i

+ C 0507, + Cyz(gzyaf-s-l + 0?“5’—1)]- (28)

The couplings in the range w € [8,40] are well approxi-
mated by

0, = 2% _ 0,12 4 0.0060 - 0.000130?,
()]
487

€)= == +0.18 = 00210 +0.000602,
5.75

€O = ===+ 0.87 +0.0220 ~ 0.00067a”,
5207 7.35

Cpo === 5 +=+0.1- 000170,

- w
782 18.87

Y= 22— 220 1 0.03 4 0.00013w,
w w
13.24

€0 = 22— 0.49 + 0.0066w — 0.00001 1%, (29)
w

Such fitted couplings allow for a semianalytic understand-
ing in some cases. One should note that for smaller w, the
expressions become much more complicated because of the
nonanalytic behavior of the couplings as seen in Fig. 5.
Let us show below how well our approximation [also
using results for smaller @ and not just the expression in
Eq. (29)] performs when compared to the rotating frame
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8 0.6 Exact flow, trunc
c
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8 02
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2
0.0
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w
FIG. 6. Plot of the /, distance between the exact time-evolution
operator and the Magnus expansion (blue line), rotating frame
approximation (orange line), and the solution of the exact flow

equations but with a truncated ansatz (green line). The system
size is L = 14 sites.

approximation and the Magnus expansion. We do not
explicitly give the expressions for the couplings in the
Magnus expansion and the rotating frame approximation
because they are cumbersome and do not provide much
physical insight. Instead, we refer the interested reader to
Ref. [98]. From Fig. 6, one finds that the flow equations
(with a truncated ansatz) perform better than both the
Magnus expansion and the rotating frame approximation.
To stress that the comparison to the rotating frame
approximation is a fair one, we note that the operators
in Eq. (28) are the same as those appearing within the
rotating frame approximation. From this example, one sees
that the exact flow equations allow one to find better
coefficients than those afforded by the rotating frame
approximation.

VI. EXAMPLE MODELS

To demonstrate the power and validity of the flow
equation approach for a wider range of many-body sys-
tems, we next consider a selection of quantum spin chain
(S = 1) models. Recall that the spin operators S, fulfill
the commutation relations,

[S{m Sﬂ = iejkl(smnsin (30)

(j,k,l € {x,y,z} and m, n label lattice sites), with the
special condition for S = % that

(ShP =1, G1)
4
where 14 is the unit operator in the many-body Hilbert
space. Here, €, is the fully antisymmetric tensor, and 5,
is the Kronecker delta function.
In this section, we introduce four different spin models
that exhibit different functional dependences of the time-
dependent term. The first model (XY spin chain) is

integrable and, in particular, one-particle reducible. The
next two models are integrability-breaking modifications of
the XXZ spin chain, and the final model is a transverse field
Ising model, which will be discussed independently in
Sec. VIII. These models possess a range of different
symmetries and forms of the driving term. They will
illustrate the generality and mathematical structure of the
flow equation approach.

A. XY spin chain with antisymmetric exchange in a
driven magnetic field

As a first example model, we choose an XY spin chain
with an antisymmetric Dzyaloshinskii-Moriya exchange
interaction and a time-periodic magnetic field that both
point along the z axis,

H(t) = Hy+ V(1), (32)
where

Ho = "(J, 8385, + 1,88, + D(S; x Siy). + hoS5).

]

(33)

and
V(t) = hsin(wt) ) _S;. (34)

Here, J,/, is the strength of the exchange interaction in
the x/y direction, D the strength of the antisymmetric
exchange, & the static magnetic-field strength, and % the
strength of the magnetic-field driving. This model has the
advantage that its instantaneous Hamiltonian can be dia-
gonalized by applying a Jordan-Wigner transformation,
followed by a Bogoliubov transformation [91]. Further-
more, it has multiple coefficients, which can be varied to
check the validity of our approximation based on the flow
equations in a variety of cases. Note that the driving term
generally does not commute with the static part of the
Hamiltonian.

B. J;-J, model with a driven magnetic field
in the isotropic plane

In order to find out if a new approximation scheme is
valuable for more realistic interacting systems, it is impor-
tant to go beyond noninteracting models. To this end, we
study the J;-J, model [92,93],

H(I) =H,+ V(t), (35)

where
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2
Hy=Y_Y (J,St-Sh, +Jisisi,)  (36)
n=1 i
and
V(t) = h(1)St, (37)

with a time periodic magnetic field in the x direction,

h(t) :B{ 3

-1, 2nm+r<wt<2n+ 1)z

2nr < wt <2nw+rw
neZz,

(38)

where the time dependence was chosen to simplify
the numerical treatment done by exact diagonalization.
None of our physical conclusions—nor our flow equation
method—relies on this piecewise constant form of the time
dependence. It should be noted that J, is the strength of the
nth neighbor exchange interaction in the isotropic plane,
and J? is the exchange interaction in the z direction. For a
more compact notation, we define Si* = (57, 57,0). We
choose this model because the external magnetic field
breaks magnetization conservation, and it therefore also
allows us to see if the flow equation approach works under
circumstances where the driving breaks a symmetry of the
static part of the Hamiltonian.

C. J1-J, model with time-dependent exchange terms

We also apply the flow equation approach to a model in
which one of the spin-spin interaction terms is time
dependent. The model we consider is another J;-J, model
given by

H(t) = Hy+ V(1), (39)
where

Hy =Y [JiSt -S| + JiS5S5,, + /,8;-Sia] - (40)

1

and
V(t) = J3 ysign <g — tmod (Zn/w)) ZSfoH, (41)

where mod denotes modulo. In this model, the time
dependence is in an interaction term.

In Sec. VIII, we consider one further spin model (Ising
model) separately because the structure of the fixed-point
Hamiltonian is different than the three models introduced in
this section. Together, these four spin models and the
example given in Sec. IV should provide a compelling
picture for the generality and power of our method.

VII. RESULTS

In this section, we study how well our flow equation
approach performs compared to common high-frequency
approximations. We compare the approximate time-
evolution operators obtained through various approxima-
tions to the exact time-evolution operator (obtained by
exact diagonalization) at stroboscopic times.

We adhere to the following procedure: We first make use
of the translational invariance of our models and calculate
the exact time-evolution operator UX, (T) and the approxi-
mate time-evolution operator U, (T) at different points
in k-space (momentum space). Then, we calculate the
mismatch of the approximate time-evolution operator and
the exact time-evolution operator via

E (42)

1
= > UE(T) = Ubiron(T) |y
2N\/lm - || ex( ) dpprox( )”Frob

which is a quantity that takes values on the interval [0, 1],
with 0 meaning perfect agreement and 1 meaning the
largest possible disagreement. Here, Dy, is the dimen-
sionality of the Hilbert space for any given k-point, N is the

number of k-points that the sum runs over, and ||A||gp =

VtrAAT is the Frobenius norm.

Let us motivate this quantity: For a given point in
k-space, this quantity is just the [, distance, Eq. (24), between
two unitary operators at this point in k-space divided by the
maximum [, distance of two unitary operators. We average
this quantity over all points of k-space. The Frobenius norm
provides us with a basis-independent measure of how
accurate unitary evolution of a quantum system will be with
various time-independent approximations to the full time-
dependent Hamiltonian. Similar formulas are used in the
context of quantum information science.

A. XY spin chain with antisymmetric exchange

Both the Magnus expansion (see Appendix B) and the
approximation via flow equations yield an effective
Hamiltonian of the form

Heg = Z(J)(C“)S;CS?H + Jg*a)slys’;ﬁ + Df)SfS?Q

+ DEISISY + oSS, (43)

where a labels the approximation scheme, with different
coupling constants for different approximation schemes.
The details of the derivation are given in Appendix B.

There are newly generated terms in Eq. (43) compared to
Eq. (33). We note that a suitably chosen rotation in spin
space results in the original undriven Hamiltonian with
AJ = J, —J, modified.

The coupling constants for the leading-order Magnus
expansion are
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J.—=J,)h
w

IO =T

and the results for the flow equation approach are

Jo—J, (2h\ . (2h
+ Y cos (—) Jo <—> (45)
2 0] 0]

Jo+J, J.—J, 2h 2h
JP = ty_ )cos(—)J()( >, (46)
w

r It Jy
]x =
2

2 2 @

J,—J, 2 2
D) =+p - = sin <;h> To (g) .47

It should be emphasized that both approximations agree
in the limit of @ — co—a general result mentioned pre-
viously at the end of Sec. II. We also stress that, in the case
where & is much larger than all other coefficients, the flow
equation approximation works well even when expanded
around 24/w > 1, which is not what one would normally
expect from a high-frequency expansion. The flow equa-
tion approach does not make the assumption at any point
that V(¢) is small, and therefore it handles this regime more
accurately.

We are particularly interested in quantum many-particle
systems with a large number of degrees of freedom. We
therefore compute the mismatch E, Eq. (42), of the time-
evolution operators for a long spin chain. We plot the
relative error E as a function of the number of k-points to
find out how many k-points are needed for a stable result.
(The details on how the time-evolution operator was
calculated are given in Appendix C). The plots for the
Magnus expansion and for the flow equation approach are
given in Fig. 7. From Fig. 7, one can see that at 256
k-points, the value of the relative error E has stabilized.
Therefore, for this model, all further plots will be done by
sampling 256 k-points.

To study the accuracy of the different approximations as
a function of frequency, we choose a set of coefficients
D=0.1,J,=1,J,=11,hy=1,and h = 1, where J, is
fixed at unity because one may divide the Hamiltonian by
J, to make it dimensionless. The strength of D is chosen to
be small since the antisymmetric exchange is often small
when compared to the exchange interactions. The other
values are chosen to be in a similar range. The plot of the
relative error E as a function of frequency @ is given
in Fig. 8.

From Fig. 8, one can see that the results from the flow
equation approach are valid down to much lower frequen-
cies w. In fact, one can expect higher-order Magnus
expansions to become worse at lower frequencies than
the first-order Magnus expansion we plotted. This is
because the optimal cutoff order of the Magnus expansion
(and a number of other high-frequency expansions) shrinks
with decreasing frequencies [53] unless couplings are small

(a)

0.4 Ur =001
S 03f) —— w=0.1
c 1
g ‘ — w=1
s 0.2}
a | —ws3
0.1f]
\
Y —— . : . .
0 100 200 300 400 500
k-points
(b)
0.20} r\’/
— w=0.01
5 0.15¢ =01
)
E 0.10f — w=1
w — =3
0.05} |, —
0.00t . n . : :
0 100 200 300 400 500
k-points
FIG. 7. Relative error, Eq. (42), of the time-evolution operator

as a function of sampled k-points for the (a) Magnus expansion
and (b) flow equation approach. Different driving frequencies
w=0.01,w=0.1, » =1, and w = 3 are considered. Note that
the flow equation error is much smaller than the Magnus
expansion error, particularly at the lowest frequencies. In both
approximations, the error decreases as the frequency increases.
We consider the case of D=0.1, J,=1, J, =11,
ho=1,and h = 1.

enough to suppress this effect. It should also be noted that
the stuttering (wiggles) at low frequencies seen in the plot is
an effect that happens because the U; matrices are
relatively small. For larger matrices, this effect averages
out, as we see in interacting models later.

0.51
Magnus expansion
0.4} g P
Flow equation
0.3}
E
0.2}
0.1
0.0k . . . : : .
0.0 0.5 1.0 1.5 2.0 25 3.0
w
FIG. 8. Relative error E, Eq. (42), for D=0.1, J, =1,

Jy=1.1, hy=1,and h = 1 as a function of driving frequency
. Note how the flow equation approach outperforms the Magnus
expansion, particularly at smaller w.
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FIG.9. Relative error E, Eq. (42), as a function of the different coupling constants in the Hamiltonian, Eq. (32). Only one coefficient is
varied in each subfigure, while the ones that are not varied are fixed at values of D=0.1, AJ=J,-J,=0.1,
J=(J+J,/2) =1.05, hy =1, and h = 1. In panel (a), we vary the driving magnetic field %, in panel (b) the static magnetic
field Ay, in panel (c) the average exchange interaction J = (J, + J 3/ 2), in panel (d) the antisymmetric exchange strength D, and in panel

(e) the anisotropy of the exchange interaction AJ = J, — J,.

In Fig. 9, we show how well the approximation performs
as a function of various couplings. From the plots, it is clear
that the results obtained via the flow equation approach are
generally more accurate than the results from the Magnus
expansion. As expected from general arguments, we find
that the approximation performs increasingly well for large
values of driving 4. We now turn to nonintegrable models.

B. J,-J, model with time-dependent magnetic
field in the x direction

For this model, both the Magnus expansion and the flow
equation approach yield effective Hamiltonians of the form
(for a general model, the terms—quantum operators—
appearing in the effective Hamiltonians need not be the
same)

2
Ha = > (SISt +1'SS),,
n=1 i

I (S3S)

(a) ¢z ¢z
+J§' StZSZ i+n

i+n + S?’ ?—‘rn))’ (48)
where (a) labels the approximation scheme (either flow or
Magnus). The details of the calculation are given in
Appendix B.

It is important to note that one of the new terms, I',,, can
be removed by a suitable rotation in spin space, which tells
us that we went from an XXZ model to an XYZ model
followed by a rotation in spin space. The effective coef-

ficients for the Magnus expansion are

M=,
M =3,
(M) Ji—Ja
I, =B , 49
T (49)
and for the flow equation approach,
1 2zB
M= [(J,g +7,) = (J5 — J,)sinc (%)] ,
1 27B
JM =12+ Jy = Jp)sinc| — | |,
3 i)+ = gpsine (22|
Ji — J,)wsin? (%2

2nB

Calculating higher orders in the Magnus expansion
for this model yields extremely complicated effective
Hamiltonians. The second-order Magnus expansion already
gives a Hamiltonian that is a sum of 60 different operators
with complicated prefactors. One tractable way to improve
on the first-order Magnus expansion is via the flow equation
approach. The plots in Fig. 10 illustrate the quality of the
approximation for different frequencies. These results are
obtained numerically using exact diagonalization for finite-
size systems, as described in Appendix D.

One finds that the flow equations outperform the Magnus
expansion for all frequencies. For the plot of strong driving
magnetic field A, this is especially pronounced. There, the
Magnus expansion for a large range of frequencies gives
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FIG. 10. Plot of the normalized /, distance between exact and
approximate time-evolution operators for a chain of length
L =16, and parameters J; = =05, J{ =1, and J, =J5=0
plotted as a function of frequency for driving magnetic-field
strengths (a) B = 0.5 and (b) B = 5.

poor results, and the flow equations generally give quite
precise results.

In this case, one may also ask how well the approxi-
mation performs as a function of all the different coef-
ficients. In Fig. 11, we show a plot for different values of
the coefficients. This plot only includes the sector k = 0 in
k-space because it is numerically quicker and because other
points in k-space reproduce the same results.

Similar to the previous integrable model, for this non-
integrable model, one can see that the flow equation approach
outperforms the Magnus expansion for most parameters. The
much higher accuracy for large values of & should be
emphasized. The details on how the time-evolution operator
was obtained are contained in Appendix D.

C. J1-J, model with time-dependent exchange
interaction

Both the Magnus expansion and the flow equations yield
an effective Hamiltonian of the form (some of the terms are
zero for the Magnus case)

o= S USISE S ST

+ Dﬁl )[Si+n+1 X Sii1+ 8 X Si]. S}
+ O SIS + ST SV SEi S 1 (s1)

where SL (S%,57,0) and (a) labels the approximation
scheme.

The last two terms of Eq. (51) are newly generated terms
in the Hamiltonian. If S7 has an approximately uniform
orientation, the terms proportional to D;”) can be interpreted
as different range antisymmetric exchange terms—when
treating S7 as a mean-field term. By the same token, in a

mean-field approximation, the term proportional to QSL“) can
be interpreted as an exchange term. Beyond the mean-field
case, it is clear that higher-order spin interactions are
generated. Such terms can lead to new physics and can
drive new phases.

The coupling constants within the flow equation
approach [solving Eq. (10) exactly] are given by

1 wJ:
Jf——],{l—l—sinc( l’”)},
2 0]

JE =0 I =,

z,1

JZ
D = I cos( ) — ,
J? o @
nJs
oF =27, [1 —sinc( a;)] (52)

and within the Magnus expansion,

M=0; I =0 T =,

DY = =Tl QM =0, (53)

While the form of the Hamiltonian in Eq. (51) is already
complicated (with three- and four-spin interactions), it is
worth noting that the second-order Magnus expansion
would become forbiddingly complicated with a sum of
over 100 operators, which makes even a numerical imple-
mentation impractical. Therefore, the result from the flow
equations, while also complicated, is a significant improve-
ment on the first-order Magnus expansion.

In Fig. 12, we plot the frequency dependence of the
approximation. One finds that the flow equation result is
much better in the lower-frequency regime and outperforms
the Magnus approximation significantly when the external
drive is relatively strong. The performance of the two
approximations as a function of the different couplings is
shown in the plots in Fig. 13. Consistent with the models
previously discussed, the flow equation approximation
performs substantially better across all parameter regimes.
For this case, we made use of the QuSpin package [99] to
obtain a comparison to the exact result.
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Plots of the normalized /, distance for a chain of length L = 14 where we vary the various coupling constants while keeping

others fixed. Particularly, we are (a) varying nearest-neighbor exchange anisotropy AJ = J; — J{ while keeping B = 1, average nearest-
neighbor exchange J = (J; + J3/2) = 1, and J, = J5 = 0 fixed, (b) varying B while keeping J; = —0.5, J; =1, and J, =J5 =0
fixed, (c) varying J while keeping AJ = 1, B = 1, and J, = 0 fixed, and (d) varying J, while keeping AJ = 1, B = 1, and J = 1 fixed.

VIII. COMPARISON WITH RESUMMATIONS OF

THE BAKER-CAMPBELL-HAUSDORFF

IDENTITY

In this section, we turn the logic around relative to the
conventional Hamiltonian—evolution operator relationship.

(a)
0.7F

0.6}
0.5

Magnus expansion

Flow equation

0.4}
0.3f
0.2}
0.1
0.0t

Normed /, distance from exact

Up to this point, we have discussed computing an effective
time-independent Hamiltonian for a time-dependent prob-
lem, and we have used this effective Hamiltonian to
compute the time evolution of the system. Now, we turn
our attention to a situation in which the time-evolution

—_
O
-~

Normed /, distance from exact

0.7}
0.6}
0.5} |
0.4}
0.3}
0.2}
0.1}
0.0E.

w

10

FIG. 12. Plot of the normalized /, distance between exact and approximate time-evolution operators for J; = 1, J{ =2, and J, = 0.2
plotted as a function of frequency for a spin chain with L = 14 sites. The driving strengths of the nearest-neighbor exchange term in the z
direction are (a) J{, =2 and (b) J, = 6.
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Plots of the [, distance as a function of various coupling constants for a chain of length L = 14. In panel (a), we vary the

nearest-neighbor exchange anisotropy AJ =J; —Ji and keep Ji , =2, J = %(J] +Jj) = 1.5, and J, = 0.2 fixed; in panel (b), we
vary the driving strength of the exchange interaction in the z direction J§ , and keep AJ = —1,J = 1.5, and J, = 0.2 fixed; in panel (c),
we vary the average nearest-neighbor exchange interaction J and keep J{ , = 2, AJ = —1, and J, = 0.2 fixed; and in panel (d), we vary
the next-nearest-neighbor exchange J, while keeping J{ , =2, AJ = —1, and J = 1.5 fixed.

operator is known (in our case, it takes a specific product
form), and we wish to determine an optimal Hamiltonian
that can be used to produce the desired time evolution. This
may be useful in certain quantum computing applications,
for example.

A second goal of this section is to show that our method
has advantages over the rotating frame approximation. For
instance, one can capture most of its features by a truncated
ansatz even when an exact rotating frame approximation
cannot be calculated because the effective Hamiltonian
would include infinitely many long-range interacting terms.
This highlights another important dimension to our flow
equation approach, beyond the examples illustrating its use
in earlier sections of the paper.

There has been a recent surge of interest in resummations
of the Baker-Campbell-Haussdorff (BCH) identity [81]. An
important evolution case where the BCH identity is useful
is when the time-evolution operator factorizes into a
product of matrix exponentials e~#1’¢=iH2! This structure
corresponds to multiple different Schrodinger equations.
One possible correspondence is to a delta function time
dependence in the Schrédinger equation. For example, the

periodically kicked transverse field Ising model that is
discussed in Ref. [81] consists of quenches between

— 2 2
H, —JE 0i%i+1>
i

Hy = (hok + h.o)), (54)
and can be put into the form
H(t) = Ho + V(1)
Hy = [J,6505,, + h.of + h.o3),
V(1) =) _lhot + hafl(8(0) = 1), (55)

i

where, to stay close to the notation of Ref. [81], we use
Pauli operators o, = 287* rather than the spin operators
we used earlier in this work. Here, §(7) is the Dirac delta
function.

Another possibility is to rewrite the problem in terms of a
Heaviside € function as
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are (d) short range J, (¢) medium range J,, and (f) long range J.

H(t)=Hy+ V(t),
Hy = [J,6505,, + h.of + h,o3].
V(i) =Y [ho +h.oi - J.oio5,](20(1 = 1/2) = 1).

i

(56)

Both choices lead to different flow equations and can
therefore be interpreted as leading to different resumma-
tions of the BCH identity. Thus, we discuss here these two
Hamiltonian choices for a given time-evolution operator.
As a matter of fact, there are infinitely many ways to make a
choice in the time dependence and likely one is an ideal
choice. However, we will not discuss this issue of optimal
choice any further. An important difference between the
two formulations is that the flow equations in one case can
be solved exactly, and in the other case, they require
truncation. This difference allows us to assess how useful
our method is in a case where the rotating frame approxi-
mation cannot be calculated exactly. This example helps
illustrate the point that even when the flow equations are
not solved exactly, they still give results beyond the
Magnus expansion.

One finds that within the lowest order in the BCH
expansion, the replica approximation used in Ref. [81] and
our flow equation approach lead to an approximate Floquet
Hamiltonian of the form

) = Yo + 00 + o

i

+ C;‘;)‘szazyﬂ + Cg?)az;"fﬂ

i+1

+ C)(cf)of‘(o;v Tt +1) + sz G +Gzz'+1)

+C9 (07, +6%,) + C0t03 105, (57)

where a labels the approximation scheme. The different
approximations only differ in their coefficients (and some
coefficients may be zero). The coefficients themselves offer
little to illuminate our discussion. Therefore, their deriva-
tion is given in Appendix E.

In Fig. 14, we show a comparative plot for the J-type and
the Heaviside-type resummations. The plots are done for
spin chains of length L = 14 to get a smooth plot. There are
only small numerical differences for longer spin chains.

In the plots, one can see that the flow equation approach
in Eq. (10) performs better for small values of coupling
strength than the Magnus expansion—in some cases, also
better than the replica expansion. For large couplings, it
outperforms both.

From Fig. 14, one can see that the flow equation approach
is the most reliable approximation, with the mismatch in
some cases plateauing at values of around 0.1. For those
values, one is still able to capture at least qualitative features
of the time evolution. Thus, the flow equation approach
offers a useful numerical strategy for finding a Hamiltonian
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describing a given time evolution. This may be of practical
importance in a wide variety of applications where it is
difficult to determine the underlying Hamiltonian from
microscopic considerations, as may be the case in various
types of quantum information scenarios.

We would also like to stress that for the step-wise drive, it
is not possible to calculate the exact rotating frame trans-
formation, and therefore, a truncated ansatz for the
Hamiltonian has to be employed to solve Eq. (10). One
can see that this truncated ansatz performs well (red curve).
It should be stressed that the truncated ansatz performs
similarly to the case where an exact rotating frame
approximation is possible. Our method therefore allows
one to capture properties of a rotating frame approximation
even when it is not possible to calculate this approximation
exactly.

IX. CONCLUSIONS

In conclusion, we have introduced an accurate “flow
equation” approach to compute effective time-independent
Hamiltonians, valid for finite times (which may be expo-
nentially long) for periodically driven quantum many-
particle systems. We have demonstrated the power of the
flow equation approach by illustrating how one can reach
into perturbatively inaccessible frequency regimes. We
have shown that the approximation generally yields an
improvement over the Magnus expansion and that it can
also outperform the rotating frame approximation.
Furthermore, in many instances, the results from the flow
equation approach also yield a practically accessible
improvement on the first-order Magnus expansion, where
no other method appears to be available. A straightforward
application of the Magnus expansion leads to an explosion
in the number of different operators that contribute to the
effective Hamiltonian with coefficients that are tedious to
evaluate. In our approach, one is able to truncate the
number of operators contributing to the flow equations in a
controlled way, which allows one to keep fewer terms but
find highly accurate coefficients. We have also demon-
strated that our method compares favorably to resumma-
tions of the Baker-Campbell-Hausdorff identity, illustrating
that it shows its strength even in niche applications, where
more powerful methods are expected. Our approach also
has a wider range of applicability than standard rotating
frame approximations since, even if a rotating frame
approximation is impractical or not possible because the
matrix exponential or the rotation of operators induced by it
cannot be calculated, our method allows for a truncated
ansatz that may still capture the important features of the
transformation.

In summary, we hope that the demonstration of the
validity of our approximate method illustrates its power
and potential impact on time-dependent quantum many-
body systems. The method is completely general and
applicable to any form of time-dependent terms in the

Hamiltonian—be it through the potential energy, kinetic
energy, or both. With the accurate, effective, time-
independent Hamiltonians that one obtains, new access
is granted to potential prethermal regimes with properties
not present in the equilibrium phase diagram of the original
Hamiltonian. Our results also open the door to new
opportunities for quantum control through Hamiltonian
engineering to create the desired properties out of equili-
brium. The effective Hamiltonian can be used to compute
any observable over finite times through the standard
formulas of statistical mechanics, in addition to accurately
governing the evolution of the quantum states themselves.
We hope our approach will inspire new studies that exploit
its flexibility and expand the range of approximation
schemes that can be employed within it. Thus, new regimes
of cold atom, condensed matter, and other systems will
likely be uncovered and manipulated in new ways.
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APPENDIX A: SPIN IN A ROTATING
MAGNETIC FIELD

The first terms of the effective Hamiltonian correspond-
ing to Eq. (17) in a Magnus expansion are given as

B _ BY  2B,B.
Z [0} ®
Her » 2B,B. B ’
-2 2B

[0} [0]

(A1)

Next, we calculate the Hamiltonian in the rotating frame
using Eq. (10). We make the ansatz,

B, (s)
By(s) + iBy(s)

By(s) = iBy(s)

s = ~By(s)

) @

and find the flow equations

dB(s) _ _ZBP(BO(S)(cos(a)t) —1) + B (s) sin(wt))

ds ® '
dB;s(s) _ ZBsz(s)(z;)s(a)t) -1) _ B, cos(w),
dB\(s) 2B,B,(s)sin(wt) _

dls - 2 - — B, sin(wt), (A3)

with initial conditions

021037-17


www.tacc.utexas.edu
www.tacc.utexas.edu
www.tacc.utexas.edu
www.tacc.utexas.edu

VOGL, LAURELL, BARR, and FIETE

PHYS. REV. X 9, 021037 (2019)

B,(0) = B; By(0) = B, cos(wt),

B,(0) = B, sin(awr). (A4)

The solutions to the flow equations at s = 1, given our
boundary conditions at s = 0, are now given by

1 4B, sin(’2
B2 = Z (4BZ - (l)) COS (PT(Z)>

1 4B, sin(’2
-B, sin(%o) sin (pT(z)> +%,

L (1 4B, sin(2
By = ;sin (760) (w —4B,) sin <A(2)>

w

1 4B ,sin’ (%2
— Bp sin (;) cos (%(25 ,
4B, sin(%3)
)

- % (@ — 4B.) cos (2") sin (MB”ZH(%})) - (AS)

After taking an average over one period, we end up with
the effective time-independent Hamiltonian

B, B
H = ( )v
B, -B,
1 4B 4B
B2 = Z <CU + (4BZ - (D)JO (ﬁ) _4BPJ1 (ﬁ)),

4B 4B
BO —Bp.Iz(?p) _Bz‘ll (ﬁ) (A6)

APPENDIX B: EFFECTIVE HAMILTONIANS

1 .
B, = EB” sin(tw) cos(

For the lowest-order Magnus expansion, the effective
Hamiltonian is

Heff—%Atdt<H(t)+i/0tdt1[H(t1),H(t)]). (B1)

This result will be a reference point for our flow equation
approach.

1. Flow equation approach for the XY-spin chain
with antisymmetric exchange

We find that at each flow step of Eq. (10), the
Hamiltonian H(s) retains the form

H(s.t) =Y (ci(s.0)SI8%, + ea(s. 0)SISY

+c3(5,0)S7S) | + cals,1)S]ST, | + cs(s,1)S7),
(B2)

where our initial Hamiltonian, Eq. (32), tells us that we
have the initial conditions

c1(0,1) =J,,

c(0,1) = J,,

c3(0,¢1) =D,

c4(0,1) = =D,

¢5(0,1) = hy + h(1) (B3)

Defining /;() == [ df'h(1"), we can compactly write the
flow equations for the coefficients as

D by 1) (ea(oo0) + ea(s.1).
CAD 1) ea(s.1) + ea(s.1).
w = () (ea(s. 1) = e4(s.1),
D) 1) (eats.r) — er(s.)).
dcﬁjJ)::—hU) (B4)
The solution at s = 1 is found as
(1) =J+ %cos (2hy(1)).
ex(1.1) = 1 5L cos (21 (1),
Quﬁzp—%%MMm»
cs(1,8) = =D — %sin (2h(1)),
es(1,1) = hy. (BS)

Taking the explicit form h(t) = hsin(wt), we can take a
time average over a period of the Hamiltonian and find the
approximate Hamiltonian at stroboscopic times as

Her = Z(J,(Cf)SfS;‘H + Jy)Szy'S?Jrl + DY)S?CS?H

+DUSISE | + hoS7).

(B6)
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2. Flow equation approach for the J; —J, model with
time-dependent magnetic field in the x direction

We find that at each flow step [using Eq. (10)], the
Hamiltonian has the form

Hist) = 303 (CLis 0SS5, + Cly(s.0S)S0,,

+ C?Z(s’ t)stz:»n + C;lz(s’ l)(SzZSﬂ»n + Slystrn))
+3 k(s 1), (B7)

where our initial Hamiltonian, Eq. (35), gives us the
boundary conditions

Ci(0.1) = J,,.
Cyy(0,1) = J,,
"(0,1) = AJ,,
Cr.(0.1) =0,
h(0,1) = h(t). (B8)

Defining h,(t) == [} dt'h(7'), we find that an infinitesimal
step implies the flow equations

dc? (s, 1)
T,
ds
dcn, (s, 1) .
Zis = 2h1(t)cyz(s’ t)v
dC? (s, 1) ;
Zdis = _2h1(t)cyz(s’ t)?
dcC”.(s,1)
y;is = —hy(1)(C3,(s,1) = CL(s,1)),
dh(s, 1)
= —h(1). B9
20— () (B9)
The solution at s = 1 is found as
Ci(l. 1) = J,,
Ju .
Cr(1,1) =2 (24 2(J5 = 1)sin? (hy (1)),
J
CL1,1) =22+ 2(J; = Deos’ (s (1)),
J, .
CL(1,1) = 22 (J5 = 1) sin 21y (1),
h(1,1) = 0. (B10)
For the special case of
1; 2nmr < wt < 2nw+ 7w
h(t) =B . neZz,
-1, 2nm+r<wt<2n+ 1)z
(B11)

we find

2
Her =D 3 (JuSISy + iS)S),, + JiSiS5,
n=1 i

+ (878, + Si85)),

i~i+n
,J (Ji = 1w sin(228)
Jo == 205 — w 2],
4 ( 7B +
- (2nB
I J.((J5 = Dawsin(28) + 27(J5 + 1)B)
! 4dzB ’
Ji = 1)J ,wsin? (28
I, oe n = DIwesin’ () (B12)
2nB

APPENDIX C: TIME-EVOLUTION OPERATOR
FOR THE XY MODEL WITH TIME-DEPENDENT
MAGNETIC FIELD IN THE z DIRECTION

The equation for the time-evolution operator in this case
has the form

i0,U(t) = > HU(1), (C1)

with [Hy, Hy] =0, V k # k’. One may make a separation
of variables ansatz

(€2)

U=]u.
k

where we assume that [Uy, Uy] =0, Vk # k'. Inserting
this ansatz into Eq. (C1) gives

izk:(a,uk) Ll;[kukl] = zk:HkUk Ll;[kUk] (C3)

For this equation to be fulfilled, it is sufficient that it is
satisfied term by term, which yields

i(0,Uy) = Hi(1)Uy. (C4)
In our case, generically H,(¢) has the form
H* (1) H(t c
Hk(t)—(ch_k)( 111() ;{z())( Tk > (C5)
H5, (1) Hy(1) /) \ e,
Therefore, an ansatz for U is
Ui(t) = Ak(2) + A’f(t)chk + Aé(t)cikc_k + A(f)e_yex
+ A1)l yep + AL (1) el ereier (Co)

which indeed fulfills [Uy, U] = 0, V k # k. Inserting the
ansatz in Eq. (C4), we find that it is consistent since no
further terms appear. By equating coefficients, we find
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—H5,(1) 0
—HY, (1) —HY (1) = H3,(1)
oAk _ | 1) 0
ot —H5,(1) —H5,(1)
H, (1) 0
0 —H5, (1)

as a linear system of equations for the coefficients A¥ from
the ansatz, where we define

AX(1) = (A5(1). A3(1). A5(1). Af(1). A5(1))T. (CB)

The initial conditions for a time-evolution operator in this
notation are

A¥(0) = (1,0,0,0,0)7, (C9)

where T denotes the transpose (not the period of the time-
dependent Hamiltonian). From here, the time-evolution
operator is evaluated numerically.

APPENDIX D: NUMERICAL CALCULATION
OF TIME-EVOLUTION OPERATORS USING
EXACT DIAGONALIZATION

To study the J;-J, models in Egs. (35) and (39) and their
approximate counterparts in Egs. (48) and (51), we employ
exact diagonalization [100]. We note that the time evolution
of a given initial state is more efficiently calculated using
Krylov subspace methods, as in Ref. [57], and that DMRG-
based methods are more powerful in the Floquet-MBL
regime [101], being capable of reaching larger system
sizes. However, here we want to compare the full time-
evolution operators using the most unbiased numerical
method possible. To calculate this operator for a given
(exact or approximate) Hamiltonian, we write

H(t)=Hy+ V(1), (D1)
where V(f)=0 for the time-independent -effective
Hamiltonians. We next “Trotterize” the problem by

introducing discrete time steps ¢; = jT/Ngeps = jot,
where 6t is chosen small enough not to affect the results.

0 0 H5, (1) 0
0 0 —H5, (1) 0
0 0 —H3, (1) 0
~HS (1) —H%(1) 0 HE (1) A1), (C7)
0 0 -HL(n 0
Hi () HG0) ) —H )

Here, T is the period of the time-dependent Hamiltonian.
Then, the time-evolution operator over a period is
given by

Nsleps -1

ur.0)= [ v.1).

J=0

(D2)

where, using a second-order Trotter-Suzuki decomposition
[102], we write

Ot ot
U(t + 6t,t) = exp [—;—hv<t + 5)} exp [—i6tH /]

iot ot
X exp {—%VQ—I—E)}

If the time dependence of V(¢) factors out, i.e.,
V(t) = f(t)V,, the problem of calculating U(T,0) can
be reduced to two matrix diagonalizations of H, and V|,
respectively, and numerically efficient matrix-matrix multi-
plications. If one of the matrices is integrable, the problem
can be simplified further, as in Ref. [37], but we do not
assume that here. We write H, and V(¢) in a basis
implementing translational invariance and, for Eqgs. (39)
and (51), also magnetization conservation [100]. The full
diagonalization of the two matrices is achieved using the
FEAST Eigenvalue Solver [103].

(D3)

APPENDIX E: TRANSVERSE ISING MODEL:
BCH, FLOW, AND REPLICA HAMILTONIANS

In this section, we summarize the treatment of the
transverse Ising model.

1. Flow equations for the d-function model

The flow equations for the d-function model, Eq. (55), in
our approximation, Eq. (10), are found as
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@ — _h(5(1) 1),

% — _h(5(r) - 1),

% = —4n (1= 1)CE(s.1).

% =2(t = 1)[h,(CE2(s.1) = C5(5.1))

- thfz’é(s, 1],

dCtP (s, t
dCyy’(s.1) _ 4(t = 1)[h,C5° (s, 1) = h,CE (s, 1)),

ds
dCE (s, t
LD o= 1€ . = e CE 5.0,
dCyy (s, t
D 2= )1 CE 5.0 + (0

- CL (s, 1)),
dCE2(s,1)

S = (- 1)Cy (s, 1), (E1)
with initial conditions
CE2(0,1) = h,8(1),
CEo(0,1) = h.8(1),
CL2(0,1) = J.,
CE2(0,1) = CE2(0,1) = 0,
C33°(0,1) = CL°(0,1) = Cy°(0,1) = 0. (E2)
The solution at s = 1 gives coefficients
F5 _
Cx/z - hx/Z’
oF _ h2h2J.(12h — 8 sin(2h) + sin(4h))
XX 8]’[5 ’
CF,& o h)zcthzSin4(h>
Xy — h4 ’
hoh . (h(2h2 = h2) + sin(2h) (k2 — h2) — "sinth),
CF.(S _ Xz 4 x X z 1
Xz 2h5 ’
cro _ Y (4h(ht 4 2h?) + hi sin(4h) + 8h2h? sin(2h))
Z 8]’15 ’
CFo hyJ sin? (h)(h% cos(2h) + h? + 2h?)
v 2h* ’
CFé_ _ h2J (sin(4h) — 4h)
e 8h3 '
Cif = (E3)

2. Flow equations for the Heaviside #-function model

The flow equations for the Heaviside #-function model,
Eq. (56), in our approximation, Eq. (10), are found to
generate an infinite amount of terms. This finding means
that an exact solution of Eq. (10) is impossible; in turn, it
also means that a rotating frame approximation is impos-
sible because matrix exponentials, and also the rotation of
operators induced by it, cannot be calculated. Our method
allows us to truncate terms and therefore find an approxi-
mate rotating frame transformation. The terms that appear
in Eq. (57) are generated quickly when using an ansatz that
starts with the form of the original Hamiltonian and
subsequently adding the new terms that appear to that
ansatz. This result motivates one to include as many terms
from the Hamiltonian Eq. (57) as possible while still
allowing for a compact analytical result. We choose the
ansatz Hamiltonian

HF 0

Ansatz

(s) = Y_[C¥76} + €5 + Cajal,

+ sz’ef’zzﬂfﬂ + C(toi, + 0i071)
+C (oot + 0,07,1)
+ Cfigaf“?—lo'fﬂ]- (E4)

The flow equations, Eq. (10), give us the following
equations for the coefficients:

dcto(s,
% = ~(41.C (5. 0)f (1) + b f (1)),
dctO(s,1)
-~ ' 7 — —h, )
e (1)
F.0
dCy (s.1) _ 4, Cy (s, 0)f (1),
ds ’
dct?
dCyi(s.1) _ 21.C30 (s, 1) f1(1),
ds
dacto(s,
% =2£1(1)(J.CE(s.1) = h.CE(s.1),
S

+J.CE (s 1) = h ClP (s, 1) + h CEO (5. 1),

F.0
dcdis(”) = (Jof (1) = 41, G (5, 0 1(0)),

dCil(s.1)

o= —4J.Cy (s, 1) f4(1), (E5)

where f(t) = 0(t—13), f1(1) =1+ (1 =26)0(r - 1), and 0
is the Heaviside function.
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The initial conditions are

Cy00,1) = h(f(1) + 1),

CE90,1) = h(f(r) + 1),

CL(0,1) = =J.(f(1) - 1),

cEo0,1) = cff’(O) =0,

chl(0.1) = cEP(0.1) = C5P(0.1) =0.  (E6)

The solution at s = 1 implies that the coefficients are

CEO— o — 4h,J? (1 ~ sin(y)>’
Y

crp -l _sntn)

Y Y
ey _4h,262JZ (1 B sin(y)>’
Y Y
2h.J
!’ yxz = (1 = cos(y)),

o — 4h%J, (1 ~ s1n(y)>’
v Y

2 .
Cro — 8h,J? <s1ny(y) B 1>, (E7)

where y = \/4h2 + h? + 4J2.

3. Result for the BCH identity
For the BCH identity, one finds the coefficients

CECM — .
CBCH — pp_,
CBCH ‘]Z’
CBH =, J.,

CBCH CBCH CBCH CBCH CBCH =0. (Eg)

X2Z

4. Result for the replica approximation

The coefficients for the replica case were taken from
Ref. [81] as

1
C§ = hx <‘]Z COt(z.]Z) + 5) s

CR =,
cR =1,
R 1
Cyz - Ehx.lz,
1
CR.=h, <Jz cot(2J,) — 5)
Cfx = ny = sz = Cﬁy =0. (E9)
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