IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

5727

A Safety-Performance Metric Enabling
Computational Awareness in
Autonomous Robots

Ashrarul H. Sifat"”, Xuanliang Deng
Shaoyu Huang, Jiabin Huang
and Ryan Williams

Abstract—This letter takes a first step towards the analysis
of safety and performance critical computational tasks for au-
tonomous robots. Our contribution is a safety-performance (SP)
metric that ensures safety first and then rewards improved per-
formance of real-time computational tasks, building on the notion
of ‘“nominal safety” which defines timely computation as critical
to safety. To fully utilize the computing capacity of heteroge-
neous processing units (e.g., CPU + GPU), a computational task
graph model called the Stochastic Heterogeneous Parallel Directed
Acyclic Graph (SHP-DAG) is adopted to capture the uncertain
nature of robotic applications and their required computation.
Compared to state-of-the-art task models, SHP-DAG avoids the
pessimism of deterministic worst-case execution time (WCET),
instead modeling the execution times of tasks by probability dis-
tributions. Our SP metric is defined upon this task model, which
allows us to apply the FIFO and CFS schedulers of the Linux
kernel on complex robotic computational tasks and compare the
SP metric with baseline metrics, average and worst-case makespan.
Extensive experimental results on NVIDIA Jetson AGX Xavier
hardware demonstrate that the proposed SP metric is appropriate
for managing computational tasks in a manner that balances safety
and performance in robotic systems.

Index Terms—Autonomous robots, safety management,
scheduling algorithms, software performance, uncertainty.

1. INTRODUCTION

UTONOMOUS robots often have a sophisticated set of
A objectives, e.g., as seen in multi-robot search and rescue
and precision agriculture [1], [2], and face difficult restrictions
on computation while operating in dynamic environments. Ad-
ditionally, the computational tasks that support autonomy may
vary widely in their impact on safety (based on task timeliness),

Manuscript received 10 March 2023; accepted 30 June 2023. Date of pub-
lication 31 July 2023; date of current version 7 August 2023. This letter was
recommended for publication by Associate Editor C. I. Vasile and Editor L.
Pallottino upon evaluation of the reviewers’ comments. This work was supported
by NSF under Grant CNS-1932074. (Ashrarul H. Sifat and Xuanliang Deng
contributed equally to this work.) (Corresponding author: Ashrarul H. Sifat.)

The authors are with the Department of Electrical and Computer Engineer-
ing, Virginia Tech, Blacksburg, VA 24061 USA, also with the Department of
Computer Science, Purdue University, West Lafayette, IN 47907 USA, and also
with the Department of Computer Science, University of Maryland, College
Park, MD 20742 USA (e-mail: ashrar7 @vt.edu; xuanliang @vt.edu; burhanud-
dinb@vt.edu; swang666 @vt.edu; huan1464 @purdue.edu; jbhuang @umd.edu;
chjung@purdue.edu; hbzeng@vt.edu; rywillil @vt.edu).

Digital Object Identifier 10.1109/LRA.2023.3300251

, Burhanuddin Bharmal, Sen Wang
, Changhee Jung

, Graduate Student Member, IEEE,
, Senior Member, IEEE, Haibo Zeng ",
, Member, IEEE

while others vary in their impact on performance (based on qual-
ity of task output). To guarantee robot safety while maintaining
performance over broader mission objectives, the computation
that supports autonomy must be managed to balance between
safety and performance [3].

We have seen related thrusts in the autonomous vehicle (AV)
domain [4], [5], [6], which work with the concept of “nominal
safety” based solely on task responsiveness for collision avoid-
ance [6], [7]. However, we argue that in the broader context of
robotics, the notion of nominal safety and related metrics must
take on a more complex form. Thus, this work aims to create
a metric that balances safety and performance for complex,
nondeterministic robotic pipelines. Comparing to the “safety
score” for AVs [6], our metric captures variation in computation
and can trade off safety-driven computation with performance-
driven computation once the system is safe.

In defining our metric, we adopt the Stochastic Heterogeneous
Parallel Directed Acyclic Graph (SHP-DAG) model, where
task response times are expressed as probability distributions
to capture the uncertain nature of a robot’s computation (Sec-
tion II). Based on this computational model, we then derive
our safety-performance (SP) metric that ensures safety first and
then rewards improved performance of real-time computational
tasks (Section III). Finally, we perform extensive experiments
on NVIDIA Jetson AGX Xavier hardware with real-time Linux
schedulers (Section IV), and demonstrate that our SP metric is
appropriate for managing computational tasks in a manner that
balances safety and performance.

Related Work: Safety-focused frameworks have been stud-
ied extensively for collaborative robots carrying out tasks in
confined spaces with human involvement. For example, safety
assessment methods based on kinetostatic safety fields [8],
safety-driven robot application design methods [9], automating
traditional risk analysis methods [10], as well as fuzzy logic
system (FLS) and reinforcement learning (RL) based compar-
ative analysis [11] have been proposed to prevent collisions in
collaborative robot workspaces. While such works have a clear
safety objective, they often do not treat computation explicitly,
or have computational tasks that are relatively simple.

In contrast, tremendous work has been performed in the
real-time computing community, where Directed Acyclic
Graphs (DAGs) have become a popular method of modeling

2377-3766 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

5728

computation. While such results are powerful analytically, there
is a gap at the intersection with robotics. A relevant example of
work at this intersection is smARTflight [12], which proposes
an environmentally-aware unmanned aerial vehicle (UAV) flight
management system that adapts the execution frequencies of
flight control tasks according to timing and safety-critical con-
straints. However, [12] applies deterministic metrics for guiding
computational resource management, and focuses only on the
task of flight control. Finally, there are recent scheduler imple-
mentations based on DAGs such as a fixed-priority based DAG
scheduler utilizing the Robot Operating System (ROS) [13],
and a real-time scheduler and analysis of processing chains in
ROS2 [14]. While these methods are exemplary developments
in managing computation on robots with complex DAG mod-
els, they lack a unified framework that can ensure safety and
performance under uncertainty.

Finally, there has been work in the high performance com-
puting (HPC) domain to capture probabilistic execution times
instead of deterministic worst cases [15], [16]. While we take
inspiration from these works, they do not consider safety-
performance trade-offs, nor do they characterize the computa-
tion for robotic systems. To our knowledge, our work is the first
to consider probabilistic timing constraints with formalism for
achieving safety-performance trade-offs.

II. PROBLEM FORMULATION
A. Computational Model

We start by defining concepts from real-time computing (see
Fig. 1). In this letter, we consider a computational task as an
algorithm in support of autonomy (e.g., planning, vision, etc.)
that executes on an embedded processor.

Definition I1.1 (Start Time): The start time (ST) for a compu-
tational task is the timestamp when task execution begins.

Definition 11.2 (Execution Time): The execution time (ET)
for a computational task is the amount of time the task spends
in a processor of the host operating system.

Definition I1.3 (Response Time): The response time (RT) for
a computational task is the amount of time taken to generate
output from input for a particular task. In general,

RTI'=FET+1IT ey

where IT is the idle time spent waiting for resources.

Definition I1.4 (Activation Period): The activation period
(AP) for a computational task is the amount of time between
two consecutive executions of the task.

Definition 11.5 (Timing Distribution): Multiple executions of
atask ¢ yields a set of m measurements M, containing R’ and
ET for each execution. Timing distributions can then be built
based on M, denoted by symbols R and X, that capture the
variation in RT and ET of task i (see Section III).

The above definitions now allow us to define our concepts of
safety and performance for robot computation.

Definition 11.6 (Safety): The safety of computation is based
on probabilistic timeliness of computation, i.e., P(R > 7) < A,

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

Task Start response time (RT) Task end
Run scheduler dispatch o ot end time
"1 queue 1/0 —>
event

execution time
(ET)

start time(ST) idle time

Fig. 1. Diagram of task timing parameters. Note that RT and ET are a time
duration, whereas ST and ET are time instants.

where R is a random variable described by an RT distribution,
T is a nominally safe timing, and A is a probabilistic threshold.

Definition I1.7 (Performance): The performance of compu-
tation is based on the share of computational resources received
from the host operating system relative to ET distribution X.

Intuitively, we consider safety as derived from timely output
from computation in safety critical scenarios (e.g., for collision
avoidance), and performance as derived from larger shares of
computational resources allowing for better solutions to hard
problems (e.g., planning). With the above definitions, we now
formalize the computational model adopted in this work, the
Stochastic Heterogeneous Parallel DAG (SHP-DAG).

Definition 1.8 (SHP-DAG): A real-time robotic appli-
cation composed of computational tasks is represented by
an SHP-DAG, a directed acyclic graph defined as G =
WV, &, Type, Tag, R, X, A, Apac):

o V={v,vsy,...,v,}isthesetof IDs forall n graph nodes.

Each node v; € V is a computational task that executes on
a specific type of processor.

e £ CV xVis the set of directed edges among tasks that
indicates the data flow from one task to another.

o Type = {typey, , typeny,, - . ., type,,, } isthe setof types of
all tasks. A node in an SHP-DAG has one of the following
types in this work: { Computing, Data/Sensor}.

e Tag = {tag,,,tagy,,- .., tagy, } indicates the processing
unit that each task should run on (e.g., CPU or GPU).

e R={R,,,Ry,,..., Ry, } is the set of probability distri-
butions of response times for all tasks.

o X ={X,,Xu,,. .., Xy, is the set of probability distri-
butions of execution times for all tasks.

o A={A4,,A,,..., Ay, }isthe set of task APs.

® Apag is the overall activation period of GG, which defines
the rate at which G is re-executed.

An illustration of the SHP-DAG model is given in Fig. 2,
which captures the case study in this work (full details in
Section IV). From the SHP-DAG definition and Fig. 2, we see
that robot computation is modeled as a sequence of computa-
tional tasks that operate on input data (from sensors, or output
from other tasks) and produce an output for subsequent tasks.
Mathematically, such a sequence is a path in GG, where we denote
by P the set of all paths in G To capture safety in such a model,
consider the following definitions.

Definition I1.9 (Safety-Critical Path): Givenan SHP-DAG G,
a safety-critical path ¢; € C is a chain nodes in V' that achieve
functionality that is critical to the safety of the application, where
C C P is the set of all safety-critical paths in G.

Definition I1.10 (Safety-Critical Node): Given an SHP-DAG
G, a safety-critical node v; € V. is a computational task that

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

SIFAT et al.: SAFETY-PERFORMANCE METRIC ENABLING COMPUTATIONAL AWARENESS IN AUTONOMOUS ROBOTS

Depth Estimation
P\, (vs, Computing, GPU')

YOLO-DynaSLAM
(v, Computing, CPU')
X Task Allocation(TSP)
Tasks/jobs (v, Computing, CPU')

Camera Images

RRT Path Planning
(v,, Computing, GPU')

Allocated tasks

5729

A 4

Robot state
trajectory

Model Predictive Control
(v;, Computing, CPU)

me= Critical nodes/path
== Non-critical node/path
=== Data/sensor nodes

Fig. 2.

Example of our SHP-DAG model, shown with computational tasks and task dependencies seen in mobile robots. We denote the critical paths and nodes

by red ovals and arrows respectively, where we have one critical path and three critical nodes.

achieves a functionality that is critical to the safety of the
application, where V. C V.

We model specific terms for critical nodes as there may be
instances where a timing constraint for a critical path is satisfied
but the system remains unsafe. For example, if a localization
and mapping node is too slow, even if the computational path it
lies on meets a timing constraint, the staleness of the map may
endanger the system or bystanders.

The above concepts allow a system designer to designate
paths and nodes in an SHP-DAG as critical for safety (as in
Fig. 2), which will then be captured in our SP metric as upper
bounds on response times (Section III), yielding rewards for
responsive computation. All non-critical paths ¢; € P\ C and
nodes v; € V \ V. will then be evaluated for their contribution
to performance based on execution time.

B. DAG Paths and Makespan

As outlined above, a DAG path! is a sequence of communicat-
ing tasks where every task receives data from its predecessor. In
the real-time computing literature, it is most common to evaluate
DAG paths through Makespan, i.e., end-to-end latency [17].
Makespan of a DAG path is the length of time that elapses from
the start of the path to the end. As we use Makespan as a baseline
for comparison with our SP metric (Section IV), consider the
following definition:

Definition I1.11 (Makespan): The Makespan of a path ¢ in
an SHP-DAG G is given by:

RT, = (ST,

Vend

— ST,

Ustart

)+ BT, @)

where Vg, Veng are the start and end nodes of path £.

We see that the Makespan of a path is essentially the path re-
sponse time. Finally, we also consider the worst case Makespan
(WCMS) and average Makespan (AMS) for our comparison
with the SP metric, based on the definitions below.

Definition I1.12 (WCMS & AMS): The WCMS of a DAG
path is the largest Makespan among all of its executions within a
window of measurement whereas the AMS is the average of it. In
our experiments that window is fixed, Ap ¢, and the number of
executions are variable based on the instantaneous Makespans.
Considering m executions of a DAG path ¢ within the period
Apag, WCMS and AMS are defined by,

WCMS, = max RT}, 3)

Note, in the real-time community this is also known as a task chain.

TABLE I
SCHEDULING CLASSES AND POLICIES IN THE LINUX KERNEL

Classes Policies Characteristics

Stop No policy Highest Priority

Deadline SCHED_DEADLINE Periodic hard real time tasks

Real Time SCHED_FIFO, Task priorities: 0 - 99
SCHED_RR short latency sensitive, soft-real time

Fair SCHED_OTHER, Completely Fair Scheduler (CES)
SCHED_BATCH, Default scheduler in Linux
SCHED_IDLE Motivated by Rotating Staircase Deadline

Idle No policy Lowest priority

1
AMS;=—> RT;)

C. Real-Time Systems and Scheduling

Our concepts above are a basis for modeling a real-time sys-
tem, a system that provides guaranteed response times for events
and transactions. Scheduling algorithms are the key mechanism
for achieving such real-time behavior as they balance computa-
tional resources among tasks, usually according to some metric
(such as Makespan or our own SP metric). As ROS is primarily
operated in Linux, we provide here a brief summary of the Linux
schedulers, summarized in Table 1.

In this letter, we utilize the real-time FIFO scheduler which
operates according to fixed task priorities, and the default CFS
scheduler which cannot provide real-time behavior. We design
a study of our SP metric (Section III) around a combinatorial
set of FIFO priorities (higher value is higher priority), with CFS
as a baseline (Section IV). This study will illustrate that our
SP metric is highly sensitive to FIFO priority for computation
modeled as an SHP-DAG. Such sensitivity then paves the way
for a custom scheduler based on our SP metric, i.e., solving the
following problem:

Problem 1: A general scheduling problem optimizing the SP
metric is given by:

max SP(S)
s.t. schedulability(S) =1 (5)

where S is scheduler parameters that influence RT and ET.
With this problem context, our work focuses on developing
SP(S) and demonstrating the metric experimentally with S
containing Linux scheduler parameters. However, we also note
important features of the constraint schedulability(S) = 1. In
our formulation, this constraint would be defined as all proba-
bilistic timing thresholds 7 being satisfied, guaranteeing safety.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

5730

The probabilistic nature means that our problem would fall under
the class of black box methods, where schedulability is verified
by simulation as opposed to mathematical proof. In this case,
methods proposed in our work [18] can be adapted to solve the
optimization problem 1 (our future work).

III. SAFETY-PERFORMANCE METRIC

A. Response and Execution Times

To begin, we must populate the sets R, X in an SHP-DAG
G that define task response and execution times, respectively.
Most importantly, as opposed to the typical use of worst cases to
define response/execution times, we aim to define distributions.
Thus, we propose to measure response and execution times for
the tasks v; and paths ¢; in GG, and then use this data to build
distributions.? Illustrating this process for task response times,
consider a set of measurements M; = {RT; ; | j € [1 : m]},
with m measurements. Given that we have M, we can define a
Response Time Profile (RTP) R ; for task v;, a continuous random
variable defined on response time values RT; ;. Thus, we can
define the Probability Density Function (PDF), pdfr,,

pdfr,(RT; ;) = P(R; = RT; ;) (6)

Now, the density function can be built assuming the data comes
from a known distribution, such as Gaussian, Weibull, piece-
wise Normal, etc [15], [20]. For instance, a Gaussian distribution
(which we use in our experiments) can be defined based on mean
and standard deviation (SD) calculated from M. Specifically,
if the mean p; and SD o; are calculated based on M;, then
pdfr, (RT; ;) is given by

pdfr, (BT j) = (2m0?) "7 o (RTem)™/(208) (3

Response time distributions for paths, and execution time dis-
tributions in X are built analogously.

B. Definition of Penalty and Reward Functions

With our SHP-DAG G fully defined, we can now build our
SP metric by first considering that our metric should penalize
when safety-critical paths and/or critical nodes violate timing
constraints based on a particular schedule (i.e., S). We begin
with the first term of our metric which penalizes unsafe critical
paths.

Definition III.1 (Critical Path Penalty): The penalty for
safety-critical paths that violate timing constraints is:

= > phl — ;) ®)

£;€Cys

Re >Tg)

where Cy is the set of safety-critical DAG paths that violate
a probabilistic timing constraint, that is, P(Ry, > 74,) > Ay,
where Ry, is the random variable describing the uncertain re-
sponse time of critical path ¢;, 7, is the nominally safe response
time for path /;, and X, is the probabilistic timing constraint for
;.3 With these definitions, and noting that f%,(S) represents

2We use RabbitMQ middleware [19] for implementing our computational
graph and measuring response/execution times (details in Section IV).

3Given the PDF of response times, the term P(Ry; > 7g,) can be evaluated
using the Cumulative Distribution Function (CDF) [21]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

a penalty term (p) for critical path violations (cp) based on
schedule & with a generic penalty function pf]g(~) for each
critical path ¢;, (8) can be interpreted as penalizing based on the
deviation of every violating critical path from its probabilistic
timing constraint. Thus, if there are no safety-critical paths
that violate timing constraints based on S then Cys = () and
J&(S) = 0 yielding no penalty.

Definition 1I1.2 (Critical Node Penalty): The penalty for
safety-critical nodes that violate timing constraints is:

= Y pU(P(Ry, > 70,) — Ao, 9)

v; €Vys

where Vy is the set of safety-critical DAG nodes that violate
a probabilistic timing constraint, that is, P(R,, > Ty,) > Ay,
where R,, is the random variable describing the uncertain
response time of critical node v;, 7, is the response time for
node v; that ensures nominal safety, and A,,, is the probabilistic
timing constraint for node v;. With these definitions, and not-
ing that f&,(S) represents a penalty term (p) for critical node
violations (cn) based on schedule S with a generic penalty
function pZi () for each critical node v;, (9) can be interpreted
as penalizing based on the deviation of every violating critical
node from its probabilistic timing constraint. Thus, if there are no
safety-critical nodes that violate their timing constraints based
on schedule S then Vs = () and f5,(S) = 0 yielding no penalty.

With the penalties for our metric defined, we now describe
rewards gained after timing constraints for safety-critical paths
are satisfied. Critically, the following reward terms are non-zero
only when there exists no critical path or node constraints that
are violated, i.e., P(Ry, > 14,) < Ay,,V {; € C and P(R,, >
Tm) <)wﬁv v; € Ve.

Definition 111.3 (Path Reward): The reward for DAG paths,
assuming safety-critical timing constraints are satisfied, is:

f path |: E Tpath

L;eC

— P(Ry; > 71,))

Z path (Xﬁ)

L:¢C

Definition I11.4 (Node Reward): The reward for DAG nodes,
assuming safety-critical timing constraints are satisfied, is:

f S ’U,L _
node rnode

v €V,

palh (XF)] (10)

P(qu‘, > Tvi))

D rh(X,)

vi Ve

In the above definitions, fp,;(S) and fio.(S) repre-
sent a reward term (r) for every path and node based
on schedule S, respectively, with generic reward functions

Pt ()5 That (): Thode (), Thoge (+) that separately reward safety
margins (s) and system performance based on timing (p) for
paths ¢; and nodes v;. There are two key points to note in
these reward definitions: 1) critical and non-critical paths/nodes
contribute separately as non-critical paths/nodes (¢; ¢ C and
v; ¢ V) cannot be rewarded for improving safety margins; and
2) the rewards for performance are given in the most general form

+TE;Z;(XW>] + (11)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

SIFAT et al.: SAFETY-PERFORMANCE METRIC ENABLING COMPUTATIONAL AWARENESS IN AUTONOMOUS ROBOTS

(rg;fﬁ (X¢,) and rP% (X)) as the relationship between timing
and performance can vary broadly between tasks (we illustrate
specific reward functions in Section IV).

Finally, with all terms defined a scheduler can optimize our
safety-performance metric defined as a weighted sum of terms
(8)—(11), yielding schedules that trade off safety and system
performance relative to probabilistic timing constraints.

Remark 1: Tt is important to note for all SP terms defined
above, if a hard timing constraint is desired one can simply set
Ae; = 0,X,, = 0 which enforces sureness of satisfying Ry, <
7e, and R,,, < 7,,.

IV. EVALUATION OF SP METRIC
A. Construction of the DAG

In order to evaluate our above defined SP metric, we require
an SHP-DAG G that represents a basis for robotic computing.
We argue that all robots must navigate in the environment, per-
ceive the environment, and allocate high-level tasks according
to mission objectives. Thus, below we compose an SHP-DAG
G using: (1) YOLO-DynaSLAM [22]; (2) RRT-based path
planning [23]; (3) model predictive control [24]; (4) vision-
based depth estimation [25]; and (5) the traveling salesperson
problem (TSP). The implemented SHP-DAG G is depicted in
Fig. 2.* It consists of one critical path ¢; and three critical
nodes {(vy, CPU), (v2, GPU), (v3, CPU)}. The data connec-
tions among nodes as well as the precedence constraints are
implemented using industry-standard RabbitMQ middleware,
well-known for its robustness and speed [26]. A brief description
and common parameters of the above algorithms are given
below. Additionally, as we require input data to execute each
algorithm, we specify the test data below.

1) YOLO-DynaSLAM (vy in Fig. 2): YOLO-DynaSLAM is
a visual SLAM system with increased robustness to dynamic
environments in real-time. In our implementation, we replaced
Dynamic ORBSLAM’s YOLOvV3 block [22] with our own
CUDA C-library implementation of YOLOvV4 [27] to fully uti-
lize the GPU acceleration of our embedded NVIDIA hardware.
We utilize the RGB-D TUM dataset from [22].

2) RRT Path Planning (v, in Fig. 2): Unlike typical RRT-
based solutions, we implemented an RRT-based planner that
utilizes the GPU to perform the nearest vertex test in RRT [28].
Utilizing the GPU yields O(1) scaling in this test and can
improve efficiency significantly when obstacle density is high.
For our SP metric evaluation, the number of obstacles is set to
2048 and are generated randomly in a fixed 2D environment.

3) Model Predictive Controller (vs in Fig. 2): Model Pre-
dictive Control (MPC) is the problem of controlling a linear
time-invariant dynamical system according to some reference
state. We utilize constrained linear-quadratic MPC, which solves
at each time step the finite-horizon optimal control problem. In
our evaluation, the state space parameters are generated based
on a UAV model (using OSQP [24]).

4) Traveling Salesperson Problem (vy in Fig. 2): We repre-
sent high-level robot objectives with a Traveling Salesperson

“DAG implementation: https://github.com/caslab-vt/SP-metric-analysis.
githttps://github.com/caslab-vt/SP-metric-analysis.git.

5731
t=0
A Endtimeof = Start time
YOLO- SLAMI | of SLAM2
DynaSLAM | sLami | stam2 | sLams | R
o - \;STSL.v\\ll \ \STSL.\\II !
z|& RRT | RreTI H RRT2 || RRT3 |
1E I
~ /A STsLam \?\\\\ STspamz
Lo M OTTITITITITINERI T L

Fig. 3. Multi-rate DAG timing diagram with RabbitMQ message passing for
path response time calculations. Each block represents one execution of the
respective task.

TABLE II
SP EVALUATION PARAMETERS, WHERE “-” IS FUNCTION INPUT

Parameters Values

Tuqs Avy 1.36, 0.5

Tvg s Avug 1.0005, 0.5

Tugs Avg 0.025, 0.5

Tel’Ael 5.85.,0.5

Pcpr Pcn —0.1lexp(10 * abs(-))

0.8log(- + 1)
0.2z(P)

s s
"node * Tpath

p
"node> "path

Problem (TSP), which is assigned as non-critical to safety, but
important for performance. TSP can be solved using a number
of algorithms each having its advantages and issues. Greedy
solutions are fast but can generate sub-optimal solutions which
would degrade the overall performance of the robot’s mission.
Branch and Bound (BnB) methods generate solutions closer to
optimal but have very high computational requirements. Thus,
increasing the share of execution time TSP receives can allow for
significantly improved TSP tours as BnB techniques can be used
instead of greedy solutions. The dataset we use for evaluation is
the famous Odyssey of Ulysses [29].

5) Depth Estimation (vs in Fig. 2): In our evaluation we
utilize fastdepth [25], a fast neural network model for monocular
depth estimation. We have extended fastdepth using the darknet
framework, with a minor change in activation function from
ReLU to Leaky ReLU; we call this model fastdepthv2. We use
the NYU dataset [30] for our evaluation.

B. Experimental Setup and Data Acquisition

To evaluate our SP metric on real hardware, the above defined
SHP-DAG G is executed on the NVIDIA Jetson AGX Xavier,
a widely used platform in robotics. We use the RabbitMQ
middleware [26] to implement the DAG edges and calculate the
response and execution times. Fig. 3 depicts the timing diagram
of our SHP-DAG’s critical path and our measurement methodol-
ogy. Specifically, we utilize RabbitMQ message passing to pass
timing information down the DAG path and gather all data at
the end of the path for analysis.

Next, we define all parameters in our SP metric to allow
for evaluation based on task timing data measured as described
above. Table II lists these parameters and choices of penalty and
reward functions. The choices for 7, A have been made based on
timing benchmarks of each task from the original authors of each

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

5732

task algorithm, only modified to match the relatively lower capa-
bility of the NVIDIA Jetson AGX Xavier platform. Specifically,
it can be reasoned that around 1 s is a general threshold for the
SLAM task based on [31]. However, some SLAM algorithms are
much faster, such as ORB-SLAM?2 at 37 ms [32] and 200 ms
for [33]. As we employ YOLO-DynaSLAM [22] that ran at
500 ms per frame on an Intel Core i7-7700 multicore system,
we select 1.36 seconds based on the relatively less capable
Xavier hardware. Next, the RRT path planning has a wide
range of execution times based on the planning environment and
task-specific parameters. As our planner is GPU intensive and
parallelized, we have seen 0.1 s execution time on more capable
hardware [23], [28]. Thus, for the embedded Xavier hardware
we set the safety threshold at around 1 s. For the MPC task,
25-100 ms execution times are common [34] and our threshold
is set accordingly. Finally the TSP task can have a very wide
range of execution times based on the algorithm used [35]. We
set the period of TSP at 10 seconds, meaning it executes for the
entirety of the DAG activation. Then, depending on the share of
computational resources TSP receives over the DAG activation
period, the better the TSP tour optimality, which gives us a direct
measure of task performance (below).

For the reward/penalty functions, we sought to have diminish-
ing returns of timeliness of tasks for the reward functions, while
penalizing exponentially for the violation of safety-based timing
thresholds. Finally, performance is measured based on the TSP
task’s solution optimality, which varies based on share of ET.
Specifically, in Table II, z(P) denotes a normalization function
such that z(P) € [0 : 1] where P denotes the tour optimality of
TSP.

For the evaluation of SP, we set Apag, the activation period of
G, to 10 seconds, which is equal to the largest period in the DAG.
This produces 10 s windows where we study how the distribution
of computational resources across tasks in G influences the value
of our SP metric.

C. Motivating SP: Environmental Correlation of SLAM

We begin our SP evaluation by first corroborating a key
motivating factor for the SP metric. Specifically, we argued
previously that a robot’s computation can vary widely during
deployment with influence from the environment [36], moti-
vating the design of our SP metric. In our first experiment,
we aimed to demonstrate such variations and show correlation
with the robot’s environment. Specifically, we executed only
the YOLO-DynaSLAM task on the RGB-D TUM dataset [37]
and recorded the task response time. At the same time, we
recorded the size in pixels of the depth masking region for dy-
namic elements of the scene used during background inpainting.
The depth masking area is calculated using the CPU based on
recursion. Thus, as the depth region of moving objects grows
larger, the YOLO-DynaSLAM task spends a huge amount of
time traversing the recursive loops and hence suffers from high
response times. This response time variation and correlation
with depth region size is shown in Fig. 4 . It is clearly visible
that the peak response times correspond to high pixel sizes of
the depth masking region. To verify this claim, we calculated
the Pearson Coefficient [38], yielding » = 0.608 and p-value

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

Response Time (s)
= Region Size (pixels)

v o

w &
. & u o w oX

Response Time (s)
9 f
Region Size (pixels)

0 L L L L L A 3 1
600 650 700 750 800 850 900 950 1000 1050

Wall Time x 10" (s)

Fig. 4. YOLO-DynaSLAM response time vs. depth masking region size in
pixels. The significant correlation between the two parameters indicates the
environmental correlation of SLAM response time.

TABLE III
SCHEDULING CLASSES AND POLICIES USED IN EXPERIMENTAL SETUP

Notation SLAM RRT MPC TSP
S1 CFS CFS CFS FIFO
S2 FIFO CFS CFS CFS
S3 CFS FIFO CFS CFS
S4 CFS CFS FIFO CFS
S5 CFS FIFO1 FIFO2 CFS
S6 FIFO1 CFS FIFO2 CFS
S7 FIFO1 FIFO2 CFS CFS
S8 FIFO1 FIFO2 FIFO3 CFS
S9 FIFO2 FIFO3 FIFO1 CFS
S10 FIFO3 FIFO1 FIFO2 CFS
S11 FIFO2 FIFO3 FIFO4 FIFO1
S12 FIFO3 FIFO4 FIFO2 FIFO1
S13 CFS CFS CFS CFS

Higher number associated with FIFO indicates higher priority.

= 4.156e~°, indicating a correlation between the response time
of YOLO-DynaSLAM and the size of dynamics elements in
an environment. Most importantly, given the large range of
measured response times (peak > 6 seconds, minimum < 1
second), a WCMS or AMS metric will be insensitive to schedule
adjustments, as shown below.

D. Evaluating SP: A Case Study With Linux Schedulers

Motivated by the above observations, we conclude our exper-
imental study with a sensitivity analysis of our SP metric com-
pared to the standard WCMS and AMS metrics. Specifically, as
the purpose of a metric is to enable optimization of scheduling
parameters to improve task timing (c.f., Problem 1), it is critical
that a metric is sensitive to such parameters to differentiate
between schedules and their impact on safety/performance. To
begin, recall from Section II-C that two of the primary choices
of Linux kernel schedulers for scheduling robot computation
are CFS (not real-time) and FIFO (real-time). To demonstrate
the effect of these schedulers (and their parameters) on tim-
ing in our SHP-DAG G, we generated a representative set
of schedules with combinations of tasks assigned to CFS and
FIFO, see Table III. These schedules represent the possibilities
when scheduling our SHP-DAG G, ranging from a completely
fair schedule (S13), to a completely real-time schedule with
task priorities (S11/S12). For each schedule in Table III, we
executed our SHP-DAG G on the hardware setup detailed in
Section IV-B and collected RT/ET data for all nodes and paths
in G. We repeated this data acquisition for all schedules to
produce a Monte Carlo data set over which we calculated mean

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

SIFAT et al.: SAFETY-PERFORMANCE METRIC ENABLING COMPUTATIONAL AWARENESS IN AUTONOMOUS ROBOTS

0.2 T 0.0419 T
safe ss 52512
@ 89 s12
§ st s2s13 s7 511 s1 s2 S13 s7 S11 [
©
>
©
2-02F T, 1
2 Gaussian distributions and
exponential penalty/log reward
04 : .
mean S (a) mean SP
0.2
s8 s9 812 safe
8 S1 S2 $13 7 S11 s1 s2 S13 s7 S1
2 0
g
©
2-02f 1
2 Weibull SLAM distributions and
exponential penalty/log reward
-0.4 . .
mean S (b) mean SP
L 02f si2
S oat S1188 s9
E st s2 . s7][]
LR ST1 58 S9 S12
< S01F Gaussian distributions and-
i linear penalty/ reward
mean S (c) mean SP
=3
T 025 S1 s2 813 s7 S11.88 s9 512 oy S8 S9 g1z
B S2 s13 s7 -
N 02F
g 0.15F
§ ’ St
Z o1t

Fig. 5. Comparative SP sensitivity analysis. (a) All distributions are Gaus-
sian and penalty/reward functions exponential and logarithmic as defined in
table II. (b) YOLODynaSLAM is Weibull. (c) All distributions are Gaussian
but penalty/reward functions are uniformly linear. (d) WCMS and AMS for
schedules from Table III. WCMS and AMS are normalized to 4/WCMS and
1/AMS for scale matching. For all bar plots, larger is safer in terms of task
timing.

SP, WCMS, and AMS values, the result of which is depicted
in Fig. 5.

E. Results and Discussion

In analyzing Fig. 5, we start with some basic observations.
First, when comparing the values of SP (which are broken down
into safety contribution and overall SP) to WCMS and AMS, it
is clear that our SP metric is far more sensitive to schedules as
it clearly differentiates between safe and unsafe timing in G.
For instance, we have highlighted very similar WCMS values
for three schedules in Fig. 5 (bottom left), two of which our SP
metric deems as unsafe (S11 and S13) and one as safe (S12).
Another example of such behavior can be seen in the AMS value
for S2 (bottom right), a very unsafe schedule according to SP,
yet is very close to safe or nearly safe schedules according to
AMS (S8 and S11). Consulting Table III, we see that S2 only
allows real-time scheduling of SLAM which helps to cope with
the dynamism shown in Section IV-C and improve the AMS
value. However, with all other tasks in CFS the overall timing
of G suffers with the second lowest SP value.

Next, we can see the effects of changing the probability
distribution function from Gaussian to Weibull in Fig. 5(a) and
(b). In Fig. 5(a), we have a Gaussian distribution for all the tasks
and in (b) we have Weibull distribution for YOLO-DynaSLAM
only, which is verified by the response time profile of this SLAM.
The result shows a slight change in safety specifications for
Schedules S13, S7, S11 and S8. Interestingly, we see S7 goes

5733

=
<3
%3
n A
E
23
“na.

D08 e e od
=] S A s [et ke B b b] -]
5 0.4
27 | /len] Lee] oy ¢
nu 02(/)!/1

SP

= = Schedule 11 mean
= Schedule 12
= = Schedule 12 mean

10s time windows

Fig. 6. Distribution of safety (S) values over nodes and paths, as well a overall
safety, performance, and SP value. Schedule 11 and Schedule 12 correspond to
S11 and S12 in Table III.

from being unsafe in Gaussian distribution to minimally safe in
Weibull. Therefore, we can deduce that assuming a Gaussian
distribution is the more conservative selection among the two,
as it assumes more probability mass in the right-hand tail of
the distribution that the timing data for SLAM does not reflect.
Lastly, in S7 we see the mean S value is negative while mean
SP is positive. This can happen as this is the mean over all
the values calculated, recalling that a negative S value cannot
induce a positive SP in any instantaneous measurement by our
SP definition.

We further change our penalty and reward functions from
being exponential/log to being linear, which again can be seen as
conservative versus non-conservative options. We see the effect
in Fig. 5(c), where many of the unsafe schedules are deemed safe
on average and with much less sensitivity compared to (a) and
(b). The explanation here is that, because we have omitted the
log (saturating) reward, the linear reward will dominate SP more
for task timing when the system is safe (Vs = 0, Cys = (). This
creates a situation where even though schedulability remains the
same (as the underlying task timing in our data has not changed),
the mean S and SP of S11 for example can rise substantially as
the linear reward dominates in cases where the system is safe.
Thus, it is logical to use a saturating reward so that we have
the opportunity to balance with performance when the system
is safe.

Finally, we conclude our analysis by looking deeper at sched-
ules S11 and S12 in Table III. We select these schedules for
further analysis as they assign all tasks to the FIFO scheduler
(with varying priorities), which is the expected setup for a
real-time application. First, we see from Fig. 5 that the WCMS
values for S11 and S12 are effectively the same. Furthermore,
comparing to the WCMS value of schedule S13, whichis all CFS
and capable of no real-time guarantees, we see that S11, S12,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

5734

and S13 are equivalent. SP on the other hand, clearly identifies
S11 and S13 as unsafe, while S12 is safe. To understand this
sensitivity of the SP metric, we can study Fig. 6 which shows
a single execution of our SHP-DAG G for schedules S11 and
S12. Most importantly, as S12 has higher priority for SLAM,
we again see that the wide variation in the timing of SLAM is
managed better on average, leading to a much improved (and
safe) SP value.

Remark 2: In Fig. 6, S-RRT shows higher mean safety for
schedule 11 compared to schedule 12. This is due to the fact
that the priority-safety relationship is not linear in general for
complex task scheduling. The non-linear relationship between
priority and timing is recognized and expected due to the in-
terconnections and dispatch timing of tasks within the CPU.
Indeed, this acts as motivation for a custom scheduler that opti-
mizes SP in selecting task schedules (based on our formulation
in Problem 1), which is a key step in future work.

V. CONCLUSION AND FUTURE WORK

The novelty of the SP metric is that it ensures probabilistic
safety for all critical computation, and then balances safety
and performance. Fig. 5 shows that the SP metric is highly
sensitive to FIFO priority, while WCMS and AMS are relatively
insensitive. This implies that using our SP metric a scheduler
can balance safety and performance with a much higher level
of control than traditional metrics. With varying environmental
contexts, scheduling can then be adjusted online for a safe system
with balanced performance. However, the Linux schedulers are
just a testbed for SP evaluation and do not generate optimized SP
scores. A custom online scheduler that optimizes the SP metric
is the direction of future work.

REFERENCES

[1] L. Heintzman, A. Hashimoto, N. Abaid, and R. K. Williams, “An-
ticipatory planning and dynamic lost person models for human-robot
search and rescue,” in Proc. IEEE Int. Conf. Robot. Automat., 2021,
pp. 8252-8258.

[2] M. Rangwala et al., “DeepPaSTL: Spatio-temporal deep learning methods
for predicting long-term pasture terrains using synthetic datasets,” Agron-
omy, vol. 11, no. 11, 2021, Art. no. 2245.

[3] D. B. Abeywickrama et al., “On specifying for trustworthiness,” 2022,
arXiv:2206.11421.

[4] D.Nistér, H.-L. Lee, J. Ng, and Y. Wang, “The safety force field,” NVIDIA
White Paper, 2019.

[5] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of
safe and scalable self-driving cars,” 2017, arXiv:1708.06374.

[6] H. Zhao et al., “Safety score: A quantitative approach to guiding safety-
aware autonomous vehicle computing system design,” in Proc. IEEE Intell.
Veh. Symp. (1V), 2020, pp. 1479-1485.

[7]1 T. Victor, K. D. Kusano, T. Gode, R. Chen, and M. Schwall, “Safety
performance of the Waymo rider-only automated driving system at one
million miles,” 2023. [Online]. Available: https://api.semanticscholar.org/
CorpusID:260210721

[8] M. P. Polverini, A. M. Zanchettin, and P. Rocco, “A computationally
efficient safety assessment for collaborative robotics applications,” Robot.
Comput.- Integr. Manuf., vol. 46, pp. 25-37, 2017.

[9] J. Saenz et al., “Methods for considering safety in design of robotics

applications featuring human-robot collaboration,” Int. J. Adv. Manuf.

Technol., vol. 107, pp. 2313-2331, 2020.

F. Vicentini, M. Askarpour, M. G. Rossi, and D. Mandrioli, “Safety as-

sessment of collaborative robotics through automated formal verification,”

IEEE Trans. Robot., vol. 36, no. 1, pp. 42-61, Feb. 2020.

A. Terra, H. Riaz, K. Raizer, A. Hata, and R. Inam, “Safety vs. efficiency:

Al-based risk mitigation in collaborative robotics,” in Proc. IEEE 6th Int.

Conf. Control Automat. Robot., 2020, pp. 151-160.

[10]

[11]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

[12] A. Farrukh and R. West, “smARTflight: An environmentally-aware adap-
tive real-time flight management system,” in Proc. 32nd Euromicro
Conf. Real-Time Syst. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2020, pp. 24:1-24:22.

Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio, “ROSCH: Real-time
scheduling framework for ROS,” in Proc. IEEE 24th Int. Conf. Embedded
Real-Time Comput. Syst. Appl., 2018, pp. 52-58.

Y. Tang et al., “Response time analysis and priority assignment of pro-
cessing chains on ROS2 executors,” in Proc. IEEE Real-Time Syst. Symp.,
2020, pp. 231-243.

K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling precedence con-
strained stochastic tasks on heterogeneous cluster systems,” IEEE Trans.
Comput., vol. 64, no. 1, pp. 191-204, Jan. 2015.

F. Reghenzani, G. Massari, and W. Fornaciari, “Timing predictability in
high-performance computing with probabilistic real-time,” IEEE Access,
vol. 8, pp. 208566208582, 2020.

M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate DAG from multi-rate task sets,” in Proc. IEEE
Real-Time Embedded Technol. Appl. Symp., 2020, pp. 226-238.

S. Wang, R. K. Williams, and H. Zeng, “A general and scalable method for
optimizing real-time systems with continuous variables,” in Proc. IEEE
Real-Time Embedded Technol. Appl. Symp., 2023, pp. 119-132.

Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of
ROS2,” in Proc. 13th Int. Conf. Embedded Softw., 2016, pp. 1-10.

L.-C. Canon and E. Jeannot, “Evaluation and optimization of the robust-
ness of DAG schedules in heterogeneous environments,” IEEE Trans.
Parallel Distrib. Syst., vol. 21, no. 4, pp. 532-546, Apr. 2010.

M. H. DeGroot and M. J. Schervish, Probability and Statistics. New York
City, NY, USA: Pearson Education, 2012.

J.Bi, Y. Tao, Y. Zhu, L. Chen, and P. Suresh, “Dynamic ORB SLAM,” [On-
line]. Available: https://github.com/bijustin/YOLO-DynaSLAM/blob/
master/dynamic-orb-slam.pdf

J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the
RRT and the RRT,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2011,
pp- 3513-3518.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Math. Program.
Comput., vol. 12, no. 4, pp. 637-672, 2020.

D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, “FastDepth: Fast
monocular depth estimation on embedded systems,” in Proc. Int. Conf.
Robot. Automat., 2019, pp. 6101-6108.

P. Dobbelaere and K. S. Esmaili, “Kafka versus rabbitMQ: A compara-
tive study of two industry reference publish/subscribe implementations:
Industry paper,” in Proc. 11th ACM Int. Conf. Distrib. Event-Based Syst.,
2017, pp. 227-238.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOV4: Optimal
speed and accuracy of object detection,” 2020.

B. A. Bharmal, “Real-time GPU scheduling with preemption support for
autonomous mobile robots,” 2021.

M. Grotschel and M. Padberg, “Ulysses 2000: In search of optimal solu-
tions to hard combinatorial problems,” 1994.

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from RGBD images,” in Proc. Eur. Conf. Comput.
Vis., 2012, pp. 746-760.

J. Zhang and S. Singh, “LOAM: LiDAR odometry and mapping in real-
time,” Robot.: Sci. Syst., vol. 2, no. 9, pp. 1-9, 2014.

B. Bescos, J. M. Ficil, J. Civera, and J. Neira, “DynaSLAM: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robot. Automat. Lett.,
vol. 3, no. 4, pp. 40764083, Oct. 2018.

R. Mur-Artal and J. D. Tardés, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255-1262, Oct. 2017.

M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive
control: An engineering perspective,” Int. J. Adv. Manuf. Technol., vol. 117,
no. 5/6, pp. 1327-1349, 2021.

L. Kang, A. Zhou, B. McKay, Y. Li, and Z. Kang, “Benchmarking
algorithms for dynamic travelling salesman problems,” in Proc. Congr.
Evol. Comput., 2004, pp. 1286-1292.

A. H. Sifat, B. Bharmal, H. Zeng, J.-B. Huang, C. Jung, and R. K.
Williams, “Towards computational awareness in autonomous robots: An
empirical study of computational kernels,” Complex Intell. Syst., pp. 1-27,
2023.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A bench-
mark for the evaluation of RGB-D SLAM systems,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2012, pp. 573-580.

I. Cohen et al., “Pearson correlation coefficient,” in Noise Reduction in
Speech Processing. Berlin, Germany: Springer, 2009, pp. 1-4.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 21,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

