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Abstract—This letter takes a first step towards the analysis
of safety and performance critical computational tasks for au-
tonomous robots. Our contribution is a safety-performance (SP)
metric that ensures safety first and then rewards improved per-
formance of real-time computational tasks, building on the notion
of “nominal safety” which defines timely computation as critical
to safety. To fully utilize the computing capacity of heteroge-
neous processing units (e.g., CPU + GPU), a computational task
graph model called the Stochastic Heterogeneous Parallel Directed
Acyclic Graph (SHP-DAG) is adopted to capture the uncertain
nature of robotic applications and their required computation.
Compared to state-of-the-art task models, SHP-DAG avoids the
pessimism of deterministic worst-case execution time (WCET),
instead modeling the execution times of tasks by probability dis-
tributions. Our SP metric is defined upon this task model, which
allows us to apply the FIFO and CFS schedulers of the Linux
kernel on complex robotic computational tasks and compare the
SP metric with baseline metrics, average and worst-case makespan.
Extensive experimental results on NVIDIA Jetson AGX Xavier
hardware demonstrate that the proposed SP metric is appropriate
for managing computational tasks in a manner that balances safety
and performance in robotic systems.

Index Terms—Autonomous robots, safety management,
scheduling algorithms, software performance, uncertainty.

I. INTRODUCTION

A
UTONOMOUS robots often have a sophisticated set of

objectives, e.g., as seen in multi-robot search and rescue

and precision agriculture [1], [2], and face difficult restrictions

on computation while operating in dynamic environments. Ad-

ditionally, the computational tasks that support autonomy may

vary widely in their impact on safety (based on task timeliness),
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while others vary in their impact on performance (based on qual-

ity of task output). To guarantee robot safety while maintaining

performance over broader mission objectives, the computation

that supports autonomy must be managed to balance between

safety and performance [3].

We have seen related thrusts in the autonomous vehicle (AV)

domain [4], [5], [6], which work with the concept of “nominal

safety” based solely on task responsiveness for collision avoid-

ance [6], [7]. However, we argue that in the broader context of

robotics, the notion of nominal safety and related metrics must

take on a more complex form. Thus, this work aims to create

a metric that balances safety and performance for complex,

nondeterministic robotic pipelines. Comparing to the “safety

score” for AVs [6], our metric captures variation in computation

and can trade off safety-driven computation with performance-

driven computation once the system is safe.

In defining our metric, we adopt the Stochastic Heterogeneous

Parallel Directed Acyclic Graph (SHP-DAG) model, where

task response times are expressed as probability distributions

to capture the uncertain nature of a robot’s computation (Sec-

tion II). Based on this computational model, we then derive

our safety-performance (SP) metric that ensures safety first and

then rewards improved performance of real-time computational

tasks (Section III). Finally, we perform extensive experiments

on NVIDIA Jetson AGX Xavier hardware with real-time Linux

schedulers (Section IV), and demonstrate that our SP metric is

appropriate for managing computational tasks in a manner that

balances safety and performance.

Related Work: Safety-focused frameworks have been stud-

ied extensively for collaborative robots carrying out tasks in

confined spaces with human involvement. For example, safety

assessment methods based on kinetostatic safety fields [8],

safety-driven robot application design methods [9], automating

traditional risk analysis methods [10], as well as fuzzy logic

system (FLS) and reinforcement learning (RL) based compar-

ative analysis [11] have been proposed to prevent collisions in

collaborative robot workspaces. While such works have a clear

safety objective, they often do not treat computation explicitly,

or have computational tasks that are relatively simple.

In contrast, tremendous work has been performed in the

real-time computing community, where Directed Acyclic

Graphs (DAGs) have become a popular method of modeling
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computation. While such results are powerful analytically, there

is a gap at the intersection with robotics. A relevant example of

work at this intersection is smARTflight [12], which proposes

an environmentally-aware unmanned aerial vehicle (UAV) flight

management system that adapts the execution frequencies of

flight control tasks according to timing and safety-critical con-

straints. However, [12] applies deterministic metrics for guiding

computational resource management, and focuses only on the

task of flight control. Finally, there are recent scheduler imple-

mentations based on DAGs such as a fixed-priority based DAG

scheduler utilizing the Robot Operating System (ROS) [13],

and a real-time scheduler and analysis of processing chains in

ROS2 [14]. While these methods are exemplary developments

in managing computation on robots with complex DAG mod-

els, they lack a unified framework that can ensure safety and

performance under uncertainty.

Finally, there has been work in the high performance com-

puting (HPC) domain to capture probabilistic execution times

instead of deterministic worst cases [15], [16]. While we take

inspiration from these works, they do not consider safety-

performance trade-offs, nor do they characterize the computa-

tion for robotic systems. To our knowledge, our work is the first

to consider probabilistic timing constraints with formalism for

achieving safety-performance trade-offs.

II. PROBLEM FORMULATION

A. Computational Model

We start by defining concepts from real-time computing (see

Fig. 1). In this letter, we consider a computational task as an

algorithm in support of autonomy (e.g., planning, vision, etc.)

that executes on an embedded processor.

Definition II.1 (Start Time): The start time (ST) for a compu-

tational task is the timestamp when task execution begins.

Definition II.2 (Execution Time): The execution time (ET)

for a computational task is the amount of time the task spends

in a processor of the host operating system.

Definition II.3 (Response Time): The response time (RT) for

a computational task is the amount of time taken to generate

output from input for a particular task. In general,

RT = ET + IT (1)

where IT is the idle time spent waiting for resources.

Definition II.4 (Activation Period): The activation period

(AP) for a computational task is the amount of time between

two consecutive executions of the task.

Definition II.5 (Timing Distribution): Multiple executions of

a task i yields a set of m measurements Mi containing RT and

ET for each execution. Timing distributions can then be built

based on Mi, denoted by symbols R and X , that capture the

variation in RT and ET of task i (see Section III).

The above definitions now allow us to define our concepts of

safety and performance for robot computation.

Definition II.6 (Safety): The safety of computation is based

on probabilistic timeliness of computation, i.e., P (R > τ) ≤ λ,

Fig. 1. Diagram of task timing parameters. Note that RT and ET are a time
duration, whereas ST and ET are time instants.

where R is a random variable described by an RT distribution,

τ is a nominally safe timing, and λ is a probabilistic threshold.

Definition II.7 (Performance): The performance of compu-

tation is based on the share of computational resources received

from the host operating system relative to ET distribution X .

Intuitively, we consider safety as derived from timely output

from computation in safety critical scenarios (e.g., for collision

avoidance), and performance as derived from larger shares of

computational resources allowing for better solutions to hard

problems (e.g., planning). With the above definitions, we now

formalize the computational model adopted in this work, the

Stochastic Heterogeneous Parallel DAG (SHP-DAG).

Definition II.8 (SHP-DAG): A real-time robotic appli-

cation composed of computational tasks is represented by

an SHP-DAG, a directed acyclic graph defined as G =
(V, E , T ype, Tag,R,X ,A, ADAG):
� V = {v1, v2, . . . , vn} is the set of IDs for alln graph nodes.

Each node vi ∈ V is a computational task that executes on

a specific type of processor.
� E ⊆ V × V is the set of directed edges among tasks that

indicates the data flow from one task to another.
� Type = {typev1

, typev2
, . . . , typevn

} is the set of types of

all tasks. A node in an SHP-DAG has one of the following

types in this work: {Computing, Data/Sensor}.
� Tag = {tagv1

, tagv2
, . . . , tagvn

} indicates the processing

unit that each task should run on (e.g., CPU or GPU).
� R = {Rv1

, Rv2
, . . . , Rvn

} is the set of probability distri-

butions of response times for all tasks.
� X = {Xv1

, Xv2
, . . . , Xvn

} is the set of probability distri-

butions of execution times for all tasks.
� A = {Av1

, Av2
, . . . , Avn

} is the set of task APs.
� ADAG is the overall activation period of G, which defines

the rate at which G is re-executed.

An illustration of the SHP-DAG model is given in Fig. 2,

which captures the case study in this work (full details in

Section IV). From the SHP-DAG definition and Fig. 2, we see

that robot computation is modeled as a sequence of computa-

tional tasks that operate on input data (from sensors, or output

from other tasks) and produce an output for subsequent tasks.

Mathematically, such a sequence is a path inG, where we denote

by P the set of all paths in G. To capture safety in such a model,

consider the following definitions.

Definition II.9 (Safety-Critical Path): Given an SHP-DAGG,

a safety-critical path �i ∈ C is a chain nodes in V that achieve

functionality that is critical to the safety of the application, where

C ⊆ P is the set of all safety-critical paths in G.

Definition II.10 (Safety-Critical Node): Given an SHP-DAG

G, a safety-critical node vi ∈ Vc is a computational task that
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Fig. 2. Example of our SHP-DAG model, shown with computational tasks and task dependencies seen in mobile robots. We denote the critical paths and nodes
by red ovals and arrows respectively, where we have one critical path and three critical nodes.

achieves a functionality that is critical to the safety of the

application, where Vc ⊆ V .

We model specific terms for critical nodes as there may be

instances where a timing constraint for a critical path is satisfied

but the system remains unsafe. For example, if a localization

and mapping node is too slow, even if the computational path it

lies on meets a timing constraint, the staleness of the map may

endanger the system or bystanders.

The above concepts allow a system designer to designate

paths and nodes in an SHP-DAG as critical for safety (as in

Fig. 2), which will then be captured in our SP metric as upper

bounds on response times (Section III), yielding rewards for

responsive computation. All non-critical paths �i ∈ P \ C and

nodes vi ∈ V \ Vc will then be evaluated for their contribution

to performance based on execution time.

B. DAG Paths and Makespan

As outlined above, a DAG path1 is a sequence of communicat-

ing tasks where every task receives data from its predecessor. In

the real-time computing literature, it is most common to evaluate

DAG paths through Makespan, i.e., end-to-end latency [17].

Makespan of a DAG path is the length of time that elapses from

the start of the path to the end. As we use Makespan as a baseline

for comparison with our SP metric (Section IV), consider the

following definition:

Definition II.11 (Makespan): The Makespan of a path � in

an SHP-DAG G is given by:

RT� = (STvend
− STvstart

) +RTvend
(2)

where vstart, vend are the start and end nodes of path �.
We see that the Makespan of a path is essentially the path re-

sponse time. Finally, we also consider the worst case Makespan

(WCMS) and average Makespan (AMS) for our comparison

with the SP metric, based on the definitions below.

Definition II.12 (WCMS & AMS): The WCMS of a DAG

path is the largest Makespan among all of its executions within a

window of measurement whereas the AMS is the average of it. In

our experiments that window is fixed, ADAG, and the number of

executions are variable based on the instantaneous Makespans.

Considering m executions of a DAG path � within the period

ADAG, WCMS and AMS are defined by,

WCMS� = max
m

RT� (3)

1Note, in the real-time community this is also known as a task chain.

TABLE I
SCHEDULING CLASSES AND POLICIES IN THE LINUX KERNEL

AMS� =
1

m

∑

m

RT� (4)

C. Real-Time Systems and Scheduling

Our concepts above are a basis for modeling a real-time sys-

tem, a system that provides guaranteed response times for events

and transactions. Scheduling algorithms are the key mechanism

for achieving such real-time behavior as they balance computa-

tional resources among tasks, usually according to some metric

(such as Makespan or our own SP metric). As ROS is primarily

operated in Linux, we provide here a brief summary of the Linux

schedulers, summarized in Table I.

In this letter, we utilize the real-time FIFO scheduler which

operates according to fixed task priorities, and the default CFS

scheduler which cannot provide real-time behavior. We design

a study of our SP metric (Section III) around a combinatorial

set of FIFO priorities (higher value is higher priority), with CFS

as a baseline (Section IV). This study will illustrate that our

SP metric is highly sensitive to FIFO priority for computation

modeled as an SHP-DAG. Such sensitivity then paves the way

for a custom scheduler based on our SP metric, i.e., solving the

following problem:

Problem 1: A general scheduling problem optimizing the SP

metric is given by:

max
S

SP (S)

s.t. schedulability(S) = 1 (5)

where S is scheduler parameters that influence RT and ET.

With this problem context, our work focuses on developing

SP (S) and demonstrating the metric experimentally with S
containing Linux scheduler parameters. However, we also note

important features of the constraint schedulability(S) = 1. In

our formulation, this constraint would be defined as all proba-

bilistic timing thresholds τ being satisfied, guaranteeing safety.
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The probabilistic nature means that our problem would fall under

the class of black box methods, where schedulability is verified

by simulation as opposed to mathematical proof. In this case,

methods proposed in our work [18] can be adapted to solve the

optimization problem 1 (our future work).

III. SAFETY-PERFORMANCE METRIC

A. Response and Execution Times

To begin, we must populate the sets R,X in an SHP-DAG

G that define task response and execution times, respectively.

Most importantly, as opposed to the typical use of worst cases to

define response/execution times, we aim to define distributions.

Thus, we propose to measure response and execution times for

the tasks vi and paths �i in G, and then use this data to build

distributions.2 Illustrating this process for task response times,

consider a set of measurements Mi = {RTi,j | j ∈ [1 : m]},

with m measurements. Given that we have Mi, we can define a

Response Time Profile (RTP)Ri for taskvi, a continuous random

variable defined on response time values RTi,j . Thus, we can

define the Probability Density Function (PDF), pdfRi
,

pdfRi
(RTi,j) = P (Ri = RTi,j) (6)

Now, the density function can be built assuming the data comes

from a known distribution, such as Gaussian, Weibull, piece-

wise Normal, etc [15], [20]. For instance, a Gaussian distribution

(which we use in our experiments) can be defined based on mean

and standard deviation (SD) calculated from Mi. Specifically,

if the mean µi and SD σi are calculated based on Mi, then

pdfRi
(RTi,j) is given by

pdfRi
(RTi,j) =

(

2πσ2
i

)−0.5
e−(RTk,i−µi)

2/(2σ2

i ) (7)

Response time distributions for paths, and execution time dis-

tributions in X are built analogously.

B. Definition of Penalty and Reward Functions

With our SHP-DAG G fully defined, we can now build our

SP metric by first considering that our metric should penalize

when safety-critical paths and/or critical nodes violate timing

constraints based on a particular schedule (i.e., S). We begin

with the first term of our metric which penalizes unsafe critical

paths.

Definition III.1 (Critical Path Penalty): The penalty for

safety-critical paths that violate timing constraints is:

f p
cp(S) =

∑

�i∈Cus

p�icp(P (R�i > τ�i)− λ�i) (8)

where Cus is the set of safety-critical DAG paths that violate

a probabilistic timing constraint, that is, P (R�i > τ�i) > λ�i

where R�i is the random variable describing the uncertain re-

sponse time of critical path �i, τ�i is the nominally safe response

time for path �i, and λ�i is the probabilistic timing constraint for

�i.
3 With these definitions, and noting that f p

cp(S) represents

2We use RabbitMQ middleware [19] for implementing our computational
graph and measuring response/execution times (details in Section IV).

3Given the PDF of response times, the term P (R�i
> τ�i ) can be evaluated

using the Cumulative Distribution Function (CDF) [21].

a penalty term (p) for critical path violations (cp) based on

schedule S with a generic penalty function p�icp(·) for each

critical path �i, (8) can be interpreted as penalizing based on the

deviation of every violating critical path from its probabilistic

timing constraint. Thus, if there are no safety-critical paths

that violate timing constraints based on S then Cus = ∅ and

f p
cp(S) = 0 yielding no penalty.

Definition III.2 (Critical Node Penalty): The penalty for

safety-critical nodes that violate timing constraints is:

f p
cn(S) =

∑

vi∈Vus

pvi
cn(P (Rvi

> τvi
)− λvi

) (9)

where Vus is the set of safety-critical DAG nodes that violate

a probabilistic timing constraint, that is, P (Rvi
> τvi

) > λvi

where Rvi
is the random variable describing the uncertain

response time of critical node vi, τvi
is the response time for

node vi that ensures nominal safety, and λvi
is the probabilistic

timing constraint for node vi. With these definitions, and not-

ing that f p
cn(S) represents a penalty term (p) for critical node

violations (cn) based on schedule S with a generic penalty

function pvi
cn(·) for each critical node vi, (9) can be interpreted

as penalizing based on the deviation of every violating critical

node from its probabilistic timing constraint. Thus, if there are no

safety-critical nodes that violate their timing constraints based

on schedule S then Vus = ∅ and f p
cn(S) = 0 yielding no penalty.

With the penalties for our metric defined, we now describe

rewards gained after timing constraints for safety-critical paths

are satisfied. Critically, the following reward terms are non-zero

only when there exists no critical path or node constraints that

are violated, i.e., P (R�i > τ�i) ≤ λ�i , ∀ �i ∈ C and P (Rvi
>

τvi
) ≤ λvi

, ∀ vi ∈ Vc.

Definition III.3 (Path Reward): The reward for DAG paths,

assuming safety-critical timing constraints are satisfied, is:

f r
path(S) =

[

∑

�i∈C

rs,�i
path(λ�i − P (R�i > τ�i))

+ rp,�i
path(X�i)

]

+
∑

�i/∈C

rp,�i
path(X�i) (10)

Definition III.4 (Node Reward): The reward for DAG nodes,

assuming safety-critical timing constraints are satisfied, is:

f r
node(S) =

[

∑

vi∈Vc

rs,vi

node(λvi
− P (Rvi

> τvi
))

+ rp,vi

node(Xvi
)

]

+
∑

vi/∈Vc

rp,vi

node(Xvi
) (11)

In the above definitions, f r
path(S) and f r

node(S) repre-

sent a reward term (r) for every path and node based

on schedule S , respectively, with generic reward functions

rs,�i
path(·), r

p,�i
path(·), r

s,vi

node(·), r
p,vi

node(·) that separately reward safety

margins (s) and system performance based on timing (p) for

paths �i and nodes vi. There are two key points to note in

these reward definitions: 1) critical and non-critical paths/nodes

contribute separately as non-critical paths/nodes (�i /∈ C and

vi /∈ Vc) cannot be rewarded for improving safety margins; and

2) the rewards for performance are given in the most general form
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(rp,�i
path(X�i) and rp,vi

node(Xvi
)) as the relationship between timing

and performance can vary broadly between tasks (we illustrate

specific reward functions in Section IV).

Finally, with all terms defined a scheduler can optimize our

safety-performance metric defined as a weighted sum of terms

(8)–(11), yielding schedules that trade off safety and system

performance relative to probabilistic timing constraints.

Remark 1: It is important to note for all SP terms defined

above, if a hard timing constraint is desired one can simply set

λ�i = 0, λvi
= 0 which enforces sureness of satisfying R�i ≤

τ�i and Rvi
≤ τvi

.

IV. EVALUATION OF SP METRIC

A. Construction of the DAG

In order to evaluate our above defined SP metric, we require

an SHP-DAG G that represents a basis for robotic computing.

We argue that all robots must navigate in the environment, per-

ceive the environment, and allocate high-level tasks according

to mission objectives. Thus, below we compose an SHP-DAG

G using: (1) YOLO-DynaSLAM [22]; (2) RRT-based path

planning [23]; (3) model predictive control [24]; (4) vision-

based depth estimation [25]; and (5) the traveling salesperson

problem (TSP). The implemented SHP-DAG G is depicted in

Fig. 2.4 It consists of one critical path �1 and three critical

nodes {(v1, CPU), (v2, GPU), (v3, CPU)}. The data connec-

tions among nodes as well as the precedence constraints are

implemented using industry-standard RabbitMQ middleware,

well-known for its robustness and speed [26]. A brief description

and common parameters of the above algorithms are given

below. Additionally, as we require input data to execute each

algorithm, we specify the test data below.

1) YOLO-DynaSLAM (v1 in Fig. 2): YOLO-DynaSLAM is

a visual SLAM system with increased robustness to dynamic

environments in real-time. In our implementation, we replaced

Dynamic ORBSLAM’s YOLOv3 block [22] with our own

CUDA C-library implementation of YOLOv4 [27] to fully uti-

lize the GPU acceleration of our embedded NVIDIA hardware.

We utilize the RGB-D TUM dataset from [22].

2) RRT Path Planning (v2 in Fig. 2): Unlike typical RRT-

based solutions, we implemented an RRT-based planner that

utilizes the GPU to perform the nearest vertex test in RRT [28].

Utilizing the GPU yields O(1) scaling in this test and can

improve efficiency significantly when obstacle density is high.

For our SP metric evaluation, the number of obstacles is set to

2048 and are generated randomly in a fixed 2D environment.

3) Model Predictive Controller (v3 in Fig. 2): Model Pre-

dictive Control (MPC) is the problem of controlling a linear

time-invariant dynamical system according to some reference

state. We utilize constrained linear-quadratic MPC, which solves

at each time step the finite-horizon optimal control problem. In

our evaluation, the state space parameters are generated based

on a UAV model (using OSQP [24]).

4) Traveling Salesperson Problem (v4 in Fig. 2): We repre-

sent high-level robot objectives with a Traveling Salesperson

4DAG implementation: https://github.com/caslab-vt/SP-metric-analysis.
githttps://github.com/caslab-vt/SP-metric-analysis.git.

Fig. 3. Multi-rate DAG timing diagram with RabbitMQ message passing for
path response time calculations. Each block represents one execution of the
respective task.

TABLE II
SP EVALUATION PARAMETERS, WHERE “·” IS FUNCTION INPUT

Problem (TSP), which is assigned as non-critical to safety, but

important for performance. TSP can be solved using a number

of algorithms each having its advantages and issues. Greedy

solutions are fast but can generate sub-optimal solutions which

would degrade the overall performance of the robot’s mission.

Branch and Bound (BnB) methods generate solutions closer to

optimal but have very high computational requirements. Thus,

increasing the share of execution time TSP receives can allow for

significantly improved TSP tours as BnB techniques can be used

instead of greedy solutions. The dataset we use for evaluation is

the famous Odyssey of Ulysses [29].

5) Depth Estimation (v5 in Fig. 2): In our evaluation we

utilize fastdepth [25], a fast neural network model for monocular

depth estimation. We have extended fastdepth using the darknet

framework, with a minor change in activation function from

ReLU to Leaky ReLU; we call this model fastdepthv2. We use

the NYU dataset [30] for our evaluation.

B. Experimental Setup and Data Acquisition

To evaluate our SP metric on real hardware, the above defined

SHP-DAG G is executed on the NVIDIA Jetson AGX Xavier,

a widely used platform in robotics. We use the RabbitMQ

middleware [26] to implement the DAG edges and calculate the

response and execution times. Fig. 3 depicts the timing diagram

of our SHP-DAG’s critical path and our measurement methodol-

ogy. Specifically, we utilize RabbitMQ message passing to pass

timing information down the DAG path and gather all data at

the end of the path for analysis.

Next, we define all parameters in our SP metric to allow

for evaluation based on task timing data measured as described

above. Table II lists these parameters and choices of penalty and

reward functions. The choices for τ, λ have been made based on

timing benchmarks of each task from the original authors of each
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task algorithm, only modified to match the relatively lower capa-

bility of the NVIDIA Jetson AGX Xavier platform. Specifically,

it can be reasoned that around 1 s is a general threshold for the

SLAM task based on [31]. However, some SLAM algorithms are

much faster, such as ORB-SLAM2 at 37 ms [32] and 200 ms

for [33]. As we employ YOLO-DynaSLAM [22] that ran at

500 ms per frame on an Intel Core i7-7700 multicore system,

we select 1.36 seconds based on the relatively less capable

Xavier hardware. Next, the RRT path planning has a wide

range of execution times based on the planning environment and

task-specific parameters. As our planner is GPU intensive and

parallelized, we have seen 0.1 s execution time on more capable

hardware [23], [28]. Thus, for the embedded Xavier hardware

we set the safety threshold at around 1 s. For the MPC task,

25-100 ms execution times are common [34] and our threshold

is set accordingly. Finally the TSP task can have a very wide

range of execution times based on the algorithm used [35]. We

set the period of TSP at 10 seconds, meaning it executes for the

entirety of the DAG activation. Then, depending on the share of

computational resources TSP receives over the DAG activation

period, the better the TSP tour optimality, which gives us a direct

measure of task performance (below).

For the reward/penalty functions, we sought to have diminish-

ing returns of timeliness of tasks for the reward functions, while

penalizing exponentially for the violation of safety-based timing

thresholds. Finally, performance is measured based on the TSP

task’s solution optimality, which varies based on share of ET.

Specifically, in Table II, z(P) denotes a normalization function

such that z(P) ∈ [0 : 1] where P denotes the tour optimality of

TSP.

For the evaluation of SP, we set ADAG, the activation period of

G, to 10 seconds, which is equal to the largest period in the DAG.

This produces 10 s windows where we study how the distribution

of computational resources across tasks inG influences the value

of our SP metric.

C. Motivating SP: Environmental Correlation of SLAM

We begin our SP evaluation by first corroborating a key

motivating factor for the SP metric. Specifically, we argued

previously that a robot’s computation can vary widely during

deployment with influence from the environment [36], moti-

vating the design of our SP metric. In our first experiment,

we aimed to demonstrate such variations and show correlation

with the robot’s environment. Specifically, we executed only

the YOLO-DynaSLAM task on the RGB-D TUM dataset [37]

and recorded the task response time. At the same time, we

recorded the size in pixels of the depth masking region for dy-

namic elements of the scene used during background inpainting.

The depth masking area is calculated using the CPU based on

recursion. Thus, as the depth region of moving objects grows

larger, the YOLO-DynaSLAM task spends a huge amount of

time traversing the recursive loops and hence suffers from high

response times. This response time variation and correlation

with depth region size is shown in Fig. 4 . It is clearly visible

that the peak response times correspond to high pixel sizes of

the depth masking region. To verify this claim, we calculated

the Pearson Coefficient [38], yielding r = 0.608 and p-value

Fig. 4. YOLO-DynaSLAM response time vs. depth masking region size in
pixels. The significant correlation between the two parameters indicates the
environmental correlation of SLAM response time.

TABLE III
SCHEDULING CLASSES AND POLICIES USED IN EXPERIMENTAL SETUP

= 4.156e−5, indicating a correlation between the response time

of YOLO-DynaSLAM and the size of dynamics elements in

an environment. Most importantly, given the large range of

measured response times (peak > 6 seconds, minimum < 1
second), a WCMS or AMS metric will be insensitive to schedule

adjustments, as shown below.

D. Evaluating SP: A Case Study With Linux Schedulers

Motivated by the above observations, we conclude our exper-

imental study with a sensitivity analysis of our SP metric com-

pared to the standard WCMS and AMS metrics. Specifically, as

the purpose of a metric is to enable optimization of scheduling

parameters to improve task timing (c.f., Problem 1), it is critical

that a metric is sensitive to such parameters to differentiate

between schedules and their impact on safety/performance. To

begin, recall from Section II-C that two of the primary choices

of Linux kernel schedulers for scheduling robot computation

are CFS (not real-time) and FIFO (real-time). To demonstrate

the effect of these schedulers (and their parameters) on tim-

ing in our SHP-DAG G, we generated a representative set

of schedules with combinations of tasks assigned to CFS and

FIFO, see Table III. These schedules represent the possibilities

when scheduling our SHP-DAG G, ranging from a completely

fair schedule (S13), to a completely real-time schedule with

task priorities (S11/S12). For each schedule in Table III, we

executed our SHP-DAG G on the hardware setup detailed in

Section IV-B and collected RT/ET data for all nodes and paths

in G. We repeated this data acquisition for all schedules to

produce a Monte Carlo data set over which we calculated mean
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Fig. 5. Comparative SP sensitivity analysis. (a) All distributions are Gaus-
sian and penalty/reward functions exponential and logarithmic as defined in
table II. (b) YOLODynaSLAM is Weibull. (c) All distributions are Gaussian
but penalty/reward functions are uniformly linear. (d) WCMS and AMS for
schedules from Table III. WCMS and AMS are normalized to 4/WCMS and
1/AMS for scale matching. For all bar plots, larger is safer in terms of task
timing.

SP, WCMS, and AMS values, the result of which is depicted

in Fig. 5.

E. Results and Discussion

In analyzing Fig. 5, we start with some basic observations.

First, when comparing the values of SP (which are broken down

into safety contribution and overall SP) to WCMS and AMS, it

is clear that our SP metric is far more sensitive to schedules as

it clearly differentiates between safe and unsafe timing in G.

For instance, we have highlighted very similar WCMS values

for three schedules in Fig. 5 (bottom left), two of which our SP

metric deems as unsafe (S11 and S13) and one as safe (S12).

Another example of such behavior can be seen in the AMS value

for S2 (bottom right), a very unsafe schedule according to SP,

yet is very close to safe or nearly safe schedules according to

AMS (S8 and S11). Consulting Table III, we see that S2 only

allows real-time scheduling of SLAM which helps to cope with

the dynamism shown in Section IV-C and improve the AMS

value. However, with all other tasks in CFS the overall timing

of G suffers with the second lowest SP value.

Next, we can see the effects of changing the probability

distribution function from Gaussian to Weibull in Fig. 5(a) and

(b). In Fig. 5(a), we have a Gaussian distribution for all the tasks

and in (b) we have Weibull distribution for YOLO-DynaSLAM

only, which is verified by the response time profile of this SLAM.

The result shows a slight change in safety specifications for

Schedules S13, S7, S11 and S8. Interestingly, we see S7 goes

Fig. 6. Distribution of safety (S) values over nodes and paths, as well a overall
safety, performance, and SP value. Schedule 11 and Schedule 12 correspond to
S11 and S12 in Table III.

from being unsafe in Gaussian distribution to minimally safe in

Weibull. Therefore, we can deduce that assuming a Gaussian

distribution is the more conservative selection among the two,

as it assumes more probability mass in the right-hand tail of

the distribution that the timing data for SLAM does not reflect.

Lastly, in S7 we see the mean S value is negative while mean

SP is positive. This can happen as this is the mean over all

the values calculated, recalling that a negative S value cannot

induce a positive SP in any instantaneous measurement by our

SP definition.

We further change our penalty and reward functions from

being exponential/log to being linear, which again can be seen as

conservative versus non-conservative options. We see the effect

in Fig. 5(c), where many of the unsafe schedules are deemed safe

on average and with much less sensitivity compared to (a) and

(b). The explanation here is that, because we have omitted the

log (saturating) reward, the linear reward will dominate SP more

for task timing when the system is safe (Vus = ∅, Cus = ∅). This

creates a situation where even though schedulability remains the

same (as the underlying task timing in our data has not changed),

the mean S and SP of S11 for example can rise substantially as

the linear reward dominates in cases where the system is safe.

Thus, it is logical to use a saturating reward so that we have

the opportunity to balance with performance when the system

is safe.

Finally, we conclude our analysis by looking deeper at sched-

ules S11 and S12 in Table III. We select these schedules for

further analysis as they assign all tasks to the FIFO scheduler

(with varying priorities), which is the expected setup for a

real-time application. First, we see from Fig. 5 that the WCMS

values for S11 and S12 are effectively the same. Furthermore,

comparing to the WCMS value of schedule S13, which is all CFS

and capable of no real-time guarantees, we see that S11, S12,
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and S13 are equivalent. SP on the other hand, clearly identifies

S11 and S13 as unsafe, while S12 is safe. To understand this

sensitivity of the SP metric, we can study Fig. 6 which shows

a single execution of our SHP-DAG G for schedules S11 and

S12. Most importantly, as S12 has higher priority for SLAM,

we again see that the wide variation in the timing of SLAM is

managed better on average, leading to a much improved (and

safe) SP value.

Remark 2: In Fig. 6, S-RRT shows higher mean safety for

schedule 11 compared to schedule 12. This is due to the fact

that the priority-safety relationship is not linear in general for

complex task scheduling. The non-linear relationship between

priority and timing is recognized and expected due to the in-

terconnections and dispatch timing of tasks within the CPU.

Indeed, this acts as motivation for a custom scheduler that opti-

mizes SP in selecting task schedules (based on our formulation

in Problem 1), which is a key step in future work.

V. CONCLUSION AND FUTURE WORK

The novelty of the SP metric is that it ensures probabilistic

safety for all critical computation, and then balances safety

and performance. Fig. 5 shows that the SP metric is highly

sensitive to FIFO priority, while WCMS and AMS are relatively

insensitive. This implies that using our SP metric a scheduler

can balance safety and performance with a much higher level

of control than traditional metrics. With varying environmental

contexts, scheduling can then be adjusted online for a safe system

with balanced performance. However, the Linux schedulers are

just a testbed for SP evaluation and do not generate optimized SP

scores. A custom online scheduler that optimizes the SP metric

is the direction of future work.
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