
Elastic Scheduling for Fixed-Priority
Constrained-Deadline Tasks

Marion Sudvarg, Sanjoy Baruah, Chris Gill
Department of Computer Science & Engineering

Washington University in St. Louis
(msudvarg, cdgill, baruah)@wustl.edu

Abstract—Elastic scheduling provides a model for systems in
which individual task utilizations can adapt to guarantee schedu-
lability despite limited resources. Each task is characterized by
a range of acceptable utilizations and an “elastic constant”
representing its flexibility to reduce or “compress” its utilization
from the desired maximum. Utilization compression is realized
by either extending task periods or reducing workloads. This
paper extends the model to address period compression for
fixed-priority constrained-deadline task systems scheduled on a
uniprocessor. We propose two approximate algorithms and one
optimal algorithm for determining compression under the model.
We then compare the execution times and accuracies of all three,
demonstrating that even for large task sets, online compression
can be performed feasibly on low-powered embedded systems.

Index Terms—elastic constrained-deadline task model, unipro-
cessor fixed-priority scheduling, deadline-monotonic priority as-
signment

I. INTRODUC T I ON

Elastic real-time scheduling models provide a framework
to reduce the utilizations of individual tasks in response to
system overload. The original model proposed by Buttazzo
et al. [1], [2] considers uniprocessor scheduling of implicit-
deadline tasks. Using a physical analogy, it represents each
task’s utilization as a spring; the task’s “elasticity” reflects its
ability to adapt its utilization to a lower quality of service.
The total length of the springs, placed end-to-end, represents
system utilization. If this exceeds the schedulable bound, a
compressive force is applied to the system. Each spring (and
corresponding utilization) is compressed proportionally to its
elasticity until the total utilization no longer exceeds the bound
or until the task reaches its minimum serviceable utilization;
task periods are adjusted accordingly.

Chantem et al. [3], [4] demonstrated the equivalence of elas-
tic scheduling to the problem of minimizing a weighted sum
of squared deviations of each task’s compressed utilization
from its nominal value, constrained by each task’s minimum
utilization and the total utilization bound of the system. The
model was extended to constrained-deadline tasks, for which
utilization compression extends periods while holding the
relative deadlines constant. The constraint on total utilization

This research was supported in part by NSF grants CNS-2141256 and
CNS-2229290 (CPS), NASA grant 80NSSC21K1741, and a gift from BECS
Technology, Inc.

979-8-3503-3902-4/23/$31.00 ©2023 IEEE

was replaced by a tractable approximation of the processor-
demand analysis (PDA) [5] test for earliest-deadline first
(EDF) schedulability. Recently, Baruah [6] demonstrated that
these approximations result in a high degree of pessimism
for certain task sets. An alternative was presented in [6] that
uses an iterative approach, increasing the total compression
according to a tunable step size until the system is schedulable
according to PDA. The algorithm is tuned by selecting the
amount to increase compression at each step; a smaller step
increases the running time of the algorithm but allows for a
more precise result.

In this work, we extend this approach to deadline-monotonic
(DM) uniprocessor scheduling of systems of constrained-
deadline elastic tasks. We first present an iterative algo-
rithm that similarly increases compression until schedulability
is achieved according to the response time analysis (RTA)
test [7]. We then present two refinements to this algorithm,
both leveraging the observation that once a task has been
compressed to schedulability according to RTA, it remains
schedulable when more compression is applied to the system.
The first refinement iterates over tasks in order of decreas-
ing priority, increasing total compression until that task is
schedulable under RTA before considering the next task. The
second performs binary search over the range of allowed
compression, skipping RTA for tasks that are already known
to be schedulable at lower levels of compression.

Next, we formulate the problem of finding the optimal
amount of compression to guarantee schedulability for a single
task as a mixed integer quadratic program (MIQP). This allows
us to present an alternative algorithm that considers each task
in turn; if a task is not RTA schedulable for the current
level of system compression, the MIQP is solved to find the
exact amount of compression necessary to schedule the task.
By iterating over each task, we can determine the minimum
sufficient compression that must be applied to the task system.

We implement the latter three approaches, using SCIP [8] to
solve the MIQP. By evaluating each algorithm for randomly-
generated synthetic task sets, we demonstrate that the ap-
proximate procedures are both highly efficient and typically
give a result close enough to optimal to be useful for online
scheduling decisions in low-powered embedded devices. We
also show that, when an optimal solution is desired, the MIQP
may be solved feasibly offline to compress task periods.

The remainder of this paper is organized as follows: in

i i

i

i

i i

SUM

SUM

X
i

SUM

P
i i

i i

i j

i = j

i

i i

U

n

E i

X

i i

i i

i

T

T

X

Section II, we provide the necessary background on system
models used in this paper. Section II I presents a basic iterative
algorithm to compress tasks until RTA guarantees schedulabil-
ity. Sections I V and V refine the algorithm to a more efficient
iterative approach and a binary search, respectively. Section V I
formulates an MIQP representation of the problem of finding
the optimal amount of compression to schedule a single task,
then applies this to a complete task system. In Section VII,
we show results of our evaluation of those approaches. Finally,
Section VI I I concludes the paper and discusses the contexts
under which each approach may be relevant.

I I . BAC K G RO U N D AND S Y S T E M MOD E L

A. Implicit-Deadline Elastic Tasks
The elastic model for recurrent, implicit-deadline

tasks on a uniprocessor [1], [2] characterizes each task
τ i =(Ci , U min , U max , Ui , Ei) by five non-negative parameters:

• C i : The task’s worst-case execution time.
• U max: The task’s maximum utilization, i.e., its nominal

value when executing at the desired service level in an
uncompressed state.

• U min: Its minimum utilization, i.e., a bound on the amount
its service can degrade.

• Ui : The task’s assigned utilization, constrained to
U min ≤ Ui ≤ U max (the value of this parameter needs to
be assigned prior to run-time).

• E i : An elastic constant, representing “the flexibility of the
task to vary its utilization” [1].

A task system Γ = {τ1, . . . , τn} has a total uncompressed
utilization U max expressed as

n

U max = U max (1)
i = 1

and a desired utilization U D representing the utilization bound
given by the scheduling algorithm in use. In the event of
system overload, i.e., if U max > UD , the elastic model assigns
a utilization Ui to each task τ i according to these conditions:

• U n = UD , i.e., total utilization is set to the schedulable
bound.

• Any task for which E i = 0 is considered inelastic; we
consider this equivalent to the case that U min = U max.

• For all other tasks τ i and τ j , if Ui > U min and Uj > U min,
then Ui and Uj must satisfy the relationship

U max − Ui U max − Uj

E i E j

Put simply, the model compresses each task’s utilization
such that it is reduced from its desired maximum proportion-
ally to the task’s elasticity parameter, subject to the constraint
that it remains no less than the specified minimum.1 Com-
pression is then realized by adjusting each task’s period Ti

1This statement holds true for inelastic tasks, as E = 0 implies
U m i n = U max , and therefore the utilization is not reduced.

according to its new utilization, i.e., Ti = Ci /Ui . The original
algorithm presented in [1], [2] for assigning utilizations under
this model executed in time quadratic in the number of elastic
tasks. A recent improvement [9] yielded a more efficient
algorithm that runs in quasilinear time (or linear time for
admission of a new task).

B. Constrained-Deadline Tasks
In [3], [4], Chantem et al. showed that utilizations selected

by the elastic model also solve the following quadratic pro-
gramming problem:

min
X 1

(U max − Ui)2 (2a)
i i = 1 i

n

s.t. Ui ≤ U D (2b)
i = 1

�i , U min ≤ Ui ≤ U max (2c)

This allowed for an extension of the model to constrained-
deadline tasks. A task τ i = (Ci , Di , U min , U max , Ui , Ei) is
now characterized with an additional parameter, D i , repre-
senting a relative deadline that remains fixed even if the task’s
period is extended in response to reduced utilization. Under
the constrained deadline model, only tasks for which D i ≤ Ti

(i.e., D i ≤ Ci /U max) are considered.
The schedulability constraint (Eqn. 2b) is replaced by a

representation of the PDA [5] schedulability test. PDA is an
optimal technique for schedulability analysis of constrained-
deadline sporadic task systems under preemptive EDF schedul-
ing on a uniprocessor. It considers the demand bound function
D B F i (t) for each task τi , which denotes the maximum possible
cumulative execution required by jobs of the task that arrive
and have their deadlines within any contiguous interval of
duration t ≥ 0. This can be computed as:

D B F i (t) = max
t − D i + 1, 0 × C i (3)

i

For t ≥ 0 and D i ≤ Ti , this can be expressed more simply as:

D B F i (t) =
t − D i + 1 × C i (4)

i

A constrained-deadline task system Γ = {τ1, . . . , τn} is
schedulable under preemptive EDF on a uniprocessor if and
only if for all t > 0,

n

D B F i (t) ≤ t (5)
i = 1

In [5], it was shown that it is sufficient to check this
condition for values of t within the first hyperperiod that take
the form (k T i + D i) for non-negative integers k. This set of
values constitute the PDA testing set. For elastic scheduling,
Chantem et al. [3], [4] add a constraint in the form of Eqn. 5
for each element of the testing set to the optimization problem
represented by Eqn. 2.

However, the resulting problem may not be tractable. The
size of the testing set may be exponential in general, and

i

i i

i i

i i i

max iC Ti

i

i

i i

i

iλ =

(
 i i

E i (8)

def

i i

(

i i
i

iC T m i n
i

i
iT = (10)

2 ϵ

λ
ϵ

pseudo-polynomial for bounded-utilization tasks, and may re-
sult in an optimization problem with too many constraints to be
efficiently solvable. Also, due to its use of the floor function,
D B F i (t) is not a linear expression, and so the optimization
problem does not remain a quadratic program. Chantem et
al. [3], [4] over-approximate the demand-bound function by
removing the floor. Nonetheless, because the test set itself
depends on the task periods, the times defining the RHS of the
constraints formed by Eqn. 5 are variables in the optimization
problem, and the problem remains non-linear. Chantem et al.
[3], [4] introduced an approximate form of the problem, and a
heuristic approach to solving it, that were proved correct in the
sense that the resulting compressed system would be
guaranteed schedulable.

In recent work [6], Baruah showed that these approxima-
tions are highly conservative and may result in significant over-
compression for certain task sets. Two alternative approaches
were presented; in this paper, we extend these to fixed-priority
DM scheduling. Baruah introduces a term λ representing the
degree by which compression is applied to the task system.
Recall that in the original model [1], [2], each task τ i is
compressed proportionally to its elasticity E i , but not beyond
its minimum utilization U min. This allows us to express the
utilization Ui of each task as:

Ui = max(U min, U max − λE i) (6)

Since Ti = C i /Ui , we define T min = C
i

/U max and
T max = Ci /U min . Then for λ < Ci /(E i T min):

min
Ti = min Ti ,

C i − λEi T min (7)

In an uncompressed state, λ = 0 and for each task, Ui = U max

(equivalently, Ti = T min). The values U min also imply a
value λmax beyond which the utilization of task τ i cannot be
compressed further:

max def
U m a x − U m i n

if E i > 0
0 if E i = 0

Baruah also defines a value λmax beyond which the system
cannot be further compressed [6]; we express it as:

λmax = max λmax (9)

which implies an alternative expression for Ti as follows:

C i − λ E i T m i n if 0 ≤ λ < λmax

T min if λ ≥ λmax

Baruah [6] also introduces the notation Γ (λ) , representing
the task system obtained from Γ by applying compression
λ, i.e., with each task τ i having a period Ti according to
Eqn. 7. An optimal algorithm, then, for elastic scheduling of
constrained-deadline task systems under EDF finds the value
λ� representing the minimum value λ for which Γ (λ) is
schedulable. In [6], Baruah presents two algorithms that,
while not optimal, are nonetheless tunable by a parameter ϵ;
both algorithms are guaranteed to find a value λ < λ� + ϵ for
which Γ (λ) is schedulable. We summarize both:

1) E L A S T I C : This algorithm iterates over values of λ �
[0, λmax] with granularity ϵ. For each value of λ tested, it
performs PDA over the task set Γ (λ) . Once PDA indicates
schedulability, the search stops, and compression is applied.
For efficiency, binary search is proposed as an alternative. For
a considered value of λ, if PDA indicates schedulability, a
smaller value of λ is subsequently tested; if not, a larger
value is checked. The binary search limits the number of times
PDA is performed to log λ m a x ; PDA is itself pseudo-
polynomial for bounded-utilization task systems.

2) E L A S T I C - E FFI C I E N T : A more efficient algorithm is
supported by two observations in [6], repeated here:

Observation 1. If a given sporadic task system Γ satisfies
Expression 5 for a given value of t (say, to), then any task
system Γ ′ obtained from Γ by increasing the period parameters
of one or more tasks also satisfies Expression 5 for to.

Observation 2. Let Γ denote some constrained-deadline elas-
tic sporadic task system, and λ, ϵ, and ts denote positive
numbers. If all elements in the testing set of Γ (λ) that are
≤ ts satisfy Condition 5, then all elements in the testing set of
Γ (λ + ϵ) that are ≤ ts also satisfy Condition 5

The algorithm proceeds by iterating over values of λ,
beginning with λ = 0. It considers elements of the PDA testing
set in increasing order. Baruah observes that the testing set
need not be enumerated in its entirety a priori [6]; instead, the
current element being tested, to, can be updated to the smallest
value from amongst the next deadlines of each task. When an
element is reached for which PDA fails at the current test set
element to, λ is incremented by ϵ. Observation 2 implies that
once PDA succeeds at to, only larger values need to be tested.
Once the test set is exhausted, the current value λ is returned.
However, if λ reaches λmax, the algorithm terminates, as the
task system remains unschedulable even under compression.

Because the algorithm essentially performs a single PDA
(the testing set is only traversed once), while additionally
recomputing the periods of each task τ i in Γ (λ) for each value
of λ, the worst-case running time of the algorithm is:

O n × max + the running time of PDA.

where n denotes the number of tasks in Γ . For constant ϵ, this
is dominated by the running time of PDA.

I I I . E X T E N S I O N TO F I X E D - P R I O R I T Y SC HE DU L I NG

In this section, we present a simple extension of Baruah’s
algorithm E L A S T I C [6] (summarized in Section II-B2) to
fixed-priority deadline-monotonic (DM) scheduling, which
maintains the priority order of tasks as their periods are
extended. The procedure is outlined in Algorithm 1. Given a
system Γ of elastic constrained-deadline tasks (characterized
as described in Section II), it seeks to determine the smallest
value of λ for which Γ (λ) is schedulable. Like the E L A S T I C
algorithm, its precision is tunable by a parameter ϵ; the value λ
found is guaranteed to be less than λ�+ϵ .

ϵ

X R
T

Algorithm 1: Elastic-FP(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ (λ) is DM-schedulable
3 λ ← 0
4 λmax computed according to Eqn. 9
5 repeat
6 Perform RTA for Γ (λ)
7 if Γ (λ) is schedulable then
8 return λ

9 else
10 λ ← λ + ϵ

11 until λ > λmax;
12 return FA I L U R E

The algorithm initializes λ, the amount of compression to be
applied, to 0. It then increases λ in steps of size ϵ, performing
RTA for the complete task set Γ (λ) for each value of λ.
Once λ is found for which schedulability is achieved, the
algorithm terminates and the value is returned. However, if λ
exceeds λmax, the utilization constraints on each task prevent
the system from being scheduled under the elastic model.
Running Time: Since at most �λmax/ϵ� calls are made to
RTA by the algorithm E L A S T I C - F P, its worst-case running
time is �λm a x �× the worst-case running time of RTA (which
is pseudo-polynomial in the representation of the task system).

I V. A N E FFI C I E N T I T E R AT I V E A P P ROAC H

In this section, we present the first of two refinements to
Algorithm 1 (E L A S T I C -FP). We begin with a brief summary
of Audsley et al.’s response time analysis (RTA) [7], which
will provide a key observation leveraged by both refinements.

A. Response-Time Analysis

A task set Γ is schedulable if and only if the response time
of each task does not exceed its deadline. Under fixed-priority
preemptive scheduling, the response time R i of a task τ i is
characterized as the sum of its execution time C i and the
interference I i of the higher priority tasks; the interference is,
itself, a function of the response time. Assuming without loss
of generality that tasks are indexed by decreasing priority, the
following expression describes the response time:

i − 1

R i = C i + i C j (11)
j = 1 j

Audsley et al. [7] describe a recursive process by which
to determine the response time; the system is schedulable if
and only if R i does not exceed the deadline D i for each
task τi . If used in the context of RTA, our algorithm requires up
to �λmax/ϵ� calls to RTA in the worst case. However, the
following observation provides a slight improvement to
execution time:

Observation 3. If the condition R i ≤ D i holds for a task τ i in
Γ (λ) , then the condition also holds for the same task τ i in Γ (λ
+ δ) for any δ > 0.

Proof. Since the period Ti only appears in the denominator in
the expression for computing response time (Eqn. 11), and the
period does not decrease as λ increases (from Eqn. 10), it
follows that R i does not increase when increasing λ.
Therefore, if R i ≤ D i for some λ, the inequality still holds as
λ increases.

B. The Algorithm

This observation implies that Algorithm 1 can be improved
by considering only a single task at a time. RTA requires
checking every task in a task system, but once a task is
shown to be schedulable for a given value of λ, it need not be
rechecked for larger values. The resulting improvement is
outlined in Algorithm 2.

Algorithm 2: Elastic-FP-Efficient(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ (λ) is DM-schedulable
3 λ ← 0
4 λmax computed according to Eqn. 9
5 i ← 1
6 repeat
7 Perform RTA for task τ i (λ)
8 if τ i (λ) is schedulable then
9 if i = = n then

10 return λ

11 i ← i + 1

12 else
13 λ ← λ + ϵ

14 until λ > λmax;
15 return FA I L U R E

As in Algorithm 1 (E L A S T I C -FP), E L A S T I C - F P - E FFI C I E N T
begins by initializing λ to 0. It considers tasks in turn,
beginning with τ1, the highest-priority task. The algorithm

introduces the notation τ
i

(λ) to refer to task τ i � Γ (λ) , i.e.,
task τ i having a period Ti according to Eqn. 10 for the given
value of λ. When RTA determines that the current task under
consideration, τi , is unschedulable for the current value of λ,
the algorithm increases λ in steps of ϵ until the task is
schedulable. At this point, it considers the next task in the
system. If there are no tasks remaining to be checked (line 9),
the algorithm terminates and returns the current value of λ.
However, if the value of λ exceeds λmax, the algorithm fails.

Running Time: As before, at most �λmax/ϵ� values of λ are
checked by the algorithm E L A S T I C - F P - E FFI C I E N T. However,
RTA is only performed for a single task at a time. For a single
value of λ, no more than a single failing check can be made.
Additionally, each task need only have a single successful

λ
ϵ

2

ϵ

λ λ
ϵ ϵ

λ
ϵ

λ λ
ϵ ϵ

i

check. Therefore, for a task system Γ of size n, the total
running time of the algorithm can be expressed as:

max + n − 1 × the running time of RTA for a single task

(12)

V. A B I N A R Y S E A R C H I M P L E M E N TAT I O N

Our second refinement to Algorithm 1 (E L A S T I C - F P) in-
stead performs binary search over values of λ in [0, λmax].
Observation 3 implies that, when testing using RTA to test
Γ (λ) for schedulability, any tasks already known to be schedu-
lable for smaller values of λ do not need to be rechecked. The
complete procedure is outlined in Algorithm 3.

Algorithm 3: Elastic-FP-BS(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ (λ) is DM-schedulable
3 λ lo ← 0
4 λmax computed according to Eqn. 9
5 S � S e t o f s c h e d u l a b l e t a s k i n d i c e s
6 Determine Γ(λmax) � U s i n g Eqn. 10
7 Perform RTA for Γ(λmax)
8 if Γ(λmax) is schedulable then
9 λhi ← λmax

10 else
11 return FA I L U R E

12 repeat
13 λ ← (λhi + λ lo)/2
14 S C H E D U L A B L E ← T RU E
15 S ′ ← S
16 forall τ i � Γ , i �/ S do

17 Perform RTA for τ
i

(λ)
18 if τ i (λ) is schedulable then
19 Add i to S ′

20 else
21 S C H E D U L A B L E ← FA L S E

22 if S C H E D U L A B L E then
23 λhi ← λ

24 else
25 λ lo ← λ
26 S ← S ′

27 until λhi − λ lo ≤ ϵ;
28 return λhi

The algorithm first performs RTA for Γ(λma
x

); if it is not
schedulable, the algorithm fails. Otherwise, it performs binary
search over values of λ in the range [0, λmax]: λhi (initialized
to λmax) tracks the smallest value of λ tested for which Γ (λ) is
schedulable, while λ lo (initialized to 0) tracks the largest tested
value for which Γ (λ) is not schedulable. A variable S tracks

the indices of tasks in Γ(λ l o) that are schedulable.2 At each
step, the algorithm performs RTA for those tasks τ i � Γ (λ)
that are not in S . If all tasks are schedulable, λhi is decreased
to the tested value of λ; otherwise, λ lo is increased to the
tested value of λ and S is updated to include those tasks for
which RTA nonetheless succeeded. The algorithm terminates
when the difference between λhi and λ lo does not exceed ϵ, at
which point it is guaranteed that λhi < λ� + ϵ for optimal λ�,
since λ� > λlo .
Running Time: Since algorithm E L A S T I C - F P - B S requires
RTA to be performed for all tasks in Γ(λma x) prior to the
binary search, in the worst case �log (λmax /ϵ)� + 1 total
calls are made to RTA. The use of the variable S to track
tasks already known to be schedulable for smaller values of
λ may improve the execution time for some task sets; indeed,
if λ� > λmax − ϵ, and if RTA determines schedulability for all
but one task at λ = λmax /2, then binary search will only
proceed upward, and RTA will only need to be performed for a
single task at each checked value of λ thereafter. In this case,
RTA for a single task is performed only

log2
λmax + 2n − 1

times. This is more efficient than Algorithm 2 (E L A S T I C - F P-
E FFI C I E N T) if:

log2
max + n < max (13)

For ϵ chosen such that λmax /ϵ = 1000, this is more efficient
for systems of fewer than 990 tasks.

On the other hand, if λ� < ϵ, binary search will only
proceed downward, so S remains empty, and so RTA must
be performed for all tasks in Γ for each tested value of λ. In
this case, RTA must be performed (i.e., RTA will succeed for
each value of λ checked), in which case the analysis must be
performed for each elastic task τ i � Γ . In this case, RTA for a
single task is performed

log2
max + 1 × n

times. This is more efficient than Algorithm 2 (E L A S T I C - F P-
E FFI C I E N T) only if:

log2
max × n + 1 < max (14)

For ϵ chosen such that λmax /ϵ = 1000, this is more efficient
only if the system has fewer than 100 tasks. In Section VII,
we evaluate both algorithms to compare their performance in
the context of randomly-generated synthetic task sets.

V I . A N MIQP R E P R E S E N TAT I O N

In this section we describe how the problem of finding the
value λ� representing the minimum amount of compression to
apply to a fixed-priority, preemptive task system Γ to guarantee

2 S can be implemented as a bitmask or an array, allowing O (1) checking
and insertion for a given task index.

X t
T

X t

&

ti

j

’ &

j

jC T min
j

’ !

ti

j

!

j

C T min

1
j

E
j

X

i

�

i

schedulability of a single task τ i can be formulated as a mixed
integer quadratic program (MIQP). We then use this result to
present an algorithm that finds the optimal compression value
λ� for the complete task system.

A. Formulating the MIQP
We build upon the mixed integer linear programming rep-

resentation of RTA given in [10]. In [11], it is shown that for a
fixed-priority, preemptive task system Γ to be schedulable, it
is necessary and sufficient that for each τ i � Γ , there exists
some value of t ≤ D i for which:3

i − 1
t ≥ C i + × C j (15)

j = 1 j

The minimum value of t satisfying this condition for τ i is
the response time of the task. However, unlike in [10], we do
not seek to find the minimum value of t for each task. Instead,
for a single task τi , we seek to find the minimum value of λ i for
which there exists a t < D i satisfying Eqn. 15 for Γ (λ) . In
other words, it must satisfy:

i − 1

t ≥ C i +
j = 1

T j (λ i)
× C j (16)

for T j (λ i) as defined in Eqn. 10. The MIQP problem is
formulated as follows:

1) For task τi , we define a real-valued variable ti representing
some value of t for which Eqn. 15 holds. Unlike in [10],
where the corresponding R i is non-negative, we restrict ti
to be positive: if ti = 0 satisfies Eqn. 15, then C i = 0,
in which case the task can be ignored. This becomes an
important distinction in a later step.

2) We specify the constraint:

ti ≤ D i (17)

3) As in [10], for each j � {1, . . . , i − i } , we define a non-
negative integer variable Z i j that represents the term
�ti /Tj (λ i)�.

4) As in [10], to enforce this intended interpretation on
the Z i j variables, we must add constraints of the form
Z i j ≥ t i /Tj (λ i) for each j � {1, . . . , i − i } . Since Z i j is
specified to be an integer variable, this will respect the
ceiling operator that appears in Eqn. 15.

From the formulation of T j (λ i) in Eqn. 10, we can

express the term �ti /Tj (λ
i

)� as:

max
T max ,

t i (C j − λ i E j T m in)

This requires two linear constraints for each Z
i

j :

�j � {1, . . . , i − 1}, Z i j ≥ T max (18)

3Without loss of generality, we again assume tasks are indexed in decreasing
order of priority.

�j � {1, . . . , i − 1}, Z i j ≥
t i (C j − λ i E j T m i n)

!

j j

Because ti is itself a variable, and λ
i

 is the value we want
to minimize ultimately, we rewrite this expression:

!
0 ≤ Z i j − T min ti + C

j t iλ i (19)

This is a quadratic constraint, as it contains the term tiλ i .
5) As in [10], we add a final constraint for Eqn. 16:

i − 1

C i + Z i j × C j ≤ ti (20)
j = 1

6) To find the minimum value of λ i for which the problem can
be satisfied, we add the following objective function:

minimize λ i (21)

Recall that in Step 1 of the MIQP, ti is restricted to the
positive reals; this implies that if a solution exists, λ i is well-
defined for any value of ti .

B. The Resulting Algorithm

By solving an MIQP, we can find the exact value of λ
i

 by
which to compress a task system Γ to guarantee schedulability
for an individual task according to RTA. We now present an
algorithm that extends this approach to finding the optimal
value, λ�, representing the minimum amount of compression
to guarantee schedulability of all tasks. The procedure is
outlined in Algorithm 4.

Algorithm 4: Elastic-FP-MIQP(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ (λ) is DM-schedulable
3 λ ← 0
4 forall τ i � Γ do

5 Perform RTA for τ
i

(λ)
6 if τ i (λ) is not schedulable then
7 Construct MIQP
8 Solve for λ�

9 if MIQP infeasible then
10 return FA I L U R E

11 λ ← λ i

12 return λ

The algorithm initializes λ to 0. Each task in the system is
checked for schedulability under the current compression level
using RTA. Once a task τ i is found that cannot be scheduled,
the MIQP described in Section VI-A is constructed and solved
for that task. If no solution is found, the minimum utilization
constraints of its constituent tasks prevent the system from
compressing to schedulability. Otherwise, λ is updated to λ�,
and the remaining tasks are checked in the same manner.

i

i

i

i i

i

i

i

i i

Running Time: For a task system Γ of n tasks, algorithm
E L A S T I C -FP-M IQP must perform RTA for each task (the
equivalent of performing RTA once over the complete task
system). It must also solve, in the worst-case, n instances of
the MIQP problem. Even the decision version of the problem
(showing the existence of a λ that satisfies schedulability) is
N P -complete. Nonetheless, as we demonstrate in Section VII,
this procedure can often efficiently find the optimal amount of
compression using off-the-shelf solvers.

V I I . E VA L UAT I O N

To evaluate the effectiveness and efficiency of the E L A S T I C -
F P - E FFI C I E N T (Alg. 2), E L A S T I C - F P - B S (Alg. 3), and
E L A S T I C -FP-M IQP (Alg. 4) procedures, we run them over
a large collection of randomly-generated constrained-deadline
task sets. We track their execution, both in time and calls to
RTA. We also analyze the overhead incurred by using these al-
gorithms for online admission control in an embedded system
running an ARM Cortex-A53 processor. Finally, we compare
the compression values λ produced by each algorithm.

A. Generating Task Sets

To evaluate elastic scheduling for constrained-deadline
tasks, we consider tasks that begin with a relative deadline
D i equal to their period Ti . Tasks individually have a uti-
lization not exceeding 1, but the task systems as a whole are
not schedulable due to their joint utilizations exceeding the
utilization bound of the system. To accommodate such a task
system, each task has its period extended while its deadline
remains the same. We generate task sets of size [10−100] in
steps of 10. For each size, we consider total utilizations in
the range [1.0−2.0] in steps of 0.1. For each combination of
size/utilization we generate 100 sets of tasks (for a total of
11 000) according to the following methodology:

1) Uncompressed task periods T min are generated using a log-
uniform distribution (per [12]) in [1−1000].

2) Task deadlines D i are set equal to T min.
3) Tasks are sorted according to increasing deadline (decreas-

ing priority under DM scheduling).
4) The total utilization of the task system is partitioned among

tasks using the UUniSort technique (a more elegant ver-
sion of UUniFast) [13], such that each task is assigned a
utilization U max.

5) Execution time is assigned according to Ci =U max ×T min .
6) A minimum utilization U min is assigned to each task so

that the total utilization cannot exceed 0.69, the Liu and
Layland schedulability bound of a rate-monotonic implicit-
deadline task system [14]. To do so, we define a constant
s = 0.69/USUM , where USUM is the total utilization of the
task set. We then obtain U min by multiplying each task’s
U max by a random value uniformly selected from the range
[0−s]. On average, the total minimum utilization is expected
to be 0.345, with a narrower distribution for larger task sets.
This is illustrated in Fig. 1.

Fig. 1: Distributions of total minimum utilizations from 1100 randomly-
generated task sets each of size 10, 30, 100.

7) The maximum period is derived as T max = U min /Ci .
8) Elasticity E i is uniformly selected in [0−1].

B. Execution Efficiency
We implement the recursive RTA of Audsley et al. [7]

and the three algorithms we consider in C++, into which we
link version 8 [15] of the SCIP constraint integer program
solver [8] to execute the MIQP.
Offline Elastic Scheduling: Elastic scheduling can be lever-
aged in situations where a task set is compressed online for
scheduling on an overutilized target system. To consider this
case, we evaluate the execution of our algorithms on a server
with two Intel Xeon Gold 6130 (Skylake) processors running at
2.1 GHz, and with 32GB of memory.

We begin by executing both E L A S T I C - F P - E FFI C I E N T and
E L A S T I C - F P - B S sequentially in a single-threaded environ-
ment over all 11 000 task sets. For each task set, we consider
values of ϵ that divide the compression limit λmax respec-
tively 100, 1000, and 10 000 times. Mean execution times
are illustrated in Fig. 2. Both algorithms are quite efficient,
with mean execution times not exceeding 4 milliseconds for
the task sets tested. For larger values of ϵ, iteration is more
efficient on average than binary search; but as ϵ gets smaller,
E L A S T I C - F P - B S becomes faster. Worst observed execution
times (WOET) and maximum total calls to RTA 4 are listed in
Table I. As expected, algorithm running times are closely
related to the number of calls to RTA.

Algorithm λm a x /ϵ WOET (ms) Max RTA Calls
E L A S T I C - F P - E F F I C I E N T 100 0.91 122
E L A S T I C - F P - E F F I C I E N T 1000 2.14 1021
E L A S T I C - F P - E F F I C I E N T 10 000 14.5 10 023

E L A S T I C - F P - B S 100 2.45 700
E L A S T I C - F P - B S 1000 3.47 1000
E L A S T I C - F P - B S 10 000 3.97 1400

TA B L E I : Algorithm performance comparison on Xeon-based server.

We then run E L A S T I C -FP-MIQP over a subset of our
generated task systems, limited to those with no more than 50

4Performing response time analysis for a single task counts 1 call to RTA.

(a) E L A S T I C - F P - E F F I C I E N T , 100

(d) E L A S T I C - F P - B S , 100

(b) E L A S T I C - F P - E FFI C I E N T , 1000

(e) E L A S T I C - F P - B S, 1000

(c) E L A S T I C - F P - E F F I C I E N T , 10 000

(f) E L A S T I C - F P - B S , 10 000

Fig. 2: Mean algorithm execution times on Intel Xeon Gold 6130.

Fig. 3: Execution time distributions for E L A S T I C -F P-MIQP.

tasks. The solver is configured to execute in a single thread,
which allows us to run separate instances of the algorithm
sequentially on each of the unused logical cores on our server,
splitting up the work of compressing the 5500 considered task
systems. Execution time distributions are illustrated in Fig. 3.
For task sets with 20 or fewer tasks, the algorithm consistently
completes in under 10 seconds. Even with up to 40 tasks, the
algorithm finds an optimal value of λ in under 3 minutes (and
often under 10 seconds). However, for systems of 50 tasks,
the solver may be slow to produce the optimal solution. For
95% of task sets with 50 tasks, an optimal solution is returned in
under 80 seconds. However, three of the task sets take over 2
hours to complete, with the longest taking 5.1 hours.

Online Elastic Scheduling: Elastic scheduling can also be

used for online adaption of task rates, e.g., when admitting new
tasks on a fully-utilized system, or when task execution times
change in response to dynamic exogenous factors. Despite
its precision, the uncertain execution time to solve the MIQP
make the E L A S T I C -FP-MIQP algorithm unsuitable for online
scheduling decisions in real-time systems. We consider instead
the worst observed execution times of the E L A S T I C - F P -
E FFI C I E N T and E L A S T I C - F P - B S algorithms when running on
an embedded system. We apply both algorithms to each of the
11 000 randomly-generated task sets, again using values of
λmax /ϵ in {100, 1000, 10 000}. We measure their execution
times on a single core of a Raspberry Pi 3 Model B+, which
has a Broadcom BCM2837B0 system-on-chip with an ARM
Cortex-A53 running at 1.4GHz. For each combination of
size/utilization, we take the maximum execution time among
the 100 task sets tested; these are plotted in Fig. 4.

As before, the iterative algorithm outperforms the binary
search for larger values of ϵ, but as ϵ decreases, E L A S T I C -
F P - B S begins to outperform E L A S T I C - F P - E FFI C I E N T. For
λmax /ϵ = 100, E L A S T I C - F P - E FFI C I E N T remains under 8 ms
even for task sets of size 100; and for λmax /ϵ = 10 000,
E L A S T I C - F P - B S takes less than 36 ms. The low overhead
suggests that either algorithm may be effective even for online
compression of large fixed-priority constrained-deadline task
sets on low-power embedded hardware.

C. Effectiveness of the Approximate Algorithms
When choosing between the three presented algorithms

(E L A S T I C - F P- E FFI C I E N T, E L A S T I C - F P- B S, EL A S T I C -FP-
MIQP), one must consider the tradeoffs between execution

δ =

(a) E L A S T I C - F P - E F F I C I E N T , 100

(d) E L A S T I C - F P - B S , 100

(b) E L A S T I C - F P - E FFI C I E N T , 1000

(e) E L A S T I C - F P - B S, 1000

(c) E L A S T I C - F P - E F F I C I E N T , 10 000

(f) E L A S T I C - F P - B S , 10 000

Fig. 4: Maximum observed execution times on ARM Cortex-A53 (Raspberry Pi 3B+).

time and accuracy. We first compare the relative compression
achieved by the three algorithms to illustrate when approxi-
mation may be sufficient. We define the metric

λ − λ�

λmax

representing the difference between the compression value λ
returned by an approximate algorithm and the optimal λ�

returned by E L A S T I C -FP-MIQP, normalized by λmax . We
compare values of δ between E L A S T I C - F P - E FFI C I E N T and
E L A S T I C - F P - B S for each of the three values of ϵ/λmax

considered. The relative distributions are plotted in Fig. 5. To
achieve the same range of values in the horizontal axes of
each plot, we multiply by ϵ/λmax , with values closer to 0
representing better agreement with λ�. We observe that, while
similar, E L A S T I C - F P - B S tends to do better than E L A S T I C -
F P- E FFI C I E N T. Since it is also more efficient for finer gran-
ularity of ϵ, this likely makes it the preferred choice among
the two approximate algorithms.

To quantify the effect of using an approximate algorithm to
enact period compression over an elastic task set, we next
compare the relative periods achieved by each algorithm. We

define the metric θ i = T
i

(λ)/Ti (λ�) representing the ratio of
a task’s period when compressed by an approximate algorithm
to the period under optimal compression. We compare values
of θ i between E L A S T I C - F P - E FFI C I E N T and E L A S T I C - F P - B S
for each of the three values of ϵ/λmax considered. Results for
the 162 420 total tasks for which compression was achieved
are summarized in Table II.

We observe that the relative overcompression of the
E L A S T I C - F P - E FFI C I E N T and E L A S T I C - F P - B S algorithms
tends to be small (under 10%), especially for large val-ues
of λmax /ϵ. Nevertheless, occasionally tasks are signifi-cantly
overcompressed. Even for λmax /ϵ=10 000, E L A S T I C -F P -
E FFI C I E N T and E L A S T I C - F P - B S overcompress 10 and 5 task
periods respectively by over 10×.

V I I I . CO N C L U S I O N

In this work, we have extended uniprocessor elastic schedul-
ing to fixed-priority, constrained-deadline tasks. We have
presented three algorithms: E L A S T I C - F P -E FFI C I E N T, which
applies compression iteratively using step sizes of a tunable
value ϵ; E L A S T I C - F P - B S, which performs a binary search
over the range of possible compression values, also using a
precision of ϵ; and E L A S T I C -FP-MIQP, which formulates the
problem of finding the exact amount of compression to apply
as a mixed integer quadratic program.

We have demonstrated that both approximate algorithms
are highly efficient. Even for systems of 100 tasks and small
values of ϵ, E L A S T I C - F P - B S enables compression on the
order of tens of milliseconds on a Raspberry Pi 3 Model
B+. We also observed that, when compared to the optimal
compression achieved by the MIQP approach, the approximate
algorithms overcompress periods by less than 10% for 99.5%
of tasks tested. However, in very rare corner cases (< 0.006%
of tested tasks), the iterative algorithms overcompress periods
by more than 10× the optimal compression. Therefore, for
offline scheduling decisions, E L A S T I C -FP-MIQP may still
remain a better choice. Even for task sets of size 50, the

on Real Time Programm ng, Atlanta, GA, USA, 15-17 May 1991.

(a) ϵ/λm a x = 100 (b) ϵ/λm a x = 1000 (c) ϵ/λm a x = 10 000

Fig. 5: Relative distance from optimal of λ returned by approximate algorithms.

θ
[1, 1.1)
[1.1, 2)
[2, 10)
[10, 100)
≥ 100

E L A S T I C - F P - E F F I C I E N T

100 1000 10 000
127 807 155 190 161 590

26 542 6 233 740
6 994 866 80

980 122 10
97 9 0

E L A S T I C - F P - B S
100 1000 10 000

132 184 155 354 161 928
23 756 6 061 442

5 602 876 45
795 120 5

83 9 0

TA B L E I I : Relative overcompression of tasks by approximate algorithms.

algorithm completed in under 1.5 minutes 95% of the time,
though we did observe 3 task sets for which the MIQP took
over 2 hours to finish.

As future work, we intend to extend constrained-deadline
elastic scheduling (including the PDA-based approach in [6]
for EDF scheduling) to consider multiprocessor and dis-
tributed systems and computationally elastic tasks for which
workloads, instead of periods, are compressed. We also plan
to investigate whether an MIQP can be formulated to find
optimal compression for dynamic-priority algorithms (e.g.,
EDF). Extensions to the MIQP may prove useful for handling
additional constraints imposed under different system models.

R E F E R E N C E S

[1] G. C. Buttazzo, G. Lipari, and L . Abeni, “Elastic task model for
adaptive rate control,” in Proc. of IEEE Real-Time Systems Symposium,
1998. [Online]. Available: https://doi.org/10.1109/REAL.1998.739754

[2] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1109/12.990127

[3] T. Chantem, X . S. Hu, and M. D. Lemmon, “Generalized elastic
scheduling,” in Proc. of IEEE International Real-Time Systems
Symposium, 2006, pp. 236–245. [Online]. Available: https://doi.org/10.
1109/RTSS.2006.24

[4] ——, “Generalized elastic scheduling for real-time tasks,” IEEE
Transactions on Computers, vol. 58, no. 4, pp. 480–495, Apr. 2009.
[Online]. Available: https://doi.org/10.1109/TC.2008.175

[5] S. K . Baruah, L . E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-Time Syst., vol. 2, no. 4, p. 301–324, oct
1990. [Online]. Available: https://doi.org/10.1007/BF01995675

[6] S. Baruah, “Improved uniprocessor scheduling of systems of sporadic
constrained-deadline elastic tasks,” in Proceedings of the 31st
International Conference on Real-Time Networks and Systems (RTNS
2023). New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3575757.3575759

[7] N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Hard real-time
scheduling: The deadline-monotonic approach,” IFAC Proceedings
Volumes, vol. 24, no. 2,

i
pp. 127–132, 1991, iFAC/IFIP Workshop

[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474667017512835

[8] T. Achterberg, “SCIP: solving constraint integer programs,”
Mathematical Programming Computation, vol. 1, no. 1, pp. 1–41, Jul
2009. [Online]. Available: https://doi.org/10.1007/s12532-008-0001-1

[9] M. Sudvarg, C. Gill, and S. Baruah, “Linear-time admission control for
elastic scheduling,” Real-Time Systems, vol. 57, no. 4, pp. 485–490, Oct
2021. [Online]. Available: https://doi.org/10.1007/s11241-021-09373-4

[10] S. Baruah and P. Ekberg, “An ILP representation of response time
analysis,” 2021, short note available from https://research.engineering.
wustl.edu/�baruah/Submitted/2021-ILP-RTA.pdf.

[11] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal, vol. 29, no. 5, pp. 390–395, 01 1986.
[Online]. Available: https://doi.org/10.1093/comjnl/29.5.390

[12] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis of
multiprocessor tasksets,” in WATERS workshop at the Euromicro
Conference on Real-Time Systems, Jul. 2010, pp. 6–11, 1st International
Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems ; Conference date: 06-07-2010.

[13] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Syst., vol. 30, no. 1–2, p. 129–154, May
2005. [Online]. Available: https://doi.org/10.1007/s11241-005-0507-9

[14] C. L . Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, p. 46–61, jan 1973. [Online]. Available:
https://doi.org/10.1145/321738.321743

[15] K . Bestuzheva et al., “The SCIP Optimization Suite 8.0,” Optimization
Online, Technical Report, December 2021. [Online]. Available:
http://www.optimization-online.org/DB HTML/2021/12/8728.html

