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ARTICLE INFO ABSTRACT

Keywords: This paper seeks to address the profound power resilience inequity in New York City by means of strategic
Power resilience allocation of electric vehicle (EV) charging infrastructure to support the power grid operation in challenging
Equity

scenarios, such as when facing high demand or during natural disasters. First, we uncover the most dispropor-
tionately affected communities in New York by developing a metric of power resilience inequity to measure the
combined impact of power failure-related factors on these areas. We employ data-driven approaches to infer the
statistical relationships between communities’ power resilience index, their available EV charging infrastructure,
and several other prominent socio-demographical variables. This inference yields the development of a machine
learning model that can predict the reduction of power resilience inequity after deployment of the proposed
resource allocation strategy. We further develop an optimization framework that jointly considers equity and
efficiency to guide the optimized distribution of EV charging infrastructure across the city. A number of case
studies are leveraged to demonstrate the capability of the devised approach in enhancing urban power resilience
equity, yielding favorable results in marginalized communities.
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1. Introduction
1.1. Power resilience in New York City

Power systems resilience refers to the recurring ability of a power
system to anticipate, survive, sustain, recover from, and adapt to high-
impact low-frequency events. These events include natural disasters as
well as man-made disasters (Chattopadhyay and Panteli, 2022; Raoufi
et al., 2020). As climate change continues to cause an increase in the
frequency of natural disasters, there is more widespread worry about the
effects of a greater number of heatwaves and storms globally; thus the
topic has garnered attention from researchers worldwide. Related works
have explored several means of boosting power resilience, such as line
hardening and supplemental power sources in an effort to mitigate
power failure in rural areas, congested cities, and suburbia in between.
There is also growing concern surrounding the impact of increased
disaster frequency on the power grid in New York City (NYC), especially
in the wake of Hurricanes Isaias and Ida in 2020 and 2021. Power grid
failures affect some city regions disproportionately based on factors such
as electric infrastructure efficiency and proximity to the shoreline.
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NYC’s power generation plants are local. Many are located along the
waterfront of Queens, making them more susceptible to interference
during periods of severe weather (NYC Planning, 2020). For example,
during heat waves, the less efficient plants are unable to keep up with
the surge in demand for electricity, and blackouts become more likely.
To plan ahead for neighborhoods along the shoreline, the City has
launched the Resilient Neighborhoods initiative to support the power
resiliency of the communities in the floodplain (NYC Planning, 2020). In
July 2022, the New York Power Authority (NYPA) announced that it has
been named a co-founder of the global initiative Climate READi, which
aims to create a more resilient power system by developing a common
framework for the design of future resilient energy systems (NY Power
Authority, 2022).

But, as a shift toward renewable energy sources also looms,
enhancing power resilience may become more complex. New York’s
Climate Leadership and Community Protection Act (CLCPA) requires
70% of the state’s energy from renewable sources by 2030, but greater
reliance on sources like wind and solar power presents the challenge of
system reliability. Wind lulls, for example, can greatly influence power
generation, and solar power will not be able to contribute sufficiently to
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forecasted evening energy peaks in the winter months. The CLCPA also
set a goal of an 85% reduction in economy-wide greenhouse gas emis-
sions by 2050, which will require significant investment in electric
building heat and electric vehicles (EVs), increasing the amount of
power needed across the state (New York ISO, 2020).

1.2. Electric vehicle use and infrastructure utility

According to state data, around 21,000 EVs are registered in New
York City, which is less than 1% of all the city’s registered vehicles.
Currently, factors like negative perceptions about EVs, high retail prices
due to increasing demand, and inconsistent access to EV charging sta-
tions have caused many consumers not to consider purchasing them. The
borough with the most registered EVs is Brooklyn with over 10,000,
followed by Manhattan and Queens, both with approximately 3900
(Gothamists, 2022). Yet, the vast majority of EV charging stations are
located on Manhattan Island. Though most electric car owners charge
their cars at home or work, ownership is more difficult for consumers
who cannot. Many New Yorkers live in apartment buildings without
access to chargers, and getting access to alternative charging stations is
especially difficult in the Bronx, Queens, and Staten Island, where there
are very few public stations.

Portable power batteries are a promising technology already being
utilized by EV owners. ZipCharge’s Go, for example, is a power bank
about the size of a carry-on suitcase that can provide between 20 and 40
miles of range on any electric or hybrid plug-in vehicle. These devices
can be used as power sources in emergency situations which could play a
role in enhancing urban grid resilience (Dugan et al., 2021; Hussain and
Musilek, 2022; Forbes, 2022). An increase in registered EVs may bring a
great benefit to New Yorkers in the renewable future as battery sources
can help pick up the slack of wind and solar sources in times of high
demand, which would improve resiliency in disproportionately affected
areas of NYC. Vehicle-to-Grid (V2G) technology allows energy to return
to the power grid from the battery of an electric car. Similar technologies
are Vehicle-to-Home and Vehicle-to-Load, which can be used to power
appliances (ABB, 2020; Gothamists, 2022). The benefit of these tech-
nologies in times of urgent need highlights the importance and positive
influence of equitably-allocated EV charging infrastructure which pro-
motes equitable energy resilience.

1.3. Equitable power resilience

“Equity” is distinguished from “equality” in that it refers to fairness
and justice in the context of societal imbalances that require individuals
with a greater need to have access to a greater portion of resources
allocated. Energy equity (Barlow et al., 2022) has received significant
attention, including investigations on the access to distributed energy
resources (Brockway et al., 2021), utility regulation (Farley et al., 2021),
outage durations (Liévanos and Horne, 2017), energy storage (McNa-
mara et al., 2022), and energy usage (Tong et al., 2021). Power grid
resilience also needs to consider equity in its planning process. Some
specific resilience measures include resource allocation such as power
backups and agile outage restoration plans in distinct communities (Lin
et al., 2022). In this work, we utilize EVs as a means to enhance urban
grid resilience which can be enabled by V2G technologies (Brown and
Soni, 2019; Hussain and Musilek, 2022; Simental et al., 2021). Thus,
equitable public EV charger distribution would facilitate improvements
in power resilience in the neighborhoods that need it most. In these
areas, the availability of electric chargers will incentivize residents to
purchase an EV, which in turn will make V2G technology more useful as
more EVs begin to circulate in the city. This will also cause an eventual
uptick in portable charger purchases, which can further support the
power grid in times of need.

The main objective of this work is to design a mathematical frame-
work for the optimal allocation of EV charging resources to achieve
equitable power systems resilience in New York City. Thus, a thorough
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investigation of power grid stress and EV charging infrastructure in
different communities across NYC is necessary. To this end, data-driven
approaches are leveraged to quantitatively assess the disproportionate
distribution of EV charging infrastructure and power outage impacts on
residents in different regions of the city. The equitable distribution of
public EV charging infrastructure is vital to achieving equitable resil-
ience of urban energy systems per the evidence that EV adoption in-
creases with greater charging infrastructure accessibility (Mersky et al.,
2016; Kumar et al., 2021), and that EVs can be maturely and conve-
niently integrated with the power network through V2G and similar
technologies (Hussain and Musilek, 2022; Rahimi and Davoudi, 2018).

1.4. Related works

Related works consist of those which propose different methods to
solve an issue similar to that posed by power failure, or which propose
similar methods to solve a similar issue. For example, the authors in
(Ghasemi et al., 2021) also propose the development of an optimization
framework for resilient distribution system planning, making use of fa-
cilities such as line hardening to strengthen the power network. This
framework considers trade-offs between the economic value of resources
under normal systems operation and the value of their enhancement of
network resilience. It does not assess the impact of the individual
line-strengthening techniques used. Similarly, the authors in Xu et al.
(2020) use a simulation-based optimization approach to minimize the
cost of cascading outages, more specifically.

The work established in Mahzarnia et al. (2020) reviews the most
widely used approaches to strengthen power resilience, and in Abiodun
et al. (2022) the authors assess the effectiveness of microgrids in
providing support to power grids in rural areas. The authors in Ma et al.
(2012) describe a model where EV storage systems are integrated with a
power system, and then develop a decision-making strategy for
deploying these resources to support the grid.

While all aforementioned works do not consider equity in deploying
their strengthening facilities to boost power resilience, in Lin et al.
(2022) the authors propose a more general, holistic framework pro-
moting equity in power resilience planning. However, this framework is
not tested and there are no quantifiable results to assess it.

This study establishes the inequity in power resilience faced by NYC
communities and proposes the utilization of V2G technology to integrate
EV chargers with the grid in order to mitigate this. The work will
quantify both the inequity faced and the impact of the proposed opti-
mization framework to properly assess its usefulness after the distribu-
tion of EV resources. Thus, it is unique in its prioritization of the equity
objective in formulating the mathematical framework.

1.5. Organization of the paper

The rest of the paper is organized as follows. Section 2 first develops
a metric to quantify power resilience inequity and then systematically
uncovers this inequity in NYC by data-driven analysis. Section 3 estab-
lishes a metric for evaluating available EV charging infrastructure and
reveals its current inequitable distribution across the city. Section 4
develops a mathematical framework to inform the optimized allocation
of resources to enhance equitable power resiliency. Section 5 uses case
studies to demonstrate the effectiveness of our proposed scheme.

2. Data-driven analysis of inequitable power resilience
2.1. Equitable power resilience indicator

To determine how to allocate EV charging resources equitably across
the city, we must first discover which neighborhoods suffer most during
natural disasters or times of high power demand. Two factors are
paramount in making this discovery: power outage frequency and average
recovery time, or the time it takes for power to be restored on average for
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a particular neighborhood or ZIP code.

To this end, the Power Outage Complaints dataset” is sourced from
NYC open data, which contains 44.6k rows of 311 Service Request re-
cords from 2010 to present and is updated daily. The data set includes
the open and close dates of the complaint ticket, the location of the
power outage, and various other descriptive fields. To calculate the
power outage frequency, we can count the number of records for each
ZIP code, which can be converted to outages per 1000 residents by
dividing by the total population in that ZIP with appropriate scale. The
population dataset® is obtained from US Census Bureau data. The
average recovery time (power outage duration) for each ZIP can be
directly obtained based on the information on Created Date and
Closed Date of each incident in the dataset.

An indicator of power resilience inequity must be developed in order
to investigate the combined effect of recovery time and outage fre-
quency. We denote by T; and O; the average recovery time and outage
frequency by population for ZIP code i € ./":= {1,2,...,N}, where N is
the total number of ZIPs of interest. Then, the power resilience inequity
metric for ZIP code i is therefore defined as:

R =T, + 0 0;, (€H)

where a7, @z > 0 are weighting factors with a; + a3 = 1.

A large R; indicates that the area suffers from a larger degree of
power resilience inequity, as it experiences a higher average outage
frequency and duration. These areas will appear in red on the heat maps
developed based on calculated R; values.

2.2. Power resilience equity results

2.2.1. Existence of resilience inequity

Fig. 1 shows the distributions of power outage frequency and re-
covery time in the city. It is observed that T; and O; can be significantly
different for distinct neighborhoods. For example, the outage frequency
is much higher in the Bronx and Central Brooklyn. To further understand
the degree of power resiliency inequity faced by communities, we
leverage the proposed metric (1), and the result is shown in Fig. 2. The
finding indicates that the most disproportionately affected areas in the
region are the Bronx and Central Brooklyn.

2.2.2. Persistence of resilience inequity

However, based on the number and nature of natural disasters that
occurred over the course of each year, R; visualizations may appear
different as storms or heat waves may affect areas differently, as shown
in Fig. 3. Regardless, trends can still be observed in annual visualizations
of R; in recent years—particularly prior to the COVID-19 pan-
demic—and the inequity observed is persistent. Similarly, by filtering
dates to include only short periods of time, one can observe the effects of
specific disasters on NYC communities in the short term, which helps to
expose inequitable power resilience under circumstances where power
is most needed. Fig. 4 depicts how severe hurricanes caused dispro-
portionate damages to neighborhoods, and it exposed the structural
power resiliency inequity in the urban area.

To learn more about the communities that suffer the most from
power resilience inequity and uncover important relationships, we next
conduct an analysis of the correlation between NYC resident de-
mographics and the scale of power resilience inequity in their
communities.

2 https://data.cityofnewyork.us/Social-Services/power-outage-complaints/
br6j-yp22
3 https://www.newyork-demographics.com
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Fig. 1. (a): NYC heat map of outages per 10,000 residents (since 2010) for each
ZIP, or O;. (b): NYC heat map of average outage duration (since 2010) for each
ZIP, or T;. A clear pattern can be seen for outage frequency, which is higher in
the Bronx and Central Brooklyn. Though long durations are less concentrated in
one area, these communities are still affected by relatively long
outage durations.

2.3. Social-demographic correlation analysis

For the purposes of this analysis, we can observe the relationships
that both income and ethnic background may have with the level of
power resilience in a given neighborhood. This is important to establish
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The demographics dataset provides the racial proportion breakdown
of residents by ZIP code and is sourced from City-Data,* which develops
comprehensive reports on individual NYC ZIP codes, compiling data
from both government and private sources.

Fig. 5(a) shows that the highest concentration of lower-income
households are located in Brooklyn and the Bronx, with most of these
households earning less than $40,000 annually. In contrast, Manhattan
has the highest concentration of high-income households, some ZIPs
earning an average of approximately $110,000 a year. The map high-
lighting communities of color in dark purple and the maps in Fig. 6 show
high concentrations of residents belonging to minority groups in similar
areas. Both maps correlate strongly with the map of power resilience
inequity based on outage frequency and duration.

2.4. Needs for equitable power resilience

The findings in Section 2.3 are troubling on multiple fronts. As we
recognize the correlation between less privileged neighborhoods and
high power resilience inequity, it is important to note that low-income
communities generally have higher energy cost burdens. This may be
attributed in some ways to the use of older and less efficient appliances
at home that require more electricity, in conjunction with older homes
with insufficient insulation (THE HILL, 2021).

Earth’s Future is a journal published in 2021 that broke down the
socioeconomic and racial correlations with extreme heat in certain
communities, both using census data and measuring the land’s surface
temperature with satellite imaging. The study found that temperatures
can be as much as 7 degrees higher in impoverished neighborhoods and
communities of color compared to their wealthy and white counterparts
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Fig. 3. (a): R; for each ZIP in 2016. Tropical storms Bonnie and Hurricane Matthew hit New York this year. The areas with the highest R; are primarily in the Bronx
and Central Brooklyn. (b): R; in 2018. In this year, tropical storms Gordon and Hurricane Michael hit New York. This map also displays a cluster of high R;s
concentrated in South Queens. More dramatic differences in R; can be observed between ZIPs in this time frame.

how inequity affects different demographics and create a foundation for
the regression model to be developed. Heat maps were developed first to
better visualize regional patterns, and then these demographic variables
were plotted against outage frequency.

due to higher population density, high building concentration, and a

4 http://www.city-data.com/city/New-York-New-York.html
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Fig. 4. (a): R; in 2021, as Hurricane Ida and five other storms hit the region. (b): R; during Hurricane Ida only, during which power outages were concentrated in
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Fig. 5. (a): Map of the median household income in each ZIP code. (b): Map of the percentage of residents belonging to minority racial groups in each ZIP, including
Black, Hispanic or Latino, Asian, Hawaiian or Pacific Islander, Indigenous, or mixed race residents.

lack of tree cover. This means that as global temperatures rise, these
neighborhoods will be even more susceptible to outages and will
continue to pay more for power that is more likely to go out and stay out,
unless changes are made accordingly to support power resilience in
these areas. This also means that these communities are at a higher risk

for heat stress-related injuries (NPR, 2021).

From Fig. 7, we can observe that the percentage of residents
belonging to minority groups has a direct positive relationship with
outage frequency, and therefore R;, whereas income has an indirect
relationship with frequency. These variables play an important role in
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Fig. 7. (a) and (b) show each ZIP’s outages per thousand residents against the median income and percentage of residents that are a part of a minority racial group in

that location, respectively.

identifying neighborhoods with the most power resilience inequity
across the boroughs.

3. Data-driven analysis of inequitable access to EV charging
infrastructure

There currently exists a distribution of EV charging infrastructure
disproportional to demand as based on population and EV prevalence in
some NYC neighborhoods. In leveraging data, we quantify the inequi-
table availability of public resources and make connections to active
socioeconomic factors.

3.1. Distribution of EV charging infrastructure

An analysis of the current distribution of EV charging infrastructure
is a necessary step before further resources can be allocated equitably.
The Alternative Fuel Stations dataset’ is sourced from the U.S. Depart-
ment of Energy’s Alternative Fuel Data Center, which provides a list of
all EV charging stations in the United States as of June 2022. It includes
the address of the station, access limitations, open date, and more.

The dataset is cross-referenced to a list of all ZIP codes in the 5
boroughs in order to filter by location. A new data frame was arranged

5 https://afdc.energy.gov/stations/#/find/nearest
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including each NYC ZIP code’s respective number of EV charging sta-
tions. Denote by E;,i € ./, the indicator of access to EV charging infra-
structure of residents in ZIP code i. Here, E; can be quantified according
to

E=—" @)

where NE; and P; are the number of EV charging stations and the pop-
ulation density in ZIP code i, respectively.

In order to find the amount of charging stations per 1000 people in
each location, a population data set was leveraged to divide the count of
EV stations by the corresponding population in each ZIP. The amount of
EV charging stations per 1000 residents is acquired by multiplying the
quotient by 1000 and then mapped to uncover the distribution of EV
charging infrastructure in the city.

3.2. Social-demographic correlation analysis

Analysis of the demographics with the worst access to EV charging
infrastructure is also necessary before allocating additional resources,
and can also strengthen correlations uncovered previously in Section
2.3.

Fig. 8 illustrates that most ZIP codes without any EV charging
infrastructure are in Brooklyn, the Bronx, and Queens. As discussed
previously, these areas also have a higher percentage of residents
belonging to minority racial groups. This pattern can also be observed
when comparing the ZIP code’s racial makeup and available EV
charging infrastructure directly.

The results shown in Figs. 9 and 10 demonstrate the relationships
between the availability of public EV charging infrastructure and de-
mographic factors, which are similar to those observed in the context of
power resilience inequity. Low-income communities and communities
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Fig. 8. The distribution of the number of EV chargers available per 1000 people
in the five boroughs in NYC. Areas that are displayed in white have no publicly
available EV charging infrastructure. The area with ZIP 11430 is disregarded.
Note: The high concentration of EV charging infrastructure in this ZIP, due to
the presence of JFK International Airport, skews results as we look at the effects
of infrastructure on power resilience.
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of color can be seen to have poorer access to the resources they need
during power emergencies. Therefore, an equitable allocation of these
EV charging resources is imperative to mitigate the infrastructure access
inequity.

4. Mathematical formulation for equitable power resilience
planning

The ultimate goal of this study is to achieve equitable power systems
resilience by designing a strategic roll-out plan for EV charging infra-
structure by allocating these resources to areas where they will make the
most positive impact.

4.1. Inference on power resilience and its cofactors

Before formulating the problem that informs optimal decision-
making, we need to identify the relationship between the EV charging
infrastructure and equitable resilience. A larger E; indicates that there
are more readily available resources for emergent power recovery in ZIP
code i when facing disasters. Furthermore, E; can be regarded as an
approximate indicator of how well-developed the critical infrastructure
is in the corresponding neighborhood and thus impacts the power
outage frequency O;. Therefore, E; can have a direct impact on the re-
covery time T; and power outage likelihood and henceforth the resil-
ience inequity measure R;. We leverage a linear model to uncover such a
relationship. Specifically, the constructed linear regression model ad-
mits the following structure:

R; = fy + \Ei + B,Di + pa1;, 3

where D; and I; denote the percentage of non-white-identifying popu-
lation and average median income of residents in ZIP code i, respec-
tively. po, p1, P2, and B3 are coefficients to be learned from the data.

The linear regression model assumes that there exists a linear rela-
tionship between predictor variables and the outcome variable, and that
there is no multicollinearity between predictor variables. To verify this,
the variance inflation factor (VIF) was calculated for predictor variables
and the resulting values were all below the threshold of 10, with the
highest value at only 4.3.

Linear regression is based on gradient descent training to find coef-
ficient values that minimize the error between actual and predicted
values. The algorithm will recompute the coefficient values based on the
gradient until it converges to a minimum. The complexity of such an
algorithm depends on the size of the dataset and the number of features
used as predictors, which admits O(sz), where k is the number of
features and N is the number of data points. With less than 200 ZIP codes
in NYC and 3 predictor variables, the algorithmic complexity will be
relatively low in this study, i.e., O(N?).

4.2. Mathematical problem

Other than equitable resiliency, the framework developed should
consider trade-offs between equity and efficiency, where in this context,
the efficiency aligns with the demand across NYC for EV charging
infrastructure.

Denote by x;> 0 the planning decision of additional EV charging
resources (such as charging ports, station) allocated to ZIP code i. For
computational convenience, we do not restrict x; to taking an integer
value. A decimal solution of x; can be interpreted as the EV charging
infrastructure capacity. However, one can further round the obtained
planning decision to the feasible integer solution through approxima-
tion. Then, E; below captures the average charging resources available to
residents in ZIP code i after the addition of EV charging infrastructure:
Xi

E=E +-
+5
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Fig. 9. (a) and (b) show the correlation of each ZIP’s available charging infrastructure, EVs per 10,000 residents, against the total percent of residents belonging to

minority groups and the percentage of residents that are white, respectively.
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Fig. 10. Correlation of the income against the EV charging stations available to
the public in each ZIP code.

An increase of E decreases T and O and thus lowers the degree of resil-
ience inequity R. Based on (3), R can be directly quantified as follows:

Ri =By + B Ei + poDi + Pl 4

Given a budget of B> 0 EV charging infrastructure resources, the city
government needs to decide how to allocate them efficiently to satisfy
the charging needs while considering its contribution to equitable power
resilience such as under disaster recovery circumstances. The efficiency
in the objective captures the heterogeneous demands of EV charger
usage across neighborhoods. The new installation plan should align with
this statistical fact. To this end, denote by

NE; + x; } )
ier

the new distribution of EV charging infrastructure in the city based on
the planning decision x;, i € .#". The demand distribution for EV chargers
in the city is denoted by pg4, which can be inferred from the historical
data. Then, it is desirable to have distributions p, and pq4 close to increase
utilization of the charging infrastructure. The equity objective ensures
that residents in different areas have no significant disparity in terms of
power energy resilience. Therefore, an effective and equitable EV
infrastructure decision-making plan can be obtained by solving the
following optimization problem:

max — KL(p,||p,) + > _nlog(R; + 1)

Xi €N —
e
Y w=B ©)
[
x>0, Vied,

where KL( - || - ) denotes the Kullback-Leibler (KL) divergence measuring
the difference between two discrete probability distributions; #; > O is a
weighting constant between efficiency and equitable resiliency. Note
that nilog(ﬁi + 1) is a term enhancing equitable resilience based on the
proportional fairness measure (Abdel-Hadi and Clancy, 2014; Pioro and
Medhi, 2004).

The optimization problem (6) is a convex program that can be solved
efficiently to find a unique solution. A convex function has only one
global minimum, meaning any local minimum is also the global mini-
mum. Thus, in solving this problem, we are guaranteed to find a global
minimum, ensuring the quality of the resulting solution.

5. Case studies and discussions

In this section, we use case studies to demonstrate the proposed
framework for equitable resource allocation to combat power resiliency
inequity.

5.1. Learning the predictive model

Intuitively, an explainable predictive model has the following fea-
tures. The learned coefficients ; and f3 should be negative as they
indicate lower levels of inequity experienced by the ZIP i, whereas f; is
expected to be positive, meaning a higher percentage of residents
belonging to minority groups will cause the model to predict higher
levels of inequity.

In setting up the regression model, the feature data is first normalized
on a scale from O to 1 in order to learn similar values for § across vari-
ables and better understand the influence of each on equitable resil-
iency. A 70%— 30% train-test split was used to yield the train and test
sets from the set of all ZIP codes, selected at random. The model first
returned a Mean Square Error (MSE) of 245 and is not a good fit for the
outliers with extremely high levels of power resilience inequity, as
illustrated in Fig. 11(a). This is likely due to absent EV charging infra-
structure, as previously stated. These outliers are removed and the
model is retrained, yielding an MSE of around 40 as shown in Fig. 11(b).
The coefficients learned by this version of the model are used in later R;
prediction. Note that although the areas with the highest R; values are
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Fig. 11. (a): The performance of the regression model for R; for all ZIPs. (b): Model performance excluding outliers.

those most in need of EV charging infrastructure to mitigate inequity,
through additional infrastructure allocation these areas will be brought
into the range of R; for which the predictive model becomes valid.

The coefficients learned are as follows:

By=213, p=-63, p,=103, B = —153.

The residual sum of squares (RSS) and R? are used to measure the quality
of fit. The results are RSS = 0.47 and R? = 0.53, respectively, for the test
data. It can be seen that the signs of all coefficients match the expecta-
tion. Specifically, p; has less influence in this model than the other
variables, presumably because many ZIP codes across the city are
lacking EV charging infrastructure altogether. In comparison, the in-

come feature I; has the strongest correlation with R;.

5.2. Equitable resource allocation

With the learned model, the next step is to decide the allocation of EV
charging infrastructure to promote equitable power resiliency in the
city. To this end, CVXPY (Diamond and Boyd, 2016) is leveraged to solve
the optimization problem (6). For the purposes of this study, we consider
B =200 total stations for allocation across the boroughs. Further, we
choose n; =5, Vie./. By adjusting 5, the allocation results can be
observed with different importance given to equity and efficiency. We
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approximate the distribution of demand for EV charging infrastructure
pa in (6) according to the population density in the city. The estimation
of this parameter can be more accurate if the data on public charging
needs becomes available.

Resource Allocation Decision-Making: As desired based on revealed
power resilience inequity levels in certain regions, most resources are
allocated to the areas with historically high R; values: Brooklyn and the
Bronx. As observed in Fig. 12, when the chosen value for 7 is low, effi-
ciency is the main concern for resource allocation decision-making.
Hence, demand is prioritized based on the population in each ZIP
code. When the 5 value chosen reflects more of a preference for equitable
allocation, the resources distributed concentrate more in Central
Brooklyn than in South Brooklyn where demand is higher. The resource
allocation scheme can be adaptive according to the evolving needs for
equity and efficiency.

Improvement on Power Resilience Equity: The resulting improvement of
power resilience equity can now be observed after calculating new
values for E; in each ZIP. As shown in Fig. 13, though E; does not change
drastically, all ZIP codes that previously do not have any accessible
public EV charging infrastructure have seen improvements in E;. The
resulting R; values after allocation is depicted in Fig. 14. Power resil-
ience inequity decreases across the city in the areas where R; was pre-
viously highest. Though these areas are still likely to experience the
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Fig. 12. (a): EV charging infrastructure allocation plan across NYC under n = 0. In this case, the model focuses exclusively on efficiency. (b): Allocation under
n = 500 (considering both equity and efficiency). (c): Allocation plan when the focus is solely on equity (KL divergence term is neglected).
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highest degrees of power resilience inequity, the extremity of this
inequity is drastically reduced compared to the one before the additional
EV charging infrastructure allocation. In other words, power resilience
equity is significantly enhanced based on the proposed strategy.

With the equitable allocation framework, this work has strengthened
power resilience in the neighborhoods with the greatest need to help
prevent and mitigate power failure-related hardship in vulnerable
communities specifically, in contrast to the many studies that focus
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primarily on vulnerabilities in the grid and its power lines rather than
the people affected. There is profound value in the framework’s flexi-
bility, as it is general enough for parameters to be tuned and changed, i.
e., with the introduction of new parameters, while still yielding quan-
tifiable results. The case studies providing these results allow for a more
precise assessment of the framework’s utility than the qualitative eval-
uations in Lin et al. (2022). The NYC setting, while specific for the
purposes of this study, is also flexible and can be changed by training the
model on data from a different setting to yield a decision-making plan
fitted to its socio-demographic differences.

6. Conclusion

It is critical that New York State invests in EV charging resources for
fair allocation across NYC. Residents can evolve their power consump-
tion as we develop urban areas to be more sustainable, and be
empowered to utilize new and developing technologies in improving
power resilience in their communities, even as the city looks toward a
future of more frequent natural disasters. This work has used data-
driven approaches to uncover existing power resilience inequity in
NYC and developed an optimization framework to guide the optimal
allocation of EV charging infrastructure resources to mitigate such
inequity. Our mathematical optimization framework achieved a balance
between resource utilization and equity. The proposed scheme has been
effective in yielding favorable changes in power resilience inequity,
especially for those neighborhoods with the worst power resilience
levels. Notably, some of these communities have seen significant de-
creases in power resilience inequity levels of up to 40% under the
developed strategy.

The quantifiable and equitable result of this study highlights the
progress made in introducing an equity objective to an optimization
framework for strengthening power resilience, making progress against
previous related works that either do not consider equity as in Ghasemi
et al. (2021), or do not quantify the positive effect of their resilience
frameworks with case studies, as in Lin et al. (2022). However, there are
limitations to the model in that New York has not yet invested
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Fig. 14. (a): Power resilience equity, R;, prior to resource allocation. (b): Predicted R; after resource allocation on a similar scale for easy comparison. The inequity is
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substantially in EVs, resulting infrastructure accessibility coefficient that
is not as influential over the model as the demographic coefficients. This
not only causes some inaccuracy in the regression model for inequity
prediction as previously noted, but may also make the model more
difficult to apply to the many cities with less developed public EV
charging infrastructure. As more cities begin to prioritize renewable
energy and electric vehicles in the next decade, this framework will
become more applicable.

A compelling extension of this work would be investigating addi-
tional planning and operational strategies to improve the equity of
urban power resiliency, such as backup power installation in commu-
nities and equitable power dispatch plans.
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