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A B S T R A C T   

This paper seeks to address the profound power resilience inequity in New York City by means of strategic 
allocation of electric vehicle (EV) charging infrastructure to support the power grid operation in challenging 
scenarios, such as when facing high demand or during natural disasters. First, we uncover the most dispropor
tionately affected communities in New York by developing a metric of power resilience inequity to measure the 
combined impact of power failure-related factors on these areas. We employ data-driven approaches to infer the 
statistical relationships between communities’ power resilience index, their available EV charging infrastructure, 
and several other prominent socio-demographical variables. This inference yields the development of a machine 
learning model that can predict the reduction of power resilience inequity after deployment of the proposed 
resource allocation strategy. We further develop an optimization framework that jointly considers equity and 
efficiency to guide the optimized distribution of EV charging infrastructure across the city. A number of case 
studies are leveraged to demonstrate the capability of the devised approach in enhancing urban power resilience 
equity, yielding favorable results in marginalized communities.   

1. Introduction 

1.1. Power resilience in New York City 

Power systems resilience refers to the recurring ability of a power 
system to anticipate, survive, sustain, recover from, and adapt to high- 
impact low-frequency events. These events include natural disasters as 
well as man-made disasters (Chattopadhyay and Panteli, 2022; Raoufi 
et al., 2020). As climate change continues to cause an increase in the 
frequency of natural disasters, there is more widespread worry about the 
effects of a greater number of heatwaves and storms globally; thus the 
topic has garnered attention from researchers worldwide. Related works 
have explored several means of boosting power resilience, such as line 
hardening and supplemental power sources in an effort to mitigate 
power failure in rural areas, congested cities, and suburbia in between. 
There is also growing concern surrounding the impact of increased 
disaster frequency on the power grid in New York City (NYC), especially 
in the wake of Hurricanes Isaias and Ida in 2020 and 2021. Power grid 
failures affect some city regions disproportionately based on factors such 
as electric infrastructure efficiency and proximity to the shoreline. 

NYC’s power generation plants are local. Many are located along the 
waterfront of Queens, making them more susceptible to interference 
during periods of severe weather (NYC Planning, 2020). For example, 
during heat waves, the less efficient plants are unable to keep up with 
the surge in demand for electricity, and blackouts become more likely. 
To plan ahead for neighborhoods along the shoreline, the City has 
launched the Resilient Neighborhoods initiative to support the power 
resiliency of the communities in the floodplain (NYC Planning, 2020). In 
July 2022, the New York Power Authority (NYPA) announced that it has 
been named a co-founder of the global initiative Climate READi, which 
aims to create a more resilient power system by developing a common 
framework for the design of future resilient energy systems (NY Power 
Authority, 2022). 

But, as a shift toward renewable energy sources also looms, 
enhancing power resilience may become more complex. New York’s 
Climate Leadership and Community Protection Act (CLCPA) requires 
70% of the state’s energy from renewable sources by 2030, but greater 
reliance on sources like wind and solar power presents the challenge of 
system reliability. Wind lulls, for example, can greatly influence power 
generation, and solar power will not be able to contribute sufficiently to 
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forecasted evening energy peaks in the winter months. The CLCPA also 
set a goal of an 85% reduction in economy-wide greenhouse gas emis
sions by 2050, which will require significant investment in electric 
building heat and electric vehicles (EVs), increasing the amount of 
power needed across the state (New York ISO, 2020). 

1.2. Electric vehicle use and infrastructure utility 

According to state data, around 21,000 EVs are registered in New 
York City, which is less than 1% of all the city’s registered vehicles. 
Currently, factors like negative perceptions about EVs, high retail prices 
due to increasing demand, and inconsistent access to EV charging sta
tions have caused many consumers not to consider purchasing them. The 
borough with the most registered EVs is Brooklyn with over 10,000, 
followed by Manhattan and Queens, both with approximately 3900 
(Gothamists, 2022). Yet, the vast majority of EV charging stations are 
located on Manhattan Island. Though most electric car owners charge 
their cars at home or work, ownership is more difficult for consumers 
who cannot. Many New Yorkers live in apartment buildings without 
access to chargers, and getting access to alternative charging stations is 
especially difficult in the Bronx, Queens, and Staten Island, where there 
are very few public stations. 

Portable power batteries are a promising technology already being 
utilized by EV owners. ZipCharge’s Go, for example, is a power bank 
about the size of a carry-on suitcase that can provide between 20 and 40 
miles of range on any electric or hybrid plug-in vehicle. These devices 
can be used as power sources in emergency situations which could play a 
role in enhancing urban grid resilience (Dugan et al., 2021; Hussain and 
Musilek, 2022; Forbes, 2022). An increase in registered EVs may bring a 
great benefit to New Yorkers in the renewable future as battery sources 
can help pick up the slack of wind and solar sources in times of high 
demand, which would improve resiliency in disproportionately affected 
areas of NYC. Vehicle-to-Grid (V2G) technology allows energy to return 
to the power grid from the battery of an electric car. Similar technologies 
are Vehicle-to-Home and Vehicle-to-Load, which can be used to power 
appliances (ABB, 2020; Gothamists, 2022). The benefit of these tech
nologies in times of urgent need highlights the importance and positive 
influence of equitably-allocated EV charging infrastructure which pro
motes equitable energy resilience. 

1.3. Equitable power resilience 

“Equity” is distinguished from “equality” in that it refers to fairness 
and justice in the context of societal imbalances that require individuals 
with a greater need to have access to a greater portion of resources 
allocated. Energy equity (Barlow et al., 2022) has received significant 
attention, including investigations on the access to distributed energy 
resources (Brockway et al., 2021), utility regulation (Farley et al., 2021), 
outage durations (Liévanos and Horne, 2017), energy storage (McNa
mara et al., 2022), and energy usage (Tong et al., 2021). Power grid 
resilience also needs to consider equity in its planning process. Some 
specific resilience measures include resource allocation such as power 
backups and agile outage restoration plans in distinct communities (Lin 
et al., 2022). In this work, we utilize EVs as a means to enhance urban 
grid resilience which can be enabled by V2G technologies (Brown and 
Soni, 2019; Hussain and Musilek, 2022; Simental et al., 2021). Thus, 
equitable public EV charger distribution would facilitate improvements 
in power resilience in the neighborhoods that need it most. In these 
areas, the availability of electric chargers will incentivize residents to 
purchase an EV, which in turn will make V2G technology more useful as 
more EVs begin to circulate in the city. This will also cause an eventual 
uptick in portable charger purchases, which can further support the 
power grid in times of need. 

The main objective of this work is to design a mathematical frame
work for the optimal allocation of EV charging resources to achieve 
equitable power systems resilience in New York City. Thus, a thorough 

investigation of power grid stress and EV charging infrastructure in 
different communities across NYC is necessary. To this end, data-driven 
approaches are leveraged to quantitatively assess the disproportionate 
distribution of EV charging infrastructure and power outage impacts on 
residents in different regions of the city. The equitable distribution of 
public EV charging infrastructure is vital to achieving equitable resil
ience of urban energy systems per the evidence that EV adoption in
creases with greater charging infrastructure accessibility (Mersky et al., 
2016; Kumar et al., 2021), and that EVs can be maturely and conve
niently integrated with the power network through V2G and similar 
technologies (Hussain and Musilek, 2022; Rahimi and Davoudi, 2018). 

1.4. Related works 

Related works consist of those which propose different methods to 
solve an issue similar to that posed by power failure, or which propose 
similar methods to solve a similar issue. For example, the authors in 
(Ghasemi et al., 2021) also propose the development of an optimization 
framework for resilient distribution system planning, making use of fa
cilities such as line hardening to strengthen the power network. This 
framework considers trade-offs between the economic value of resources 
under normal systems operation and the value of their enhancement of 
network resilience. It does not assess the impact of the individual 
line-strengthening techniques used. Similarly, the authors in Xu et al. 
(2020) use a simulation-based optimization approach to minimize the 
cost of cascading outages, more specifically. 

The work established in Mahzarnia et al. (2020) reviews the most 
widely used approaches to strengthen power resilience, and in Abiodun 
et al. (2022) the authors assess the effectiveness of microgrids in 
providing support to power grids in rural areas. The authors in Ma et al. 
(2012) describe a model where EV storage systems are integrated with a 
power system, and then develop a decision-making strategy for 
deploying these resources to support the grid. 

While all aforementioned works do not consider equity in deploying 
their strengthening facilities to boost power resilience, in Lin et al. 
(2022) the authors propose a more general, holistic framework pro
moting equity in power resilience planning. However, this framework is 
not tested and there are no quantifiable results to assess it. 

This study establishes the inequity in power resilience faced by NYC 
communities and proposes the utilization of V2G technology to integrate 
EV chargers with the grid in order to mitigate this. The work will 
quantify both the inequity faced and the impact of the proposed opti
mization framework to properly assess its usefulness after the distribu
tion of EV resources. Thus, it is unique in its prioritization of the equity 
objective in formulating the mathematical framework. 

1.5. Organization of the paper 

The rest of the paper is organized as follows. Section 2 first develops 
a metric to quantify power resilience inequity and then systematically 
uncovers this inequity in NYC by data-driven analysis. Section 3 estab
lishes a metric for evaluating available EV charging infrastructure and 
reveals its current inequitable distribution across the city. Section 4 
develops a mathematical framework to inform the optimized allocation 
of resources to enhance equitable power resiliency. Section 5 uses case 
studies to demonstrate the effectiveness of our proposed scheme. 

2. Data-driven analysis of inequitable power resilience 

2.1. Equitable power resilience indicator 

To determine how to allocate EV charging resources equitably across 
the city, we must first discover which neighborhoods suffer most during 
natural disasters or times of high power demand. Two factors are 
paramount in making this discovery: power outage frequency and average 
recovery time, or the time it takes for power to be restored on average for 

G. Ebbrecht and J. Chen                                                                                                                                                                                                                      



The Electricity Journal 36 (2023) 107275

3

a particular neighborhood or ZIP code. 
To this end, the Power Outage Complaints dataset2 is sourced from 

NYC open data, which contains 44.6k rows of 311 Service Request re
cords from 2010 to present and is updated daily. The data set includes 
the open and close dates of the complaint ticket, the location of the 
power outage, and various other descriptive fields. To calculate the 
power outage frequency, we can count the number of records for each 
ZIP code, which can be converted to outages per 1000 residents by 
dividing by the total population in that ZIP with appropriate scale. The 
population dataset3 is obtained from US Census Bureau data. The 
average recovery time (power outage duration) for each ZIP can be 
directly obtained based on the information on Created Date and 
Closed Date of each incident in the dataset. 

An indicator of power resilience inequity must be developed in order 
to investigate the combined effect of recovery time and outage fre
quency. We denote by Ti and Oi the average recovery time and outage 
frequency by population for ZIP code i ∈ N := {1,2,…,N}, where N is 
the total number of ZIPs of interest. Then, the power resilience inequity 
metric for ZIP code i is therefore defined as: 

Ri = α1Ti + α2Oi, (1)  

where α1, α2 ≥ 0 are weighting factors with α1 + α2 = 1. 
A large Ri indicates that the area suffers from a larger degree of 

power resilience inequity, as it experiences a higher average outage 
frequency and duration. These areas will appear in red on the heat maps 
developed based on calculated Ri values. 

2.2. Power resilience equity results 

2.2.1. Existence of resilience inequity 
Fig. 1 shows the distributions of power outage frequency and re

covery time in the city. It is observed that Ti and Oi can be significantly 
different for distinct neighborhoods. For example, the outage frequency 
is much higher in the Bronx and Central Brooklyn. To further understand 
the degree of power resiliency inequity faced by communities, we 
leverage the proposed metric (1), and the result is shown in Fig. 2. The 
finding indicates that the most disproportionately affected areas in the 
region are the Bronx and Central Brooklyn. 

2.2.2. Persistence of resilience inequity 
However, based on the number and nature of natural disasters that 

occurred over the course of each year, Ri visualizations may appear 
different as storms or heat waves may affect areas differently, as shown 
in Fig. 3. Regardless, trends can still be observed in annual visualizations 
of Ri in recent years—particularly prior to the COVID-19 pan
demic—and the inequity observed is persistent. Similarly, by filtering 
dates to include only short periods of time, one can observe the effects of 
specific disasters on NYC communities in the short term, which helps to 
expose inequitable power resilience under circumstances where power 
is most needed. Fig. 4 depicts how severe hurricanes caused dispro
portionate damages to neighborhoods, and it exposed the structural 
power resiliency inequity in the urban area. 

To learn more about the communities that suffer the most from 
power resilience inequity and uncover important relationships, we next 
conduct an analysis of the correlation between NYC resident de
mographics and the scale of power resilience inequity in their 
communities. 

2.3. Social-demographic correlation analysis 

For the purposes of this analysis, we can observe the relationships 
that both income and ethnic background may have with the level of 
power resilience in a given neighborhood. This is important to establish 

Fig. 1. (a): NYC heat map of outages per 10,000 residents (since 2010) for each 
ZIP, or Oi. (b): NYC heat map of average outage duration (since 2010) for each 
ZIP, or Ti. A clear pattern can be seen for outage frequency, which is higher in 
the Bronx and Central Brooklyn. Though long durations are less concentrated in 
one area, these communities are still affected by relatively long 
outage durations. 

2 https://data.cityofnewyork.us/Social-Services/power-outage-complaints/ 
br6j-yp22  

3 https://www.newyork-demographics.com 
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how inequity affects different demographics and create a foundation for 
the regression model to be developed. Heat maps were developed first to 
better visualize regional patterns, and then these demographic variables 
were plotted against outage frequency. 

The demographics dataset provides the racial proportion breakdown 
of residents by ZIP code and is sourced from City-Data,4 which develops 
comprehensive reports on individual NYC ZIP codes, compiling data 
from both government and private sources. 

Fig. 5(a) shows that the highest concentration of lower-income 
households are located in Brooklyn and the Bronx, with most of these 
households earning less than $40,000 annually. In contrast, Manhattan 
has the highest concentration of high-income households, some ZIPs 
earning an average of approximately $110,000 a year. The map high
lighting communities of color in dark purple and the maps in Fig. 6 show 
high concentrations of residents belonging to minority groups in similar 
areas. Both maps correlate strongly with the map of power resilience 
inequity based on outage frequency and duration. 

2.4. Needs for equitable power resilience 

The findings in Section 2.3 are troubling on multiple fronts. As we 
recognize the correlation between less privileged neighborhoods and 
high power resilience inequity, it is important to note that low-income 
communities generally have higher energy cost burdens. This may be 
attributed in some ways to the use of older and less efficient appliances 
at home that require more electricity, in conjunction with older homes 
with insufficient insulation (THE HILL, 2021). 

Earth’s Future is a journal published in 2021 that broke down the 
socioeconomic and racial correlations with extreme heat in certain 
communities, both using census data and measuring the land’s surface 
temperature with satellite imaging. The study found that temperatures 
can be as much as 7 degrees higher in impoverished neighborhoods and 
communities of color compared to their wealthy and white counterparts 

due to higher population density, high building concentration, and a 

Fig. 2. Map of Ri for each ZIP code where α1 and α2 = 0.5, using the all-time 
data from the Power Outage Complaints dataset (2010-Present). As the range 
of Oi is larger than that of Ti, Oi may have a larger influence over Ri in regions 
that appear to suffer most from power resilience inequity. 

Fig. 3. (a): Ri for each ZIP in 2016. Tropical storms Bonnie and Hurricane Matthew hit New York this year. The areas with the highest Ri are primarily in the Bronx 
and Central Brooklyn. (b): Ri in 2018. In this year, tropical storms Gordon and Hurricane Michael hit New York. This map also displays a cluster of high Ris 
concentrated in South Queens. More dramatic differences in Ri can be observed between ZIPs in this time frame. 

4 http://www.city-data.com/city/New-York-New-York.html 
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lack of tree cover. This means that as global temperatures rise, these 
neighborhoods will be even more susceptible to outages and will 
continue to pay more for power that is more likely to go out and stay out, 
unless changes are made accordingly to support power resilience in 
these areas. This also means that these communities are at a higher risk 

for heat stress-related injuries (NPR, 2021). 
From Fig. 7, we can observe that the percentage of residents 

belonging to minority groups has a direct positive relationship with 
outage frequency, and therefore Ri, whereas income has an indirect 
relationship with frequency. These variables play an important role in 

Fig. 4. (a): Ri in 2021, as Hurricane Ida and five other storms hit the region. (b): Ri during Hurricane Ida only, during which power outages were concentrated in 
Central Brooklyn and the Bronx. 

Fig. 5. (a): Map of the median household income in each ZIP code. (b): Map of the percentage of residents belonging to minority racial groups in each ZIP, including 
Black, Hispanic or Latino, Asian, Hawaiian or Pacific Islander, Indigenous, or mixed race residents. 
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identifying neighborhoods with the most power resilience inequity 
across the boroughs. 

3. Data-driven analysis of inequitable access to EV charging 
infrastructure 

There currently exists a distribution of EV charging infrastructure 
disproportional to demand as based on population and EV prevalence in 
some NYC neighborhoods. In leveraging data, we quantify the inequi
table availability of public resources and make connections to active 
socioeconomic factors. 

3.1. Distribution of EV charging infrastructure 

An analysis of the current distribution of EV charging infrastructure 
is a necessary step before further resources can be allocated equitably. 
The Alternative Fuel Stations dataset5 is sourced from the U.S. Depart
ment of Energy’s Alternative Fuel Data Center, which provides a list of 
all EV charging stations in the United States as of June 2022. It includes 
the address of the station, access limitations, open date, and more. 

The dataset is cross-referenced to a list of all ZIP codes in the 5 
boroughs in order to filter by location. A new data frame was arranged 

Fig. 6. (a): Map of the percentage of residents in each ZIP code that are Black. (b): Map of the percentage of residents that are Hispanic or Latino. Standing out on the 
maps in dark pink and purple, the highest values for Ri correlate with these communities most. 

Fig. 7. (a) and (b) show each ZIP’s outages per thousand residents against the median income and percentage of residents that are a part of a minority racial group in 
that location, respectively. 

5 https://afdc.energy.gov/stations/#/find/nearest 

G. Ebbrecht and J. Chen                                                                                                                                                                                                                      



The Electricity Journal 36 (2023) 107275

7

including each NYC ZIP code’s respective number of EV charging sta
tions. Denote by Ei, i ∈ N , the indicator of access to EV charging infra
structure of residents in ZIP code i. Here, Ei can be quantified according 
to 

Ei =
NEi

Pi
, (2)  

where NEi and Pi are the number of EV charging stations and the pop
ulation density in ZIP code i, respectively. 

In order to find the amount of charging stations per 1000 people in 
each location, a population data set was leveraged to divide the count of 
EV stations by the corresponding population in each ZIP. The amount of 
EV charging stations per 1000 residents is acquired by multiplying the 
quotient by 1000 and then mapped to uncover the distribution of EV 
charging infrastructure in the city. 

3.2. Social-demographic correlation analysis 

Analysis of the demographics with the worst access to EV charging 
infrastructure is also necessary before allocating additional resources, 
and can also strengthen correlations uncovered previously in Section 
2.3. 

Fig. 8 illustrates that most ZIP codes without any EV charging 
infrastructure are in Brooklyn, the Bronx, and Queens. As discussed 
previously, these areas also have a higher percentage of residents 
belonging to minority racial groups. This pattern can also be observed 
when comparing the ZIP code’s racial makeup and available EV 
charging infrastructure directly. 

The results shown in Figs. 9 and 10 demonstrate the relationships 
between the availability of public EV charging infrastructure and de
mographic factors, which are similar to those observed in the context of 
power resilience inequity. Low-income communities and communities 

of color can be seen to have poorer access to the resources they need 
during power emergencies. Therefore, an equitable allocation of these 
EV charging resources is imperative to mitigate the infrastructure access 
inequity. 

4. Mathematical formulation for equitable power resilience 
planning 

The ultimate goal of this study is to achieve equitable power systems 
resilience by designing a strategic roll-out plan for EV charging infra
structure by allocating these resources to areas where they will make the 
most positive impact. 

4.1. Inference on power resilience and its cofactors 

Before formulating the problem that informs optimal decision- 
making, we need to identify the relationship between the EV charging 
infrastructure and equitable resilience. A larger Ei indicates that there 
are more readily available resources for emergent power recovery in ZIP 
code i when facing disasters. Furthermore, Ei can be regarded as an 
approximate indicator of how well-developed the critical infrastructure 
is in the corresponding neighborhood and thus impacts the power 
outage frequency Oi. Therefore, Ei can have a direct impact on the re
covery time Ti and power outage likelihood and henceforth the resil
ience inequity measure Ri. We leverage a linear model to uncover such a 
relationship. Specifically, the constructed linear regression model ad
mits the following structure: 

Ri = β0 + β1Ei + β2Di + β3Ii, (3)  

where Di and Ii denote the percentage of non-white-identifying popu
lation and average median income of residents in ZIP code i, respec
tively. β0, β1, β2, and β3 are coefficients to be learned from the data. 

The linear regression model assumes that there exists a linear rela
tionship between predictor variables and the outcome variable, and that 
there is no multicollinearity between predictor variables. To verify this, 
the variance inflation factor (VIF) was calculated for predictor variables 
and the resulting values were all below the threshold of 10, with the 
highest value at only 4.3. 

Linear regression is based on gradient descent training to find coef
ficient values that minimize the error between actual and predicted 
values. The algorithm will recompute the coefficient values based on the 
gradient until it converges to a minimum. The complexity of such an 
algorithm depends on the size of the dataset and the number of features 
used as predictors, which admits O(kN2), where k is the number of 
features and N is the number of data points. With less than 200 ZIP codes 
in NYC and 3 predictor variables, the algorithmic complexity will be 
relatively low in this study, i.e., O(N2). 

4.2. Mathematical problem 

Other than equitable resiliency, the framework developed should 
consider trade-offs between equity and efficiency, where in this context, 
the efficiency aligns with the demand across NYC for EV charging 
infrastructure. 

Denote by xi≥ 0 the planning decision of additional EV charging 
resources (such as charging ports, station) allocated to ZIP code i. For 
computational convenience, we do not restrict xi to taking an integer 
value. A decimal solution of xi can be interpreted as the EV charging 
infrastructure capacity. However, one can further round the obtained 
planning decision to the feasible integer solution through approxima
tion. Then, ̃Ei below captures the average charging resources available to 
residents in ZIP code i after the addition of EV charging infrastructure: 

Ẽi = Ei +
xi

Pi
.

Fig. 8. The distribution of the number of EV chargers available per 1000 people 
in the five boroughs in NYC. Areas that are displayed in white have no publicly 
available EV charging infrastructure. The area with ZIP 11430 is disregarded. 
Note: The high concentration of EV charging infrastructure in this ZIP, due to 
the presence of JFK International Airport, skews results as we look at the effects 
of infrastructure on power resilience. 

G. Ebbrecht and J. Chen                                                                                                                                                                                                                      



The Electricity Journal 36 (2023) 107275

8

An increase of E decreases T and O and thus lowers the degree of resil
ience inequity R̃. Based on (3), R̃ can be directly quantified as follows: 

R̃i = β0 + β1Ẽi + β2Di + β3Ii. (4) 

Given a budget of B≥ 0 EV charging infrastructure resources, the city 
government needs to decide how to allocate them efficiently to satisfy 
the charging needs while considering its contribution to equitable power 
resilience such as under disaster recovery circumstances. The efficiency 
in the objective captures the heterogeneous demands of EV charger 
usage across neighborhoods. The new installation plan should align with 
this statistical fact. To this end, denote by 

ρx =

[
NEi + xi

B +
∑

i∈N NEi

]

i∈N

(5)  

the new distribution of EV charging infrastructure in the city based on 
the planning decision xi, i ∈ N . The demand distribution for EV chargers 
in the city is denoted by ρd, which can be inferred from the historical 
data. Then, it is desirable to have distributions ρx and ρd close to increase 
utilization of the charging infrastructure. The equity objective ensures 
that residents in different areas have no significant disparity in terms of 
power energy resilience. Therefore, an effective and equitable EV 
infrastructure decision-making plan can be obtained by solving the 
following optimization problem: 

max
xi ,i∈N

− KL(ρx||ρd) +
∑

i∈N

ηilog(R̃i + 1)

s.t.
∑

i∈N

xi = B,

xi ≥ 0, ∀i ∈ N ,

(6)  

where KL( ⋅ ∣∣ ⋅ ) denotes the Kullback-Leibler (KL) divergence measuring 
the difference between two discrete probability distributions; ηi > 0 is a 
weighting constant between efficiency and equitable resiliency. Note 
that ηilog(R̃i + 1) is a term enhancing equitable resilience based on the 
proportional fairness measure (Abdel-Hadi and Clancy, 2014; Pioro and 
Medhi, 2004). 

The optimization problem (6) is a convex program that can be solved 
efficiently to find a unique solution. A convex function has only one 
global minimum, meaning any local minimum is also the global mini
mum. Thus, in solving this problem, we are guaranteed to find a global 
minimum, ensuring the quality of the resulting solution. 

5. Case studies and discussions 

In this section, we use case studies to demonstrate the proposed 
framework for equitable resource allocation to combat power resiliency 
inequity. 

5.1. Learning the predictive model 

Intuitively, an explainable predictive model has the following fea
tures. The learned coefficients β1 and β3 should be negative as they 
indicate lower levels of inequity experienced by the ZIP i, whereas β2 is 
expected to be positive, meaning a higher percentage of residents 
belonging to minority groups will cause the model to predict higher 
levels of inequity. 

In setting up the regression model, the feature data is first normalized 
on a scale from 0 to 1 in order to learn similar values for β across vari
ables and better understand the influence of each on equitable resil
iency. A 70%− 30% train-test split was used to yield the train and test 
sets from the set of all ZIP codes, selected at random. The model first 
returned a Mean Square Error (MSE) of 245 and is not a good fit for the 
outliers with extremely high levels of power resilience inequity, as 
illustrated in Fig. 11(a). This is likely due to absent EV charging infra
structure, as previously stated. These outliers are removed and the 
model is retrained, yielding an MSE of around 40 as shown in Fig. 11(b). 
The coefficients learned by this version of the model are used in later Ri 
prediction. Note that although the areas with the highest Ri values are 

Fig. 9. (a) and (b) show the correlation of each ZIP’s available charging infrastructure, EVs per 10,000 residents, against the total percent of residents belonging to 
minority groups and the percentage of residents that are white, respectively. 

Fig. 10. Correlation of the income against the EV charging stations available to 
the public in each ZIP code. 
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those most in need of EV charging infrastructure to mitigate inequity, 
through additional infrastructure allocation these areas will be brought 
into the range of Ri for which the predictive model becomes valid. 

The coefficients learned are as follows: 

β0 = 21.3, β1 = − 6.3, β2 = 10.3, β3 = − 15.3.

The residual sum of squares (RSS) and R2 are used to measure the quality 
of fit. The results are RSS = 0.47 and R2 = 0.53, respectively, for the test 
data. It can be seen that the signs of all coefficients match the expecta
tion. Specifically, β1 has less influence in this model than the other 
variables, presumably because many ZIP codes across the city are 
lacking EV charging infrastructure altogether. In comparison, the in
come feature Ii has the strongest correlation with Ri. 

5.2. Equitable resource allocation 

With the learned model, the next step is to decide the allocation of EV 
charging infrastructure to promote equitable power resiliency in the 
city. To this end, CVXPY (Diamond and Boyd, 2016) is leveraged to solve 
the optimization problem (6). For the purposes of this study, we consider 
B = 200 total stations for allocation across the boroughs. Further, we 
choose ηi = η, ∀i ∈ N . By adjusting η, the allocation results can be 
observed with different importance given to equity and efficiency. We 

approximate the distribution of demand for EV charging infrastructure 
ρd in (6) according to the population density in the city. The estimation 
of this parameter can be more accurate if the data on public charging 
needs becomes available. 

Resource Allocation Decision-Making: As desired based on revealed 
power resilience inequity levels in certain regions, most resources are 
allocated to the areas with historically high Ri values: Brooklyn and the 
Bronx. As observed in Fig. 12, when the chosen value for η is low, effi
ciency is the main concern for resource allocation decision-making. 
Hence, demand is prioritized based on the population in each ZIP 
code. When the η value chosen reflects more of a preference for equitable 
allocation, the resources distributed concentrate more in Central 
Brooklyn than in South Brooklyn where demand is higher. The resource 
allocation scheme can be adaptive according to the evolving needs for 
equity and efficiency. 

Improvement on Power Resilience Equity: The resulting improvement of 
power resilience equity can now be observed after calculating new 
values for Ei in each ZIP. As shown in Fig. 13, though Ei does not change 
drastically, all ZIP codes that previously do not have any accessible 
public EV charging infrastructure have seen improvements in Ei. The 
resulting Ri values after allocation is depicted in Fig. 14. Power resil
ience inequity decreases across the city in the areas where Ri was pre
viously highest. Though these areas are still likely to experience the 

Fig. 11. (a): The performance of the regression model for Ri for all ZIPs. (b): Model performance excluding outliers.  

Fig. 12. (a): EV charging infrastructure allocation plan across NYC under η = 0. In this case, the model focuses exclusively on efficiency. (b): Allocation under 
η = 500 (considering both equity and efficiency). (c): Allocation plan when the focus is solely on equity (KL divergence term is neglected). 
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highest degrees of power resilience inequity, the extremity of this 
inequity is drastically reduced compared to the one before the additional 
EV charging infrastructure allocation. In other words, power resilience 
equity is significantly enhanced based on the proposed strategy. 

With the equitable allocation framework, this work has strengthened 
power resilience in the neighborhoods with the greatest need to help 
prevent and mitigate power failure-related hardship in vulnerable 
communities specifically, in contrast to the many studies that focus 

primarily on vulnerabilities in the grid and its power lines rather than 
the people affected. There is profound value in the framework’s flexi
bility, as it is general enough for parameters to be tuned and changed, i. 
e., with the introduction of new parameters, while still yielding quan
tifiable results. The case studies providing these results allow for a more 
precise assessment of the framework’s utility than the qualitative eval
uations in Lin et al. (2022). The NYC setting, while specific for the 
purposes of this study, is also flexible and can be changed by training the 
model on data from a different setting to yield a decision-making plan 
fitted to its socio-demographic differences. 

6. Conclusion 

It is critical that New York State invests in EV charging resources for 
fair allocation across NYC. Residents can evolve their power consump
tion as we develop urban areas to be more sustainable, and be 
empowered to utilize new and developing technologies in improving 
power resilience in their communities, even as the city looks toward a 
future of more frequent natural disasters. This work has used data- 
driven approaches to uncover existing power resilience inequity in 
NYC and developed an optimization framework to guide the optimal 
allocation of EV charging infrastructure resources to mitigate such 
inequity. Our mathematical optimization framework achieved a balance 
between resource utilization and equity. The proposed scheme has been 
effective in yielding favorable changes in power resilience inequity, 
especially for those neighborhoods with the worst power resilience 
levels. Notably, some of these communities have seen significant de
creases in power resilience inequity levels of up to 40% under the 
developed strategy. 

The quantifiable and equitable result of this study highlights the 
progress made in introducing an equity objective to an optimization 
framework for strengthening power resilience, making progress against 
previous related works that either do not consider equity as in Ghasemi 
et al. (2021), or do not quantify the positive effect of their resilience 
frameworks with case studies, as in Lin et al. (2022). However, there are 
limitations to the model in that New York has not yet invested 

Fig. 13. Heat map of new values for Ei across all ZIPs after the allocation of 
additional EV charging stations. 

Fig. 14. (a): Power resilience equity, Ri, prior to resource allocation. (b): Predicted Ri after resource allocation on a similar scale for easy comparison. The inequity is 
drastically reduced. 
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substantially in EVs, resulting infrastructure accessibility coefficient that 
is not as influential over the model as the demographic coefficients. This 
not only causes some inaccuracy in the regression model for inequity 
prediction as previously noted, but may also make the model more 
difficult to apply to the many cities with less developed public EV 
charging infrastructure. As more cities begin to prioritize renewable 
energy and electric vehicles in the next decade, this framework will 
become more applicable. 

A compelling extension of this work would be investigating addi
tional planning and operational strategies to improve the equity of 
urban power resiliency, such as backup power installation in commu
nities and equitable power dispatch plans. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was supported in part by the National Science Foundation 
under Grant ECCS-2138956 and a Dean’s Faculty Challenge Grant from 
Fordham Faculty of Arts & Sciences. 

References 

ABB, 2020.ABBas Vehicle-to-Grid technology.〈https://new.abb.com/ev-charging/abb-s 
-vehicle-to-grid-technology〉.Accessed: 2022–10-17. 

Abdel-Hadi, A., Clancy, C., 2014.A utility proportional fairness approach for resource 
allocation in 4G-LTE, in: International Conference on Computing, Networking and 
Communications (ICNC), 1034–1040. 

Abiodun, K., Gautam, A., Newman, A., Nock, D., Pandey, A., 2022.The role of microgrids 
in advancing energy equity through access and resilience, 175–190. 

Barlow, J., Tapio, R., Tarekegne, B., 2022. Advancing the state of energy equity metrics. 
Electr. J. 35, 107208. 

Brockway, A.M., Conde, J., Callaway, D., 2021. Inequitable access to distributed energy 
resources due to grid infrastructure limits in california. Nat. Energy 6, 892–903. 

Brown, M.A., Soni, A., 2019. Expert perceptions of enhancing grid resilience with electric 
vehicles in the united states. Energy Res. Soc. Sci. 57, 101241. 

Chattopadhyay, D., Panteli, M., 2022. Integrating resilience in power system planning: a 
note for practitioners. Electr. J. 35, 107201. 

Diamond, S., Boyd, S., 2016. Cvxpy: A Python-embedded modeling language for convex 
optimization. J. Mach. Learn. Res. 17, 2909–2913. 

Dugan, J., Mohagheghi, S., Kroposki, B., 2021. Application of mobile energy storage for 
enhancing power grid resilience: A review. Energies 14, 6476. 

Farley, C., Howat, J., Bosco, J., Thakar, N., Wise, J., Su, J., 2021.Advancing Equity in 
Utility Regulation. Technical Report. Lawrence Berkeley National Lab (LBNL), 
Berkeley, CA, USA. 

Forbes, 2022.Portable EV Charger Aims To Reduce Range Anxiety.〈https://www.forbes. 
com/sites/edgarsten/2022/08/10/portable-ev-charger-aimed-at-reducing-range-a 
nxiety-reaches-north-america/?sh=7b80c0b19e34〉.Accessed: 2022–10-17. 

Ghasemi, M., Kazemi, A., Bompard, E., Aminifar, F., 2021. A two-stage resilience 
improvement planning for power distribution systems against hurricanes. Int. J. 
Electr. Power Energy Syst. https://doi.org/10.1016/j.ijepes.2021.107214. 〈htt 
ps://www.sciencedirect.com/science/article/pii/S0142061521004531〉. 

Gothamists, 2022.Electric car ownership remains novelty in NYC as infrastructure is slow 
to come online.〈https://gothamist.com/news/electric-car-ownership-remains-novel 
ty-in-nyc-as-infrastructure-is-slow-to-come-online〉.Accessed: 2022–10-17. 

Hussain, A., Musilek, P., 2022. Resilience enhancement strategies for and through 
electric vehicles. Sustain. Cities Soc., 103788 

Kumar, R.R., Chakraborty, A., Mandal, P., 2021. Promoting electric vehicle adoption: 
Who should invest in charging infrastructure? Transp. Res. Part E: Logist. Transp. 
Rev. 149, 102295. 
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