194 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

The K-User DM Broadcast Channel With Two
Groupcast Messages: Achievable Rate Regions and
the Combination Network as a Case Study

Mohamed Salman

Abstract— A novel class of achievable rate regions is obtained
for the general K -receiver discrete memoryless broadcast chan-
nel over which two groupcast messages are to be transmitted,
with each message required by an arbitrary group of receivers.
The associated achievability schemes are parameterized by an
expansion of the message set which then determines how ran-
dom coding techniques are employed. These techniques include
generalized versions of up-set message-splitting, the generation of
possibly multiple auxiliary codebooks for certain compositions of
split messages using superposition coding with subset inclusion
order, partial interference decoding at all receivers in general,
joint unique decoding at receivers that desire both messages,
and non-unique or indirect decoding at receivers that desire only
one of the two messages. The generality of the proposed class
of schemes implies new achievable rate regions for problems
previously not considered as well as those that were studied
before, with specific members of that class having rate regions
that coincide with previously found capacity regions for special
classes of broadcast channels with two private or two nested
groupcast messages, wherein the group of receivers desiring one
message is contained in that desiring the other. Moreover, new
capacity results are established for certain partially ordered
classes of broadcast channels for a class of two non-nested
groupcast messages. To further show the strength of the proposed
achievable rate regions we consider the so-called combination
network as a test case. When specialized to the combination
network, some members of the class of inner bounds are shown,
via converse results, to result in the capacity region when the two
messages are (a) intended for two distinct sets of K —1 receivers
each and (b) nested, in which one message is intended for one
or two (common) receivers and both messages are intended for
all other (private) receivers. In the latter two nested messages
cases, we hence recover, in a top-down manner, previous results
by Bidokhti, Prabhakaran, and Diggavi, obtained therein using
lower complexity network coding schemes based on rate-splitting
and linear superposition coding but tailored to the combination
network, while in the first case we obtain a new capacity result
for a non-nested message set, which was hitherto unknown.
Furthermore, we show the achievability of rate pairs in two
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interesting examples of combination networks, with three and
four common receivers each. These examples were proposed
in the previous literature to show the sub-optimality of the
aforementioned rate-splitting and linear superposition coding
scheme, and hence to motivate the additional consideration of
a pre-encoding technique and a block-Markov linear superposi-
tion coding for the combination network, with the latter then
lifted to the general broadcast channel. Our results suggest
that the proposed framework here for the general broadcast
channel when specialized to the combination network is strong
enough to incorporate the enhancements afforded by those two
latter techniques, thereby implying that perhaps block-Markov
superposition coding is not necessary in the general broadcast
channel. Moreover, there is a trade-off between the complexity of
the coding scheme within the class of schemes we propose when
applied to the combination network and that of the determination
of the distribution of the auxiliary random variables and the
encoding function that achieve the capacity region. This may
have interesting implications for the general broadcast channel
as well.

Index Terms—Broadcast channel, capacity region, combina-
tion network.

I. INTRODUCTION

HE problem of sending two groupcast messages over

the K-receiver broadcast channel (BC) is studied. Each
such message is intended for a distinct group of receivers,
with the two groups of receivers assumed to be arbitrary
in general. In spite of its apparent simplicity, this problem
remains unsolved in general in the Shannon-theoretic sense.
However, capacity results have been obtained in the literature
for various special cases of the BC and for specific (especially
degraded) message sets in the two and three-receiver cases,
and more recently, in the general K -receiver case.

The most studied problem however of sending two messages
over the BC is the two-receiver discrete memoryless (DM)
case with private messages. The capacity region is notoriously
difficult in general even in this case and remains unsolved in
general to date. However, for the increasingly larger classes of
degraded [2], less noisy [3, Definition 2] and more capable [3,
Definition 3] channels, the capacity region was found in the
series of seminal papers [2], [4]-[7] in the 1970s. In particular,
the superposition coding scheme proposed in [2] was shown,
using a clever identification of auxiliary random variable,
to achieve the capacity region in [5] for the degraded BC.
The same scheme was also shown to achieve the capacity
region for the larger class of less noisy and more capable
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BCs in [3] and [7], where the images-of-a-set technique [6]
and the Csiszar sum lemma [8, Lemma 7] were used to prove
the converses, respectively.

The capacity region for the two-receiver DM BC with two
nested (i.e., degraded) messages was found by Korner and
Marton in 1977 [9]. Interestingly, with superposition coding
as the achievability scheme and a converse based on the
images-of-a-set technique [6], the authors therein established
the capacity region without any restriction on the channel.
However, the generalization of this result for three or more
receivers has remained elusive ever since.

In the K-receiver BC with two nested messages the
receivers can be classified into L common receivers that
require only one (common) message and P private receivers
that require both messages (with P 4+ L = K). The result of
Korner and Marton in [9] might suggest that the nested struc-
ture of the messages would render a straightforward extension
of their superposition coding scheme to be capacity-optimal
even in this K-receiver setting. However, the authors of [10]
and [11] showed that superposition coding alone is not optimal
for the three-receiver DM BC with one and two common
receivers, respectively. In the latter case, they proposed a more
general scheme that involves a simple form of rate-splitting
along with superposition coding [11]. However, even this
scheme was only shown to achieve capacity for the restricted
class of DM BCs wherein the private receiver is less noisy
than one of the two common receivers.

One of the challenges of obtaining capacity results for
rate-splitting based schemes beyond the three-receiver case is
the difficulty of obtaining a closed-form polyhedral description
for the inner bound in terms of the message rates due to the
large number of split rates possible. We make progress on
this problem in [12], [13, Theorem 2] where an achievable
rate region that generalizes in one direction the capacity
result for the three-user, two-common receiver problem in [11]
to arbitrary K and arbitrary L is obtained. In particular,
the private message is split into L sub-messages, and each
common receiver decodes the common message uniquely, and
certain sub-messages of the private message assigned to it,
indirectly. The inner bound is presented in terms of the two
nested message rates only, by eliminating all split rates for any
K and any L, in general. Also, this inner bound is shown to be
capacity-optimal for various classes of channels characterized
by certain pair-wise relationships between and among the
common and private receivers [13, Theorem 3]. For example,
the scheme is optimal for the class of four-receiver DM BCs
with L=3 and P=1 in which the private receiver is less noisy
than two of the three common receivers.

Combination networks, first proposed in [14] to demonstrate
that network coding can attain unbounded gain over routing
alone, can be seen to be a special class of linear deterministic
broadcast channels. The capacity regions of the combination
network for the two- and three-receiver cases were established
in [15] under the guise of fundamental constraints in multicast
capacity regions and where the transmitter must transmit all
possible 25 —1 independent groupcast messages. The achiev-
ability scheme depends mainly on the rate transfer argument.
For example, in a two-receiver combination network, we have

195

three possible independent messages; two private messages
and one common message. If the transmitter is able to simul-
taneously send a rate of 1 bit per channel use for each of the
three messages, then by sending the same information in each
of the two private messages, it must be able to send a common
message at rate of 2 bits per channel use for both receivers.
Another possible rate transfer operation is when the transmitter
merely uses the common bit to send private information to one
of the receivers. Then, the channel can deliver 2 bits of private
message per channel use to that receiver and 1 bit to the other.

In other words, the achievability of any 2/ —1-dimensional
rate-tuple of messages implies the achievability of a certain
2K _1-dimension rate region regardless of the channel. The
approach of [15] is to exhaustively determine all possibilities
for rate transfer to characterize the inner bound for K = 2,
whereas for K = 3, rate transfer and network coding are
employed to establish the inner bound. On the other hand, the
outer bound depends on cut-set bounds with some extensions.
These proofs of the converse are specific to K being two or
three, and hard to extend to K > 3. In fact, the capacity
region of the general K-receiver combination network is an
open problem to date for K > 3.

Because it is unclear how to generalize the approach of [15]
to more that three receivers since the complexity of rate
transfer increases exponentially with the number of users,
Tian in [16], under the guise of latent capacity regions,
effectively considers a restricted class of symmetric K -receiver
combination networks with the capacities of certain sets of
finite capacity links being the same, and with symmetric
message rates, wherein the messages required by the same
number of receivers have the same rate. By simplifying the
channel model and the message structure in this manner, Tian
was able to establish the symmetric capacity region (where
the rates of all messages of the same order are equal) of the
symmetric K -receiver combination network by extending the
rate-transfer approach of [15] to this scenario.

Later, in [17], Salimi et al. proposed a general framework
for the outer bound of broadcast networks in which they obtain
a large family of outer bounds based on the sub-modularity
of entropy they call generalized cut-set bounds. These bounds
are used to reproduce the outer bounds of [15] for the two-
and three-receiver combination networks and, along with an
explicit polyhedral description, the symmetric capacity region
of the K-receiver symmetric combination network of [16].

Romero and Varanasi in [18] obtain the capacity region for
the combination networks via a top-down approach unlike
in [15] for K < 3 and in [16] for K-user symmetric
combination networks. They first obtained an inner bound
for the much more general K-user DM BC with general
message sets [18, Theorem 1] and then specialized to the
combination network to recover the results in [15] and [16].
This bolsters the case for considering superposition coding
and rate splitting (i.e., without binning) in the DM BC and
specializing it to the combination network for achieving even
the general (not just symmetric) capacity region of the general
(not only symmetric) combination network for K > 3. This
is the approach we take on the combination network in this
paper for the two groupcast message set.
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Meanwhile, the authors in [19] studied two nested message
set broadcasting over the K-receiver combination network
where three different coding schemes tailored to it were
proposed. The first is a linear superposition coding scheme
with rate splitting for the private message where the trans-
mitted signal is obtained by the multiplication of a care-
fully designed matrix over a finite field with the information
symbols vector over that field. The structure of this matrix
follows the zero-structured matrices of [19, Definition 2] while
the rank of this matrix dominates the feasibility of decoding
analysis. This zero-structured matrix has a zero in specific
positions such that, when it is multiplied with the information
symbols, the received signal at each common receiver does
not depend on too many private sub-messages. The second
scheme is a linear superposition coding scheme with a pre-
encoder, i.e., the information symbols vector is multiplied
first by a pre-encoder matrix before it is multiplied with a
zero-structured matrix. The purpose of the pre-encoder matrix
is to introduce dependency among the sub-messages of the
private message. The last coding scheme is a block Markov
coding scheme. The main idea is, instead of introducing the
dependency among the sub-messages of the private message
by multiplying with a pre-encoder matrix over one-time (one-
block) code, a block Markov coding scheme can be used to
introduce those dependencies sequentially across blocks. Upon
receiving all the n blocks, each receiver finds its intended
message by performing backward decoding [20].

The second and third coding schemes of [19] are motivated
via two examples, [19, Example 2] and [19, Example 4].
In [19, Example 2], it was shown that the second coding
scheme (with pre-encoding) can achieve a rate pair that is
not achievable by the first, while in [19, Example 4] the
block Markov coding scheme was shown to achieve a rate
pair that was not achievable by the second coding scheme.
The first rate-splitting and linear superposition coding scheme,
was shown to be capacity achieving for a general K -receiver
combination network with at most two common receivers [19,
Proposition 1 and Theorem 3]. The second the third coding
schemes were shown to be optimal for the general K -receiver
combination networks with three common receivers [19, The-
orems 1, 2, 4 and 5]. Capacity for more than three common
receivers remains an open problem.

A. Main Contributions

In this work, we begin by proposing an inner bound for the
general K-user DM BC with two general groupcast messages
in Section III. That inner bound is based on a class of coding
schemes parameterized by a flexible form of message set
expansion, and involves general forms of rate-splitting, super-
position coding, unique and non-unique decoding. Specific
choices of the message set expansion parameter in the two,
three and K receiver DM BCs lead to recovering the previ-
ously proposed achievability schemes based on rate-splitting
and superposition coding for two, three- and K-receiver DM
BCs [2], [71, [9], [11], [13]. Moreover, our inner bound also
gives new and potentially strictly larger achievable rate regions
than those proposed based on rate-splitting and superposition

coding for two nested groupcast messages in the three- and K-
receiver DM BCs of [11] and [13], respectively. Furthermore,
it gives classes of achievable rate regions for K-user DM
BCs for any two non-nested groupcast message sets as well,
none of which appear to have been proposed in the literature
before for three or more receivers. Hence our inner bound
provides a general and unifying framework for studying the
problem of sending two groupcast messages over a K -receiver
DM BC. It is in fact an adaptation of the rate-splitting and
superposition coding framework recently proposed by Romero
and Varanasi in [21] which is applicable to general message
sets with any number (up to 2% — 1) of groupcast messages.
By specializing to the two-message set case, our aim here
is to gain an in-depth understanding (which [21] does not do)
—via explicit descriptions, converses, and choices of extremal
coding distributions —of the strength of an adaptation of the
general inner bound of [21, Corollary 1] in the two-message
set case.

The adaptation of the framework of [21, Corollary 1] to
the two groupcast message case considered here involves
replacing unique joint decoding in the coding scheme of
[21, Corollary 1] with non-unique joint decoding at all com-
mon receivers that require just one of the two groupcast
messages. While the adoption of non-unique decoding may or
may not strictly improve the achievable rate region in general
(which is difficult to prove one way or the other) we choose it
because (a) it expands the rate region per coding distribution
(b) it does not shrink the rate region taken as a union over all
admissible coding distributions (c) there are fewer inequalities
leading to relative ease of doing projections via the Fourier-
Motzkin Elimination (FME) technique [22] and (d) proving
converses becomes easier as a result in some special cases as
well. Indeed, for the case of two groupcast messages where
(a) each message is desired at K — 1 receivers, and (b) one
message is desired at K — 1 receivers and the other at some
arbitrary subset of receivers that includes the one where the
first message is not desired, we obtain the capacity region
for classes of partially ordered DM BCs wherein certain pairs
of receivers are ordered by the well-known less noisy and
more capable ordering relations. These results complement the
ones we obtained recently for two nested groupcast messages
in [13].

Beyond the fact that we propose a general and uni-
fying framework which provides general descriptions of
rate-splitting, superposition coding, unique and non-unique
decoding, and a succinct characterization of the associated
rate regions, the key novel aspect underlying our achiev-
able schemes is the message set expansion. It affects how
everything is done: how the messages are split, what mes-
sages are reconstructed and how they are superposed, which
reconstructed messages are uniquely decoded and which are
non-uniquely decoded by the private and common receivers,
respectively. There are in general 22" —3 expanded message
sets and each gives a distinct achievable rate region for a
given two-message set and K. Three specific choices of
message set expansions for the three-receiver case previously
considered in [11] with two nested messages with 2 common
receivers recover the results therein while the rest of the other
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choices yield new rate region descriptions for that setting.
More importantly, there are message set expansions that result
in coding schemes that assign multiple codewords to certain
groups of sub-messages (after message splitting) according to
different distributions, a feature not found in any previously
proposed coding schemes, to the best of our knowledge. To be
sure, the largest message set expansion yields a rate region that
subsumes all others but it also yields the most complex coding
scheme of all. It is of interest to consider simpler coding
schemes corresponding to smaller message set expansions
when such schemes suffice to achieve capacity.

To more explicitly show the strength of the proposed class of
achievable rate regions we consider the combination network
as a test case in Section V. In particular, when specialized
to the combination network, the largest of the class of inner
bounds, corresponding to the most complex of the class of
coding schemes, is shown, via converse results, to “easily”
result in the capacity region via the choice of a single
distribution of the auxiliary random variables and encoding
function for three different scenarios, namely, (a) the two
messages are intended for two distinct sets of K —1 receivers
each and (b) two nested messages in which one message is
intended for one or (c) two (common) receivers and both
messages are intended for all other (private) receivers. In the
latter two nested messages cases, we hence recover, in a top-
down manner, the previous result of [19, Theorem 3] obtained
therein using network coding schemes (of lower complexity)
based on rate-splitting and linear superposition coding tailored
to the combination network and two nested messages, while in
the first case we obtain a new capacity result for a non-nested
message set, which was hitherto unknown. Moreover, we also
show that via the same and single choice of auxiliary ran-
dom variables and choice of encoding function in our inner
bound applied to the combination network we recover, in a
top-down manner, the rate region of the rate-splitting and
linear superposition coding given by [19, Proposition 1] for
any two nested messages set for the K -user combination
network.

Furthermore, we show in Section VI, again in a top-
down manner, via suitable choices of the distribution of the
auxiliary random variables and the encoding function in our
framework, the achievability of “difficult” rate pairs in two
interesting examples of six- and seven-receiver combination
networks studied in detail [19, Examples 2-5], with three
and four common receivers, respectively. The first example
was proposed therein to show the sub-optimality of the rate-
splitting and linear superposition coding scheme mentioned
earlier, and hence to motivate the additional consideration of
a pre-encoding technique in that case [19, Example 2]. The
second example was proposed to show the sub-optimality in
turn of the pre-encoding technique as well, and to further
motivate a third block-Markov linear superposition coding
scheme for the combination network. Our results hence sug-
gest that the proposed framework here and the associated class
of achievable rate regions for the general broadcast channel
may be strong enough that, when it is specialized to the
combination network, it would incorporate the enhancements
afforded by pre-encoding with rate-splitting and linear super-
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position coding and block-Markov linear superposition coding
schemes of [19].

The authors in [19] lift their block-Markov linear super-
position coding scheme for the combination network to a
block-Markov superposition coding for the general broadcast
channel because the former can achieve the “difficult” rate
pair of the 7-receiver combination network with four common
receivers of [19, Examples 4-5] whereas their pre-encoding
technique with linear superposition coding does not. The fact,
however, that that rate pair can be achieved via our proposed
inner bound suggests that perhaps block-Markov superposition
coding is not necessary in the general broadcast channel.

Finally, in Section VII, we show that the consideration of
simpler coding schemes within the class we propose corre-
sponding to suitably chosen smaller message set expansions
suffice in each case to achieve capacity for the combination
network for the three message set cases mentioned previously
for which we have capacity results. However, finding the
extremal distributions is more involved. This is what we do in
detail in Section VII where the allowed dependencies among
the auxiliary random variables are exploited.

Thus, the results in Sections V and VII on the combination
network seems to suggest that there is perhaps a trade-off
between the complexity of coding scheme adopted within
the class of coding schemes we propose and the ease of
finding coding distributions to extract much (if not all) of the
performance of that scheme in DM BCs in general. In other
words, even if we know that a union of regions inner bound is
the capacity region it may still be worthwhile to consider more
complex coding schemes in the hope of discovering coding
distributions that achieve the capacity region in more explicit
form that otherwise may prove difficult or impossible.

The rest of this paper is organized as follows. In Section II,
we describe the system model. In Section III, we present
the new achievable rate region for the DM BC with two
general groupcast messages and the capacity region for certain
partially ordered DM BCs for certain message sets including
one with two messages each required by K — 1 receivers.
The inner bound is specified for the nested messages case
in Section IV. Then, in Section V, we obtain the capacity
regions for combination networks for three different message
sets. In Section VI, we illustrate the relation between our
capacity regions for combination networks and those proposed
before in [19]. In Section VII, a trade-off between complexity
of coding scheme (via message set expansion) and choice of
random coding distributions is studied. Finally, the paper is
concluded in Section VIII.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

The DM BC consists of a transmitter X € X, K receivers
Y, € Y, for 1 < k < K, and the channel transition
probability W (y, -, yx|z) with the conditional probability
of the sequence of n outputs at the K receivers, denoted as
Y, YR with Y 2 (Yi, -+, Yin), respectively, for the
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Fig. 1. The three-receiver DM BC where Mg = {Mg : S € E} are the messages sent through the channel and MWE = {rg : S € WE} are the messages

decoded by receiver Y;.

n inputs X™ 2 (Xy,---, X,,) factors as

Pl syl = [[ Wi yrelas) ()
j=1

where X;,Y; ;,---Yg ; are the channel input and outputs in
the j" channel use. Denote the set of consecutive integers
from i to j as [i : j]. The message Mg € [1 : 2"fs] of
rate Rg is indexed by the subset S C [1 : K| of receivers
it is intended for. Define E as the set of all message indices
(with a message index being a subset of [1 : K]) and let P
be the power set of [1 : K] excluding the empty set. Hence,
in general, E C P.

For any F C P and i € [1 : K], define W} as the set of
message indices in F of messages intended for receiver ¢ so
that

WFAlScF:icS) ()

Denote the set of all messages { Mg : S € E} to be sent over
a K-user DM BC as Mg. A ({2"5}gcg,n) code consists
of (i) an encoder that assigns to each message tuple mg €
[Tsecell : 2"75] a codeword z"(me) (ii) a decoder at each
receiver, with the k" decoder mapping the received sequence
Y," for each k € [1 : K] into the set of decoded messages
{ms + S € WE} € Tlgewell : 27%5], denoted as TIE -
We will have occasion to refer to the received sequence at
receiver k from times t; to ¢, which we denote as Y,fftl.
For simplicity, we choose to write Yf1 (i.e., when t; = 1)
as just Y;'. The three-receiver DM BC is illustrated in Fig. 1.
The probability of error P™ is the probability that not all
receivers decode their intended messages correctly. The rate
tuple (Rs : S € E) is said to be achievable if there exists a
sequence of ({2775} g, n) codes with P S 0asn — .
The closure of the union of achievable rates is the capacity
region.

When describing examples, we find it convenient to make
certain notational simplifications when no confusion arises.
For example, consider the three-receiver DM-BC with the
message index set E={{1},{1,2,3}}, so that there are two
messages My and My » 3}, the first one intended for the first
receiver and the second for all three receivers. For simplicity,
we will denote these messages as M; and Mjo3. Similarly,
we will write their rates Ry} and Ry; 5 3y simply as R; and
Ri23. Also, for convenience, we denote E={1,123} in this
case. In other words, for simplicity, and when there is no
confusion, we abbreviate the set {iy,i2,..,in} C [1: K] as
1122 - - - iy (adopting the convention that i1 < 19 < --- < i)

when all i; € {0,1,---9}. Note that with this notational sim-
plification, when K = 3, we have P={1,2,3,12,13,23,123}.
If we have numbers and variables in the set, say as in
{1,2,3, K — 2, K — 1, K}, we write the elements of the set
consecutively as before but we separate the variables with dots
to avoid confusion. Hence, the set {1,2,3, K — 2, K — 1, K}
is abbreviated as 123.K — 2. K —1.K, not 123K — 2K — 1K
(which is confusing). If there is only one variable at the end,
such as in {1,2,3,--- , K — 2} we still abbreviate it as by
123 --- K — 2 since there is no confusion here.

In some cases, especially when the set {i1,12,..,4x} has
many elements, we find it more convenient to denote it by
its complement. For example, the common message intended
for all K receivers is denoted by Mjss...x—1.x. It is sim-
pler to denote it as M$ where ¢ is the empty set and
S ={1,2,3,--- ,K}\S is the complement of S. Similarly,
we can represent the message index set E = {123--- K —
2.K,123--- K —2.K — 1} of two messages, each required by
K — 1 receivers, simply as E = {K — 1,K}.

The combination network [17], [18], which is a special
case of the general DM-BC, is described next. It consists,
as described in [17], of three layers of nodes, as shown in
Fig. 2 for the three-receiver case. The top layer consists of
a single source node X, and the bottom layer consists of
K receivers Y;, ¢ € [1 : K|. The middle layer consists
of 2K —1 intermediate nodes, denoted Vg for all S € P.
The source is connected to each of the intermediate nodes
Vs through a noiseless link of capacity Cgs (per channel
use). Receiver Y; is connected to the intermediate nodes Vg
for all S € WP via noiseless links of unlimited capacity.
An equivalent representation for the combination networks is
given in [18] wherein it is considered to be a network of
noiseless DM BCs with the channel input X connected in
different ways to the channel outputs (Y7, Y2, --,Yk) each
through a noiseless BC. In particular, the channel input X
contains 2% — 1 components Vg, for all S € P. For each S,
the component Vs € Vs, where |Vg| = 2°5, is noiselessly
received at each receiver Y; for all ¢ € S and not received at
the receivers Y; with j ¢ S, ie.,Y; = {Vs: S e WP} £ Ve

B. Just Enough Order Theory

We introduce ideas from order theory following the notation
in [23]. Any set equipped with an order is an ordered set. Let
P be such an ordered set and () be a subset of P. We say that
Q is

1) an up-setif x € QQ, y € P, and y > = implies y € Q.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 21,2023 at 20:29:35 UTC from IEEE Xplore. Restrictions apply.



SALMAN AND VARANASI: K-USER DM BC WITH TWO GROUPCAST MESSAGES

L
-

. N . NP (PR
~ ’ : 2

N . g

Nos

-
o
B R,
s <.
N
Lo

/
. < .-
- -
@/’ @, \@

Fig. 2. A combination network with 7 intermediate nodes and three receivers.
The dark lines represent finite capacity links while the dashed lines represent
infinite capacity links. The capacity of the dark line connecting the node X
to the node Vg is C's per channel use for each S € P. For brevity, the
source/destination nodes are denoted by their transmitted/received symbols
and the intermediate nodes by their output symbols.
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2) a down-setif x € Q, y € P, and y < z implies y € Q.

Note that these two types of subsets are duals of each other,
i.e., if @ is a down-set then P\(Q is an up-set. Moreover, for
any subset ) C P, we define the smallest down-set containing
QaslpQ={yeP:y<zxe@Q} and the smallest up-set
containing @ as Tp Q@ = {y € P : x < y,z € Q}. Further,
for any 01, Q2 C P, denote the part of the smallest down-set
containing ()¢ that is also in @2, i.e., (| p Q1)NQ2, as | g, Q1.
Similarly, (Tp Q1) N Q2, the smallest up-set of (), that is in
(02, is denoted as T, Q1. Henceforth, for brevity, | g, Q1 (or
Tq, Q1) is referred to as the down-set (or up-set, respectively)
of Ql in QQ.

Also, let F|(P) denote the family of all down-sets of P
and F;(P) denote the family of all up-sets of P. Finally, let
Fio(P) and F|,(P) denote the family of all up-sets and all
down-sets of P that contain (), respectively.

In this paper, we will take the ground set to be a set of
sets, such as the set of non-empty subsets of [1 : K], the
receiver index set. We will denote a set of sets in sans-serif
font to distinguish it from sets. The order on the ground set
considered in this paper is exclusively that of set inclusion, i.e.,
S1 < S5 if and only if S; C Ss. Recall that, for simplicity,
we write the index set {iy,é2,..,in} as 4142 --- iy (adopting
the convention that 77y < i < --- < iyn). To illustrate such
notation, consider the example of K = 3. The ground set in
this case could be the set of all non-empty subsets of [1 : 3],
denoted as P = {1,2,3,12,13,23,123}. The down-set of,
say, {12} in P is |p {12} = {1,2,12}, and the up-set of
{12} in P is Tp {12} = {12, 123}. For the same P, we have
Twe {12} = {1p {12}} N W5 = {123}, whereas |y {12} =
{lp {12}} NWE = g.

To illustrate  families of up-sets and down-
sets, consider the ground set P = {1,212}
Then, F (P) = {{1},{2},{1,2},{1,2,12}}, while

Fi(P) = {{1,12},{2,12},{12},{1,2,12}}. For the same
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P ={1,2,12}, we have F;,, (P) = {{1,12},{1,2,12}} and
fl{l} (P) = {{1}7 {1, 2}7 {la 2, 12}}-
Lemma 1: The following relationships are true:

1) For any set S = {iy,i2,---,in} C {1,2,---,K},

we have
Uk€SWZ :TP {i17i2a"' ;ZN} (3)
NkesW, =1p {i1iz--in} 4)
2) For any set of sets W C P,
Usew lw;’ {S} :lwf W ©)
Nsew lw;’ {S} :lwf {NsewS} (6)
3) For any set S = iyiz---iny C {1,2,---,K} and i €
[1: K]

Lwe {SYU Twe {inia, - Liny =W, (9)
Lwe {830 Twe {in iz, -+ yink =¢  (10)

Proof: The proofs of all the above equalities are straight-
forward given the order theoretic definitions except that of (7)
and (9), which are given in Appendix I.

III. A CLASS OF ACHIEVABLE RATE REGIONS AND SOME
CONVERSES: TWO MESSAGES

This paper is devoted to the problem of sending two
groupcast messages over the K-receiver DM-BC. Let the
two general messages be Mg, and Mg,, so that the mes-
sage index set is E = {57, 52}. Without loss of generality,
we let 7 = {1,2,--- , PP+ 1,--- ,P+ Ly} and Sy =
{1,2,---,P,P+ Ly +1,---,P 4+ L1 + Lo}. The set of
indices of receivers that decode both messages is denoted
as S, = {1,2,--- P}, that decode only Mg, is denoted by
S, ={P+1,P+2,--- P+ Ly}, and that decode only Mg,
is denoted by S;, = {P+L1+1,P+L1+2, -+, P+ L1+ Ly}.
The P receivers with indices in .S}, can be thought of as private
receivers, the L; receivers with indices in S;, can be thought
of as the first group of common receivers that decode only
Ms,, and the Ly receivers with indices in S;, can be thought
of as the second group of common receivers that decode only
Msg,. Obviously, P+ L; + Ly=K.

Of special interest for proving converses later in this paper
are the three special cases of (a) two order-(K — 1) messages
(i.e., messages that are intended at two distinct sets of K —1 of
the K users) so that L; = Lo =1 and P = K — 2 (b) one
order-(K — 1) message and another order-(P + 1) message so
that L1 = K —-P—-1and Ls =1forany 0 < P < K —2
and (c) two nested messages so that either L; = 0 or Ly = 0.

Next, we obtain a class of new inner bounds for the K -user
DM BC with two general messages. We use order theory to
describe our result. In particular, let P, the set of all non-empty
subsets of receiver indices [1 : K], be the ground set. As stated
previously, we will think of P as an ordered set with the order
relation defined by set inclusion, i.e., S < S’ if and only if
S C S’. Evidently, the message index set E = {S1,S2} C P.
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Remark 1 (Message Set Expansion): The class of inner
bounds of the next theorem is parameterized by a message
index superset F that is some superset of message indices that
contains the message indices in E and can be as large as P,
so that P O F D E. For each K and each message set E, every
choice of the design parameter F in the next theorem gives a
distinct inner bound. Note that there are 22 =3 choices of F
for any two groupcast message set E = {57, S2}. We refer to
expanding E to F simply as message set expansion. While the
choice of F strongly determines the coding scheme employed
and hence the rate region it achieves, both the description of
the scheme and the characterization of its rate region can be
done for any admissible F in a general way.

Theorem 1: Let F be some message index superset so that
P O F D E. The rate pair (Rg,, Rg,) is achievable if there
exist non-negative up-set split rates (Rs_.g : S € E, S’ €
F,S C S') such that for each i € {1,2}

Rsi = § RSiHS/
S"€TeS;

(1)

and reconstruction rates

Ry = Z Rs .5
SELES/

VS €F (12)

that satisfy the inequalities

Y Ry < I(Us;Yj|Unr\g, Q). VB € F(WF), Vj € S
S'eB
(13)

and, for each i € {1, 2}, the inequalities

Z RS' < I(UB;YHUW;\BvQ)a VB e -Fl{si}(wg)v Vj e Sli
S'eB
(14)

for some time sharing and auxiliary random variables ) and
Ur £ {Us : S € F} with a joint distribution that factors as
p(g, ur) = p(q) [Tscr p(uslu(res)\(sy,q) and X taken to be
a deterministic function of (Q, Ur).

Proof: A detailed proof is given in Appendix II. We only
provide an outline here. Each message Mg is divided into a
collection of sub-messages Mg g where S’ €T¢ S, for each
S € E as per (11). This explains why this form of rate-splitting
is called up-set rate splitting. The sub-message Mg_, o- will be
treated as if it was intended for the receivers in the larger set
S instead of in S. By reassembling all sub-messages intended
for the set of receivers with indices in S/, we obtain the
reconstructed message Mg = (Mg .o : S clg S) for all
S" € F with rate Rsr given by (12). Note that the message set
expansion parameter F determines how the message splitting
is done and hence how the newly reconstituted messages
Mg g for all S € F are reconstructed, which in turn
determines the superposition coding scheme described next.
The set of reconstructed messages with indices in F are
encoded using superposition coding with dependent auxiliary
codeword generation according to the subset inclusion order
(cf. [24]) as described in Appendix II. Private receiver Y;
jointly decodes the desired messages Mg, and Mg, via the

unique joint decoding of the set of reconstructed messages
(MS VS W;) that contain those two messages for every
j € Sp. As shown in Appendix II, the reconstructed messages
can be reliably transmitted over the DM BC if the partial
sums of the reconstructed message rates satisfy the inequalities
given by (13). On the other hand, the common receiver Y}
(with j € Sj,, i € {1,2}) only needs to decode the message
Mg,. Hence, non-unique decoding can be employed by these
receivers. Note that for each j € S, the reconstructed
messages (Mg : S € Wf) contain the desired message Mg,
as well as partial interference via up-set message splitting and
reconstruction. Thus, among these reconstructed messages,
only the ones with indices in Tg WJE are uniquely decoded
because per (11) and (12), all such reconstructed messages
are needed to reconstitute this receiver’s desired message
Mg,, whereas the rest of the reconstructed messages are not,
and these messages are hence decoded non-uniquely. This
happens successfully with high probability if the partial sums
of the reconstructed message rates satisfy the inequalities
given by (14).

Remark 2 (Non-Unique Decoding): In  the conference
paper [21, Theorem 2] by Romero and Varanasi, an inner
bound for a general message set E was proposed that used
the same encoding scheme but with each receiver Y; uniquely
decoding all reconstructed messages with indices in WE
for all j. Hence, a common receiver may end up decoding
some reconstructed messages that only contain sub-messages
of the message that is not of interest to it which in turn
produces more inequalities on the reconstruction rates, hence
possibly strictly limiting the achievable rate region compared
to the one given in Theorem 1. The idea of non-unique
decoding was first presented in the context of the two-user
interference channel in [25] and later used as indirect
decoding in [11] for the DM BC with the nested message
set E = {1,123} to make notable progress on establishing
a matching converse for a class of DM BCs. In both those
cases, each receiver that does non-unique decoding decodes
its desired message(s) uniquely and the common sub-message
of the undesired message non-uniquely. That idea can be
seen to be generalized here as follows: each common receiver
decodes (a) a subset of reconstructed messages intended for it
uniquely, each necessarily including one or more sub-message
of the desired message and possibly also some sub-message(s)
of the undesired message and (b) a subset of reconstructed
messages that do not include any sub-message of the
desired message non-uniquely. Moreover, it is interesting,
thanks to the order-theoretic formulation, that a general
expression (14) for the achievable rate region is possible
even after incorporating such decoding at the common
receivers.

Next, we provide a simple example to illustrate Theorem 1.

Example 1: Consider the case K = 3 and E = {1,23} so
that P =0, Ly = 1, and Ly = 2 and S, = ¢, S;, = {1},
Si, = {2,3}. Choose the largest possible message index
superset F=P. Up-set message splitting described in the proof
of Theorem 1 y1e1ds MlZ(M1_>1, M1_>12, Ml_,lg, M1_>123)
and Mas=(Ma3 23, Mas_,123) with split rates defined accord-
ing to (11). The reconstructed messages and their rates as per
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A Hasse diagram for the coding scheme for Example 1 where the message index superset F=P. Each line represents superposition coding with

codebooks generated top to bottom, i.e., we first generate the codebook Uj23 (Whose codewords are “cloud centers”) that represents M123. Then, using
superposition coding, we conditionally independently generate the codebooks U12,U13 and Ugs (conditioned on the Ujgg cloud centers) that represent
M2, M13 and Mas, respectively. The corresponding codewords form three primary satellite codebooks for each cloud center. Finally, for each U2 and
Uy3 satellite codeword pair, we generate the secondary satellite Uy codebook }hat represents the message M7. Moreover, for each Uy2 and Uss satellite
codeword pair, we generate a single Uz codeword dependent on that pair (since R2=0). Similarly, for each U3 and Us3 satellite codeword pair, we generate
a single U3 codeword dependent on that pair (since R3=0). See Remarks 5 and 6 for further discussion of this point.

(12) are given as

My = My Ri=Ri
My =¢ Ry=0

Mz =¢ Ry=0

Mz = My 12 Riz = Ri_.1
Mz = Mi_13 Ris = Ri_13
M3 = Mas 03 Ros = Roz_o3

Moz = (Mi_123, Mag_123) Ri23 = Ri—123 + Raz—123

The resulting rate-splitting/superposition coding scheme
described in the proof of Theorem 1 is illustrated in Fig. 3
with the specifics explained in its caption. The key point to
note is the generation of the U, and U3 codewords towards the
end of that caption which has to do with RQZO and R3:O
For every pair of U;s and Uss codewords there is a single
U, codeword and similarly for every pair of U;s and Usz
codewords there is a single Us codeword. If one uses the well
known “cloud and satellite” symbolism, it is as if each Uz
(and Us) codeword were a single satellite codeword for every
pair of U2 and Uss (and U;3 and Uss, resp.) cloud codewords.
Whereas, the usual picture one has is quite the contrary in that
for every cloud codeword there are many satellite codewords.
Note that this latter and usual symbolism works for all other
codewords (i.e., other than U, and Us codewords). It is no
accident that it is precisely the case that only Ry=0 and
Rs=0, which in turn is a consequence of having chosen the
message index superset F to be equal to P. This phenomenon
of zero-rate codebooks superposed over other codebooks has
crucially important consequences that we will explain further
in this example and in more depth in much of the paper later.

From the conditions for reliable communication of the
messages at their desired destinations given in (14) (note that
(13) is vacuous since Sp,=¢ in this example) of Theorem 1,
we get that the reconstructed message rates must satisfy the
inequalities

Riaz + Riz + Rig + Ry <I(Uyaz, Urs, Ui2, Uy; Y1|Q)
Riz + Rio + Ry <I(Ui3, Uiz, Ur; Y1|U123, Q)

Rz + Ry <I(Ura, Ur; Y1|Ur23, Ut3, Q)

Riz + Ry <I(Urs, Ur; Y1|Ur23, Ur2, Q)

Ry <I(Uy; Y1|Ur23, Uiz, Ur2, Q)

Risz + Ras + Rip <I(Uizs, Uss, Ura, Usz; Y2|Q)
Ros + Ria <I(Uzs, Ura, Uz; Y2|Ur2s, Q)

Rz <I(Uss, Us; Ya|Us23, U2, Q)

Riss + Roz + Ri5 <I(Uras, Uss, Urs, Us; Y3|Q)
Ros + Riz <I(Uss, Uz, Us; Ys|Uras, Q)

Roz <I(Us3, Us; Y3|Us23, Uz, Q)

for some p(q)p(u123, @)p(u12|u123, @)p(uiz|uizs, q)
p(u23|ul23,Q) P(U1|U12,U13,U123,Q) p(u2|u12,u23,u123,q)
p(U3|U13, U23, U123, q) are achievable.

Remark 3 (Perspective): While the above reliability condi-
tions may seem almost familiar (except for the presence of
U and Us), it is important to note that such inequalities
have been succinctly expressed in Theorem 1 in complete
generality, i.e., for any K, any message set E = {57, 52},
and any choice of the message set expansion parameter F.
The order-theoretic formulation turns out to be just the right
one to express a result of its generality with such analytical
brevity. Quite importantly, this brevity is key to further work
with the result of Theorem 1 as we do in the rest of this paper.

As an aside, we note the simple point that the inner bound
for the same example using the result in [21, Theorem 2]
would have the two additional inequalities

Rig < I(Uy2, Us; Ya|Uiaz, Uz, Q)
Ri3 < I(Us3, Us; Ya|Usas, Uzz, Q)

because in that scheme receiver Y> uniquely decodes the unde-
sired sub-message M;_,12 and receiver Y3 uniquely decodes
the undesired sub-message M;_.13, whereas in the scheme of
Theorem 1 those sub-messages are decoded non-uniquely at
Receivers 2 and 3, respectively.
Remark 4 (Is Non-Unique Decoding Necessary [26]?):

In previous uses of non-unique decoding in [11], [13], [26],
[27] (see also the several references of [26]) it has been
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shown that the rate region for non-unique decoding taken as
a union of admissible distributions is not strictly larger than
that with unique decoding. Whether the use of non-unique
decoding strictly enlarges the inner bound of Theorem 1 is
not the focus of this work, although a strict enlargement of
the rate region would be desirable. Rather, we have adopted
non-unique decoding because (a) it expands the rate region
per coding distribution (i.e., admissible distribution of the
auxiliary random variables and encoding function) (b) it does
not shrink the rate region taken as a union over all admissible
coding distributions and (c) there are fewer inequalities
leading to relative ease of doing projections via FME and
(d) proving converses in some special cases becomes easier
as a result as we show later since there are fewer inequalities
in the rate region after FME. The points (b-d) have been
articulated before in their respective contexts (cf. [11], [13],
[26], [27]), and as in those contexts, and even to a greater
degree here, we realize the benefits (c-d) in performing FME
more efficiently than would be otherwise possible with unique
decoding in obtaining Corollaries 1, 2, and 3, and proving
converse results for the DM BC with certain message sets
in Theorem 2 and Proposition 1, all of which are to follow.
But it is also the first point (a) that we find very interesting
and useful when we specialize Theorem 1 to the combination
network, and choosing certain single coding distributions to
obtain “large” rate regions and even extremal ones in some
cases leading to the capacity region as in Theorem 4 and
Propositions 2, 3 and 4 and Examples 11 and 12 to follow.
Indeed, all of Section VII is dedicated to the interesting
task of finding simple coding schemes among the class of
coding schemes proposed and analyzed in Theorem 1 that
yet achieve the capacity region in several settings of message
sets through clever choices of the coding distribution in each
case. The success we achieve in Section VII is due in part
to non-unique decoding as well. Finally, we note that even
if some of the aforementioned achievability and capacity
results were possible with unique decoding we believe that
the associated rate and capacity region descriptions would be
less compact, and the proofs more laborious, in each case
than the ones we obtain here.

Remark 5 (Rate Region Versus Complexity of the Coding
Schemes): In Theorem 1, for every possible message set
exgansion from E to F such that POFDE, and there are
227 =3 of them, we get a different achievable region which
involves a different set of auxiliary random variables. Denote
it as R(K,E,F) for brevity. Expanding F leads to finer
message splitting, and hence to the use of more auxiliary
random variables/codebooks, and it therefore cannot reduce
the achievable region. Hence, the full power of the coding
scheme of Theorem 1 is realized by setting F=P. This fact
is exploited extensively in Sections III-VI. More generally,
if F1 D Fg then R(K,E,F1) O R(K,E,F2). Nevertheless,
we prefer to leave F as a parameter to be chosen rather
than replace it with P in Theorem 1 since a smaller F leads
to a simpler coding scheme (with fewer random variables
and hence fewer codebooks), and sometimes a specific such
choice suffices to achieve capacity as we illustrate later in
Section VII.

Remark 6 (Multiple Codewords for Some Groups of Sub-
Messages): Interestingly, when we choose F DTp E we
get some zero reconstruction rates in (12) and this impor-
tant point is explained in this remark. For example, when
we chose F=P DTp E in Example 1, we got two zero
reconstruction rates, namely, Rg and Rg, per (12). This is
reflected in Fig. 3 which depicts the superposition coding
scheme described in Appendix II for Example 1. In particular,
the codewords ug(ﬁllgg, mlg,mgg) and ug‘(mlgg,ﬁllg, ﬁlgg)
do not encode more messages than those already encoded
in uly, ul;, and uys. As mentioned earlier, for every pair
of codewords ufy (1123, 712) and uls (1123, 1M93), We gen-
erate a single codeword uf (123,12, 1M93) according to
H?Zl p(ug;|u12:, uosi, u123;). Similarly, for every pair of
codewords U?B(mlgg,ﬁllg) and u§3(m123,7h23), we gen-
erate a single codeword uf (1123, 1M13,Ma3) according to
H?:l p(U3i|u13i,y23i,u123i). HOWCVCI‘, since Rl 7é O,
we generate 2" codewords uf (1123, 13, 12, 71) for
every pair of codewords uf, (11123, M12) and ufs (1123, M13).
Hence, in general, in the coding scheme of Theorem 1,
superposition coding is not only used to encode a message
over other messages (satellites over cloud centers), but also to
encode some messages multiple times using different distrib-
utions. This novel feature of generating a single satellite per
one or more cloud centers will be present in general as long
as we choose F such that F DTp E.

A. Explicit Polyhedral Representation for the Inner Bound
With E={K,K — I}

For this case, we have P=K — 2, Li=1 and L>=1. Hence,
Sp={1,---,P},S;,={K -1}, S;,={K}. We use Theorem 1
to get a polyhedral description of the inner bound by elimi-
nating the split rates. Here, the message M is split into two
parts via (11), i.e., Mz=(Mz -z, Mz ) while the other
message Mp— is split into Myz— =7 and M7= 5. The
polyhedral representation is presented in the next corollary.

Corollary 1: An inner bound of K-user DM BC for the
message index set E = {K, K — 1} is the set of rate pairs
(Ry, Rye—) satisfying

Ry < I(Uyr ; Yk |Q) (15)
Rz < I(Uye 71;YK—1|Q) (16)
Ry + R < I(Uws:Yj1Q) Vj € 5, an
Rz + B <10, (my YilUwa\y,e (7 @)
i J

+I(Uwe : Yk|Q) Vi€ S, U{K -1}
(18)
B+ B < I(Ulw?{ﬁp Yj|Uw§.’\lW§_,{ﬁ}, Q)
+1I(Uwe i Yk-1|Q) Vj € Sp U{K}
(19)
2Rp— + 2R < I(Ulvv;{ﬁ,f}? Yj|UW§.’\1W§ w7=iwy @)
+ I(Uwe s Yi|Q) + 1(Uwe_ 3 Yk-1|Q) Vj € Sy
(20)
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for some p(q,up) = p(q) [[gcp P(us|ug,s\(s},9) and X as
a deterministic function of (Q, Up).

Proof: The proof begins with the result of Theorem 1 by
setting F=P. In other words, the rate region of Corollary 1 is
R(K,E = {K,K — 1},F=P) expressed in explicit form after
having projected split rates away. Since we have L;=1 and
Lo=1, we have from (11) that each message is split only into
two parts so that

21
(22)

R =Rr=_ %=+ RK—1H$

Rg=Rg x+PRx 3
Moreover, from (12) we have the three non-zero reconstruc-
tion rates R , Rz, R, such that

Rg =Rg 3+ Rg= 3 (23)
Rie=Ryg % (24)
Rg=r = Bg— %=1 (25)

Hence, we can write (13) as follow
Rp=x + B < I(Uwp; Y;1Q) (26)
Rﬁ_J(__<I(U1 p{K 1}7Y|Uwp\l p{K 1}7Q) 27)
Rg_ g < I(Ul P{K}7 ]|UWP\1 P{K}vQ) (28)

B w7+ PRg ® <

(29)

I(Ulwg TRy Y |UW?\lW§ w77 Q)

for all j € S,. This follows from the fact we have just

three non-zero reconstruction rates, and hence, B € {WE, Lwe

—_ —_ —_ J

{K — 1}, lwe {K}, lwe {K — 1, K} }, because the rest of the
J J

down-sets in F (W?) give redundant inequalities.
On the other hand, we can rewrite (14) as follows

Rg+ Rg=_5 < I(Uwr,_;Yk-1|Q) (30)
Ry x <I(U, e {f};YK—1|Uwi’(71\lW,;(7]{F}aQ) (31)
Rg=+ Rg_3 < I(Uwe ; Yk|Q) (32)

R 7= < I(ULW%{K—1}7YK|UW§’<\1W§({ﬁ}7Q)
(33)

Moreover, in (14) the only sets in F| (WE) and
Fy {K,l}(W]F") that do not give redundant inequalities are
{WjP, lW? W;: for j € {K — 1, K'}} again because we have
just three non-zero reconstruction rates where W7E = {K} for
j =K —1and WS = {K —1} for j = K. By eliminating
the sub-rates from (26)-(29) and (30)-(33) using FME [28],
we get the polyhedral description (15)-(20).

B. Converses for E = {F, K — 1} and, More Generally, for
E={K,S} for Any S With K € S

In what follows, we show that the achievable rate region of
Corollary 1 is optimal for certain classes of partially ordered
DM BCs with the partial order denoting the relative strengths
of channels to the receivers in terms of the well known
ordering relations of one receiver being less noisy or more
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capable than another. We state here those definitions (including
two for the more capable order) for completeness.

Definition 1: [3, Definition 2] Receiver Y; is less noisy
than Y, if I(U;Y,)>I(U;Y.) for all p(u,x). Henceforth,
we denote this condition as Y, > Y.

Definition 2: Receiver Y is more capable than Y, if for

every 0 < € < 1 and d > 0 there exists an ng, a function of
€ and §, such that for n > ng every e-code B C X" for the
channel Y, contains an e-code B’ for the channel Y, such that
Llog(B']) > L log(|B]) - 4.
This is essentially equivalent to saying that Y, could decode
any codebook that Y, could decode. Korner and Marton
showed that the above definition is equivalent to following
one.

Definition 3: [3, Definition 3] Receiver Y is more capable
than Y. if I(X;Ys) > I(X;Y.) for all p(z). Henceforth,
we denote this condition as Y; 1Y,.!

Theorem 2: The capacity region of K-user DM BC for the

message index set E = {K,K — 1}, ie., S, = {1,2,...,K—
2} is the set of rate pairs (Ry, Rjz—) satisfying

Ry + R < I(X; Y;|U) + I(U; Yi) Vj € S, U {K — 1}
(35)

Rﬁ-i-RfS I(X,YK_l) (36)

for some p(u,x) for each of the following two classes of
partially ordered DM BCs
A. DM BCs for which Y; 3 Yk 1 J Yy forall j € 5,
B. DM BCs for which Y; > Y for all i € S, U {K -1}
Proof: The achievability proof of (34)-(36) follow from
Corollary 1 by setting Ug = U, U = X while setting the rest
of the auxiliary random variables to be constants and |Q| = 1.
In particular, the inequalities in (34)-(36) are obtained from
(15), (18), and (19), respectively. Note that from (17), we get
the inequality Rz— + Ry < I(X;Y}) Vj € S, which is
redundant for both classes A and B of DM BCs defined in
the statement of Theorem 2. This concludes the achievbility
proof.
For Class A of DM BCs, that is, when Y; 1 Yx 1 J Yg
for all j € S, the region in (34)-(36) can be written as

Rg— < I(U;Yk) (7
Rg—s + Rie < I(X; Yk 1 |[U) + 1(U; Y)  (38)
Rﬁ-i-R?SI(X;YK—l) (39)

for some p(u,x). There are two ways to prove the converse
for the above inequalities. One is to use the Csiszar sum
lemma [8, Lemma 7] with the optimal choice of U; =
Mz, Y;{ 11 1> Y§ ;+1- This proof is given in detail in Appen-
dix III. The other is to notice that the region (37)-(39), is the
capacity region of the two receiver (Yx_1, Yx) more capable
DM BC with two private messages (cf. [7]). In other words,
it depends only on the channels of the two receivers Yx _1, Yk,
although we are considering the K -receiver DM BC. Since
Receiver Y _1 decodes from X it is forced to decode both

I'This notation can, but should not be, mistaken for “superset”
conveniently, is meaningless in the present context).

(which,
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messages, and hence, from Definition 2, adding any number
of receivers that are more capable than Y _;, does not change
the capacity region from the two receiver case. This concludes
an alternative proof of the converse for the Class A of DM
BCs.

For Class B of DM BCs in which Y; > Yk for all 7 €
Sp U {K — 1}, the region in (34)-(36) can be written as

Ry + R < I(X:Y;|U) + I(U; Yi) Yj € S, U{K — 1}
(41)

for some p(u,z) where (36) are redundant for this class of
channels. The converse proof depends on the information
inequality in [29, Lemma 1] and the details are given in
Appendix III.

Evidently, one can exchange the roles of Yy and Yx_;
in Theorem 2 to get a result that mirrors it by exchanging
K —1 and K in the rate region and in the definition of classes
of DM BCs.

Remark 7: We showed in [12, Lemma 3] that the region in
(40)-(41) is also the capacity region of the Class B of DM
BCs for two nested messages with a single common receiver,
ie, E = {5, K}, where a similar achievability scheme and
converse proof were used. Hence, even though we relaxed
the decoding requirements for receiver Yx_; by considering
the message set E = {K — 1, K} compared to E = {$, K},
we can prove the same outer bound for both message sets.
Hence, our converse proof in Appendix III is stronger than
the one in [12, Lemma 3]. Applied to the case of K = 3,
this implies that the converse proof in Appendix III (for
E = {12,13}) is stronger than the one for E = {12,123}
in [11, Proposition 11] where the Csiszar sum lemma is used,
not the information inequality as in Appendix III. From the
achievability perspective, there is no loss of optimality and it
does not reduce the achievable region to force receiver Yx _1
to decode Mp— as long as Yi_1 = Yi.

In the following proposition, we extend the argument in the
previous remark to its most general conclusion by considering
the message set E = {K,S} (where K ¢ S), and hence,
relaxing the decoding requirements for the receivers Y; i €
S instead of only Yy _1, and still getting the same capacity
region for the same class of channels.

Proposition 1: The capacity region of K-user DM BC with
message index set E = {K, S}, where S € P, K € S for the

class of channels Y; = Y forall ¢ € {1,2,--- , K — 1} is the

set of rate pairs (R, Rs) satisfying
Rs <I(U;Yk) (42)
R+ Ry < I(X:;Y;|U) + I(U; Yie) Vj € {1,2,- -, K — 1}
(43)

for some p(u, x).
Proof: The proof is left to the reader since it is similar to
that of Theorem 2.

Consider Proposition 1 in its strongest case, i.e., for § = K.
Here, the proposition in effect states that forcing the receivers
Y1,Ys,--- Yk to decode Mg is without loss of optimality
as long as Y; = Y forall i € {1,2,---, K — 1}. While from

the converse perspective, relaxing the decoding requirement of
the receivers Y1,Ys,--,Yx 1 by considering E = {K, K}
instead of E = {K,¢} does not enlarge the outer bound
from what it is for E = {K,¢} when Y; > Yy for all
i€ {1,2,---,K —1}. In fact, the rationale behind this is the
following. Unlike the more capable condition, the less noisy
condition is a strong order relation. Hence, by considering the
class V; = Yg for all i € {1,2,---, K — 1}, it is assured
that the receivers Y7, Ys, -+, Yx_1 that decode from X can
decode whatever message receiver Yy decodes from U which
explains why forcing them to decode the cloud center U is
without loss of optimality. On the other hand, our converse
proof given in [12, Lemma 3] or in Appendix III does not
use the fact that the message encoded in U that is required
by Yx might be also required by any subset of the receivers
Y1,Ys,--- ,Yx_1. Hence, for E = {5,?} or E = {K,K},
we get the same outer bound for the class of channels Y; > Yx
forall 4 € {1,2,--- K —1}.

IV. ACHIEVABLE RATE REGION: TWO NESTED MESSAGES

In this section, we focus on the special case of two nested
messages. Let S = {1,2,---,P} and S2 = {1,2,--- , P+
L} with P + L=K. Hence, the set of indices of private
receivers that demand both messages is S, = {1,2,---, P}
and the set of indices of common receivers that demand
only the common or multicast message Mg, is S;={P +
1,---, P+ L}. It follows from the up-set rate-splitting tech-
nique described in Theorem 1 that the private message is split
into at most 2” parts (depending on the choice of F) while
the common message is not split because it is desired by all
receivers.

Next, we present the inner bound in a more explicit way for
the two nested message case than in Theorem 1. In particular,
the inner bound is presented in terms of the original message
rates Rg (where S € E) and the split message rates Rg_ o
(S/ € F) instead of the reconstruction rates as in Theorem 1.
We are able to do this because of the simplicity afforded by
the structure of the nested message set.

Theorem 3: Let F be any message index superset so that
P O F O E. A rate pair (Rs,, ) is achievable over the
K-user DM BC if

Rj+ Rs, < I(Uys; Y;1Q) Vj € S, (44)

Y Rs, s < 1(Us; Y;|Unrg, Q) B € FI(WH\D), Vj € S,
SeB
45)

Rg + (46)

D

SeTe{12---P.i}

Rs,—s < I(Uwr; Yi|Q) Vi € S

for some p(q,ur) = p(q) [ [ P(us|ures\ (s}, ¢) and some
deterministic function X of the time sharing and auxiliary

random variables (Q, Ur).

Proof: The proof of this theorem follows from Theorem 1
when we specialize it to two nested messages. First, note
that since the private message M, is split according to (11),
we can simplify the reconstructed message rates in (12) as
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follows
RS = RSP—>S VS ETF Sp\a (47)
Rg = Rg + Rspﬁg (48)
Rs=0 SEF\TFSp (49)

Next, consider the set of inequalities in (13). Note that F| (WE)
for any j can be written as F (WJF\a) UW]F because the only
down-set that contains ¢ must be W]F-. Hence, the inequality
in (13) simplifies to (44) and (45). On the other hand, for all
common receivers Y; (i € 5;), we have ]—"W(Wf) = WF.
However, since the only non-zero reconstruction rates are
indexed by 1¢ S, we can replace }—lg(WiF) in (14) by WFN 1
Sp =1¢ {12--- P4} which yields (46). This completes the
proof of Theorem 3.

A. Recovering Prior Results From Theorem 3

Theorem 3 can be seen as a generalization of previously
proposed achievable schemes in the context of particular
examples. These include (a) the two-receiver DM-BC with
degraded messages in which superposition coding alone (with-
out rate-splitting) is sufficient to achieve the capacity region
as was shown in the important work of Korner and Mar-
ton in [9] (b) the three-receiver DM-BC with two nested
messages with one and two common receivers which was
investigated in-depth in [11] and (c) the DM-BC with two
nested messages for an arbitrary number of receivers and
with an arbitrary number of common receivers studied by
the authors in [12]. In particular, the achievable rate regions
based on rate-splitting and superposition coding obtained in
the aforementioned papers can be obtained by specific choices
of F. Those rate regions were shown in those works to be the
capacity regions for certain classes of channels. In this section,
we briefly describe those regions from the lens of Theorem 3
and also specify the conditions on the DM-BC for which they
yield the capacity region. This allows us to not only place
known results in the general framework of Theorem 3 but
also to show how further improvements may be possible in
DM-BCs for which the capacity region is not yet known.

Example 2: Consider the case of K = 2 and two degraded
messages so that E = {1,12}. Let us choose F = E and
X = U; and @ to be an uninformative constant in Theorem 3.
We get that that a rate pair (R, Ri2) is achievable if there
exist non-negative split rates with R; = Ryj_,1 + R1_,12 such
that the following inequalities hold

Ris+ Ry <I(X;Y7)
Ry <I(X;Y1|Ui2)
Ris + Ri—12 <I(U12;Y2)

for some p(u12)p(x|uiz). It was shown that the above region
is the capacity region for K = 2 with two nested messages
in [9] without any channel restrictions. Note that even rate
splitting is not necessary in this case.

Example 3: Consider the three-receiver case with the mes-
sage index set E = {12,123}. We choose F = E and X = Uy
and () = const in Theorem 3 which then implies that a rate
pair (R12, Ri123) is achievable if there exist non-negative split
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rates with Ri2 = Rj2_,12 + Ri2-,123 such that the following
inequalities hold

Ria3 + Ri2 < min{I(X; Yl), I(X; }/2)}
Ri2—12 < min{I(X;Y1|U123), I(X; Y2|Ui23) }
Ri23 + Rig—123 < I(Ui23;Y3)

for some p(ui23)p(x|uizs). Projecting away the split rates
yields that rate pairs for which

Ri2s + Rip < min{I(X;Y1),I(X;Y2)}
Ri23 + Ri2 < min{I(X;Y1|Uia3), [(X;Y2|U123)}
+ I(Ui23;Ys3)
Ri33 < I(Us23;Y3)

for some p(u123)p(x|uizs) are achievable. This region is
identical to that given in [11, Corollary 1] (as it should be,
since our general scheme reduces to that of [11, Corollary
1] with the choices F = E and X = Ui and Q = const).
Notably, the above region was shown to be the capacity region
when Y7 > Y3 and Y5 > Y3 in [11, Proposition 11].2

Example 4: Here, we consider K = 3 and E = {1,123}.
We choose F = {1,13,123} and X = U; and Q = const.
From Theorem 3, we obtain inequalities that involve split rates.
Using FME to eliminate the split rates we have that rate pairs
(R2, R123) are achievable provided

Ri23 < min{I(Ui3;Y3),1(Ur23;Y2)}
Rips + Ry < min{I(X; Y1), [(X;Y1|U13) + 1(Us3; Y3),
I(X;Y1|Ui2s) + I(U123; Y2)}

for some p(u123)p(u13|ui23)p(x|uys). This region is identical
to that given in [11, Remark 5.2] since our scheme for this
example and choice of F = {1,13,123} and X = U; becomes
that of [11, Remark 5.2]. Also, in [11, Proposition 7], this
region was shown to be capacity region when Y; > Y5.

Example 5: Consider the four-receiver case with the mes-
sage index set E = {1,1234}. By choosing F =
{1,12,123,1234} and @ = const, we get from Theorem 3
that the set of rates satisfying

Ri934 + Ry < I(X; Y1)
Ry 1 < I(X;Y1|Us2)
Ri 1+ Ry 12 < I(X;Y1|U123)
Ry 1934+ Ri 19+ Ri 1 < I(X;Y1|U1234)
Ri934 + R1 12 + Ry 123 + R 1234 < I(Ur2;Y2)
Ri934 + R1 123 + R1 1234 < I(Ui23;Y3)
Ri934 + R1 1234 < 1(U1234; Yy)

for some p(U1234)p(U123|U1234)P(U12|U123)P($|U12) is
achievable where R} = Ry, + R112+ R1 123+ R1—1234
and X = U;. By applying the FME procedure to eliminate
the sub-rates, the obtained polygon is the capacity region for
the class of channels Y7 > Y3 and Y; > Y, from the result in
[12, Theorems 2 and 3] for K = 4.

2There is a typo in the statement of Proposition 11 of [11]. The conditions
stated therein Y7 >Y2 and Y3>Y5 should be Y2>Y3 and Y7 >Y3. The correct
conditions are stated in the proof of the proposition.
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In fact, if we choose F =
{1,12,123,1234,---,1234--- K}, we recover the result
in [12, Thoerem 2] for any number of receivers K with any
number of common and private receivers. Hence, the result in
[12, Thoerem 2] is a special case of the result in Theorem 3
obtained by a specific choice of F but unlike in Theorem 3
it has a polyhedral description in terms of the two message
rates [12].

B. New Rate Regions From Theorem 3 for K = 3 and
E={1,123}

In the previous section we saw that previous rate regions
of [9], [11], and [12] can be obtained from Theorem 3 by
choosing F accordingly. It this section, we show that Theo-
rem 3 can also produce new rate regions that are potentially
larger. As stated in Remark 5, the choice of F O E determines
the achievable region and expanding F cannot reduce the rate
region. Moreover, choosing F D1p E yields some zero recon-
struction rates in (12), or equivalently, multiple codebooks for
certain groups of sub-messages.

In particular, Theorem 3 can produce potentially larger
inner bounds for the message set E = {12,123} than that in
Example 3 (i.e., that in [11, Corollary 1]) and for the message
set E = {1,123} than in Example 4 (i.e., that of [11, Remark
5.2]). We show this in the latter case in the next example.

Example 6: Suppose K = 3 and E = {1,123}. We choose
F={1,13,23,123} and ) = const. From Theorem 3, we can
show, after projecting away the split rates using FME, that the
rate tuples that satisfy the inequalities

Ri2s < min{I(Uss, Uz3; Y3), [(Uas, Ur23; Y2)}  (50)
Ri23 + Ry < min{I(Uy, U3, Ui23; Y1), (51)
I(U1; Y1|U1s, Ur23) + 1(Uss, Uas; Ys),
(52)
I(Uy, Ur3; Y1|Ur2s) + 1(Uas, Ur23; Y2) }
(53)

for some p(u123)p(u2s|ui2s)p(uisluies)p(usluis, uizs), and
with X is deterministic function of U, are achievable. Note
that this region subsumes that of Example 4 since by setting
Ui = X and U3 = const., ie., Ujgg —o— Uz —— U; = X,
the above region reduces to that in Example 4. In other words,
choosing X more generally as a deterministic function of Ug
and taking the union over all admissible distribution of Us3 can
only enlarge the inner bound compared to that in Example 4.
In particular, in the rate region of this example Uss is an extra
degree of freedom that receivers Ys,Ys can exploit (cf. the
bounds in the inequalities (50), (52)-(53)) which can possibly
enlarge the inner bound.

Example 7: Suppose again K = 3 and E = {1,123}. This
time choose F =Tp E = {1,12,13,123}, X = U; and Q =
const. From Theorem 3, we can show that the rate pairs that
satisfy

Ri23 < min{I(Ur2, Ui23; Y2), I(Uis, Ur23; Y3)}
Ri23 + R1 < min{I(X; Y1),
I(X;Y1|Ui23, Ur2) + I(Ui2, Uias; Y2),

(54)

I(X;Y1|U123, U1z) + 1(Uysz, Ui23; Y3)} (55)
2R123 + R1 < I(X;Y1|U12,Us3)
+ I(Ur2,Ui23; Y2) + I(U13, U123; Y3)  (56)
2R123 + 2Ry < I(X;Y1|Ur2, Usz) + I(X; Y1|Ur23)
+ I(Ur2, Ur23; Yo) + (U3, Ur23; Ys)  (57)

for some p(ui23)p(u12|ui23)p(uis|uizs)p(z|uiz, uiz) are
achievable. It can be shown that the above region is equivalent
to that in [11, Proposition 5] but with no binning. Note
that without binning, the second and fifth inequalities in [11,
Proposition 5] become redundant.

The largest inner bound obtainable from Theorem 3 is
obtained by setting F = P. In the next example we present
the achievable rate region for this choice after FME.

Example 8: Consider again K = 3 and E = {1,123}.
Choosing F = P and @ = const in Theorem 3, and after
performing FME, it can be shown that the rate pairs that satisfy
the inequalities

Ri23 < min{I(Uz, Uiz, Uz, U123; Y2)
, I(Us, Uiz, Uz, Ur23; Y3) }

Rio3 + Ry < min{I(Uy, Uiz, Uiz, Uia3; Y1),
I(Uy1, Uis; Y1|U123, Ur2) + 1(Uz, Uiz, Usz, Utas; Ya),
I(Uy, Ui2; Y1|Ur23, Urs) 4 I(Us, Uss, Uaz, U123; Y3) }

(59)

(58)

2R123 + Ry < I(Uy; Y1|Ui2, Uss)
+ I(Uz, Ui, Uaz, Ui2s; Ya) + I(Us, Uzz, Uz, U123; Y3)
(60)
2R193 + 2Ry < I(Uy; Y1|Ur2, Urs)
+ I(U1, Uia, Urz; Y1|Ui2s)
+ I(Uz, Ui, Uaz, Ui2s; Ya) + I(Us, Uz3, Uz, U123; Y3)
(61)

for some p(ui23)p(uizluizsz) p(uis|uizs) p(uzs|uizs)
p(u1|uiz, w1z, ui23) p(uz|uiz, uas, ui23) p(usluis, uzs, uiza),
with X a deterministic function of Up, are achievable.
By setting U; = X and setting Uy, Us and Us3 to be
uninformative constants, the above rate region reduces to
that in Example 7. But more generally, we allow X to be a
function of Up and exploit the additional degrees of freedom
Us, Us and Usz3 provide to the common receivers so as to
likely get an enlarged rate region (this can be almost certainly
made to be the case per coding distribution). Next, we give
a detailed account of the encoding and decoding functions
associated with the above rate region, which we denote as
R(K =3,E={1,123},F=P).

In the coding scheme of Theorem 3 for the choice F=P,
illustrated in the Hasse diagram of Fig. 4, we generate code-
words associated with all possible auxiliary random variables
Ui,Us,Us, Uyg, Uz, Usg, Uras even though Mj is Split using
(11) into the four split messages as in Example 7. Note that,
as was the case in Example 1, the choice of F=P yields
some reconstruction rates equal to zero, only this time those
rates are Rg, Rg and }?23. Unlike in Example 7, the message
pair (mq23,m1_123) in the present example is assigned rwo
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codebooks, namely, the U123 and Us3 codebooks (with joint
distribution p(u2s,u123)), which can also be thought of as
the Uss codebook being a satellite of the U3 codebook but
with a single satellite codeword per cloud codeword. Similarly
(also unlike in the cases of Example 7) the message triple
(m123,M1_123, M113) is assigned two codebooks (the Uy
and Us codebooks) with U3 codebook being a satellite of
the cloud codebook Uyo3 (which is one of the two codebooks
for the pair (mi23, m1-123)) and the Us codebook being a
satellite of the U;3 codebook but with one satellite codeword
in the Us codebook per one codeword in the U;3 codebook.
Moreover, the message triple (1123, m1_.123,M1—12) is also
assigned two codebooks (the Uy and U, codebooks) with each
being a satellite codebook of one of the two “cloud” codebooks
Ui23 and Usg for the message pair (m123, m1—123), where Uss
is itself a one-satellite-per-cloud satellite of the cloud Ujos.

As for decoding, private receiver 1 must decode both
messages. To do this, it decodes the reconstructed message
set M\NP = (Ml,Mlg,M13,M123) which contains all of
(Ml,Mlgg) (and nothing more) based on unique joint typ-
icality of the (Ui, Ujs,Uis,Ui2s) codeword-tuple with the
received sequence Y7";. Common Receiver 2, which needs
to only decode the common message Mjq3, will decode the
reconstructed message set ng = (Mg, Mlg, M23, ]\2/123) by
testing for joint typicality of (Us, Uiz, Uss, Ui23) codeword-
tuple with the received signal Y2 1, but not uniquely as
explained next. Now, note that M2 and M,s are empty
messages and M12 = M1*>12 and M123 = (M1H123, M123).
Hence, Receiver 2 can decode Mj23 by jointly decoding
My by testing for joint typicality of the (Ua, Ur2, Uag, Uzas)
codeword-tuple with the received sequence Y5 (thereby mak-
ing use of the two double codewords) with just unique decod-
ing of ]\7[123 (which is sufficient to decode M 23 uniquely)
and non-unique decoding of M5 which contains only a
part of M; which Receiver 2 is not required to decode.
A similar explanation can be given for non-unique decoding at
Receiver 3.

C. Explicit Polyhedral Representation for the Inner Bound
With One and Two Common Receivers

It is important to notice that for any two nested messages
when we set F = P in Theorem 3 we get 2% — 1 auxiliary
random variables and the private message is split into 2% parts
where L is the number of common receivers. Also, we can
rewrite (45) as follows

ZRS s <I(U; pB,Y]|UWP\l PB,Q)
SeB

VB ¢ Fi(1p S,\D).j € 5, (62)

For one common receiver, we have S, = Kand S; = {K}.
We specialize Theorem 3 to get a polyhedral description for
the inner bound for this case as follows.

Corollary 2: An inner bound of K-user DM BC for two
nested messages (M- Mg) is the set of rate pairs (g, Rg)
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satisfying
Rz < I(Uwe; Yk|Q) (63)
Ry + Ry < I({Uwp; Y5|Q) Vi € Sp ©4)
Ryt B < 1(U), @y YilUwsy () @)
+I(Uw';’<7YK|Q) vj e SP 63)

for some p(q, up) = p(q) [[sep P(us|urps\(sy:q) and X as
a deterministic function of (@, Up).

Proof: The proof follows from Theorem 3 when F = P.
In this case, we only split the private message M7 into two
sub-messages My 77, My 3. By applying FME procedure,
we project away the sub-rates and obtain the achievable rate
region in the statement of the corollary.

On the other hand, for two common receivers case, we have
Sp ={1,2,---,K —2} and S; = {K—1,K}. In the next
corollary, we specialize Theorem 3 to this case and obtain an
explicit polyhedral description for the inner bound.

Corollary 3: An inner bound of K-user DM BC for two
nested messages (Mp—17, Myp) is the set of rate pairs

(Rg=r> ) satisfying

Rz< I(Uye; YilQ) Vi € S (66)

R + Ry Uy Y;1Q) Vi € 5, (67)
Ry + Rg—gw< I(UlWP{ﬁ}? Yj|va§?\lWP{ﬁ}vQ)

HUyy Vil Vi€ 5, (68)
Ry + R <1, {K},YJ| WP L, p{K}’Q)

+I(UWP YiIQ) Vi€ 5, (69)

2Rz + Rg—rx< I(Ul P{K IR} Yi |UWP\le{m}’Q)
+I(UW|;(71 Yi-1lQ) J
+I(Uyp 3 Yi|Q) Vi € Sp (70)

2R</_:+2R—K—1AKSI(U1WP {—KflAK};Vle‘UWP \ue. (F=TrRy @)

+1(U, v (F=IRY Jz\UwP Ve (R iR @)

+HI(Upp. ;YK_11Q)
K*l

+1(Uye s YKIQ) Vi1, j2 € Sp 71

for some p(q,up) = p(q) [[scp P(us|ures\(sy,q) and X as
a deterministic function of (@, Up).

Proof: The proof follows from Theorem 3 when F = P.
We split Mz—7 into four sub-messages Mw—%_ 77— %
Mzp=x_ % Mg=rx_ %=1 Mx—x_3 Then, by using
the FME procedure, we project away the sub-rates and obtain
an explicit polyhedral description of the achievable rate region

in the statement of the corollary.

V. CAPACITY REGIONS FOR THE COMBINATION NETWORK

In this section, we establish the capacity region for com-
bination network for each of three different message sets
considered in Corollaries 1, 2 and 3. Throughout this section,
we forgo coded time-sharing by setting () to be an unin-
formative constant in those corollaries. In particular, we will
consider (a) two messages each required by K — 1 receivers,

e, E = {K,K — 1} by specializing Corollary 1 (b) two
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U123 mi23, m1—>123

/

U23 mio3, 7nl—>123

=

Us (mlzs, mi—123, m1—>13

Fig. 4.

\

ufg(mi23, M1123,M1-13)

=

m123, mi—123, m1—>12

uiy (M3, M1—s123, M112)

m123,m1—>123 m1—>12”m1—>137m1—>1)

A Hasse diagram for the coding scheme when message index superset F = P for E = {1,123}, where the line represents superposition coding.

M, is split into four parts M1_,1, M1—12, M1-13, M1—,123. The encoding and decoding schemes are explained in detail in Example 8.

nested messages with one common receiver and any number of
private receivers, i.e., E = {K, ¢} by specializing Corollary 2
and (¢) two nested messages with two common receivers and
any number of private receivers, i.e., E = {K — 1.K,¢} by
specializing Corollary 3. The capacity for each message set
is presented separately in different subsections. Note that in
each of those corollaries we exploit the full generality of
the coding scheme proposed in Theorem 1 and 3 by letting
F = P. We will show that the benefit of this generality is that
a single distribution suffices to achieve capacity independently
of which of the three message sets is considered. In particular,
choosing the auxiliary random variables Ug for all S € P
to be independent and uniformly distributed over Vs where
|Vs| = 295 and Vs = Ug is capacity-achieving in each case.
We prove the converses using mainly the submodularity of
entropy.

We define next a function we will use throughout this
section. Let the modular function (over all subsets of P)
Cw 2 > sew Cs for any W C P.

Since the proof of the capacity region for combination
networks with different message sets depends on the use
of certain general identities, we state them in the following
lemma for easy reference.

Lemma 2: The following two identities hold:

1) For any set S = iyig---iny C {1,2,--- ,K} and i €
[1:K]

Cwr =C\ o@mmimy T Onetsy (72

CWE = Clwf{g} + Cng{i17i2="' N} (73)

2) In the K-receiver combination network where Y; = Viyp
for all ¢ € {1,2, , K}, if the random variables U;
for all S € P are independent and uniformly distributed
over Vg where |Vs| = 295 and Vs = Usg, then for any
W C WP,

I(Uw; Yi|Uwe\w, Q) =

Cw (74)

where () is a time sharing random variable.
Proof: The proof of (72) and (73) follows directly from
(7)-(8) and (9)-(10), respectively, in Lemma 1. In equation
(74), let |Q| = 1 so that no coded time sharing is used. Then,

we get

I(Uw; Yi|UW§\W):H(UW|Uw§’\W) — H(UwlY;, Uwf\w)

= H(Uw|Uwr\w) (75)

=) H(Us) (76)
Sew

=Y log, Vs (77)
Sew

=Y Cs=Cw
Sew

where (75) follows from Y; = Uype since Vs = Ug for all
SeP, (76) from the independencelof the auxiliary random
variables, and (77) from Ug being uniformly distributed over
Vs where |Vg| = 2°5.

A. The Capacity for E = {K, K — 1}

In the following theorem, we establish the capacity region
of the K -user combination network for P =K — 2, L1 =1,
and Lo, = 1.

Theorem 4: The capacity region of the K -user combination
network with two messages M+, M7— is the set of rate pairs
(R, R—y) satisfying

R < Cu, (78)
Ry < Cwe__| (79)
R+ R <Cuwr Vi €S, (80)
Rp—=+ R < Ciw;’@l = + C’W; (81)
2R+ 2R < C’lWP{ﬁR} + CW; + C'W;;i1 jesSy

] (82)

Note that (81) is also equivalent to

Rie=+ R < C’lW?{ ey C'W?G1 (83)

Proof: The inequalities (78)-(82) follow from applying
(74) in Lemma 2 to the inequalities (15)-(17), (18) for
j = K — 1, or equivalently, (19) for 7 = K, and (20) in
Corollary 1, respectively. On the other hand, when we apply
(74) in Lemma 2 to the inequalities (18) and (19) for j € S,
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we obtain the following two redundant inequalities

Rpg=+ R < Clwg’{ﬁ} + CW§(71 jesSy (85)

In particular, (84) is redundant since for any j € S, we have

where (86) follows from (72) in Lemma 2 and (87) from Ty»
{K} C W%. Similarly, (85) is redundant, thereby provinzg
achievability.

For the converse proof, note that the inequalities (78)-(80)
are just cutset bounds. That inequality (81) is an outer bound
on the capacity region follows from the following:

nRe = H(Mz)
=I(M7z;Yg_1, M=)

+ H(Mz|Yg ., M=)
= I(Mz Yi_ | Mz—) + ne, (88)
= H(Yg_ | Myp=) + ney,
< H(YR,Yg_1|Mz=) + ne,
=H(Yg,Yg_1, Mg=) — nRg— + ne, (89)
=H(Yg,Yg 1) + H(Mzg=IYg, Y§ 1)
— nRz= + ne,
< H(Yg,Yg_1) — nRg=— + 2ne, (90)
= H(Vy We \/7\1/5}71) — nRip— + 2ne, 91)
= H( w;) + H( vr\;r;(fl) - H(Vﬁ@(il{K})
nRe— + 2ne, 92)
< nCWI;»( + nOW%,l — nCTwl;‘(fl{K}
nRg— + 2ne, 93)
= nCWP + nC (R~ nRe=— + 2ne,  (94)
K 1

where (88) follows from Fano’s inequality and independence
between messages, (89) from chain rule of entropy, (90) from
Fano’s inequality, (91) from the fact that ¥;" = V{{, for all

i € [1: K], (92) from the submodularity of entropy where
WE.NWE._| =Twe_ {K}=Twe {K—1}, and (93) from the
fact that the uniform distribution maximizes entropy. Finally,
(94) follows from Lemma 2 such that C’W;»(i1 = Olw;’(fl (R} +
Clue_ 1K}
Lastly, for (82), observe that for all j € S,
n(Rg + Rg=) = H(M%) + H(Mz=)
< I(Mg; Y}, M=)
+ (Mg Yi, M%) + 2ne, (95)
= I(Mg; Y} | M=)
+ I(Ms=: Yie | M7z) + 2ne, (96)

= H(Y]" |Mz—=) + H(Yg|M%) + 2ne,
< H(Y}'|Mz=)
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+ H(Yg, Yg_|Mz) + 2ne,
= H(Y}", Mz=) — nRg— + 2nen
+H(Y£5YI?715M?)_HR?
<HY]")+H(Yg, Yg_1)
nRp— — nRy + 4ne,
)+ H (Vs Ve )

nRp— — nRy + 4ne,
= H(Ve) + H(Vgly )+ H(Vige )
- H(Vw"';( NVwe ) —nhg—

— nRz + 4ne,

< H(Vip) + H(Vigp )+ HOGp )

o7
— H(V
(98)

99)

— nRz + 4ne,
= H(Vgie) + H(Vige )+ H(V )

nRep—

—HV ok 1ky) —
J
— nRz + 4ne,
nRep—

(100)

- nCTwP{K_l'K} -
— nRz + 4ne,
= nCl

(101)
wr (RE=TF nCwe, +nCwe_,

RK T — nRi + 4ne, (102)

where (95) follows from Fano’s inequality, (96) from inde-
pendence between messages, (97) from Fano’s inequality and
chain rule, (98) from Y;* = Vi, for all i € [1: K], (99) from
the submodularity of entropy, and (100) from the following
N VV’\‘,;? =1p {j.K — 1.K}

=lp{K - LK} n W"

=Twe {K - 1.K}

n n
Viwe 1 Vi

Moreover, (101) follows from the fact that the uniform dis-
tribution maximizes entropy and (102) from Lemma 2 from
which we have C’Wp = Cl (KT} + CTWP{K 1.5}~ This

completes the converse prooil of Theorem 4.

Remark 8: If we set K = 3 in Theorem 4, we get the
capacity region for E = {12,13}. It is left to the reader to
verify that it is a special case of [15] (see also [18]) where the
capacity region for combination network with general message
set E = P is established for K =2 and K = 3.

Example 9: The capacity region of the combination net-
work for K > 3 is not known in general. We consider
K =4 with E = {123,124} in this example. Using Theorem 4,
the capacity region of the four-receiver combination network
for this message set is the set of rate pairs (Rj23, R124)
satisfying

Riga < C4+ Crg + Coy + Cay+

Cia4 + C134 + Cazq + Cio3g (103)
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Rig3 < O34 Ci3+ Coz + Csy+

C123 + Ci34 + Cozq + Cia34 (104)
Rios + Riga < C1 4 Cr2 + Ci3 + Cia+

Ci23 + Cr24 + C134 + Cia34 (105)
Ri23 + Ri24 < Oy + Cro + Cog + Coy+

Chas + Ciaa + Caza + Cia34 (106)
Ri23 + Ri24 < C3 + C13 + Ca3 + Clraz+

Cy+ Cra+ Cog + Coy+

Ch24 + Ciza + Caza + Ci234 (107)

2R123 + 2R124 < C1 + C12 + C13 + Crg + Cr23 + Cros+
Cs 4 Ci3 + Caz + Cay+
Chas + Ciza + Cazq + Croza+
Cy+ Ci4 + Co4 + C3y+
C124 + C134 + C234 + Ci234 (108)
2R123 + 2R124 < Co + C2 + Ca3 + Coq + Cr23 + Cr2a+
C3 + C13 + Ca3 + C3u+
Chas + Ciza + Caozq + Croza+
Cs+ Cra+ Coq + Cay+

Ci24 + Ci34 4+ Cazq + Ci234 (109)

B. Recovering the Capacity Regions for E = {K,¢} and
E={K - 1.K,¢} of [19] via Theorem 3

We recover the capacity regions of the combination network
with two nested messages for the one and two common
receivers cases next. These results were first obtained in [19,
Theorem 3]. While in [19, Proposition 1] achievability was
shown using rate-splitting and linear superposition coding
tailored to the combination network we show it using a
top-down approach by specializing Corollaries 2 and 3 on the
DM BC to the combination network, which is indicative of
the strength of the inner bound of Theorem 3 on the DM BC
(from which Corollaries 2 and 3 were obtained using FME).
These regions can be shown to coincide with those obtained
in [19, Theorem 3] where they were shown to be the capacity
regions.

Proposition 2: The capacity region of the K -user combina-
tion network with E = { i, ¢} is the set of rate pairs (R, Rp)
satisfying

Rz < Cwe,
Rg+Rg < Cyp Vi€ [1: K —1]

(110)
(111)

where Cw = ) g\ Cs for any W C P.

Proof: The proof of the converse follows from the receiver
cutset bounds since the common receiver desires only the
common message Mg and the private receivers desire both
messages. The proof of achievability follows from using (74)
of Lemma 2 in the inequalities (63) and (64) in the achievable
region of Corollary 2. We show next that the inequality (65)
of that region is redundant because of (64). From (72) of
Lemma 2, we have Cyr = Cl p{R) + Cy, (K} for any

j € [1: K—1]. Moreover, from the "definition of Cw, we have

Gy, p{K) < Cwpe_. Hence, O\NP < Cl p{K} + Cywe_ for any

je [1 K — 1] and so (65) is redundant.
Proposition 3: The capacity region of the K'-user combina-
tion network with E = {K — 1.K, ¢} is the set of rate pairs

(Ri—7> Ry) satisfying
Ry < Cyp Vi€ S (112)
By + R < COwe Vi€ 5p (113)

2R$+ RK—l.K S OlWP{K—l.K} + C\Nﬁ(fl + CW?( Vj € Sp

(114)

Proof: The three inequalities of (112)-(114) follow from
applying (74) of Lemma 2 to inequalities (66), (67), and (70)
in Corollary 3. We next show that the inequalities that result
from (68), (69) and (71) will be redundant.

First, (71) is redundant when j; = jo = j € [1 : K — 2]
because it is the sum of (68) and (69) due to the modularity
of Cw for any W C P so that ClWP{ﬁ} + C’le{f} =

Clw'?{m’?} + Clw'?{m}. Whlle, for jl 7é jQ, (71) is
still redundant from (67) since from (72) and (73), we have

Cwe =C) . ®1®) T Cree (K-1.K) (115)
J1 J1

CW§2 = Clw]'?z i ewe! + CTWJPz (K—1,K} (116)

andC’T P{K 1K}+CTWP (K- 1K}<CWP +CWP.
Moreover we can show that (68) and (69) are redundant
because of (67) by following exactly the same argument that
we used to show that (65) is redundant because of (64). Hence,
(68) is redundant since CW;_> <C L (BT T Cwe__, for any

j€[l:K—2]and (69)is redundant since Cwe < C

Cwe_forany j € [1: K —2].

The inequalities (112) and (113) are cut-set outer bounds
since the common receivers Y; (i € S;) desire only the
common message Mg and the private receivers Y; (j € Sp)
desire both messages. The converse proof of (114) uses the
sub-modularity of entropy as in [19]. We leave it to the reader
to reconcile the differences between the notation used in this
work and that in [19].

Remark 9: In Theorem 4, and in Propositions 2 and 3,
we prove achievability top-down by specializing random cod-
ing in the DM BC to the combination network. This is in
contrast to the proof in [19, Proposition 1, Theorem 3] for
nested messages which is tailored to the combination network
via explicit linear network coding. Also, our descriptions for
the rate regions are more stream-lined, thanks to the use of
order theory, as are the proofs of the converses, even though
the main ingredient, besides standard information inequalities,
in the proof of the converses for Theorem 4 and Proposition 3
is the sub-modularity of entropy as it is in [19, Theorem 3].

Example 10: In this example, we show the importance of
choosing the message index superset F = P in Theorem 3
via the example of K = 3,L = 1, i.e., E = {1,123}. From

lw§? {K} +
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Proposition 3, the capacity region for this case is given by

Ri23 < min{C5 + Ci2 + Ca3 + C1a3,

Rigs + Ry < C1 + Cio + Ci3 + Chas (118)
2R193 + R1 < C1 4+ Cy 4+ C3 4+ Cha + Ci3 + 2C53 + 2C4123
(119)

Consider next the coding scheme commonly used in the
literature which effectively sets F =7p E in Theorem 3, i.e.,
F ={1,12,13,123}. Tt is not hard to show that the achievable
rate region is the set of rate pairs satisfying

Rio3 < min{I (U2, Ur23; Y2), I(Uss, U123; Y3)}
(120)
Rio3 + Ry < min{I(Uy;Y7),
I(U1;Y1|Ur23, Ur2) + I(Ui2, Ur23; Ya),
I(U1; Y1|U123, U13) + 1(U1z, Ui23; Y3) }
(121)
2R123 + Ry < I(Uy; Y1|Ur2, Uss)
+ I(U12,U123; Y2) + 1 (U3, Ui23; Y3)
(122)
2R123 + 2Ry < I(Uy; Y1|Ur2, Uis) + I(U1; Y1|Ui23)
+ I(Ur2, Ui23; Ya) + I (Ui, U123; Y3)
(123)

for some p(ulgg)p(ulg|u123)p(u13|u123)p(u1|u12, Ulg). It can
be shown that the above region does not become the capacity
region by choosing independent auxiliary random variables
with a single distribution for any choice of the channel input
component Vs (where S € P).

By examining the capacity region in (117)-(119), an intu-
itive choice for the channel input components Vs (S € P)
and the auxiliary random variables Ug (S € F) to achieve
(117) and (119) is (Vi23,Va3) = Ui2s, (V2,Vi2) = Ui,
(V3,Vi3) = Uss, and V4 = U; where the auxiliary random
variables Ujs3,Uy3, U2, U; are uniform distributions over
Viag X Vasz, Vis X Vs, Via X Vo and Vy, respectively. For
this choice, following the same analysis as in Proposition 3,
we can show that the rate pairs (R7, Ry23) that satisfy

Ri23 < min{C5 + Ci2 + Ca3 + C1a3,

Cs + C13 + Ca3 + Cla3} (124)

Risz + Ry < C1 (125)
2R103 + R1 < Cy 4+ Co + C3 + Cia + Ci3 + 2C23 + 2C123
(126)

are achievable. Note that the last inequality is redundant.
Obviously, the above region is strictly smaller than the capacity
region given in (117)-(119).

A different choice that achieves (118) is Va3 = Ujas,
Vo = Uyg, V3 = Uys, and (Vi, Vi2, Vi3, Viaz) = Uy where
the auxiliary random variables Uj23, U13, U2, Uy are uniform
distributions according to Va3, Vs, Vo and Via3 X Vi3 X Via X
V), respectively. For this choice, the rate pairs (R, Ri23) that
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Fig. 5. The capacity region is compared with the two inner bounds given
in (124)-(126) and (127)-(129) for K = 3,C = 2. The finite capacity links
are given as follows: C1 = 1.5, Co = 0.5, C3 = 0.75, C12 = 0.75,
C13 = 0.5, C23 = 0.5, C123 = 0.25.

satisfy
Ri23 < min{Cy + Ca3,C3 + Ca3} (127)
Rios + Ry < Cy + Cr2 + Ciz + Cias (128)
2Ri23+ R1 < C1 + 03+ C5 4+ Cia + Ci3 + 2033 4+ Chas
(129)

are achievable. Note that the last inequality is redundant and
the above region is also strictly smaller than the capacity
region.

In Fig. 5, we show that even the convex hull of the union of
the two inner bounds, given in (124)-(126) and (127)-(129),
is strictly contained in the capacity region.

Example 10 illustrates the importance of choosing the
message index superset F = P. Although, this choice adds
complexity to the coding scheme, it simplifies the choice of
the coding distribution that achieves capacity. In particular,
independent auxiliary random variables with uniform distrib-
ution are extremal.

Nevertheless, we show in Section VII that choosing F C
P can also achieve the capacity of the combination network,
provided F is chosen appropriately depending on the message
set. Moreover, independent auxiliary random variables with
uniform distribution do not suffice. A certain dependency has
to be introduced in them.

C. Other Message Sets

In the three scenarios of Sections V-B and V-A for which
we were able to establish the capacity region for combination
networks, we had a polygonal description for the inner bound
by applying FME to project away the split rates. This was
possible because in these three cases, there are only up to
four split rates under up-set rate splitting. For other choices
of message pairs (with K > 3) we would have many
more split rates which would render FME too tedious or
intractable. Nevertheless, we suspect that the achievable rate
region of Theorem 1 is large enough to be the capacity of
the combination network for other message pairs (such as say
nested messages with L > 3).

Moreover, it is likely that our approach leads to the capacity
region for combination networks for more than just two
messages as well. For instance, it can be shown that by
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using a similar analysis as in Proposition 3, we can establish
the capacity region for three degraded messages, i.e., E =
{Mg, M7z, Mz=—5}. Hence, discovering all message sets
(ideally, the message set E = P) for which our approach leads
to the capacity region for the combination network is a topic
of future research.

VI. FURTHER EVIDENCE OF THE STRENGTH OF
THEOREM 3

In this section, we provide further evidence of the strength
of the inner bound of Theorem 3 by specializing it to the
combination network to recover, with a single universal coding
distribution, the entire achievable rate region of [19, Proposi-
tion 1], the latter being obtained via rate-splitting and linear
superposition coding in [19]. Note that that region further
specialized to the cases of one or two common receivers
yielded the capacity region for those cases as was shown in
[19, Theorem 3] and we recovered those capacity results in
Propositions 2 and 3, with achievability in a top-down manner
via Theorem 3, in Section V-B.

Moreover, the authors in [19] showed that the achievable
region in [19, Theorem 1], which is achieved by adding
a pre-encoder to the rate-splitting and linear superposition
coding scheme of [19, Proposition 1], is strictly larger than
that of [19, Proposition 1] through [19, Example 2] with
K = 6 with three common receivers, i.e., there is an
achievable rate pair achieved by [19, Theorem 1] but not
by [19, Proposition 1]. Moreover, through [19, Example 4]
in which KX = 7 and four common receivers, it was shown
that the achievable region in [19, Theorem 2], achieved via
a block Markov coding scheme, is strictly larger than that
in [19, Theorem 1]. In this section, we specialize the rate
region of Theorem 3 to the combination network and identify
the auxiliary random variables that achieve the rate pairs
achievable by [19, Theorem 1] and [19, Theorem 2] in the key
examples [19, Example 2] and [19, Example 4], respectively.

We begin by recovering the rate region of [19, Proposition
1] in the following proposition in a top-down manner via the
more general Theorem 3.

Proposition 4: [19, Proposition 1] The rate pair (R, , Rg)
is achievable over the K -user combination network if there
exist real numbers Rg, .5 for all S €Tp {S,} such that the
following inequalities are satisfied:

Rs,= > Rs, s (130)
SETP{SP}

RSPHS >0 VS elp {Sp} (131)
Rg-f— Rsp < CW'; Vi e Sy (132)
> Rs,.s<Cs VBeF (WN\¢9), VjeS,
SeB

(133)
Rz+ ),  Rs,s<CyeVicS (134

Setp{12.--Pi}

Proof: From Theorem 3, we set F = P and choose
the random variables Ug for all S € P to independent and
uniformly distributed over Vs where |Vs| = 2¢s and Vg =

Us. For this specific choice, we can apply (74) in Lemma 2
to Theorem 3 to get (132) from (44), (133) from (45), and
(134) from (46).

Remark 10: The region in Proposition 4 is obtained in [19]
by rate-splitting of the private message and linear superposi-
tion coding scheme where the transmitted signal is obtained
by the multiplication of the information symbols vector by
the so-called zero-structured matrix [19, Definition 2]. Here,
Proposition 4 is obtained by specializing the inner bound on
the achievable rate region for the DM BC of Theorem 3 (which
is a union of polytopes over all admissible coding distributions
given therein) to the combination network and by restricting
the distribution of the auxiliary random variables to be a single
distribution. Hence, it is possible that the entire rate region of
our coding scheme of Theorem 3 is much larger than the one
given by [19, Proposition 1]. We address this important point
in Examples 11 and 12 to follow.

Remark 11: The authors in [19] define Superset Saturated
Subsets [19, Definition 1], which is equivalent to up-sets in
our notation, to be able to describe the inequality in (133)
without using order theory. Note that the complement of any
down-set is an upset, and hence, (133) can be described using
the family of down-sets or the family of upsets. In fact, (133)
can be written as

Rs,— Y Rs,.s < Cweg VB € FrWIO\WF, Ve S,
sSeB
(135)

Before proceeding to the three common receivers example
in [19, Example 2], we specialize first Theorem 3 to the three
common receiver case in the following corollary.

Corollary 4: An inner bound of K-user DM BC for two
nested messages with three common receivers (Ms,, Mg)
where S, = {1,2,---, K—3} is the set of rate pairs (Rg,, Ry)
satisfying (136)-(159) for [y = K,lo = K —1,l3 = K —2 and
all j € S, for some p(q,up) = p(q) [ [scp P(us|urps\(s},9)
and X as a deterministic function of (@, Up) where

Rs, .5 >0 VSclp{Sy}
Rs,=Rg 5+ Rg +Rg 5+Rg 13

(158)

+ Ry g+ Ry T RBe i T Bs g
(159)

Proof: We obtain the achievable rate region in the state-
ment of the corollary by setting F = P in Theorem 3. Note
that we split the private message M, into eight sub-messages
Ms,ﬁ} MSPHE’ MSP?E’ MSPHE» Mspﬂm’ Sp—lils’

s,Taly Mg, 7, since there are 3 common receivers.
Hence, we obtain (136)-(138), as shown at the bottom of the
next page, from (46), (139)-(156), as shown at the bottom of
the next page, from (45), and (157), as shown at the bottom
of the next page, from (44).

In the following example, we consider the example in [19,
Example 2] wherein it was shown that the rate-splitting and
linear coding scheme of [19, Propositon 1] does not achieve
capacity. However, when a linear pre-encoder is used together
with that scheme a strictly larger rate region is obtained in
[19, Theorem 1] which achieves capacity in [19, Example
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2]. We show that the capacity region of [19, Example 2] can
actually be recovered in a top-down fashion from Corollary 4,
but two distributions of the auxilary random variables are
needed.

Example 11 (Example 2 of [19]): We consider
K = 6 with three common receivers, i.e., E = {123, 123456}
where S, = {1,2,3} and S; = {4,5,6}. Moreover,
we set Ciogy = Cizs = Co36 = 1 and Cg = 0 for
all S € P\{124,135,236} so that we have only three
intermediate nodes. Clearly, for such a connection, the
capacity region is a line between the two corner points
(Rs,, Rz) = (2,0) and (Rs,,Rz) = (0,1). By choosing
the random variables Ug for all S € {124,135,236} to
be independent and uniformly distributed over Vs where
[Vs| = 2°s and Vg = Us with |Q| = 1 and Us = const. for
S € P\{124,135,236} in the region given in Corollary 4,
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we get that the rate pair (Rg,, Rj3) is achievable if there
exists non-negative numbers Rs, .s > 0 VS €Tp {S,} with
Rs, = Rg 7 T RSP—>§ + RSP—>5 + RSP—>Z + Rsp_,% +
Rg 15+ Rg, a5 + Rg 155 such that the inequalities in
(160)-(181), as shown at the bottom of the next page, are
satisfied.

Clearly, for this choice of the auxiliary random variable,
the rate pair (Rs,, ;) = (0,1) is achievable since the
above linear program is feasible. However, the rate pair

(Rs,, Rz) = (2,0) is not achievable. To achieve the rate pair
(Rs,, R5) = (2,0), we have to set, for instance, Rg 55 =
Rg 55 = 1. By doing so, we see that the above linear

program is infeasible due to the inequalities (164), (165),
(167), and (171). However, the inequality (160) has a right
hand side equal to 1 with left hand side equal 0. This
inequality is the reliability condition for the common receiver

R+ Rg o +Rs, .+ Rs, i+ 8s, 3= I(UWLP1 $Y1,1Q) (136)
Ry+Rg gq; + Ry p+ R 5+ Ry 5< I(vaf2§Yl3|Q) (137)
Rz +Rs, g+ Rs, 7 + R, g+ Ry 5 < I(Uwp :Y1,|Q) (138)
R < 1(U P{m}vYﬂUW]P\lWP{m}aQ) (139)
Ry omn +Bs,m; < I(Ul p{zle}» J|UWP\LWp{l1l2}7Q) (140)
Ry g + RBs, o < I(Ul p{zlzg}» J|UWP\le{l1lg}7 Q) (141)
Rg, nnn + s, 5 <1U) o (BT J|UwP\lWP{zzzg}a Q) (142)
Re, mon + Bs, o T s, 1 = I(Ulwg{lllz,lllgp YJ|UWF.’\1 SUTAADE Q) (143)
Rg o5 + s, nn, + s, iy < 1U) P (BT05Y J|vaP\1Wp{zle iy @) (144)
Ry omn +Bs,ms + Bs, i < I(Ul p (5, ) J|UWP\1Wp{l1l3 s @) (145)
Rg, i+ Bs,—mm; + B, i + Bs, i < LU we AT T BT} YilUpeyy,, p{l1l2,l1l3,l2l3}7Q) (146)
Ry oo + Bs, m + By rg + B, ip < I(Ul p{ll}v J|UWP\1Wp{l1}7 Q) (147)
Ry gmn; + Rs, o + Bs, s + R, i T B, im < 1(U) we (T BT} YJ|va;’\1W?{E,m}a Q) (148)
s, tmm + R, + B, i + R, < 1y J|UWP\1WP{12}’ Q) (149)
R, 15 + R, 175 + R, it + R, s + R, < 10, sy Vilwin 1 770 @) (150)
Ry i + R,y T Rs, i + Bs, 15 < I(U, {lg}, J|UWp\le{lg}, Q) (151)
Ry = +Rs tm+Rg 1 +Rg 1+ Rsﬁlg <10, @7y YilUwe e 577 @) (152)
R, ity + B, 75 + B, s + B, s + Ry + B, < 10 1y il U 57200 @) (153)
Ry non + Bs,—n; T Bs, s + B, or; T Rs,—p T Rg, 3 < I(Ulwp{zl Ty Y |UWP\le{l1,l3}7 Q) (154)
R, ity + B, 73 + B, s + B, s + Ry B, < 10, iy Vil U 700 @) (155)
Rspﬁm + Rspﬂm + Rspﬁm + Rspﬂm + RSPHF + RSPHE + RS T <

1, LT J|UW"\1WP{11 nhp@)  (156)
Ry + Rs, <I(Uwr;Y;|Q) (157)
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Ys. In fact, this common receiver does not benefit from setting
Uass = Vasg since it does not have to decode any information.
Hence, we have to change the choice of the auxiliary random
variable to make the private receivers exploit Vo34 to relax the
inequalities (164), (165), (167), and (171) and make the linear
program feasible. To do so, we choose the auxiliary random
variables Ujss, Uy24, U123 to be independent and uniformly
distributed over Vi35, V124, V236, respectively, and set Uiz =
Viss, U124 = Viag, U1 = Vagg with |Q| = 1land Ug = const.
for S € P\{123,124,135}. With this second choice of the
random variable, we get from Corollary 4 that the rate pair
(Rs,, Rg) is achievable if there exist non-negative numbers
Rsp_,s >0VS elp {Sp} with Rsp = RSp—@ + RSPH§+
RSp —5 + RSP—>Z + RSPﬁ% + RSp —46 + RSp —45 + RSp —456
that satisfy the inequalities in (182)-(203). It can be verified
that the rate pair (Rg,, R3) = (2,0) is now indeed achievable
since Rg 35 = Rg, 55 = 1 satisfy the above inequalities.
Note that this is not the only possible choice of auxiliary
random variables. We can set Rspﬁm = Rspﬁg =1 or
Rg 5 = Rg 55 = 1 and change the choice of the
random variables accordingly to keep the linear program
feasible.

Remark 12: Since by choosing the random variables Ug for
all S € P to be independent and uniformly distributed over Vg
where |[Vs| = 295 and Vs = Ug with |Q| = 1 in Theorem 3,

we obtain the rate region of [19, Proposition 1] which is not
optimal for more than two common receivers as shown by the
above example. Unlike in our approach, the right hand side
of the linear program in [19] (equivalent here to (160)-(181))
is a function only of the network connections and hence it
cannot be changed to make the linear program feasible as we
did in (182)-(203), as shown at the bottom of the next page.
The authors in [19] add a pre-encoder to the linear code and
the reason for that can be seen to be to relax the left hand side
of the linear program to get [19, Theorem 1] that allows the
value of Rg, s, to be negative, i.e., relaxing the inequality
in (158) to be Rg, .5 > 0 VS clp {Sp}\{Sp}. However,
in our approach, we do not have to change our coding scheme,
i.e., superposition coding with up-set rate splitting suffices.
We have to just choose suitable auxiliary random variables to
achieve the corner point (Rs,, Rz) = (2,0).

In the following example, we consider the same example as
in [19, Example 4] where the authors showed that their linear
coding scheme even with the pre-encoder cannot achieve the
rate pair (Rs,, R7) = (3,1) for a network with seven users
and four common receivers. Hence, a block Markov coding
scheme was proposed therein that can be seen to relax the left
hand side of the linear program, and consequently, achieve
the rate pair (Rs,, It5) = (3,1). However, as suggested by
Example 11, instead of changing our coding scheme, we might

R+ Ry 5+Rs, 5+Rg 7+Rs 5<1 (160)
Rz+Rg g5+Rs, 5+Rs, g+ R _3<1 (161)

Rz+Rg s+ Rg, 5+Rs, 5+Rg 3<1 (162)

R <0 (163)

Ry g6+ Rs, 5 <0 (164)

Ry g5+ Rs _15<0 (165)

Ry q55+Rs, 75 <0 (166)

Ry g5+ Rs s+ Rg, a5 <1 (167)

Ry g5+ Rg s+ R, 5<1 (168)

Ry g5+ Rg 15+ Rg, _q5<1 (169)

Ry 55+ Rs, 55+ Rs, 15+ Rs, 75 < 2 (170)

Ry g6+ Rs, s+ Rs,_m+Rs, 5<1 (171)

Ry 5+ Rs s+ R, a5+ Rs, 5+ Ry, 5 <2 (172)

Ry g5+ Rs, s+ Rs, a5+ Rg, 5<1 (173)

Ry 5+ Rs s+ R, a5+ Rs, 5+ Ry, 5 <2 (174)

Ry g5+ Rs, g+ Rs, a5+ Rg, 7<1 (175)

R, 55+ Rs, 55 + s, a5+ Bs, 35 + Rs, 7 < 2 (176)

Ry a5+ Rs, 56+ Rs, a5+ Rs, 15+ Rg, 5+ Rg, 5 <2 (a77)
Rs, a6 + Its, 56 + fts, 15 + s, 15 + s, 5 + fg, 1 < 2 (178)
Rs, 55 + Its, 56 + fts, 15 + fls, 15 + fg, 5 + fg, 1 < 2 (179)
Ry g6+ Rs s+ Rs, 15+ Rs, g5+ Rs, _5+Rg _5+Rg 72 (130)
R;+ Rg, <2 (181)
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be able to achieve that rate pair by finding a suitable choice
of the auxiliary random variables in Theorem 3. This is what
we do in the next example.

Example 12 (Example 4 of [19]): We consider K = 7
with four common receivers, i.e., E = {123,1234567} where
Sy, = {1,2,3} and S; = {4,5,6,7}. Moreover, we have
only six intermediate nodes, i.e., Ci245 = Cho57 = Clza6 =
01347 = 02356 = 02367 = 1 and CS = 0 for all
S € P\{1245,1346,1347,2356,1257,2367}. Let us start by
choosing Ug for all S € P to be independent and uniformly
distributed over Vs where |Vg| = 25 with |Q| = 1. Hence,
from (46) in Theorem 3, assuming that F = P, we know
that we have the following four inequalities in the feasibility

problem (with Rg, = ZS&TP{SP} Rs, .s)
Rz + Rs, 1234 + Rs, 12347 + Rs, 12346 + Rs, 12345
+RSPH5+RSPHE+RSP*’7+RSP—7$ <3 (204)
Rz + Rs,—1235 + Rs,—12357 + Rs,—12356 + s, —12345
+RSP—>Z+RSP—>E+RSP—>7+RSPH$ <3 (205)

Rz + Rs, 1236 + Rs,—12367 + Rs, 12356 + R, 12346

215

To achieve the rate pair (Rs,, It5) = (3,1), we do not need
to have 3 on the right hand side of all four inequalities
(204)-(207). Here, the private message is split into 16 sub-
messages since we have four common receivers. We have
to set the sum rate of a subset of these sub-messages equal
3 in a way that allows us to restrict at least one of the
above inequalities. Clearly, we cannot set the sum rate of
MSPHZv MSPHB’ Mspﬁg, MS;,%? to be 3 while the sum rate
of each three of them is upper bounded by 2 from (204)-(207).
Hence, let set Rg, 12345 = Rs, 12347 = Rs, 12357 =
1. This is one possible choice from many other choices.
Obviously, for this choice we can restrict the inequality (206),
i.e., make its right hand side equal 1 instead of 3. To do so,
we set

U136 = Vizae (208)
Usssg = const. (209)
Us367 = const. (210)

instead of the original choice which was Ug = Vg for S €
{1246, 2356,2367}. To make sure that all private receivers

+ RSP—>Z + Rsp—>§ + Rsp—ﬁ + RSPHg <3 (206) Y1, Yo, Y3 benefit from this restriction, we set
R+ Rs, 1237 + Rs, 12367 + Rs, 12357 + Rs, 12347 Ui235 = Vasse (211)
+ Ry g+ Rg _5+Rs 5+ RSp—>$ <3 (207) U237 = Vazer (212)
R+ Rg 5+Rs, 5+Rg 7+Rs 5<0 (182)
Rz+Rg g5+Rs, 5+Rs, g+ R _3<1 (183)
Rz+Rg s+ Rg, 5+Rs, 5+Rg 3<1 (184)
R <0 (185)
R 55+ Rs, 5 <1 (186)
Ry, 5+ Rs, a5 <1 (187)
Rg, 56 + R, 15 <0 (188)
Ry 55+ Rs 56+ Rs, 75 < 2 (189)
Ry g5+ Rg s+ R, 5<1 (190)
Ry g5+ Rg 15+ Rg, _q5<1 (191)
Ry 55+ Rs, 55+ Rs, 15+ Rs, 75 < 2 (192)
Rg 155+ Rg, 56 + Ry, 36 + 5,5 <2 (193)
Rs, a56 + Bs, 56 + s, .35 + Rs, 55+ Rg, 5 <2 (194)
Ry g5+ Rs, s+ Rs, a5+ Rg, 5<1 (195)
R, 156 + Rs, 56 + Rs, .35 + RBs, .35 + Rs, 5 <2 (196)
R, 156+ Rs, 35+ Rs, .35 T R, .7 <1 (197)
Rs, a6+ Bs, 56 + s, .35 + Rs, 15+ Rg, .7 <2 (198)
Ry a5+ Rs, 56+ Rs, a5+ Rs, 15+ Rg, 5+ Rg, 5 <2 (199)
Ry a5+ Rs, 56+ Rs, a5+ Rs, 15+ Rg, 5+ Rs, .7 <2 (200)
Ry a5+ Rg, 56+ Rs, a5+ Rs, 15+ Rg,_5+ Rg, .7 <2 (201)
Ry g6+ Rs s+ Rs, 15+ Rs, g5+ Rs, _5+Rg _5+Rg 72 (202)
R+ Rs, <2 (203)
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We have only three sub-messages with non-zero rates,
namely, Rg, 12345 = Rs, 12347 = Rs, 12357 = 1 and
hence, we have only seven B’s from (45) in Theorem 3
that give non-redundant inequalities. Thus, the achievable rate
region, from Theorem 3, is the set of rate pairs (Rjos3, Rg)
satisfying for all j € S,

Rj + Rizs < I(Uye; Y;1Q) (213)
Ria3 <
I(Ulw5 {12345,12347,12357} 5 Yj|UWJP\LW;,{12345,12347,12357})
(214)
Ri23 12345 + R123.12347 <
I(U1W5{12345,12347}§ 3?|Uw§\1w§{12345,12347}) (215)
Ri23-192345 + R12312357 <
I(U1W5{12345,12357}§ 3G|Uw§\lw§{12345,12357}) (216)
Ri23-19347 + R12312357 <
217)

I(Ulee{12347,12357}§ Yj|UW§’\lWP{12347,12357})
J

Rz 12345 < I(U) (12345} Y |UW';\iWF_> {12345} (218)
J J

Riog 12347 < T(Uy o (1234713 YilUwe\ | o (123a7y) (219
J J

221)

)
)
Ri23_12357 < I(ULW5{12357} ;Y |UW§.’\1W]9{12357}) (220)
R 4+ Ri2s-12345 + Ri23123a7 < I(Uwe; Ya|Q)

)

Rz + Riaz 12345 + Riozi2357 < I(Uwe; Y5|Q)  (222)
Ry < I(Uwg; Y5|Q) (223)
R+ Rias 12347 + Riozi2ss7 < I(Uwe; Y7|Q)  (224)
Ri23 = Ri2312345 + Ri23 12347 + Ri23 12357 (225)

for some p(q, up) = p(q) [1scr P(uslues\(sy,¢) and some
deterministic function X of the time sharing and auxiliary

random variables (Q,Up). Besides (208)-(212), we have to
assign Viags, Visar, Viesy to the auxiliary random variable
such that all the above inequalities (213)-(225) are satisfied
simultaneously for (Rs,,Rz) = (3,1). We choose the
random variables Ui234s5, U12347, U12357, U1235, U1237, U1346

to be independent and uniformly distributed over

Vi24s, V1347, V1257, Vasse, Vaser, Visag,  respectively, and

set
Ui2sa5 = Vi2as (226)
Ui23ar = Vizar (227)
Ui23s7 = Vizst (228)
U235 = Vasse (229)
Ui237 = Vazer (230)
Ui3as = Vi34 (231)

while setting the rest of the auxiliary random variable to
const. with |@| = 1. For this particular choice of auxiliary
random variables, we can show that the linear program in
(213)-(225) is feasible for the rate pair (RSP,RJ) = (3,1)
with Rg, 12345 = Rs, 12347 = Rs, .12357 = 1, and
hence, that rate pair is achievable. It is worth noting that
there are other choices for the auxiliary random variables

that lead to a feasible linear program (213)-(225) for the rate
pair (Rs,,R3) = (3,1) with Rs, 12315 = Rg, 12347 =
Rs, 12357 = 1.

Remark 13: We showed in Example 11 and 12 that The-
orem 3 achieves the rate pairs that needed a pre-encoder
along with rate-splitting and linear superposition coding [19,
Theorem 1] or the proposed block Markov coding scheme [19,
Theorem 2] in [19] by just changing the choice of the auxiliary
random variables. We did not have to include any dependency
among the auxiliary random variables (which is admissible as
seen in the allowable distributions in Theorem 3). Note that
in Example 12, Theorem 3 achieves a rate pair that is not
achieved by [19, Theorem 1] which is known to be capacity
achieving for three common receivers [19, Theorem 4]. This
leads us to conjecture that the achievable region in Theorem 3
is also capacity achieving for three common receivers. In fact,
it might subsume the region obtained from linear coding, i.e.,
the transmitted signal is a linear combination of the informa-
tion symbols since the region in Theorem 3 is the union of
feasibility regions over all admissible coding distributions as
specified therein.

Remark 14: Example 12 is the only example given in [19]
that shows that block Markov coding might be needed for the
more general DM BCs. This was the reason for the authors
in [19] to have extended their block Markov coding scheme to
the general DM BC in [19, Theorem 6]. However, we showed
in Example 12 that our coding scheme of Theorem 3 is enough
to achieve the rate pair that needed the block Markov coding
scheme of [19, Theorem 2]. Thus, Example 12 leaves us with
no example that motivates the block Markov coding scheme
of [19, Theorem 2], leading to the suggestion that perhaps
the block Markov coding scheme of [19] is never needed.
To strengthen this suggestion, further work is needed.

VII. Is F = P NECESSARY?

We have shown that by using a single coding scheme
corresponding to F = P, we can achieve the capacity region of
general (asymmetric) combination networks for three different
message sets with uniform independent auxiliary random
variables and a specification of the channel input via the simple
relation Vs = Ug. In this part, we consider the question of
whether the capacity region be can achieved with a simpler
coding scheme, i.e., with F C P? The answer to this question,
as we show here, is yes. However, both F, the expanded
message set, and the coding distribution (i.e., the distribution
of Ur) and the function X (Ur) must be tailored to the message
set. We summarize the results next.

For two order-(K — 1) messages, the coding scheme of
Theorem 1 associated with F =1p E U {S,} is sufficient
to achieve capacity. For two nested messages with one and
two common receivers, the coding scheme of Theorem 3
corresponding to F = E and F =Tp E, respectively, are
sufficient to achieve capacity. In particular, we show that these
respective smaller F’s can be used to achieve the capacity
region provided the distribution of the auxiliary random vari-
ables Ur and the function X (Ur) are chosen accordingly.
In particular, a dependent set of auxiliary random variables
must be considered. Hence, both the coding scheme and the
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coding distribution must be tailored to the message set under
consideration.

A E={K, ¢}

For two nested messages with one common receiver,
we choose F = E = {K, ¢}. With this specific choice, we get
from Theorem 3 (with || = 1) that the rate pairs

Ry <I(Us; Yi) (232)
Ry + Ry <I(Uz:Y;) j € S, (233)

for some p(uz)p(u|ug) are achievable where X is a deter-
ministic function of the auxiliary random variables. Note that
the above region is the direct extension of that in [9] from
K = 2 to arbitrary K. To achieve the capacity region of the
combination network given by Proposition 2, we choose U=
to be uniformly distributed over [] sewe Vs and Ux to be
uniformly distributed over [[g.p Vs where [Vs| = 2% for
any S € P. We set the channel input components Vg for all
S € P to be independent and uniformly distributed over Vg
where Ve = Uy and Vp = Ug. It is clear that for this
specific choice of the channel input components Vg, we have

H(W) =Cw (235)

for any W C P since the channel input components Vg are
independent and uniform distributed over Vg.

Next, we compute the bounds in (232)-(234). Following a
similar analysis as in Proposition 2, we have

I(Uz Yk) = Cwe. (236)
and for each j € S, we have
I(Ug:Yj) = H(Y;)
— H(W)
= Cyr (237)

where (237) follows directly from (235). Hence, substituting
(236) and (237) into (232) and (233), we obtain the capacity
region given in Proposition 2. Moreover, we show that (234)
is redundant because for all j € S,

1T Y;1U5) = HY|U)
= H(Ve Ve ) (238)
H(Viwew, Ve, )
HU, ) @)
(240)

= ClW]P {K}

where (238) follows from that fact that Y; = VV'\D/]_ and Ug =
Vit ser (239) from WPA\WER =lwe {K} and the independence
among the channel input components, and (240) from (235).
Note that for any j € S,
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where (241) follows from Lemma 2 when S = K and
(242) from TWP {K} C WF.. The last inequality proves the
redundancy of (234)

B.E={¢,K - .K}

For two common receivers, ie., E {p, K —1.K},
we choose F =Tp E = {¢, K, K — 1, K — 1.K}. Hence, from
Theorem 3 (setting || = 1), we can show that for j € S, the
set of rate pairs (Rg, Ri—7) satisfying

Ry < min{I(Ug, Us; Yic 1), I (U=, U5; Y )}
R+ Re—x < min{I(Ug=7: Y));
)—FI(UK,U(/),YK 1)

) + I(UK—1= U¢7 YK)}

(243)

I(Ug=w: Y51V, </>v
I(Ug=w: Y51V U

(244)
2R s -ew:e <I(LK 1KvY|UK’Uﬁ)
+I(UK,U¢,YK 1)+I(UK_1,U¢,YK) (245)
2R$+ 2Rg—x < [(Ug=w YUz Ug=0)
+ 1(Ug—x: Y;|U3)
+ I(Ug, Us; Yi_1) + I1(Ug=, Us; Yik) (246)

for some p(ug)p(uglug)p(ug=lug)p(vg=—rr vz ug=7)
and with X a deterministic function U, is achievable. The
above region is the extension of the region in [11, Proposition
5] without binning from K = 3,L = 2 to arbitrary K
with two common receivers. In fact, as we mentioned before,
the above region, with K = 3,L = 2, was shown in [11,
Proposition 7] to be the capacity region when Y] is less noisy
than Y5 or Ys. Here, we show that the above region is the
capacity region for general combination networks with two
common receivers and arbitrary K. We choose the dependent
auxiliary random variables Uz, Uz, Uz, and Ugz— 7 to be
uniformly distributed over l_fSeT e (K} Vs, |1 sews._ Vs

and [] Sew?. Vs, and [] Sep Vs, respectwely On the other
hand, we set the channel input components Vs for all S € P
to be independent and uniformly distributed over Vs where

Vige (-1} = Vie (53 =U3 (247)
Vi 1 Vi ® =Yg, = Ug (248)
Vig k-1 Vi 1) = Vo, = Ur 249)
Vo = Ut (250)

Note that the first equality in (247) follows from the fact that
Twe_, {K} =Twe {K — 1} and that in (248) and (249)
dlrectly from (7) and (8).

For this choice of auxiliary random variables and channel
input components and following similar analysis as in the one
common receiver case, we have

(U U Yi—1) = C (251)
(U=, U K):C (252)
I(Uz= 1K,Y]):C (253)
(U= Yi|U5. Ug) = ?ﬁ} (254)
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(U= Y;1U; S Ug—) :CL p{?} (255)
IUe=% 1K,Y]|U) Cl P{ ) (256)
U= YUz, Ug=1) = Olwp{K—l.K} (257)
Notice that (256) follows from
I(Ug=7: Y;|U3) = H(Y;|Ug)

= H(VWP|VTWP {K}) (258)

= H(Vy |VTP{K 1.KY})
= H(Vy |VTP{K 1K}mWP) (259)

= H(V |VTWP{K 1. K})
= H(Viyr P\ e K1 K}) (260)
= H( K_F}) (261)
= Clw (K=K} (262)

(O]

where (258) follows from (247), (259) and (260) from the
independence of the channel input components Vs for all S €
P, (261) from (7) and (8). Finally, (262) follows directly from
(235).

On the other hand, (257) can be shown as follows. For any
j € Sp, we have

(U= Yj|Uz, Ug=) = H(Y;|Ug, Ug—)
= H(Vawe Ve, Viwr)
:H(VWP\W uwﬁ() (263)
=H(V, Iw p{K lK}) (264)
=0, . x—x) (265)

where (263) follows from the independence of the channel
input components Vg for all S € P, (264) from removing
from W? all the sets that contain K or K —1, and (265) from
(235).

When we substitute (251)-(257) in (243)-(246), we get an
equivalent region to (66)-(71) for the choice of independent
auxiliary random variables Ug for all S € P uniformly
distributed over Vs where |Vs| = 2¢s and Vg = Ug. More
precisely, the inequality in (243) becomes equivalent to (66),
(244) equivalent to (67)-(69), (245) equivalent to (70) and
(246) equivalent to (71). Hence, the region in (243)-(246)
achieves the capacity region established in Proposition 3.

CE={K,K-1}

For the case two messages each required by K —
1 receivers E = {K,K — 1}, we set F =7p EU {S,} =
{$,K —1,K,K — 1.K}, where S, = K — 1.K. Since we
are choosing F strictly bigger that {p E, we have one zero
reconstruction rate as we mentioned before in Remark 5. From
Theorem 1, the inner bound of K -user DM BC for the message
index set E = {K, K — 1} is the set of rate pairs (R, Rz—)

satisfying
Rp=y < I(Ug=1, Ug; Yk (266)
Ry < (Ui, Ug; Y1) (267)
Rp—+ Ry < I(Ug=7;Y5) (268)
Rp=7 + Rg < I(Ug=rx: ViU Ug) +1(Ug, Uz Y1)
(269)
Ry + R < I(Ug=r7: Y;1Uz, Ug=x) + 1 (U=, Uz: Y )
(270)
Rip—+ Ry < I(Ug; YK_1|U$) + (U=, Ug; Yx)
(271)
Rig—+ Rg < I(Uzg—: Yk |Uz) + I(Uz, Uz: Y —1)
272)

2Rp= + 2Ry < I(Ug=z: Y;|U3) + 1 (U, Ug; Y1)

for all j € S, and some p(ugz) p(uglug) plug—lugz)
p(up—F|uR, ug—y) and X a deterministic function of U
is achievable. To achieve the capacity given in Theorem 4,
we choose the auxiliary random variables and the channel
input components exactly as in the two common receivers case.
Hence, the equalities in (251)-(257) hold. Moreover, we have

I(Uz Yk -1|Up) = H(Yk-1|Ug)
=HVwe_ Vi 71{K}) (274)
=H (Ve 1\ng(il{l(}) (275)
—HV,, ) (276)
¢y, 277)

where (274) follows from (247), (275) from all channel input
components are independent, (276) from (7) and (8), and (277)
from (235).

Similarly, we can show that

I(Ug=:; Yk |Uz) = C we (T} (278)

By substituting (251)-(256), (262), (277), and (278), in the
region (266)-(273), we get exactly equivalent region to the one
obtained from (15)-(20), when the auxiliary random variables
Us for all S € P are chosen to be independent and uniformly
distributed over Vs where |Vs| = 2¢5 and Vs = Us, which
is the capacity region of the combination network given in
Theorem 4. More precisely, the inequalities (266)-(268) and
(273) become equivalent to (15)-(17) and (20). Also, (269)
and (272) become equivalent to (19). Finally, (270) and (271)
become equivalent to (18).

Remark 15: The most commonly used coding scheme for
DM BC:s for any message index set E is the one corresponding
to F =Tp E. If we restrict ourselves here to this kind of
coding scheme, it is unclear how we can find the optimal
distribution for the auxiliary random variables to achieve
the capacity region for general combination networks with

= {K,K —1}. However, with a slight increase in the
complexity of the coding scheme, i.e., setting F =Tp EU{S,},
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we were able to identify the optimal distribution for the
auxiliary random variables.

In this section, we showed that there is a trade-off between
the complexity of the coding scheme by changing F and that
of the distribution of the auxiliary random variables and the
encoding function that must be chosen to achieve the capacity
region in three scenarios. We needed to consider dependent
auxiliary random variables when we choose F C P while
independent auxiliary random variables were enough when
F = P as in Theorem 4 and Propositions 2, and 3. It is
interesting to ask if it is always true that using the most
complex coding scheme by setting F = P compensates for the
need for dependent auxiliary random variables. It is possible
this is true given Theorem 4 and Propositions 2 and 3 and
Examples 11 and 12. If so, then finding the optimal distribution
for the auxiliary random variables to achieve a corner point
is the capacity region could be much simpler than finding it
over all admissible dependent distributions for the auxiliary
random variables. This question needs further investigation.

VIII. CONCLUSION

In this paper, we propose a novel and general achiev-
able scheme for the K-receiver DM BC with two groupcast
messages that involves a new twist (message set expansion)
and generalizations of the techniques of message-splitting,
superposition coding and indirect decoding. The language of
order theory is used to describe the scheme succinctly and
to characterize its achievable rate region. To demonstrate the
efficacy of this scheme we show that it achieves capacity for
certain classes of partially ordered broadcast channels for a
certain classs of two groupcast message sets. We also obtain its
specialization to the combination network and show that in the
three special cases of (a) nested messages with one common
receiver, (b) nested messages with two common receivers and
(c) with two messages each required by K —1 receivers the
proposed achievable rate region coincides with the capacity
region. In particular, the descriptions of the capacity regions
are given as explicit polygons, revealing their combinatorial
structure.

It remains to be seen if Theorem 3, when specialized to the
K-user combination network, yields its capacity region for
any two nested groupcast messages. More generally, we are
curious to know if Theorem 1 might yield the capacity region
of the combination network for any two arbitrary groupcast
messages. In future work, it is also of interest to generalize
the results of this work in the direction of expanding message
sets to contain more than two messages.

APPENDIX I
PROOF OF (7) AND (9) IN LEMMA 1

For any set S = iyig---iny C {1,2,--- ,K} andi € [1:
K], we have
W =W\ Twe {5} U Win Tywe {S}
— WA\ e {S} U Tyee {5}
=lwe {12, K\ Twe {S} U Twe {S}

(279)
(280)

219

:lW'; {Tv U amvmv e 7?}\ TW'; {S}
U Twe {S} (281)
=lwr {ir iz, v\ Twe {ST U Twe {5} (282)

where (279) follows from Ty {S} C WF. For (280),
we know that the set 12---K clye {S} for any S =
ivig iy C {1,2,--+ K} Also, W& = {12+ K}U [y
{1,2,--- ,K}, in words, this means that W is the union of
the down-set of all K sets with cardinality K — 1 and the
set with cardinality K (i.e, {1,2,---,K}). Hence, we can
replace W¥ by |we {1,2,--- , K} since 12--- K cTye {S}.
Then, (281) follows from the fact that Usew Lwe {S} =lwr
{Usew} for any W C P and |we {i} = ¢. In (282),
we remove all the sets in {1,2,---, K} that are available
in Twe {S} for N < K. Note that we have K sets
with cardinality K—1in P and K—N sets with cardinality
K—1 contains S = iyis---iy. Finally, (283) follows from
lwe {75,73, - TNH0 Twe {iniz -+ in} = &
In a similar manner, we can prove (9) as follows

U Win Twe {itsdo, - in}
=lwe {123 K}\ Twe {i1,i2,- -+, in}

U Twe {ivdz, o ind (284)
=lwe {SI\ Twe {i, iz, in} U Twe {in, iz, in}
=lwe {S}U Twe {iz,i2, -+ ,in}

(285)

where (284) from the fact that WY =|,\» {123--- K}, and
(285) from (10) where |y {S}N Twe {i1,42, - ,in} = ¢.

APPENDIX II
PROOF OF THEOREM 1

Fix F (E C F C P) to be ordered by set inclusion such
that S’ < S only if S’ C S. For this choice of F, we do the
following: (a) split the messages Mg S € E using the up-set
splitting technique proposed in [21] such that

Mg = (Mg _ g, S €1¢S) (286)

(b) create the reconstruction messages ]\Zfs S € F with rates
given in (12) such that

Ms=(Mg_.g, S €leS) (287)

and (c) fix the coded time-sharing, auxiliary and input random
variables (@, Ug, X) such that X is a deterministic function
of @, Ur whose joint distribution is given by

p(q, ur) = p(q) H p(us|uge, s\(s},9) (288)

SeF
Then, we enumerate the sets in F in non-increasing order
such that F = {S;,, Si,, ..., Siy }, where N = |F|. Generate a
random time-sharing sequence ¢" according to [[I_, po(g:)-
For each j € [1 : N] and collection of reconstruction messages

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 21,2023 at 20:29:35 UTC from IEEE Xplore. Restrictions apply.



220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

mTFSij» senerate 9" codewords ug% (mTFsij) according
to [ [}, p(us,_-j U1, »¢i)- This process can be done for all j
from j=1toj=N.

Receivers Y; (j € S,) jointly decode the reconstruc-
tion messages M\N]F_ which contain both desired messages
(Ms,, Mg,). Using the result in [21], we can show that the

probability of error vanishes if

Y. Ry < I(Us; Y|Unrig, Q) VB € Fy(W)),j € S,
s'eB
(289)

On the other hand, the receiver Y;, with j € S;; US,, only
needs one message My, and hence, non-unique decoding can
be employed. To analyzye the error probabilities and obtain the
conditions such that these probabilities vanish in the limit of
large block length when non-unique decoding is used, we use
the following two steps; (a) obtain the conditions such that
the probabilities of error vanish when unique decoding is used,
and then (b) remove all the inequalities that contain only the
rates of the undesired messages. For part (a), we know that
the probability of error vanishes if

> Ry <I(Us;Yj|Unr\g; @) VB € FL(WF),j € S, USy,
S'eB
(290)

Since each non-private receiver Y; desires only the message
M,ye which is part of the reconstruction messages Mg with
J

S €71k WJ'-E as shown in (286) and (287). Hence, from (290),
we need to remove from B all the sets that do not contain
Te W]E Since all the sets in B are down-sets, then if none
of these sets contain WJE, they must also do not contain
any of 1¢ W5. Thus, replacing B € F(WF) in (290) by
B e Fl{sl}(W]F‘) for j € S5, and B € fl{sz}(WJF) for
j € S, removes all the inequalities that contain only the rates
of the undesired messages. Hence, all receivers can reliably
decode their desired messages if (13) and (14) are satisfied.
This completes the proof of Theorem 1.

APPENDIX III
PROOF OF THE CONVERSE FOR THEOREM 2

The converse proofs in this section use the information
inequality of [29, Lemma 1], and hence, we state it here for
easy reference.

Lemma 3: Let X——(Y, Z) be a DM BC without feedback
and Y > Z. Consider M to be any random variable such
that M —o—X"—— (Y™, Z™) forms a Markov chain. Then,
we have

I(Y"Y Z M) >1(Z7 Y Z M) 1 <i<n
IYTLY M) >1(Z57h M) 1<i<n

In this part, we establish the converse proof for only
(34)-(36). In particular, we show that for every sequence
of (2"F== 2nRx n) codes with lim, .o P\ = 0 the
inequalities in (34)-(36) hold for the given classes of channels
for some p(u,z) for which U —— X —— (Y1,Y2,--- ,Yk).

For the first class of channels where Y; J Yx 1 J Yi
for all j € S,, we show that the optimal choice of U; =
M7=, Y}{_llﬂl,Yg,i 41- While for the second class where
Y; = Y forall ¢ € S, U {K — 1}, the optimal choice of
Us = Mg=Yc 1

The converse proof of (34) is straightforward for both
classes of channels and hence is omitted.

For the first class of channels where Y; J Yx_1 - Y for
all j € S,, the converse proof for (36) depends on Csiszar
sum lemma as that in [7], i.e.,

n(Rg= + Ri) = H(Mz=) + H(Mz)

< I(MF, Y;é,l) + I(MF, Mﬁ, Y;(L) + 2’!L€n (291)

I(Mz Y10l YR _1,i41)

I

@
Il
A

+
~

(Mg=; Yici| Mgz, Yy ') + 2ney, (292)

I(Mz, Y 1 13 Y —1,4)

-

s
Il
-

+
~

(Mg Y i| M, Y;i(jll) + 2ne,

-

@
Il
s

I(Mfa Y;(Tll’ Y;(L—l,H—l; YK—l,i)

-1

—~

i—1, . a n
YK,l ) YK71,1|MK7 YKfl,iJrl)

+
~

. . a 1—1 n
MK—17YK,1|MK=YK,1 7YK—1,1‘+1)

+
=

Yy Yl Mg, Yii)) + 2ney (293)

[
NE

1—1 n .
I(M?’ YK,l ) YK—l,i-i—l ) YK—l,i)
1

(M= Yici|Mz, Yo7 YR 1 1) + 2n€n

.
Il

+
~

(294)

I(Wi§YK—1,i) -I-I(X“YK1|WZ) + 2ne, (295)

-

@
Il
=

I(Wl, YK—l,i) + I(X“ YK_171‘|W¢) + 27l€n (296)

-

@
Il
—

I

s
Il
-

I(X;;Yr_14) + 2ney,

where W; = Mg, Y3 'Y .. The inequality (291)
follows from Fano’s inequality, (292) from the chain rule for
mutual information and the independence between M+ and
M7z. Inequality (293) is true since I(W; V) < I(W;V|U) +
I(U;V), (294) is due to the Csiszar sum lemma, (295) follows
from the fact that Mp—, M+, Y;{__ll,p Y]gﬂ- 41— X —o—
Yk _1,; forms a Markov chain, and (296) from the condition
Y 1 Yk
While, for the converse of (35), we have

n(Reg= + Rg) = H(Mzg=) + H(Mg)
< I(Mﬁ, Y;(I) + I(Mf, Mm, Yl?—l) + 27l€n (297)
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n

= Z I(Mz=; Y il YR i41)
i=1

+ I(M?, YK_171'|Mﬁ, K 1 1) + 277571 (298)

< ZI(Mﬁv K- 1 1aYKz+17YKz)
i=1

+ I(M?, YK_171'|Mﬁ, K 1 1 YK 1+1) + 2ne,
(299)

I(Ui;YK,i) +I(Xi;YK,17i|Ui) + 277/671 (300)

n
<2
i=1

where U; = Mz—, Y/ 1, Y2, ;. The inequality (297)
follows from Fano’s inequality, (298) from the chain rule for
mutual information and the independence between M7 and
M. Inequality (299) follows from using the Csiszar sum
lemma as in (293)-(294).

On the other hand, for the second class where Y; > Yy for
all i € S, U{K — 1}, for the converse of (35), we have for

any j € S, U{K — 1}

n

<Y (M= Yl Vi y')
=1
+ I(M Y| M, Y T

<Y (Mg,

i=1

+ I(Mg, Y7 Y| Mg=)
(

n(Rg— + Rx)

Y+ 2ne,

IZ<_11 1 Yie 1)

i—1.
= 1Y

> (Mg,
=1

+ I(Mg, Y] Y| Mg=)
_ I(

Y| Mg=p) + 2ne, (301

11(_11 1Yk 1)

IA

w1 Y5l Mg=x) + 2nen (302)

11{11 1 Yie 1)

M:

(M=,
=1

+ 1(Xi; Y| M=)
(Y15 Yj.il M=) + 2ney
< ZI(MK—P YIZ<_117 Yk z)
=1
(X4 Y| M=, Y ') + 2ne, (303)

=3 I(Ui; Yi) + 1(Xi;Y;.6|Us) + 2ne,
=1

where (301) follows from the chain rule for mutual informa-
tion, (302) from Lemma 3 where Y; > Y for all j € S, U
{K —1}, and (303) from the chain rule and the non-negativity
of conditional mutual information,

221

The rest of the proof proceeds along standard lines. Define
a time-sharing uniform random variable @) over [1:n] that is
independent of all other involved random variables. Identify
U=(Ug, Q) and Y;=Y]q for all 7 € [1 : K] and take the limit
as n — 00, so that ¢, — 0.
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